* rtl.h (rtunion_def): Constify member `rtstr'.
[official-gcc.git] / gcc / final.c
blob01dd1ba6b8306e8d9b531e5f2b7f930cc542969c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
44 The code for the function prologue and epilogue are generated
45 directly as assembler code by the macros FUNCTION_PROLOGUE and
46 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
48 #include "config.h"
49 #include "system.h"
51 #include "tree.h"
52 #include "rtl.h"
53 #include "tm_p.h"
54 #include "regs.h"
55 #include "insn-config.h"
56 #include "insn-flags.h"
57 #include "insn-attr.h"
58 #include "insn-codes.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "defaults.h"
65 #include "output.h"
66 #include "except.h"
67 #include "function.h"
68 #include "toplev.h"
69 #include "reload.h"
70 #include "intl.h"
72 /* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
73 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
74 #include "dbxout.h"
75 #if defined (USG) || !defined (HAVE_STAB_H)
76 #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
77 #else
78 #include <stab.h>
79 #endif
81 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
83 #ifdef XCOFF_DEBUGGING_INFO
84 #include "xcoffout.h"
85 #endif
87 #ifdef DWARF_DEBUGGING_INFO
88 #include "dwarfout.h"
89 #endif
91 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
92 #include "dwarf2out.h"
93 #endif
95 #ifdef SDB_DEBUGGING_INFO
96 #include "sdbout.h"
97 #endif
99 /* .stabd code for line number. */
100 #ifndef N_SLINE
101 #define N_SLINE 0x44
102 #endif
104 /* .stabs code for included file name. */
105 #ifndef N_SOL
106 #define N_SOL 0x84
107 #endif
109 #ifndef INT_TYPE_SIZE
110 #define INT_TYPE_SIZE BITS_PER_WORD
111 #endif
113 #ifndef LONG_TYPE_SIZE
114 #define LONG_TYPE_SIZE BITS_PER_WORD
115 #endif
117 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
118 null default for it to save conditionalization later. */
119 #ifndef CC_STATUS_INIT
120 #define CC_STATUS_INIT
121 #endif
123 /* How to start an assembler comment. */
124 #ifndef ASM_COMMENT_START
125 #define ASM_COMMENT_START ";#"
126 #endif
128 /* Is the given character a logical line separator for the assembler? */
129 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
130 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
131 #endif
133 #ifndef JUMP_TABLES_IN_TEXT_SECTION
134 #define JUMP_TABLES_IN_TEXT_SECTION 0
135 #endif
137 /* Last insn processed by final_scan_insn. */
138 static rtx debug_insn = 0;
140 /* Line number of last NOTE. */
141 static int last_linenum;
143 /* Highest line number in current block. */
144 static int high_block_linenum;
146 /* Likewise for function. */
147 static int high_function_linenum;
149 /* Filename of last NOTE. */
150 static const char *last_filename;
152 /* Number of basic blocks seen so far;
153 used if profile_block_flag is set. */
154 static int count_basic_blocks;
156 /* Number of instrumented arcs when profile_arc_flag is set. */
157 extern int count_instrumented_arcs;
159 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
161 /* Nonzero while outputting an `asm' with operands.
162 This means that inconsistencies are the user's fault, so don't abort.
163 The precise value is the insn being output, to pass to error_for_asm. */
164 static rtx this_is_asm_operands;
166 /* Number of operands of this insn, for an `asm' with operands. */
167 static unsigned int insn_noperands;
169 /* Compare optimization flag. */
171 static rtx last_ignored_compare = 0;
173 /* Flag indicating this insn is the start of a new basic block. */
175 static int new_block = 1;
177 /* Assign a unique number to each insn that is output.
178 This can be used to generate unique local labels. */
180 static int insn_counter = 0;
182 #ifdef HAVE_cc0
183 /* This variable contains machine-dependent flags (defined in tm.h)
184 set and examined by output routines
185 that describe how to interpret the condition codes properly. */
187 CC_STATUS cc_status;
189 /* During output of an insn, this contains a copy of cc_status
190 from before the insn. */
192 CC_STATUS cc_prev_status;
193 #endif
195 /* Indexed by hardware reg number, is 1 if that register is ever
196 used in the current function.
198 In life_analysis, or in stupid_life_analysis, this is set
199 up to record the hard regs used explicitly. Reload adds
200 in the hard regs used for holding pseudo regs. Final uses
201 it to generate the code in the function prologue and epilogue
202 to save and restore registers as needed. */
204 char regs_ever_live[FIRST_PSEUDO_REGISTER];
206 /* Nonzero means current function must be given a frame pointer.
207 Set in stmt.c if anything is allocated on the stack there.
208 Set in reload1.c if anything is allocated on the stack there. */
210 int frame_pointer_needed;
212 /* Assign unique numbers to labels generated for profiling. */
214 int profile_label_no;
216 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
218 static int block_depth;
220 /* Nonzero if have enabled APP processing of our assembler output. */
222 static int app_on;
224 /* If we are outputting an insn sequence, this contains the sequence rtx.
225 Zero otherwise. */
227 rtx final_sequence;
229 #ifdef ASSEMBLER_DIALECT
231 /* Number of the assembler dialect to use, starting at 0. */
232 static int dialect_number;
233 #endif
235 /* Indexed by line number, nonzero if there is a note for that line. */
237 static char *line_note_exists;
239 /* Linked list to hold line numbers for each basic block. */
241 struct bb_list {
242 struct bb_list *next; /* pointer to next basic block */
243 int line_num; /* line number */
244 int file_label_num; /* LPBC<n> label # for stored filename */
245 int func_label_num; /* LPBC<n> label # for stored function name */
248 static struct bb_list *bb_head = 0; /* Head of basic block list */
249 static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
250 static int bb_file_label_num = -1; /* Current label # for file */
251 static int bb_func_label_num = -1; /* Current label # for func */
253 /* Linked list to hold the strings for each file and function name output. */
255 struct bb_str {
256 struct bb_str *next; /* pointer to next string */
257 const char *string; /* string */
258 int label_num; /* label number */
259 int length; /* string length */
262 static struct bb_str *sbb_head = 0; /* Head of string list. */
263 static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
264 static int sbb_label_num = 0; /* Last label used */
266 #ifdef HAVE_ATTR_length
267 static int asm_insn_count PARAMS ((rtx));
268 #endif
269 static void profile_function PARAMS ((FILE *));
270 static void profile_after_prologue PARAMS ((FILE *));
271 static void add_bb PARAMS ((FILE *));
272 static int add_bb_string PARAMS ((const char *, int));
273 static void output_source_line PARAMS ((FILE *, rtx));
274 static rtx walk_alter_subreg PARAMS ((rtx));
275 static void output_asm_name PARAMS ((void));
276 static void output_operand PARAMS ((rtx, int));
277 #ifdef LEAF_REGISTERS
278 static void leaf_renumber_regs PARAMS ((rtx));
279 #endif
280 #ifdef HAVE_cc0
281 static int alter_cond PARAMS ((rtx));
282 #endif
283 #ifndef ADDR_VEC_ALIGN
284 static int final_addr_vec_align PARAMS ((rtx));
285 #endif
286 #ifdef HAVE_ATTR_length
287 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
288 #endif
290 /* Initialize data in final at the beginning of a compilation. */
292 void
293 init_final (filename)
294 const char *filename ATTRIBUTE_UNUSED;
296 app_on = 0;
297 final_sequence = 0;
299 #ifdef ASSEMBLER_DIALECT
300 dialect_number = ASSEMBLER_DIALECT;
301 #endif
304 /* Called at end of source file,
305 to output the block-profiling table for this entire compilation. */
307 void
308 end_final (filename)
309 const char *filename;
311 int i;
313 if (profile_block_flag || profile_arc_flag)
315 char name[20];
316 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
317 int size, rounded;
318 struct bb_list *ptr;
319 struct bb_str *sptr;
320 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
321 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
323 if (profile_block_flag)
324 size = long_bytes * count_basic_blocks;
325 else
326 size = long_bytes * count_instrumented_arcs;
327 rounded = size;
329 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
330 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
331 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
333 data_section ();
335 /* Output the main header, of 11 words:
336 0: 1 if this file is initialized, else 0.
337 1: address of file name (LPBX1).
338 2: address of table of counts (LPBX2).
339 3: number of counts in the table.
340 4: always 0, for compatibility with Sun.
342 The following are GNU extensions:
344 5: address of table of start addrs of basic blocks (LPBX3).
345 6: Number of bytes in this header.
346 7: address of table of function names (LPBX4).
347 8: address of table of line numbers (LPBX5) or 0.
348 9: address of table of file names (LPBX6) or 0.
349 10: space reserved for basic block profiling. */
351 ASM_OUTPUT_ALIGN (asm_out_file, align);
353 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
354 /* zero word */
355 assemble_integer (const0_rtx, long_bytes, 1);
357 /* address of filename */
358 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
359 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
361 /* address of count table */
362 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
363 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
365 /* count of the # of basic blocks or # of instrumented arcs */
366 if (profile_block_flag)
367 assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
368 else
369 assemble_integer (GEN_INT (count_instrumented_arcs), long_bytes,
372 /* zero word (link field) */
373 assemble_integer (const0_rtx, pointer_bytes, 1);
375 /* address of basic block start address table */
376 if (profile_block_flag)
378 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
379 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
382 else
383 assemble_integer (const0_rtx, pointer_bytes, 1);
385 /* byte count for extended structure. */
386 assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, 1);
388 /* address of function name table */
389 if (profile_block_flag)
391 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
392 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
395 else
396 assemble_integer (const0_rtx, pointer_bytes, 1);
398 /* address of line number and filename tables if debugging. */
399 if (write_symbols != NO_DEBUG && profile_block_flag)
401 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
402 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
403 pointer_bytes, 1);
404 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
405 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
406 pointer_bytes, 1);
408 else
410 assemble_integer (const0_rtx, pointer_bytes, 1);
411 assemble_integer (const0_rtx, pointer_bytes, 1);
414 /* space for extension ptr (link field) */
415 assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
417 /* Output the file name changing the suffix to .d for Sun tcov
418 compatibility. */
419 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
421 char *cwd = getpwd ();
422 int len = strlen (filename) + strlen (cwd) + 1;
423 char *data_file = (char *) alloca (len + 4);
425 strcpy (data_file, cwd);
426 strcat (data_file, "/");
427 strcat (data_file, filename);
428 strip_off_ending (data_file, len);
429 if (profile_block_flag)
430 strcat (data_file, ".d");
431 else
432 strcat (data_file, ".da");
433 assemble_string (data_file, strlen (data_file) + 1);
436 /* Make space for the table of counts. */
437 if (size == 0)
439 /* Realign data section. */
440 ASM_OUTPUT_ALIGN (asm_out_file, align);
441 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
442 if (size != 0)
443 assemble_zeros (size);
445 else
447 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
448 #ifdef ASM_OUTPUT_SHARED_LOCAL
449 if (flag_shared_data)
450 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
451 else
452 #endif
453 #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
454 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
455 BIGGEST_ALIGNMENT);
456 #else
457 #ifdef ASM_OUTPUT_ALIGNED_LOCAL
458 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
459 BIGGEST_ALIGNMENT);
460 #else
461 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
462 #endif
463 #endif
466 /* Output any basic block strings */
467 if (profile_block_flag)
469 readonly_data_section ();
470 if (sbb_head)
472 ASM_OUTPUT_ALIGN (asm_out_file, align);
473 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
475 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
476 sptr->label_num);
477 assemble_string (sptr->string, sptr->length);
482 /* Output the table of addresses. */
483 if (profile_block_flag)
485 /* Realign in new section */
486 ASM_OUTPUT_ALIGN (asm_out_file, align);
487 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
488 for (i = 0; i < count_basic_blocks; i++)
490 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
491 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
492 pointer_bytes, 1);
496 /* Output the table of function names. */
497 if (profile_block_flag)
499 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
500 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
502 if (ptr->func_label_num >= 0)
504 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
505 ptr->func_label_num);
506 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
507 pointer_bytes, 1);
509 else
510 assemble_integer (const0_rtx, pointer_bytes, 1);
513 for ( ; i < count_basic_blocks; i++)
514 assemble_integer (const0_rtx, pointer_bytes, 1);
517 if (write_symbols != NO_DEBUG && profile_block_flag)
519 /* Output the table of line numbers. */
520 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
521 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
522 assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
524 for ( ; i < count_basic_blocks; i++)
525 assemble_integer (const0_rtx, long_bytes, 1);
527 /* Output the table of file names. */
528 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
529 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
531 if (ptr->file_label_num >= 0)
533 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
534 ptr->file_label_num);
535 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
536 pointer_bytes, 1);
538 else
539 assemble_integer (const0_rtx, pointer_bytes, 1);
542 for ( ; i < count_basic_blocks; i++)
543 assemble_integer (const0_rtx, pointer_bytes, 1);
546 /* End with the address of the table of addresses,
547 so we can find it easily, as the last word in the file's text. */
548 if (profile_block_flag)
550 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
551 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
557 /* Enable APP processing of subsequent output.
558 Used before the output from an `asm' statement. */
560 void
561 app_enable ()
563 if (! app_on)
565 fputs (ASM_APP_ON, asm_out_file);
566 app_on = 1;
570 /* Disable APP processing of subsequent output.
571 Called from varasm.c before most kinds of output. */
573 void
574 app_disable ()
576 if (app_on)
578 fputs (ASM_APP_OFF, asm_out_file);
579 app_on = 0;
583 /* Return the number of slots filled in the current
584 delayed branch sequence (we don't count the insn needing the
585 delay slot). Zero if not in a delayed branch sequence. */
587 #ifdef DELAY_SLOTS
589 dbr_sequence_length ()
591 if (final_sequence != 0)
592 return XVECLEN (final_sequence, 0) - 1;
593 else
594 return 0;
596 #endif
598 /* The next two pages contain routines used to compute the length of an insn
599 and to shorten branches. */
601 /* Arrays for insn lengths, and addresses. The latter is referenced by
602 `insn_current_length'. */
604 static short *insn_lengths;
605 int *insn_addresses;
607 /* Max uid for which the above arrays are valid. */
608 static int insn_lengths_max_uid;
610 /* Address of insn being processed. Used by `insn_current_length'. */
611 int insn_current_address;
613 /* Address of insn being processed in previous iteration. */
614 int insn_last_address;
616 /* konwn invariant alignment of insn being processed. */
617 int insn_current_align;
619 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
620 gives the next following alignment insn that increases the known
621 alignment, or NULL_RTX if there is no such insn.
622 For any alignment obtained this way, we can again index uid_align with
623 its uid to obtain the next following align that in turn increases the
624 alignment, till we reach NULL_RTX; the sequence obtained this way
625 for each insn we'll call the alignment chain of this insn in the following
626 comments. */
628 struct label_alignment {
629 short alignment;
630 short max_skip;
633 static rtx *uid_align;
634 static int *uid_shuid;
635 static struct label_alignment *label_align;
637 /* Indicate that branch shortening hasn't yet been done. */
639 void
640 init_insn_lengths ()
642 if (label_align)
644 free (label_align);
645 label_align = 0;
647 if (uid_shuid)
649 free (uid_shuid);
650 uid_shuid = 0;
652 if (insn_lengths)
654 free (insn_lengths);
655 insn_lengths = 0;
656 insn_lengths_max_uid = 0;
658 if (insn_addresses)
660 free (insn_addresses);
661 insn_addresses = 0;
663 if (uid_align)
665 free (uid_align);
666 uid_align = 0;
670 /* Obtain the current length of an insn. If branch shortening has been done,
671 get its actual length. Otherwise, get its maximum length. */
674 get_attr_length (insn)
675 rtx insn ATTRIBUTE_UNUSED;
677 #ifdef HAVE_ATTR_length
678 rtx body;
679 int i;
680 int length = 0;
682 if (insn_lengths_max_uid > INSN_UID (insn))
683 return insn_lengths[INSN_UID (insn)];
684 else
685 switch (GET_CODE (insn))
687 case NOTE:
688 case BARRIER:
689 case CODE_LABEL:
690 return 0;
692 case CALL_INSN:
693 length = insn_default_length (insn);
694 break;
696 case JUMP_INSN:
697 body = PATTERN (insn);
698 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
700 /* Alignment is machine-dependent and should be handled by
701 ADDR_VEC_ALIGN. */
703 else
704 length = insn_default_length (insn);
705 break;
707 case INSN:
708 body = PATTERN (insn);
709 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
710 return 0;
712 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
713 length = asm_insn_count (body) * insn_default_length (insn);
714 else if (GET_CODE (body) == SEQUENCE)
715 for (i = 0; i < XVECLEN (body, 0); i++)
716 length += get_attr_length (XVECEXP (body, 0, i));
717 else
718 length = insn_default_length (insn);
719 break;
721 default:
722 break;
725 #ifdef ADJUST_INSN_LENGTH
726 ADJUST_INSN_LENGTH (insn, length);
727 #endif
728 return length;
729 #else /* not HAVE_ATTR_length */
730 return 0;
731 #endif /* not HAVE_ATTR_length */
734 /* Code to handle alignment inside shorten_branches. */
736 /* Here is an explanation how the algorithm in align_fuzz can give
737 proper results:
739 Call a sequence of instructions beginning with alignment point X
740 and continuing until the next alignment point `block X'. When `X'
741 is used in an expression, it means the alignment value of the
742 alignment point.
744 Call the distance between the start of the first insn of block X, and
745 the end of the last insn of block X `IX', for the `inner size of X'.
746 This is clearly the sum of the instruction lengths.
748 Likewise with the next alignment-delimited block following X, which we
749 shall call block Y.
751 Call the distance between the start of the first insn of block X, and
752 the start of the first insn of block Y `OX', for the `outer size of X'.
754 The estimated padding is then OX - IX.
756 OX can be safely estimated as
758 if (X >= Y)
759 OX = round_up(IX, Y)
760 else
761 OX = round_up(IX, X) + Y - X
763 Clearly est(IX) >= real(IX), because that only depends on the
764 instruction lengths, and those being overestimated is a given.
766 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
767 we needn't worry about that when thinking about OX.
769 When X >= Y, the alignment provided by Y adds no uncertainty factor
770 for branch ranges starting before X, so we can just round what we have.
771 But when X < Y, we don't know anything about the, so to speak,
772 `middle bits', so we have to assume the worst when aligning up from an
773 address mod X to one mod Y, which is Y - X. */
775 #ifndef LABEL_ALIGN
776 #define LABEL_ALIGN(LABEL) align_labels_log
777 #endif
779 #ifndef LABEL_ALIGN_MAX_SKIP
780 #define LABEL_ALIGN_MAX_SKIP (align_labels-1)
781 #endif
783 #ifndef LOOP_ALIGN
784 #define LOOP_ALIGN(LABEL) align_loops_log
785 #endif
787 #ifndef LOOP_ALIGN_MAX_SKIP
788 #define LOOP_ALIGN_MAX_SKIP (align_loops-1)
789 #endif
791 #ifndef LABEL_ALIGN_AFTER_BARRIER
792 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) align_jumps_log
793 #endif
795 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
796 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (align_jumps-1)
797 #endif
799 #ifndef ADDR_VEC_ALIGN
800 static int
801 final_addr_vec_align (addr_vec)
802 rtx addr_vec;
804 int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
806 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
807 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
808 return align;
811 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
812 #endif
814 #ifndef INSN_LENGTH_ALIGNMENT
815 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
816 #endif
818 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
820 static int min_labelno, max_labelno;
822 #define LABEL_TO_ALIGNMENT(LABEL) \
823 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
825 #define LABEL_TO_MAX_SKIP(LABEL) \
826 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
828 /* For the benefit of port specific code do this also as a function. */
830 label_to_alignment (label)
831 rtx label;
833 return LABEL_TO_ALIGNMENT (label);
836 #ifdef HAVE_ATTR_length
837 /* The differences in addresses
838 between a branch and its target might grow or shrink depending on
839 the alignment the start insn of the range (the branch for a forward
840 branch or the label for a backward branch) starts out on; if these
841 differences are used naively, they can even oscillate infinitely.
842 We therefore want to compute a 'worst case' address difference that
843 is independent of the alignment the start insn of the range end
844 up on, and that is at least as large as the actual difference.
845 The function align_fuzz calculates the amount we have to add to the
846 naively computed difference, by traversing the part of the alignment
847 chain of the start insn of the range that is in front of the end insn
848 of the range, and considering for each alignment the maximum amount
849 that it might contribute to a size increase.
851 For casesi tables, we also want to know worst case minimum amounts of
852 address difference, in case a machine description wants to introduce
853 some common offset that is added to all offsets in a table.
854 For this purpose, align_fuzz with a growth argument of 0 comuptes the
855 appropriate adjustment. */
858 /* Compute the maximum delta by which the difference of the addresses of
859 START and END might grow / shrink due to a different address for start
860 which changes the size of alignment insns between START and END.
861 KNOWN_ALIGN_LOG is the alignment known for START.
862 GROWTH should be ~0 if the objective is to compute potential code size
863 increase, and 0 if the objective is to compute potential shrink.
864 The return value is undefined for any other value of GROWTH. */
865 static int
866 align_fuzz (start, end, known_align_log, growth)
867 rtx start, end;
868 int known_align_log;
869 unsigned growth;
871 int uid = INSN_UID (start);
872 rtx align_label;
873 int known_align = 1 << known_align_log;
874 int end_shuid = INSN_SHUID (end);
875 int fuzz = 0;
877 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
879 int align_addr, new_align;
881 uid = INSN_UID (align_label);
882 align_addr = insn_addresses[uid] - insn_lengths[uid];
883 if (uid_shuid[uid] > end_shuid)
884 break;
885 known_align_log = LABEL_TO_ALIGNMENT (align_label);
886 new_align = 1 << known_align_log;
887 if (new_align < known_align)
888 continue;
889 fuzz += (-align_addr ^ growth) & (new_align - known_align);
890 known_align = new_align;
892 return fuzz;
895 /* Compute a worst-case reference address of a branch so that it
896 can be safely used in the presence of aligned labels. Since the
897 size of the branch itself is unknown, the size of the branch is
898 not included in the range. I.e. for a forward branch, the reference
899 address is the end address of the branch as known from the previous
900 branch shortening pass, minus a value to account for possible size
901 increase due to alignment. For a backward branch, it is the start
902 address of the branch as known from the current pass, plus a value
903 to account for possible size increase due to alignment.
904 NB.: Therefore, the maximum offset allowed for backward branches needs
905 to exclude the branch size. */
907 insn_current_reference_address (branch)
908 rtx branch;
910 rtx dest;
911 rtx seq = NEXT_INSN (PREV_INSN (branch));
912 int seq_uid = INSN_UID (seq);
913 if (GET_CODE (branch) != JUMP_INSN)
914 /* This can happen for example on the PA; the objective is to know the
915 offset to address something in front of the start of the function.
916 Thus, we can treat it like a backward branch.
917 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
918 any alignment we'd encounter, so we skip the call to align_fuzz. */
919 return insn_current_address;
920 dest = JUMP_LABEL (branch);
921 /* BRANCH has no proper alignment chain set, so use SEQ. */
922 if (INSN_SHUID (branch) < INSN_SHUID (dest))
924 /* Forward branch. */
925 return (insn_last_address + insn_lengths[seq_uid]
926 - align_fuzz (seq, dest, length_unit_log, ~0));
928 else
930 /* Backward branch. */
931 return (insn_current_address
932 + align_fuzz (dest, seq, length_unit_log, ~0));
935 #endif /* HAVE_ATTR_length */
937 /* Make a pass over all insns and compute their actual lengths by shortening
938 any branches of variable length if possible. */
940 /* Give a default value for the lowest address in a function. */
942 #ifndef FIRST_INSN_ADDRESS
943 #define FIRST_INSN_ADDRESS 0
944 #endif
946 /* shorten_branches might be called multiple times: for example, the SH
947 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
948 In order to do this, it needs proper length information, which it obtains
949 by calling shorten_branches. This cannot be collapsed with
950 shorten_branches itself into a single pass unless we also want to intergate
951 reorg.c, since the branch splitting exposes new instructions with delay
952 slots. */
954 void
955 shorten_branches (first)
956 rtx first ATTRIBUTE_UNUSED;
958 rtx insn;
959 int max_uid;
960 int i;
961 int max_log;
962 int max_skip;
963 #ifdef HAVE_ATTR_length
964 #define MAX_CODE_ALIGN 16
965 rtx seq;
966 int something_changed = 1;
967 char *varying_length;
968 rtx body;
969 int uid;
970 rtx align_tab[MAX_CODE_ALIGN];
972 /* In order to make sure that all instructions have valid length info,
973 we must split them before we compute the address/length info. */
975 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
976 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
978 rtx old = insn;
979 /* Don't split the insn if it has been deleted. */
980 if (! INSN_DELETED_P (old))
981 insn = try_split (PATTERN (old), old, 1);
982 /* When not optimizing, the old insn will be still left around
983 with only the 'deleted' bit set. Transform it into a note
984 to avoid confusion of subsequent processing. */
985 if (INSN_DELETED_P (old))
987 PUT_CODE (old , NOTE);
988 NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
989 NOTE_SOURCE_FILE (old) = 0;
992 #endif
994 /* We must do some computations even when not actually shortening, in
995 order to get the alignment information for the labels. */
997 init_insn_lengths ();
999 /* Compute maximum UID and allocate label_align / uid_shuid. */
1000 max_uid = get_max_uid ();
1002 max_labelno = max_label_num ();
1003 min_labelno = get_first_label_num ();
1004 label_align = (struct label_alignment *)
1005 xcalloc ((max_labelno - min_labelno + 1), sizeof (struct label_alignment));
1007 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1009 /* Initialize label_align and set up uid_shuid to be strictly
1010 monotonically rising with insn order. */
1011 /* We use max_log here to keep track of the maximum alignment we want to
1012 impose on the next CODE_LABEL (or the current one if we are processing
1013 the CODE_LABEL itself). */
1015 max_log = 0;
1016 max_skip = 0;
1018 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1020 int log;
1022 INSN_SHUID (insn) = i++;
1023 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1025 /* reorg might make the first insn of a loop being run once only,
1026 and delete the label in front of it. Then we want to apply
1027 the loop alignment to the new label created by reorg, which
1028 is separated by the former loop start insn from the
1029 NOTE_INSN_LOOP_BEG. */
1031 else if (GET_CODE (insn) == CODE_LABEL)
1033 rtx next;
1035 log = LABEL_ALIGN (insn);
1036 if (max_log < log)
1038 max_log = log;
1039 max_skip = LABEL_ALIGN_MAX_SKIP;
1041 next = NEXT_INSN (insn);
1042 /* ADDR_VECs only take room if read-only data goes into the text
1043 section. */
1044 if (JUMP_TABLES_IN_TEXT_SECTION
1045 #if !defined(READONLY_DATA_SECTION)
1046 || 1
1047 #endif
1049 if (next && GET_CODE (next) == JUMP_INSN)
1051 rtx nextbody = PATTERN (next);
1052 if (GET_CODE (nextbody) == ADDR_VEC
1053 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1055 log = ADDR_VEC_ALIGN (next);
1056 if (max_log < log)
1058 max_log = log;
1059 max_skip = LABEL_ALIGN_MAX_SKIP;
1063 LABEL_TO_ALIGNMENT (insn) = max_log;
1064 LABEL_TO_MAX_SKIP (insn) = max_skip;
1065 max_log = 0;
1066 max_skip = 0;
1068 else if (GET_CODE (insn) == BARRIER)
1070 rtx label;
1072 for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
1073 label = NEXT_INSN (label))
1074 if (GET_CODE (label) == CODE_LABEL)
1076 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1077 if (max_log < log)
1079 max_log = log;
1080 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1082 break;
1085 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1086 sequences in order to handle reorg output efficiently. */
1087 else if (GET_CODE (insn) == NOTE
1088 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1090 rtx label;
1091 int nest = 0;
1093 /* Search for the label that starts the loop.
1094 Don't skip past the end of the loop, since that could
1095 lead to putting an alignment where it does not belong.
1096 However, a label after a nested (non-)loop would be OK. */
1097 for (label = insn; label; label = NEXT_INSN (label))
1099 if (GET_CODE (label) == NOTE
1100 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_BEG)
1101 nest++;
1102 else if (GET_CODE (label) == NOTE
1103 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_END
1104 && --nest == 0)
1105 break;
1106 else if (GET_CODE (label) == CODE_LABEL)
1108 log = LOOP_ALIGN (label);
1109 if (max_log < log)
1111 max_log = log;
1112 max_skip = LOOP_ALIGN_MAX_SKIP;
1114 break;
1118 else
1119 continue;
1121 #ifdef HAVE_ATTR_length
1123 /* Allocate the rest of the arrays. */
1124 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
1125 insn_lengths_max_uid = max_uid;
1126 /* Syntax errors can lead to labels being outside of the main insn stream.
1127 Initialize insn_addresses, so that we get reproducible results. */
1128 insn_addresses = (int *) xcalloc (max_uid, sizeof (int));
1130 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1132 /* Initialize uid_align. We scan instructions
1133 from end to start, and keep in align_tab[n] the last seen insn
1134 that does an alignment of at least n+1, i.e. the successor
1135 in the alignment chain for an insn that does / has a known
1136 alignment of n. */
1137 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1139 for (i = MAX_CODE_ALIGN; --i >= 0; )
1140 align_tab[i] = NULL_RTX;
1141 seq = get_last_insn ();
1142 for (; seq; seq = PREV_INSN (seq))
1144 int uid = INSN_UID (seq);
1145 int log;
1146 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1147 uid_align[uid] = align_tab[0];
1148 if (log)
1150 /* Found an alignment label. */
1151 uid_align[uid] = align_tab[log];
1152 for (i = log - 1; i >= 0; i--)
1153 align_tab[i] = seq;
1156 #ifdef CASE_VECTOR_SHORTEN_MODE
1157 if (optimize)
1159 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1160 label fields. */
1162 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1163 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1164 int rel;
1166 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1168 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1169 int len, i, min, max, insn_shuid;
1170 int min_align;
1171 addr_diff_vec_flags flags;
1173 if (GET_CODE (insn) != JUMP_INSN
1174 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1175 continue;
1176 pat = PATTERN (insn);
1177 len = XVECLEN (pat, 1);
1178 if (len <= 0)
1179 abort ();
1180 min_align = MAX_CODE_ALIGN;
1181 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1183 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1184 int shuid = INSN_SHUID (lab);
1185 if (shuid < min)
1187 min = shuid;
1188 min_lab = lab;
1190 if (shuid > max)
1192 max = shuid;
1193 max_lab = lab;
1195 if (min_align > LABEL_TO_ALIGNMENT (lab))
1196 min_align = LABEL_TO_ALIGNMENT (lab);
1198 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1199 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1200 insn_shuid = INSN_SHUID (insn);
1201 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1202 flags.min_align = min_align;
1203 flags.base_after_vec = rel > insn_shuid;
1204 flags.min_after_vec = min > insn_shuid;
1205 flags.max_after_vec = max > insn_shuid;
1206 flags.min_after_base = min > rel;
1207 flags.max_after_base = max > rel;
1208 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1211 #endif /* CASE_VECTOR_SHORTEN_MODE */
1214 /* Compute initial lengths, addresses, and varying flags for each insn. */
1215 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1216 insn != 0;
1217 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1219 uid = INSN_UID (insn);
1221 insn_lengths[uid] = 0;
1223 if (GET_CODE (insn) == CODE_LABEL)
1225 int log = LABEL_TO_ALIGNMENT (insn);
1226 if (log)
1228 int align = 1 << log;
1229 int new_address = (insn_current_address + align - 1) & -align;
1230 insn_lengths[uid] = new_address - insn_current_address;
1231 insn_current_address = new_address;
1235 insn_addresses[uid] = insn_current_address;
1237 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1238 || GET_CODE (insn) == CODE_LABEL)
1239 continue;
1240 if (INSN_DELETED_P (insn))
1241 continue;
1243 body = PATTERN (insn);
1244 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1246 /* This only takes room if read-only data goes into the text
1247 section. */
1248 if (JUMP_TABLES_IN_TEXT_SECTION
1249 #if !defined(READONLY_DATA_SECTION)
1250 || 1
1251 #endif
1253 insn_lengths[uid] = (XVECLEN (body,
1254 GET_CODE (body) == ADDR_DIFF_VEC)
1255 * GET_MODE_SIZE (GET_MODE (body)));
1256 /* Alignment is handled by ADDR_VEC_ALIGN. */
1258 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1259 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1260 else if (GET_CODE (body) == SEQUENCE)
1262 int i;
1263 int const_delay_slots;
1264 #ifdef DELAY_SLOTS
1265 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1266 #else
1267 const_delay_slots = 0;
1268 #endif
1269 /* Inside a delay slot sequence, we do not do any branch shortening
1270 if the shortening could change the number of delay slots
1271 of the branch. */
1272 for (i = 0; i < XVECLEN (body, 0); i++)
1274 rtx inner_insn = XVECEXP (body, 0, i);
1275 int inner_uid = INSN_UID (inner_insn);
1276 int inner_length;
1278 if (GET_CODE (body) == ASM_INPUT
1279 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1280 inner_length = (asm_insn_count (PATTERN (inner_insn))
1281 * insn_default_length (inner_insn));
1282 else
1283 inner_length = insn_default_length (inner_insn);
1285 insn_lengths[inner_uid] = inner_length;
1286 if (const_delay_slots)
1288 if ((varying_length[inner_uid]
1289 = insn_variable_length_p (inner_insn)) != 0)
1290 varying_length[uid] = 1;
1291 insn_addresses[inner_uid] = (insn_current_address +
1292 insn_lengths[uid]);
1294 else
1295 varying_length[inner_uid] = 0;
1296 insn_lengths[uid] += inner_length;
1299 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1301 insn_lengths[uid] = insn_default_length (insn);
1302 varying_length[uid] = insn_variable_length_p (insn);
1305 /* If needed, do any adjustment. */
1306 #ifdef ADJUST_INSN_LENGTH
1307 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1308 if (insn_lengths[uid] < 0)
1309 fatal_insn ("Negative insn length", insn);
1310 #endif
1313 /* Now loop over all the insns finding varying length insns. For each,
1314 get the current insn length. If it has changed, reflect the change.
1315 When nothing changes for a full pass, we are done. */
1317 while (something_changed)
1319 something_changed = 0;
1320 insn_current_align = MAX_CODE_ALIGN - 1;
1321 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1322 insn != 0;
1323 insn = NEXT_INSN (insn))
1325 int new_length;
1326 #ifdef ADJUST_INSN_LENGTH
1327 int tmp_length;
1328 #endif
1329 int length_align;
1331 uid = INSN_UID (insn);
1333 if (GET_CODE (insn) == CODE_LABEL)
1335 int log = LABEL_TO_ALIGNMENT (insn);
1336 if (log > insn_current_align)
1338 int align = 1 << log;
1339 int new_address= (insn_current_address + align - 1) & -align;
1340 insn_lengths[uid] = new_address - insn_current_address;
1341 insn_current_align = log;
1342 insn_current_address = new_address;
1344 else
1345 insn_lengths[uid] = 0;
1346 insn_addresses[uid] = insn_current_address;
1347 continue;
1350 length_align = INSN_LENGTH_ALIGNMENT (insn);
1351 if (length_align < insn_current_align)
1352 insn_current_align = length_align;
1354 insn_last_address = insn_addresses[uid];
1355 insn_addresses[uid] = insn_current_address;
1357 #ifdef CASE_VECTOR_SHORTEN_MODE
1358 if (optimize && GET_CODE (insn) == JUMP_INSN
1359 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1361 rtx body = PATTERN (insn);
1362 int old_length = insn_lengths[uid];
1363 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1364 rtx min_lab = XEXP (XEXP (body, 2), 0);
1365 rtx max_lab = XEXP (XEXP (body, 3), 0);
1366 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
1367 int rel_addr = insn_addresses[INSN_UID (rel_lab)];
1368 int min_addr = insn_addresses[INSN_UID (min_lab)];
1369 int max_addr = insn_addresses[INSN_UID (max_lab)];
1370 rtx prev;
1371 int rel_align = 0;
1373 /* Try to find a known alignment for rel_lab. */
1374 for (prev = rel_lab;
1375 prev
1376 && ! insn_lengths[INSN_UID (prev)]
1377 && ! (varying_length[INSN_UID (prev)] & 1);
1378 prev = PREV_INSN (prev))
1379 if (varying_length[INSN_UID (prev)] & 2)
1381 rel_align = LABEL_TO_ALIGNMENT (prev);
1382 break;
1385 /* See the comment on addr_diff_vec_flags in rtl.h for the
1386 meaning of the flags values. base: REL_LAB vec: INSN */
1387 /* Anything after INSN has still addresses from the last
1388 pass; adjust these so that they reflect our current
1389 estimate for this pass. */
1390 if (flags.base_after_vec)
1391 rel_addr += insn_current_address - insn_last_address;
1392 if (flags.min_after_vec)
1393 min_addr += insn_current_address - insn_last_address;
1394 if (flags.max_after_vec)
1395 max_addr += insn_current_address - insn_last_address;
1396 /* We want to know the worst case, i.e. lowest possible value
1397 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1398 its offset is positive, and we have to be wary of code shrink;
1399 otherwise, it is negative, and we have to be vary of code
1400 size increase. */
1401 if (flags.min_after_base)
1403 /* If INSN is between REL_LAB and MIN_LAB, the size
1404 changes we are about to make can change the alignment
1405 within the observed offset, therefore we have to break
1406 it up into two parts that are independent. */
1407 if (! flags.base_after_vec && flags.min_after_vec)
1409 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1410 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1412 else
1413 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1415 else
1417 if (flags.base_after_vec && ! flags.min_after_vec)
1419 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1420 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1422 else
1423 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1425 /* Likewise, determine the highest lowest possible value
1426 for the offset of MAX_LAB. */
1427 if (flags.max_after_base)
1429 if (! flags.base_after_vec && flags.max_after_vec)
1431 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1432 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1434 else
1435 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1437 else
1439 if (flags.base_after_vec && ! flags.max_after_vec)
1441 max_addr += align_fuzz (max_lab, insn, 0, 0);
1442 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1444 else
1445 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1447 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1448 max_addr - rel_addr,
1449 body));
1450 if (JUMP_TABLES_IN_TEXT_SECTION
1451 #if !defined(READONLY_DATA_SECTION)
1452 || 1
1453 #endif
1456 insn_lengths[uid]
1457 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1458 insn_current_address += insn_lengths[uid];
1459 if (insn_lengths[uid] != old_length)
1460 something_changed = 1;
1463 continue;
1465 #endif /* CASE_VECTOR_SHORTEN_MODE */
1467 if (! (varying_length[uid]))
1469 insn_current_address += insn_lengths[uid];
1470 continue;
1472 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1474 int i;
1476 body = PATTERN (insn);
1477 new_length = 0;
1478 for (i = 0; i < XVECLEN (body, 0); i++)
1480 rtx inner_insn = XVECEXP (body, 0, i);
1481 int inner_uid = INSN_UID (inner_insn);
1482 int inner_length;
1484 insn_addresses[inner_uid] = insn_current_address;
1486 /* insn_current_length returns 0 for insns with a
1487 non-varying length. */
1488 if (! varying_length[inner_uid])
1489 inner_length = insn_lengths[inner_uid];
1490 else
1491 inner_length = insn_current_length (inner_insn);
1493 if (inner_length != insn_lengths[inner_uid])
1495 insn_lengths[inner_uid] = inner_length;
1496 something_changed = 1;
1498 insn_current_address += insn_lengths[inner_uid];
1499 new_length += inner_length;
1502 else
1504 new_length = insn_current_length (insn);
1505 insn_current_address += new_length;
1508 #ifdef ADJUST_INSN_LENGTH
1509 /* If needed, do any adjustment. */
1510 tmp_length = new_length;
1511 ADJUST_INSN_LENGTH (insn, new_length);
1512 insn_current_address += (new_length - tmp_length);
1513 #endif
1515 if (new_length != insn_lengths[uid])
1517 insn_lengths[uid] = new_length;
1518 something_changed = 1;
1521 /* For a non-optimizing compile, do only a single pass. */
1522 if (!optimize)
1523 break;
1526 free (varying_length);
1528 #endif /* HAVE_ATTR_length */
1531 #ifdef HAVE_ATTR_length
1532 /* Given the body of an INSN known to be generated by an ASM statement, return
1533 the number of machine instructions likely to be generated for this insn.
1534 This is used to compute its length. */
1536 static int
1537 asm_insn_count (body)
1538 rtx body;
1540 const char *template;
1541 int count = 1;
1543 if (GET_CODE (body) == ASM_INPUT)
1544 template = XSTR (body, 0);
1545 else
1546 template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
1547 NULL_PTR, NULL_PTR);
1549 for ( ; *template; template++)
1550 if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
1551 count++;
1553 return count;
1555 #endif
1557 /* Output assembler code for the start of a function,
1558 and initialize some of the variables in this file
1559 for the new function. The label for the function and associated
1560 assembler pseudo-ops have already been output in `assemble_start_function'.
1562 FIRST is the first insn of the rtl for the function being compiled.
1563 FILE is the file to write assembler code to.
1564 OPTIMIZE is nonzero if we should eliminate redundant
1565 test and compare insns. */
1567 void
1568 final_start_function (first, file, optimize)
1569 rtx first;
1570 FILE *file;
1571 int optimize ATTRIBUTE_UNUSED;
1573 block_depth = 0;
1575 this_is_asm_operands = 0;
1577 #ifdef NON_SAVING_SETJMP
1578 /* A function that calls setjmp should save and restore all the
1579 call-saved registers on a system where longjmp clobbers them. */
1580 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1582 int i;
1584 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1585 if (!call_used_regs[i])
1586 regs_ever_live[i] = 1;
1588 #endif
1590 /* Initial line number is supposed to be output
1591 before the function's prologue and label
1592 so that the function's address will not appear to be
1593 in the last statement of the preceding function. */
1594 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1595 last_linenum = high_block_linenum = high_function_linenum
1596 = NOTE_LINE_NUMBER (first);
1598 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1599 /* Output DWARF definition of the function. */
1600 if (dwarf2out_do_frame ())
1601 dwarf2out_begin_prologue ();
1602 else
1603 current_function_func_begin_label = 0;
1604 #endif
1606 /* For SDB and XCOFF, the function beginning must be marked between
1607 the function label and the prologue. We always need this, even when
1608 -g1 was used. Defer on MIPS systems so that parameter descriptions
1609 follow function entry. */
1610 #if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
1611 if (write_symbols == SDB_DEBUG)
1612 sdbout_begin_function (last_linenum);
1613 else
1614 #endif
1615 #ifdef XCOFF_DEBUGGING_INFO
1616 if (write_symbols == XCOFF_DEBUG)
1617 xcoffout_begin_function (file, last_linenum);
1618 else
1619 #endif
1620 /* But only output line number for other debug info types if -g2
1621 or better. */
1622 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1623 output_source_line (file, first);
1625 #ifdef LEAF_REG_REMAP
1626 if (current_function_uses_only_leaf_regs)
1627 leaf_renumber_regs (first);
1628 #endif
1630 /* The Sun386i and perhaps other machines don't work right
1631 if the profiling code comes after the prologue. */
1632 #ifdef PROFILE_BEFORE_PROLOGUE
1633 if (profile_flag)
1634 profile_function (file);
1635 #endif /* PROFILE_BEFORE_PROLOGUE */
1637 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1638 if (dwarf2out_do_frame ())
1639 dwarf2out_frame_debug (NULL_RTX);
1640 #endif
1642 /* If debugging, assign block numbers to all of the blocks in this
1643 function. */
1644 if (write_symbols)
1646 number_blocks (current_function_decl);
1647 remove_unncessary_notes ();
1648 /* We never actually put out begin/end notes for the top-level
1649 block in the function. But, conceptually, that block is
1650 always needed. */
1651 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1654 #ifdef FUNCTION_PROLOGUE
1655 /* First output the function prologue: code to set up the stack frame. */
1656 FUNCTION_PROLOGUE (file, get_frame_size ());
1657 #endif
1659 /* If the machine represents the prologue as RTL, the profiling code must
1660 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1661 #ifdef HAVE_prologue
1662 if (! HAVE_prologue)
1663 #endif
1664 profile_after_prologue (file);
1666 profile_label_no++;
1668 /* If we are doing basic block profiling, remember a printable version
1669 of the function name. */
1670 if (profile_block_flag)
1672 bb_func_label_num
1673 = add_bb_string ((*decl_printable_name) (current_function_decl, 2), FALSE);
1677 static void
1678 profile_after_prologue (file)
1679 FILE *file ATTRIBUTE_UNUSED;
1681 #ifdef FUNCTION_BLOCK_PROFILER
1682 if (profile_block_flag)
1684 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
1686 #endif /* FUNCTION_BLOCK_PROFILER */
1688 #ifndef PROFILE_BEFORE_PROLOGUE
1689 if (profile_flag)
1690 profile_function (file);
1691 #endif /* not PROFILE_BEFORE_PROLOGUE */
1694 static void
1695 profile_function (file)
1696 FILE *file;
1698 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1699 #if defined(ASM_OUTPUT_REG_PUSH)
1700 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1701 int sval = current_function_returns_struct;
1702 #endif
1703 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1704 int cxt = current_function_needs_context;
1705 #endif
1706 #endif /* ASM_OUTPUT_REG_PUSH */
1708 data_section ();
1709 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1710 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
1711 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
1713 function_section (current_function_decl);
1715 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1716 if (sval)
1717 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1718 #else
1719 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1720 if (sval)
1722 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1724 #endif
1725 #endif
1727 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1728 if (cxt)
1729 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1730 #else
1731 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1732 if (cxt)
1734 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1736 #endif
1737 #endif
1739 FUNCTION_PROFILER (file, profile_label_no);
1741 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1742 if (cxt)
1743 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1744 #else
1745 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1746 if (cxt)
1748 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1750 #endif
1751 #endif
1753 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1754 if (sval)
1755 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1756 #else
1757 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1758 if (sval)
1760 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1762 #endif
1763 #endif
1766 /* Output assembler code for the end of a function.
1767 For clarity, args are same as those of `final_start_function'
1768 even though not all of them are needed. */
1770 void
1771 final_end_function (first, file, optimize)
1772 rtx first ATTRIBUTE_UNUSED;
1773 FILE *file;
1774 int optimize ATTRIBUTE_UNUSED;
1776 if (app_on)
1778 fputs (ASM_APP_OFF, file);
1779 app_on = 0;
1782 #ifdef SDB_DEBUGGING_INFO
1783 if (write_symbols == SDB_DEBUG)
1784 sdbout_end_function (high_function_linenum);
1785 #endif
1787 #ifdef DWARF_DEBUGGING_INFO
1788 if (write_symbols == DWARF_DEBUG)
1789 dwarfout_end_function ();
1790 #endif
1792 #ifdef XCOFF_DEBUGGING_INFO
1793 if (write_symbols == XCOFF_DEBUG)
1794 xcoffout_end_function (file, high_function_linenum);
1795 #endif
1797 #ifdef FUNCTION_EPILOGUE
1798 /* Finally, output the function epilogue:
1799 code to restore the stack frame and return to the caller. */
1800 FUNCTION_EPILOGUE (file, get_frame_size ());
1801 #endif
1803 #ifdef SDB_DEBUGGING_INFO
1804 if (write_symbols == SDB_DEBUG)
1805 sdbout_end_epilogue ();
1806 #endif
1808 #ifdef DWARF_DEBUGGING_INFO
1809 if (write_symbols == DWARF_DEBUG)
1810 dwarfout_end_epilogue ();
1811 #endif
1813 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1814 if (dwarf2out_do_frame ())
1815 dwarf2out_end_epilogue ();
1816 #endif
1818 #ifdef XCOFF_DEBUGGING_INFO
1819 if (write_symbols == XCOFF_DEBUG)
1820 xcoffout_end_epilogue (file);
1821 #endif
1823 bb_func_label_num = -1; /* not in function, nuke label # */
1825 /* If FUNCTION_EPILOGUE is not defined, then the function body
1826 itself contains return instructions wherever needed. */
1829 /* Add a block to the linked list that remembers the current line/file/function
1830 for basic block profiling. Emit the label in front of the basic block and
1831 the instructions that increment the count field. */
1833 static void
1834 add_bb (file)
1835 FILE *file;
1837 struct bb_list *ptr = (struct bb_list *) permalloc (sizeof (struct bb_list));
1839 /* Add basic block to linked list. */
1840 ptr->next = 0;
1841 ptr->line_num = last_linenum;
1842 ptr->file_label_num = bb_file_label_num;
1843 ptr->func_label_num = bb_func_label_num;
1844 *bb_tail = ptr;
1845 bb_tail = &ptr->next;
1847 /* Enable the table of basic-block use counts
1848 to point at the code it applies to. */
1849 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1851 /* Before first insn of this basic block, increment the
1852 count of times it was entered. */
1853 #ifdef BLOCK_PROFILER
1854 BLOCK_PROFILER (file, count_basic_blocks);
1855 #endif
1856 #ifdef HAVE_cc0
1857 CC_STATUS_INIT;
1858 #endif
1860 new_block = 0;
1861 count_basic_blocks++;
1864 /* Add a string to be used for basic block profiling. */
1866 static int
1867 add_bb_string (string, perm_p)
1868 const char *string;
1869 int perm_p;
1871 int len;
1872 struct bb_str *ptr = 0;
1874 if (!string)
1876 string = "<unknown>";
1877 perm_p = TRUE;
1880 /* Allocate a new string if the current string isn't permanent. If
1881 the string is permanent search for the same string in other
1882 allocations. */
1884 len = strlen (string) + 1;
1885 if (!perm_p)
1887 char *p = (char *) permalloc (len);
1888 bcopy (string, p, len);
1889 string = p;
1891 else
1892 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
1893 if (ptr->string == string)
1894 break;
1896 /* Allocate a new string block if we need to. */
1897 if (!ptr)
1899 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1900 ptr->next = 0;
1901 ptr->length = len;
1902 ptr->label_num = sbb_label_num++;
1903 ptr->string = string;
1904 *sbb_tail = ptr;
1905 sbb_tail = &ptr->next;
1908 return ptr->label_num;
1912 /* Output assembler code for some insns: all or part of a function.
1913 For description of args, see `final_start_function', above.
1915 PRESCAN is 1 if we are not really outputting,
1916 just scanning as if we were outputting.
1917 Prescanning deletes and rearranges insns just like ordinary output.
1918 PRESCAN is -2 if we are outputting after having prescanned.
1919 In this case, don't try to delete or rearrange insns
1920 because that has already been done.
1921 Prescanning is done only on certain machines. */
1923 void
1924 final (first, file, optimize, prescan)
1925 rtx first;
1926 FILE *file;
1927 int optimize;
1928 int prescan;
1930 register rtx insn;
1931 int max_line = 0;
1932 int max_uid = 0;
1934 last_ignored_compare = 0;
1935 new_block = 1;
1937 check_exception_handler_labels ();
1939 /* Make a map indicating which line numbers appear in this function.
1940 When producing SDB debugging info, delete troublesome line number
1941 notes from inlined functions in other files as well as duplicate
1942 line number notes. */
1943 #ifdef SDB_DEBUGGING_INFO
1944 if (write_symbols == SDB_DEBUG)
1946 rtx last = 0;
1947 for (insn = first; insn; insn = NEXT_INSN (insn))
1948 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1950 if ((RTX_INTEGRATED_P (insn)
1951 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1952 || (last != 0
1953 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1954 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1956 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1957 NOTE_SOURCE_FILE (insn) = 0;
1958 continue;
1960 last = insn;
1961 if (NOTE_LINE_NUMBER (insn) > max_line)
1962 max_line = NOTE_LINE_NUMBER (insn);
1965 else
1966 #endif
1968 for (insn = first; insn; insn = NEXT_INSN (insn))
1969 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1970 max_line = NOTE_LINE_NUMBER (insn);
1973 line_note_exists = (char *) oballoc (max_line + 1);
1974 bzero (line_note_exists, max_line + 1);
1976 for (insn = first; insn; insn = NEXT_INSN (insn))
1978 if (INSN_UID (insn) > max_uid) /* find largest UID */
1979 max_uid = INSN_UID (insn);
1980 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1981 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1982 #ifdef HAVE_cc0
1983 /* If CC tracking across branches is enabled, record the insn which
1984 jumps to each branch only reached from one place. */
1985 if (optimize && GET_CODE (insn) == JUMP_INSN)
1987 rtx lab = JUMP_LABEL (insn);
1988 if (lab && LABEL_NUSES (lab) == 1)
1990 LABEL_REFS (lab) = insn;
1993 #endif
1996 /* Initialize insn_eh_region table if eh is being used. */
1998 init_insn_eh_region (first, max_uid);
2000 init_recog ();
2002 CC_STATUS_INIT;
2004 /* Output the insns. */
2005 for (insn = NEXT_INSN (first); insn;)
2007 #ifdef HAVE_ATTR_length
2008 insn_current_address = insn_addresses[INSN_UID (insn)];
2009 #endif
2010 insn = final_scan_insn (insn, file, optimize, prescan, 0);
2013 /* Do basic-block profiling here
2014 if the last insn was a conditional branch. */
2015 if (profile_block_flag && new_block)
2016 add_bb (file);
2018 free_insn_eh_region ();
2021 const char *
2022 get_insn_template (code, insn)
2023 int code;
2024 rtx insn;
2026 const void *output = insn_data[code].output;
2027 switch (insn_data[code].output_format)
2029 case INSN_OUTPUT_FORMAT_SINGLE:
2030 return (const char *) output;
2031 case INSN_OUTPUT_FORMAT_MULTI:
2032 return ((const char * const *) output)[which_alternative];
2033 case INSN_OUTPUT_FORMAT_FUNCTION:
2034 if (insn == NULL)
2035 abort ();
2036 return (* (insn_output_fn) output) (recog_data.operand, insn);
2038 default:
2039 abort ();
2042 /* The final scan for one insn, INSN.
2043 Args are same as in `final', except that INSN
2044 is the insn being scanned.
2045 Value returned is the next insn to be scanned.
2047 NOPEEPHOLES is the flag to disallow peephole processing (currently
2048 used for within delayed branch sequence output). */
2051 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2052 rtx insn;
2053 FILE *file;
2054 int optimize ATTRIBUTE_UNUSED;
2055 int prescan;
2056 int nopeepholes ATTRIBUTE_UNUSED;
2058 #ifdef HAVE_cc0
2059 rtx set;
2060 #endif
2062 insn_counter++;
2064 /* Ignore deleted insns. These can occur when we split insns (due to a
2065 template of "#") while not optimizing. */
2066 if (INSN_DELETED_P (insn))
2067 return NEXT_INSN (insn);
2069 switch (GET_CODE (insn))
2071 case NOTE:
2072 if (prescan > 0)
2073 break;
2075 /* Align the beginning of a loop, for higher speed
2076 on certain machines. */
2078 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2079 break; /* This used to depend on optimize, but that was bogus. */
2080 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2081 break;
2083 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
2084 && ! exceptions_via_longjmp)
2086 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_EH_HANDLER (insn));
2087 if (! flag_new_exceptions)
2088 add_eh_table_entry (NOTE_EH_HANDLER (insn));
2089 #ifdef ASM_OUTPUT_EH_REGION_BEG
2090 ASM_OUTPUT_EH_REGION_BEG (file, NOTE_EH_HANDLER (insn));
2091 #endif
2092 break;
2095 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
2096 && ! exceptions_via_longjmp)
2098 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_EH_HANDLER (insn));
2099 if (flag_new_exceptions)
2100 add_eh_table_entry (NOTE_EH_HANDLER (insn));
2101 #ifdef ASM_OUTPUT_EH_REGION_END
2102 ASM_OUTPUT_EH_REGION_END (file, NOTE_EH_HANDLER (insn));
2103 #endif
2104 break;
2107 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
2109 #ifdef FUNCTION_END_PROLOGUE
2110 FUNCTION_END_PROLOGUE (file);
2111 #endif
2112 profile_after_prologue (file);
2113 break;
2116 #ifdef FUNCTION_BEGIN_EPILOGUE
2117 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
2119 FUNCTION_BEGIN_EPILOGUE (file);
2120 break;
2122 #endif
2124 if (write_symbols == NO_DEBUG)
2125 break;
2126 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2128 #if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2129 /* MIPS stabs require the parameter descriptions to be after the
2130 function entry point rather than before. */
2131 if (write_symbols == SDB_DEBUG)
2132 sdbout_begin_function (last_linenum);
2133 else
2134 #endif
2135 #ifdef DWARF_DEBUGGING_INFO
2136 /* This outputs a marker where the function body starts, so it
2137 must be after the prologue. */
2138 if (write_symbols == DWARF_DEBUG)
2139 dwarfout_begin_function ();
2140 #endif
2141 break;
2143 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2144 break; /* An insn that was "deleted" */
2145 if (app_on)
2147 fputs (ASM_APP_OFF, file);
2148 app_on = 0;
2150 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2151 && (debug_info_level == DINFO_LEVEL_NORMAL
2152 || debug_info_level == DINFO_LEVEL_VERBOSE
2153 || write_symbols == DWARF_DEBUG
2154 || write_symbols == DWARF2_DEBUG))
2156 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2158 ++block_depth;
2159 high_block_linenum = last_linenum;
2161 /* Output debugging info about the symbol-block beginning. */
2162 #ifdef SDB_DEBUGGING_INFO
2163 if (write_symbols == SDB_DEBUG)
2164 sdbout_begin_block (file, last_linenum, n);
2165 #endif
2166 #ifdef XCOFF_DEBUGGING_INFO
2167 if (write_symbols == XCOFF_DEBUG)
2168 xcoffout_begin_block (file, last_linenum, n);
2169 #endif
2170 #ifdef DBX_DEBUGGING_INFO
2171 if (write_symbols == DBX_DEBUG)
2172 ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", n);
2173 #endif
2174 #ifdef DWARF_DEBUGGING_INFO
2175 if (write_symbols == DWARF_DEBUG)
2176 dwarfout_begin_block (n);
2177 #endif
2178 #ifdef DWARF2_DEBUGGING_INFO
2179 if (write_symbols == DWARF2_DEBUG)
2180 dwarf2out_begin_block (n);
2181 #endif
2183 /* Mark this block as output. */
2184 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2186 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
2187 && (debug_info_level == DINFO_LEVEL_NORMAL
2188 || debug_info_level == DINFO_LEVEL_VERBOSE
2189 || write_symbols == DWARF_DEBUG
2190 || write_symbols == DWARF2_DEBUG))
2192 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2194 /* End of a symbol-block. */
2196 --block_depth;
2197 if (block_depth < 0)
2198 abort ();
2200 #ifdef XCOFF_DEBUGGING_INFO
2201 if (write_symbols == XCOFF_DEBUG)
2202 xcoffout_end_block (file, high_block_linenum, n);
2203 #endif
2204 #ifdef DBX_DEBUGGING_INFO
2205 if (write_symbols == DBX_DEBUG)
2206 ASM_OUTPUT_INTERNAL_LABEL (file, "LBE", n);
2207 #endif
2208 #ifdef SDB_DEBUGGING_INFO
2209 if (write_symbols == SDB_DEBUG)
2210 sdbout_end_block (file, high_block_linenum, n);
2211 #endif
2212 #ifdef DWARF_DEBUGGING_INFO
2213 if (write_symbols == DWARF_DEBUG)
2214 dwarfout_end_block (n);
2215 #endif
2216 #ifdef DWARF2_DEBUGGING_INFO
2217 if (write_symbols == DWARF2_DEBUG)
2218 dwarf2out_end_block (n);
2219 #endif
2221 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL
2222 && (debug_info_level == DINFO_LEVEL_NORMAL
2223 || debug_info_level == DINFO_LEVEL_VERBOSE))
2225 #ifdef DWARF_DEBUGGING_INFO
2226 if (write_symbols == DWARF_DEBUG)
2227 dwarfout_label (insn);
2228 #endif
2229 #ifdef DWARF2_DEBUGGING_INFO
2230 if (write_symbols == DWARF2_DEBUG)
2231 dwarf2out_label (insn);
2232 #endif
2234 else if (NOTE_LINE_NUMBER (insn) > 0)
2235 /* This note is a line-number. */
2237 register rtx note;
2239 #if 0 /* This is what we used to do. */
2240 output_source_line (file, insn);
2241 #endif
2242 int note_after = 0;
2244 /* If there is anything real after this note,
2245 output it. If another line note follows, omit this one. */
2246 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2248 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2249 break;
2250 /* These types of notes can be significant
2251 so make sure the preceding line number stays. */
2252 else if (GET_CODE (note) == NOTE
2253 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2254 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2255 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2256 break;
2257 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2259 /* Another line note follows; we can delete this note
2260 if no intervening line numbers have notes elsewhere. */
2261 int num;
2262 for (num = NOTE_LINE_NUMBER (insn) + 1;
2263 num < NOTE_LINE_NUMBER (note);
2264 num++)
2265 if (line_note_exists[num])
2266 break;
2268 if (num >= NOTE_LINE_NUMBER (note))
2269 note_after = 1;
2270 break;
2274 /* Output this line note
2275 if it is the first or the last line note in a row. */
2276 if (!note_after)
2277 output_source_line (file, insn);
2279 break;
2281 case BARRIER:
2282 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2283 /* If we push arguments, we need to check all insns for stack
2284 adjustments. */
2285 if (dwarf2out_do_frame ())
2286 dwarf2out_frame_debug (insn);
2287 #endif
2288 break;
2290 case CODE_LABEL:
2291 /* The target port might emit labels in the output function for
2292 some insn, e.g. sh.c output_branchy_insn. */
2293 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2295 int align = LABEL_TO_ALIGNMENT (insn);
2296 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2297 int max_skip = LABEL_TO_MAX_SKIP (insn);
2298 #endif
2300 if (align && NEXT_INSN (insn))
2301 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2302 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2303 #else
2304 ASM_OUTPUT_ALIGN (file, align);
2305 #endif
2307 #ifdef HAVE_cc0
2308 CC_STATUS_INIT;
2309 /* If this label is reached from only one place, set the condition
2310 codes from the instruction just before the branch. */
2312 /* Disabled because some insns set cc_status in the C output code
2313 and NOTICE_UPDATE_CC alone can set incorrect status. */
2314 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2316 rtx jump = LABEL_REFS (insn);
2317 rtx barrier = prev_nonnote_insn (insn);
2318 rtx prev;
2319 /* If the LABEL_REFS field of this label has been set to point
2320 at a branch, the predecessor of the branch is a regular
2321 insn, and that branch is the only way to reach this label,
2322 set the condition codes based on the branch and its
2323 predecessor. */
2324 if (barrier && GET_CODE (barrier) == BARRIER
2325 && jump && GET_CODE (jump) == JUMP_INSN
2326 && (prev = prev_nonnote_insn (jump))
2327 && GET_CODE (prev) == INSN)
2329 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2330 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2333 #endif
2334 if (prescan > 0)
2335 break;
2336 new_block = 1;
2338 #ifdef FINAL_PRESCAN_LABEL
2339 FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
2340 #endif
2342 #ifdef SDB_DEBUGGING_INFO
2343 if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
2344 sdbout_label (insn);
2345 #endif
2346 #ifdef DWARF_DEBUGGING_INFO
2347 if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
2348 dwarfout_label (insn);
2349 #endif
2350 #ifdef DWARF2_DEBUGGING_INFO
2351 if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
2352 dwarf2out_label (insn);
2353 #endif
2354 if (app_on)
2356 fputs (ASM_APP_OFF, file);
2357 app_on = 0;
2359 if (NEXT_INSN (insn) != 0
2360 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2362 rtx nextbody = PATTERN (NEXT_INSN (insn));
2364 /* If this label is followed by a jump-table,
2365 make sure we put the label in the read-only section. Also
2366 possibly write the label and jump table together. */
2368 if (GET_CODE (nextbody) == ADDR_VEC
2369 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2371 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2372 /* In this case, the case vector is being moved by the
2373 target, so don't output the label at all. Leave that
2374 to the back end macros. */
2375 #else
2376 if (! JUMP_TABLES_IN_TEXT_SECTION)
2378 readonly_data_section ();
2379 #ifdef READONLY_DATA_SECTION
2380 ASM_OUTPUT_ALIGN (file,
2381 exact_log2 (BIGGEST_ALIGNMENT
2382 / BITS_PER_UNIT));
2383 #endif /* READONLY_DATA_SECTION */
2385 else
2386 function_section (current_function_decl);
2388 #ifdef ASM_OUTPUT_CASE_LABEL
2389 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2390 NEXT_INSN (insn));
2391 #else
2392 if (LABEL_ALTERNATE_NAME (insn))
2393 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2394 else
2395 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2396 #endif
2397 #endif
2398 break;
2401 if (LABEL_ALTERNATE_NAME (insn))
2402 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2403 else
2404 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2405 break;
2407 default:
2409 register rtx body = PATTERN (insn);
2410 int insn_code_number;
2411 const char *template;
2412 #ifdef HAVE_cc0
2413 rtx note;
2414 #endif
2416 /* An INSN, JUMP_INSN or CALL_INSN.
2417 First check for special kinds that recog doesn't recognize. */
2419 if (GET_CODE (body) == USE /* These are just declarations */
2420 || GET_CODE (body) == CLOBBER)
2421 break;
2423 #ifdef HAVE_cc0
2424 /* If there is a REG_CC_SETTER note on this insn, it means that
2425 the setting of the condition code was done in the delay slot
2426 of the insn that branched here. So recover the cc status
2427 from the insn that set it. */
2429 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2430 if (note)
2432 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2433 cc_prev_status = cc_status;
2435 #endif
2437 /* Detect insns that are really jump-tables
2438 and output them as such. */
2440 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2442 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2443 register int vlen, idx;
2444 #endif
2446 if (prescan > 0)
2447 break;
2449 if (app_on)
2451 fputs (ASM_APP_OFF, file);
2452 app_on = 0;
2455 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2456 if (GET_CODE (body) == ADDR_VEC)
2458 #ifdef ASM_OUTPUT_ADDR_VEC
2459 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2460 #else
2461 abort();
2462 #endif
2464 else
2466 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2467 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2468 #else
2469 abort();
2470 #endif
2472 #else
2473 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2474 for (idx = 0; idx < vlen; idx++)
2476 if (GET_CODE (body) == ADDR_VEC)
2478 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2479 ASM_OUTPUT_ADDR_VEC_ELT
2480 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2481 #else
2482 abort ();
2483 #endif
2485 else
2487 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2488 ASM_OUTPUT_ADDR_DIFF_ELT
2489 (file,
2490 body,
2491 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2492 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2493 #else
2494 abort ();
2495 #endif
2498 #ifdef ASM_OUTPUT_CASE_END
2499 ASM_OUTPUT_CASE_END (file,
2500 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2501 insn);
2502 #endif
2503 #endif
2505 function_section (current_function_decl);
2507 break;
2510 /* Do basic-block profiling when we reach a new block.
2511 Done here to avoid jump tables. */
2512 if (profile_block_flag && new_block)
2513 add_bb (file);
2515 if (GET_CODE (body) == ASM_INPUT)
2517 /* There's no telling what that did to the condition codes. */
2518 CC_STATUS_INIT;
2519 if (prescan > 0)
2520 break;
2521 if (! app_on)
2523 fputs (ASM_APP_ON, file);
2524 app_on = 1;
2526 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2527 break;
2530 /* Detect `asm' construct with operands. */
2531 if (asm_noperands (body) >= 0)
2533 unsigned int noperands = asm_noperands (body);
2534 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2535 const char *string;
2537 /* There's no telling what that did to the condition codes. */
2538 CC_STATUS_INIT;
2539 if (prescan > 0)
2540 break;
2542 if (! app_on)
2544 fputs (ASM_APP_ON, file);
2545 app_on = 1;
2548 /* Get out the operand values. */
2549 string = decode_asm_operands (body, ops, NULL_PTR,
2550 NULL_PTR, NULL_PTR);
2551 /* Inhibit aborts on what would otherwise be compiler bugs. */
2552 insn_noperands = noperands;
2553 this_is_asm_operands = insn;
2555 /* Output the insn using them. */
2556 output_asm_insn (string, ops);
2557 this_is_asm_operands = 0;
2558 break;
2561 if (prescan <= 0 && app_on)
2563 fputs (ASM_APP_OFF, file);
2564 app_on = 0;
2567 if (GET_CODE (body) == SEQUENCE)
2569 /* A delayed-branch sequence */
2570 register int i;
2571 rtx next;
2573 if (prescan > 0)
2574 break;
2575 final_sequence = body;
2577 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2578 force the restoration of a comparison that was previously
2579 thought unnecessary. If that happens, cancel this sequence
2580 and cause that insn to be restored. */
2582 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2583 if (next != XVECEXP (body, 0, 1))
2585 final_sequence = 0;
2586 return next;
2589 for (i = 1; i < XVECLEN (body, 0); i++)
2591 rtx insn = XVECEXP (body, 0, i);
2592 rtx next = NEXT_INSN (insn);
2593 /* We loop in case any instruction in a delay slot gets
2594 split. */
2596 insn = final_scan_insn (insn, file, 0, prescan, 1);
2597 while (insn != next);
2599 #ifdef DBR_OUTPUT_SEQEND
2600 DBR_OUTPUT_SEQEND (file);
2601 #endif
2602 final_sequence = 0;
2604 /* If the insn requiring the delay slot was a CALL_INSN, the
2605 insns in the delay slot are actually executed before the
2606 called function. Hence we don't preserve any CC-setting
2607 actions in these insns and the CC must be marked as being
2608 clobbered by the function. */
2609 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2611 CC_STATUS_INIT;
2614 /* Following a conditional branch sequence, we have a new basic
2615 block. */
2616 if (profile_block_flag)
2618 rtx insn = XVECEXP (body, 0, 0);
2619 rtx body = PATTERN (insn);
2621 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2622 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2623 || (GET_CODE (insn) == JUMP_INSN
2624 && GET_CODE (body) == PARALLEL
2625 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2626 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2627 new_block = 1;
2629 break;
2632 /* We have a real machine instruction as rtl. */
2634 body = PATTERN (insn);
2636 #ifdef HAVE_cc0
2637 set = single_set(insn);
2639 /* Check for redundant test and compare instructions
2640 (when the condition codes are already set up as desired).
2641 This is done only when optimizing; if not optimizing,
2642 it should be possible for the user to alter a variable
2643 with the debugger in between statements
2644 and the next statement should reexamine the variable
2645 to compute the condition codes. */
2647 if (optimize)
2649 #if 0
2650 rtx set = single_set(insn);
2651 #endif
2653 if (set
2654 && GET_CODE (SET_DEST (set)) == CC0
2655 && insn != last_ignored_compare)
2657 if (GET_CODE (SET_SRC (set)) == SUBREG)
2658 SET_SRC (set) = alter_subreg (SET_SRC (set));
2659 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2661 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2662 XEXP (SET_SRC (set), 0)
2663 = alter_subreg (XEXP (SET_SRC (set), 0));
2664 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2665 XEXP (SET_SRC (set), 1)
2666 = alter_subreg (XEXP (SET_SRC (set), 1));
2668 if ((cc_status.value1 != 0
2669 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2670 || (cc_status.value2 != 0
2671 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2673 /* Don't delete insn if it has an addressing side-effect. */
2674 if (! FIND_REG_INC_NOTE (insn, 0)
2675 /* or if anything in it is volatile. */
2676 && ! volatile_refs_p (PATTERN (insn)))
2678 /* We don't really delete the insn; just ignore it. */
2679 last_ignored_compare = insn;
2680 break;
2685 #endif
2687 /* Following a conditional branch, we have a new basic block.
2688 But if we are inside a sequence, the new block starts after the
2689 last insn of the sequence. */
2690 if (profile_block_flag && final_sequence == 0
2691 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2692 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2693 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2694 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2695 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2696 new_block = 1;
2698 #ifndef STACK_REGS
2699 /* Don't bother outputting obvious no-ops, even without -O.
2700 This optimization is fast and doesn't interfere with debugging.
2701 Don't do this if the insn is in a delay slot, since this
2702 will cause an improper number of delay insns to be written. */
2703 if (final_sequence == 0
2704 && prescan >= 0
2705 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2706 && GET_CODE (SET_SRC (body)) == REG
2707 && GET_CODE (SET_DEST (body)) == REG
2708 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2709 break;
2710 #endif
2712 #ifdef HAVE_cc0
2713 /* If this is a conditional branch, maybe modify it
2714 if the cc's are in a nonstandard state
2715 so that it accomplishes the same thing that it would
2716 do straightforwardly if the cc's were set up normally. */
2718 if (cc_status.flags != 0
2719 && GET_CODE (insn) == JUMP_INSN
2720 && GET_CODE (body) == SET
2721 && SET_DEST (body) == pc_rtx
2722 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2723 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2724 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2725 /* This is done during prescan; it is not done again
2726 in final scan when prescan has been done. */
2727 && prescan >= 0)
2729 /* This function may alter the contents of its argument
2730 and clear some of the cc_status.flags bits.
2731 It may also return 1 meaning condition now always true
2732 or -1 meaning condition now always false
2733 or 2 meaning condition nontrivial but altered. */
2734 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2735 /* If condition now has fixed value, replace the IF_THEN_ELSE
2736 with its then-operand or its else-operand. */
2737 if (result == 1)
2738 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2739 if (result == -1)
2740 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2742 /* The jump is now either unconditional or a no-op.
2743 If it has become a no-op, don't try to output it.
2744 (It would not be recognized.) */
2745 if (SET_SRC (body) == pc_rtx)
2747 PUT_CODE (insn, NOTE);
2748 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2749 NOTE_SOURCE_FILE (insn) = 0;
2750 break;
2752 else if (GET_CODE (SET_SRC (body)) == RETURN)
2753 /* Replace (set (pc) (return)) with (return). */
2754 PATTERN (insn) = body = SET_SRC (body);
2756 /* Rerecognize the instruction if it has changed. */
2757 if (result != 0)
2758 INSN_CODE (insn) = -1;
2761 /* Make same adjustments to instructions that examine the
2762 condition codes without jumping and instructions that
2763 handle conditional moves (if this machine has either one). */
2765 if (cc_status.flags != 0
2766 && set != 0)
2768 rtx cond_rtx, then_rtx, else_rtx;
2770 if (GET_CODE (insn) != JUMP_INSN
2771 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2773 cond_rtx = XEXP (SET_SRC (set), 0);
2774 then_rtx = XEXP (SET_SRC (set), 1);
2775 else_rtx = XEXP (SET_SRC (set), 2);
2777 else
2779 cond_rtx = SET_SRC (set);
2780 then_rtx = const_true_rtx;
2781 else_rtx = const0_rtx;
2784 switch (GET_CODE (cond_rtx))
2786 case GTU:
2787 case GT:
2788 case LTU:
2789 case LT:
2790 case GEU:
2791 case GE:
2792 case LEU:
2793 case LE:
2794 case EQ:
2795 case NE:
2797 register int result;
2798 if (XEXP (cond_rtx, 0) != cc0_rtx)
2799 break;
2800 result = alter_cond (cond_rtx);
2801 if (result == 1)
2802 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2803 else if (result == -1)
2804 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2805 else if (result == 2)
2806 INSN_CODE (insn) = -1;
2807 if (SET_DEST (set) == SET_SRC (set))
2809 PUT_CODE (insn, NOTE);
2810 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2811 NOTE_SOURCE_FILE (insn) = 0;
2814 break;
2816 default:
2817 break;
2821 #endif
2823 #ifdef HAVE_peephole
2824 /* Do machine-specific peephole optimizations if desired. */
2826 if (optimize && !flag_no_peephole && !nopeepholes)
2828 rtx next = peephole (insn);
2829 /* When peepholing, if there were notes within the peephole,
2830 emit them before the peephole. */
2831 if (next != 0 && next != NEXT_INSN (insn))
2833 rtx prev = PREV_INSN (insn);
2834 rtx note;
2836 for (note = NEXT_INSN (insn); note != next;
2837 note = NEXT_INSN (note))
2838 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2840 /* In case this is prescan, put the notes
2841 in proper position for later rescan. */
2842 note = NEXT_INSN (insn);
2843 PREV_INSN (note) = prev;
2844 NEXT_INSN (prev) = note;
2845 NEXT_INSN (PREV_INSN (next)) = insn;
2846 PREV_INSN (insn) = PREV_INSN (next);
2847 NEXT_INSN (insn) = next;
2848 PREV_INSN (next) = insn;
2851 /* PEEPHOLE might have changed this. */
2852 body = PATTERN (insn);
2854 #endif
2856 /* Try to recognize the instruction.
2857 If successful, verify that the operands satisfy the
2858 constraints for the instruction. Crash if they don't,
2859 since `reload' should have changed them so that they do. */
2861 insn_code_number = recog_memoized (insn);
2862 extract_insn (insn);
2863 cleanup_subreg_operands (insn);
2865 if (! constrain_operands (1))
2866 fatal_insn_not_found (insn);
2868 /* Some target machines need to prescan each insn before
2869 it is output. */
2871 #ifdef FINAL_PRESCAN_INSN
2872 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2873 #endif
2875 #ifdef HAVE_cc0
2876 cc_prev_status = cc_status;
2878 /* Update `cc_status' for this instruction.
2879 The instruction's output routine may change it further.
2880 If the output routine for a jump insn needs to depend
2881 on the cc status, it should look at cc_prev_status. */
2883 NOTICE_UPDATE_CC (body, insn);
2884 #endif
2886 debug_insn = insn;
2888 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2889 /* If we push arguments, we want to know where the calls are. */
2890 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2891 dwarf2out_frame_debug (insn);
2892 #endif
2894 /* Find the proper template for this insn. */
2895 template = get_insn_template (insn_code_number, insn);
2897 /* If the C code returns 0, it means that it is a jump insn
2898 which follows a deleted test insn, and that test insn
2899 needs to be reinserted. */
2900 if (template == 0)
2902 if (prev_nonnote_insn (insn) != last_ignored_compare)
2903 abort ();
2904 new_block = 0;
2905 return prev_nonnote_insn (insn);
2908 /* If the template is the string "#", it means that this insn must
2909 be split. */
2910 if (template[0] == '#' && template[1] == '\0')
2912 rtx new = try_split (body, insn, 0);
2914 /* If we didn't split the insn, go away. */
2915 if (new == insn && PATTERN (new) == body)
2916 fatal_insn ("Could not split insn", insn);
2918 #ifdef HAVE_ATTR_length
2919 /* This instruction should have been split in shorten_branches,
2920 to ensure that we would have valid length info for the
2921 splitees. */
2922 abort ();
2923 #endif
2925 new_block = 0;
2926 return new;
2929 if (prescan > 0)
2930 break;
2932 /* Output assembler code from the template. */
2934 output_asm_insn (template, recog_data.operand);
2936 #if defined (DWARF2_UNWIND_INFO)
2937 #if !defined (ACCUMULATE_OUTGOING_ARGS)
2938 /* If we push arguments, we need to check all insns for stack
2939 adjustments. */
2940 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2941 dwarf2out_frame_debug (insn);
2942 #else
2943 #if defined (HAVE_prologue)
2944 /* If this insn is part of the prologue, emit DWARF v2
2945 call frame info. */
2946 if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
2947 dwarf2out_frame_debug (insn);
2948 #endif
2949 #endif
2950 #endif
2952 #if 0
2953 /* It's not at all clear why we did this and doing so interferes
2954 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2955 with this out. */
2957 /* Mark this insn as having been output. */
2958 INSN_DELETED_P (insn) = 1;
2959 #endif
2961 debug_insn = 0;
2964 return NEXT_INSN (insn);
2967 /* Output debugging info to the assembler file FILE
2968 based on the NOTE-insn INSN, assumed to be a line number. */
2970 static void
2971 output_source_line (file, insn)
2972 FILE *file ATTRIBUTE_UNUSED;
2973 rtx insn;
2975 register const char *filename = NOTE_SOURCE_FILE (insn);
2977 /* Remember filename for basic block profiling.
2978 Filenames are allocated on the permanent obstack
2979 or are passed in ARGV, so we don't have to save
2980 the string. */
2982 if (profile_block_flag && last_filename != filename)
2983 bb_file_label_num = add_bb_string (filename, TRUE);
2985 last_filename = filename;
2986 last_linenum = NOTE_LINE_NUMBER (insn);
2987 high_block_linenum = MAX (last_linenum, high_block_linenum);
2988 high_function_linenum = MAX (last_linenum, high_function_linenum);
2990 if (write_symbols != NO_DEBUG)
2992 #ifdef SDB_DEBUGGING_INFO
2993 if (write_symbols == SDB_DEBUG
2994 #if 0 /* People like having line numbers even in wrong file! */
2995 /* COFF can't handle multiple source files--lose, lose. */
2996 && !strcmp (filename, main_input_filename)
2997 #endif
2998 /* COFF relative line numbers must be positive. */
2999 && last_linenum > sdb_begin_function_line)
3001 #ifdef ASM_OUTPUT_SOURCE_LINE
3002 ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
3003 #else
3004 fprintf (file, "\t.ln\t%d\n",
3005 ((sdb_begin_function_line > -1)
3006 ? last_linenum - sdb_begin_function_line : 1));
3007 #endif
3009 #endif
3011 #if defined (DBX_DEBUGGING_INFO)
3012 if (write_symbols == DBX_DEBUG)
3013 dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
3014 #endif
3016 #if defined (XCOFF_DEBUGGING_INFO)
3017 if (write_symbols == XCOFF_DEBUG)
3018 xcoffout_source_line (file, filename, insn);
3019 #endif
3021 #ifdef DWARF_DEBUGGING_INFO
3022 if (write_symbols == DWARF_DEBUG)
3023 dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
3024 #endif
3026 #ifdef DWARF2_DEBUGGING_INFO
3027 if (write_symbols == DWARF2_DEBUG)
3028 dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
3029 #endif
3034 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3035 directly to the desired hard register. */
3036 void
3037 cleanup_subreg_operands (insn)
3038 rtx insn;
3040 int i;
3042 extract_insn (insn);
3043 for (i = 0; i < recog_data.n_operands; i++)
3045 if (GET_CODE (recog_data.operand[i]) == SUBREG)
3046 recog_data.operand[i] = alter_subreg (recog_data.operand[i]);
3047 else if (GET_CODE (recog_data.operand[i]) == PLUS
3048 || GET_CODE (recog_data.operand[i]) == MULT)
3049 recog_data.operand[i] = walk_alter_subreg (recog_data.operand[i]);
3052 for (i = 0; i < recog_data.n_dups; i++)
3054 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3055 *recog_data.dup_loc[i] = alter_subreg (*recog_data.dup_loc[i]);
3056 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3057 || GET_CODE (*recog_data.dup_loc[i]) == MULT)
3058 *recog_data.dup_loc[i] = walk_alter_subreg (*recog_data.dup_loc[i]);
3062 /* If X is a SUBREG, replace it with a REG or a MEM,
3063 based on the thing it is a subreg of. */
3066 alter_subreg (x)
3067 register rtx x;
3069 register rtx y = SUBREG_REG (x);
3071 if (GET_CODE (y) == SUBREG)
3072 y = alter_subreg (y);
3074 /* If reload is operating, we may be replacing inside this SUBREG.
3075 Check for that and make a new one if so. */
3076 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
3077 x = copy_rtx (x);
3079 if (GET_CODE (y) == REG)
3081 int regno;
3082 /* If the word size is larger than the size of this register,
3083 adjust the register number to compensate. */
3084 /* ??? Note that this just catches stragglers created by/for
3085 integrate. It would be better if we either caught these
3086 earlier, or kept _all_ subregs until now and eliminate
3087 gen_lowpart and friends. */
3089 #ifdef ALTER_HARD_SUBREG
3090 regno = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
3091 GET_MODE (y), REGNO (y));
3092 #else
3093 regno = REGNO (y) + SUBREG_WORD (x);
3094 #endif
3095 PUT_CODE (x, REG);
3096 REGNO (x) = regno;
3097 /* This field has a different meaning for REGs and SUBREGs. Make sure
3098 to clear it! */
3099 x->used = 0;
3101 else if (GET_CODE (y) == MEM)
3103 register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
3104 if (BYTES_BIG_ENDIAN)
3105 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
3106 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
3107 PUT_CODE (x, MEM);
3108 MEM_COPY_ATTRIBUTES (x, y);
3109 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (y);
3110 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
3113 return x;
3116 /* Do alter_subreg on all the SUBREGs contained in X. */
3118 static rtx
3119 walk_alter_subreg (x)
3120 rtx x;
3122 switch (GET_CODE (x))
3124 case PLUS:
3125 case MULT:
3126 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3127 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
3128 break;
3130 case MEM:
3131 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3132 break;
3134 case SUBREG:
3135 return alter_subreg (x);
3137 default:
3138 break;
3141 return x;
3144 #ifdef HAVE_cc0
3146 /* Given BODY, the body of a jump instruction, alter the jump condition
3147 as required by the bits that are set in cc_status.flags.
3148 Not all of the bits there can be handled at this level in all cases.
3150 The value is normally 0.
3151 1 means that the condition has become always true.
3152 -1 means that the condition has become always false.
3153 2 means that COND has been altered. */
3155 static int
3156 alter_cond (cond)
3157 register rtx cond;
3159 int value = 0;
3161 if (cc_status.flags & CC_REVERSED)
3163 value = 2;
3164 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3167 if (cc_status.flags & CC_INVERTED)
3169 value = 2;
3170 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3173 if (cc_status.flags & CC_NOT_POSITIVE)
3174 switch (GET_CODE (cond))
3176 case LE:
3177 case LEU:
3178 case GEU:
3179 /* Jump becomes unconditional. */
3180 return 1;
3182 case GT:
3183 case GTU:
3184 case LTU:
3185 /* Jump becomes no-op. */
3186 return -1;
3188 case GE:
3189 PUT_CODE (cond, EQ);
3190 value = 2;
3191 break;
3193 case LT:
3194 PUT_CODE (cond, NE);
3195 value = 2;
3196 break;
3198 default:
3199 break;
3202 if (cc_status.flags & CC_NOT_NEGATIVE)
3203 switch (GET_CODE (cond))
3205 case GE:
3206 case GEU:
3207 /* Jump becomes unconditional. */
3208 return 1;
3210 case LT:
3211 case LTU:
3212 /* Jump becomes no-op. */
3213 return -1;
3215 case LE:
3216 case LEU:
3217 PUT_CODE (cond, EQ);
3218 value = 2;
3219 break;
3221 case GT:
3222 case GTU:
3223 PUT_CODE (cond, NE);
3224 value = 2;
3225 break;
3227 default:
3228 break;
3231 if (cc_status.flags & CC_NO_OVERFLOW)
3232 switch (GET_CODE (cond))
3234 case GEU:
3235 /* Jump becomes unconditional. */
3236 return 1;
3238 case LEU:
3239 PUT_CODE (cond, EQ);
3240 value = 2;
3241 break;
3243 case GTU:
3244 PUT_CODE (cond, NE);
3245 value = 2;
3246 break;
3248 case LTU:
3249 /* Jump becomes no-op. */
3250 return -1;
3252 default:
3253 break;
3256 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3257 switch (GET_CODE (cond))
3259 default:
3260 abort ();
3262 case NE:
3263 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3264 value = 2;
3265 break;
3267 case EQ:
3268 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3269 value = 2;
3270 break;
3273 if (cc_status.flags & CC_NOT_SIGNED)
3274 /* The flags are valid if signed condition operators are converted
3275 to unsigned. */
3276 switch (GET_CODE (cond))
3278 case LE:
3279 PUT_CODE (cond, LEU);
3280 value = 2;
3281 break;
3283 case LT:
3284 PUT_CODE (cond, LTU);
3285 value = 2;
3286 break;
3288 case GT:
3289 PUT_CODE (cond, GTU);
3290 value = 2;
3291 break;
3293 case GE:
3294 PUT_CODE (cond, GEU);
3295 value = 2;
3296 break;
3298 default:
3299 break;
3302 return value;
3304 #endif
3306 /* Report inconsistency between the assembler template and the operands.
3307 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3309 void
3310 output_operand_lossage (msgid)
3311 const char *msgid;
3313 if (this_is_asm_operands)
3314 error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
3315 else
3317 error ("output_operand: %s", _(msgid));
3318 abort ();
3322 /* Output of assembler code from a template, and its subroutines. */
3324 /* Output text from TEMPLATE to the assembler output file,
3325 obeying %-directions to substitute operands taken from
3326 the vector OPERANDS.
3328 %N (for N a digit) means print operand N in usual manner.
3329 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3330 and print the label name with no punctuation.
3331 %cN means require operand N to be a constant
3332 and print the constant expression with no punctuation.
3333 %aN means expect operand N to be a memory address
3334 (not a memory reference!) and print a reference
3335 to that address.
3336 %nN means expect operand N to be a constant
3337 and print a constant expression for minus the value
3338 of the operand, with no other punctuation. */
3340 static void
3341 output_asm_name ()
3343 if (flag_print_asm_name)
3345 /* Annotate the assembly with a comment describing the pattern and
3346 alternative used. */
3347 if (debug_insn)
3349 register int num = INSN_CODE (debug_insn);
3350 fprintf (asm_out_file, "\t%s %d\t%s",
3351 ASM_COMMENT_START, INSN_UID (debug_insn),
3352 insn_data[num].name);
3353 if (insn_data[num].n_alternatives > 1)
3354 fprintf (asm_out_file, "/%d", which_alternative + 1);
3355 #ifdef HAVE_ATTR_length
3356 fprintf (asm_out_file, "\t[length = %d]",
3357 get_attr_length (debug_insn));
3358 #endif
3359 /* Clear this so only the first assembler insn
3360 of any rtl insn will get the special comment for -dp. */
3361 debug_insn = 0;
3366 void
3367 output_asm_insn (template, operands)
3368 const char *template;
3369 rtx *operands;
3371 register const char *p;
3372 register int c;
3374 /* An insn may return a null string template
3375 in a case where no assembler code is needed. */
3376 if (*template == 0)
3377 return;
3379 p = template;
3380 putc ('\t', asm_out_file);
3382 #ifdef ASM_OUTPUT_OPCODE
3383 ASM_OUTPUT_OPCODE (asm_out_file, p);
3384 #endif
3386 while ((c = *p++))
3387 switch (c)
3389 case '\n':
3390 output_asm_name ();
3391 putc (c, asm_out_file);
3392 #ifdef ASM_OUTPUT_OPCODE
3393 while ((c = *p) == '\t')
3395 putc (c, asm_out_file);
3396 p++;
3398 ASM_OUTPUT_OPCODE (asm_out_file, p);
3399 #endif
3400 break;
3402 #ifdef ASSEMBLER_DIALECT
3403 case '{':
3405 register int i;
3407 /* If we want the first dialect, do nothing. Otherwise, skip
3408 DIALECT_NUMBER of strings ending with '|'. */
3409 for (i = 0; i < dialect_number; i++)
3411 while (*p && *p != '}' && *p++ != '|')
3413 if (*p == '}')
3414 break;
3415 if (*p == '|')
3416 p++;
3419 break;
3421 case '|':
3422 /* Skip to close brace. */
3423 while (*p && *p++ != '}')
3425 break;
3427 case '}':
3428 break;
3429 #endif
3431 case '%':
3432 /* %% outputs a single %. */
3433 if (*p == '%')
3435 p++;
3436 putc (c, asm_out_file);
3438 /* %= outputs a number which is unique to each insn in the entire
3439 compilation. This is useful for making local labels that are
3440 referred to more than once in a given insn. */
3441 else if (*p == '=')
3443 p++;
3444 fprintf (asm_out_file, "%d", insn_counter);
3446 /* % followed by a letter and some digits
3447 outputs an operand in a special way depending on the letter.
3448 Letters `acln' are implemented directly.
3449 Other letters are passed to `output_operand' so that
3450 the PRINT_OPERAND macro can define them. */
3451 else if ((*p >= 'a' && *p <= 'z')
3452 || (*p >= 'A' && *p <= 'Z'))
3454 int letter = *p++;
3455 c = atoi (p);
3457 if (! (*p >= '0' && *p <= '9'))
3458 output_operand_lossage ("operand number missing after %-letter");
3459 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3460 output_operand_lossage ("operand number out of range");
3461 else if (letter == 'l')
3462 output_asm_label (operands[c]);
3463 else if (letter == 'a')
3464 output_address (operands[c]);
3465 else if (letter == 'c')
3467 if (CONSTANT_ADDRESS_P (operands[c]))
3468 output_addr_const (asm_out_file, operands[c]);
3469 else
3470 output_operand (operands[c], 'c');
3472 else if (letter == 'n')
3474 if (GET_CODE (operands[c]) == CONST_INT)
3475 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3476 - INTVAL (operands[c]));
3477 else
3479 putc ('-', asm_out_file);
3480 output_addr_const (asm_out_file, operands[c]);
3483 else
3484 output_operand (operands[c], letter);
3486 while ((c = *p) >= '0' && c <= '9') p++;
3488 /* % followed by a digit outputs an operand the default way. */
3489 else if (*p >= '0' && *p <= '9')
3491 c = atoi (p);
3492 if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3493 output_operand_lossage ("operand number out of range");
3494 else
3495 output_operand (operands[c], 0);
3496 while ((c = *p) >= '0' && c <= '9') p++;
3498 /* % followed by punctuation: output something for that
3499 punctuation character alone, with no operand.
3500 The PRINT_OPERAND macro decides what is actually done. */
3501 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3502 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char)*p))
3503 output_operand (NULL_RTX, *p++);
3504 #endif
3505 else
3506 output_operand_lossage ("invalid %%-code");
3507 break;
3509 default:
3510 putc (c, asm_out_file);
3513 output_asm_name ();
3515 putc ('\n', asm_out_file);
3518 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3520 void
3521 output_asm_label (x)
3522 rtx x;
3524 char buf[256];
3526 if (GET_CODE (x) == LABEL_REF)
3527 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3528 else if (GET_CODE (x) == CODE_LABEL)
3529 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3530 else
3531 output_operand_lossage ("`%l' operand isn't a label");
3533 assemble_name (asm_out_file, buf);
3536 /* Print operand X using machine-dependent assembler syntax.
3537 The macro PRINT_OPERAND is defined just to control this function.
3538 CODE is a non-digit that preceded the operand-number in the % spec,
3539 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3540 between the % and the digits.
3541 When CODE is a non-letter, X is 0.
3543 The meanings of the letters are machine-dependent and controlled
3544 by PRINT_OPERAND. */
3546 static void
3547 output_operand (x, code)
3548 rtx x;
3549 int code ATTRIBUTE_UNUSED;
3551 if (x && GET_CODE (x) == SUBREG)
3552 x = alter_subreg (x);
3554 /* If X is a pseudo-register, abort now rather than writing trash to the
3555 assembler file. */
3557 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3558 abort ();
3560 PRINT_OPERAND (asm_out_file, x, code);
3563 /* Print a memory reference operand for address X
3564 using machine-dependent assembler syntax.
3565 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3567 void
3568 output_address (x)
3569 rtx x;
3571 walk_alter_subreg (x);
3572 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3575 /* Print an integer constant expression in assembler syntax.
3576 Addition and subtraction are the only arithmetic
3577 that may appear in these expressions. */
3579 void
3580 output_addr_const (file, x)
3581 FILE *file;
3582 rtx x;
3584 char buf[256];
3586 restart:
3587 switch (GET_CODE (x))
3589 case PC:
3590 if (flag_pic)
3591 putc ('.', file);
3592 else
3593 abort ();
3594 break;
3596 case SYMBOL_REF:
3597 assemble_name (file, XSTR (x, 0));
3598 break;
3600 case LABEL_REF:
3601 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3602 assemble_name (file, buf);
3603 break;
3605 case CODE_LABEL:
3606 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3607 assemble_name (file, buf);
3608 break;
3610 case CONST_INT:
3611 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3612 break;
3614 case CONST:
3615 /* This used to output parentheses around the expression,
3616 but that does not work on the 386 (either ATT or BSD assembler). */
3617 output_addr_const (file, XEXP (x, 0));
3618 break;
3620 case CONST_DOUBLE:
3621 if (GET_MODE (x) == VOIDmode)
3623 /* We can use %d if the number is one word and positive. */
3624 if (CONST_DOUBLE_HIGH (x))
3625 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3626 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3627 else if (CONST_DOUBLE_LOW (x) < 0)
3628 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3629 else
3630 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3632 else
3633 /* We can't handle floating point constants;
3634 PRINT_OPERAND must handle them. */
3635 output_operand_lossage ("floating constant misused");
3636 break;
3638 case PLUS:
3639 /* Some assemblers need integer constants to appear last (eg masm). */
3640 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3642 output_addr_const (file, XEXP (x, 1));
3643 if (INTVAL (XEXP (x, 0)) >= 0)
3644 fprintf (file, "+");
3645 output_addr_const (file, XEXP (x, 0));
3647 else
3649 output_addr_const (file, XEXP (x, 0));
3650 if (INTVAL (XEXP (x, 1)) >= 0)
3651 fprintf (file, "+");
3652 output_addr_const (file, XEXP (x, 1));
3654 break;
3656 case MINUS:
3657 /* Avoid outputting things like x-x or x+5-x,
3658 since some assemblers can't handle that. */
3659 x = simplify_subtraction (x);
3660 if (GET_CODE (x) != MINUS)
3661 goto restart;
3663 output_addr_const (file, XEXP (x, 0));
3664 fprintf (file, "-");
3665 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3666 && INTVAL (XEXP (x, 1)) < 0)
3668 fprintf (file, "%s", ASM_OPEN_PAREN);
3669 output_addr_const (file, XEXP (x, 1));
3670 fprintf (file, "%s", ASM_CLOSE_PAREN);
3672 else
3673 output_addr_const (file, XEXP (x, 1));
3674 break;
3676 case ZERO_EXTEND:
3677 case SIGN_EXTEND:
3678 output_addr_const (file, XEXP (x, 0));
3679 break;
3681 default:
3682 output_operand_lossage ("invalid expression as operand");
3686 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3687 %R prints the value of REGISTER_PREFIX.
3688 %L prints the value of LOCAL_LABEL_PREFIX.
3689 %U prints the value of USER_LABEL_PREFIX.
3690 %I prints the value of IMMEDIATE_PREFIX.
3691 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3692 Also supported are %d, %x, %s, %e, %f, %g and %%.
3694 We handle alternate assembler dialects here, just like output_asm_insn. */
3696 void
3697 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3699 #ifndef ANSI_PROTOTYPES
3700 FILE *file;
3701 const char *p;
3702 #endif
3703 va_list argptr;
3704 char buf[10];
3705 char *q, c;
3707 VA_START (argptr, p);
3709 #ifndef ANSI_PROTOTYPES
3710 file = va_arg (argptr, FILE *);
3711 p = va_arg (argptr, const char *);
3712 #endif
3714 buf[0] = '%';
3716 while ((c = *p++))
3717 switch (c)
3719 #ifdef ASSEMBLER_DIALECT
3720 case '{':
3722 int i;
3724 /* If we want the first dialect, do nothing. Otherwise, skip
3725 DIALECT_NUMBER of strings ending with '|'. */
3726 for (i = 0; i < dialect_number; i++)
3728 while (*p && *p++ != '|')
3731 if (*p == '|')
3732 p++;
3735 break;
3737 case '|':
3738 /* Skip to close brace. */
3739 while (*p && *p++ != '}')
3741 break;
3743 case '}':
3744 break;
3745 #endif
3747 case '%':
3748 c = *p++;
3749 q = &buf[1];
3750 while ((c >= '0' && c <= '9') || c == '.')
3752 *q++ = c;
3753 c = *p++;
3755 switch (c)
3757 case '%':
3758 fprintf (file, "%%");
3759 break;
3761 case 'd': case 'i': case 'u':
3762 case 'x': case 'p': case 'X':
3763 case 'o':
3764 *q++ = c;
3765 *q = 0;
3766 fprintf (file, buf, va_arg (argptr, int));
3767 break;
3769 case 'w':
3770 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3771 but we do not check for those cases. It means that the value
3772 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3774 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3775 #else
3776 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3777 *q++ = 'l';
3778 #else
3779 *q++ = 'l';
3780 *q++ = 'l';
3781 #endif
3782 #endif
3784 *q++ = *p++;
3785 *q = 0;
3786 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3787 break;
3789 case 'l':
3790 *q++ = c;
3791 *q++ = *p++;
3792 *q = 0;
3793 fprintf (file, buf, va_arg (argptr, long));
3794 break;
3796 case 'e':
3797 case 'f':
3798 case 'g':
3799 *q++ = c;
3800 *q = 0;
3801 fprintf (file, buf, va_arg (argptr, double));
3802 break;
3804 case 's':
3805 *q++ = c;
3806 *q = 0;
3807 fprintf (file, buf, va_arg (argptr, char *));
3808 break;
3810 case 'O':
3811 #ifdef ASM_OUTPUT_OPCODE
3812 ASM_OUTPUT_OPCODE (asm_out_file, p);
3813 #endif
3814 break;
3816 case 'R':
3817 #ifdef REGISTER_PREFIX
3818 fprintf (file, "%s", REGISTER_PREFIX);
3819 #endif
3820 break;
3822 case 'I':
3823 #ifdef IMMEDIATE_PREFIX
3824 fprintf (file, "%s", IMMEDIATE_PREFIX);
3825 #endif
3826 break;
3828 case 'L':
3829 #ifdef LOCAL_LABEL_PREFIX
3830 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3831 #endif
3832 break;
3834 case 'U':
3835 fputs (user_label_prefix, file);
3836 break;
3838 #ifdef ASM_FPRINTF_EXTENSIONS
3839 /* Upper case letters are reserved for general use by asm_fprintf
3840 and so are not available to target specific code. In order to
3841 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3842 they are defined here. As they get turned into real extensions
3843 to asm_fprintf they should be removed from this list. */
3844 case 'A': case 'B': case 'C': case 'D': case 'E':
3845 case 'F': case 'G': case 'H': case 'J': case 'K':
3846 case 'M': case 'N': case 'P': case 'Q': case 'S':
3847 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3848 break;
3850 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3851 #endif
3852 default:
3853 abort ();
3855 break;
3857 default:
3858 fputc (c, file);
3860 va_end (argptr);
3863 /* Split up a CONST_DOUBLE or integer constant rtx
3864 into two rtx's for single words,
3865 storing in *FIRST the word that comes first in memory in the target
3866 and in *SECOND the other. */
3868 void
3869 split_double (value, first, second)
3870 rtx value;
3871 rtx *first, *second;
3873 if (GET_CODE (value) == CONST_INT)
3875 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3877 /* In this case the CONST_INT holds both target words.
3878 Extract the bits from it into two word-sized pieces.
3879 Sign extend each half to HOST_WIDE_INT. */
3880 rtx low, high;
3881 /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
3882 the shift below will cause a compiler warning, even though
3883 this code won't be executed. So put the shift amounts in
3884 variables to avoid the warning. */
3885 int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
3886 int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;
3888 low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
3889 high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
3890 if (WORDS_BIG_ENDIAN)
3892 *first = high;
3893 *second = low;
3895 else
3897 *first = low;
3898 *second = high;
3901 else
3903 /* The rule for using CONST_INT for a wider mode
3904 is that we regard the value as signed.
3905 So sign-extend it. */
3906 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3907 if (WORDS_BIG_ENDIAN)
3909 *first = high;
3910 *second = value;
3912 else
3914 *first = value;
3915 *second = high;
3919 else if (GET_CODE (value) != CONST_DOUBLE)
3921 if (WORDS_BIG_ENDIAN)
3923 *first = const0_rtx;
3924 *second = value;
3926 else
3928 *first = value;
3929 *second = const0_rtx;
3932 else if (GET_MODE (value) == VOIDmode
3933 /* This is the old way we did CONST_DOUBLE integers. */
3934 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3936 /* In an integer, the words are defined as most and least significant.
3937 So order them by the target's convention. */
3938 if (WORDS_BIG_ENDIAN)
3940 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3941 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3943 else
3945 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3946 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3949 else
3951 #ifdef REAL_ARITHMETIC
3952 REAL_VALUE_TYPE r; long l[2];
3953 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3955 /* Note, this converts the REAL_VALUE_TYPE to the target's
3956 format, splits up the floating point double and outputs
3957 exactly 32 bits of it into each of l[0] and l[1] --
3958 not necessarily BITS_PER_WORD bits. */
3959 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3961 /* If 32 bits is an entire word for the target, but not for the host,
3962 then sign-extend on the host so that the number will look the same
3963 way on the host that it would on the target. See for instance
3964 simplify_unary_operation. The #if is needed to avoid compiler
3965 warnings. */
3967 #if HOST_BITS_PER_LONG > 32
3968 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3970 if (l[0] & ((long) 1 << 31))
3971 l[0] |= ((long) (-1) << 32);
3972 if (l[1] & ((long) 1 << 31))
3973 l[1] |= ((long) (-1) << 32);
3975 #endif
3977 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3978 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3979 #else
3980 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3981 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3982 && ! flag_pretend_float)
3983 abort ();
3985 if (
3986 #ifdef HOST_WORDS_BIG_ENDIAN
3987 WORDS_BIG_ENDIAN
3988 #else
3989 ! WORDS_BIG_ENDIAN
3990 #endif
3993 /* Host and target agree => no need to swap. */
3994 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3995 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3997 else
3999 *second = GEN_INT (CONST_DOUBLE_LOW (value));
4000 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
4002 #endif /* no REAL_ARITHMETIC */
4006 /* Return nonzero if this function has no function calls. */
4009 leaf_function_p ()
4011 rtx insn;
4013 if (profile_flag || profile_block_flag || profile_arc_flag)
4014 return 0;
4016 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4018 if (GET_CODE (insn) == CALL_INSN)
4019 return 0;
4020 if (GET_CODE (insn) == INSN
4021 && GET_CODE (PATTERN (insn)) == SEQUENCE
4022 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
4023 return 0;
4025 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4027 if (GET_CODE (XEXP (insn, 0)) == CALL_INSN)
4028 return 0;
4029 if (GET_CODE (XEXP (insn, 0)) == INSN
4030 && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
4031 && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN)
4032 return 0;
4035 return 1;
4038 /* On some machines, a function with no call insns
4039 can run faster if it doesn't create its own register window.
4040 When output, the leaf function should use only the "output"
4041 registers. Ordinarily, the function would be compiled to use
4042 the "input" registers to find its arguments; it is a candidate
4043 for leaf treatment if it uses only the "input" registers.
4044 Leaf function treatment means renumbering so the function
4045 uses the "output" registers instead. */
4047 #ifdef LEAF_REGISTERS
4049 static char permitted_reg_in_leaf_functions[] = LEAF_REGISTERS;
4051 /* Return 1 if this function uses only the registers that can be
4052 safely renumbered. */
4055 only_leaf_regs_used ()
4057 int i;
4059 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4060 if ((regs_ever_live[i] || global_regs[i])
4061 && ! permitted_reg_in_leaf_functions[i])
4062 return 0;
4064 if (current_function_uses_pic_offset_table
4065 && pic_offset_table_rtx != 0
4066 && GET_CODE (pic_offset_table_rtx) == REG
4067 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4068 return 0;
4070 return 1;
4073 /* Scan all instructions and renumber all registers into those
4074 available in leaf functions. */
4076 static void
4077 leaf_renumber_regs (first)
4078 rtx first;
4080 rtx insn;
4082 /* Renumber only the actual patterns.
4083 The reg-notes can contain frame pointer refs,
4084 and renumbering them could crash, and should not be needed. */
4085 for (insn = first; insn; insn = NEXT_INSN (insn))
4086 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
4087 leaf_renumber_regs_insn (PATTERN (insn));
4088 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4089 if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i')
4090 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4093 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4094 available in leaf functions. */
4096 void
4097 leaf_renumber_regs_insn (in_rtx)
4098 register rtx in_rtx;
4100 register int i, j;
4101 register const char *format_ptr;
4103 if (in_rtx == 0)
4104 return;
4106 /* Renumber all input-registers into output-registers.
4107 renumbered_regs would be 1 for an output-register;
4108 they */
4110 if (GET_CODE (in_rtx) == REG)
4112 int newreg;
4114 /* Don't renumber the same reg twice. */
4115 if (in_rtx->used)
4116 return;
4118 newreg = REGNO (in_rtx);
4119 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4120 to reach here as part of a REG_NOTE. */
4121 if (newreg >= FIRST_PSEUDO_REGISTER)
4123 in_rtx->used = 1;
4124 return;
4126 newreg = LEAF_REG_REMAP (newreg);
4127 if (newreg < 0)
4128 abort ();
4129 regs_ever_live[REGNO (in_rtx)] = 0;
4130 regs_ever_live[newreg] = 1;
4131 REGNO (in_rtx) = newreg;
4132 in_rtx->used = 1;
4135 if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i')
4137 /* Inside a SEQUENCE, we find insns.
4138 Renumber just the patterns of these insns,
4139 just as we do for the top-level insns. */
4140 leaf_renumber_regs_insn (PATTERN (in_rtx));
4141 return;
4144 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4146 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4147 switch (*format_ptr++)
4149 case 'e':
4150 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4151 break;
4153 case 'E':
4154 if (NULL != XVEC (in_rtx, i))
4156 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4157 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4159 break;
4161 case 'S':
4162 case 's':
4163 case '0':
4164 case 'i':
4165 case 'w':
4166 case 'n':
4167 case 'u':
4168 break;
4170 default:
4171 abort ();
4174 #endif