New VECTOR_CST layout
[official-gcc.git] / gcc / fold-const.c
blob2df78637f42d3c71fac0185c2b0c80de40437532
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "params.h"
75 #include "tree-into-ssa.h"
76 #include "md5.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
79 #include "tree-vrp.h"
80 #include "tree-ssanames.h"
81 #include "selftest.h"
82 #include "stringpool.h"
83 #include "attribs.h"
85 /* Nonzero if we are folding constants inside an initializer; zero
86 otherwise. */
87 int folding_initializer = 0;
89 /* The following constants represent a bit based encoding of GCC's
90 comparison operators. This encoding simplifies transformations
91 on relational comparison operators, such as AND and OR. */
92 enum comparison_code {
93 COMPCODE_FALSE = 0,
94 COMPCODE_LT = 1,
95 COMPCODE_EQ = 2,
96 COMPCODE_LE = 3,
97 COMPCODE_GT = 4,
98 COMPCODE_LTGT = 5,
99 COMPCODE_GE = 6,
100 COMPCODE_ORD = 7,
101 COMPCODE_UNORD = 8,
102 COMPCODE_UNLT = 9,
103 COMPCODE_UNEQ = 10,
104 COMPCODE_UNLE = 11,
105 COMPCODE_UNGT = 12,
106 COMPCODE_NE = 13,
107 COMPCODE_UNGE = 14,
108 COMPCODE_TRUE = 15
111 static bool negate_expr_p (tree);
112 static tree negate_expr (tree);
113 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
114 static enum comparison_code comparison_to_compcode (enum tree_code);
115 static enum tree_code compcode_to_comparison (enum comparison_code);
116 static int twoval_comparison_p (tree, tree *, tree *, int *);
117 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
118 static tree optimize_bit_field_compare (location_t, enum tree_code,
119 tree, tree, tree);
120 static int simple_operand_p (const_tree);
121 static bool simple_operand_p_2 (tree);
122 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
123 static tree range_predecessor (tree);
124 static tree range_successor (tree);
125 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
126 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
127 static tree unextend (tree, int, int, tree);
128 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
129 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
130 static tree fold_binary_op_with_conditional_arg (location_t,
131 enum tree_code, tree,
132 tree, tree,
133 tree, tree, int);
134 static tree fold_negate_const (tree, tree);
135 static tree fold_not_const (const_tree, tree);
136 static tree fold_relational_const (enum tree_code, tree, tree, tree);
137 static tree fold_convert_const (enum tree_code, tree, tree);
138 static tree fold_view_convert_expr (tree, tree);
139 static tree fold_negate_expr (location_t, tree);
142 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
143 Otherwise, return LOC. */
145 static location_t
146 expr_location_or (tree t, location_t loc)
148 location_t tloc = EXPR_LOCATION (t);
149 return tloc == UNKNOWN_LOCATION ? loc : tloc;
152 /* Similar to protected_set_expr_location, but never modify x in place,
153 if location can and needs to be set, unshare it. */
155 static inline tree
156 protected_set_expr_location_unshare (tree x, location_t loc)
158 if (CAN_HAVE_LOCATION_P (x)
159 && EXPR_LOCATION (x) != loc
160 && !(TREE_CODE (x) == SAVE_EXPR
161 || TREE_CODE (x) == TARGET_EXPR
162 || TREE_CODE (x) == BIND_EXPR))
164 x = copy_node (x);
165 SET_EXPR_LOCATION (x, loc);
167 return x;
170 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
171 division and returns the quotient. Otherwise returns
172 NULL_TREE. */
174 tree
175 div_if_zero_remainder (const_tree arg1, const_tree arg2)
177 widest_int quo;
179 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
180 SIGNED, &quo))
181 return wide_int_to_tree (TREE_TYPE (arg1), quo);
183 return NULL_TREE;
186 /* This is nonzero if we should defer warnings about undefined
187 overflow. This facility exists because these warnings are a
188 special case. The code to estimate loop iterations does not want
189 to issue any warnings, since it works with expressions which do not
190 occur in user code. Various bits of cleanup code call fold(), but
191 only use the result if it has certain characteristics (e.g., is a
192 constant); that code only wants to issue a warning if the result is
193 used. */
195 static int fold_deferring_overflow_warnings;
197 /* If a warning about undefined overflow is deferred, this is the
198 warning. Note that this may cause us to turn two warnings into
199 one, but that is fine since it is sufficient to only give one
200 warning per expression. */
202 static const char* fold_deferred_overflow_warning;
204 /* If a warning about undefined overflow is deferred, this is the
205 level at which the warning should be emitted. */
207 static enum warn_strict_overflow_code fold_deferred_overflow_code;
209 /* Start deferring overflow warnings. We could use a stack here to
210 permit nested calls, but at present it is not necessary. */
212 void
213 fold_defer_overflow_warnings (void)
215 ++fold_deferring_overflow_warnings;
218 /* Stop deferring overflow warnings. If there is a pending warning,
219 and ISSUE is true, then issue the warning if appropriate. STMT is
220 the statement with which the warning should be associated (used for
221 location information); STMT may be NULL. CODE is the level of the
222 warning--a warn_strict_overflow_code value. This function will use
223 the smaller of CODE and the deferred code when deciding whether to
224 issue the warning. CODE may be zero to mean to always use the
225 deferred code. */
227 void
228 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
230 const char *warnmsg;
231 location_t locus;
233 gcc_assert (fold_deferring_overflow_warnings > 0);
234 --fold_deferring_overflow_warnings;
235 if (fold_deferring_overflow_warnings > 0)
237 if (fold_deferred_overflow_warning != NULL
238 && code != 0
239 && code < (int) fold_deferred_overflow_code)
240 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
241 return;
244 warnmsg = fold_deferred_overflow_warning;
245 fold_deferred_overflow_warning = NULL;
247 if (!issue || warnmsg == NULL)
248 return;
250 if (gimple_no_warning_p (stmt))
251 return;
253 /* Use the smallest code level when deciding to issue the
254 warning. */
255 if (code == 0 || code > (int) fold_deferred_overflow_code)
256 code = fold_deferred_overflow_code;
258 if (!issue_strict_overflow_warning (code))
259 return;
261 if (stmt == NULL)
262 locus = input_location;
263 else
264 locus = gimple_location (stmt);
265 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
268 /* Stop deferring overflow warnings, ignoring any deferred
269 warnings. */
271 void
272 fold_undefer_and_ignore_overflow_warnings (void)
274 fold_undefer_overflow_warnings (false, NULL, 0);
277 /* Whether we are deferring overflow warnings. */
279 bool
280 fold_deferring_overflow_warnings_p (void)
282 return fold_deferring_overflow_warnings > 0;
285 /* This is called when we fold something based on the fact that signed
286 overflow is undefined. */
288 void
289 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
291 if (fold_deferring_overflow_warnings > 0)
293 if (fold_deferred_overflow_warning == NULL
294 || wc < fold_deferred_overflow_code)
296 fold_deferred_overflow_warning = gmsgid;
297 fold_deferred_overflow_code = wc;
300 else if (issue_strict_overflow_warning (wc))
301 warning (OPT_Wstrict_overflow, gmsgid);
304 /* Return true if the built-in mathematical function specified by CODE
305 is odd, i.e. -f(x) == f(-x). */
307 bool
308 negate_mathfn_p (combined_fn fn)
310 switch (fn)
312 CASE_CFN_ASIN:
313 CASE_CFN_ASINH:
314 CASE_CFN_ATAN:
315 CASE_CFN_ATANH:
316 CASE_CFN_CASIN:
317 CASE_CFN_CASINH:
318 CASE_CFN_CATAN:
319 CASE_CFN_CATANH:
320 CASE_CFN_CBRT:
321 CASE_CFN_CPROJ:
322 CASE_CFN_CSIN:
323 CASE_CFN_CSINH:
324 CASE_CFN_CTAN:
325 CASE_CFN_CTANH:
326 CASE_CFN_ERF:
327 CASE_CFN_LLROUND:
328 CASE_CFN_LROUND:
329 CASE_CFN_ROUND:
330 CASE_CFN_SIN:
331 CASE_CFN_SINH:
332 CASE_CFN_TAN:
333 CASE_CFN_TANH:
334 CASE_CFN_TRUNC:
335 return true;
337 CASE_CFN_LLRINT:
338 CASE_CFN_LRINT:
339 CASE_CFN_NEARBYINT:
340 CASE_CFN_RINT:
341 return !flag_rounding_math;
343 default:
344 break;
346 return false;
349 /* Check whether we may negate an integer constant T without causing
350 overflow. */
352 bool
353 may_negate_without_overflow_p (const_tree t)
355 tree type;
357 gcc_assert (TREE_CODE (t) == INTEGER_CST);
359 type = TREE_TYPE (t);
360 if (TYPE_UNSIGNED (type))
361 return false;
363 return !wi::only_sign_bit_p (wi::to_wide (t));
366 /* Determine whether an expression T can be cheaply negated using
367 the function negate_expr without introducing undefined overflow. */
369 static bool
370 negate_expr_p (tree t)
372 tree type;
374 if (t == 0)
375 return false;
377 type = TREE_TYPE (t);
379 STRIP_SIGN_NOPS (t);
380 switch (TREE_CODE (t))
382 case INTEGER_CST:
383 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type))
384 return true;
386 /* Check that -CST will not overflow type. */
387 return may_negate_without_overflow_p (t);
388 case BIT_NOT_EXPR:
389 return (INTEGRAL_TYPE_P (type)
390 && TYPE_OVERFLOW_WRAPS (type));
392 case FIXED_CST:
393 return true;
395 case NEGATE_EXPR:
396 return !TYPE_OVERFLOW_SANITIZED (type);
398 case REAL_CST:
399 /* We want to canonicalize to positive real constants. Pretend
400 that only negative ones can be easily negated. */
401 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
403 case COMPLEX_CST:
404 return negate_expr_p (TREE_REALPART (t))
405 && negate_expr_p (TREE_IMAGPART (t));
407 case VECTOR_CST:
409 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
410 return true;
412 int count = VECTOR_CST_NELTS (t), i;
414 for (i = 0; i < count; i++)
415 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
416 return false;
418 return true;
421 case COMPLEX_EXPR:
422 return negate_expr_p (TREE_OPERAND (t, 0))
423 && negate_expr_p (TREE_OPERAND (t, 1));
425 case CONJ_EXPR:
426 return negate_expr_p (TREE_OPERAND (t, 0));
428 case PLUS_EXPR:
429 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
430 || HONOR_SIGNED_ZEROS (element_mode (type))
431 || (ANY_INTEGRAL_TYPE_P (type)
432 && ! TYPE_OVERFLOW_WRAPS (type)))
433 return false;
434 /* -(A + B) -> (-B) - A. */
435 if (negate_expr_p (TREE_OPERAND (t, 1)))
436 return true;
437 /* -(A + B) -> (-A) - B. */
438 return negate_expr_p (TREE_OPERAND (t, 0));
440 case MINUS_EXPR:
441 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
442 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
443 && !HONOR_SIGNED_ZEROS (element_mode (type))
444 && (! ANY_INTEGRAL_TYPE_P (type)
445 || TYPE_OVERFLOW_WRAPS (type));
447 case MULT_EXPR:
448 if (TYPE_UNSIGNED (type))
449 break;
450 /* INT_MIN/n * n doesn't overflow while negating one operand it does
451 if n is a (negative) power of two. */
452 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
453 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
454 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
455 && (wi::popcount
456 (wi::abs (wi::to_wide (TREE_OPERAND (t, 0))))) != 1)
457 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
458 && (wi::popcount
459 (wi::abs (wi::to_wide (TREE_OPERAND (t, 1))))) != 1)))
460 break;
462 /* Fall through. */
464 case RDIV_EXPR:
465 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
466 return negate_expr_p (TREE_OPERAND (t, 1))
467 || negate_expr_p (TREE_OPERAND (t, 0));
468 break;
470 case TRUNC_DIV_EXPR:
471 case ROUND_DIV_EXPR:
472 case EXACT_DIV_EXPR:
473 if (TYPE_UNSIGNED (type))
474 break;
475 if (negate_expr_p (TREE_OPERAND (t, 0)))
476 return true;
477 /* In general we can't negate B in A / B, because if A is INT_MIN and
478 B is 1, we may turn this into INT_MIN / -1 which is undefined
479 and actually traps on some architectures. */
480 if (! INTEGRAL_TYPE_P (TREE_TYPE (t))
481 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
482 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
483 && ! integer_onep (TREE_OPERAND (t, 1))))
484 return negate_expr_p (TREE_OPERAND (t, 1));
485 break;
487 case NOP_EXPR:
488 /* Negate -((double)float) as (double)(-float). */
489 if (TREE_CODE (type) == REAL_TYPE)
491 tree tem = strip_float_extensions (t);
492 if (tem != t)
493 return negate_expr_p (tem);
495 break;
497 case CALL_EXPR:
498 /* Negate -f(x) as f(-x). */
499 if (negate_mathfn_p (get_call_combined_fn (t)))
500 return negate_expr_p (CALL_EXPR_ARG (t, 0));
501 break;
503 case RSHIFT_EXPR:
504 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
505 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
507 tree op1 = TREE_OPERAND (t, 1);
508 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
509 return true;
511 break;
513 default:
514 break;
516 return false;
519 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
520 simplification is possible.
521 If negate_expr_p would return true for T, NULL_TREE will never be
522 returned. */
524 static tree
525 fold_negate_expr_1 (location_t loc, tree t)
527 tree type = TREE_TYPE (t);
528 tree tem;
530 switch (TREE_CODE (t))
532 /* Convert - (~A) to A + 1. */
533 case BIT_NOT_EXPR:
534 if (INTEGRAL_TYPE_P (type))
535 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
536 build_one_cst (type));
537 break;
539 case INTEGER_CST:
540 tem = fold_negate_const (t, type);
541 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
542 || (ANY_INTEGRAL_TYPE_P (type)
543 && !TYPE_OVERFLOW_TRAPS (type)
544 && TYPE_OVERFLOW_WRAPS (type))
545 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
546 return tem;
547 break;
549 case REAL_CST:
550 tem = fold_negate_const (t, type);
551 return tem;
553 case FIXED_CST:
554 tem = fold_negate_const (t, type);
555 return tem;
557 case COMPLEX_CST:
559 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
560 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
561 if (rpart && ipart)
562 return build_complex (type, rpart, ipart);
564 break;
566 case VECTOR_CST:
568 int count = VECTOR_CST_NELTS (t), i;
570 auto_vec<tree, 32> elts (count);
571 for (i = 0; i < count; i++)
573 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
574 if (elt == NULL_TREE)
575 return NULL_TREE;
576 elts.quick_push (elt);
579 return build_vector (type, elts);
582 case COMPLEX_EXPR:
583 if (negate_expr_p (t))
584 return fold_build2_loc (loc, COMPLEX_EXPR, type,
585 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
586 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
587 break;
589 case CONJ_EXPR:
590 if (negate_expr_p (t))
591 return fold_build1_loc (loc, CONJ_EXPR, type,
592 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
593 break;
595 case NEGATE_EXPR:
596 if (!TYPE_OVERFLOW_SANITIZED (type))
597 return TREE_OPERAND (t, 0);
598 break;
600 case PLUS_EXPR:
601 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
602 && !HONOR_SIGNED_ZEROS (element_mode (type)))
604 /* -(A + B) -> (-B) - A. */
605 if (negate_expr_p (TREE_OPERAND (t, 1)))
607 tem = negate_expr (TREE_OPERAND (t, 1));
608 return fold_build2_loc (loc, MINUS_EXPR, type,
609 tem, TREE_OPERAND (t, 0));
612 /* -(A + B) -> (-A) - B. */
613 if (negate_expr_p (TREE_OPERAND (t, 0)))
615 tem = negate_expr (TREE_OPERAND (t, 0));
616 return fold_build2_loc (loc, MINUS_EXPR, type,
617 tem, TREE_OPERAND (t, 1));
620 break;
622 case MINUS_EXPR:
623 /* - (A - B) -> B - A */
624 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
625 && !HONOR_SIGNED_ZEROS (element_mode (type)))
626 return fold_build2_loc (loc, MINUS_EXPR, type,
627 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
628 break;
630 case MULT_EXPR:
631 if (TYPE_UNSIGNED (type))
632 break;
634 /* Fall through. */
636 case RDIV_EXPR:
637 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
639 tem = TREE_OPERAND (t, 1);
640 if (negate_expr_p (tem))
641 return fold_build2_loc (loc, TREE_CODE (t), type,
642 TREE_OPERAND (t, 0), negate_expr (tem));
643 tem = TREE_OPERAND (t, 0);
644 if (negate_expr_p (tem))
645 return fold_build2_loc (loc, TREE_CODE (t), type,
646 negate_expr (tem), TREE_OPERAND (t, 1));
648 break;
650 case TRUNC_DIV_EXPR:
651 case ROUND_DIV_EXPR:
652 case EXACT_DIV_EXPR:
653 if (TYPE_UNSIGNED (type))
654 break;
655 if (negate_expr_p (TREE_OPERAND (t, 0)))
656 return fold_build2_loc (loc, TREE_CODE (t), type,
657 negate_expr (TREE_OPERAND (t, 0)),
658 TREE_OPERAND (t, 1));
659 /* In general we can't negate B in A / B, because if A is INT_MIN and
660 B is 1, we may turn this into INT_MIN / -1 which is undefined
661 and actually traps on some architectures. */
662 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t))
663 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
664 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
665 && ! integer_onep (TREE_OPERAND (t, 1))))
666 && negate_expr_p (TREE_OPERAND (t, 1)))
667 return fold_build2_loc (loc, TREE_CODE (t), type,
668 TREE_OPERAND (t, 0),
669 negate_expr (TREE_OPERAND (t, 1)));
670 break;
672 case NOP_EXPR:
673 /* Convert -((double)float) into (double)(-float). */
674 if (TREE_CODE (type) == REAL_TYPE)
676 tem = strip_float_extensions (t);
677 if (tem != t && negate_expr_p (tem))
678 return fold_convert_loc (loc, type, negate_expr (tem));
680 break;
682 case CALL_EXPR:
683 /* Negate -f(x) as f(-x). */
684 if (negate_mathfn_p (get_call_combined_fn (t))
685 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
687 tree fndecl, arg;
689 fndecl = get_callee_fndecl (t);
690 arg = negate_expr (CALL_EXPR_ARG (t, 0));
691 return build_call_expr_loc (loc, fndecl, 1, arg);
693 break;
695 case RSHIFT_EXPR:
696 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
697 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
699 tree op1 = TREE_OPERAND (t, 1);
700 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
702 tree ntype = TYPE_UNSIGNED (type)
703 ? signed_type_for (type)
704 : unsigned_type_for (type);
705 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
706 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
707 return fold_convert_loc (loc, type, temp);
710 break;
712 default:
713 break;
716 return NULL_TREE;
719 /* A wrapper for fold_negate_expr_1. */
721 static tree
722 fold_negate_expr (location_t loc, tree t)
724 tree type = TREE_TYPE (t);
725 STRIP_SIGN_NOPS (t);
726 tree tem = fold_negate_expr_1 (loc, t);
727 if (tem == NULL_TREE)
728 return NULL_TREE;
729 return fold_convert_loc (loc, type, tem);
732 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
733 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
734 return NULL_TREE. */
736 static tree
737 negate_expr (tree t)
739 tree type, tem;
740 location_t loc;
742 if (t == NULL_TREE)
743 return NULL_TREE;
745 loc = EXPR_LOCATION (t);
746 type = TREE_TYPE (t);
747 STRIP_SIGN_NOPS (t);
749 tem = fold_negate_expr (loc, t);
750 if (!tem)
751 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
752 return fold_convert_loc (loc, type, tem);
755 /* Split a tree IN into a constant, literal and variable parts that could be
756 combined with CODE to make IN. "constant" means an expression with
757 TREE_CONSTANT but that isn't an actual constant. CODE must be a
758 commutative arithmetic operation. Store the constant part into *CONP,
759 the literal in *LITP and return the variable part. If a part isn't
760 present, set it to null. If the tree does not decompose in this way,
761 return the entire tree as the variable part and the other parts as null.
763 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
764 case, we negate an operand that was subtracted. Except if it is a
765 literal for which we use *MINUS_LITP instead.
767 If NEGATE_P is true, we are negating all of IN, again except a literal
768 for which we use *MINUS_LITP instead. If a variable part is of pointer
769 type, it is negated after converting to TYPE. This prevents us from
770 generating illegal MINUS pointer expression. LOC is the location of
771 the converted variable part.
773 If IN is itself a literal or constant, return it as appropriate.
775 Note that we do not guarantee that any of the three values will be the
776 same type as IN, but they will have the same signedness and mode. */
778 static tree
779 split_tree (tree in, tree type, enum tree_code code,
780 tree *minus_varp, tree *conp, tree *minus_conp,
781 tree *litp, tree *minus_litp, int negate_p)
783 tree var = 0;
784 *minus_varp = 0;
785 *conp = 0;
786 *minus_conp = 0;
787 *litp = 0;
788 *minus_litp = 0;
790 /* Strip any conversions that don't change the machine mode or signedness. */
791 STRIP_SIGN_NOPS (in);
793 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
794 || TREE_CODE (in) == FIXED_CST)
795 *litp = in;
796 else if (TREE_CODE (in) == code
797 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
798 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
799 /* We can associate addition and subtraction together (even
800 though the C standard doesn't say so) for integers because
801 the value is not affected. For reals, the value might be
802 affected, so we can't. */
803 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
804 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
805 || (code == MINUS_EXPR
806 && (TREE_CODE (in) == PLUS_EXPR
807 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
809 tree op0 = TREE_OPERAND (in, 0);
810 tree op1 = TREE_OPERAND (in, 1);
811 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
812 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
814 /* First see if either of the operands is a literal, then a constant. */
815 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
816 || TREE_CODE (op0) == FIXED_CST)
817 *litp = op0, op0 = 0;
818 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
819 || TREE_CODE (op1) == FIXED_CST)
820 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
822 if (op0 != 0 && TREE_CONSTANT (op0))
823 *conp = op0, op0 = 0;
824 else if (op1 != 0 && TREE_CONSTANT (op1))
825 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
827 /* If we haven't dealt with either operand, this is not a case we can
828 decompose. Otherwise, VAR is either of the ones remaining, if any. */
829 if (op0 != 0 && op1 != 0)
830 var = in;
831 else if (op0 != 0)
832 var = op0;
833 else
834 var = op1, neg_var_p = neg1_p;
836 /* Now do any needed negations. */
837 if (neg_litp_p)
838 *minus_litp = *litp, *litp = 0;
839 if (neg_conp_p && *conp)
840 *minus_conp = *conp, *conp = 0;
841 if (neg_var_p && var)
842 *minus_varp = var, var = 0;
844 else if (TREE_CONSTANT (in))
845 *conp = in;
846 else if (TREE_CODE (in) == BIT_NOT_EXPR
847 && code == PLUS_EXPR)
849 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
850 when IN is constant. */
851 *litp = build_minus_one_cst (type);
852 *minus_varp = TREE_OPERAND (in, 0);
854 else
855 var = in;
857 if (negate_p)
859 if (*litp)
860 *minus_litp = *litp, *litp = 0;
861 else if (*minus_litp)
862 *litp = *minus_litp, *minus_litp = 0;
863 if (*conp)
864 *minus_conp = *conp, *conp = 0;
865 else if (*minus_conp)
866 *conp = *minus_conp, *minus_conp = 0;
867 if (var)
868 *minus_varp = var, var = 0;
869 else if (*minus_varp)
870 var = *minus_varp, *minus_varp = 0;
873 if (*litp
874 && TREE_OVERFLOW_P (*litp))
875 *litp = drop_tree_overflow (*litp);
876 if (*minus_litp
877 && TREE_OVERFLOW_P (*minus_litp))
878 *minus_litp = drop_tree_overflow (*minus_litp);
880 return var;
883 /* Re-associate trees split by the above function. T1 and T2 are
884 either expressions to associate or null. Return the new
885 expression, if any. LOC is the location of the new expression. If
886 we build an operation, do it in TYPE and with CODE. */
888 static tree
889 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
891 if (t1 == 0)
893 gcc_assert (t2 == 0 || code != MINUS_EXPR);
894 return t2;
896 else if (t2 == 0)
897 return t1;
899 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
900 try to fold this since we will have infinite recursion. But do
901 deal with any NEGATE_EXPRs. */
902 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
903 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR
904 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
906 if (code == PLUS_EXPR)
908 if (TREE_CODE (t1) == NEGATE_EXPR)
909 return build2_loc (loc, MINUS_EXPR, type,
910 fold_convert_loc (loc, type, t2),
911 fold_convert_loc (loc, type,
912 TREE_OPERAND (t1, 0)));
913 else if (TREE_CODE (t2) == NEGATE_EXPR)
914 return build2_loc (loc, MINUS_EXPR, type,
915 fold_convert_loc (loc, type, t1),
916 fold_convert_loc (loc, type,
917 TREE_OPERAND (t2, 0)));
918 else if (integer_zerop (t2))
919 return fold_convert_loc (loc, type, t1);
921 else if (code == MINUS_EXPR)
923 if (integer_zerop (t2))
924 return fold_convert_loc (loc, type, t1);
927 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
928 fold_convert_loc (loc, type, t2));
931 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
932 fold_convert_loc (loc, type, t2));
935 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
936 for use in int_const_binop, size_binop and size_diffop. */
938 static bool
939 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
941 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
942 return false;
943 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
944 return false;
946 switch (code)
948 case LSHIFT_EXPR:
949 case RSHIFT_EXPR:
950 case LROTATE_EXPR:
951 case RROTATE_EXPR:
952 return true;
954 default:
955 break;
958 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
959 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
960 && TYPE_MODE (type1) == TYPE_MODE (type2);
964 /* Combine two integer constants PARG1 and PARG2 under operation CODE
965 to produce a new constant. Return NULL_TREE if we don't know how
966 to evaluate CODE at compile-time. */
968 static tree
969 int_const_binop_1 (enum tree_code code, const_tree parg1, const_tree parg2,
970 int overflowable)
972 wide_int res;
973 tree t;
974 tree type = TREE_TYPE (parg1);
975 signop sign = TYPE_SIGN (type);
976 bool overflow = false;
978 wi::tree_to_wide_ref arg1 = wi::to_wide (parg1);
979 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type));
981 switch (code)
983 case BIT_IOR_EXPR:
984 res = wi::bit_or (arg1, arg2);
985 break;
987 case BIT_XOR_EXPR:
988 res = wi::bit_xor (arg1, arg2);
989 break;
991 case BIT_AND_EXPR:
992 res = wi::bit_and (arg1, arg2);
993 break;
995 case RSHIFT_EXPR:
996 case LSHIFT_EXPR:
997 if (wi::neg_p (arg2))
999 arg2 = -arg2;
1000 if (code == RSHIFT_EXPR)
1001 code = LSHIFT_EXPR;
1002 else
1003 code = RSHIFT_EXPR;
1006 if (code == RSHIFT_EXPR)
1007 /* It's unclear from the C standard whether shifts can overflow.
1008 The following code ignores overflow; perhaps a C standard
1009 interpretation ruling is needed. */
1010 res = wi::rshift (arg1, arg2, sign);
1011 else
1012 res = wi::lshift (arg1, arg2);
1013 break;
1015 case RROTATE_EXPR:
1016 case LROTATE_EXPR:
1017 if (wi::neg_p (arg2))
1019 arg2 = -arg2;
1020 if (code == RROTATE_EXPR)
1021 code = LROTATE_EXPR;
1022 else
1023 code = RROTATE_EXPR;
1026 if (code == RROTATE_EXPR)
1027 res = wi::rrotate (arg1, arg2);
1028 else
1029 res = wi::lrotate (arg1, arg2);
1030 break;
1032 case PLUS_EXPR:
1033 res = wi::add (arg1, arg2, sign, &overflow);
1034 break;
1036 case MINUS_EXPR:
1037 res = wi::sub (arg1, arg2, sign, &overflow);
1038 break;
1040 case MULT_EXPR:
1041 res = wi::mul (arg1, arg2, sign, &overflow);
1042 break;
1044 case MULT_HIGHPART_EXPR:
1045 res = wi::mul_high (arg1, arg2, sign);
1046 break;
1048 case TRUNC_DIV_EXPR:
1049 case EXACT_DIV_EXPR:
1050 if (arg2 == 0)
1051 return NULL_TREE;
1052 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1053 break;
1055 case FLOOR_DIV_EXPR:
1056 if (arg2 == 0)
1057 return NULL_TREE;
1058 res = wi::div_floor (arg1, arg2, sign, &overflow);
1059 break;
1061 case CEIL_DIV_EXPR:
1062 if (arg2 == 0)
1063 return NULL_TREE;
1064 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1065 break;
1067 case ROUND_DIV_EXPR:
1068 if (arg2 == 0)
1069 return NULL_TREE;
1070 res = wi::div_round (arg1, arg2, sign, &overflow);
1071 break;
1073 case TRUNC_MOD_EXPR:
1074 if (arg2 == 0)
1075 return NULL_TREE;
1076 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1077 break;
1079 case FLOOR_MOD_EXPR:
1080 if (arg2 == 0)
1081 return NULL_TREE;
1082 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1083 break;
1085 case CEIL_MOD_EXPR:
1086 if (arg2 == 0)
1087 return NULL_TREE;
1088 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1089 break;
1091 case ROUND_MOD_EXPR:
1092 if (arg2 == 0)
1093 return NULL_TREE;
1094 res = wi::mod_round (arg1, arg2, sign, &overflow);
1095 break;
1097 case MIN_EXPR:
1098 res = wi::min (arg1, arg2, sign);
1099 break;
1101 case MAX_EXPR:
1102 res = wi::max (arg1, arg2, sign);
1103 break;
1105 default:
1106 return NULL_TREE;
1109 t = force_fit_type (type, res, overflowable,
1110 (((sign == SIGNED || overflowable == -1)
1111 && overflow)
1112 | TREE_OVERFLOW (parg1) | TREE_OVERFLOW (parg2)));
1114 return t;
1117 tree
1118 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1120 return int_const_binop_1 (code, arg1, arg2, 1);
1123 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1124 constant. We assume ARG1 and ARG2 have the same data type, or at least
1125 are the same kind of constant and the same machine mode. Return zero if
1126 combining the constants is not allowed in the current operating mode. */
1128 static tree
1129 const_binop (enum tree_code code, tree arg1, tree arg2)
1131 /* Sanity check for the recursive cases. */
1132 if (!arg1 || !arg2)
1133 return NULL_TREE;
1135 STRIP_NOPS (arg1);
1136 STRIP_NOPS (arg2);
1138 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1140 if (code == POINTER_PLUS_EXPR)
1141 return int_const_binop (PLUS_EXPR,
1142 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1144 return int_const_binop (code, arg1, arg2);
1147 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1149 machine_mode mode;
1150 REAL_VALUE_TYPE d1;
1151 REAL_VALUE_TYPE d2;
1152 REAL_VALUE_TYPE value;
1153 REAL_VALUE_TYPE result;
1154 bool inexact;
1155 tree t, type;
1157 /* The following codes are handled by real_arithmetic. */
1158 switch (code)
1160 case PLUS_EXPR:
1161 case MINUS_EXPR:
1162 case MULT_EXPR:
1163 case RDIV_EXPR:
1164 case MIN_EXPR:
1165 case MAX_EXPR:
1166 break;
1168 default:
1169 return NULL_TREE;
1172 d1 = TREE_REAL_CST (arg1);
1173 d2 = TREE_REAL_CST (arg2);
1175 type = TREE_TYPE (arg1);
1176 mode = TYPE_MODE (type);
1178 /* Don't perform operation if we honor signaling NaNs and
1179 either operand is a signaling NaN. */
1180 if (HONOR_SNANS (mode)
1181 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1182 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1183 return NULL_TREE;
1185 /* Don't perform operation if it would raise a division
1186 by zero exception. */
1187 if (code == RDIV_EXPR
1188 && real_equal (&d2, &dconst0)
1189 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1190 return NULL_TREE;
1192 /* If either operand is a NaN, just return it. Otherwise, set up
1193 for floating-point trap; we return an overflow. */
1194 if (REAL_VALUE_ISNAN (d1))
1196 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1197 is off. */
1198 d1.signalling = 0;
1199 t = build_real (type, d1);
1200 return t;
1202 else if (REAL_VALUE_ISNAN (d2))
1204 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1205 is off. */
1206 d2.signalling = 0;
1207 t = build_real (type, d2);
1208 return t;
1211 inexact = real_arithmetic (&value, code, &d1, &d2);
1212 real_convert (&result, mode, &value);
1214 /* Don't constant fold this floating point operation if
1215 the result has overflowed and flag_trapping_math. */
1216 if (flag_trapping_math
1217 && MODE_HAS_INFINITIES (mode)
1218 && REAL_VALUE_ISINF (result)
1219 && !REAL_VALUE_ISINF (d1)
1220 && !REAL_VALUE_ISINF (d2))
1221 return NULL_TREE;
1223 /* Don't constant fold this floating point operation if the
1224 result may dependent upon the run-time rounding mode and
1225 flag_rounding_math is set, or if GCC's software emulation
1226 is unable to accurately represent the result. */
1227 if ((flag_rounding_math
1228 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1229 && (inexact || !real_identical (&result, &value)))
1230 return NULL_TREE;
1232 t = build_real (type, result);
1234 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1235 return t;
1238 if (TREE_CODE (arg1) == FIXED_CST)
1240 FIXED_VALUE_TYPE f1;
1241 FIXED_VALUE_TYPE f2;
1242 FIXED_VALUE_TYPE result;
1243 tree t, type;
1244 int sat_p;
1245 bool overflow_p;
1247 /* The following codes are handled by fixed_arithmetic. */
1248 switch (code)
1250 case PLUS_EXPR:
1251 case MINUS_EXPR:
1252 case MULT_EXPR:
1253 case TRUNC_DIV_EXPR:
1254 if (TREE_CODE (arg2) != FIXED_CST)
1255 return NULL_TREE;
1256 f2 = TREE_FIXED_CST (arg2);
1257 break;
1259 case LSHIFT_EXPR:
1260 case RSHIFT_EXPR:
1262 if (TREE_CODE (arg2) != INTEGER_CST)
1263 return NULL_TREE;
1264 wi::tree_to_wide_ref w2 = wi::to_wide (arg2);
1265 f2.data.high = w2.elt (1);
1266 f2.data.low = w2.ulow ();
1267 f2.mode = SImode;
1269 break;
1271 default:
1272 return NULL_TREE;
1275 f1 = TREE_FIXED_CST (arg1);
1276 type = TREE_TYPE (arg1);
1277 sat_p = TYPE_SATURATING (type);
1278 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1279 t = build_fixed (type, result);
1280 /* Propagate overflow flags. */
1281 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1282 TREE_OVERFLOW (t) = 1;
1283 return t;
1286 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1288 tree type = TREE_TYPE (arg1);
1289 tree r1 = TREE_REALPART (arg1);
1290 tree i1 = TREE_IMAGPART (arg1);
1291 tree r2 = TREE_REALPART (arg2);
1292 tree i2 = TREE_IMAGPART (arg2);
1293 tree real, imag;
1295 switch (code)
1297 case PLUS_EXPR:
1298 case MINUS_EXPR:
1299 real = const_binop (code, r1, r2);
1300 imag = const_binop (code, i1, i2);
1301 break;
1303 case MULT_EXPR:
1304 if (COMPLEX_FLOAT_TYPE_P (type))
1305 return do_mpc_arg2 (arg1, arg2, type,
1306 /* do_nonfinite= */ folding_initializer,
1307 mpc_mul);
1309 real = const_binop (MINUS_EXPR,
1310 const_binop (MULT_EXPR, r1, r2),
1311 const_binop (MULT_EXPR, i1, i2));
1312 imag = const_binop (PLUS_EXPR,
1313 const_binop (MULT_EXPR, r1, i2),
1314 const_binop (MULT_EXPR, i1, r2));
1315 break;
1317 case RDIV_EXPR:
1318 if (COMPLEX_FLOAT_TYPE_P (type))
1319 return do_mpc_arg2 (arg1, arg2, type,
1320 /* do_nonfinite= */ folding_initializer,
1321 mpc_div);
1322 /* Fallthru. */
1323 case TRUNC_DIV_EXPR:
1324 case CEIL_DIV_EXPR:
1325 case FLOOR_DIV_EXPR:
1326 case ROUND_DIV_EXPR:
1327 if (flag_complex_method == 0)
1329 /* Keep this algorithm in sync with
1330 tree-complex.c:expand_complex_div_straight().
1332 Expand complex division to scalars, straightforward algorithm.
1333 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1334 t = br*br + bi*bi
1336 tree magsquared
1337 = const_binop (PLUS_EXPR,
1338 const_binop (MULT_EXPR, r2, r2),
1339 const_binop (MULT_EXPR, i2, i2));
1340 tree t1
1341 = const_binop (PLUS_EXPR,
1342 const_binop (MULT_EXPR, r1, r2),
1343 const_binop (MULT_EXPR, i1, i2));
1344 tree t2
1345 = const_binop (MINUS_EXPR,
1346 const_binop (MULT_EXPR, i1, r2),
1347 const_binop (MULT_EXPR, r1, i2));
1349 real = const_binop (code, t1, magsquared);
1350 imag = const_binop (code, t2, magsquared);
1352 else
1354 /* Keep this algorithm in sync with
1355 tree-complex.c:expand_complex_div_wide().
1357 Expand complex division to scalars, modified algorithm to minimize
1358 overflow with wide input ranges. */
1359 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1360 fold_abs_const (r2, TREE_TYPE (type)),
1361 fold_abs_const (i2, TREE_TYPE (type)));
1363 if (integer_nonzerop (compare))
1365 /* In the TRUE branch, we compute
1366 ratio = br/bi;
1367 div = (br * ratio) + bi;
1368 tr = (ar * ratio) + ai;
1369 ti = (ai * ratio) - ar;
1370 tr = tr / div;
1371 ti = ti / div; */
1372 tree ratio = const_binop (code, r2, i2);
1373 tree div = const_binop (PLUS_EXPR, i2,
1374 const_binop (MULT_EXPR, r2, ratio));
1375 real = const_binop (MULT_EXPR, r1, ratio);
1376 real = const_binop (PLUS_EXPR, real, i1);
1377 real = const_binop (code, real, div);
1379 imag = const_binop (MULT_EXPR, i1, ratio);
1380 imag = const_binop (MINUS_EXPR, imag, r1);
1381 imag = const_binop (code, imag, div);
1383 else
1385 /* In the FALSE branch, we compute
1386 ratio = d/c;
1387 divisor = (d * ratio) + c;
1388 tr = (b * ratio) + a;
1389 ti = b - (a * ratio);
1390 tr = tr / div;
1391 ti = ti / div; */
1392 tree ratio = const_binop (code, i2, r2);
1393 tree div = const_binop (PLUS_EXPR, r2,
1394 const_binop (MULT_EXPR, i2, ratio));
1396 real = const_binop (MULT_EXPR, i1, ratio);
1397 real = const_binop (PLUS_EXPR, real, r1);
1398 real = const_binop (code, real, div);
1400 imag = const_binop (MULT_EXPR, r1, ratio);
1401 imag = const_binop (MINUS_EXPR, i1, imag);
1402 imag = const_binop (code, imag, div);
1405 break;
1407 default:
1408 return NULL_TREE;
1411 if (real && imag)
1412 return build_complex (type, real, imag);
1415 if (TREE_CODE (arg1) == VECTOR_CST
1416 && TREE_CODE (arg2) == VECTOR_CST)
1418 tree type = TREE_TYPE (arg1);
1419 int count = VECTOR_CST_NELTS (arg1), i;
1421 auto_vec<tree, 32> elts (count);
1422 for (i = 0; i < count; i++)
1424 tree elem1 = VECTOR_CST_ELT (arg1, i);
1425 tree elem2 = VECTOR_CST_ELT (arg2, i);
1427 tree elt = const_binop (code, elem1, elem2);
1429 /* It is possible that const_binop cannot handle the given
1430 code and return NULL_TREE */
1431 if (elt == NULL_TREE)
1432 return NULL_TREE;
1433 elts.quick_push (elt);
1436 return build_vector (type, elts);
1439 /* Shifts allow a scalar offset for a vector. */
1440 if (TREE_CODE (arg1) == VECTOR_CST
1441 && TREE_CODE (arg2) == INTEGER_CST)
1443 tree type = TREE_TYPE (arg1);
1444 int count = VECTOR_CST_NELTS (arg1), i;
1446 auto_vec<tree, 32> elts (count);
1447 for (i = 0; i < count; i++)
1449 tree elem1 = VECTOR_CST_ELT (arg1, i);
1451 tree elt = const_binop (code, elem1, arg2);
1453 /* It is possible that const_binop cannot handle the given
1454 code and return NULL_TREE. */
1455 if (elt == NULL_TREE)
1456 return NULL_TREE;
1457 elts.quick_push (elt);
1460 return build_vector (type, elts);
1462 return NULL_TREE;
1465 /* Overload that adds a TYPE parameter to be able to dispatch
1466 to fold_relational_const. */
1468 tree
1469 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1471 if (TREE_CODE_CLASS (code) == tcc_comparison)
1472 return fold_relational_const (code, type, arg1, arg2);
1474 /* ??? Until we make the const_binop worker take the type of the
1475 result as argument put those cases that need it here. */
1476 switch (code)
1478 case COMPLEX_EXPR:
1479 if ((TREE_CODE (arg1) == REAL_CST
1480 && TREE_CODE (arg2) == REAL_CST)
1481 || (TREE_CODE (arg1) == INTEGER_CST
1482 && TREE_CODE (arg2) == INTEGER_CST))
1483 return build_complex (type, arg1, arg2);
1484 return NULL_TREE;
1486 case POINTER_DIFF_EXPR:
1487 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1489 offset_int res = wi::sub (wi::to_offset (arg1),
1490 wi::to_offset (arg2));
1491 return force_fit_type (type, res, 1,
1492 TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1494 return NULL_TREE;
1496 case VEC_PACK_TRUNC_EXPR:
1497 case VEC_PACK_FIX_TRUNC_EXPR:
1499 unsigned int out_nelts, in_nelts, i;
1501 if (TREE_CODE (arg1) != VECTOR_CST
1502 || TREE_CODE (arg2) != VECTOR_CST)
1503 return NULL_TREE;
1505 in_nelts = VECTOR_CST_NELTS (arg1);
1506 out_nelts = in_nelts * 2;
1507 gcc_assert (in_nelts == VECTOR_CST_NELTS (arg2)
1508 && out_nelts == TYPE_VECTOR_SUBPARTS (type));
1510 auto_vec<tree, 32> elts (out_nelts);
1511 for (i = 0; i < out_nelts; i++)
1513 tree elt = (i < in_nelts
1514 ? VECTOR_CST_ELT (arg1, i)
1515 : VECTOR_CST_ELT (arg2, i - in_nelts));
1516 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1517 ? NOP_EXPR : FIX_TRUNC_EXPR,
1518 TREE_TYPE (type), elt);
1519 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1520 return NULL_TREE;
1521 elts.quick_push (elt);
1524 return build_vector (type, elts);
1527 case VEC_WIDEN_MULT_LO_EXPR:
1528 case VEC_WIDEN_MULT_HI_EXPR:
1529 case VEC_WIDEN_MULT_EVEN_EXPR:
1530 case VEC_WIDEN_MULT_ODD_EXPR:
1532 unsigned int out_nelts, in_nelts, out, ofs, scale;
1534 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1535 return NULL_TREE;
1537 in_nelts = VECTOR_CST_NELTS (arg1);
1538 out_nelts = in_nelts / 2;
1539 gcc_assert (in_nelts == VECTOR_CST_NELTS (arg2)
1540 && out_nelts == TYPE_VECTOR_SUBPARTS (type));
1542 if (code == VEC_WIDEN_MULT_LO_EXPR)
1543 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0;
1544 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1545 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts;
1546 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1547 scale = 1, ofs = 0;
1548 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1549 scale = 1, ofs = 1;
1551 auto_vec<tree, 32> elts (out_nelts);
1552 for (out = 0; out < out_nelts; out++)
1554 unsigned int in = (out << scale) + ofs;
1555 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1556 VECTOR_CST_ELT (arg1, in));
1557 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1558 VECTOR_CST_ELT (arg2, in));
1560 if (t1 == NULL_TREE || t2 == NULL_TREE)
1561 return NULL_TREE;
1562 tree elt = const_binop (MULT_EXPR, t1, t2);
1563 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1564 return NULL_TREE;
1565 elts.quick_push (elt);
1568 return build_vector (type, elts);
1571 default:;
1574 if (TREE_CODE_CLASS (code) != tcc_binary)
1575 return NULL_TREE;
1577 /* Make sure type and arg0 have the same saturating flag. */
1578 gcc_checking_assert (TYPE_SATURATING (type)
1579 == TYPE_SATURATING (TREE_TYPE (arg1)));
1581 return const_binop (code, arg1, arg2);
1584 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1585 Return zero if computing the constants is not possible. */
1587 tree
1588 const_unop (enum tree_code code, tree type, tree arg0)
1590 /* Don't perform the operation, other than NEGATE and ABS, if
1591 flag_signaling_nans is on and the operand is a signaling NaN. */
1592 if (TREE_CODE (arg0) == REAL_CST
1593 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1594 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1595 && code != NEGATE_EXPR
1596 && code != ABS_EXPR)
1597 return NULL_TREE;
1599 switch (code)
1601 CASE_CONVERT:
1602 case FLOAT_EXPR:
1603 case FIX_TRUNC_EXPR:
1604 case FIXED_CONVERT_EXPR:
1605 return fold_convert_const (code, type, arg0);
1607 case ADDR_SPACE_CONVERT_EXPR:
1608 /* If the source address is 0, and the source address space
1609 cannot have a valid object at 0, fold to dest type null. */
1610 if (integer_zerop (arg0)
1611 && !(targetm.addr_space.zero_address_valid
1612 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1613 return fold_convert_const (code, type, arg0);
1614 break;
1616 case VIEW_CONVERT_EXPR:
1617 return fold_view_convert_expr (type, arg0);
1619 case NEGATE_EXPR:
1621 /* Can't call fold_negate_const directly here as that doesn't
1622 handle all cases and we might not be able to negate some
1623 constants. */
1624 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1625 if (tem && CONSTANT_CLASS_P (tem))
1626 return tem;
1627 break;
1630 case ABS_EXPR:
1631 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1632 return fold_abs_const (arg0, type);
1633 break;
1635 case CONJ_EXPR:
1636 if (TREE_CODE (arg0) == COMPLEX_CST)
1638 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1639 TREE_TYPE (type));
1640 return build_complex (type, TREE_REALPART (arg0), ipart);
1642 break;
1644 case BIT_NOT_EXPR:
1645 if (TREE_CODE (arg0) == INTEGER_CST)
1646 return fold_not_const (arg0, type);
1647 /* Perform BIT_NOT_EXPR on each element individually. */
1648 else if (TREE_CODE (arg0) == VECTOR_CST)
1650 tree elem;
1651 unsigned count = VECTOR_CST_NELTS (arg0), i;
1653 auto_vec<tree, 32> elements (count);
1654 for (i = 0; i < count; i++)
1656 elem = VECTOR_CST_ELT (arg0, i);
1657 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1658 if (elem == NULL_TREE)
1659 break;
1660 elements.quick_push (elem);
1662 if (i == count)
1663 return build_vector (type, elements);
1665 break;
1667 case TRUTH_NOT_EXPR:
1668 if (TREE_CODE (arg0) == INTEGER_CST)
1669 return constant_boolean_node (integer_zerop (arg0), type);
1670 break;
1672 case REALPART_EXPR:
1673 if (TREE_CODE (arg0) == COMPLEX_CST)
1674 return fold_convert (type, TREE_REALPART (arg0));
1675 break;
1677 case IMAGPART_EXPR:
1678 if (TREE_CODE (arg0) == COMPLEX_CST)
1679 return fold_convert (type, TREE_IMAGPART (arg0));
1680 break;
1682 case VEC_UNPACK_LO_EXPR:
1683 case VEC_UNPACK_HI_EXPR:
1684 case VEC_UNPACK_FLOAT_LO_EXPR:
1685 case VEC_UNPACK_FLOAT_HI_EXPR:
1687 unsigned int out_nelts, in_nelts, i;
1688 enum tree_code subcode;
1690 if (TREE_CODE (arg0) != VECTOR_CST)
1691 return NULL_TREE;
1693 in_nelts = VECTOR_CST_NELTS (arg0);
1694 out_nelts = in_nelts / 2;
1695 gcc_assert (out_nelts == TYPE_VECTOR_SUBPARTS (type));
1697 unsigned int offset = 0;
1698 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1699 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1700 offset = out_nelts;
1702 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1703 subcode = NOP_EXPR;
1704 else
1705 subcode = FLOAT_EXPR;
1707 auto_vec<tree, 32> elts (out_nelts);
1708 for (i = 0; i < out_nelts; i++)
1710 tree elt = fold_convert_const (subcode, TREE_TYPE (type),
1711 VECTOR_CST_ELT (arg0, i + offset));
1712 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1713 return NULL_TREE;
1714 elts.quick_push (elt);
1717 return build_vector (type, elts);
1720 default:
1721 break;
1724 return NULL_TREE;
1727 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1728 indicates which particular sizetype to create. */
1730 tree
1731 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1733 return build_int_cst (sizetype_tab[(int) kind], number);
1736 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1737 is a tree code. The type of the result is taken from the operands.
1738 Both must be equivalent integer types, ala int_binop_types_match_p.
1739 If the operands are constant, so is the result. */
1741 tree
1742 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1744 tree type = TREE_TYPE (arg0);
1746 if (arg0 == error_mark_node || arg1 == error_mark_node)
1747 return error_mark_node;
1749 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1750 TREE_TYPE (arg1)));
1752 /* Handle the special case of two integer constants faster. */
1753 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1755 /* And some specific cases even faster than that. */
1756 if (code == PLUS_EXPR)
1758 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1759 return arg1;
1760 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1761 return arg0;
1763 else if (code == MINUS_EXPR)
1765 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1766 return arg0;
1768 else if (code == MULT_EXPR)
1770 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1771 return arg1;
1774 /* Handle general case of two integer constants. For sizetype
1775 constant calculations we always want to know about overflow,
1776 even in the unsigned case. */
1777 return int_const_binop_1 (code, arg0, arg1, -1);
1780 return fold_build2_loc (loc, code, type, arg0, arg1);
1783 /* Given two values, either both of sizetype or both of bitsizetype,
1784 compute the difference between the two values. Return the value
1785 in signed type corresponding to the type of the operands. */
1787 tree
1788 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1790 tree type = TREE_TYPE (arg0);
1791 tree ctype;
1793 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1794 TREE_TYPE (arg1)));
1796 /* If the type is already signed, just do the simple thing. */
1797 if (!TYPE_UNSIGNED (type))
1798 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1800 if (type == sizetype)
1801 ctype = ssizetype;
1802 else if (type == bitsizetype)
1803 ctype = sbitsizetype;
1804 else
1805 ctype = signed_type_for (type);
1807 /* If either operand is not a constant, do the conversions to the signed
1808 type and subtract. The hardware will do the right thing with any
1809 overflow in the subtraction. */
1810 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1811 return size_binop_loc (loc, MINUS_EXPR,
1812 fold_convert_loc (loc, ctype, arg0),
1813 fold_convert_loc (loc, ctype, arg1));
1815 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1816 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1817 overflow) and negate (which can't either). Special-case a result
1818 of zero while we're here. */
1819 if (tree_int_cst_equal (arg0, arg1))
1820 return build_int_cst (ctype, 0);
1821 else if (tree_int_cst_lt (arg1, arg0))
1822 return fold_convert_loc (loc, ctype,
1823 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1824 else
1825 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1826 fold_convert_loc (loc, ctype,
1827 size_binop_loc (loc,
1828 MINUS_EXPR,
1829 arg1, arg0)));
1832 /* A subroutine of fold_convert_const handling conversions of an
1833 INTEGER_CST to another integer type. */
1835 static tree
1836 fold_convert_const_int_from_int (tree type, const_tree arg1)
1838 /* Given an integer constant, make new constant with new type,
1839 appropriately sign-extended or truncated. Use widest_int
1840 so that any extension is done according ARG1's type. */
1841 return force_fit_type (type, wi::to_widest (arg1),
1842 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1843 TREE_OVERFLOW (arg1));
1846 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1847 to an integer type. */
1849 static tree
1850 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1852 bool overflow = false;
1853 tree t;
1855 /* The following code implements the floating point to integer
1856 conversion rules required by the Java Language Specification,
1857 that IEEE NaNs are mapped to zero and values that overflow
1858 the target precision saturate, i.e. values greater than
1859 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1860 are mapped to INT_MIN. These semantics are allowed by the
1861 C and C++ standards that simply state that the behavior of
1862 FP-to-integer conversion is unspecified upon overflow. */
1864 wide_int val;
1865 REAL_VALUE_TYPE r;
1866 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1868 switch (code)
1870 case FIX_TRUNC_EXPR:
1871 real_trunc (&r, VOIDmode, &x);
1872 break;
1874 default:
1875 gcc_unreachable ();
1878 /* If R is NaN, return zero and show we have an overflow. */
1879 if (REAL_VALUE_ISNAN (r))
1881 overflow = true;
1882 val = wi::zero (TYPE_PRECISION (type));
1885 /* See if R is less than the lower bound or greater than the
1886 upper bound. */
1888 if (! overflow)
1890 tree lt = TYPE_MIN_VALUE (type);
1891 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1892 if (real_less (&r, &l))
1894 overflow = true;
1895 val = wi::to_wide (lt);
1899 if (! overflow)
1901 tree ut = TYPE_MAX_VALUE (type);
1902 if (ut)
1904 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1905 if (real_less (&u, &r))
1907 overflow = true;
1908 val = wi::to_wide (ut);
1913 if (! overflow)
1914 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1916 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1917 return t;
1920 /* A subroutine of fold_convert_const handling conversions of a
1921 FIXED_CST to an integer type. */
1923 static tree
1924 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1926 tree t;
1927 double_int temp, temp_trunc;
1928 scalar_mode mode;
1930 /* Right shift FIXED_CST to temp by fbit. */
1931 temp = TREE_FIXED_CST (arg1).data;
1932 mode = TREE_FIXED_CST (arg1).mode;
1933 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1935 temp = temp.rshift (GET_MODE_FBIT (mode),
1936 HOST_BITS_PER_DOUBLE_INT,
1937 SIGNED_FIXED_POINT_MODE_P (mode));
1939 /* Left shift temp to temp_trunc by fbit. */
1940 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1941 HOST_BITS_PER_DOUBLE_INT,
1942 SIGNED_FIXED_POINT_MODE_P (mode));
1944 else
1946 temp = double_int_zero;
1947 temp_trunc = double_int_zero;
1950 /* If FIXED_CST is negative, we need to round the value toward 0.
1951 By checking if the fractional bits are not zero to add 1 to temp. */
1952 if (SIGNED_FIXED_POINT_MODE_P (mode)
1953 && temp_trunc.is_negative ()
1954 && TREE_FIXED_CST (arg1).data != temp_trunc)
1955 temp += double_int_one;
1957 /* Given a fixed-point constant, make new constant with new type,
1958 appropriately sign-extended or truncated. */
1959 t = force_fit_type (type, temp, -1,
1960 (temp.is_negative ()
1961 && (TYPE_UNSIGNED (type)
1962 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1963 | TREE_OVERFLOW (arg1));
1965 return t;
1968 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1969 to another floating point type. */
1971 static tree
1972 fold_convert_const_real_from_real (tree type, const_tree arg1)
1974 REAL_VALUE_TYPE value;
1975 tree t;
1977 /* Don't perform the operation if flag_signaling_nans is on
1978 and the operand is a signaling NaN. */
1979 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1980 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
1981 return NULL_TREE;
1983 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1984 t = build_real (type, value);
1986 /* If converting an infinity or NAN to a representation that doesn't
1987 have one, set the overflow bit so that we can produce some kind of
1988 error message at the appropriate point if necessary. It's not the
1989 most user-friendly message, but it's better than nothing. */
1990 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1991 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1992 TREE_OVERFLOW (t) = 1;
1993 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1994 && !MODE_HAS_NANS (TYPE_MODE (type)))
1995 TREE_OVERFLOW (t) = 1;
1996 /* Regular overflow, conversion produced an infinity in a mode that
1997 can't represent them. */
1998 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1999 && REAL_VALUE_ISINF (value)
2000 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2001 TREE_OVERFLOW (t) = 1;
2002 else
2003 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2004 return t;
2007 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2008 to a floating point type. */
2010 static tree
2011 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2013 REAL_VALUE_TYPE value;
2014 tree t;
2016 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type),
2017 &TREE_FIXED_CST (arg1));
2018 t = build_real (type, value);
2020 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2021 return t;
2024 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2025 to another fixed-point type. */
2027 static tree
2028 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2030 FIXED_VALUE_TYPE value;
2031 tree t;
2032 bool overflow_p;
2034 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type),
2035 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type));
2036 t = build_fixed (type, value);
2038 /* Propagate overflow flags. */
2039 if (overflow_p | TREE_OVERFLOW (arg1))
2040 TREE_OVERFLOW (t) = 1;
2041 return t;
2044 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2045 to a fixed-point type. */
2047 static tree
2048 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2050 FIXED_VALUE_TYPE value;
2051 tree t;
2052 bool overflow_p;
2053 double_int di;
2055 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2057 di.low = TREE_INT_CST_ELT (arg1, 0);
2058 if (TREE_INT_CST_NUNITS (arg1) == 1)
2059 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2060 else
2061 di.high = TREE_INT_CST_ELT (arg1, 1);
2063 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di,
2064 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2065 TYPE_SATURATING (type));
2066 t = build_fixed (type, value);
2068 /* Propagate overflow flags. */
2069 if (overflow_p | TREE_OVERFLOW (arg1))
2070 TREE_OVERFLOW (t) = 1;
2071 return t;
2074 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2075 to a fixed-point type. */
2077 static tree
2078 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2080 FIXED_VALUE_TYPE value;
2081 tree t;
2082 bool overflow_p;
2084 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type),
2085 &TREE_REAL_CST (arg1),
2086 TYPE_SATURATING (type));
2087 t = build_fixed (type, value);
2089 /* Propagate overflow flags. */
2090 if (overflow_p | TREE_OVERFLOW (arg1))
2091 TREE_OVERFLOW (t) = 1;
2092 return t;
2095 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2096 type TYPE. If no simplification can be done return NULL_TREE. */
2098 static tree
2099 fold_convert_const (enum tree_code code, tree type, tree arg1)
2101 if (TREE_TYPE (arg1) == type)
2102 return arg1;
2104 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2105 || TREE_CODE (type) == OFFSET_TYPE)
2107 if (TREE_CODE (arg1) == INTEGER_CST)
2108 return fold_convert_const_int_from_int (type, arg1);
2109 else if (TREE_CODE (arg1) == REAL_CST)
2110 return fold_convert_const_int_from_real (code, type, arg1);
2111 else if (TREE_CODE (arg1) == FIXED_CST)
2112 return fold_convert_const_int_from_fixed (type, arg1);
2114 else if (TREE_CODE (type) == REAL_TYPE)
2116 if (TREE_CODE (arg1) == INTEGER_CST)
2117 return build_real_from_int_cst (type, arg1);
2118 else if (TREE_CODE (arg1) == REAL_CST)
2119 return fold_convert_const_real_from_real (type, arg1);
2120 else if (TREE_CODE (arg1) == FIXED_CST)
2121 return fold_convert_const_real_from_fixed (type, arg1);
2123 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2125 if (TREE_CODE (arg1) == FIXED_CST)
2126 return fold_convert_const_fixed_from_fixed (type, arg1);
2127 else if (TREE_CODE (arg1) == INTEGER_CST)
2128 return fold_convert_const_fixed_from_int (type, arg1);
2129 else if (TREE_CODE (arg1) == REAL_CST)
2130 return fold_convert_const_fixed_from_real (type, arg1);
2132 else if (TREE_CODE (type) == VECTOR_TYPE)
2134 if (TREE_CODE (arg1) == VECTOR_CST
2135 && TYPE_VECTOR_SUBPARTS (type) == VECTOR_CST_NELTS (arg1))
2137 int len = VECTOR_CST_NELTS (arg1);
2138 tree elttype = TREE_TYPE (type);
2139 auto_vec<tree, 32> v (len);
2140 for (int i = 0; i < len; ++i)
2142 tree elt = VECTOR_CST_ELT (arg1, i);
2143 tree cvt = fold_convert_const (code, elttype, elt);
2144 if (cvt == NULL_TREE)
2145 return NULL_TREE;
2146 v.quick_push (cvt);
2148 return build_vector (type, v);
2151 return NULL_TREE;
2154 /* Construct a vector of zero elements of vector type TYPE. */
2156 static tree
2157 build_zero_vector (tree type)
2159 tree t;
2161 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2162 return build_vector_from_val (type, t);
2165 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2167 bool
2168 fold_convertible_p (const_tree type, const_tree arg)
2170 tree orig = TREE_TYPE (arg);
2172 if (type == orig)
2173 return true;
2175 if (TREE_CODE (arg) == ERROR_MARK
2176 || TREE_CODE (type) == ERROR_MARK
2177 || TREE_CODE (orig) == ERROR_MARK)
2178 return false;
2180 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2181 return true;
2183 switch (TREE_CODE (type))
2185 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2186 case POINTER_TYPE: case REFERENCE_TYPE:
2187 case OFFSET_TYPE:
2188 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2189 || TREE_CODE (orig) == OFFSET_TYPE);
2191 case REAL_TYPE:
2192 case FIXED_POINT_TYPE:
2193 case VECTOR_TYPE:
2194 case VOID_TYPE:
2195 return TREE_CODE (type) == TREE_CODE (orig);
2197 default:
2198 return false;
2202 /* Convert expression ARG to type TYPE. Used by the middle-end for
2203 simple conversions in preference to calling the front-end's convert. */
2205 tree
2206 fold_convert_loc (location_t loc, tree type, tree arg)
2208 tree orig = TREE_TYPE (arg);
2209 tree tem;
2211 if (type == orig)
2212 return arg;
2214 if (TREE_CODE (arg) == ERROR_MARK
2215 || TREE_CODE (type) == ERROR_MARK
2216 || TREE_CODE (orig) == ERROR_MARK)
2217 return error_mark_node;
2219 switch (TREE_CODE (type))
2221 case POINTER_TYPE:
2222 case REFERENCE_TYPE:
2223 /* Handle conversions between pointers to different address spaces. */
2224 if (POINTER_TYPE_P (orig)
2225 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2226 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2227 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2228 /* fall through */
2230 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2231 case OFFSET_TYPE:
2232 if (TREE_CODE (arg) == INTEGER_CST)
2234 tem = fold_convert_const (NOP_EXPR, type, arg);
2235 if (tem != NULL_TREE)
2236 return tem;
2238 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2239 || TREE_CODE (orig) == OFFSET_TYPE)
2240 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2241 if (TREE_CODE (orig) == COMPLEX_TYPE)
2242 return fold_convert_loc (loc, type,
2243 fold_build1_loc (loc, REALPART_EXPR,
2244 TREE_TYPE (orig), arg));
2245 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2246 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2247 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2249 case REAL_TYPE:
2250 if (TREE_CODE (arg) == INTEGER_CST)
2252 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2253 if (tem != NULL_TREE)
2254 return tem;
2256 else if (TREE_CODE (arg) == REAL_CST)
2258 tem = fold_convert_const (NOP_EXPR, type, arg);
2259 if (tem != NULL_TREE)
2260 return tem;
2262 else if (TREE_CODE (arg) == FIXED_CST)
2264 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2265 if (tem != NULL_TREE)
2266 return tem;
2269 switch (TREE_CODE (orig))
2271 case INTEGER_TYPE:
2272 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2273 case POINTER_TYPE: case REFERENCE_TYPE:
2274 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2276 case REAL_TYPE:
2277 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2279 case FIXED_POINT_TYPE:
2280 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2282 case COMPLEX_TYPE:
2283 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2284 return fold_convert_loc (loc, type, tem);
2286 default:
2287 gcc_unreachable ();
2290 case FIXED_POINT_TYPE:
2291 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2292 || TREE_CODE (arg) == REAL_CST)
2294 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2295 if (tem != NULL_TREE)
2296 goto fold_convert_exit;
2299 switch (TREE_CODE (orig))
2301 case FIXED_POINT_TYPE:
2302 case INTEGER_TYPE:
2303 case ENUMERAL_TYPE:
2304 case BOOLEAN_TYPE:
2305 case REAL_TYPE:
2306 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2308 case COMPLEX_TYPE:
2309 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2310 return fold_convert_loc (loc, type, tem);
2312 default:
2313 gcc_unreachable ();
2316 case COMPLEX_TYPE:
2317 switch (TREE_CODE (orig))
2319 case INTEGER_TYPE:
2320 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2321 case POINTER_TYPE: case REFERENCE_TYPE:
2322 case REAL_TYPE:
2323 case FIXED_POINT_TYPE:
2324 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2325 fold_convert_loc (loc, TREE_TYPE (type), arg),
2326 fold_convert_loc (loc, TREE_TYPE (type),
2327 integer_zero_node));
2328 case COMPLEX_TYPE:
2330 tree rpart, ipart;
2332 if (TREE_CODE (arg) == COMPLEX_EXPR)
2334 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2335 TREE_OPERAND (arg, 0));
2336 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2337 TREE_OPERAND (arg, 1));
2338 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2341 arg = save_expr (arg);
2342 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2343 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2344 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2345 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2346 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2349 default:
2350 gcc_unreachable ();
2353 case VECTOR_TYPE:
2354 if (integer_zerop (arg))
2355 return build_zero_vector (type);
2356 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2357 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2358 || TREE_CODE (orig) == VECTOR_TYPE);
2359 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2361 case VOID_TYPE:
2362 tem = fold_ignored_result (arg);
2363 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2365 default:
2366 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2367 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2368 gcc_unreachable ();
2370 fold_convert_exit:
2371 protected_set_expr_location_unshare (tem, loc);
2372 return tem;
2375 /* Return false if expr can be assumed not to be an lvalue, true
2376 otherwise. */
2378 static bool
2379 maybe_lvalue_p (const_tree x)
2381 /* We only need to wrap lvalue tree codes. */
2382 switch (TREE_CODE (x))
2384 case VAR_DECL:
2385 case PARM_DECL:
2386 case RESULT_DECL:
2387 case LABEL_DECL:
2388 case FUNCTION_DECL:
2389 case SSA_NAME:
2391 case COMPONENT_REF:
2392 case MEM_REF:
2393 case INDIRECT_REF:
2394 case ARRAY_REF:
2395 case ARRAY_RANGE_REF:
2396 case BIT_FIELD_REF:
2397 case OBJ_TYPE_REF:
2399 case REALPART_EXPR:
2400 case IMAGPART_EXPR:
2401 case PREINCREMENT_EXPR:
2402 case PREDECREMENT_EXPR:
2403 case SAVE_EXPR:
2404 case TRY_CATCH_EXPR:
2405 case WITH_CLEANUP_EXPR:
2406 case COMPOUND_EXPR:
2407 case MODIFY_EXPR:
2408 case TARGET_EXPR:
2409 case COND_EXPR:
2410 case BIND_EXPR:
2411 break;
2413 default:
2414 /* Assume the worst for front-end tree codes. */
2415 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2416 break;
2417 return false;
2420 return true;
2423 /* Return an expr equal to X but certainly not valid as an lvalue. */
2425 tree
2426 non_lvalue_loc (location_t loc, tree x)
2428 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2429 us. */
2430 if (in_gimple_form)
2431 return x;
2433 if (! maybe_lvalue_p (x))
2434 return x;
2435 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2438 /* When pedantic, return an expr equal to X but certainly not valid as a
2439 pedantic lvalue. Otherwise, return X. */
2441 static tree
2442 pedantic_non_lvalue_loc (location_t loc, tree x)
2444 return protected_set_expr_location_unshare (x, loc);
2447 /* Given a tree comparison code, return the code that is the logical inverse.
2448 It is generally not safe to do this for floating-point comparisons, except
2449 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2450 ERROR_MARK in this case. */
2452 enum tree_code
2453 invert_tree_comparison (enum tree_code code, bool honor_nans)
2455 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2456 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2457 return ERROR_MARK;
2459 switch (code)
2461 case EQ_EXPR:
2462 return NE_EXPR;
2463 case NE_EXPR:
2464 return EQ_EXPR;
2465 case GT_EXPR:
2466 return honor_nans ? UNLE_EXPR : LE_EXPR;
2467 case GE_EXPR:
2468 return honor_nans ? UNLT_EXPR : LT_EXPR;
2469 case LT_EXPR:
2470 return honor_nans ? UNGE_EXPR : GE_EXPR;
2471 case LE_EXPR:
2472 return honor_nans ? UNGT_EXPR : GT_EXPR;
2473 case LTGT_EXPR:
2474 return UNEQ_EXPR;
2475 case UNEQ_EXPR:
2476 return LTGT_EXPR;
2477 case UNGT_EXPR:
2478 return LE_EXPR;
2479 case UNGE_EXPR:
2480 return LT_EXPR;
2481 case UNLT_EXPR:
2482 return GE_EXPR;
2483 case UNLE_EXPR:
2484 return GT_EXPR;
2485 case ORDERED_EXPR:
2486 return UNORDERED_EXPR;
2487 case UNORDERED_EXPR:
2488 return ORDERED_EXPR;
2489 default:
2490 gcc_unreachable ();
2494 /* Similar, but return the comparison that results if the operands are
2495 swapped. This is safe for floating-point. */
2497 enum tree_code
2498 swap_tree_comparison (enum tree_code code)
2500 switch (code)
2502 case EQ_EXPR:
2503 case NE_EXPR:
2504 case ORDERED_EXPR:
2505 case UNORDERED_EXPR:
2506 case LTGT_EXPR:
2507 case UNEQ_EXPR:
2508 return code;
2509 case GT_EXPR:
2510 return LT_EXPR;
2511 case GE_EXPR:
2512 return LE_EXPR;
2513 case LT_EXPR:
2514 return GT_EXPR;
2515 case LE_EXPR:
2516 return GE_EXPR;
2517 case UNGT_EXPR:
2518 return UNLT_EXPR;
2519 case UNGE_EXPR:
2520 return UNLE_EXPR;
2521 case UNLT_EXPR:
2522 return UNGT_EXPR;
2523 case UNLE_EXPR:
2524 return UNGE_EXPR;
2525 default:
2526 gcc_unreachable ();
2531 /* Convert a comparison tree code from an enum tree_code representation
2532 into a compcode bit-based encoding. This function is the inverse of
2533 compcode_to_comparison. */
2535 static enum comparison_code
2536 comparison_to_compcode (enum tree_code code)
2538 switch (code)
2540 case LT_EXPR:
2541 return COMPCODE_LT;
2542 case EQ_EXPR:
2543 return COMPCODE_EQ;
2544 case LE_EXPR:
2545 return COMPCODE_LE;
2546 case GT_EXPR:
2547 return COMPCODE_GT;
2548 case NE_EXPR:
2549 return COMPCODE_NE;
2550 case GE_EXPR:
2551 return COMPCODE_GE;
2552 case ORDERED_EXPR:
2553 return COMPCODE_ORD;
2554 case UNORDERED_EXPR:
2555 return COMPCODE_UNORD;
2556 case UNLT_EXPR:
2557 return COMPCODE_UNLT;
2558 case UNEQ_EXPR:
2559 return COMPCODE_UNEQ;
2560 case UNLE_EXPR:
2561 return COMPCODE_UNLE;
2562 case UNGT_EXPR:
2563 return COMPCODE_UNGT;
2564 case LTGT_EXPR:
2565 return COMPCODE_LTGT;
2566 case UNGE_EXPR:
2567 return COMPCODE_UNGE;
2568 default:
2569 gcc_unreachable ();
2573 /* Convert a compcode bit-based encoding of a comparison operator back
2574 to GCC's enum tree_code representation. This function is the
2575 inverse of comparison_to_compcode. */
2577 static enum tree_code
2578 compcode_to_comparison (enum comparison_code code)
2580 switch (code)
2582 case COMPCODE_LT:
2583 return LT_EXPR;
2584 case COMPCODE_EQ:
2585 return EQ_EXPR;
2586 case COMPCODE_LE:
2587 return LE_EXPR;
2588 case COMPCODE_GT:
2589 return GT_EXPR;
2590 case COMPCODE_NE:
2591 return NE_EXPR;
2592 case COMPCODE_GE:
2593 return GE_EXPR;
2594 case COMPCODE_ORD:
2595 return ORDERED_EXPR;
2596 case COMPCODE_UNORD:
2597 return UNORDERED_EXPR;
2598 case COMPCODE_UNLT:
2599 return UNLT_EXPR;
2600 case COMPCODE_UNEQ:
2601 return UNEQ_EXPR;
2602 case COMPCODE_UNLE:
2603 return UNLE_EXPR;
2604 case COMPCODE_UNGT:
2605 return UNGT_EXPR;
2606 case COMPCODE_LTGT:
2607 return LTGT_EXPR;
2608 case COMPCODE_UNGE:
2609 return UNGE_EXPR;
2610 default:
2611 gcc_unreachable ();
2615 /* Return a tree for the comparison which is the combination of
2616 doing the AND or OR (depending on CODE) of the two operations LCODE
2617 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2618 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2619 if this makes the transformation invalid. */
2621 tree
2622 combine_comparisons (location_t loc,
2623 enum tree_code code, enum tree_code lcode,
2624 enum tree_code rcode, tree truth_type,
2625 tree ll_arg, tree lr_arg)
2627 bool honor_nans = HONOR_NANS (ll_arg);
2628 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2629 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2630 int compcode;
2632 switch (code)
2634 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2635 compcode = lcompcode & rcompcode;
2636 break;
2638 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2639 compcode = lcompcode | rcompcode;
2640 break;
2642 default:
2643 return NULL_TREE;
2646 if (!honor_nans)
2648 /* Eliminate unordered comparisons, as well as LTGT and ORD
2649 which are not used unless the mode has NaNs. */
2650 compcode &= ~COMPCODE_UNORD;
2651 if (compcode == COMPCODE_LTGT)
2652 compcode = COMPCODE_NE;
2653 else if (compcode == COMPCODE_ORD)
2654 compcode = COMPCODE_TRUE;
2656 else if (flag_trapping_math)
2658 /* Check that the original operation and the optimized ones will trap
2659 under the same condition. */
2660 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2661 && (lcompcode != COMPCODE_EQ)
2662 && (lcompcode != COMPCODE_ORD);
2663 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2664 && (rcompcode != COMPCODE_EQ)
2665 && (rcompcode != COMPCODE_ORD);
2666 bool trap = (compcode & COMPCODE_UNORD) == 0
2667 && (compcode != COMPCODE_EQ)
2668 && (compcode != COMPCODE_ORD);
2670 /* In a short-circuited boolean expression the LHS might be
2671 such that the RHS, if evaluated, will never trap. For
2672 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2673 if neither x nor y is NaN. (This is a mixed blessing: for
2674 example, the expression above will never trap, hence
2675 optimizing it to x < y would be invalid). */
2676 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2677 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2678 rtrap = false;
2680 /* If the comparison was short-circuited, and only the RHS
2681 trapped, we may now generate a spurious trap. */
2682 if (rtrap && !ltrap
2683 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2684 return NULL_TREE;
2686 /* If we changed the conditions that cause a trap, we lose. */
2687 if ((ltrap || rtrap) != trap)
2688 return NULL_TREE;
2691 if (compcode == COMPCODE_TRUE)
2692 return constant_boolean_node (true, truth_type);
2693 else if (compcode == COMPCODE_FALSE)
2694 return constant_boolean_node (false, truth_type);
2695 else
2697 enum tree_code tcode;
2699 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2700 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2704 /* Return nonzero if two operands (typically of the same tree node)
2705 are necessarily equal. FLAGS modifies behavior as follows:
2707 If OEP_ONLY_CONST is set, only return nonzero for constants.
2708 This function tests whether the operands are indistinguishable;
2709 it does not test whether they are equal using C's == operation.
2710 The distinction is important for IEEE floating point, because
2711 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2712 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2714 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2715 even though it may hold multiple values during a function.
2716 This is because a GCC tree node guarantees that nothing else is
2717 executed between the evaluation of its "operands" (which may often
2718 be evaluated in arbitrary order). Hence if the operands themselves
2719 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2720 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2721 unset means assuming isochronic (or instantaneous) tree equivalence.
2722 Unless comparing arbitrary expression trees, such as from different
2723 statements, this flag can usually be left unset.
2725 If OEP_PURE_SAME is set, then pure functions with identical arguments
2726 are considered the same. It is used when the caller has other ways
2727 to ensure that global memory is unchanged in between.
2729 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2730 not values of expressions.
2732 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2733 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2735 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2736 any operand with side effect. This is unnecesarily conservative in the
2737 case we know that arg0 and arg1 are in disjoint code paths (such as in
2738 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2739 addresses with TREE_CONSTANT flag set so we know that &var == &var
2740 even if var is volatile. */
2743 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2745 /* When checking, verify at the outermost operand_equal_p call that
2746 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2747 hash value. */
2748 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2750 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2752 if (arg0 != arg1)
2754 inchash::hash hstate0 (0), hstate1 (0);
2755 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2756 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2757 hashval_t h0 = hstate0.end ();
2758 hashval_t h1 = hstate1.end ();
2759 gcc_assert (h0 == h1);
2761 return 1;
2763 else
2764 return 0;
2767 /* If either is ERROR_MARK, they aren't equal. */
2768 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2769 || TREE_TYPE (arg0) == error_mark_node
2770 || TREE_TYPE (arg1) == error_mark_node)
2771 return 0;
2773 /* Similar, if either does not have a type (like a released SSA name),
2774 they aren't equal. */
2775 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2776 return 0;
2778 /* We cannot consider pointers to different address space equal. */
2779 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2780 && POINTER_TYPE_P (TREE_TYPE (arg1))
2781 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2782 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2783 return 0;
2785 /* Check equality of integer constants before bailing out due to
2786 precision differences. */
2787 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2789 /* Address of INTEGER_CST is not defined; check that we did not forget
2790 to drop the OEP_ADDRESS_OF flags. */
2791 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2792 return tree_int_cst_equal (arg0, arg1);
2795 if (!(flags & OEP_ADDRESS_OF))
2797 /* If both types don't have the same signedness, then we can't consider
2798 them equal. We must check this before the STRIP_NOPS calls
2799 because they may change the signedness of the arguments. As pointers
2800 strictly don't have a signedness, require either two pointers or
2801 two non-pointers as well. */
2802 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2803 || POINTER_TYPE_P (TREE_TYPE (arg0))
2804 != POINTER_TYPE_P (TREE_TYPE (arg1)))
2805 return 0;
2807 /* If both types don't have the same precision, then it is not safe
2808 to strip NOPs. */
2809 if (element_precision (TREE_TYPE (arg0))
2810 != element_precision (TREE_TYPE (arg1)))
2811 return 0;
2813 STRIP_NOPS (arg0);
2814 STRIP_NOPS (arg1);
2816 #if 0
2817 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2818 sanity check once the issue is solved. */
2819 else
2820 /* Addresses of conversions and SSA_NAMEs (and many other things)
2821 are not defined. Check that we did not forget to drop the
2822 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2823 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
2824 && TREE_CODE (arg0) != SSA_NAME);
2825 #endif
2827 /* In case both args are comparisons but with different comparison
2828 code, try to swap the comparison operands of one arg to produce
2829 a match and compare that variant. */
2830 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2831 && COMPARISON_CLASS_P (arg0)
2832 && COMPARISON_CLASS_P (arg1))
2834 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2836 if (TREE_CODE (arg0) == swap_code)
2837 return operand_equal_p (TREE_OPERAND (arg0, 0),
2838 TREE_OPERAND (arg1, 1), flags)
2839 && operand_equal_p (TREE_OPERAND (arg0, 1),
2840 TREE_OPERAND (arg1, 0), flags);
2843 if (TREE_CODE (arg0) != TREE_CODE (arg1))
2845 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2846 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
2848 else if (flags & OEP_ADDRESS_OF)
2850 /* If we are interested in comparing addresses ignore
2851 MEM_REF wrappings of the base that can appear just for
2852 TBAA reasons. */
2853 if (TREE_CODE (arg0) == MEM_REF
2854 && DECL_P (arg1)
2855 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
2856 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
2857 && integer_zerop (TREE_OPERAND (arg0, 1)))
2858 return 1;
2859 else if (TREE_CODE (arg1) == MEM_REF
2860 && DECL_P (arg0)
2861 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
2862 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
2863 && integer_zerop (TREE_OPERAND (arg1, 1)))
2864 return 1;
2865 return 0;
2867 else
2868 return 0;
2871 /* When not checking adddresses, this is needed for conversions and for
2872 COMPONENT_REF. Might as well play it safe and always test this. */
2873 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2874 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2875 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
2876 && !(flags & OEP_ADDRESS_OF)))
2877 return 0;
2879 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2880 We don't care about side effects in that case because the SAVE_EXPR
2881 takes care of that for us. In all other cases, two expressions are
2882 equal if they have no side effects. If we have two identical
2883 expressions with side effects that should be treated the same due
2884 to the only side effects being identical SAVE_EXPR's, that will
2885 be detected in the recursive calls below.
2886 If we are taking an invariant address of two identical objects
2887 they are necessarily equal as well. */
2888 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2889 && (TREE_CODE (arg0) == SAVE_EXPR
2890 || (flags & OEP_MATCH_SIDE_EFFECTS)
2891 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2892 return 1;
2894 /* Next handle constant cases, those for which we can return 1 even
2895 if ONLY_CONST is set. */
2896 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2897 switch (TREE_CODE (arg0))
2899 case INTEGER_CST:
2900 return tree_int_cst_equal (arg0, arg1);
2902 case FIXED_CST:
2903 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2904 TREE_FIXED_CST (arg1));
2906 case REAL_CST:
2907 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
2908 return 1;
2911 if (!HONOR_SIGNED_ZEROS (arg0))
2913 /* If we do not distinguish between signed and unsigned zero,
2914 consider them equal. */
2915 if (real_zerop (arg0) && real_zerop (arg1))
2916 return 1;
2918 return 0;
2920 case VECTOR_CST:
2922 unsigned i;
2924 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2925 return 0;
2927 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2929 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2930 VECTOR_CST_ELT (arg1, i), flags))
2931 return 0;
2933 return 1;
2936 case COMPLEX_CST:
2937 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2938 flags)
2939 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2940 flags));
2942 case STRING_CST:
2943 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2944 && ! memcmp (TREE_STRING_POINTER (arg0),
2945 TREE_STRING_POINTER (arg1),
2946 TREE_STRING_LENGTH (arg0)));
2948 case ADDR_EXPR:
2949 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2950 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2951 flags | OEP_ADDRESS_OF
2952 | OEP_MATCH_SIDE_EFFECTS);
2953 case CONSTRUCTOR:
2954 /* In GIMPLE empty constructors are allowed in initializers of
2955 aggregates. */
2956 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
2957 default:
2958 break;
2961 if (flags & OEP_ONLY_CONST)
2962 return 0;
2964 /* Define macros to test an operand from arg0 and arg1 for equality and a
2965 variant that allows null and views null as being different from any
2966 non-null value. In the latter case, if either is null, the both
2967 must be; otherwise, do the normal comparison. */
2968 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2969 TREE_OPERAND (arg1, N), flags)
2971 #define OP_SAME_WITH_NULL(N) \
2972 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2973 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2975 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2977 case tcc_unary:
2978 /* Two conversions are equal only if signedness and modes match. */
2979 switch (TREE_CODE (arg0))
2981 CASE_CONVERT:
2982 case FIX_TRUNC_EXPR:
2983 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2984 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2985 return 0;
2986 break;
2987 default:
2988 break;
2991 return OP_SAME (0);
2994 case tcc_comparison:
2995 case tcc_binary:
2996 if (OP_SAME (0) && OP_SAME (1))
2997 return 1;
2999 /* For commutative ops, allow the other order. */
3000 return (commutative_tree_code (TREE_CODE (arg0))
3001 && operand_equal_p (TREE_OPERAND (arg0, 0),
3002 TREE_OPERAND (arg1, 1), flags)
3003 && operand_equal_p (TREE_OPERAND (arg0, 1),
3004 TREE_OPERAND (arg1, 0), flags));
3006 case tcc_reference:
3007 /* If either of the pointer (or reference) expressions we are
3008 dereferencing contain a side effect, these cannot be equal,
3009 but their addresses can be. */
3010 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3011 && (TREE_SIDE_EFFECTS (arg0)
3012 || TREE_SIDE_EFFECTS (arg1)))
3013 return 0;
3015 switch (TREE_CODE (arg0))
3017 case INDIRECT_REF:
3018 if (!(flags & OEP_ADDRESS_OF)
3019 && (TYPE_ALIGN (TREE_TYPE (arg0))
3020 != TYPE_ALIGN (TREE_TYPE (arg1))))
3021 return 0;
3022 flags &= ~OEP_ADDRESS_OF;
3023 return OP_SAME (0);
3025 case IMAGPART_EXPR:
3026 /* Require the same offset. */
3027 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3028 TYPE_SIZE (TREE_TYPE (arg1)),
3029 flags & ~OEP_ADDRESS_OF))
3030 return 0;
3032 /* Fallthru. */
3033 case REALPART_EXPR:
3034 case VIEW_CONVERT_EXPR:
3035 return OP_SAME (0);
3037 case TARGET_MEM_REF:
3038 case MEM_REF:
3039 if (!(flags & OEP_ADDRESS_OF))
3041 /* Require equal access sizes */
3042 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3043 && (!TYPE_SIZE (TREE_TYPE (arg0))
3044 || !TYPE_SIZE (TREE_TYPE (arg1))
3045 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3046 TYPE_SIZE (TREE_TYPE (arg1)),
3047 flags)))
3048 return 0;
3049 /* Verify that access happens in similar types. */
3050 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3051 return 0;
3052 /* Verify that accesses are TBAA compatible. */
3053 if (!alias_ptr_types_compatible_p
3054 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3055 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3056 || (MR_DEPENDENCE_CLIQUE (arg0)
3057 != MR_DEPENDENCE_CLIQUE (arg1))
3058 || (MR_DEPENDENCE_BASE (arg0)
3059 != MR_DEPENDENCE_BASE (arg1)))
3060 return 0;
3061 /* Verify that alignment is compatible. */
3062 if (TYPE_ALIGN (TREE_TYPE (arg0))
3063 != TYPE_ALIGN (TREE_TYPE (arg1)))
3064 return 0;
3066 flags &= ~OEP_ADDRESS_OF;
3067 return (OP_SAME (0) && OP_SAME (1)
3068 /* TARGET_MEM_REF require equal extra operands. */
3069 && (TREE_CODE (arg0) != TARGET_MEM_REF
3070 || (OP_SAME_WITH_NULL (2)
3071 && OP_SAME_WITH_NULL (3)
3072 && OP_SAME_WITH_NULL (4))));
3074 case ARRAY_REF:
3075 case ARRAY_RANGE_REF:
3076 if (!OP_SAME (0))
3077 return 0;
3078 flags &= ~OEP_ADDRESS_OF;
3079 /* Compare the array index by value if it is constant first as we
3080 may have different types but same value here. */
3081 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3082 TREE_OPERAND (arg1, 1))
3083 || OP_SAME (1))
3084 && OP_SAME_WITH_NULL (2)
3085 && OP_SAME_WITH_NULL (3)
3086 /* Compare low bound and element size as with OEP_ADDRESS_OF
3087 we have to account for the offset of the ref. */
3088 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3089 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3090 || (operand_equal_p (array_ref_low_bound
3091 (CONST_CAST_TREE (arg0)),
3092 array_ref_low_bound
3093 (CONST_CAST_TREE (arg1)), flags)
3094 && operand_equal_p (array_ref_element_size
3095 (CONST_CAST_TREE (arg0)),
3096 array_ref_element_size
3097 (CONST_CAST_TREE (arg1)),
3098 flags))));
3100 case COMPONENT_REF:
3101 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3102 may be NULL when we're called to compare MEM_EXPRs. */
3103 if (!OP_SAME_WITH_NULL (0)
3104 || !OP_SAME (1))
3105 return 0;
3106 flags &= ~OEP_ADDRESS_OF;
3107 return OP_SAME_WITH_NULL (2);
3109 case BIT_FIELD_REF:
3110 if (!OP_SAME (0))
3111 return 0;
3112 flags &= ~OEP_ADDRESS_OF;
3113 return OP_SAME (1) && OP_SAME (2);
3115 default:
3116 return 0;
3119 case tcc_expression:
3120 switch (TREE_CODE (arg0))
3122 case ADDR_EXPR:
3123 /* Be sure we pass right ADDRESS_OF flag. */
3124 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3125 return operand_equal_p (TREE_OPERAND (arg0, 0),
3126 TREE_OPERAND (arg1, 0),
3127 flags | OEP_ADDRESS_OF);
3129 case TRUTH_NOT_EXPR:
3130 return OP_SAME (0);
3132 case TRUTH_ANDIF_EXPR:
3133 case TRUTH_ORIF_EXPR:
3134 return OP_SAME (0) && OP_SAME (1);
3136 case FMA_EXPR:
3137 case WIDEN_MULT_PLUS_EXPR:
3138 case WIDEN_MULT_MINUS_EXPR:
3139 if (!OP_SAME (2))
3140 return 0;
3141 /* The multiplcation operands are commutative. */
3142 /* FALLTHRU */
3144 case TRUTH_AND_EXPR:
3145 case TRUTH_OR_EXPR:
3146 case TRUTH_XOR_EXPR:
3147 if (OP_SAME (0) && OP_SAME (1))
3148 return 1;
3150 /* Otherwise take into account this is a commutative operation. */
3151 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3152 TREE_OPERAND (arg1, 1), flags)
3153 && operand_equal_p (TREE_OPERAND (arg0, 1),
3154 TREE_OPERAND (arg1, 0), flags));
3156 case COND_EXPR:
3157 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3158 return 0;
3159 flags &= ~OEP_ADDRESS_OF;
3160 return OP_SAME (0);
3162 case BIT_INSERT_EXPR:
3163 /* BIT_INSERT_EXPR has an implict operand as the type precision
3164 of op1. Need to check to make sure they are the same. */
3165 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
3166 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
3167 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1)))
3168 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1))))
3169 return false;
3170 /* FALLTHRU */
3172 case VEC_COND_EXPR:
3173 case DOT_PROD_EXPR:
3174 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3176 case MODIFY_EXPR:
3177 case INIT_EXPR:
3178 case COMPOUND_EXPR:
3179 case PREDECREMENT_EXPR:
3180 case PREINCREMENT_EXPR:
3181 case POSTDECREMENT_EXPR:
3182 case POSTINCREMENT_EXPR:
3183 if (flags & OEP_LEXICOGRAPHIC)
3184 return OP_SAME (0) && OP_SAME (1);
3185 return 0;
3187 case CLEANUP_POINT_EXPR:
3188 case EXPR_STMT:
3189 if (flags & OEP_LEXICOGRAPHIC)
3190 return OP_SAME (0);
3191 return 0;
3193 default:
3194 return 0;
3197 case tcc_vl_exp:
3198 switch (TREE_CODE (arg0))
3200 case CALL_EXPR:
3201 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3202 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3203 /* If not both CALL_EXPRs are either internal or normal function
3204 functions, then they are not equal. */
3205 return 0;
3206 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3208 /* If the CALL_EXPRs call different internal functions, then they
3209 are not equal. */
3210 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3211 return 0;
3213 else
3215 /* If the CALL_EXPRs call different functions, then they are not
3216 equal. */
3217 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3218 flags))
3219 return 0;
3222 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3224 unsigned int cef = call_expr_flags (arg0);
3225 if (flags & OEP_PURE_SAME)
3226 cef &= ECF_CONST | ECF_PURE;
3227 else
3228 cef &= ECF_CONST;
3229 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3230 return 0;
3233 /* Now see if all the arguments are the same. */
3235 const_call_expr_arg_iterator iter0, iter1;
3236 const_tree a0, a1;
3237 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3238 a1 = first_const_call_expr_arg (arg1, &iter1);
3239 a0 && a1;
3240 a0 = next_const_call_expr_arg (&iter0),
3241 a1 = next_const_call_expr_arg (&iter1))
3242 if (! operand_equal_p (a0, a1, flags))
3243 return 0;
3245 /* If we get here and both argument lists are exhausted
3246 then the CALL_EXPRs are equal. */
3247 return ! (a0 || a1);
3249 default:
3250 return 0;
3253 case tcc_declaration:
3254 /* Consider __builtin_sqrt equal to sqrt. */
3255 return (TREE_CODE (arg0) == FUNCTION_DECL
3256 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3257 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3258 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3260 case tcc_exceptional:
3261 if (TREE_CODE (arg0) == CONSTRUCTOR)
3263 /* In GIMPLE constructors are used only to build vectors from
3264 elements. Individual elements in the constructor must be
3265 indexed in increasing order and form an initial sequence.
3267 We make no effort to compare constructors in generic.
3268 (see sem_variable::equals in ipa-icf which can do so for
3269 constants). */
3270 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3271 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3272 return 0;
3274 /* Be sure that vectors constructed have the same representation.
3275 We only tested element precision and modes to match.
3276 Vectors may be BLKmode and thus also check that the number of
3277 parts match. */
3278 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))
3279 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))
3280 return 0;
3282 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3283 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3284 unsigned int len = vec_safe_length (v0);
3286 if (len != vec_safe_length (v1))
3287 return 0;
3289 for (unsigned int i = 0; i < len; i++)
3291 constructor_elt *c0 = &(*v0)[i];
3292 constructor_elt *c1 = &(*v1)[i];
3294 if (!operand_equal_p (c0->value, c1->value, flags)
3295 /* In GIMPLE the indexes can be either NULL or matching i.
3296 Double check this so we won't get false
3297 positives for GENERIC. */
3298 || (c0->index
3299 && (TREE_CODE (c0->index) != INTEGER_CST
3300 || !compare_tree_int (c0->index, i)))
3301 || (c1->index
3302 && (TREE_CODE (c1->index) != INTEGER_CST
3303 || !compare_tree_int (c1->index, i))))
3304 return 0;
3306 return 1;
3308 else if (TREE_CODE (arg0) == STATEMENT_LIST
3309 && (flags & OEP_LEXICOGRAPHIC))
3311 /* Compare the STATEMENT_LISTs. */
3312 tree_stmt_iterator tsi1, tsi2;
3313 tree body1 = CONST_CAST_TREE (arg0);
3314 tree body2 = CONST_CAST_TREE (arg1);
3315 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ;
3316 tsi_next (&tsi1), tsi_next (&tsi2))
3318 /* The lists don't have the same number of statements. */
3319 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2))
3320 return 0;
3321 if (tsi_end_p (tsi1) && tsi_end_p (tsi2))
3322 return 1;
3323 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2),
3324 OEP_LEXICOGRAPHIC))
3325 return 0;
3328 return 0;
3330 case tcc_statement:
3331 switch (TREE_CODE (arg0))
3333 case RETURN_EXPR:
3334 if (flags & OEP_LEXICOGRAPHIC)
3335 return OP_SAME_WITH_NULL (0);
3336 return 0;
3337 default:
3338 return 0;
3341 default:
3342 return 0;
3345 #undef OP_SAME
3346 #undef OP_SAME_WITH_NULL
3349 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3350 with a different signedness or a narrower precision. */
3352 static bool
3353 operand_equal_for_comparison_p (tree arg0, tree arg1)
3355 if (operand_equal_p (arg0, arg1, 0))
3356 return true;
3358 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3359 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3360 return false;
3362 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3363 and see if the inner values are the same. This removes any
3364 signedness comparison, which doesn't matter here. */
3365 tree op0 = arg0;
3366 tree op1 = arg1;
3367 STRIP_NOPS (op0);
3368 STRIP_NOPS (op1);
3369 if (operand_equal_p (op0, op1, 0))
3370 return true;
3372 /* Discard a single widening conversion from ARG1 and see if the inner
3373 value is the same as ARG0. */
3374 if (CONVERT_EXPR_P (arg1)
3375 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3376 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3377 < TYPE_PRECISION (TREE_TYPE (arg1))
3378 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
3379 return true;
3381 return false;
3384 /* See if ARG is an expression that is either a comparison or is performing
3385 arithmetic on comparisons. The comparisons must only be comparing
3386 two different values, which will be stored in *CVAL1 and *CVAL2; if
3387 they are nonzero it means that some operands have already been found.
3388 No variables may be used anywhere else in the expression except in the
3389 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3390 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3392 If this is true, return 1. Otherwise, return zero. */
3394 static int
3395 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3397 enum tree_code code = TREE_CODE (arg);
3398 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3400 /* We can handle some of the tcc_expression cases here. */
3401 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3402 tclass = tcc_unary;
3403 else if (tclass == tcc_expression
3404 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3405 || code == COMPOUND_EXPR))
3406 tclass = tcc_binary;
3408 else if (tclass == tcc_expression && code == SAVE_EXPR
3409 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3411 /* If we've already found a CVAL1 or CVAL2, this expression is
3412 two complex to handle. */
3413 if (*cval1 || *cval2)
3414 return 0;
3416 tclass = tcc_unary;
3417 *save_p = 1;
3420 switch (tclass)
3422 case tcc_unary:
3423 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3425 case tcc_binary:
3426 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3427 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3428 cval1, cval2, save_p));
3430 case tcc_constant:
3431 return 1;
3433 case tcc_expression:
3434 if (code == COND_EXPR)
3435 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3436 cval1, cval2, save_p)
3437 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3438 cval1, cval2, save_p)
3439 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3440 cval1, cval2, save_p));
3441 return 0;
3443 case tcc_comparison:
3444 /* First see if we can handle the first operand, then the second. For
3445 the second operand, we know *CVAL1 can't be zero. It must be that
3446 one side of the comparison is each of the values; test for the
3447 case where this isn't true by failing if the two operands
3448 are the same. */
3450 if (operand_equal_p (TREE_OPERAND (arg, 0),
3451 TREE_OPERAND (arg, 1), 0))
3452 return 0;
3454 if (*cval1 == 0)
3455 *cval1 = TREE_OPERAND (arg, 0);
3456 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3458 else if (*cval2 == 0)
3459 *cval2 = TREE_OPERAND (arg, 0);
3460 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3462 else
3463 return 0;
3465 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3467 else if (*cval2 == 0)
3468 *cval2 = TREE_OPERAND (arg, 1);
3469 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3471 else
3472 return 0;
3474 return 1;
3476 default:
3477 return 0;
3481 /* ARG is a tree that is known to contain just arithmetic operations and
3482 comparisons. Evaluate the operations in the tree substituting NEW0 for
3483 any occurrence of OLD0 as an operand of a comparison and likewise for
3484 NEW1 and OLD1. */
3486 static tree
3487 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3488 tree old1, tree new1)
3490 tree type = TREE_TYPE (arg);
3491 enum tree_code code = TREE_CODE (arg);
3492 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3494 /* We can handle some of the tcc_expression cases here. */
3495 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3496 tclass = tcc_unary;
3497 else if (tclass == tcc_expression
3498 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3499 tclass = tcc_binary;
3501 switch (tclass)
3503 case tcc_unary:
3504 return fold_build1_loc (loc, code, type,
3505 eval_subst (loc, TREE_OPERAND (arg, 0),
3506 old0, new0, old1, new1));
3508 case tcc_binary:
3509 return fold_build2_loc (loc, code, type,
3510 eval_subst (loc, TREE_OPERAND (arg, 0),
3511 old0, new0, old1, new1),
3512 eval_subst (loc, TREE_OPERAND (arg, 1),
3513 old0, new0, old1, new1));
3515 case tcc_expression:
3516 switch (code)
3518 case SAVE_EXPR:
3519 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3520 old1, new1);
3522 case COMPOUND_EXPR:
3523 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3524 old1, new1);
3526 case COND_EXPR:
3527 return fold_build3_loc (loc, code, type,
3528 eval_subst (loc, TREE_OPERAND (arg, 0),
3529 old0, new0, old1, new1),
3530 eval_subst (loc, TREE_OPERAND (arg, 1),
3531 old0, new0, old1, new1),
3532 eval_subst (loc, TREE_OPERAND (arg, 2),
3533 old0, new0, old1, new1));
3534 default:
3535 break;
3537 /* Fall through - ??? */
3539 case tcc_comparison:
3541 tree arg0 = TREE_OPERAND (arg, 0);
3542 tree arg1 = TREE_OPERAND (arg, 1);
3544 /* We need to check both for exact equality and tree equality. The
3545 former will be true if the operand has a side-effect. In that
3546 case, we know the operand occurred exactly once. */
3548 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3549 arg0 = new0;
3550 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3551 arg0 = new1;
3553 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3554 arg1 = new0;
3555 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3556 arg1 = new1;
3558 return fold_build2_loc (loc, code, type, arg0, arg1);
3561 default:
3562 return arg;
3566 /* Return a tree for the case when the result of an expression is RESULT
3567 converted to TYPE and OMITTED was previously an operand of the expression
3568 but is now not needed (e.g., we folded OMITTED * 0).
3570 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3571 the conversion of RESULT to TYPE. */
3573 tree
3574 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3576 tree t = fold_convert_loc (loc, type, result);
3578 /* If the resulting operand is an empty statement, just return the omitted
3579 statement casted to void. */
3580 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3581 return build1_loc (loc, NOP_EXPR, void_type_node,
3582 fold_ignored_result (omitted));
3584 if (TREE_SIDE_EFFECTS (omitted))
3585 return build2_loc (loc, COMPOUND_EXPR, type,
3586 fold_ignored_result (omitted), t);
3588 return non_lvalue_loc (loc, t);
3591 /* Return a tree for the case when the result of an expression is RESULT
3592 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3593 of the expression but are now not needed.
3595 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3596 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3597 evaluated before OMITTED2. Otherwise, if neither has side effects,
3598 just do the conversion of RESULT to TYPE. */
3600 tree
3601 omit_two_operands_loc (location_t loc, tree type, tree result,
3602 tree omitted1, tree omitted2)
3604 tree t = fold_convert_loc (loc, type, result);
3606 if (TREE_SIDE_EFFECTS (omitted2))
3607 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3608 if (TREE_SIDE_EFFECTS (omitted1))
3609 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3611 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3615 /* Return a simplified tree node for the truth-negation of ARG. This
3616 never alters ARG itself. We assume that ARG is an operation that
3617 returns a truth value (0 or 1).
3619 FIXME: one would think we would fold the result, but it causes
3620 problems with the dominator optimizer. */
3622 static tree
3623 fold_truth_not_expr (location_t loc, tree arg)
3625 tree type = TREE_TYPE (arg);
3626 enum tree_code code = TREE_CODE (arg);
3627 location_t loc1, loc2;
3629 /* If this is a comparison, we can simply invert it, except for
3630 floating-point non-equality comparisons, in which case we just
3631 enclose a TRUTH_NOT_EXPR around what we have. */
3633 if (TREE_CODE_CLASS (code) == tcc_comparison)
3635 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3636 if (FLOAT_TYPE_P (op_type)
3637 && flag_trapping_math
3638 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3639 && code != NE_EXPR && code != EQ_EXPR)
3640 return NULL_TREE;
3642 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3643 if (code == ERROR_MARK)
3644 return NULL_TREE;
3646 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3647 TREE_OPERAND (arg, 1));
3648 if (TREE_NO_WARNING (arg))
3649 TREE_NO_WARNING (ret) = 1;
3650 return ret;
3653 switch (code)
3655 case INTEGER_CST:
3656 return constant_boolean_node (integer_zerop (arg), type);
3658 case TRUTH_AND_EXPR:
3659 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3660 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3661 return build2_loc (loc, TRUTH_OR_EXPR, type,
3662 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3663 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3665 case TRUTH_OR_EXPR:
3666 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3667 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3668 return build2_loc (loc, TRUTH_AND_EXPR, type,
3669 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3670 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3672 case TRUTH_XOR_EXPR:
3673 /* Here we can invert either operand. We invert the first operand
3674 unless the second operand is a TRUTH_NOT_EXPR in which case our
3675 result is the XOR of the first operand with the inside of the
3676 negation of the second operand. */
3678 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3679 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3680 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3681 else
3682 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3683 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3684 TREE_OPERAND (arg, 1));
3686 case TRUTH_ANDIF_EXPR:
3687 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3688 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3689 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3690 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3691 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3693 case TRUTH_ORIF_EXPR:
3694 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3695 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3696 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3697 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3698 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3700 case TRUTH_NOT_EXPR:
3701 return TREE_OPERAND (arg, 0);
3703 case COND_EXPR:
3705 tree arg1 = TREE_OPERAND (arg, 1);
3706 tree arg2 = TREE_OPERAND (arg, 2);
3708 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3709 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3711 /* A COND_EXPR may have a throw as one operand, which
3712 then has void type. Just leave void operands
3713 as they are. */
3714 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3715 VOID_TYPE_P (TREE_TYPE (arg1))
3716 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3717 VOID_TYPE_P (TREE_TYPE (arg2))
3718 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3721 case COMPOUND_EXPR:
3722 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3723 return build2_loc (loc, COMPOUND_EXPR, type,
3724 TREE_OPERAND (arg, 0),
3725 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3727 case NON_LVALUE_EXPR:
3728 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3729 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3731 CASE_CONVERT:
3732 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3733 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3735 /* fall through */
3737 case FLOAT_EXPR:
3738 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3739 return build1_loc (loc, TREE_CODE (arg), type,
3740 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3742 case BIT_AND_EXPR:
3743 if (!integer_onep (TREE_OPERAND (arg, 1)))
3744 return NULL_TREE;
3745 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3747 case SAVE_EXPR:
3748 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3750 case CLEANUP_POINT_EXPR:
3751 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3752 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3753 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3755 default:
3756 return NULL_TREE;
3760 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3761 assume that ARG is an operation that returns a truth value (0 or 1
3762 for scalars, 0 or -1 for vectors). Return the folded expression if
3763 folding is successful. Otherwise, return NULL_TREE. */
3765 static tree
3766 fold_invert_truthvalue (location_t loc, tree arg)
3768 tree type = TREE_TYPE (arg);
3769 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3770 ? BIT_NOT_EXPR
3771 : TRUTH_NOT_EXPR,
3772 type, arg);
3775 /* Return a simplified tree node for the truth-negation of ARG. This
3776 never alters ARG itself. We assume that ARG is an operation that
3777 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3779 tree
3780 invert_truthvalue_loc (location_t loc, tree arg)
3782 if (TREE_CODE (arg) == ERROR_MARK)
3783 return arg;
3785 tree type = TREE_TYPE (arg);
3786 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3787 ? BIT_NOT_EXPR
3788 : TRUTH_NOT_EXPR,
3789 type, arg);
3792 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3793 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3794 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3795 is the original memory reference used to preserve the alias set of
3796 the access. */
3798 static tree
3799 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
3800 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3801 int unsignedp, int reversep)
3803 tree result, bftype;
3805 /* Attempt not to lose the access path if possible. */
3806 if (TREE_CODE (orig_inner) == COMPONENT_REF)
3808 tree ninner = TREE_OPERAND (orig_inner, 0);
3809 machine_mode nmode;
3810 HOST_WIDE_INT nbitsize, nbitpos;
3811 tree noffset;
3812 int nunsignedp, nreversep, nvolatilep = 0;
3813 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
3814 &noffset, &nmode, &nunsignedp,
3815 &nreversep, &nvolatilep);
3816 if (base == inner
3817 && noffset == NULL_TREE
3818 && nbitsize >= bitsize
3819 && nbitpos <= bitpos
3820 && bitpos + bitsize <= nbitpos + nbitsize
3821 && !reversep
3822 && !nreversep
3823 && !nvolatilep)
3825 inner = ninner;
3826 bitpos -= nbitpos;
3830 alias_set_type iset = get_alias_set (orig_inner);
3831 if (iset == 0 && get_alias_set (inner) != iset)
3832 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
3833 build_fold_addr_expr (inner),
3834 build_int_cst (ptr_type_node, 0));
3836 if (bitpos == 0 && !reversep)
3838 tree size = TYPE_SIZE (TREE_TYPE (inner));
3839 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3840 || POINTER_TYPE_P (TREE_TYPE (inner)))
3841 && tree_fits_shwi_p (size)
3842 && tree_to_shwi (size) == bitsize)
3843 return fold_convert_loc (loc, type, inner);
3846 bftype = type;
3847 if (TYPE_PRECISION (bftype) != bitsize
3848 || TYPE_UNSIGNED (bftype) == !unsignedp)
3849 bftype = build_nonstandard_integer_type (bitsize, 0);
3851 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3852 bitsize_int (bitsize), bitsize_int (bitpos));
3853 REF_REVERSE_STORAGE_ORDER (result) = reversep;
3855 if (bftype != type)
3856 result = fold_convert_loc (loc, type, result);
3858 return result;
3861 /* Optimize a bit-field compare.
3863 There are two cases: First is a compare against a constant and the
3864 second is a comparison of two items where the fields are at the same
3865 bit position relative to the start of a chunk (byte, halfword, word)
3866 large enough to contain it. In these cases we can avoid the shift
3867 implicit in bitfield extractions.
3869 For constants, we emit a compare of the shifted constant with the
3870 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3871 compared. For two fields at the same position, we do the ANDs with the
3872 similar mask and compare the result of the ANDs.
3874 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3875 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3876 are the left and right operands of the comparison, respectively.
3878 If the optimization described above can be done, we return the resulting
3879 tree. Otherwise we return zero. */
3881 static tree
3882 optimize_bit_field_compare (location_t loc, enum tree_code code,
3883 tree compare_type, tree lhs, tree rhs)
3885 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3886 tree type = TREE_TYPE (lhs);
3887 tree unsigned_type;
3888 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3889 machine_mode lmode, rmode;
3890 scalar_int_mode nmode;
3891 int lunsignedp, runsignedp;
3892 int lreversep, rreversep;
3893 int lvolatilep = 0, rvolatilep = 0;
3894 tree linner, rinner = NULL_TREE;
3895 tree mask;
3896 tree offset;
3898 /* Get all the information about the extractions being done. If the bit size
3899 if the same as the size of the underlying object, we aren't doing an
3900 extraction at all and so can do nothing. We also don't want to
3901 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3902 then will no longer be able to replace it. */
3903 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3904 &lunsignedp, &lreversep, &lvolatilep);
3905 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3906 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3907 return 0;
3909 if (const_p)
3910 rreversep = lreversep;
3911 else
3913 /* If this is not a constant, we can only do something if bit positions,
3914 sizes, signedness and storage order are the same. */
3915 rinner
3916 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3917 &runsignedp, &rreversep, &rvolatilep);
3919 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3920 || lunsignedp != runsignedp || lreversep != rreversep || offset != 0
3921 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3922 return 0;
3925 /* Honor the C++ memory model and mimic what RTL expansion does. */
3926 unsigned HOST_WIDE_INT bitstart = 0;
3927 unsigned HOST_WIDE_INT bitend = 0;
3928 if (TREE_CODE (lhs) == COMPONENT_REF)
3930 get_bit_range (&bitstart, &bitend, lhs, &lbitpos, &offset);
3931 if (offset != NULL_TREE)
3932 return 0;
3935 /* See if we can find a mode to refer to this field. We should be able to,
3936 but fail if we can't. */
3937 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend,
3938 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3939 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3940 TYPE_ALIGN (TREE_TYPE (rinner))),
3941 BITS_PER_WORD, false, &nmode))
3942 return 0;
3944 /* Set signed and unsigned types of the precision of this mode for the
3945 shifts below. */
3946 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3948 /* Compute the bit position and size for the new reference and our offset
3949 within it. If the new reference is the same size as the original, we
3950 won't optimize anything, so return zero. */
3951 nbitsize = GET_MODE_BITSIZE (nmode);
3952 nbitpos = lbitpos & ~ (nbitsize - 1);
3953 lbitpos -= nbitpos;
3954 if (nbitsize == lbitsize)
3955 return 0;
3957 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3958 lbitpos = nbitsize - lbitsize - lbitpos;
3960 /* Make the mask to be used against the extracted field. */
3961 mask = build_int_cst_type (unsigned_type, -1);
3962 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3963 mask = const_binop (RSHIFT_EXPR, mask,
3964 size_int (nbitsize - lbitsize - lbitpos));
3966 if (! const_p)
3968 if (nbitpos < 0)
3969 return 0;
3971 /* If not comparing with constant, just rework the comparison
3972 and return. */
3973 tree t1 = make_bit_field_ref (loc, linner, lhs, unsigned_type,
3974 nbitsize, nbitpos, 1, lreversep);
3975 t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask);
3976 tree t2 = make_bit_field_ref (loc, rinner, rhs, unsigned_type,
3977 nbitsize, nbitpos, 1, rreversep);
3978 t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask);
3979 return fold_build2_loc (loc, code, compare_type, t1, t2);
3982 /* Otherwise, we are handling the constant case. See if the constant is too
3983 big for the field. Warn and return a tree for 0 (false) if so. We do
3984 this not only for its own sake, but to avoid having to test for this
3985 error case below. If we didn't, we might generate wrong code.
3987 For unsigned fields, the constant shifted right by the field length should
3988 be all zero. For signed fields, the high-order bits should agree with
3989 the sign bit. */
3991 if (lunsignedp)
3993 if (wi::lrshift (wi::to_wide (rhs), lbitsize) != 0)
3995 warning (0, "comparison is always %d due to width of bit-field",
3996 code == NE_EXPR);
3997 return constant_boolean_node (code == NE_EXPR, compare_type);
4000 else
4002 wide_int tem = wi::arshift (wi::to_wide (rhs), lbitsize - 1);
4003 if (tem != 0 && tem != -1)
4005 warning (0, "comparison is always %d due to width of bit-field",
4006 code == NE_EXPR);
4007 return constant_boolean_node (code == NE_EXPR, compare_type);
4011 if (nbitpos < 0)
4012 return 0;
4014 /* Single-bit compares should always be against zero. */
4015 if (lbitsize == 1 && ! integer_zerop (rhs))
4017 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4018 rhs = build_int_cst (type, 0);
4021 /* Make a new bitfield reference, shift the constant over the
4022 appropriate number of bits and mask it with the computed mask
4023 (in case this was a signed field). If we changed it, make a new one. */
4024 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4025 nbitsize, nbitpos, 1, lreversep);
4027 rhs = const_binop (BIT_AND_EXPR,
4028 const_binop (LSHIFT_EXPR,
4029 fold_convert_loc (loc, unsigned_type, rhs),
4030 size_int (lbitpos)),
4031 mask);
4033 lhs = build2_loc (loc, code, compare_type,
4034 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4035 return lhs;
4038 /* Subroutine for fold_truth_andor_1: decode a field reference.
4040 If EXP is a comparison reference, we return the innermost reference.
4042 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4043 set to the starting bit number.
4045 If the innermost field can be completely contained in a mode-sized
4046 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4048 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4049 otherwise it is not changed.
4051 *PUNSIGNEDP is set to the signedness of the field.
4053 *PREVERSEP is set to the storage order of the field.
4055 *PMASK is set to the mask used. This is either contained in a
4056 BIT_AND_EXPR or derived from the width of the field.
4058 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4060 Return 0 if this is not a component reference or is one that we can't
4061 do anything with. */
4063 static tree
4064 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4065 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4066 int *punsignedp, int *preversep, int *pvolatilep,
4067 tree *pmask, tree *pand_mask)
4069 tree exp = *exp_;
4070 tree outer_type = 0;
4071 tree and_mask = 0;
4072 tree mask, inner, offset;
4073 tree unsigned_type;
4074 unsigned int precision;
4076 /* All the optimizations using this function assume integer fields.
4077 There are problems with FP fields since the type_for_size call
4078 below can fail for, e.g., XFmode. */
4079 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4080 return 0;
4082 /* We are interested in the bare arrangement of bits, so strip everything
4083 that doesn't affect the machine mode. However, record the type of the
4084 outermost expression if it may matter below. */
4085 if (CONVERT_EXPR_P (exp)
4086 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4087 outer_type = TREE_TYPE (exp);
4088 STRIP_NOPS (exp);
4090 if (TREE_CODE (exp) == BIT_AND_EXPR)
4092 and_mask = TREE_OPERAND (exp, 1);
4093 exp = TREE_OPERAND (exp, 0);
4094 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4095 if (TREE_CODE (and_mask) != INTEGER_CST)
4096 return 0;
4099 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4100 punsignedp, preversep, pvolatilep);
4101 if ((inner == exp && and_mask == 0)
4102 || *pbitsize < 0 || offset != 0
4103 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4104 /* Reject out-of-bound accesses (PR79731). */
4105 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4106 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4107 *pbitpos + *pbitsize) < 0))
4108 return 0;
4110 *exp_ = exp;
4112 /* If the number of bits in the reference is the same as the bitsize of
4113 the outer type, then the outer type gives the signedness. Otherwise
4114 (in case of a small bitfield) the signedness is unchanged. */
4115 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4116 *punsignedp = TYPE_UNSIGNED (outer_type);
4118 /* Compute the mask to access the bitfield. */
4119 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4120 precision = TYPE_PRECISION (unsigned_type);
4122 mask = build_int_cst_type (unsigned_type, -1);
4124 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4125 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4127 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4128 if (and_mask != 0)
4129 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4130 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4132 *pmask = mask;
4133 *pand_mask = and_mask;
4134 return inner;
4137 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4138 bit positions and MASK is SIGNED. */
4140 static int
4141 all_ones_mask_p (const_tree mask, unsigned int size)
4143 tree type = TREE_TYPE (mask);
4144 unsigned int precision = TYPE_PRECISION (type);
4146 /* If this function returns true when the type of the mask is
4147 UNSIGNED, then there will be errors. In particular see
4148 gcc.c-torture/execute/990326-1.c. There does not appear to be
4149 any documentation paper trail as to why this is so. But the pre
4150 wide-int worked with that restriction and it has been preserved
4151 here. */
4152 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4153 return false;
4155 return wi::mask (size, false, precision) == wi::to_wide (mask);
4158 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4159 represents the sign bit of EXP's type. If EXP represents a sign
4160 or zero extension, also test VAL against the unextended type.
4161 The return value is the (sub)expression whose sign bit is VAL,
4162 or NULL_TREE otherwise. */
4164 tree
4165 sign_bit_p (tree exp, const_tree val)
4167 int width;
4168 tree t;
4170 /* Tree EXP must have an integral type. */
4171 t = TREE_TYPE (exp);
4172 if (! INTEGRAL_TYPE_P (t))
4173 return NULL_TREE;
4175 /* Tree VAL must be an integer constant. */
4176 if (TREE_CODE (val) != INTEGER_CST
4177 || TREE_OVERFLOW (val))
4178 return NULL_TREE;
4180 width = TYPE_PRECISION (t);
4181 if (wi::only_sign_bit_p (wi::to_wide (val), width))
4182 return exp;
4184 /* Handle extension from a narrower type. */
4185 if (TREE_CODE (exp) == NOP_EXPR
4186 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4187 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4189 return NULL_TREE;
4192 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4193 to be evaluated unconditionally. */
4195 static int
4196 simple_operand_p (const_tree exp)
4198 /* Strip any conversions that don't change the machine mode. */
4199 STRIP_NOPS (exp);
4201 return (CONSTANT_CLASS_P (exp)
4202 || TREE_CODE (exp) == SSA_NAME
4203 || (DECL_P (exp)
4204 && ! TREE_ADDRESSABLE (exp)
4205 && ! TREE_THIS_VOLATILE (exp)
4206 && ! DECL_NONLOCAL (exp)
4207 /* Don't regard global variables as simple. They may be
4208 allocated in ways unknown to the compiler (shared memory,
4209 #pragma weak, etc). */
4210 && ! TREE_PUBLIC (exp)
4211 && ! DECL_EXTERNAL (exp)
4212 /* Weakrefs are not safe to be read, since they can be NULL.
4213 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4214 have DECL_WEAK flag set. */
4215 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4216 /* Loading a static variable is unduly expensive, but global
4217 registers aren't expensive. */
4218 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4221 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4222 to be evaluated unconditionally.
4223 I addition to simple_operand_p, we assume that comparisons, conversions,
4224 and logic-not operations are simple, if their operands are simple, too. */
4226 static bool
4227 simple_operand_p_2 (tree exp)
4229 enum tree_code code;
4231 if (TREE_SIDE_EFFECTS (exp)
4232 || tree_could_trap_p (exp))
4233 return false;
4235 while (CONVERT_EXPR_P (exp))
4236 exp = TREE_OPERAND (exp, 0);
4238 code = TREE_CODE (exp);
4240 if (TREE_CODE_CLASS (code) == tcc_comparison)
4241 return (simple_operand_p (TREE_OPERAND (exp, 0))
4242 && simple_operand_p (TREE_OPERAND (exp, 1)));
4244 if (code == TRUTH_NOT_EXPR)
4245 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4247 return simple_operand_p (exp);
4251 /* The following functions are subroutines to fold_range_test and allow it to
4252 try to change a logical combination of comparisons into a range test.
4254 For example, both
4255 X == 2 || X == 3 || X == 4 || X == 5
4257 X >= 2 && X <= 5
4258 are converted to
4259 (unsigned) (X - 2) <= 3
4261 We describe each set of comparisons as being either inside or outside
4262 a range, using a variable named like IN_P, and then describe the
4263 range with a lower and upper bound. If one of the bounds is omitted,
4264 it represents either the highest or lowest value of the type.
4266 In the comments below, we represent a range by two numbers in brackets
4267 preceded by a "+" to designate being inside that range, or a "-" to
4268 designate being outside that range, so the condition can be inverted by
4269 flipping the prefix. An omitted bound is represented by a "-". For
4270 example, "- [-, 10]" means being outside the range starting at the lowest
4271 possible value and ending at 10, in other words, being greater than 10.
4272 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4273 always false.
4275 We set up things so that the missing bounds are handled in a consistent
4276 manner so neither a missing bound nor "true" and "false" need to be
4277 handled using a special case. */
4279 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4280 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4281 and UPPER1_P are nonzero if the respective argument is an upper bound
4282 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4283 must be specified for a comparison. ARG1 will be converted to ARG0's
4284 type if both are specified. */
4286 static tree
4287 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4288 tree arg1, int upper1_p)
4290 tree tem;
4291 int result;
4292 int sgn0, sgn1;
4294 /* If neither arg represents infinity, do the normal operation.
4295 Else, if not a comparison, return infinity. Else handle the special
4296 comparison rules. Note that most of the cases below won't occur, but
4297 are handled for consistency. */
4299 if (arg0 != 0 && arg1 != 0)
4301 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4302 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4303 STRIP_NOPS (tem);
4304 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4307 if (TREE_CODE_CLASS (code) != tcc_comparison)
4308 return 0;
4310 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4311 for neither. In real maths, we cannot assume open ended ranges are
4312 the same. But, this is computer arithmetic, where numbers are finite.
4313 We can therefore make the transformation of any unbounded range with
4314 the value Z, Z being greater than any representable number. This permits
4315 us to treat unbounded ranges as equal. */
4316 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4317 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4318 switch (code)
4320 case EQ_EXPR:
4321 result = sgn0 == sgn1;
4322 break;
4323 case NE_EXPR:
4324 result = sgn0 != sgn1;
4325 break;
4326 case LT_EXPR:
4327 result = sgn0 < sgn1;
4328 break;
4329 case LE_EXPR:
4330 result = sgn0 <= sgn1;
4331 break;
4332 case GT_EXPR:
4333 result = sgn0 > sgn1;
4334 break;
4335 case GE_EXPR:
4336 result = sgn0 >= sgn1;
4337 break;
4338 default:
4339 gcc_unreachable ();
4342 return constant_boolean_node (result, type);
4345 /* Helper routine for make_range. Perform one step for it, return
4346 new expression if the loop should continue or NULL_TREE if it should
4347 stop. */
4349 tree
4350 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4351 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4352 bool *strict_overflow_p)
4354 tree arg0_type = TREE_TYPE (arg0);
4355 tree n_low, n_high, low = *p_low, high = *p_high;
4356 int in_p = *p_in_p, n_in_p;
4358 switch (code)
4360 case TRUTH_NOT_EXPR:
4361 /* We can only do something if the range is testing for zero. */
4362 if (low == NULL_TREE || high == NULL_TREE
4363 || ! integer_zerop (low) || ! integer_zerop (high))
4364 return NULL_TREE;
4365 *p_in_p = ! in_p;
4366 return arg0;
4368 case EQ_EXPR: case NE_EXPR:
4369 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4370 /* We can only do something if the range is testing for zero
4371 and if the second operand is an integer constant. Note that
4372 saying something is "in" the range we make is done by
4373 complementing IN_P since it will set in the initial case of
4374 being not equal to zero; "out" is leaving it alone. */
4375 if (low == NULL_TREE || high == NULL_TREE
4376 || ! integer_zerop (low) || ! integer_zerop (high)
4377 || TREE_CODE (arg1) != INTEGER_CST)
4378 return NULL_TREE;
4380 switch (code)
4382 case NE_EXPR: /* - [c, c] */
4383 low = high = arg1;
4384 break;
4385 case EQ_EXPR: /* + [c, c] */
4386 in_p = ! in_p, low = high = arg1;
4387 break;
4388 case GT_EXPR: /* - [-, c] */
4389 low = 0, high = arg1;
4390 break;
4391 case GE_EXPR: /* + [c, -] */
4392 in_p = ! in_p, low = arg1, high = 0;
4393 break;
4394 case LT_EXPR: /* - [c, -] */
4395 low = arg1, high = 0;
4396 break;
4397 case LE_EXPR: /* + [-, c] */
4398 in_p = ! in_p, low = 0, high = arg1;
4399 break;
4400 default:
4401 gcc_unreachable ();
4404 /* If this is an unsigned comparison, we also know that EXP is
4405 greater than or equal to zero. We base the range tests we make
4406 on that fact, so we record it here so we can parse existing
4407 range tests. We test arg0_type since often the return type
4408 of, e.g. EQ_EXPR, is boolean. */
4409 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4411 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4412 in_p, low, high, 1,
4413 build_int_cst (arg0_type, 0),
4414 NULL_TREE))
4415 return NULL_TREE;
4417 in_p = n_in_p, low = n_low, high = n_high;
4419 /* If the high bound is missing, but we have a nonzero low
4420 bound, reverse the range so it goes from zero to the low bound
4421 minus 1. */
4422 if (high == 0 && low && ! integer_zerop (low))
4424 in_p = ! in_p;
4425 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4426 build_int_cst (TREE_TYPE (low), 1), 0);
4427 low = build_int_cst (arg0_type, 0);
4431 *p_low = low;
4432 *p_high = high;
4433 *p_in_p = in_p;
4434 return arg0;
4436 case NEGATE_EXPR:
4437 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4438 low and high are non-NULL, then normalize will DTRT. */
4439 if (!TYPE_UNSIGNED (arg0_type)
4440 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4442 if (low == NULL_TREE)
4443 low = TYPE_MIN_VALUE (arg0_type);
4444 if (high == NULL_TREE)
4445 high = TYPE_MAX_VALUE (arg0_type);
4448 /* (-x) IN [a,b] -> x in [-b, -a] */
4449 n_low = range_binop (MINUS_EXPR, exp_type,
4450 build_int_cst (exp_type, 0),
4451 0, high, 1);
4452 n_high = range_binop (MINUS_EXPR, exp_type,
4453 build_int_cst (exp_type, 0),
4454 0, low, 0);
4455 if (n_high != 0 && TREE_OVERFLOW (n_high))
4456 return NULL_TREE;
4457 goto normalize;
4459 case BIT_NOT_EXPR:
4460 /* ~ X -> -X - 1 */
4461 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4462 build_int_cst (exp_type, 1));
4464 case PLUS_EXPR:
4465 case MINUS_EXPR:
4466 if (TREE_CODE (arg1) != INTEGER_CST)
4467 return NULL_TREE;
4469 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4470 move a constant to the other side. */
4471 if (!TYPE_UNSIGNED (arg0_type)
4472 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4473 return NULL_TREE;
4475 /* If EXP is signed, any overflow in the computation is undefined,
4476 so we don't worry about it so long as our computations on
4477 the bounds don't overflow. For unsigned, overflow is defined
4478 and this is exactly the right thing. */
4479 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4480 arg0_type, low, 0, arg1, 0);
4481 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4482 arg0_type, high, 1, arg1, 0);
4483 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4484 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4485 return NULL_TREE;
4487 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4488 *strict_overflow_p = true;
4490 normalize:
4491 /* Check for an unsigned range which has wrapped around the maximum
4492 value thus making n_high < n_low, and normalize it. */
4493 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4495 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4496 build_int_cst (TREE_TYPE (n_high), 1), 0);
4497 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4498 build_int_cst (TREE_TYPE (n_low), 1), 0);
4500 /* If the range is of the form +/- [ x+1, x ], we won't
4501 be able to normalize it. But then, it represents the
4502 whole range or the empty set, so make it
4503 +/- [ -, - ]. */
4504 if (tree_int_cst_equal (n_low, low)
4505 && tree_int_cst_equal (n_high, high))
4506 low = high = 0;
4507 else
4508 in_p = ! in_p;
4510 else
4511 low = n_low, high = n_high;
4513 *p_low = low;
4514 *p_high = high;
4515 *p_in_p = in_p;
4516 return arg0;
4518 CASE_CONVERT:
4519 case NON_LVALUE_EXPR:
4520 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4521 return NULL_TREE;
4523 if (! INTEGRAL_TYPE_P (arg0_type)
4524 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4525 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4526 return NULL_TREE;
4528 n_low = low, n_high = high;
4530 if (n_low != 0)
4531 n_low = fold_convert_loc (loc, arg0_type, n_low);
4533 if (n_high != 0)
4534 n_high = fold_convert_loc (loc, arg0_type, n_high);
4536 /* If we're converting arg0 from an unsigned type, to exp,
4537 a signed type, we will be doing the comparison as unsigned.
4538 The tests above have already verified that LOW and HIGH
4539 are both positive.
4541 So we have to ensure that we will handle large unsigned
4542 values the same way that the current signed bounds treat
4543 negative values. */
4545 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4547 tree high_positive;
4548 tree equiv_type;
4549 /* For fixed-point modes, we need to pass the saturating flag
4550 as the 2nd parameter. */
4551 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4552 equiv_type
4553 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4554 TYPE_SATURATING (arg0_type));
4555 else
4556 equiv_type
4557 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4559 /* A range without an upper bound is, naturally, unbounded.
4560 Since convert would have cropped a very large value, use
4561 the max value for the destination type. */
4562 high_positive
4563 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4564 : TYPE_MAX_VALUE (arg0_type);
4566 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4567 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4568 fold_convert_loc (loc, arg0_type,
4569 high_positive),
4570 build_int_cst (arg0_type, 1));
4572 /* If the low bound is specified, "and" the range with the
4573 range for which the original unsigned value will be
4574 positive. */
4575 if (low != 0)
4577 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4578 1, fold_convert_loc (loc, arg0_type,
4579 integer_zero_node),
4580 high_positive))
4581 return NULL_TREE;
4583 in_p = (n_in_p == in_p);
4585 else
4587 /* Otherwise, "or" the range with the range of the input
4588 that will be interpreted as negative. */
4589 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4590 1, fold_convert_loc (loc, arg0_type,
4591 integer_zero_node),
4592 high_positive))
4593 return NULL_TREE;
4595 in_p = (in_p != n_in_p);
4599 *p_low = n_low;
4600 *p_high = n_high;
4601 *p_in_p = in_p;
4602 return arg0;
4604 default:
4605 return NULL_TREE;
4609 /* Given EXP, a logical expression, set the range it is testing into
4610 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4611 actually being tested. *PLOW and *PHIGH will be made of the same
4612 type as the returned expression. If EXP is not a comparison, we
4613 will most likely not be returning a useful value and range. Set
4614 *STRICT_OVERFLOW_P to true if the return value is only valid
4615 because signed overflow is undefined; otherwise, do not change
4616 *STRICT_OVERFLOW_P. */
4618 tree
4619 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4620 bool *strict_overflow_p)
4622 enum tree_code code;
4623 tree arg0, arg1 = NULL_TREE;
4624 tree exp_type, nexp;
4625 int in_p;
4626 tree low, high;
4627 location_t loc = EXPR_LOCATION (exp);
4629 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4630 and see if we can refine the range. Some of the cases below may not
4631 happen, but it doesn't seem worth worrying about this. We "continue"
4632 the outer loop when we've changed something; otherwise we "break"
4633 the switch, which will "break" the while. */
4635 in_p = 0;
4636 low = high = build_int_cst (TREE_TYPE (exp), 0);
4638 while (1)
4640 code = TREE_CODE (exp);
4641 exp_type = TREE_TYPE (exp);
4642 arg0 = NULL_TREE;
4644 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4646 if (TREE_OPERAND_LENGTH (exp) > 0)
4647 arg0 = TREE_OPERAND (exp, 0);
4648 if (TREE_CODE_CLASS (code) == tcc_binary
4649 || TREE_CODE_CLASS (code) == tcc_comparison
4650 || (TREE_CODE_CLASS (code) == tcc_expression
4651 && TREE_OPERAND_LENGTH (exp) > 1))
4652 arg1 = TREE_OPERAND (exp, 1);
4654 if (arg0 == NULL_TREE)
4655 break;
4657 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4658 &high, &in_p, strict_overflow_p);
4659 if (nexp == NULL_TREE)
4660 break;
4661 exp = nexp;
4664 /* If EXP is a constant, we can evaluate whether this is true or false. */
4665 if (TREE_CODE (exp) == INTEGER_CST)
4667 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4668 exp, 0, low, 0))
4669 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4670 exp, 1, high, 1)));
4671 low = high = 0;
4672 exp = 0;
4675 *pin_p = in_p, *plow = low, *phigh = high;
4676 return exp;
4679 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4680 a bitwise check i.e. when
4681 LOW == 0xXX...X00...0
4682 HIGH == 0xXX...X11...1
4683 Return corresponding mask in MASK and stem in VALUE. */
4685 static bool
4686 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask,
4687 tree *value)
4689 if (TREE_CODE (low) != INTEGER_CST
4690 || TREE_CODE (high) != INTEGER_CST)
4691 return false;
4693 unsigned prec = TYPE_PRECISION (type);
4694 wide_int lo = wi::to_wide (low, prec);
4695 wide_int hi = wi::to_wide (high, prec);
4697 wide_int end_mask = lo ^ hi;
4698 if ((end_mask & (end_mask + 1)) != 0
4699 || (lo & end_mask) != 0)
4700 return false;
4702 wide_int stem_mask = ~end_mask;
4703 wide_int stem = lo & stem_mask;
4704 if (stem != (hi & stem_mask))
4705 return false;
4707 *mask = wide_int_to_tree (type, stem_mask);
4708 *value = wide_int_to_tree (type, stem);
4710 return true;
4713 /* Helper routine for build_range_check and match.pd. Return the type to
4714 perform the check or NULL if it shouldn't be optimized. */
4716 tree
4717 range_check_type (tree etype)
4719 /* First make sure that arithmetics in this type is valid, then make sure
4720 that it wraps around. */
4721 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4722 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4723 TYPE_UNSIGNED (etype));
4725 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4727 tree utype, minv, maxv;
4729 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4730 for the type in question, as we rely on this here. */
4731 utype = unsigned_type_for (etype);
4732 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4733 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4734 build_int_cst (TREE_TYPE (maxv), 1), 1);
4735 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4737 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4738 minv, 1, maxv, 1)))
4739 etype = utype;
4740 else
4741 return NULL_TREE;
4743 return etype;
4746 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4747 type, TYPE, return an expression to test if EXP is in (or out of, depending
4748 on IN_P) the range. Return 0 if the test couldn't be created. */
4750 tree
4751 build_range_check (location_t loc, tree type, tree exp, int in_p,
4752 tree low, tree high)
4754 tree etype = TREE_TYPE (exp), mask, value;
4756 /* Disable this optimization for function pointer expressions
4757 on targets that require function pointer canonicalization. */
4758 if (targetm.have_canonicalize_funcptr_for_compare ()
4759 && TREE_CODE (etype) == POINTER_TYPE
4760 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4761 return NULL_TREE;
4763 if (! in_p)
4765 value = build_range_check (loc, type, exp, 1, low, high);
4766 if (value != 0)
4767 return invert_truthvalue_loc (loc, value);
4769 return 0;
4772 if (low == 0 && high == 0)
4773 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4775 if (low == 0)
4776 return fold_build2_loc (loc, LE_EXPR, type, exp,
4777 fold_convert_loc (loc, etype, high));
4779 if (high == 0)
4780 return fold_build2_loc (loc, GE_EXPR, type, exp,
4781 fold_convert_loc (loc, etype, low));
4783 if (operand_equal_p (low, high, 0))
4784 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4785 fold_convert_loc (loc, etype, low));
4787 if (TREE_CODE (exp) == BIT_AND_EXPR
4788 && maskable_range_p (low, high, etype, &mask, &value))
4789 return fold_build2_loc (loc, EQ_EXPR, type,
4790 fold_build2_loc (loc, BIT_AND_EXPR, etype,
4791 exp, mask),
4792 value);
4794 if (integer_zerop (low))
4796 if (! TYPE_UNSIGNED (etype))
4798 etype = unsigned_type_for (etype);
4799 high = fold_convert_loc (loc, etype, high);
4800 exp = fold_convert_loc (loc, etype, exp);
4802 return build_range_check (loc, type, exp, 1, 0, high);
4805 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4806 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4808 int prec = TYPE_PRECISION (etype);
4810 if (wi::mask <widest_int> (prec - 1, false) == wi::to_widest (high))
4812 if (TYPE_UNSIGNED (etype))
4814 tree signed_etype = signed_type_for (etype);
4815 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4816 etype
4817 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4818 else
4819 etype = signed_etype;
4820 exp = fold_convert_loc (loc, etype, exp);
4822 return fold_build2_loc (loc, GT_EXPR, type, exp,
4823 build_int_cst (etype, 0));
4827 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4828 This requires wrap-around arithmetics for the type of the expression. */
4829 etype = range_check_type (etype);
4830 if (etype == NULL_TREE)
4831 return NULL_TREE;
4833 if (POINTER_TYPE_P (etype))
4834 etype = unsigned_type_for (etype);
4836 high = fold_convert_loc (loc, etype, high);
4837 low = fold_convert_loc (loc, etype, low);
4838 exp = fold_convert_loc (loc, etype, exp);
4840 value = const_binop (MINUS_EXPR, high, low);
4842 if (value != 0 && !TREE_OVERFLOW (value))
4843 return build_range_check (loc, type,
4844 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4845 1, build_int_cst (etype, 0), value);
4847 return 0;
4850 /* Return the predecessor of VAL in its type, handling the infinite case. */
4852 static tree
4853 range_predecessor (tree val)
4855 tree type = TREE_TYPE (val);
4857 if (INTEGRAL_TYPE_P (type)
4858 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4859 return 0;
4860 else
4861 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4862 build_int_cst (TREE_TYPE (val), 1), 0);
4865 /* Return the successor of VAL in its type, handling the infinite case. */
4867 static tree
4868 range_successor (tree val)
4870 tree type = TREE_TYPE (val);
4872 if (INTEGRAL_TYPE_P (type)
4873 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4874 return 0;
4875 else
4876 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4877 build_int_cst (TREE_TYPE (val), 1), 0);
4880 /* Given two ranges, see if we can merge them into one. Return 1 if we
4881 can, 0 if we can't. Set the output range into the specified parameters. */
4883 bool
4884 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4885 tree high0, int in1_p, tree low1, tree high1)
4887 int no_overlap;
4888 int subset;
4889 int temp;
4890 tree tem;
4891 int in_p;
4892 tree low, high;
4893 int lowequal = ((low0 == 0 && low1 == 0)
4894 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4895 low0, 0, low1, 0)));
4896 int highequal = ((high0 == 0 && high1 == 0)
4897 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4898 high0, 1, high1, 1)));
4900 /* Make range 0 be the range that starts first, or ends last if they
4901 start at the same value. Swap them if it isn't. */
4902 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4903 low0, 0, low1, 0))
4904 || (lowequal
4905 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4906 high1, 1, high0, 1))))
4908 temp = in0_p, in0_p = in1_p, in1_p = temp;
4909 tem = low0, low0 = low1, low1 = tem;
4910 tem = high0, high0 = high1, high1 = tem;
4913 /* Now flag two cases, whether the ranges are disjoint or whether the
4914 second range is totally subsumed in the first. Note that the tests
4915 below are simplified by the ones above. */
4916 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4917 high0, 1, low1, 0));
4918 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4919 high1, 1, high0, 1));
4921 /* We now have four cases, depending on whether we are including or
4922 excluding the two ranges. */
4923 if (in0_p && in1_p)
4925 /* If they don't overlap, the result is false. If the second range
4926 is a subset it is the result. Otherwise, the range is from the start
4927 of the second to the end of the first. */
4928 if (no_overlap)
4929 in_p = 0, low = high = 0;
4930 else if (subset)
4931 in_p = 1, low = low1, high = high1;
4932 else
4933 in_p = 1, low = low1, high = high0;
4936 else if (in0_p && ! in1_p)
4938 /* If they don't overlap, the result is the first range. If they are
4939 equal, the result is false. If the second range is a subset of the
4940 first, and the ranges begin at the same place, we go from just after
4941 the end of the second range to the end of the first. If the second
4942 range is not a subset of the first, or if it is a subset and both
4943 ranges end at the same place, the range starts at the start of the
4944 first range and ends just before the second range.
4945 Otherwise, we can't describe this as a single range. */
4946 if (no_overlap)
4947 in_p = 1, low = low0, high = high0;
4948 else if (lowequal && highequal)
4949 in_p = 0, low = high = 0;
4950 else if (subset && lowequal)
4952 low = range_successor (high1);
4953 high = high0;
4954 in_p = 1;
4955 if (low == 0)
4957 /* We are in the weird situation where high0 > high1 but
4958 high1 has no successor. Punt. */
4959 return 0;
4962 else if (! subset || highequal)
4964 low = low0;
4965 high = range_predecessor (low1);
4966 in_p = 1;
4967 if (high == 0)
4969 /* low0 < low1 but low1 has no predecessor. Punt. */
4970 return 0;
4973 else
4974 return 0;
4977 else if (! in0_p && in1_p)
4979 /* If they don't overlap, the result is the second range. If the second
4980 is a subset of the first, the result is false. Otherwise,
4981 the range starts just after the first range and ends at the
4982 end of the second. */
4983 if (no_overlap)
4984 in_p = 1, low = low1, high = high1;
4985 else if (subset || highequal)
4986 in_p = 0, low = high = 0;
4987 else
4989 low = range_successor (high0);
4990 high = high1;
4991 in_p = 1;
4992 if (low == 0)
4994 /* high1 > high0 but high0 has no successor. Punt. */
4995 return 0;
5000 else
5002 /* The case where we are excluding both ranges. Here the complex case
5003 is if they don't overlap. In that case, the only time we have a
5004 range is if they are adjacent. If the second is a subset of the
5005 first, the result is the first. Otherwise, the range to exclude
5006 starts at the beginning of the first range and ends at the end of the
5007 second. */
5008 if (no_overlap)
5010 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5011 range_successor (high0),
5012 1, low1, 0)))
5013 in_p = 0, low = low0, high = high1;
5014 else
5016 /* Canonicalize - [min, x] into - [-, x]. */
5017 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5018 switch (TREE_CODE (TREE_TYPE (low0)))
5020 case ENUMERAL_TYPE:
5021 if (TYPE_PRECISION (TREE_TYPE (low0))
5022 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
5023 break;
5024 /* FALLTHROUGH */
5025 case INTEGER_TYPE:
5026 if (tree_int_cst_equal (low0,
5027 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5028 low0 = 0;
5029 break;
5030 case POINTER_TYPE:
5031 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5032 && integer_zerop (low0))
5033 low0 = 0;
5034 break;
5035 default:
5036 break;
5039 /* Canonicalize - [x, max] into - [x, -]. */
5040 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5041 switch (TREE_CODE (TREE_TYPE (high1)))
5043 case ENUMERAL_TYPE:
5044 if (TYPE_PRECISION (TREE_TYPE (high1))
5045 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
5046 break;
5047 /* FALLTHROUGH */
5048 case INTEGER_TYPE:
5049 if (tree_int_cst_equal (high1,
5050 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5051 high1 = 0;
5052 break;
5053 case POINTER_TYPE:
5054 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5055 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5056 high1, 1,
5057 build_int_cst (TREE_TYPE (high1), 1),
5058 1)))
5059 high1 = 0;
5060 break;
5061 default:
5062 break;
5065 /* The ranges might be also adjacent between the maximum and
5066 minimum values of the given type. For
5067 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5068 return + [x + 1, y - 1]. */
5069 if (low0 == 0 && high1 == 0)
5071 low = range_successor (high0);
5072 high = range_predecessor (low1);
5073 if (low == 0 || high == 0)
5074 return 0;
5076 in_p = 1;
5078 else
5079 return 0;
5082 else if (subset)
5083 in_p = 0, low = low0, high = high0;
5084 else
5085 in_p = 0, low = low0, high = high1;
5088 *pin_p = in_p, *plow = low, *phigh = high;
5089 return 1;
5093 /* Subroutine of fold, looking inside expressions of the form
5094 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5095 of the COND_EXPR. This function is being used also to optimize
5096 A op B ? C : A, by reversing the comparison first.
5098 Return a folded expression whose code is not a COND_EXPR
5099 anymore, or NULL_TREE if no folding opportunity is found. */
5101 static tree
5102 fold_cond_expr_with_comparison (location_t loc, tree type,
5103 tree arg0, tree arg1, tree arg2)
5105 enum tree_code comp_code = TREE_CODE (arg0);
5106 tree arg00 = TREE_OPERAND (arg0, 0);
5107 tree arg01 = TREE_OPERAND (arg0, 1);
5108 tree arg1_type = TREE_TYPE (arg1);
5109 tree tem;
5111 STRIP_NOPS (arg1);
5112 STRIP_NOPS (arg2);
5114 /* If we have A op 0 ? A : -A, consider applying the following
5115 transformations:
5117 A == 0? A : -A same as -A
5118 A != 0? A : -A same as A
5119 A >= 0? A : -A same as abs (A)
5120 A > 0? A : -A same as abs (A)
5121 A <= 0? A : -A same as -abs (A)
5122 A < 0? A : -A same as -abs (A)
5124 None of these transformations work for modes with signed
5125 zeros. If A is +/-0, the first two transformations will
5126 change the sign of the result (from +0 to -0, or vice
5127 versa). The last four will fix the sign of the result,
5128 even though the original expressions could be positive or
5129 negative, depending on the sign of A.
5131 Note that all these transformations are correct if A is
5132 NaN, since the two alternatives (A and -A) are also NaNs. */
5133 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5134 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5135 ? real_zerop (arg01)
5136 : integer_zerop (arg01))
5137 && ((TREE_CODE (arg2) == NEGATE_EXPR
5138 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5139 /* In the case that A is of the form X-Y, '-A' (arg2) may
5140 have already been folded to Y-X, check for that. */
5141 || (TREE_CODE (arg1) == MINUS_EXPR
5142 && TREE_CODE (arg2) == MINUS_EXPR
5143 && operand_equal_p (TREE_OPERAND (arg1, 0),
5144 TREE_OPERAND (arg2, 1), 0)
5145 && operand_equal_p (TREE_OPERAND (arg1, 1),
5146 TREE_OPERAND (arg2, 0), 0))))
5147 switch (comp_code)
5149 case EQ_EXPR:
5150 case UNEQ_EXPR:
5151 tem = fold_convert_loc (loc, arg1_type, arg1);
5152 return fold_convert_loc (loc, type, negate_expr (tem));
5153 case NE_EXPR:
5154 case LTGT_EXPR:
5155 return fold_convert_loc (loc, type, arg1);
5156 case UNGE_EXPR:
5157 case UNGT_EXPR:
5158 if (flag_trapping_math)
5159 break;
5160 /* Fall through. */
5161 case GE_EXPR:
5162 case GT_EXPR:
5163 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5164 break;
5165 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5166 return fold_convert_loc (loc, type, tem);
5167 case UNLE_EXPR:
5168 case UNLT_EXPR:
5169 if (flag_trapping_math)
5170 break;
5171 /* FALLTHRU */
5172 case LE_EXPR:
5173 case LT_EXPR:
5174 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5175 break;
5176 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5177 return negate_expr (fold_convert_loc (loc, type, tem));
5178 default:
5179 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5180 break;
5183 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5184 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5185 both transformations are correct when A is NaN: A != 0
5186 is then true, and A == 0 is false. */
5188 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5189 && integer_zerop (arg01) && integer_zerop (arg2))
5191 if (comp_code == NE_EXPR)
5192 return fold_convert_loc (loc, type, arg1);
5193 else if (comp_code == EQ_EXPR)
5194 return build_zero_cst (type);
5197 /* Try some transformations of A op B ? A : B.
5199 A == B? A : B same as B
5200 A != B? A : B same as A
5201 A >= B? A : B same as max (A, B)
5202 A > B? A : B same as max (B, A)
5203 A <= B? A : B same as min (A, B)
5204 A < B? A : B same as min (B, A)
5206 As above, these transformations don't work in the presence
5207 of signed zeros. For example, if A and B are zeros of
5208 opposite sign, the first two transformations will change
5209 the sign of the result. In the last four, the original
5210 expressions give different results for (A=+0, B=-0) and
5211 (A=-0, B=+0), but the transformed expressions do not.
5213 The first two transformations are correct if either A or B
5214 is a NaN. In the first transformation, the condition will
5215 be false, and B will indeed be chosen. In the case of the
5216 second transformation, the condition A != B will be true,
5217 and A will be chosen.
5219 The conversions to max() and min() are not correct if B is
5220 a number and A is not. The conditions in the original
5221 expressions will be false, so all four give B. The min()
5222 and max() versions would give a NaN instead. */
5223 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5224 && operand_equal_for_comparison_p (arg01, arg2)
5225 /* Avoid these transformations if the COND_EXPR may be used
5226 as an lvalue in the C++ front-end. PR c++/19199. */
5227 && (in_gimple_form
5228 || VECTOR_TYPE_P (type)
5229 || (! lang_GNU_CXX ()
5230 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5231 || ! maybe_lvalue_p (arg1)
5232 || ! maybe_lvalue_p (arg2)))
5234 tree comp_op0 = arg00;
5235 tree comp_op1 = arg01;
5236 tree comp_type = TREE_TYPE (comp_op0);
5238 switch (comp_code)
5240 case EQ_EXPR:
5241 return fold_convert_loc (loc, type, arg2);
5242 case NE_EXPR:
5243 return fold_convert_loc (loc, type, arg1);
5244 case LE_EXPR:
5245 case LT_EXPR:
5246 case UNLE_EXPR:
5247 case UNLT_EXPR:
5248 /* In C++ a ?: expression can be an lvalue, so put the
5249 operand which will be used if they are equal first
5250 so that we can convert this back to the
5251 corresponding COND_EXPR. */
5252 if (!HONOR_NANS (arg1))
5254 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5255 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5256 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5257 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5258 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5259 comp_op1, comp_op0);
5260 return fold_convert_loc (loc, type, tem);
5262 break;
5263 case GE_EXPR:
5264 case GT_EXPR:
5265 case UNGE_EXPR:
5266 case UNGT_EXPR:
5267 if (!HONOR_NANS (arg1))
5269 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5270 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5271 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5272 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5273 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5274 comp_op1, comp_op0);
5275 return fold_convert_loc (loc, type, tem);
5277 break;
5278 case UNEQ_EXPR:
5279 if (!HONOR_NANS (arg1))
5280 return fold_convert_loc (loc, type, arg2);
5281 break;
5282 case LTGT_EXPR:
5283 if (!HONOR_NANS (arg1))
5284 return fold_convert_loc (loc, type, arg1);
5285 break;
5286 default:
5287 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5288 break;
5292 return NULL_TREE;
5297 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5298 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5299 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5300 false) >= 2)
5301 #endif
5303 /* EXP is some logical combination of boolean tests. See if we can
5304 merge it into some range test. Return the new tree if so. */
5306 static tree
5307 fold_range_test (location_t loc, enum tree_code code, tree type,
5308 tree op0, tree op1)
5310 int or_op = (code == TRUTH_ORIF_EXPR
5311 || code == TRUTH_OR_EXPR);
5312 int in0_p, in1_p, in_p;
5313 tree low0, low1, low, high0, high1, high;
5314 bool strict_overflow_p = false;
5315 tree tem, lhs, rhs;
5316 const char * const warnmsg = G_("assuming signed overflow does not occur "
5317 "when simplifying range test");
5319 if (!INTEGRAL_TYPE_P (type))
5320 return 0;
5322 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5323 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5325 /* If this is an OR operation, invert both sides; we will invert
5326 again at the end. */
5327 if (or_op)
5328 in0_p = ! in0_p, in1_p = ! in1_p;
5330 /* If both expressions are the same, if we can merge the ranges, and we
5331 can build the range test, return it or it inverted. If one of the
5332 ranges is always true or always false, consider it to be the same
5333 expression as the other. */
5334 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5335 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5336 in1_p, low1, high1)
5337 && 0 != (tem = (build_range_check (loc, type,
5338 lhs != 0 ? lhs
5339 : rhs != 0 ? rhs : integer_zero_node,
5340 in_p, low, high))))
5342 if (strict_overflow_p)
5343 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5344 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5347 /* On machines where the branch cost is expensive, if this is a
5348 short-circuited branch and the underlying object on both sides
5349 is the same, make a non-short-circuit operation. */
5350 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5351 && !flag_sanitize_coverage
5352 && lhs != 0 && rhs != 0
5353 && (code == TRUTH_ANDIF_EXPR
5354 || code == TRUTH_ORIF_EXPR)
5355 && operand_equal_p (lhs, rhs, 0))
5357 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5358 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5359 which cases we can't do this. */
5360 if (simple_operand_p (lhs))
5361 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5362 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5363 type, op0, op1);
5365 else if (!lang_hooks.decls.global_bindings_p ()
5366 && !CONTAINS_PLACEHOLDER_P (lhs))
5368 tree common = save_expr (lhs);
5370 if (0 != (lhs = build_range_check (loc, type, common,
5371 or_op ? ! in0_p : in0_p,
5372 low0, high0))
5373 && (0 != (rhs = build_range_check (loc, type, common,
5374 or_op ? ! in1_p : in1_p,
5375 low1, high1))))
5377 if (strict_overflow_p)
5378 fold_overflow_warning (warnmsg,
5379 WARN_STRICT_OVERFLOW_COMPARISON);
5380 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5381 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5382 type, lhs, rhs);
5387 return 0;
5390 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5391 bit value. Arrange things so the extra bits will be set to zero if and
5392 only if C is signed-extended to its full width. If MASK is nonzero,
5393 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5395 static tree
5396 unextend (tree c, int p, int unsignedp, tree mask)
5398 tree type = TREE_TYPE (c);
5399 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type));
5400 tree temp;
5402 if (p == modesize || unsignedp)
5403 return c;
5405 /* We work by getting just the sign bit into the low-order bit, then
5406 into the high-order bit, then sign-extend. We then XOR that value
5407 with C. */
5408 temp = build_int_cst (TREE_TYPE (c),
5409 wi::extract_uhwi (wi::to_wide (c), p - 1, 1));
5411 /* We must use a signed type in order to get an arithmetic right shift.
5412 However, we must also avoid introducing accidental overflows, so that
5413 a subsequent call to integer_zerop will work. Hence we must
5414 do the type conversion here. At this point, the constant is either
5415 zero or one, and the conversion to a signed type can never overflow.
5416 We could get an overflow if this conversion is done anywhere else. */
5417 if (TYPE_UNSIGNED (type))
5418 temp = fold_convert (signed_type_for (type), temp);
5420 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5421 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5422 if (mask != 0)
5423 temp = const_binop (BIT_AND_EXPR, temp,
5424 fold_convert (TREE_TYPE (c), mask));
5425 /* If necessary, convert the type back to match the type of C. */
5426 if (TYPE_UNSIGNED (type))
5427 temp = fold_convert (type, temp);
5429 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5432 /* For an expression that has the form
5433 (A && B) || ~B
5435 (A || B) && ~B,
5436 we can drop one of the inner expressions and simplify to
5437 A || ~B
5439 A && ~B
5440 LOC is the location of the resulting expression. OP is the inner
5441 logical operation; the left-hand side in the examples above, while CMPOP
5442 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5443 removing a condition that guards another, as in
5444 (A != NULL && A->...) || A == NULL
5445 which we must not transform. If RHS_ONLY is true, only eliminate the
5446 right-most operand of the inner logical operation. */
5448 static tree
5449 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5450 bool rhs_only)
5452 tree type = TREE_TYPE (cmpop);
5453 enum tree_code code = TREE_CODE (cmpop);
5454 enum tree_code truthop_code = TREE_CODE (op);
5455 tree lhs = TREE_OPERAND (op, 0);
5456 tree rhs = TREE_OPERAND (op, 1);
5457 tree orig_lhs = lhs, orig_rhs = rhs;
5458 enum tree_code rhs_code = TREE_CODE (rhs);
5459 enum tree_code lhs_code = TREE_CODE (lhs);
5460 enum tree_code inv_code;
5462 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5463 return NULL_TREE;
5465 if (TREE_CODE_CLASS (code) != tcc_comparison)
5466 return NULL_TREE;
5468 if (rhs_code == truthop_code)
5470 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5471 if (newrhs != NULL_TREE)
5473 rhs = newrhs;
5474 rhs_code = TREE_CODE (rhs);
5477 if (lhs_code == truthop_code && !rhs_only)
5479 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5480 if (newlhs != NULL_TREE)
5482 lhs = newlhs;
5483 lhs_code = TREE_CODE (lhs);
5487 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5488 if (inv_code == rhs_code
5489 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5490 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5491 return lhs;
5492 if (!rhs_only && inv_code == lhs_code
5493 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5494 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5495 return rhs;
5496 if (rhs != orig_rhs || lhs != orig_lhs)
5497 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5498 lhs, rhs);
5499 return NULL_TREE;
5502 /* Find ways of folding logical expressions of LHS and RHS:
5503 Try to merge two comparisons to the same innermost item.
5504 Look for range tests like "ch >= '0' && ch <= '9'".
5505 Look for combinations of simple terms on machines with expensive branches
5506 and evaluate the RHS unconditionally.
5508 For example, if we have p->a == 2 && p->b == 4 and we can make an
5509 object large enough to span both A and B, we can do this with a comparison
5510 against the object ANDed with the a mask.
5512 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5513 operations to do this with one comparison.
5515 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5516 function and the one above.
5518 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5519 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5521 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5522 two operands.
5524 We return the simplified tree or 0 if no optimization is possible. */
5526 static tree
5527 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5528 tree lhs, tree rhs)
5530 /* If this is the "or" of two comparisons, we can do something if
5531 the comparisons are NE_EXPR. If this is the "and", we can do something
5532 if the comparisons are EQ_EXPR. I.e.,
5533 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5535 WANTED_CODE is this operation code. For single bit fields, we can
5536 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5537 comparison for one-bit fields. */
5539 enum tree_code wanted_code;
5540 enum tree_code lcode, rcode;
5541 tree ll_arg, lr_arg, rl_arg, rr_arg;
5542 tree ll_inner, lr_inner, rl_inner, rr_inner;
5543 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5544 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5545 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5546 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5547 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5548 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5549 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5550 scalar_int_mode lnmode, rnmode;
5551 tree ll_mask, lr_mask, rl_mask, rr_mask;
5552 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5553 tree l_const, r_const;
5554 tree lntype, rntype, result;
5555 HOST_WIDE_INT first_bit, end_bit;
5556 int volatilep;
5558 /* Start by getting the comparison codes. Fail if anything is volatile.
5559 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5560 it were surrounded with a NE_EXPR. */
5562 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5563 return 0;
5565 lcode = TREE_CODE (lhs);
5566 rcode = TREE_CODE (rhs);
5568 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5570 lhs = build2 (NE_EXPR, truth_type, lhs,
5571 build_int_cst (TREE_TYPE (lhs), 0));
5572 lcode = NE_EXPR;
5575 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5577 rhs = build2 (NE_EXPR, truth_type, rhs,
5578 build_int_cst (TREE_TYPE (rhs), 0));
5579 rcode = NE_EXPR;
5582 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5583 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5584 return 0;
5586 ll_arg = TREE_OPERAND (lhs, 0);
5587 lr_arg = TREE_OPERAND (lhs, 1);
5588 rl_arg = TREE_OPERAND (rhs, 0);
5589 rr_arg = TREE_OPERAND (rhs, 1);
5591 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5592 if (simple_operand_p (ll_arg)
5593 && simple_operand_p (lr_arg))
5595 if (operand_equal_p (ll_arg, rl_arg, 0)
5596 && operand_equal_p (lr_arg, rr_arg, 0))
5598 result = combine_comparisons (loc, code, lcode, rcode,
5599 truth_type, ll_arg, lr_arg);
5600 if (result)
5601 return result;
5603 else if (operand_equal_p (ll_arg, rr_arg, 0)
5604 && operand_equal_p (lr_arg, rl_arg, 0))
5606 result = combine_comparisons (loc, code, lcode,
5607 swap_tree_comparison (rcode),
5608 truth_type, ll_arg, lr_arg);
5609 if (result)
5610 return result;
5614 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5615 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5617 /* If the RHS can be evaluated unconditionally and its operands are
5618 simple, it wins to evaluate the RHS unconditionally on machines
5619 with expensive branches. In this case, this isn't a comparison
5620 that can be merged. */
5622 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5623 false) >= 2
5624 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5625 && simple_operand_p (rl_arg)
5626 && simple_operand_p (rr_arg))
5628 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5629 if (code == TRUTH_OR_EXPR
5630 && lcode == NE_EXPR && integer_zerop (lr_arg)
5631 && rcode == NE_EXPR && integer_zerop (rr_arg)
5632 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5633 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5634 return build2_loc (loc, NE_EXPR, truth_type,
5635 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5636 ll_arg, rl_arg),
5637 build_int_cst (TREE_TYPE (ll_arg), 0));
5639 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5640 if (code == TRUTH_AND_EXPR
5641 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5642 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5643 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5644 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5645 return build2_loc (loc, EQ_EXPR, truth_type,
5646 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5647 ll_arg, rl_arg),
5648 build_int_cst (TREE_TYPE (ll_arg), 0));
5651 /* See if the comparisons can be merged. Then get all the parameters for
5652 each side. */
5654 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5655 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5656 return 0;
5658 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5659 volatilep = 0;
5660 ll_inner = decode_field_reference (loc, &ll_arg,
5661 &ll_bitsize, &ll_bitpos, &ll_mode,
5662 &ll_unsignedp, &ll_reversep, &volatilep,
5663 &ll_mask, &ll_and_mask);
5664 lr_inner = decode_field_reference (loc, &lr_arg,
5665 &lr_bitsize, &lr_bitpos, &lr_mode,
5666 &lr_unsignedp, &lr_reversep, &volatilep,
5667 &lr_mask, &lr_and_mask);
5668 rl_inner = decode_field_reference (loc, &rl_arg,
5669 &rl_bitsize, &rl_bitpos, &rl_mode,
5670 &rl_unsignedp, &rl_reversep, &volatilep,
5671 &rl_mask, &rl_and_mask);
5672 rr_inner = decode_field_reference (loc, &rr_arg,
5673 &rr_bitsize, &rr_bitpos, &rr_mode,
5674 &rr_unsignedp, &rr_reversep, &volatilep,
5675 &rr_mask, &rr_and_mask);
5677 /* It must be true that the inner operation on the lhs of each
5678 comparison must be the same if we are to be able to do anything.
5679 Then see if we have constants. If not, the same must be true for
5680 the rhs's. */
5681 if (volatilep
5682 || ll_reversep != rl_reversep
5683 || ll_inner == 0 || rl_inner == 0
5684 || ! operand_equal_p (ll_inner, rl_inner, 0))
5685 return 0;
5687 if (TREE_CODE (lr_arg) == INTEGER_CST
5688 && TREE_CODE (rr_arg) == INTEGER_CST)
5690 l_const = lr_arg, r_const = rr_arg;
5691 lr_reversep = ll_reversep;
5693 else if (lr_reversep != rr_reversep
5694 || lr_inner == 0 || rr_inner == 0
5695 || ! operand_equal_p (lr_inner, rr_inner, 0))
5696 return 0;
5697 else
5698 l_const = r_const = 0;
5700 /* If either comparison code is not correct for our logical operation,
5701 fail. However, we can convert a one-bit comparison against zero into
5702 the opposite comparison against that bit being set in the field. */
5704 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5705 if (lcode != wanted_code)
5707 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5709 /* Make the left operand unsigned, since we are only interested
5710 in the value of one bit. Otherwise we are doing the wrong
5711 thing below. */
5712 ll_unsignedp = 1;
5713 l_const = ll_mask;
5715 else
5716 return 0;
5719 /* This is analogous to the code for l_const above. */
5720 if (rcode != wanted_code)
5722 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5724 rl_unsignedp = 1;
5725 r_const = rl_mask;
5727 else
5728 return 0;
5731 /* See if we can find a mode that contains both fields being compared on
5732 the left. If we can't, fail. Otherwise, update all constants and masks
5733 to be relative to a field of that size. */
5734 first_bit = MIN (ll_bitpos, rl_bitpos);
5735 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5736 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5737 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD,
5738 volatilep, &lnmode))
5739 return 0;
5741 lnbitsize = GET_MODE_BITSIZE (lnmode);
5742 lnbitpos = first_bit & ~ (lnbitsize - 1);
5743 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5744 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5746 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5748 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5749 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5752 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5753 size_int (xll_bitpos));
5754 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5755 size_int (xrl_bitpos));
5757 if (l_const)
5759 l_const = fold_convert_loc (loc, lntype, l_const);
5760 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5761 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5762 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5763 fold_build1_loc (loc, BIT_NOT_EXPR,
5764 lntype, ll_mask))))
5766 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5768 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5771 if (r_const)
5773 r_const = fold_convert_loc (loc, lntype, r_const);
5774 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5775 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5776 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5777 fold_build1_loc (loc, BIT_NOT_EXPR,
5778 lntype, rl_mask))))
5780 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5782 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5786 /* If the right sides are not constant, do the same for it. Also,
5787 disallow this optimization if a size or signedness mismatch occurs
5788 between the left and right sides. */
5789 if (l_const == 0)
5791 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5792 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5793 /* Make sure the two fields on the right
5794 correspond to the left without being swapped. */
5795 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5796 return 0;
5798 first_bit = MIN (lr_bitpos, rr_bitpos);
5799 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5800 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5801 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD,
5802 volatilep, &rnmode))
5803 return 0;
5805 rnbitsize = GET_MODE_BITSIZE (rnmode);
5806 rnbitpos = first_bit & ~ (rnbitsize - 1);
5807 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5808 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5810 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5812 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5813 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5816 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5817 rntype, lr_mask),
5818 size_int (xlr_bitpos));
5819 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5820 rntype, rr_mask),
5821 size_int (xrr_bitpos));
5823 /* Make a mask that corresponds to both fields being compared.
5824 Do this for both items being compared. If the operands are the
5825 same size and the bits being compared are in the same position
5826 then we can do this by masking both and comparing the masked
5827 results. */
5828 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5829 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5830 if (lnbitsize == rnbitsize
5831 && xll_bitpos == xlr_bitpos
5832 && lnbitpos >= 0
5833 && rnbitpos >= 0)
5835 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
5836 lntype, lnbitsize, lnbitpos,
5837 ll_unsignedp || rl_unsignedp, ll_reversep);
5838 if (! all_ones_mask_p (ll_mask, lnbitsize))
5839 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5841 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
5842 rntype, rnbitsize, rnbitpos,
5843 lr_unsignedp || rr_unsignedp, lr_reversep);
5844 if (! all_ones_mask_p (lr_mask, rnbitsize))
5845 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5847 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5850 /* There is still another way we can do something: If both pairs of
5851 fields being compared are adjacent, we may be able to make a wider
5852 field containing them both.
5854 Note that we still must mask the lhs/rhs expressions. Furthermore,
5855 the mask must be shifted to account for the shift done by
5856 make_bit_field_ref. */
5857 if (((ll_bitsize + ll_bitpos == rl_bitpos
5858 && lr_bitsize + lr_bitpos == rr_bitpos)
5859 || (ll_bitpos == rl_bitpos + rl_bitsize
5860 && lr_bitpos == rr_bitpos + rr_bitsize))
5861 && ll_bitpos >= 0
5862 && rl_bitpos >= 0
5863 && lr_bitpos >= 0
5864 && rr_bitpos >= 0)
5866 tree type;
5868 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
5869 ll_bitsize + rl_bitsize,
5870 MIN (ll_bitpos, rl_bitpos),
5871 ll_unsignedp, ll_reversep);
5872 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
5873 lr_bitsize + rr_bitsize,
5874 MIN (lr_bitpos, rr_bitpos),
5875 lr_unsignedp, lr_reversep);
5877 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5878 size_int (MIN (xll_bitpos, xrl_bitpos)));
5879 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5880 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5882 /* Convert to the smaller type before masking out unwanted bits. */
5883 type = lntype;
5884 if (lntype != rntype)
5886 if (lnbitsize > rnbitsize)
5888 lhs = fold_convert_loc (loc, rntype, lhs);
5889 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5890 type = rntype;
5892 else if (lnbitsize < rnbitsize)
5894 rhs = fold_convert_loc (loc, lntype, rhs);
5895 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5896 type = lntype;
5900 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5901 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5903 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5904 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5906 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5909 return 0;
5912 /* Handle the case of comparisons with constants. If there is something in
5913 common between the masks, those bits of the constants must be the same.
5914 If not, the condition is always false. Test for this to avoid generating
5915 incorrect code below. */
5916 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5917 if (! integer_zerop (result)
5918 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5919 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5921 if (wanted_code == NE_EXPR)
5923 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5924 return constant_boolean_node (true, truth_type);
5926 else
5928 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5929 return constant_boolean_node (false, truth_type);
5933 if (lnbitpos < 0)
5934 return 0;
5936 /* Construct the expression we will return. First get the component
5937 reference we will make. Unless the mask is all ones the width of
5938 that field, perform the mask operation. Then compare with the
5939 merged constant. */
5940 result = make_bit_field_ref (loc, ll_inner, ll_arg,
5941 lntype, lnbitsize, lnbitpos,
5942 ll_unsignedp || rl_unsignedp, ll_reversep);
5944 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5945 if (! all_ones_mask_p (ll_mask, lnbitsize))
5946 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5948 return build2_loc (loc, wanted_code, truth_type, result,
5949 const_binop (BIT_IOR_EXPR, l_const, r_const));
5952 /* T is an integer expression that is being multiplied, divided, or taken a
5953 modulus (CODE says which and what kind of divide or modulus) by a
5954 constant C. See if we can eliminate that operation by folding it with
5955 other operations already in T. WIDE_TYPE, if non-null, is a type that
5956 should be used for the computation if wider than our type.
5958 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5959 (X * 2) + (Y * 4). We must, however, be assured that either the original
5960 expression would not overflow or that overflow is undefined for the type
5961 in the language in question.
5963 If we return a non-null expression, it is an equivalent form of the
5964 original computation, but need not be in the original type.
5966 We set *STRICT_OVERFLOW_P to true if the return values depends on
5967 signed overflow being undefined. Otherwise we do not change
5968 *STRICT_OVERFLOW_P. */
5970 static tree
5971 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5972 bool *strict_overflow_p)
5974 /* To avoid exponential search depth, refuse to allow recursion past
5975 three levels. Beyond that (1) it's highly unlikely that we'll find
5976 something interesting and (2) we've probably processed it before
5977 when we built the inner expression. */
5979 static int depth;
5980 tree ret;
5982 if (depth > 3)
5983 return NULL;
5985 depth++;
5986 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5987 depth--;
5989 return ret;
5992 static tree
5993 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5994 bool *strict_overflow_p)
5996 tree type = TREE_TYPE (t);
5997 enum tree_code tcode = TREE_CODE (t);
5998 tree ctype = (wide_type != 0
5999 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type))
6000 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)))
6001 ? wide_type : type);
6002 tree t1, t2;
6003 int same_p = tcode == code;
6004 tree op0 = NULL_TREE, op1 = NULL_TREE;
6005 bool sub_strict_overflow_p;
6007 /* Don't deal with constants of zero here; they confuse the code below. */
6008 if (integer_zerop (c))
6009 return NULL_TREE;
6011 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6012 op0 = TREE_OPERAND (t, 0);
6014 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6015 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6017 /* Note that we need not handle conditional operations here since fold
6018 already handles those cases. So just do arithmetic here. */
6019 switch (tcode)
6021 case INTEGER_CST:
6022 /* For a constant, we can always simplify if we are a multiply
6023 or (for divide and modulus) if it is a multiple of our constant. */
6024 if (code == MULT_EXPR
6025 || wi::multiple_of_p (wi::to_wide (t), wi::to_wide (c),
6026 TYPE_SIGN (type)))
6028 tree tem = const_binop (code, fold_convert (ctype, t),
6029 fold_convert (ctype, c));
6030 /* If the multiplication overflowed, we lost information on it.
6031 See PR68142 and PR69845. */
6032 if (TREE_OVERFLOW (tem))
6033 return NULL_TREE;
6034 return tem;
6036 break;
6038 CASE_CONVERT: case NON_LVALUE_EXPR:
6039 /* If op0 is an expression ... */
6040 if ((COMPARISON_CLASS_P (op0)
6041 || UNARY_CLASS_P (op0)
6042 || BINARY_CLASS_P (op0)
6043 || VL_EXP_CLASS_P (op0)
6044 || EXPRESSION_CLASS_P (op0))
6045 /* ... and has wrapping overflow, and its type is smaller
6046 than ctype, then we cannot pass through as widening. */
6047 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6048 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6049 && (TYPE_PRECISION (ctype)
6050 > TYPE_PRECISION (TREE_TYPE (op0))))
6051 /* ... or this is a truncation (t is narrower than op0),
6052 then we cannot pass through this narrowing. */
6053 || (TYPE_PRECISION (type)
6054 < TYPE_PRECISION (TREE_TYPE (op0)))
6055 /* ... or signedness changes for division or modulus,
6056 then we cannot pass through this conversion. */
6057 || (code != MULT_EXPR
6058 && (TYPE_UNSIGNED (ctype)
6059 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6060 /* ... or has undefined overflow while the converted to
6061 type has not, we cannot do the operation in the inner type
6062 as that would introduce undefined overflow. */
6063 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6064 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6065 && !TYPE_OVERFLOW_UNDEFINED (type))))
6066 break;
6068 /* Pass the constant down and see if we can make a simplification. If
6069 we can, replace this expression with the inner simplification for
6070 possible later conversion to our or some other type. */
6071 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6072 && TREE_CODE (t2) == INTEGER_CST
6073 && !TREE_OVERFLOW (t2)
6074 && (0 != (t1 = extract_muldiv (op0, t2, code,
6075 code == MULT_EXPR
6076 ? ctype : NULL_TREE,
6077 strict_overflow_p))))
6078 return t1;
6079 break;
6081 case ABS_EXPR:
6082 /* If widening the type changes it from signed to unsigned, then we
6083 must avoid building ABS_EXPR itself as unsigned. */
6084 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6086 tree cstype = (*signed_type_for) (ctype);
6087 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6088 != 0)
6090 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6091 return fold_convert (ctype, t1);
6093 break;
6095 /* If the constant is negative, we cannot simplify this. */
6096 if (tree_int_cst_sgn (c) == -1)
6097 break;
6098 /* FALLTHROUGH */
6099 case NEGATE_EXPR:
6100 /* For division and modulus, type can't be unsigned, as e.g.
6101 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6102 For signed types, even with wrapping overflow, this is fine. */
6103 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6104 break;
6105 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6106 != 0)
6107 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6108 break;
6110 case MIN_EXPR: case MAX_EXPR:
6111 /* If widening the type changes the signedness, then we can't perform
6112 this optimization as that changes the result. */
6113 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6114 break;
6116 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6117 sub_strict_overflow_p = false;
6118 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6119 &sub_strict_overflow_p)) != 0
6120 && (t2 = extract_muldiv (op1, c, code, wide_type,
6121 &sub_strict_overflow_p)) != 0)
6123 if (tree_int_cst_sgn (c) < 0)
6124 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6125 if (sub_strict_overflow_p)
6126 *strict_overflow_p = true;
6127 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6128 fold_convert (ctype, t2));
6130 break;
6132 case LSHIFT_EXPR: case RSHIFT_EXPR:
6133 /* If the second operand is constant, this is a multiplication
6134 or floor division, by a power of two, so we can treat it that
6135 way unless the multiplier or divisor overflows. Signed
6136 left-shift overflow is implementation-defined rather than
6137 undefined in C90, so do not convert signed left shift into
6138 multiplication. */
6139 if (TREE_CODE (op1) == INTEGER_CST
6140 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6141 /* const_binop may not detect overflow correctly,
6142 so check for it explicitly here. */
6143 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
6144 wi::to_wide (op1))
6145 && 0 != (t1 = fold_convert (ctype,
6146 const_binop (LSHIFT_EXPR,
6147 size_one_node,
6148 op1)))
6149 && !TREE_OVERFLOW (t1))
6150 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6151 ? MULT_EXPR : FLOOR_DIV_EXPR,
6152 ctype,
6153 fold_convert (ctype, op0),
6154 t1),
6155 c, code, wide_type, strict_overflow_p);
6156 break;
6158 case PLUS_EXPR: case MINUS_EXPR:
6159 /* See if we can eliminate the operation on both sides. If we can, we
6160 can return a new PLUS or MINUS. If we can't, the only remaining
6161 cases where we can do anything are if the second operand is a
6162 constant. */
6163 sub_strict_overflow_p = false;
6164 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6165 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6166 if (t1 != 0 && t2 != 0
6167 && TYPE_OVERFLOW_WRAPS (ctype)
6168 && (code == MULT_EXPR
6169 /* If not multiplication, we can only do this if both operands
6170 are divisible by c. */
6171 || (multiple_of_p (ctype, op0, c)
6172 && multiple_of_p (ctype, op1, c))))
6174 if (sub_strict_overflow_p)
6175 *strict_overflow_p = true;
6176 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6177 fold_convert (ctype, t2));
6180 /* If this was a subtraction, negate OP1 and set it to be an addition.
6181 This simplifies the logic below. */
6182 if (tcode == MINUS_EXPR)
6184 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6185 /* If OP1 was not easily negatable, the constant may be OP0. */
6186 if (TREE_CODE (op0) == INTEGER_CST)
6188 std::swap (op0, op1);
6189 std::swap (t1, t2);
6193 if (TREE_CODE (op1) != INTEGER_CST)
6194 break;
6196 /* If either OP1 or C are negative, this optimization is not safe for
6197 some of the division and remainder types while for others we need
6198 to change the code. */
6199 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6201 if (code == CEIL_DIV_EXPR)
6202 code = FLOOR_DIV_EXPR;
6203 else if (code == FLOOR_DIV_EXPR)
6204 code = CEIL_DIV_EXPR;
6205 else if (code != MULT_EXPR
6206 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6207 break;
6210 /* If it's a multiply or a division/modulus operation of a multiple
6211 of our constant, do the operation and verify it doesn't overflow. */
6212 if (code == MULT_EXPR
6213 || wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6214 TYPE_SIGN (type)))
6216 op1 = const_binop (code, fold_convert (ctype, op1),
6217 fold_convert (ctype, c));
6218 /* We allow the constant to overflow with wrapping semantics. */
6219 if (op1 == 0
6220 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6221 break;
6223 else
6224 break;
6226 /* If we have an unsigned type, we cannot widen the operation since it
6227 will change the result if the original computation overflowed. */
6228 if (TYPE_UNSIGNED (ctype) && ctype != type)
6229 break;
6231 /* The last case is if we are a multiply. In that case, we can
6232 apply the distributive law to commute the multiply and addition
6233 if the multiplication of the constants doesn't overflow
6234 and overflow is defined. With undefined overflow
6235 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6236 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6237 return fold_build2 (tcode, ctype,
6238 fold_build2 (code, ctype,
6239 fold_convert (ctype, op0),
6240 fold_convert (ctype, c)),
6241 op1);
6243 break;
6245 case MULT_EXPR:
6246 /* We have a special case here if we are doing something like
6247 (C * 8) % 4 since we know that's zero. */
6248 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6249 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6250 /* If the multiplication can overflow we cannot optimize this. */
6251 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6252 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6253 && wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6254 TYPE_SIGN (type)))
6256 *strict_overflow_p = true;
6257 return omit_one_operand (type, integer_zero_node, op0);
6260 /* ... fall through ... */
6262 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6263 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6264 /* If we can extract our operation from the LHS, do so and return a
6265 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6266 do something only if the second operand is a constant. */
6267 if (same_p
6268 && TYPE_OVERFLOW_WRAPS (ctype)
6269 && (t1 = extract_muldiv (op0, c, code, wide_type,
6270 strict_overflow_p)) != 0)
6271 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6272 fold_convert (ctype, op1));
6273 else if (tcode == MULT_EXPR && code == MULT_EXPR
6274 && TYPE_OVERFLOW_WRAPS (ctype)
6275 && (t1 = extract_muldiv (op1, c, code, wide_type,
6276 strict_overflow_p)) != 0)
6277 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6278 fold_convert (ctype, t1));
6279 else if (TREE_CODE (op1) != INTEGER_CST)
6280 return 0;
6282 /* If these are the same operation types, we can associate them
6283 assuming no overflow. */
6284 if (tcode == code)
6286 bool overflow_p = false;
6287 bool overflow_mul_p;
6288 signop sign = TYPE_SIGN (ctype);
6289 unsigned prec = TYPE_PRECISION (ctype);
6290 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6291 wi::to_wide (c, prec),
6292 sign, &overflow_mul_p);
6293 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6294 if (overflow_mul_p
6295 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6296 overflow_p = true;
6297 if (!overflow_p)
6298 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6299 wide_int_to_tree (ctype, mul));
6302 /* If these operations "cancel" each other, we have the main
6303 optimizations of this pass, which occur when either constant is a
6304 multiple of the other, in which case we replace this with either an
6305 operation or CODE or TCODE.
6307 If we have an unsigned type, we cannot do this since it will change
6308 the result if the original computation overflowed. */
6309 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6310 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6311 || (tcode == MULT_EXPR
6312 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6313 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6314 && code != MULT_EXPR)))
6316 if (wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6317 TYPE_SIGN (type)))
6319 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6320 *strict_overflow_p = true;
6321 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6322 fold_convert (ctype,
6323 const_binop (TRUNC_DIV_EXPR,
6324 op1, c)));
6326 else if (wi::multiple_of_p (wi::to_wide (c), wi::to_wide (op1),
6327 TYPE_SIGN (type)))
6329 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6330 *strict_overflow_p = true;
6331 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6332 fold_convert (ctype,
6333 const_binop (TRUNC_DIV_EXPR,
6334 c, op1)));
6337 break;
6339 default:
6340 break;
6343 return 0;
6346 /* Return a node which has the indicated constant VALUE (either 0 or
6347 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6348 and is of the indicated TYPE. */
6350 tree
6351 constant_boolean_node (bool value, tree type)
6353 if (type == integer_type_node)
6354 return value ? integer_one_node : integer_zero_node;
6355 else if (type == boolean_type_node)
6356 return value ? boolean_true_node : boolean_false_node;
6357 else if (TREE_CODE (type) == VECTOR_TYPE)
6358 return build_vector_from_val (type,
6359 build_int_cst (TREE_TYPE (type),
6360 value ? -1 : 0));
6361 else
6362 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6366 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6367 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6368 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6369 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6370 COND is the first argument to CODE; otherwise (as in the example
6371 given here), it is the second argument. TYPE is the type of the
6372 original expression. Return NULL_TREE if no simplification is
6373 possible. */
6375 static tree
6376 fold_binary_op_with_conditional_arg (location_t loc,
6377 enum tree_code code,
6378 tree type, tree op0, tree op1,
6379 tree cond, tree arg, int cond_first_p)
6381 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6382 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6383 tree test, true_value, false_value;
6384 tree lhs = NULL_TREE;
6385 tree rhs = NULL_TREE;
6386 enum tree_code cond_code = COND_EXPR;
6388 if (TREE_CODE (cond) == COND_EXPR
6389 || TREE_CODE (cond) == VEC_COND_EXPR)
6391 test = TREE_OPERAND (cond, 0);
6392 true_value = TREE_OPERAND (cond, 1);
6393 false_value = TREE_OPERAND (cond, 2);
6394 /* If this operand throws an expression, then it does not make
6395 sense to try to perform a logical or arithmetic operation
6396 involving it. */
6397 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6398 lhs = true_value;
6399 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6400 rhs = false_value;
6402 else if (!(TREE_CODE (type) != VECTOR_TYPE
6403 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6405 tree testtype = TREE_TYPE (cond);
6406 test = cond;
6407 true_value = constant_boolean_node (true, testtype);
6408 false_value = constant_boolean_node (false, testtype);
6410 else
6411 /* Detect the case of mixing vector and scalar types - bail out. */
6412 return NULL_TREE;
6414 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6415 cond_code = VEC_COND_EXPR;
6417 /* This transformation is only worthwhile if we don't have to wrap ARG
6418 in a SAVE_EXPR and the operation can be simplified without recursing
6419 on at least one of the branches once its pushed inside the COND_EXPR. */
6420 if (!TREE_CONSTANT (arg)
6421 && (TREE_SIDE_EFFECTS (arg)
6422 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6423 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6424 return NULL_TREE;
6426 arg = fold_convert_loc (loc, arg_type, arg);
6427 if (lhs == 0)
6429 true_value = fold_convert_loc (loc, cond_type, true_value);
6430 if (cond_first_p)
6431 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6432 else
6433 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6435 if (rhs == 0)
6437 false_value = fold_convert_loc (loc, cond_type, false_value);
6438 if (cond_first_p)
6439 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6440 else
6441 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6444 /* Check that we have simplified at least one of the branches. */
6445 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6446 return NULL_TREE;
6448 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6452 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6454 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6455 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6456 ADDEND is the same as X.
6458 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6459 and finite. The problematic cases are when X is zero, and its mode
6460 has signed zeros. In the case of rounding towards -infinity,
6461 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6462 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6464 bool
6465 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6467 if (!real_zerop (addend))
6468 return false;
6470 /* Don't allow the fold with -fsignaling-nans. */
6471 if (HONOR_SNANS (element_mode (type)))
6472 return false;
6474 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6475 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6476 return true;
6478 /* In a vector or complex, we would need to check the sign of all zeros. */
6479 if (TREE_CODE (addend) != REAL_CST)
6480 return false;
6482 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6483 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6484 negate = !negate;
6486 /* The mode has signed zeros, and we have to honor their sign.
6487 In this situation, there is only one case we can return true for.
6488 X - 0 is the same as X unless rounding towards -infinity is
6489 supported. */
6490 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6493 /* Subroutine of match.pd that optimizes comparisons of a division by
6494 a nonzero integer constant against an integer constant, i.e.
6495 X/C1 op C2.
6497 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6498 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6500 enum tree_code
6501 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo,
6502 tree *hi, bool *neg_overflow)
6504 tree prod, tmp, type = TREE_TYPE (c1);
6505 signop sign = TYPE_SIGN (type);
6506 bool overflow;
6508 /* We have to do this the hard way to detect unsigned overflow.
6509 prod = int_const_binop (MULT_EXPR, c1, c2); */
6510 wide_int val = wi::mul (wi::to_wide (c1), wi::to_wide (c2), sign, &overflow);
6511 prod = force_fit_type (type, val, -1, overflow);
6512 *neg_overflow = false;
6514 if (sign == UNSIGNED)
6516 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6517 *lo = prod;
6519 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6520 val = wi::add (wi::to_wide (prod), wi::to_wide (tmp), sign, &overflow);
6521 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod));
6523 else if (tree_int_cst_sgn (c1) >= 0)
6525 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6526 switch (tree_int_cst_sgn (c2))
6528 case -1:
6529 *neg_overflow = true;
6530 *lo = int_const_binop (MINUS_EXPR, prod, tmp);
6531 *hi = prod;
6532 break;
6534 case 0:
6535 *lo = fold_negate_const (tmp, type);
6536 *hi = tmp;
6537 break;
6539 case 1:
6540 *hi = int_const_binop (PLUS_EXPR, prod, tmp);
6541 *lo = prod;
6542 break;
6544 default:
6545 gcc_unreachable ();
6548 else
6550 /* A negative divisor reverses the relational operators. */
6551 code = swap_tree_comparison (code);
6553 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1));
6554 switch (tree_int_cst_sgn (c2))
6556 case -1:
6557 *hi = int_const_binop (MINUS_EXPR, prod, tmp);
6558 *lo = prod;
6559 break;
6561 case 0:
6562 *hi = fold_negate_const (tmp, type);
6563 *lo = tmp;
6564 break;
6566 case 1:
6567 *neg_overflow = true;
6568 *lo = int_const_binop (PLUS_EXPR, prod, tmp);
6569 *hi = prod;
6570 break;
6572 default:
6573 gcc_unreachable ();
6577 if (code != EQ_EXPR && code != NE_EXPR)
6578 return code;
6580 if (TREE_OVERFLOW (*lo)
6581 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0))
6582 *lo = NULL_TREE;
6583 if (TREE_OVERFLOW (*hi)
6584 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0))
6585 *hi = NULL_TREE;
6587 return code;
6591 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6592 equality/inequality test, then return a simplified form of the test
6593 using a sign testing. Otherwise return NULL. TYPE is the desired
6594 result type. */
6596 static tree
6597 fold_single_bit_test_into_sign_test (location_t loc,
6598 enum tree_code code, tree arg0, tree arg1,
6599 tree result_type)
6601 /* If this is testing a single bit, we can optimize the test. */
6602 if ((code == NE_EXPR || code == EQ_EXPR)
6603 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6604 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6606 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6607 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6608 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6610 if (arg00 != NULL_TREE
6611 /* This is only a win if casting to a signed type is cheap,
6612 i.e. when arg00's type is not a partial mode. */
6613 && type_has_mode_precision_p (TREE_TYPE (arg00)))
6615 tree stype = signed_type_for (TREE_TYPE (arg00));
6616 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6617 result_type,
6618 fold_convert_loc (loc, stype, arg00),
6619 build_int_cst (stype, 0));
6623 return NULL_TREE;
6626 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6627 equality/inequality test, then return a simplified form of
6628 the test using shifts and logical operations. Otherwise return
6629 NULL. TYPE is the desired result type. */
6631 tree
6632 fold_single_bit_test (location_t loc, enum tree_code code,
6633 tree arg0, tree arg1, tree result_type)
6635 /* If this is testing a single bit, we can optimize the test. */
6636 if ((code == NE_EXPR || code == EQ_EXPR)
6637 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6638 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6640 tree inner = TREE_OPERAND (arg0, 0);
6641 tree type = TREE_TYPE (arg0);
6642 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6643 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
6644 int ops_unsigned;
6645 tree signed_type, unsigned_type, intermediate_type;
6646 tree tem, one;
6648 /* First, see if we can fold the single bit test into a sign-bit
6649 test. */
6650 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6651 result_type);
6652 if (tem)
6653 return tem;
6655 /* Otherwise we have (A & C) != 0 where C is a single bit,
6656 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6657 Similarly for (A & C) == 0. */
6659 /* If INNER is a right shift of a constant and it plus BITNUM does
6660 not overflow, adjust BITNUM and INNER. */
6661 if (TREE_CODE (inner) == RSHIFT_EXPR
6662 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6663 && bitnum < TYPE_PRECISION (type)
6664 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner, 1)),
6665 TYPE_PRECISION (type) - bitnum))
6667 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6668 inner = TREE_OPERAND (inner, 0);
6671 /* If we are going to be able to omit the AND below, we must do our
6672 operations as unsigned. If we must use the AND, we have a choice.
6673 Normally unsigned is faster, but for some machines signed is. */
6674 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
6675 && !flag_syntax_only) ? 0 : 1;
6677 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6678 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6679 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6680 inner = fold_convert_loc (loc, intermediate_type, inner);
6682 if (bitnum != 0)
6683 inner = build2 (RSHIFT_EXPR, intermediate_type,
6684 inner, size_int (bitnum));
6686 one = build_int_cst (intermediate_type, 1);
6688 if (code == EQ_EXPR)
6689 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6691 /* Put the AND last so it can combine with more things. */
6692 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6694 /* Make sure to return the proper type. */
6695 inner = fold_convert_loc (loc, result_type, inner);
6697 return inner;
6699 return NULL_TREE;
6702 /* Test whether it is preferable two swap two operands, ARG0 and
6703 ARG1, for example because ARG0 is an integer constant and ARG1
6704 isn't. */
6706 bool
6707 tree_swap_operands_p (const_tree arg0, const_tree arg1)
6709 if (CONSTANT_CLASS_P (arg1))
6710 return 0;
6711 if (CONSTANT_CLASS_P (arg0))
6712 return 1;
6714 STRIP_NOPS (arg0);
6715 STRIP_NOPS (arg1);
6717 if (TREE_CONSTANT (arg1))
6718 return 0;
6719 if (TREE_CONSTANT (arg0))
6720 return 1;
6722 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6723 for commutative and comparison operators. Ensuring a canonical
6724 form allows the optimizers to find additional redundancies without
6725 having to explicitly check for both orderings. */
6726 if (TREE_CODE (arg0) == SSA_NAME
6727 && TREE_CODE (arg1) == SSA_NAME
6728 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6729 return 1;
6731 /* Put SSA_NAMEs last. */
6732 if (TREE_CODE (arg1) == SSA_NAME)
6733 return 0;
6734 if (TREE_CODE (arg0) == SSA_NAME)
6735 return 1;
6737 /* Put variables last. */
6738 if (DECL_P (arg1))
6739 return 0;
6740 if (DECL_P (arg0))
6741 return 1;
6743 return 0;
6747 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6748 means A >= Y && A != MAX, but in this case we know that
6749 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6751 static tree
6752 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6754 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6756 if (TREE_CODE (bound) == LT_EXPR)
6757 a = TREE_OPERAND (bound, 0);
6758 else if (TREE_CODE (bound) == GT_EXPR)
6759 a = TREE_OPERAND (bound, 1);
6760 else
6761 return NULL_TREE;
6763 typea = TREE_TYPE (a);
6764 if (!INTEGRAL_TYPE_P (typea)
6765 && !POINTER_TYPE_P (typea))
6766 return NULL_TREE;
6768 if (TREE_CODE (ineq) == LT_EXPR)
6770 a1 = TREE_OPERAND (ineq, 1);
6771 y = TREE_OPERAND (ineq, 0);
6773 else if (TREE_CODE (ineq) == GT_EXPR)
6775 a1 = TREE_OPERAND (ineq, 0);
6776 y = TREE_OPERAND (ineq, 1);
6778 else
6779 return NULL_TREE;
6781 if (TREE_TYPE (a1) != typea)
6782 return NULL_TREE;
6784 if (POINTER_TYPE_P (typea))
6786 /* Convert the pointer types into integer before taking the difference. */
6787 tree ta = fold_convert_loc (loc, ssizetype, a);
6788 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6789 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6791 else
6792 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6794 if (!diff || !integer_onep (diff))
6795 return NULL_TREE;
6797 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6800 /* Fold a sum or difference of at least one multiplication.
6801 Returns the folded tree or NULL if no simplification could be made. */
6803 static tree
6804 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6805 tree arg0, tree arg1)
6807 tree arg00, arg01, arg10, arg11;
6808 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6810 /* (A * C) +- (B * C) -> (A+-B) * C.
6811 (A * C) +- A -> A * (C+-1).
6812 We are most concerned about the case where C is a constant,
6813 but other combinations show up during loop reduction. Since
6814 it is not difficult, try all four possibilities. */
6816 if (TREE_CODE (arg0) == MULT_EXPR)
6818 arg00 = TREE_OPERAND (arg0, 0);
6819 arg01 = TREE_OPERAND (arg0, 1);
6821 else if (TREE_CODE (arg0) == INTEGER_CST)
6823 arg00 = build_one_cst (type);
6824 arg01 = arg0;
6826 else
6828 /* We cannot generate constant 1 for fract. */
6829 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6830 return NULL_TREE;
6831 arg00 = arg0;
6832 arg01 = build_one_cst (type);
6834 if (TREE_CODE (arg1) == MULT_EXPR)
6836 arg10 = TREE_OPERAND (arg1, 0);
6837 arg11 = TREE_OPERAND (arg1, 1);
6839 else if (TREE_CODE (arg1) == INTEGER_CST)
6841 arg10 = build_one_cst (type);
6842 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6843 the purpose of this canonicalization. */
6844 if (wi::neg_p (wi::to_wide (arg1), TYPE_SIGN (TREE_TYPE (arg1)))
6845 && negate_expr_p (arg1)
6846 && code == PLUS_EXPR)
6848 arg11 = negate_expr (arg1);
6849 code = MINUS_EXPR;
6851 else
6852 arg11 = arg1;
6854 else
6856 /* We cannot generate constant 1 for fract. */
6857 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6858 return NULL_TREE;
6859 arg10 = arg1;
6860 arg11 = build_one_cst (type);
6862 same = NULL_TREE;
6864 /* Prefer factoring a common non-constant. */
6865 if (operand_equal_p (arg00, arg10, 0))
6866 same = arg00, alt0 = arg01, alt1 = arg11;
6867 else if (operand_equal_p (arg01, arg11, 0))
6868 same = arg01, alt0 = arg00, alt1 = arg10;
6869 else if (operand_equal_p (arg00, arg11, 0))
6870 same = arg00, alt0 = arg01, alt1 = arg10;
6871 else if (operand_equal_p (arg01, arg10, 0))
6872 same = arg01, alt0 = arg00, alt1 = arg11;
6874 /* No identical multiplicands; see if we can find a common
6875 power-of-two factor in non-power-of-two multiplies. This
6876 can help in multi-dimensional array access. */
6877 else if (tree_fits_shwi_p (arg01)
6878 && tree_fits_shwi_p (arg11))
6880 HOST_WIDE_INT int01, int11, tmp;
6881 bool swap = false;
6882 tree maybe_same;
6883 int01 = tree_to_shwi (arg01);
6884 int11 = tree_to_shwi (arg11);
6886 /* Move min of absolute values to int11. */
6887 if (absu_hwi (int01) < absu_hwi (int11))
6889 tmp = int01, int01 = int11, int11 = tmp;
6890 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6891 maybe_same = arg01;
6892 swap = true;
6894 else
6895 maybe_same = arg11;
6897 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6898 /* The remainder should not be a constant, otherwise we
6899 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6900 increased the number of multiplications necessary. */
6901 && TREE_CODE (arg10) != INTEGER_CST)
6903 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6904 build_int_cst (TREE_TYPE (arg00),
6905 int01 / int11));
6906 alt1 = arg10;
6907 same = maybe_same;
6908 if (swap)
6909 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6913 if (!same)
6914 return NULL_TREE;
6916 if (! INTEGRAL_TYPE_P (type)
6917 || TYPE_OVERFLOW_WRAPS (type)
6918 /* We are neither factoring zero nor minus one. */
6919 || TREE_CODE (same) == INTEGER_CST)
6920 return fold_build2_loc (loc, MULT_EXPR, type,
6921 fold_build2_loc (loc, code, type,
6922 fold_convert_loc (loc, type, alt0),
6923 fold_convert_loc (loc, type, alt1)),
6924 fold_convert_loc (loc, type, same));
6926 /* Same may be zero and thus the operation 'code' may overflow. Likewise
6927 same may be minus one and thus the multiplication may overflow. Perform
6928 the operations in an unsigned type. */
6929 tree utype = unsigned_type_for (type);
6930 tree tem = fold_build2_loc (loc, code, utype,
6931 fold_convert_loc (loc, utype, alt0),
6932 fold_convert_loc (loc, utype, alt1));
6933 /* If the sum evaluated to a constant that is not -INF the multiplication
6934 cannot overflow. */
6935 if (TREE_CODE (tem) == INTEGER_CST
6936 && (wi::to_wide (tem)
6937 != wi::min_value (TYPE_PRECISION (utype), SIGNED)))
6938 return fold_build2_loc (loc, MULT_EXPR, type,
6939 fold_convert (type, tem), same);
6941 return fold_convert_loc (loc, type,
6942 fold_build2_loc (loc, MULT_EXPR, utype, tem,
6943 fold_convert_loc (loc, utype, same)));
6946 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6947 specified by EXPR into the buffer PTR of length LEN bytes.
6948 Return the number of bytes placed in the buffer, or zero
6949 upon failure. */
6951 static int
6952 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
6954 tree type = TREE_TYPE (expr);
6955 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
6956 int byte, offset, word, words;
6957 unsigned char value;
6959 if ((off == -1 && total_bytes > len) || off >= total_bytes)
6960 return 0;
6961 if (off == -1)
6962 off = 0;
6964 if (ptr == NULL)
6965 /* Dry run. */
6966 return MIN (len, total_bytes - off);
6968 words = total_bytes / UNITS_PER_WORD;
6970 for (byte = 0; byte < total_bytes; byte++)
6972 int bitpos = byte * BITS_PER_UNIT;
6973 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
6974 number of bytes. */
6975 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
6977 if (total_bytes > UNITS_PER_WORD)
6979 word = byte / UNITS_PER_WORD;
6980 if (WORDS_BIG_ENDIAN)
6981 word = (words - 1) - word;
6982 offset = word * UNITS_PER_WORD;
6983 if (BYTES_BIG_ENDIAN)
6984 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6985 else
6986 offset += byte % UNITS_PER_WORD;
6988 else
6989 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
6990 if (offset >= off && offset - off < len)
6991 ptr[offset - off] = value;
6993 return MIN (len, total_bytes - off);
6997 /* Subroutine of native_encode_expr. Encode the FIXED_CST
6998 specified by EXPR into the buffer PTR of length LEN bytes.
6999 Return the number of bytes placed in the buffer, or zero
7000 upon failure. */
7002 static int
7003 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7005 tree type = TREE_TYPE (expr);
7006 scalar_mode mode = SCALAR_TYPE_MODE (type);
7007 int total_bytes = GET_MODE_SIZE (mode);
7008 FIXED_VALUE_TYPE value;
7009 tree i_value, i_type;
7011 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7012 return 0;
7014 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7016 if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes)
7017 return 0;
7019 value = TREE_FIXED_CST (expr);
7020 i_value = double_int_to_tree (i_type, value.data);
7022 return native_encode_int (i_value, ptr, len, off);
7026 /* Subroutine of native_encode_expr. Encode the REAL_CST
7027 specified by EXPR into the buffer PTR of length LEN bytes.
7028 Return the number of bytes placed in the buffer, or zero
7029 upon failure. */
7031 static int
7032 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7034 tree type = TREE_TYPE (expr);
7035 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type));
7036 int byte, offset, word, words, bitpos;
7037 unsigned char value;
7039 /* There are always 32 bits in each long, no matter the size of
7040 the hosts long. We handle floating point representations with
7041 up to 192 bits. */
7042 long tmp[6];
7044 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7045 return 0;
7046 if (off == -1)
7047 off = 0;
7049 if (ptr == NULL)
7050 /* Dry run. */
7051 return MIN (len, total_bytes - off);
7053 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7055 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7057 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7058 bitpos += BITS_PER_UNIT)
7060 byte = (bitpos / BITS_PER_UNIT) & 3;
7061 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7063 if (UNITS_PER_WORD < 4)
7065 word = byte / UNITS_PER_WORD;
7066 if (WORDS_BIG_ENDIAN)
7067 word = (words - 1) - word;
7068 offset = word * UNITS_PER_WORD;
7069 if (BYTES_BIG_ENDIAN)
7070 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7071 else
7072 offset += byte % UNITS_PER_WORD;
7074 else
7076 offset = byte;
7077 if (BYTES_BIG_ENDIAN)
7079 /* Reverse bytes within each long, or within the entire float
7080 if it's smaller than a long (for HFmode). */
7081 offset = MIN (3, total_bytes - 1) - offset;
7082 gcc_assert (offset >= 0);
7085 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7086 if (offset >= off
7087 && offset - off < len)
7088 ptr[offset - off] = value;
7090 return MIN (len, total_bytes - off);
7093 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7094 specified by EXPR into the buffer PTR of length LEN bytes.
7095 Return the number of bytes placed in the buffer, or zero
7096 upon failure. */
7098 static int
7099 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7101 int rsize, isize;
7102 tree part;
7104 part = TREE_REALPART (expr);
7105 rsize = native_encode_expr (part, ptr, len, off);
7106 if (off == -1 && rsize == 0)
7107 return 0;
7108 part = TREE_IMAGPART (expr);
7109 if (off != -1)
7110 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part))));
7111 isize = native_encode_expr (part, ptr ? ptr + rsize : NULL,
7112 len - rsize, off);
7113 if (off == -1 && isize != rsize)
7114 return 0;
7115 return rsize + isize;
7119 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7120 specified by EXPR into the buffer PTR of length LEN bytes.
7121 Return the number of bytes placed in the buffer, or zero
7122 upon failure. */
7124 static int
7125 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7127 unsigned i, count;
7128 int size, offset;
7129 tree itype, elem;
7131 offset = 0;
7132 count = VECTOR_CST_NELTS (expr);
7133 itype = TREE_TYPE (TREE_TYPE (expr));
7134 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype));
7135 for (i = 0; i < count; i++)
7137 if (off >= size)
7139 off -= size;
7140 continue;
7142 elem = VECTOR_CST_ELT (expr, i);
7143 int res = native_encode_expr (elem, ptr ? ptr + offset : NULL,
7144 len - offset, off);
7145 if ((off == -1 && res != size) || res == 0)
7146 return 0;
7147 offset += res;
7148 if (offset >= len)
7149 return offset;
7150 if (off != -1)
7151 off = 0;
7153 return offset;
7157 /* Subroutine of native_encode_expr. Encode the STRING_CST
7158 specified by EXPR into the buffer PTR of length LEN bytes.
7159 Return the number of bytes placed in the buffer, or zero
7160 upon failure. */
7162 static int
7163 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7165 tree type = TREE_TYPE (expr);
7167 /* Wide-char strings are encoded in target byte-order so native
7168 encoding them is trivial. */
7169 if (BITS_PER_UNIT != CHAR_BIT
7170 || TREE_CODE (type) != ARRAY_TYPE
7171 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7172 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7173 return 0;
7175 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
7176 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7177 return 0;
7178 if (off == -1)
7179 off = 0;
7180 if (ptr == NULL)
7181 /* Dry run. */;
7182 else if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7184 int written = 0;
7185 if (off < TREE_STRING_LENGTH (expr))
7187 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7188 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7190 memset (ptr + written, 0,
7191 MIN (total_bytes - written, len - written));
7193 else
7194 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7195 return MIN (total_bytes - off, len);
7199 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7200 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7201 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7202 anything, just do a dry run. If OFF is not -1 then start
7203 the encoding at byte offset OFF and encode at most LEN bytes.
7204 Return the number of bytes placed in the buffer, or zero upon failure. */
7207 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7209 /* We don't support starting at negative offset and -1 is special. */
7210 if (off < -1)
7211 return 0;
7213 switch (TREE_CODE (expr))
7215 case INTEGER_CST:
7216 return native_encode_int (expr, ptr, len, off);
7218 case REAL_CST:
7219 return native_encode_real (expr, ptr, len, off);
7221 case FIXED_CST:
7222 return native_encode_fixed (expr, ptr, len, off);
7224 case COMPLEX_CST:
7225 return native_encode_complex (expr, ptr, len, off);
7227 case VECTOR_CST:
7228 return native_encode_vector (expr, ptr, len, off);
7230 case STRING_CST:
7231 return native_encode_string (expr, ptr, len, off);
7233 default:
7234 return 0;
7239 /* Subroutine of native_interpret_expr. Interpret the contents of
7240 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7241 If the buffer cannot be interpreted, return NULL_TREE. */
7243 static tree
7244 native_interpret_int (tree type, const unsigned char *ptr, int len)
7246 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7248 if (total_bytes > len
7249 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7250 return NULL_TREE;
7252 wide_int result = wi::from_buffer (ptr, total_bytes);
7254 return wide_int_to_tree (type, result);
7258 /* Subroutine of native_interpret_expr. Interpret the contents of
7259 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7260 If the buffer cannot be interpreted, return NULL_TREE. */
7262 static tree
7263 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7265 scalar_mode mode = SCALAR_TYPE_MODE (type);
7266 int total_bytes = GET_MODE_SIZE (mode);
7267 double_int result;
7268 FIXED_VALUE_TYPE fixed_value;
7270 if (total_bytes > len
7271 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7272 return NULL_TREE;
7274 result = double_int::from_buffer (ptr, total_bytes);
7275 fixed_value = fixed_from_double_int (result, mode);
7277 return build_fixed (type, fixed_value);
7281 /* Subroutine of native_interpret_expr. Interpret the contents of
7282 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7283 If the buffer cannot be interpreted, return NULL_TREE. */
7285 static tree
7286 native_interpret_real (tree type, const unsigned char *ptr, int len)
7288 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
7289 int total_bytes = GET_MODE_SIZE (mode);
7290 unsigned char value;
7291 /* There are always 32 bits in each long, no matter the size of
7292 the hosts long. We handle floating point representations with
7293 up to 192 bits. */
7294 REAL_VALUE_TYPE r;
7295 long tmp[6];
7297 if (total_bytes > len || total_bytes > 24)
7298 return NULL_TREE;
7299 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7301 memset (tmp, 0, sizeof (tmp));
7302 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7303 bitpos += BITS_PER_UNIT)
7305 /* Both OFFSET and BYTE index within a long;
7306 bitpos indexes the whole float. */
7307 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7308 if (UNITS_PER_WORD < 4)
7310 int word = byte / UNITS_PER_WORD;
7311 if (WORDS_BIG_ENDIAN)
7312 word = (words - 1) - word;
7313 offset = word * UNITS_PER_WORD;
7314 if (BYTES_BIG_ENDIAN)
7315 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7316 else
7317 offset += byte % UNITS_PER_WORD;
7319 else
7321 offset = byte;
7322 if (BYTES_BIG_ENDIAN)
7324 /* Reverse bytes within each long, or within the entire float
7325 if it's smaller than a long (for HFmode). */
7326 offset = MIN (3, total_bytes - 1) - offset;
7327 gcc_assert (offset >= 0);
7330 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7332 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7335 real_from_target (&r, tmp, mode);
7336 return build_real (type, r);
7340 /* Subroutine of native_interpret_expr. Interpret the contents of
7341 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7342 If the buffer cannot be interpreted, return NULL_TREE. */
7344 static tree
7345 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7347 tree etype, rpart, ipart;
7348 int size;
7350 etype = TREE_TYPE (type);
7351 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
7352 if (size * 2 > len)
7353 return NULL_TREE;
7354 rpart = native_interpret_expr (etype, ptr, size);
7355 if (!rpart)
7356 return NULL_TREE;
7357 ipart = native_interpret_expr (etype, ptr+size, size);
7358 if (!ipart)
7359 return NULL_TREE;
7360 return build_complex (type, rpart, ipart);
7364 /* Subroutine of native_interpret_expr. Interpret the contents of
7365 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7366 If the buffer cannot be interpreted, return NULL_TREE. */
7368 static tree
7369 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7371 tree etype, elem;
7372 int i, size, count;
7374 etype = TREE_TYPE (type);
7375 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
7376 count = TYPE_VECTOR_SUBPARTS (type);
7377 if (size * count > len)
7378 return NULL_TREE;
7380 auto_vec<tree, 32> elements (count);
7381 for (i = 0; i < count; ++i)
7383 elem = native_interpret_expr (etype, ptr+(i*size), size);
7384 if (!elem)
7385 return NULL_TREE;
7386 elements.quick_push (elem);
7388 return build_vector (type, elements);
7392 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7393 the buffer PTR of length LEN as a constant of type TYPE. For
7394 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7395 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7396 return NULL_TREE. */
7398 tree
7399 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7401 switch (TREE_CODE (type))
7403 case INTEGER_TYPE:
7404 case ENUMERAL_TYPE:
7405 case BOOLEAN_TYPE:
7406 case POINTER_TYPE:
7407 case REFERENCE_TYPE:
7408 return native_interpret_int (type, ptr, len);
7410 case REAL_TYPE:
7411 return native_interpret_real (type, ptr, len);
7413 case FIXED_POINT_TYPE:
7414 return native_interpret_fixed (type, ptr, len);
7416 case COMPLEX_TYPE:
7417 return native_interpret_complex (type, ptr, len);
7419 case VECTOR_TYPE:
7420 return native_interpret_vector (type, ptr, len);
7422 default:
7423 return NULL_TREE;
7427 /* Returns true if we can interpret the contents of a native encoding
7428 as TYPE. */
7430 static bool
7431 can_native_interpret_type_p (tree type)
7433 switch (TREE_CODE (type))
7435 case INTEGER_TYPE:
7436 case ENUMERAL_TYPE:
7437 case BOOLEAN_TYPE:
7438 case POINTER_TYPE:
7439 case REFERENCE_TYPE:
7440 case FIXED_POINT_TYPE:
7441 case REAL_TYPE:
7442 case COMPLEX_TYPE:
7443 case VECTOR_TYPE:
7444 return true;
7445 default:
7446 return false;
7451 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7452 TYPE at compile-time. If we're unable to perform the conversion
7453 return NULL_TREE. */
7455 static tree
7456 fold_view_convert_expr (tree type, tree expr)
7458 /* We support up to 512-bit values (for V8DFmode). */
7459 unsigned char buffer[64];
7460 int len;
7462 /* Check that the host and target are sane. */
7463 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7464 return NULL_TREE;
7466 len = native_encode_expr (expr, buffer, sizeof (buffer));
7467 if (len == 0)
7468 return NULL_TREE;
7470 return native_interpret_expr (type, buffer, len);
7473 /* Build an expression for the address of T. Folds away INDIRECT_REF
7474 to avoid confusing the gimplify process. */
7476 tree
7477 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7479 /* The size of the object is not relevant when talking about its address. */
7480 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7481 t = TREE_OPERAND (t, 0);
7483 if (TREE_CODE (t) == INDIRECT_REF)
7485 t = TREE_OPERAND (t, 0);
7487 if (TREE_TYPE (t) != ptrtype)
7488 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7490 else if (TREE_CODE (t) == MEM_REF
7491 && integer_zerop (TREE_OPERAND (t, 1)))
7492 return TREE_OPERAND (t, 0);
7493 else if (TREE_CODE (t) == MEM_REF
7494 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7495 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7496 TREE_OPERAND (t, 0),
7497 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7498 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7500 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7502 if (TREE_TYPE (t) != ptrtype)
7503 t = fold_convert_loc (loc, ptrtype, t);
7505 else
7506 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7508 return t;
7511 /* Build an expression for the address of T. */
7513 tree
7514 build_fold_addr_expr_loc (location_t loc, tree t)
7516 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7518 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7521 /* Fold a unary expression of code CODE and type TYPE with operand
7522 OP0. Return the folded expression if folding is successful.
7523 Otherwise, return NULL_TREE. */
7525 tree
7526 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7528 tree tem;
7529 tree arg0;
7530 enum tree_code_class kind = TREE_CODE_CLASS (code);
7532 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7533 && TREE_CODE_LENGTH (code) == 1);
7535 arg0 = op0;
7536 if (arg0)
7538 if (CONVERT_EXPR_CODE_P (code)
7539 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7541 /* Don't use STRIP_NOPS, because signedness of argument type
7542 matters. */
7543 STRIP_SIGN_NOPS (arg0);
7545 else
7547 /* Strip any conversions that don't change the mode. This
7548 is safe for every expression, except for a comparison
7549 expression because its signedness is derived from its
7550 operands.
7552 Note that this is done as an internal manipulation within
7553 the constant folder, in order to find the simplest
7554 representation of the arguments so that their form can be
7555 studied. In any cases, the appropriate type conversions
7556 should be put back in the tree that will get out of the
7557 constant folder. */
7558 STRIP_NOPS (arg0);
7561 if (CONSTANT_CLASS_P (arg0))
7563 tree tem = const_unop (code, type, arg0);
7564 if (tem)
7566 if (TREE_TYPE (tem) != type)
7567 tem = fold_convert_loc (loc, type, tem);
7568 return tem;
7573 tem = generic_simplify (loc, code, type, op0);
7574 if (tem)
7575 return tem;
7577 if (TREE_CODE_CLASS (code) == tcc_unary)
7579 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7580 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7581 fold_build1_loc (loc, code, type,
7582 fold_convert_loc (loc, TREE_TYPE (op0),
7583 TREE_OPERAND (arg0, 1))));
7584 else if (TREE_CODE (arg0) == COND_EXPR)
7586 tree arg01 = TREE_OPERAND (arg0, 1);
7587 tree arg02 = TREE_OPERAND (arg0, 2);
7588 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7589 arg01 = fold_build1_loc (loc, code, type,
7590 fold_convert_loc (loc,
7591 TREE_TYPE (op0), arg01));
7592 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7593 arg02 = fold_build1_loc (loc, code, type,
7594 fold_convert_loc (loc,
7595 TREE_TYPE (op0), arg02));
7596 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7597 arg01, arg02);
7599 /* If this was a conversion, and all we did was to move into
7600 inside the COND_EXPR, bring it back out. But leave it if
7601 it is a conversion from integer to integer and the
7602 result precision is no wider than a word since such a
7603 conversion is cheap and may be optimized away by combine,
7604 while it couldn't if it were outside the COND_EXPR. Then return
7605 so we don't get into an infinite recursion loop taking the
7606 conversion out and then back in. */
7608 if ((CONVERT_EXPR_CODE_P (code)
7609 || code == NON_LVALUE_EXPR)
7610 && TREE_CODE (tem) == COND_EXPR
7611 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7612 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7613 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7614 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7615 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7616 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7617 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7618 && (INTEGRAL_TYPE_P
7619 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7620 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7621 || flag_syntax_only))
7622 tem = build1_loc (loc, code, type,
7623 build3 (COND_EXPR,
7624 TREE_TYPE (TREE_OPERAND
7625 (TREE_OPERAND (tem, 1), 0)),
7626 TREE_OPERAND (tem, 0),
7627 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7628 TREE_OPERAND (TREE_OPERAND (tem, 2),
7629 0)));
7630 return tem;
7634 switch (code)
7636 case NON_LVALUE_EXPR:
7637 if (!maybe_lvalue_p (op0))
7638 return fold_convert_loc (loc, type, op0);
7639 return NULL_TREE;
7641 CASE_CONVERT:
7642 case FLOAT_EXPR:
7643 case FIX_TRUNC_EXPR:
7644 if (COMPARISON_CLASS_P (op0))
7646 /* If we have (type) (a CMP b) and type is an integral type, return
7647 new expression involving the new type. Canonicalize
7648 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7649 non-integral type.
7650 Do not fold the result as that would not simplify further, also
7651 folding again results in recursions. */
7652 if (TREE_CODE (type) == BOOLEAN_TYPE)
7653 return build2_loc (loc, TREE_CODE (op0), type,
7654 TREE_OPERAND (op0, 0),
7655 TREE_OPERAND (op0, 1));
7656 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7657 && TREE_CODE (type) != VECTOR_TYPE)
7658 return build3_loc (loc, COND_EXPR, type, op0,
7659 constant_boolean_node (true, type),
7660 constant_boolean_node (false, type));
7663 /* Handle (T *)&A.B.C for A being of type T and B and C
7664 living at offset zero. This occurs frequently in
7665 C++ upcasting and then accessing the base. */
7666 if (TREE_CODE (op0) == ADDR_EXPR
7667 && POINTER_TYPE_P (type)
7668 && handled_component_p (TREE_OPERAND (op0, 0)))
7670 HOST_WIDE_INT bitsize, bitpos;
7671 tree offset;
7672 machine_mode mode;
7673 int unsignedp, reversep, volatilep;
7674 tree base
7675 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7676 &offset, &mode, &unsignedp, &reversep,
7677 &volatilep);
7678 /* If the reference was to a (constant) zero offset, we can use
7679 the address of the base if it has the same base type
7680 as the result type and the pointer type is unqualified. */
7681 if (! offset && bitpos == 0
7682 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7683 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7684 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7685 return fold_convert_loc (loc, type,
7686 build_fold_addr_expr_loc (loc, base));
7689 if (TREE_CODE (op0) == MODIFY_EXPR
7690 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7691 /* Detect assigning a bitfield. */
7692 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7693 && DECL_BIT_FIELD
7694 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7696 /* Don't leave an assignment inside a conversion
7697 unless assigning a bitfield. */
7698 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7699 /* First do the assignment, then return converted constant. */
7700 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7701 TREE_NO_WARNING (tem) = 1;
7702 TREE_USED (tem) = 1;
7703 return tem;
7706 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7707 constants (if x has signed type, the sign bit cannot be set
7708 in c). This folds extension into the BIT_AND_EXPR.
7709 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7710 very likely don't have maximal range for their precision and this
7711 transformation effectively doesn't preserve non-maximal ranges. */
7712 if (TREE_CODE (type) == INTEGER_TYPE
7713 && TREE_CODE (op0) == BIT_AND_EXPR
7714 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7716 tree and_expr = op0;
7717 tree and0 = TREE_OPERAND (and_expr, 0);
7718 tree and1 = TREE_OPERAND (and_expr, 1);
7719 int change = 0;
7721 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7722 || (TYPE_PRECISION (type)
7723 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7724 change = 1;
7725 else if (TYPE_PRECISION (TREE_TYPE (and1))
7726 <= HOST_BITS_PER_WIDE_INT
7727 && tree_fits_uhwi_p (and1))
7729 unsigned HOST_WIDE_INT cst;
7731 cst = tree_to_uhwi (and1);
7732 cst &= HOST_WIDE_INT_M1U
7733 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7734 change = (cst == 0);
7735 if (change
7736 && !flag_syntax_only
7737 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
7738 == ZERO_EXTEND))
7740 tree uns = unsigned_type_for (TREE_TYPE (and0));
7741 and0 = fold_convert_loc (loc, uns, and0);
7742 and1 = fold_convert_loc (loc, uns, and1);
7745 if (change)
7747 tem = force_fit_type (type, wi::to_widest (and1), 0,
7748 TREE_OVERFLOW (and1));
7749 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7750 fold_convert_loc (loc, type, and0), tem);
7754 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7755 cast (T1)X will fold away. We assume that this happens when X itself
7756 is a cast. */
7757 if (POINTER_TYPE_P (type)
7758 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7759 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
7761 tree arg00 = TREE_OPERAND (arg0, 0);
7762 tree arg01 = TREE_OPERAND (arg0, 1);
7764 return fold_build_pointer_plus_loc
7765 (loc, fold_convert_loc (loc, type, arg00), arg01);
7768 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7769 of the same precision, and X is an integer type not narrower than
7770 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7771 if (INTEGRAL_TYPE_P (type)
7772 && TREE_CODE (op0) == BIT_NOT_EXPR
7773 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7774 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7775 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7777 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7778 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7779 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7780 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7781 fold_convert_loc (loc, type, tem));
7784 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7785 type of X and Y (integer types only). */
7786 if (INTEGRAL_TYPE_P (type)
7787 && TREE_CODE (op0) == MULT_EXPR
7788 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7789 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7791 /* Be careful not to introduce new overflows. */
7792 tree mult_type;
7793 if (TYPE_OVERFLOW_WRAPS (type))
7794 mult_type = type;
7795 else
7796 mult_type = unsigned_type_for (type);
7798 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7800 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7801 fold_convert_loc (loc, mult_type,
7802 TREE_OPERAND (op0, 0)),
7803 fold_convert_loc (loc, mult_type,
7804 TREE_OPERAND (op0, 1)));
7805 return fold_convert_loc (loc, type, tem);
7809 return NULL_TREE;
7811 case VIEW_CONVERT_EXPR:
7812 if (TREE_CODE (op0) == MEM_REF)
7814 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
7815 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
7816 tem = fold_build2_loc (loc, MEM_REF, type,
7817 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7818 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
7819 return tem;
7822 return NULL_TREE;
7824 case NEGATE_EXPR:
7825 tem = fold_negate_expr (loc, arg0);
7826 if (tem)
7827 return fold_convert_loc (loc, type, tem);
7828 return NULL_TREE;
7830 case ABS_EXPR:
7831 /* Convert fabs((double)float) into (double)fabsf(float). */
7832 if (TREE_CODE (arg0) == NOP_EXPR
7833 && TREE_CODE (type) == REAL_TYPE)
7835 tree targ0 = strip_float_extensions (arg0);
7836 if (targ0 != arg0)
7837 return fold_convert_loc (loc, type,
7838 fold_build1_loc (loc, ABS_EXPR,
7839 TREE_TYPE (targ0),
7840 targ0));
7842 return NULL_TREE;
7844 case BIT_NOT_EXPR:
7845 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7846 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7847 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7848 fold_convert_loc (loc, type,
7849 TREE_OPERAND (arg0, 0)))))
7850 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7851 fold_convert_loc (loc, type,
7852 TREE_OPERAND (arg0, 1)));
7853 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7854 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7855 fold_convert_loc (loc, type,
7856 TREE_OPERAND (arg0, 1)))))
7857 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7858 fold_convert_loc (loc, type,
7859 TREE_OPERAND (arg0, 0)), tem);
7861 return NULL_TREE;
7863 case TRUTH_NOT_EXPR:
7864 /* Note that the operand of this must be an int
7865 and its values must be 0 or 1.
7866 ("true" is a fixed value perhaps depending on the language,
7867 but we don't handle values other than 1 correctly yet.) */
7868 tem = fold_truth_not_expr (loc, arg0);
7869 if (!tem)
7870 return NULL_TREE;
7871 return fold_convert_loc (loc, type, tem);
7873 case INDIRECT_REF:
7874 /* Fold *&X to X if X is an lvalue. */
7875 if (TREE_CODE (op0) == ADDR_EXPR)
7877 tree op00 = TREE_OPERAND (op0, 0);
7878 if ((VAR_P (op00)
7879 || TREE_CODE (op00) == PARM_DECL
7880 || TREE_CODE (op00) == RESULT_DECL)
7881 && !TREE_READONLY (op00))
7882 return op00;
7884 return NULL_TREE;
7886 default:
7887 return NULL_TREE;
7888 } /* switch (code) */
7892 /* If the operation was a conversion do _not_ mark a resulting constant
7893 with TREE_OVERFLOW if the original constant was not. These conversions
7894 have implementation defined behavior and retaining the TREE_OVERFLOW
7895 flag here would confuse later passes such as VRP. */
7896 tree
7897 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7898 tree type, tree op0)
7900 tree res = fold_unary_loc (loc, code, type, op0);
7901 if (res
7902 && TREE_CODE (res) == INTEGER_CST
7903 && TREE_CODE (op0) == INTEGER_CST
7904 && CONVERT_EXPR_CODE_P (code))
7905 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7907 return res;
7910 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7911 operands OP0 and OP1. LOC is the location of the resulting expression.
7912 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7913 Return the folded expression if folding is successful. Otherwise,
7914 return NULL_TREE. */
7915 static tree
7916 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7917 tree arg0, tree arg1, tree op0, tree op1)
7919 tree tem;
7921 /* We only do these simplifications if we are optimizing. */
7922 if (!optimize)
7923 return NULL_TREE;
7925 /* Check for things like (A || B) && (A || C). We can convert this
7926 to A || (B && C). Note that either operator can be any of the four
7927 truth and/or operations and the transformation will still be
7928 valid. Also note that we only care about order for the
7929 ANDIF and ORIF operators. If B contains side effects, this
7930 might change the truth-value of A. */
7931 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7932 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7933 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7934 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7935 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7936 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7938 tree a00 = TREE_OPERAND (arg0, 0);
7939 tree a01 = TREE_OPERAND (arg0, 1);
7940 tree a10 = TREE_OPERAND (arg1, 0);
7941 tree a11 = TREE_OPERAND (arg1, 1);
7942 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
7943 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
7944 && (code == TRUTH_AND_EXPR
7945 || code == TRUTH_OR_EXPR));
7947 if (operand_equal_p (a00, a10, 0))
7948 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7949 fold_build2_loc (loc, code, type, a01, a11));
7950 else if (commutative && operand_equal_p (a00, a11, 0))
7951 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7952 fold_build2_loc (loc, code, type, a01, a10));
7953 else if (commutative && operand_equal_p (a01, a10, 0))
7954 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
7955 fold_build2_loc (loc, code, type, a00, a11));
7957 /* This case if tricky because we must either have commutative
7958 operators or else A10 must not have side-effects. */
7960 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
7961 && operand_equal_p (a01, a11, 0))
7962 return fold_build2_loc (loc, TREE_CODE (arg0), type,
7963 fold_build2_loc (loc, code, type, a00, a10),
7964 a01);
7967 /* See if we can build a range comparison. */
7968 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
7969 return tem;
7971 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
7972 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
7974 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
7975 if (tem)
7976 return fold_build2_loc (loc, code, type, tem, arg1);
7979 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
7980 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
7982 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
7983 if (tem)
7984 return fold_build2_loc (loc, code, type, arg0, tem);
7987 /* Check for the possibility of merging component references. If our
7988 lhs is another similar operation, try to merge its rhs with our
7989 rhs. Then try to merge our lhs and rhs. */
7990 if (TREE_CODE (arg0) == code
7991 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
7992 TREE_OPERAND (arg0, 1), arg1)))
7993 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
7995 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
7996 return tem;
7998 if (LOGICAL_OP_NON_SHORT_CIRCUIT
7999 && !flag_sanitize_coverage
8000 && (code == TRUTH_AND_EXPR
8001 || code == TRUTH_ANDIF_EXPR
8002 || code == TRUTH_OR_EXPR
8003 || code == TRUTH_ORIF_EXPR))
8005 enum tree_code ncode, icode;
8007 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8008 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8009 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8011 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8012 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8013 We don't want to pack more than two leafs to a non-IF AND/OR
8014 expression.
8015 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8016 equal to IF-CODE, then we don't want to add right-hand operand.
8017 If the inner right-hand side of left-hand operand has
8018 side-effects, or isn't simple, then we can't add to it,
8019 as otherwise we might destroy if-sequence. */
8020 if (TREE_CODE (arg0) == icode
8021 && simple_operand_p_2 (arg1)
8022 /* Needed for sequence points to handle trappings, and
8023 side-effects. */
8024 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8026 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8027 arg1);
8028 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8029 tem);
8031 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8032 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8033 else if (TREE_CODE (arg1) == icode
8034 && simple_operand_p_2 (arg0)
8035 /* Needed for sequence points to handle trappings, and
8036 side-effects. */
8037 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8039 tem = fold_build2_loc (loc, ncode, type,
8040 arg0, TREE_OPERAND (arg1, 0));
8041 return fold_build2_loc (loc, icode, type, tem,
8042 TREE_OPERAND (arg1, 1));
8044 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8045 into (A OR B).
8046 For sequence point consistancy, we need to check for trapping,
8047 and side-effects. */
8048 else if (code == icode && simple_operand_p_2 (arg0)
8049 && simple_operand_p_2 (arg1))
8050 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8053 return NULL_TREE;
8056 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8057 by changing CODE to reduce the magnitude of constants involved in
8058 ARG0 of the comparison.
8059 Returns a canonicalized comparison tree if a simplification was
8060 possible, otherwise returns NULL_TREE.
8061 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8062 valid if signed overflow is undefined. */
8064 static tree
8065 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8066 tree arg0, tree arg1,
8067 bool *strict_overflow_p)
8069 enum tree_code code0 = TREE_CODE (arg0);
8070 tree t, cst0 = NULL_TREE;
8071 int sgn0;
8073 /* Match A +- CST code arg1. We can change this only if overflow
8074 is undefined. */
8075 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8076 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8077 /* In principle pointers also have undefined overflow behavior,
8078 but that causes problems elsewhere. */
8079 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8080 && (code0 == MINUS_EXPR
8081 || code0 == PLUS_EXPR)
8082 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8083 return NULL_TREE;
8085 /* Identify the constant in arg0 and its sign. */
8086 cst0 = TREE_OPERAND (arg0, 1);
8087 sgn0 = tree_int_cst_sgn (cst0);
8089 /* Overflowed constants and zero will cause problems. */
8090 if (integer_zerop (cst0)
8091 || TREE_OVERFLOW (cst0))
8092 return NULL_TREE;
8094 /* See if we can reduce the magnitude of the constant in
8095 arg0 by changing the comparison code. */
8096 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8097 if (code == LT_EXPR
8098 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8099 code = LE_EXPR;
8100 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8101 else if (code == GT_EXPR
8102 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8103 code = GE_EXPR;
8104 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8105 else if (code == LE_EXPR
8106 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8107 code = LT_EXPR;
8108 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8109 else if (code == GE_EXPR
8110 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8111 code = GT_EXPR;
8112 else
8113 return NULL_TREE;
8114 *strict_overflow_p = true;
8116 /* Now build the constant reduced in magnitude. But not if that
8117 would produce one outside of its types range. */
8118 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8119 && ((sgn0 == 1
8120 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8121 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8122 || (sgn0 == -1
8123 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8124 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8125 return NULL_TREE;
8127 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8128 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8129 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8130 t = fold_convert (TREE_TYPE (arg1), t);
8132 return fold_build2_loc (loc, code, type, t, arg1);
8135 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8136 overflow further. Try to decrease the magnitude of constants involved
8137 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8138 and put sole constants at the second argument position.
8139 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8141 static tree
8142 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8143 tree arg0, tree arg1)
8145 tree t;
8146 bool strict_overflow_p;
8147 const char * const warnmsg = G_("assuming signed overflow does not occur "
8148 "when reducing constant in comparison");
8150 /* Try canonicalization by simplifying arg0. */
8151 strict_overflow_p = false;
8152 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8153 &strict_overflow_p);
8154 if (t)
8156 if (strict_overflow_p)
8157 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8158 return t;
8161 /* Try canonicalization by simplifying arg1 using the swapped
8162 comparison. */
8163 code = swap_tree_comparison (code);
8164 strict_overflow_p = false;
8165 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8166 &strict_overflow_p);
8167 if (t && strict_overflow_p)
8168 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8169 return t;
8172 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8173 space. This is used to avoid issuing overflow warnings for
8174 expressions like &p->x which can not wrap. */
8176 static bool
8177 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8179 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8180 return true;
8182 if (bitpos < 0)
8183 return true;
8185 wide_int wi_offset;
8186 int precision = TYPE_PRECISION (TREE_TYPE (base));
8187 if (offset == NULL_TREE)
8188 wi_offset = wi::zero (precision);
8189 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8190 return true;
8191 else
8192 wi_offset = wi::to_wide (offset);
8194 bool overflow;
8195 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8196 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8197 if (overflow)
8198 return true;
8200 if (!wi::fits_uhwi_p (total))
8201 return true;
8203 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8204 if (size <= 0)
8205 return true;
8207 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8208 array. */
8209 if (TREE_CODE (base) == ADDR_EXPR)
8211 HOST_WIDE_INT base_size;
8213 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8214 if (base_size > 0 && size < base_size)
8215 size = base_size;
8218 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8221 /* Return a positive integer when the symbol DECL is known to have
8222 a nonzero address, zero when it's known not to (e.g., it's a weak
8223 symbol), and a negative integer when the symbol is not yet in the
8224 symbol table and so whether or not its address is zero is unknown.
8225 For function local objects always return positive integer. */
8226 static int
8227 maybe_nonzero_address (tree decl)
8229 if (DECL_P (decl) && decl_in_symtab_p (decl))
8230 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8231 return symbol->nonzero_address ();
8233 /* Function local objects are never NULL. */
8234 if (DECL_P (decl)
8235 && (DECL_CONTEXT (decl)
8236 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
8237 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
8238 return 1;
8240 return -1;
8243 /* Subroutine of fold_binary. This routine performs all of the
8244 transformations that are common to the equality/inequality
8245 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8246 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8247 fold_binary should call fold_binary. Fold a comparison with
8248 tree code CODE and type TYPE with operands OP0 and OP1. Return
8249 the folded comparison or NULL_TREE. */
8251 static tree
8252 fold_comparison (location_t loc, enum tree_code code, tree type,
8253 tree op0, tree op1)
8255 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8256 tree arg0, arg1, tem;
8258 arg0 = op0;
8259 arg1 = op1;
8261 STRIP_SIGN_NOPS (arg0);
8262 STRIP_SIGN_NOPS (arg1);
8264 /* For comparisons of pointers we can decompose it to a compile time
8265 comparison of the base objects and the offsets into the object.
8266 This requires at least one operand being an ADDR_EXPR or a
8267 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8268 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8269 && (TREE_CODE (arg0) == ADDR_EXPR
8270 || TREE_CODE (arg1) == ADDR_EXPR
8271 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8272 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8274 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8275 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8276 machine_mode mode;
8277 int volatilep, reversep, unsignedp;
8278 bool indirect_base0 = false, indirect_base1 = false;
8280 /* Get base and offset for the access. Strip ADDR_EXPR for
8281 get_inner_reference, but put it back by stripping INDIRECT_REF
8282 off the base object if possible. indirect_baseN will be true
8283 if baseN is not an address but refers to the object itself. */
8284 base0 = arg0;
8285 if (TREE_CODE (arg0) == ADDR_EXPR)
8287 base0
8288 = get_inner_reference (TREE_OPERAND (arg0, 0),
8289 &bitsize, &bitpos0, &offset0, &mode,
8290 &unsignedp, &reversep, &volatilep);
8291 if (TREE_CODE (base0) == INDIRECT_REF)
8292 base0 = TREE_OPERAND (base0, 0);
8293 else
8294 indirect_base0 = true;
8296 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8298 base0 = TREE_OPERAND (arg0, 0);
8299 STRIP_SIGN_NOPS (base0);
8300 if (TREE_CODE (base0) == ADDR_EXPR)
8302 base0
8303 = get_inner_reference (TREE_OPERAND (base0, 0),
8304 &bitsize, &bitpos0, &offset0, &mode,
8305 &unsignedp, &reversep, &volatilep);
8306 if (TREE_CODE (base0) == INDIRECT_REF)
8307 base0 = TREE_OPERAND (base0, 0);
8308 else
8309 indirect_base0 = true;
8311 if (offset0 == NULL_TREE || integer_zerop (offset0))
8312 offset0 = TREE_OPERAND (arg0, 1);
8313 else
8314 offset0 = size_binop (PLUS_EXPR, offset0,
8315 TREE_OPERAND (arg0, 1));
8316 if (TREE_CODE (offset0) == INTEGER_CST)
8318 offset_int tem = wi::sext (wi::to_offset (offset0),
8319 TYPE_PRECISION (sizetype));
8320 tem <<= LOG2_BITS_PER_UNIT;
8321 tem += bitpos0;
8322 if (wi::fits_shwi_p (tem))
8324 bitpos0 = tem.to_shwi ();
8325 offset0 = NULL_TREE;
8330 base1 = arg1;
8331 if (TREE_CODE (arg1) == ADDR_EXPR)
8333 base1
8334 = get_inner_reference (TREE_OPERAND (arg1, 0),
8335 &bitsize, &bitpos1, &offset1, &mode,
8336 &unsignedp, &reversep, &volatilep);
8337 if (TREE_CODE (base1) == INDIRECT_REF)
8338 base1 = TREE_OPERAND (base1, 0);
8339 else
8340 indirect_base1 = true;
8342 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8344 base1 = TREE_OPERAND (arg1, 0);
8345 STRIP_SIGN_NOPS (base1);
8346 if (TREE_CODE (base1) == ADDR_EXPR)
8348 base1
8349 = get_inner_reference (TREE_OPERAND (base1, 0),
8350 &bitsize, &bitpos1, &offset1, &mode,
8351 &unsignedp, &reversep, &volatilep);
8352 if (TREE_CODE (base1) == INDIRECT_REF)
8353 base1 = TREE_OPERAND (base1, 0);
8354 else
8355 indirect_base1 = true;
8357 if (offset1 == NULL_TREE || integer_zerop (offset1))
8358 offset1 = TREE_OPERAND (arg1, 1);
8359 else
8360 offset1 = size_binop (PLUS_EXPR, offset1,
8361 TREE_OPERAND (arg1, 1));
8362 if (TREE_CODE (offset1) == INTEGER_CST)
8364 offset_int tem = wi::sext (wi::to_offset (offset1),
8365 TYPE_PRECISION (sizetype));
8366 tem <<= LOG2_BITS_PER_UNIT;
8367 tem += bitpos1;
8368 if (wi::fits_shwi_p (tem))
8370 bitpos1 = tem.to_shwi ();
8371 offset1 = NULL_TREE;
8376 /* If we have equivalent bases we might be able to simplify. */
8377 if (indirect_base0 == indirect_base1
8378 && operand_equal_p (base0, base1,
8379 indirect_base0 ? OEP_ADDRESS_OF : 0))
8381 /* We can fold this expression to a constant if the non-constant
8382 offset parts are equal. */
8383 if (offset0 == offset1
8384 || (offset0 && offset1
8385 && operand_equal_p (offset0, offset1, 0)))
8387 if (!equality_code
8388 && bitpos0 != bitpos1
8389 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8390 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8391 fold_overflow_warning (("assuming pointer wraparound does not "
8392 "occur when comparing P +- C1 with "
8393 "P +- C2"),
8394 WARN_STRICT_OVERFLOW_CONDITIONAL);
8396 switch (code)
8398 case EQ_EXPR:
8399 return constant_boolean_node (bitpos0 == bitpos1, type);
8400 case NE_EXPR:
8401 return constant_boolean_node (bitpos0 != bitpos1, type);
8402 case LT_EXPR:
8403 return constant_boolean_node (bitpos0 < bitpos1, type);
8404 case LE_EXPR:
8405 return constant_boolean_node (bitpos0 <= bitpos1, type);
8406 case GE_EXPR:
8407 return constant_boolean_node (bitpos0 >= bitpos1, type);
8408 case GT_EXPR:
8409 return constant_boolean_node (bitpos0 > bitpos1, type);
8410 default:;
8413 /* We can simplify the comparison to a comparison of the variable
8414 offset parts if the constant offset parts are equal.
8415 Be careful to use signed sizetype here because otherwise we
8416 mess with array offsets in the wrong way. This is possible
8417 because pointer arithmetic is restricted to retain within an
8418 object and overflow on pointer differences is undefined as of
8419 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8420 else if (bitpos0 == bitpos1)
8422 /* By converting to signed sizetype we cover middle-end pointer
8423 arithmetic which operates on unsigned pointer types of size
8424 type size and ARRAY_REF offsets which are properly sign or
8425 zero extended from their type in case it is narrower than
8426 sizetype. */
8427 if (offset0 == NULL_TREE)
8428 offset0 = build_int_cst (ssizetype, 0);
8429 else
8430 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8431 if (offset1 == NULL_TREE)
8432 offset1 = build_int_cst (ssizetype, 0);
8433 else
8434 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8436 if (!equality_code
8437 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8438 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8439 fold_overflow_warning (("assuming pointer wraparound does not "
8440 "occur when comparing P +- C1 with "
8441 "P +- C2"),
8442 WARN_STRICT_OVERFLOW_COMPARISON);
8444 return fold_build2_loc (loc, code, type, offset0, offset1);
8447 /* For equal offsets we can simplify to a comparison of the
8448 base addresses. */
8449 else if (bitpos0 == bitpos1
8450 && (indirect_base0
8451 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8452 && (indirect_base1
8453 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8454 && ((offset0 == offset1)
8455 || (offset0 && offset1
8456 && operand_equal_p (offset0, offset1, 0))))
8458 if (indirect_base0)
8459 base0 = build_fold_addr_expr_loc (loc, base0);
8460 if (indirect_base1)
8461 base1 = build_fold_addr_expr_loc (loc, base1);
8462 return fold_build2_loc (loc, code, type, base0, base1);
8464 /* Comparison between an ordinary (non-weak) symbol and a null
8465 pointer can be eliminated since such symbols must have a non
8466 null address. In C, relational expressions between pointers
8467 to objects and null pointers are undefined. The results
8468 below follow the C++ rules with the additional property that
8469 every object pointer compares greater than a null pointer.
8471 else if (((DECL_P (base0)
8472 && maybe_nonzero_address (base0) > 0
8473 /* Avoid folding references to struct members at offset 0 to
8474 prevent tests like '&ptr->firstmember == 0' from getting
8475 eliminated. When ptr is null, although the -> expression
8476 is strictly speaking invalid, GCC retains it as a matter
8477 of QoI. See PR c/44555. */
8478 && (offset0 == NULL_TREE && bitpos0 != 0))
8479 || CONSTANT_CLASS_P (base0))
8480 && indirect_base0
8481 /* The caller guarantees that when one of the arguments is
8482 constant (i.e., null in this case) it is second. */
8483 && integer_zerop (arg1))
8485 switch (code)
8487 case EQ_EXPR:
8488 case LE_EXPR:
8489 case LT_EXPR:
8490 return constant_boolean_node (false, type);
8491 case GE_EXPR:
8492 case GT_EXPR:
8493 case NE_EXPR:
8494 return constant_boolean_node (true, type);
8495 default:
8496 gcc_unreachable ();
8501 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8502 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8503 the resulting offset is smaller in absolute value than the
8504 original one and has the same sign. */
8505 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8506 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8507 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8508 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8509 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8510 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8511 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8512 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8514 tree const1 = TREE_OPERAND (arg0, 1);
8515 tree const2 = TREE_OPERAND (arg1, 1);
8516 tree variable1 = TREE_OPERAND (arg0, 0);
8517 tree variable2 = TREE_OPERAND (arg1, 0);
8518 tree cst;
8519 const char * const warnmsg = G_("assuming signed overflow does not "
8520 "occur when combining constants around "
8521 "a comparison");
8523 /* Put the constant on the side where it doesn't overflow and is
8524 of lower absolute value and of same sign than before. */
8525 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8526 ? MINUS_EXPR : PLUS_EXPR,
8527 const2, const1);
8528 if (!TREE_OVERFLOW (cst)
8529 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8530 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8532 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8533 return fold_build2_loc (loc, code, type,
8534 variable1,
8535 fold_build2_loc (loc, TREE_CODE (arg1),
8536 TREE_TYPE (arg1),
8537 variable2, cst));
8540 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8541 ? MINUS_EXPR : PLUS_EXPR,
8542 const1, const2);
8543 if (!TREE_OVERFLOW (cst)
8544 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8545 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8547 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8548 return fold_build2_loc (loc, code, type,
8549 fold_build2_loc (loc, TREE_CODE (arg0),
8550 TREE_TYPE (arg0),
8551 variable1, cst),
8552 variable2);
8556 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8557 if (tem)
8558 return tem;
8560 /* If we are comparing an expression that just has comparisons
8561 of two integer values, arithmetic expressions of those comparisons,
8562 and constants, we can simplify it. There are only three cases
8563 to check: the two values can either be equal, the first can be
8564 greater, or the second can be greater. Fold the expression for
8565 those three values. Since each value must be 0 or 1, we have
8566 eight possibilities, each of which corresponds to the constant 0
8567 or 1 or one of the six possible comparisons.
8569 This handles common cases like (a > b) == 0 but also handles
8570 expressions like ((x > y) - (y > x)) > 0, which supposedly
8571 occur in macroized code. */
8573 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8575 tree cval1 = 0, cval2 = 0;
8576 int save_p = 0;
8578 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8579 /* Don't handle degenerate cases here; they should already
8580 have been handled anyway. */
8581 && cval1 != 0 && cval2 != 0
8582 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8583 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8584 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8585 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8586 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8587 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8588 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8590 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8591 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8593 /* We can't just pass T to eval_subst in case cval1 or cval2
8594 was the same as ARG1. */
8596 tree high_result
8597 = fold_build2_loc (loc, code, type,
8598 eval_subst (loc, arg0, cval1, maxval,
8599 cval2, minval),
8600 arg1);
8601 tree equal_result
8602 = fold_build2_loc (loc, code, type,
8603 eval_subst (loc, arg0, cval1, maxval,
8604 cval2, maxval),
8605 arg1);
8606 tree low_result
8607 = fold_build2_loc (loc, code, type,
8608 eval_subst (loc, arg0, cval1, minval,
8609 cval2, maxval),
8610 arg1);
8612 /* All three of these results should be 0 or 1. Confirm they are.
8613 Then use those values to select the proper code to use. */
8615 if (TREE_CODE (high_result) == INTEGER_CST
8616 && TREE_CODE (equal_result) == INTEGER_CST
8617 && TREE_CODE (low_result) == INTEGER_CST)
8619 /* Make a 3-bit mask with the high-order bit being the
8620 value for `>', the next for '=', and the low for '<'. */
8621 switch ((integer_onep (high_result) * 4)
8622 + (integer_onep (equal_result) * 2)
8623 + integer_onep (low_result))
8625 case 0:
8626 /* Always false. */
8627 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8628 case 1:
8629 code = LT_EXPR;
8630 break;
8631 case 2:
8632 code = EQ_EXPR;
8633 break;
8634 case 3:
8635 code = LE_EXPR;
8636 break;
8637 case 4:
8638 code = GT_EXPR;
8639 break;
8640 case 5:
8641 code = NE_EXPR;
8642 break;
8643 case 6:
8644 code = GE_EXPR;
8645 break;
8646 case 7:
8647 /* Always true. */
8648 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8651 if (save_p)
8653 tem = save_expr (build2 (code, type, cval1, cval2));
8654 protected_set_expr_location (tem, loc);
8655 return tem;
8657 return fold_build2_loc (loc, code, type, cval1, cval2);
8662 return NULL_TREE;
8666 /* Subroutine of fold_binary. Optimize complex multiplications of the
8667 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8668 argument EXPR represents the expression "z" of type TYPE. */
8670 static tree
8671 fold_mult_zconjz (location_t loc, tree type, tree expr)
8673 tree itype = TREE_TYPE (type);
8674 tree rpart, ipart, tem;
8676 if (TREE_CODE (expr) == COMPLEX_EXPR)
8678 rpart = TREE_OPERAND (expr, 0);
8679 ipart = TREE_OPERAND (expr, 1);
8681 else if (TREE_CODE (expr) == COMPLEX_CST)
8683 rpart = TREE_REALPART (expr);
8684 ipart = TREE_IMAGPART (expr);
8686 else
8688 expr = save_expr (expr);
8689 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8690 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8693 rpart = save_expr (rpart);
8694 ipart = save_expr (ipart);
8695 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8696 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8697 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8698 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8699 build_zero_cst (itype));
8703 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8704 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8705 true if successful. */
8707 static bool
8708 vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts)
8710 unsigned int i;
8712 if (TREE_CODE (arg) == VECTOR_CST)
8714 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8715 elts[i] = VECTOR_CST_ELT (arg, i);
8717 else if (TREE_CODE (arg) == CONSTRUCTOR)
8719 constructor_elt *elt;
8721 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8722 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8723 return false;
8724 else
8725 elts[i] = elt->value;
8727 else
8728 return false;
8729 for (; i < nelts; i++)
8730 elts[i]
8731 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8732 return true;
8735 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8736 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8737 NULL_TREE otherwise. */
8739 static tree
8740 fold_vec_perm (tree type, tree arg0, tree arg1, vec_perm_indices sel)
8742 unsigned int i;
8743 bool need_ctor = false;
8745 unsigned int nelts = sel.length ();
8746 gcc_assert (TYPE_VECTOR_SUBPARTS (type) == nelts
8747 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8748 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8749 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8750 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8751 return NULL_TREE;
8753 tree *in_elts = XALLOCAVEC (tree, nelts * 2);
8754 if (!vec_cst_ctor_to_array (arg0, nelts, in_elts)
8755 || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts))
8756 return NULL_TREE;
8758 auto_vec<tree, 32> out_elts (nelts);
8759 for (i = 0; i < nelts; i++)
8761 if (!CONSTANT_CLASS_P (in_elts[sel[i]]))
8762 need_ctor = true;
8763 out_elts.quick_push (unshare_expr (in_elts[sel[i]]));
8766 if (need_ctor)
8768 vec<constructor_elt, va_gc> *v;
8769 vec_alloc (v, nelts);
8770 for (i = 0; i < nelts; i++)
8771 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]);
8772 return build_constructor (type, v);
8774 else
8775 return build_vector (type, out_elts);
8778 /* Try to fold a pointer difference of type TYPE two address expressions of
8779 array references AREF0 and AREF1 using location LOC. Return a
8780 simplified expression for the difference or NULL_TREE. */
8782 static tree
8783 fold_addr_of_array_ref_difference (location_t loc, tree type,
8784 tree aref0, tree aref1,
8785 bool use_pointer_diff)
8787 tree base0 = TREE_OPERAND (aref0, 0);
8788 tree base1 = TREE_OPERAND (aref1, 0);
8789 tree base_offset = build_int_cst (type, 0);
8791 /* If the bases are array references as well, recurse. If the bases
8792 are pointer indirections compute the difference of the pointers.
8793 If the bases are equal, we are set. */
8794 if ((TREE_CODE (base0) == ARRAY_REF
8795 && TREE_CODE (base1) == ARRAY_REF
8796 && (base_offset
8797 = fold_addr_of_array_ref_difference (loc, type, base0, base1,
8798 use_pointer_diff)))
8799 || (INDIRECT_REF_P (base0)
8800 && INDIRECT_REF_P (base1)
8801 && (base_offset
8802 = use_pointer_diff
8803 ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type,
8804 TREE_OPERAND (base0, 0),
8805 TREE_OPERAND (base1, 0))
8806 : fold_binary_loc (loc, MINUS_EXPR, type,
8807 fold_convert (type,
8808 TREE_OPERAND (base0, 0)),
8809 fold_convert (type,
8810 TREE_OPERAND (base1, 0)))))
8811 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
8813 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8814 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8815 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8816 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1);
8817 return fold_build2_loc (loc, PLUS_EXPR, type,
8818 base_offset,
8819 fold_build2_loc (loc, MULT_EXPR, type,
8820 diff, esz));
8822 return NULL_TREE;
8825 /* If the real or vector real constant CST of type TYPE has an exact
8826 inverse, return it, else return NULL. */
8828 tree
8829 exact_inverse (tree type, tree cst)
8831 REAL_VALUE_TYPE r;
8832 tree unit_type;
8833 machine_mode mode;
8834 unsigned vec_nelts, i;
8836 switch (TREE_CODE (cst))
8838 case REAL_CST:
8839 r = TREE_REAL_CST (cst);
8841 if (exact_real_inverse (TYPE_MODE (type), &r))
8842 return build_real (type, r);
8844 return NULL_TREE;
8846 case VECTOR_CST:
8848 vec_nelts = VECTOR_CST_NELTS (cst);
8849 unit_type = TREE_TYPE (type);
8850 mode = TYPE_MODE (unit_type);
8852 auto_vec<tree, 32> elts (vec_nelts);
8853 for (i = 0; i < vec_nelts; i++)
8855 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8856 if (!exact_real_inverse (mode, &r))
8857 return NULL_TREE;
8858 elts.quick_push (build_real (unit_type, r));
8861 return build_vector (type, elts);
8864 default:
8865 return NULL_TREE;
8869 /* Mask out the tz least significant bits of X of type TYPE where
8870 tz is the number of trailing zeroes in Y. */
8871 static wide_int
8872 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8874 int tz = wi::ctz (y);
8875 if (tz > 0)
8876 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8877 return x;
8880 /* Return true when T is an address and is known to be nonzero.
8881 For floating point we further ensure that T is not denormal.
8882 Similar logic is present in nonzero_address in rtlanal.h.
8884 If the return value is based on the assumption that signed overflow
8885 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8886 change *STRICT_OVERFLOW_P. */
8888 static bool
8889 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8891 tree type = TREE_TYPE (t);
8892 enum tree_code code;
8894 /* Doing something useful for floating point would need more work. */
8895 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8896 return false;
8898 code = TREE_CODE (t);
8899 switch (TREE_CODE_CLASS (code))
8901 case tcc_unary:
8902 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8903 strict_overflow_p);
8904 case tcc_binary:
8905 case tcc_comparison:
8906 return tree_binary_nonzero_warnv_p (code, type,
8907 TREE_OPERAND (t, 0),
8908 TREE_OPERAND (t, 1),
8909 strict_overflow_p);
8910 case tcc_constant:
8911 case tcc_declaration:
8912 case tcc_reference:
8913 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8915 default:
8916 break;
8919 switch (code)
8921 case TRUTH_NOT_EXPR:
8922 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8923 strict_overflow_p);
8925 case TRUTH_AND_EXPR:
8926 case TRUTH_OR_EXPR:
8927 case TRUTH_XOR_EXPR:
8928 return tree_binary_nonzero_warnv_p (code, type,
8929 TREE_OPERAND (t, 0),
8930 TREE_OPERAND (t, 1),
8931 strict_overflow_p);
8933 case COND_EXPR:
8934 case CONSTRUCTOR:
8935 case OBJ_TYPE_REF:
8936 case ASSERT_EXPR:
8937 case ADDR_EXPR:
8938 case WITH_SIZE_EXPR:
8939 case SSA_NAME:
8940 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8942 case COMPOUND_EXPR:
8943 case MODIFY_EXPR:
8944 case BIND_EXPR:
8945 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
8946 strict_overflow_p);
8948 case SAVE_EXPR:
8949 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
8950 strict_overflow_p);
8952 case CALL_EXPR:
8954 tree fndecl = get_callee_fndecl (t);
8955 if (!fndecl) return false;
8956 if (flag_delete_null_pointer_checks && !flag_check_new
8957 && DECL_IS_OPERATOR_NEW (fndecl)
8958 && !TREE_NOTHROW (fndecl))
8959 return true;
8960 if (flag_delete_null_pointer_checks
8961 && lookup_attribute ("returns_nonnull",
8962 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
8963 return true;
8964 return alloca_call_p (t);
8967 default:
8968 break;
8970 return false;
8973 /* Return true when T is an address and is known to be nonzero.
8974 Handle warnings about undefined signed overflow. */
8976 bool
8977 tree_expr_nonzero_p (tree t)
8979 bool ret, strict_overflow_p;
8981 strict_overflow_p = false;
8982 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
8983 if (strict_overflow_p)
8984 fold_overflow_warning (("assuming signed overflow does not occur when "
8985 "determining that expression is always "
8986 "non-zero"),
8987 WARN_STRICT_OVERFLOW_MISC);
8988 return ret;
8991 /* Return true if T is known not to be equal to an integer W. */
8993 bool
8994 expr_not_equal_to (tree t, const wide_int &w)
8996 wide_int min, max, nz;
8997 value_range_type rtype;
8998 switch (TREE_CODE (t))
9000 case INTEGER_CST:
9001 return wi::to_wide (t) != w;
9003 case SSA_NAME:
9004 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9005 return false;
9006 rtype = get_range_info (t, &min, &max);
9007 if (rtype == VR_RANGE)
9009 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9010 return true;
9011 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9012 return true;
9014 else if (rtype == VR_ANTI_RANGE
9015 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9016 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9017 return true;
9018 /* If T has some known zero bits and W has any of those bits set,
9019 then T is known not to be equal to W. */
9020 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9021 TYPE_PRECISION (TREE_TYPE (t))), 0))
9022 return true;
9023 return false;
9025 default:
9026 return false;
9030 /* Fold a binary expression of code CODE and type TYPE with operands
9031 OP0 and OP1. LOC is the location of the resulting expression.
9032 Return the folded expression if folding is successful. Otherwise,
9033 return NULL_TREE. */
9035 tree
9036 fold_binary_loc (location_t loc,
9037 enum tree_code code, tree type, tree op0, tree op1)
9039 enum tree_code_class kind = TREE_CODE_CLASS (code);
9040 tree arg0, arg1, tem;
9041 tree t1 = NULL_TREE;
9042 bool strict_overflow_p;
9043 unsigned int prec;
9045 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9046 && TREE_CODE_LENGTH (code) == 2
9047 && op0 != NULL_TREE
9048 && op1 != NULL_TREE);
9050 arg0 = op0;
9051 arg1 = op1;
9053 /* Strip any conversions that don't change the mode. This is
9054 safe for every expression, except for a comparison expression
9055 because its signedness is derived from its operands. So, in
9056 the latter case, only strip conversions that don't change the
9057 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9058 preserved.
9060 Note that this is done as an internal manipulation within the
9061 constant folder, in order to find the simplest representation
9062 of the arguments so that their form can be studied. In any
9063 cases, the appropriate type conversions should be put back in
9064 the tree that will get out of the constant folder. */
9066 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9068 STRIP_SIGN_NOPS (arg0);
9069 STRIP_SIGN_NOPS (arg1);
9071 else
9073 STRIP_NOPS (arg0);
9074 STRIP_NOPS (arg1);
9077 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9078 constant but we can't do arithmetic on them. */
9079 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9081 tem = const_binop (code, type, arg0, arg1);
9082 if (tem != NULL_TREE)
9084 if (TREE_TYPE (tem) != type)
9085 tem = fold_convert_loc (loc, type, tem);
9086 return tem;
9090 /* If this is a commutative operation, and ARG0 is a constant, move it
9091 to ARG1 to reduce the number of tests below. */
9092 if (commutative_tree_code (code)
9093 && tree_swap_operands_p (arg0, arg1))
9094 return fold_build2_loc (loc, code, type, op1, op0);
9096 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9097 to ARG1 to reduce the number of tests below. */
9098 if (kind == tcc_comparison
9099 && tree_swap_operands_p (arg0, arg1))
9100 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9102 tem = generic_simplify (loc, code, type, op0, op1);
9103 if (tem)
9104 return tem;
9106 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9108 First check for cases where an arithmetic operation is applied to a
9109 compound, conditional, or comparison operation. Push the arithmetic
9110 operation inside the compound or conditional to see if any folding
9111 can then be done. Convert comparison to conditional for this purpose.
9112 The also optimizes non-constant cases that used to be done in
9113 expand_expr.
9115 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9116 one of the operands is a comparison and the other is a comparison, a
9117 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9118 code below would make the expression more complex. Change it to a
9119 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9120 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9122 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9123 || code == EQ_EXPR || code == NE_EXPR)
9124 && TREE_CODE (type) != VECTOR_TYPE
9125 && ((truth_value_p (TREE_CODE (arg0))
9126 && (truth_value_p (TREE_CODE (arg1))
9127 || (TREE_CODE (arg1) == BIT_AND_EXPR
9128 && integer_onep (TREE_OPERAND (arg1, 1)))))
9129 || (truth_value_p (TREE_CODE (arg1))
9130 && (truth_value_p (TREE_CODE (arg0))
9131 || (TREE_CODE (arg0) == BIT_AND_EXPR
9132 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9134 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9135 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9136 : TRUTH_XOR_EXPR,
9137 boolean_type_node,
9138 fold_convert_loc (loc, boolean_type_node, arg0),
9139 fold_convert_loc (loc, boolean_type_node, arg1));
9141 if (code == EQ_EXPR)
9142 tem = invert_truthvalue_loc (loc, tem);
9144 return fold_convert_loc (loc, type, tem);
9147 if (TREE_CODE_CLASS (code) == tcc_binary
9148 || TREE_CODE_CLASS (code) == tcc_comparison)
9150 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9152 tem = fold_build2_loc (loc, code, type,
9153 fold_convert_loc (loc, TREE_TYPE (op0),
9154 TREE_OPERAND (arg0, 1)), op1);
9155 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9156 tem);
9158 if (TREE_CODE (arg1) == COMPOUND_EXPR)
9160 tem = fold_build2_loc (loc, code, type, op0,
9161 fold_convert_loc (loc, TREE_TYPE (op1),
9162 TREE_OPERAND (arg1, 1)));
9163 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9164 tem);
9167 if (TREE_CODE (arg0) == COND_EXPR
9168 || TREE_CODE (arg0) == VEC_COND_EXPR
9169 || COMPARISON_CLASS_P (arg0))
9171 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9172 arg0, arg1,
9173 /*cond_first_p=*/1);
9174 if (tem != NULL_TREE)
9175 return tem;
9178 if (TREE_CODE (arg1) == COND_EXPR
9179 || TREE_CODE (arg1) == VEC_COND_EXPR
9180 || COMPARISON_CLASS_P (arg1))
9182 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9183 arg1, arg0,
9184 /*cond_first_p=*/0);
9185 if (tem != NULL_TREE)
9186 return tem;
9190 switch (code)
9192 case MEM_REF:
9193 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9194 if (TREE_CODE (arg0) == ADDR_EXPR
9195 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9197 tree iref = TREE_OPERAND (arg0, 0);
9198 return fold_build2 (MEM_REF, type,
9199 TREE_OPERAND (iref, 0),
9200 int_const_binop (PLUS_EXPR, arg1,
9201 TREE_OPERAND (iref, 1)));
9204 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9205 if (TREE_CODE (arg0) == ADDR_EXPR
9206 && handled_component_p (TREE_OPERAND (arg0, 0)))
9208 tree base;
9209 HOST_WIDE_INT coffset;
9210 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9211 &coffset);
9212 if (!base)
9213 return NULL_TREE;
9214 return fold_build2 (MEM_REF, type,
9215 build_fold_addr_expr (base),
9216 int_const_binop (PLUS_EXPR, arg1,
9217 size_int (coffset)));
9220 return NULL_TREE;
9222 case POINTER_PLUS_EXPR:
9223 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9224 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9225 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9226 return fold_convert_loc (loc, type,
9227 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9228 fold_convert_loc (loc, sizetype,
9229 arg1),
9230 fold_convert_loc (loc, sizetype,
9231 arg0)));
9233 return NULL_TREE;
9235 case PLUS_EXPR:
9236 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9238 /* X + (X / CST) * -CST is X % CST. */
9239 if (TREE_CODE (arg1) == MULT_EXPR
9240 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9241 && operand_equal_p (arg0,
9242 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9244 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9245 tree cst1 = TREE_OPERAND (arg1, 1);
9246 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9247 cst1, cst0);
9248 if (sum && integer_zerop (sum))
9249 return fold_convert_loc (loc, type,
9250 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9251 TREE_TYPE (arg0), arg0,
9252 cst0));
9256 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9257 one. Make sure the type is not saturating and has the signedness of
9258 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9259 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9260 if ((TREE_CODE (arg0) == MULT_EXPR
9261 || TREE_CODE (arg1) == MULT_EXPR)
9262 && !TYPE_SATURATING (type)
9263 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9264 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9265 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9267 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9268 if (tem)
9269 return tem;
9272 if (! FLOAT_TYPE_P (type))
9274 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9275 (plus (plus (mult) (mult)) (foo)) so that we can
9276 take advantage of the factoring cases below. */
9277 if (ANY_INTEGRAL_TYPE_P (type)
9278 && TYPE_OVERFLOW_WRAPS (type)
9279 && (((TREE_CODE (arg0) == PLUS_EXPR
9280 || TREE_CODE (arg0) == MINUS_EXPR)
9281 && TREE_CODE (arg1) == MULT_EXPR)
9282 || ((TREE_CODE (arg1) == PLUS_EXPR
9283 || TREE_CODE (arg1) == MINUS_EXPR)
9284 && TREE_CODE (arg0) == MULT_EXPR)))
9286 tree parg0, parg1, parg, marg;
9287 enum tree_code pcode;
9289 if (TREE_CODE (arg1) == MULT_EXPR)
9290 parg = arg0, marg = arg1;
9291 else
9292 parg = arg1, marg = arg0;
9293 pcode = TREE_CODE (parg);
9294 parg0 = TREE_OPERAND (parg, 0);
9295 parg1 = TREE_OPERAND (parg, 1);
9296 STRIP_NOPS (parg0);
9297 STRIP_NOPS (parg1);
9299 if (TREE_CODE (parg0) == MULT_EXPR
9300 && TREE_CODE (parg1) != MULT_EXPR)
9301 return fold_build2_loc (loc, pcode, type,
9302 fold_build2_loc (loc, PLUS_EXPR, type,
9303 fold_convert_loc (loc, type,
9304 parg0),
9305 fold_convert_loc (loc, type,
9306 marg)),
9307 fold_convert_loc (loc, type, parg1));
9308 if (TREE_CODE (parg0) != MULT_EXPR
9309 && TREE_CODE (parg1) == MULT_EXPR)
9310 return
9311 fold_build2_loc (loc, PLUS_EXPR, type,
9312 fold_convert_loc (loc, type, parg0),
9313 fold_build2_loc (loc, pcode, type,
9314 fold_convert_loc (loc, type, marg),
9315 fold_convert_loc (loc, type,
9316 parg1)));
9319 else
9321 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9322 to __complex__ ( x, y ). This is not the same for SNaNs or
9323 if signed zeros are involved. */
9324 if (!HONOR_SNANS (element_mode (arg0))
9325 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9326 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9328 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9329 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9330 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9331 bool arg0rz = false, arg0iz = false;
9332 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9333 || (arg0i && (arg0iz = real_zerop (arg0i))))
9335 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9336 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9337 if (arg0rz && arg1i && real_zerop (arg1i))
9339 tree rp = arg1r ? arg1r
9340 : build1 (REALPART_EXPR, rtype, arg1);
9341 tree ip = arg0i ? arg0i
9342 : build1 (IMAGPART_EXPR, rtype, arg0);
9343 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9345 else if (arg0iz && arg1r && real_zerop (arg1r))
9347 tree rp = arg0r ? arg0r
9348 : build1 (REALPART_EXPR, rtype, arg0);
9349 tree ip = arg1i ? arg1i
9350 : build1 (IMAGPART_EXPR, rtype, arg1);
9351 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9356 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9357 We associate floats only if the user has specified
9358 -fassociative-math. */
9359 if (flag_associative_math
9360 && TREE_CODE (arg1) == PLUS_EXPR
9361 && TREE_CODE (arg0) != MULT_EXPR)
9363 tree tree10 = TREE_OPERAND (arg1, 0);
9364 tree tree11 = TREE_OPERAND (arg1, 1);
9365 if (TREE_CODE (tree11) == MULT_EXPR
9366 && TREE_CODE (tree10) == MULT_EXPR)
9368 tree tree0;
9369 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9370 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9373 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9374 We associate floats only if the user has specified
9375 -fassociative-math. */
9376 if (flag_associative_math
9377 && TREE_CODE (arg0) == PLUS_EXPR
9378 && TREE_CODE (arg1) != MULT_EXPR)
9380 tree tree00 = TREE_OPERAND (arg0, 0);
9381 tree tree01 = TREE_OPERAND (arg0, 1);
9382 if (TREE_CODE (tree01) == MULT_EXPR
9383 && TREE_CODE (tree00) == MULT_EXPR)
9385 tree tree0;
9386 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9387 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9392 bit_rotate:
9393 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9394 is a rotate of A by C1 bits. */
9395 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9396 is a rotate of A by B bits.
9397 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
9398 though in this case CODE must be | and not + or ^, otherwise
9399 it doesn't return A when B is 0. */
9401 enum tree_code code0, code1;
9402 tree rtype;
9403 code0 = TREE_CODE (arg0);
9404 code1 = TREE_CODE (arg1);
9405 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9406 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9407 && operand_equal_p (TREE_OPERAND (arg0, 0),
9408 TREE_OPERAND (arg1, 0), 0)
9409 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9410 TYPE_UNSIGNED (rtype))
9411 /* Only create rotates in complete modes. Other cases are not
9412 expanded properly. */
9413 && (element_precision (rtype)
9414 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9416 tree tree01, tree11;
9417 tree orig_tree01, orig_tree11;
9418 enum tree_code code01, code11;
9420 tree01 = orig_tree01 = TREE_OPERAND (arg0, 1);
9421 tree11 = orig_tree11 = TREE_OPERAND (arg1, 1);
9422 STRIP_NOPS (tree01);
9423 STRIP_NOPS (tree11);
9424 code01 = TREE_CODE (tree01);
9425 code11 = TREE_CODE (tree11);
9426 if (code11 != MINUS_EXPR
9427 && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR))
9429 std::swap (code0, code1);
9430 std::swap (code01, code11);
9431 std::swap (tree01, tree11);
9432 std::swap (orig_tree01, orig_tree11);
9434 if (code01 == INTEGER_CST
9435 && code11 == INTEGER_CST
9436 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9437 == element_precision (rtype)))
9439 tem = build2_loc (loc, LROTATE_EXPR,
9440 rtype, TREE_OPERAND (arg0, 0),
9441 code0 == LSHIFT_EXPR
9442 ? orig_tree01 : orig_tree11);
9443 return fold_convert_loc (loc, type, tem);
9445 else if (code11 == MINUS_EXPR)
9447 tree tree110, tree111;
9448 tree110 = TREE_OPERAND (tree11, 0);
9449 tree111 = TREE_OPERAND (tree11, 1);
9450 STRIP_NOPS (tree110);
9451 STRIP_NOPS (tree111);
9452 if (TREE_CODE (tree110) == INTEGER_CST
9453 && 0 == compare_tree_int (tree110,
9454 element_precision (rtype))
9455 && operand_equal_p (tree01, tree111, 0))
9457 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
9458 ? LROTATE_EXPR : RROTATE_EXPR),
9459 rtype, TREE_OPERAND (arg0, 0),
9460 orig_tree01);
9461 return fold_convert_loc (loc, type, tem);
9464 else if (code == BIT_IOR_EXPR
9465 && code11 == BIT_AND_EXPR
9466 && pow2p_hwi (element_precision (rtype)))
9468 tree tree110, tree111;
9469 tree110 = TREE_OPERAND (tree11, 0);
9470 tree111 = TREE_OPERAND (tree11, 1);
9471 STRIP_NOPS (tree110);
9472 STRIP_NOPS (tree111);
9473 if (TREE_CODE (tree110) == NEGATE_EXPR
9474 && TREE_CODE (tree111) == INTEGER_CST
9475 && 0 == compare_tree_int (tree111,
9476 element_precision (rtype) - 1)
9477 && operand_equal_p (tree01, TREE_OPERAND (tree110, 0), 0))
9479 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
9480 ? LROTATE_EXPR : RROTATE_EXPR),
9481 rtype, TREE_OPERAND (arg0, 0),
9482 orig_tree01);
9483 return fold_convert_loc (loc, type, tem);
9489 associate:
9490 /* In most languages, can't associate operations on floats through
9491 parentheses. Rather than remember where the parentheses were, we
9492 don't associate floats at all, unless the user has specified
9493 -fassociative-math.
9494 And, we need to make sure type is not saturating. */
9496 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9497 && !TYPE_SATURATING (type))
9499 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0;
9500 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1;
9501 tree atype = type;
9502 bool ok = true;
9504 /* Split both trees into variables, constants, and literals. Then
9505 associate each group together, the constants with literals,
9506 then the result with variables. This increases the chances of
9507 literals being recombined later and of generating relocatable
9508 expressions for the sum of a constant and literal. */
9509 var0 = split_tree (arg0, type, code,
9510 &minus_var0, &con0, &minus_con0,
9511 &lit0, &minus_lit0, 0);
9512 var1 = split_tree (arg1, type, code,
9513 &minus_var1, &con1, &minus_con1,
9514 &lit1, &minus_lit1, code == MINUS_EXPR);
9516 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9517 if (code == MINUS_EXPR)
9518 code = PLUS_EXPR;
9520 /* With undefined overflow prefer doing association in a type
9521 which wraps on overflow, if that is one of the operand types. */
9522 if (POINTER_TYPE_P (type)
9523 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9525 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9526 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9527 atype = TREE_TYPE (arg0);
9528 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9529 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9530 atype = TREE_TYPE (arg1);
9531 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9534 /* With undefined overflow we can only associate constants with one
9535 variable, and constants whose association doesn't overflow. */
9536 if (POINTER_TYPE_P (atype)
9537 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9539 if ((var0 && var1) || (minus_var0 && minus_var1))
9541 /* ??? If split_tree would handle NEGATE_EXPR we could
9542 simply reject these cases and the allowed cases would
9543 be the var0/minus_var1 ones. */
9544 tree tmp0 = var0 ? var0 : minus_var0;
9545 tree tmp1 = var1 ? var1 : minus_var1;
9546 bool one_neg = false;
9548 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9550 tmp0 = TREE_OPERAND (tmp0, 0);
9551 one_neg = !one_neg;
9553 if (CONVERT_EXPR_P (tmp0)
9554 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9555 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9556 <= TYPE_PRECISION (atype)))
9557 tmp0 = TREE_OPERAND (tmp0, 0);
9558 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9560 tmp1 = TREE_OPERAND (tmp1, 0);
9561 one_neg = !one_neg;
9563 if (CONVERT_EXPR_P (tmp1)
9564 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9565 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9566 <= TYPE_PRECISION (atype)))
9567 tmp1 = TREE_OPERAND (tmp1, 0);
9568 /* The only case we can still associate with two variables
9569 is if they cancel out. */
9570 if (!one_neg
9571 || !operand_equal_p (tmp0, tmp1, 0))
9572 ok = false;
9574 else if ((var0 && minus_var1
9575 && ! operand_equal_p (var0, minus_var1, 0))
9576 || (minus_var0 && var1
9577 && ! operand_equal_p (minus_var0, var1, 0)))
9578 ok = false;
9581 /* Only do something if we found more than two objects. Otherwise,
9582 nothing has changed and we risk infinite recursion. */
9583 if (ok
9584 && (2 < ((var0 != 0) + (var1 != 0)
9585 + (minus_var0 != 0) + (minus_var1 != 0)
9586 + (con0 != 0) + (con1 != 0)
9587 + (minus_con0 != 0) + (minus_con1 != 0)
9588 + (lit0 != 0) + (lit1 != 0)
9589 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9591 var0 = associate_trees (loc, var0, var1, code, atype);
9592 minus_var0 = associate_trees (loc, minus_var0, minus_var1,
9593 code, atype);
9594 con0 = associate_trees (loc, con0, con1, code, atype);
9595 minus_con0 = associate_trees (loc, minus_con0, minus_con1,
9596 code, atype);
9597 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9598 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9599 code, atype);
9601 if (minus_var0 && var0)
9603 var0 = associate_trees (loc, var0, minus_var0,
9604 MINUS_EXPR, atype);
9605 minus_var0 = 0;
9607 if (minus_con0 && con0)
9609 con0 = associate_trees (loc, con0, minus_con0,
9610 MINUS_EXPR, atype);
9611 minus_con0 = 0;
9614 /* Preserve the MINUS_EXPR if the negative part of the literal is
9615 greater than the positive part. Otherwise, the multiplicative
9616 folding code (i.e extract_muldiv) may be fooled in case
9617 unsigned constants are subtracted, like in the following
9618 example: ((X*2 + 4) - 8U)/2. */
9619 if (minus_lit0 && lit0)
9621 if (TREE_CODE (lit0) == INTEGER_CST
9622 && TREE_CODE (minus_lit0) == INTEGER_CST
9623 && tree_int_cst_lt (lit0, minus_lit0)
9624 /* But avoid ending up with only negated parts. */
9625 && (var0 || con0))
9627 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9628 MINUS_EXPR, atype);
9629 lit0 = 0;
9631 else
9633 lit0 = associate_trees (loc, lit0, minus_lit0,
9634 MINUS_EXPR, atype);
9635 minus_lit0 = 0;
9639 /* Don't introduce overflows through reassociation. */
9640 if ((lit0 && TREE_OVERFLOW_P (lit0))
9641 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0)))
9642 return NULL_TREE;
9644 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9645 con0 = associate_trees (loc, con0, lit0, code, atype);
9646 lit0 = 0;
9647 minus_con0 = associate_trees (loc, minus_con0, minus_lit0,
9648 code, atype);
9649 minus_lit0 = 0;
9651 /* Eliminate minus_con0. */
9652 if (minus_con0)
9654 if (con0)
9655 con0 = associate_trees (loc, con0, minus_con0,
9656 MINUS_EXPR, atype);
9657 else if (var0)
9658 var0 = associate_trees (loc, var0, minus_con0,
9659 MINUS_EXPR, atype);
9660 else
9661 gcc_unreachable ();
9662 minus_con0 = 0;
9665 /* Eliminate minus_var0. */
9666 if (minus_var0)
9668 if (con0)
9669 con0 = associate_trees (loc, con0, minus_var0,
9670 MINUS_EXPR, atype);
9671 else
9672 gcc_unreachable ();
9673 minus_var0 = 0;
9676 return
9677 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9678 code, atype));
9682 return NULL_TREE;
9684 case POINTER_DIFF_EXPR:
9685 case MINUS_EXPR:
9686 /* Fold &a[i] - &a[j] to i-j. */
9687 if (TREE_CODE (arg0) == ADDR_EXPR
9688 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9689 && TREE_CODE (arg1) == ADDR_EXPR
9690 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9692 tree tem = fold_addr_of_array_ref_difference (loc, type,
9693 TREE_OPERAND (arg0, 0),
9694 TREE_OPERAND (arg1, 0),
9695 code
9696 == POINTER_DIFF_EXPR);
9697 if (tem)
9698 return tem;
9701 /* Further transformations are not for pointers. */
9702 if (code == POINTER_DIFF_EXPR)
9703 return NULL_TREE;
9705 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9706 if (TREE_CODE (arg0) == NEGATE_EXPR
9707 && negate_expr_p (op1))
9708 return fold_build2_loc (loc, MINUS_EXPR, type,
9709 negate_expr (op1),
9710 fold_convert_loc (loc, type,
9711 TREE_OPERAND (arg0, 0)));
9713 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9714 __complex__ ( x, -y ). This is not the same for SNaNs or if
9715 signed zeros are involved. */
9716 if (!HONOR_SNANS (element_mode (arg0))
9717 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9718 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9720 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9721 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9722 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9723 bool arg0rz = false, arg0iz = false;
9724 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9725 || (arg0i && (arg0iz = real_zerop (arg0i))))
9727 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9728 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9729 if (arg0rz && arg1i && real_zerop (arg1i))
9731 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9732 arg1r ? arg1r
9733 : build1 (REALPART_EXPR, rtype, arg1));
9734 tree ip = arg0i ? arg0i
9735 : build1 (IMAGPART_EXPR, rtype, arg0);
9736 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9738 else if (arg0iz && arg1r && real_zerop (arg1r))
9740 tree rp = arg0r ? arg0r
9741 : build1 (REALPART_EXPR, rtype, arg0);
9742 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9743 arg1i ? arg1i
9744 : build1 (IMAGPART_EXPR, rtype, arg1));
9745 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9750 /* A - B -> A + (-B) if B is easily negatable. */
9751 if (negate_expr_p (op1)
9752 && ! TYPE_OVERFLOW_SANITIZED (type)
9753 && ((FLOAT_TYPE_P (type)
9754 /* Avoid this transformation if B is a positive REAL_CST. */
9755 && (TREE_CODE (op1) != REAL_CST
9756 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
9757 || INTEGRAL_TYPE_P (type)))
9758 return fold_build2_loc (loc, PLUS_EXPR, type,
9759 fold_convert_loc (loc, type, arg0),
9760 negate_expr (op1));
9762 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9763 one. Make sure the type is not saturating and has the signedness of
9764 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9765 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9766 if ((TREE_CODE (arg0) == MULT_EXPR
9767 || TREE_CODE (arg1) == MULT_EXPR)
9768 && !TYPE_SATURATING (type)
9769 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9770 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9771 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9773 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9774 if (tem)
9775 return tem;
9778 goto associate;
9780 case MULT_EXPR:
9781 if (! FLOAT_TYPE_P (type))
9783 /* Transform x * -C into -x * C if x is easily negatable. */
9784 if (TREE_CODE (op1) == INTEGER_CST
9785 && tree_int_cst_sgn (op1) == -1
9786 && negate_expr_p (op0)
9787 && negate_expr_p (op1)
9788 && (tem = negate_expr (op1)) != op1
9789 && ! TREE_OVERFLOW (tem))
9790 return fold_build2_loc (loc, MULT_EXPR, type,
9791 fold_convert_loc (loc, type,
9792 negate_expr (op0)), tem);
9794 strict_overflow_p = false;
9795 if (TREE_CODE (arg1) == INTEGER_CST
9796 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9797 &strict_overflow_p)))
9799 if (strict_overflow_p)
9800 fold_overflow_warning (("assuming signed overflow does not "
9801 "occur when simplifying "
9802 "multiplication"),
9803 WARN_STRICT_OVERFLOW_MISC);
9804 return fold_convert_loc (loc, type, tem);
9807 /* Optimize z * conj(z) for integer complex numbers. */
9808 if (TREE_CODE (arg0) == CONJ_EXPR
9809 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9810 return fold_mult_zconjz (loc, type, arg1);
9811 if (TREE_CODE (arg1) == CONJ_EXPR
9812 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9813 return fold_mult_zconjz (loc, type, arg0);
9815 else
9817 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9818 This is not the same for NaNs or if signed zeros are
9819 involved. */
9820 if (!HONOR_NANS (arg0)
9821 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9822 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9823 && TREE_CODE (arg1) == COMPLEX_CST
9824 && real_zerop (TREE_REALPART (arg1)))
9826 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9827 if (real_onep (TREE_IMAGPART (arg1)))
9828 return
9829 fold_build2_loc (loc, COMPLEX_EXPR, type,
9830 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9831 rtype, arg0)),
9832 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9833 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9834 return
9835 fold_build2_loc (loc, COMPLEX_EXPR, type,
9836 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9837 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9838 rtype, arg0)));
9841 /* Optimize z * conj(z) for floating point complex numbers.
9842 Guarded by flag_unsafe_math_optimizations as non-finite
9843 imaginary components don't produce scalar results. */
9844 if (flag_unsafe_math_optimizations
9845 && TREE_CODE (arg0) == CONJ_EXPR
9846 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9847 return fold_mult_zconjz (loc, type, arg1);
9848 if (flag_unsafe_math_optimizations
9849 && TREE_CODE (arg1) == CONJ_EXPR
9850 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9851 return fold_mult_zconjz (loc, type, arg0);
9853 goto associate;
9855 case BIT_IOR_EXPR:
9856 /* Canonicalize (X & C1) | C2. */
9857 if (TREE_CODE (arg0) == BIT_AND_EXPR
9858 && TREE_CODE (arg1) == INTEGER_CST
9859 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9861 int width = TYPE_PRECISION (type), w;
9862 wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1));
9863 wide_int c2 = wi::to_wide (arg1);
9865 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9866 if ((c1 & c2) == c1)
9867 return omit_one_operand_loc (loc, type, arg1,
9868 TREE_OPERAND (arg0, 0));
9870 wide_int msk = wi::mask (width, false,
9871 TYPE_PRECISION (TREE_TYPE (arg1)));
9873 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9874 if (wi::bit_and_not (msk, c1 | c2) == 0)
9876 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9877 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
9880 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9881 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9882 mode which allows further optimizations. */
9883 c1 &= msk;
9884 c2 &= msk;
9885 wide_int c3 = wi::bit_and_not (c1, c2);
9886 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
9888 wide_int mask = wi::mask (w, false,
9889 TYPE_PRECISION (type));
9890 if (((c1 | c2) & mask) == mask
9891 && wi::bit_and_not (c1, mask) == 0)
9893 c3 = mask;
9894 break;
9898 if (c3 != c1)
9900 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9901 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
9902 wide_int_to_tree (type, c3));
9903 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
9907 /* See if this can be simplified into a rotate first. If that
9908 is unsuccessful continue in the association code. */
9909 goto bit_rotate;
9911 case BIT_XOR_EXPR:
9912 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9913 if (TREE_CODE (arg0) == BIT_AND_EXPR
9914 && INTEGRAL_TYPE_P (type)
9915 && integer_onep (TREE_OPERAND (arg0, 1))
9916 && integer_onep (arg1))
9917 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
9918 build_zero_cst (TREE_TYPE (arg0)));
9920 /* See if this can be simplified into a rotate first. If that
9921 is unsuccessful continue in the association code. */
9922 goto bit_rotate;
9924 case BIT_AND_EXPR:
9925 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9926 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9927 && INTEGRAL_TYPE_P (type)
9928 && integer_onep (TREE_OPERAND (arg0, 1))
9929 && integer_onep (arg1))
9931 tree tem2;
9932 tem = TREE_OPERAND (arg0, 0);
9933 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9934 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9935 tem, tem2);
9936 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9937 build_zero_cst (TREE_TYPE (tem)));
9939 /* Fold ~X & 1 as (X & 1) == 0. */
9940 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9941 && INTEGRAL_TYPE_P (type)
9942 && integer_onep (arg1))
9944 tree tem2;
9945 tem = TREE_OPERAND (arg0, 0);
9946 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9947 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9948 tem, tem2);
9949 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9950 build_zero_cst (TREE_TYPE (tem)));
9952 /* Fold !X & 1 as X == 0. */
9953 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
9954 && integer_onep (arg1))
9956 tem = TREE_OPERAND (arg0, 0);
9957 return fold_build2_loc (loc, EQ_EXPR, type, tem,
9958 build_zero_cst (TREE_TYPE (tem)));
9961 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
9962 multiple of 1 << CST. */
9963 if (TREE_CODE (arg1) == INTEGER_CST)
9965 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
9966 wide_int ncst1 = -cst1;
9967 if ((cst1 & ncst1) == ncst1
9968 && multiple_of_p (type, arg0,
9969 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
9970 return fold_convert_loc (loc, type, arg0);
9973 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
9974 bits from CST2. */
9975 if (TREE_CODE (arg1) == INTEGER_CST
9976 && TREE_CODE (arg0) == MULT_EXPR
9977 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9979 wi::tree_to_wide_ref warg1 = wi::to_wide (arg1);
9980 wide_int masked
9981 = mask_with_tz (type, warg1, wi::to_wide (TREE_OPERAND (arg0, 1)));
9983 if (masked == 0)
9984 return omit_two_operands_loc (loc, type, build_zero_cst (type),
9985 arg0, arg1);
9986 else if (masked != warg1)
9988 /* Avoid the transform if arg1 is a mask of some
9989 mode which allows further optimizations. */
9990 int pop = wi::popcount (warg1);
9991 if (!(pop >= BITS_PER_UNIT
9992 && pow2p_hwi (pop)
9993 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
9994 return fold_build2_loc (loc, code, type, op0,
9995 wide_int_to_tree (type, masked));
9999 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10000 ((A & N) + B) & M -> (A + B) & M
10001 Similarly if (N & M) == 0,
10002 ((A | N) + B) & M -> (A + B) & M
10003 and for - instead of + (or unary - instead of +)
10004 and/or ^ instead of |.
10005 If B is constant and (B & M) == 0, fold into A & M. */
10006 if (TREE_CODE (arg1) == INTEGER_CST)
10008 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
10009 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10010 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10011 && (TREE_CODE (arg0) == PLUS_EXPR
10012 || TREE_CODE (arg0) == MINUS_EXPR
10013 || TREE_CODE (arg0) == NEGATE_EXPR)
10014 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10015 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10017 tree pmop[2];
10018 int which = 0;
10019 wide_int cst0;
10021 /* Now we know that arg0 is (C + D) or (C - D) or
10022 -C and arg1 (M) is == (1LL << cst) - 1.
10023 Store C into PMOP[0] and D into PMOP[1]. */
10024 pmop[0] = TREE_OPERAND (arg0, 0);
10025 pmop[1] = NULL;
10026 if (TREE_CODE (arg0) != NEGATE_EXPR)
10028 pmop[1] = TREE_OPERAND (arg0, 1);
10029 which = 1;
10032 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10033 which = -1;
10035 for (; which >= 0; which--)
10036 switch (TREE_CODE (pmop[which]))
10038 case BIT_AND_EXPR:
10039 case BIT_IOR_EXPR:
10040 case BIT_XOR_EXPR:
10041 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10042 != INTEGER_CST)
10043 break;
10044 cst0 = wi::to_wide (TREE_OPERAND (pmop[which], 1)) & cst1;
10045 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10047 if (cst0 != cst1)
10048 break;
10050 else if (cst0 != 0)
10051 break;
10052 /* If C or D is of the form (A & N) where
10053 (N & M) == M, or of the form (A | N) or
10054 (A ^ N) where (N & M) == 0, replace it with A. */
10055 pmop[which] = TREE_OPERAND (pmop[which], 0);
10056 break;
10057 case INTEGER_CST:
10058 /* If C or D is a N where (N & M) == 0, it can be
10059 omitted (assumed 0). */
10060 if ((TREE_CODE (arg0) == PLUS_EXPR
10061 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10062 && (cst1 & wi::to_wide (pmop[which])) == 0)
10063 pmop[which] = NULL;
10064 break;
10065 default:
10066 break;
10069 /* Only build anything new if we optimized one or both arguments
10070 above. */
10071 if (pmop[0] != TREE_OPERAND (arg0, 0)
10072 || (TREE_CODE (arg0) != NEGATE_EXPR
10073 && pmop[1] != TREE_OPERAND (arg0, 1)))
10075 tree utype = TREE_TYPE (arg0);
10076 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10078 /* Perform the operations in a type that has defined
10079 overflow behavior. */
10080 utype = unsigned_type_for (TREE_TYPE (arg0));
10081 if (pmop[0] != NULL)
10082 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10083 if (pmop[1] != NULL)
10084 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10087 if (TREE_CODE (arg0) == NEGATE_EXPR)
10088 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10089 else if (TREE_CODE (arg0) == PLUS_EXPR)
10091 if (pmop[0] != NULL && pmop[1] != NULL)
10092 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10093 pmop[0], pmop[1]);
10094 else if (pmop[0] != NULL)
10095 tem = pmop[0];
10096 else if (pmop[1] != NULL)
10097 tem = pmop[1];
10098 else
10099 return build_int_cst (type, 0);
10101 else if (pmop[0] == NULL)
10102 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10103 else
10104 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10105 pmop[0], pmop[1]);
10106 /* TEM is now the new binary +, - or unary - replacement. */
10107 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10108 fold_convert_loc (loc, utype, arg1));
10109 return fold_convert_loc (loc, type, tem);
10114 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10115 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10116 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10118 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10120 wide_int mask = wide_int::from (wi::to_wide (arg1), prec, UNSIGNED);
10121 if (mask == -1)
10122 return
10123 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10126 goto associate;
10128 case RDIV_EXPR:
10129 /* Don't touch a floating-point divide by zero unless the mode
10130 of the constant can represent infinity. */
10131 if (TREE_CODE (arg1) == REAL_CST
10132 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10133 && real_zerop (arg1))
10134 return NULL_TREE;
10136 /* (-A) / (-B) -> A / B */
10137 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10138 return fold_build2_loc (loc, RDIV_EXPR, type,
10139 TREE_OPERAND (arg0, 0),
10140 negate_expr (arg1));
10141 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10142 return fold_build2_loc (loc, RDIV_EXPR, type,
10143 negate_expr (arg0),
10144 TREE_OPERAND (arg1, 0));
10145 return NULL_TREE;
10147 case TRUNC_DIV_EXPR:
10148 /* Fall through */
10150 case FLOOR_DIV_EXPR:
10151 /* Simplify A / (B << N) where A and B are positive and B is
10152 a power of 2, to A >> (N + log2(B)). */
10153 strict_overflow_p = false;
10154 if (TREE_CODE (arg1) == LSHIFT_EXPR
10155 && (TYPE_UNSIGNED (type)
10156 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10158 tree sval = TREE_OPERAND (arg1, 0);
10159 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10161 tree sh_cnt = TREE_OPERAND (arg1, 1);
10162 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10163 wi::exact_log2 (wi::to_wide (sval)));
10165 if (strict_overflow_p)
10166 fold_overflow_warning (("assuming signed overflow does not "
10167 "occur when simplifying A / (B << N)"),
10168 WARN_STRICT_OVERFLOW_MISC);
10170 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10171 sh_cnt, pow2);
10172 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10173 fold_convert_loc (loc, type, arg0), sh_cnt);
10177 /* Fall through */
10179 case ROUND_DIV_EXPR:
10180 case CEIL_DIV_EXPR:
10181 case EXACT_DIV_EXPR:
10182 if (integer_zerop (arg1))
10183 return NULL_TREE;
10185 /* Convert -A / -B to A / B when the type is signed and overflow is
10186 undefined. */
10187 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10188 && TREE_CODE (op0) == NEGATE_EXPR
10189 && negate_expr_p (op1))
10191 if (INTEGRAL_TYPE_P (type))
10192 fold_overflow_warning (("assuming signed overflow does not occur "
10193 "when distributing negation across "
10194 "division"),
10195 WARN_STRICT_OVERFLOW_MISC);
10196 return fold_build2_loc (loc, code, type,
10197 fold_convert_loc (loc, type,
10198 TREE_OPERAND (arg0, 0)),
10199 negate_expr (op1));
10201 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10202 && TREE_CODE (arg1) == NEGATE_EXPR
10203 && negate_expr_p (op0))
10205 if (INTEGRAL_TYPE_P (type))
10206 fold_overflow_warning (("assuming signed overflow does not occur "
10207 "when distributing negation across "
10208 "division"),
10209 WARN_STRICT_OVERFLOW_MISC);
10210 return fold_build2_loc (loc, code, type,
10211 negate_expr (op0),
10212 fold_convert_loc (loc, type,
10213 TREE_OPERAND (arg1, 0)));
10216 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10217 operation, EXACT_DIV_EXPR.
10219 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10220 At one time others generated faster code, it's not clear if they do
10221 after the last round to changes to the DIV code in expmed.c. */
10222 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10223 && multiple_of_p (type, arg0, arg1))
10224 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10225 fold_convert (type, arg0),
10226 fold_convert (type, arg1));
10228 strict_overflow_p = false;
10229 if (TREE_CODE (arg1) == INTEGER_CST
10230 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10231 &strict_overflow_p)))
10233 if (strict_overflow_p)
10234 fold_overflow_warning (("assuming signed overflow does not occur "
10235 "when simplifying division"),
10236 WARN_STRICT_OVERFLOW_MISC);
10237 return fold_convert_loc (loc, type, tem);
10240 return NULL_TREE;
10242 case CEIL_MOD_EXPR:
10243 case FLOOR_MOD_EXPR:
10244 case ROUND_MOD_EXPR:
10245 case TRUNC_MOD_EXPR:
10246 strict_overflow_p = false;
10247 if (TREE_CODE (arg1) == INTEGER_CST
10248 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10249 &strict_overflow_p)))
10251 if (strict_overflow_p)
10252 fold_overflow_warning (("assuming signed overflow does not occur "
10253 "when simplifying modulus"),
10254 WARN_STRICT_OVERFLOW_MISC);
10255 return fold_convert_loc (loc, type, tem);
10258 return NULL_TREE;
10260 case LROTATE_EXPR:
10261 case RROTATE_EXPR:
10262 case RSHIFT_EXPR:
10263 case LSHIFT_EXPR:
10264 /* Since negative shift count is not well-defined,
10265 don't try to compute it in the compiler. */
10266 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10267 return NULL_TREE;
10269 prec = element_precision (type);
10271 /* If we have a rotate of a bit operation with the rotate count and
10272 the second operand of the bit operation both constant,
10273 permute the two operations. */
10274 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10275 && (TREE_CODE (arg0) == BIT_AND_EXPR
10276 || TREE_CODE (arg0) == BIT_IOR_EXPR
10277 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10278 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10280 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10281 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10282 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10283 fold_build2_loc (loc, code, type,
10284 arg00, arg1),
10285 fold_build2_loc (loc, code, type,
10286 arg01, arg1));
10289 /* Two consecutive rotates adding up to the some integer
10290 multiple of the precision of the type can be ignored. */
10291 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10292 && TREE_CODE (arg0) == RROTATE_EXPR
10293 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10294 && wi::umod_trunc (wi::to_wide (arg1)
10295 + wi::to_wide (TREE_OPERAND (arg0, 1)),
10296 prec) == 0)
10297 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10299 return NULL_TREE;
10301 case MIN_EXPR:
10302 case MAX_EXPR:
10303 goto associate;
10305 case TRUTH_ANDIF_EXPR:
10306 /* Note that the operands of this must be ints
10307 and their values must be 0 or 1.
10308 ("true" is a fixed value perhaps depending on the language.) */
10309 /* If first arg is constant zero, return it. */
10310 if (integer_zerop (arg0))
10311 return fold_convert_loc (loc, type, arg0);
10312 /* FALLTHRU */
10313 case TRUTH_AND_EXPR:
10314 /* If either arg is constant true, drop it. */
10315 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10316 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10317 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10318 /* Preserve sequence points. */
10319 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10320 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10321 /* If second arg is constant zero, result is zero, but first arg
10322 must be evaluated. */
10323 if (integer_zerop (arg1))
10324 return omit_one_operand_loc (loc, type, arg1, arg0);
10325 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10326 case will be handled here. */
10327 if (integer_zerop (arg0))
10328 return omit_one_operand_loc (loc, type, arg0, arg1);
10330 /* !X && X is always false. */
10331 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10332 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10333 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10334 /* X && !X is always false. */
10335 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10336 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10337 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10339 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10340 means A >= Y && A != MAX, but in this case we know that
10341 A < X <= MAX. */
10343 if (!TREE_SIDE_EFFECTS (arg0)
10344 && !TREE_SIDE_EFFECTS (arg1))
10346 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10347 if (tem && !operand_equal_p (tem, arg0, 0))
10348 return fold_build2_loc (loc, code, type, tem, arg1);
10350 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10351 if (tem && !operand_equal_p (tem, arg1, 0))
10352 return fold_build2_loc (loc, code, type, arg0, tem);
10355 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10356 != NULL_TREE)
10357 return tem;
10359 return NULL_TREE;
10361 case TRUTH_ORIF_EXPR:
10362 /* Note that the operands of this must be ints
10363 and their values must be 0 or true.
10364 ("true" is a fixed value perhaps depending on the language.) */
10365 /* If first arg is constant true, return it. */
10366 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10367 return fold_convert_loc (loc, type, arg0);
10368 /* FALLTHRU */
10369 case TRUTH_OR_EXPR:
10370 /* If either arg is constant zero, drop it. */
10371 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10372 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10373 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10374 /* Preserve sequence points. */
10375 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10376 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10377 /* If second arg is constant true, result is true, but we must
10378 evaluate first arg. */
10379 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10380 return omit_one_operand_loc (loc, type, arg1, arg0);
10381 /* Likewise for first arg, but note this only occurs here for
10382 TRUTH_OR_EXPR. */
10383 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10384 return omit_one_operand_loc (loc, type, arg0, arg1);
10386 /* !X || X is always true. */
10387 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10388 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10389 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10390 /* X || !X is always true. */
10391 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10392 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10393 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10395 /* (X && !Y) || (!X && Y) is X ^ Y */
10396 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10397 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10399 tree a0, a1, l0, l1, n0, n1;
10401 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10402 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10404 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10405 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10407 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10408 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10410 if ((operand_equal_p (n0, a0, 0)
10411 && operand_equal_p (n1, a1, 0))
10412 || (operand_equal_p (n0, a1, 0)
10413 && operand_equal_p (n1, a0, 0)))
10414 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10417 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10418 != NULL_TREE)
10419 return tem;
10421 return NULL_TREE;
10423 case TRUTH_XOR_EXPR:
10424 /* If the second arg is constant zero, drop it. */
10425 if (integer_zerop (arg1))
10426 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10427 /* If the second arg is constant true, this is a logical inversion. */
10428 if (integer_onep (arg1))
10430 tem = invert_truthvalue_loc (loc, arg0);
10431 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10433 /* Identical arguments cancel to zero. */
10434 if (operand_equal_p (arg0, arg1, 0))
10435 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10437 /* !X ^ X is always true. */
10438 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10439 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10440 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10442 /* X ^ !X is always true. */
10443 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10444 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10445 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10447 return NULL_TREE;
10449 case EQ_EXPR:
10450 case NE_EXPR:
10451 STRIP_NOPS (arg0);
10452 STRIP_NOPS (arg1);
10454 tem = fold_comparison (loc, code, type, op0, op1);
10455 if (tem != NULL_TREE)
10456 return tem;
10458 /* bool_var != 1 becomes !bool_var. */
10459 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10460 && code == NE_EXPR)
10461 return fold_convert_loc (loc, type,
10462 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10463 TREE_TYPE (arg0), arg0));
10465 /* bool_var == 0 becomes !bool_var. */
10466 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10467 && code == EQ_EXPR)
10468 return fold_convert_loc (loc, type,
10469 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10470 TREE_TYPE (arg0), arg0));
10472 /* !exp != 0 becomes !exp */
10473 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10474 && code == NE_EXPR)
10475 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10477 /* If this is an EQ or NE comparison with zero and ARG0 is
10478 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10479 two operations, but the latter can be done in one less insn
10480 on machines that have only two-operand insns or on which a
10481 constant cannot be the first operand. */
10482 if (TREE_CODE (arg0) == BIT_AND_EXPR
10483 && integer_zerop (arg1))
10485 tree arg00 = TREE_OPERAND (arg0, 0);
10486 tree arg01 = TREE_OPERAND (arg0, 1);
10487 if (TREE_CODE (arg00) == LSHIFT_EXPR
10488 && integer_onep (TREE_OPERAND (arg00, 0)))
10490 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10491 arg01, TREE_OPERAND (arg00, 1));
10492 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10493 build_int_cst (TREE_TYPE (arg0), 1));
10494 return fold_build2_loc (loc, code, type,
10495 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10496 arg1);
10498 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10499 && integer_onep (TREE_OPERAND (arg01, 0)))
10501 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10502 arg00, TREE_OPERAND (arg01, 1));
10503 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10504 build_int_cst (TREE_TYPE (arg0), 1));
10505 return fold_build2_loc (loc, code, type,
10506 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10507 arg1);
10511 /* If this is an NE or EQ comparison of zero against the result of a
10512 signed MOD operation whose second operand is a power of 2, make
10513 the MOD operation unsigned since it is simpler and equivalent. */
10514 if (integer_zerop (arg1)
10515 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10516 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10517 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10518 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10519 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10520 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10522 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10523 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10524 fold_convert_loc (loc, newtype,
10525 TREE_OPERAND (arg0, 0)),
10526 fold_convert_loc (loc, newtype,
10527 TREE_OPERAND (arg0, 1)));
10529 return fold_build2_loc (loc, code, type, newmod,
10530 fold_convert_loc (loc, newtype, arg1));
10533 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10534 C1 is a valid shift constant, and C2 is a power of two, i.e.
10535 a single bit. */
10536 if (TREE_CODE (arg0) == BIT_AND_EXPR
10537 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10538 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10539 == INTEGER_CST
10540 && integer_pow2p (TREE_OPERAND (arg0, 1))
10541 && integer_zerop (arg1))
10543 tree itype = TREE_TYPE (arg0);
10544 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10545 prec = TYPE_PRECISION (itype);
10547 /* Check for a valid shift count. */
10548 if (wi::ltu_p (wi::to_wide (arg001), prec))
10550 tree arg01 = TREE_OPERAND (arg0, 1);
10551 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10552 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10553 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10554 can be rewritten as (X & (C2 << C1)) != 0. */
10555 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10557 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10558 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10559 return fold_build2_loc (loc, code, type, tem,
10560 fold_convert_loc (loc, itype, arg1));
10562 /* Otherwise, for signed (arithmetic) shifts,
10563 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10564 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10565 else if (!TYPE_UNSIGNED (itype))
10566 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10567 arg000, build_int_cst (itype, 0));
10568 /* Otherwise, of unsigned (logical) shifts,
10569 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10570 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10571 else
10572 return omit_one_operand_loc (loc, type,
10573 code == EQ_EXPR ? integer_one_node
10574 : integer_zero_node,
10575 arg000);
10579 /* If this is a comparison of a field, we may be able to simplify it. */
10580 if ((TREE_CODE (arg0) == COMPONENT_REF
10581 || TREE_CODE (arg0) == BIT_FIELD_REF)
10582 /* Handle the constant case even without -O
10583 to make sure the warnings are given. */
10584 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10586 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10587 if (t1)
10588 return t1;
10591 /* Optimize comparisons of strlen vs zero to a compare of the
10592 first character of the string vs zero. To wit,
10593 strlen(ptr) == 0 => *ptr == 0
10594 strlen(ptr) != 0 => *ptr != 0
10595 Other cases should reduce to one of these two (or a constant)
10596 due to the return value of strlen being unsigned. */
10597 if (TREE_CODE (arg0) == CALL_EXPR
10598 && integer_zerop (arg1))
10600 tree fndecl = get_callee_fndecl (arg0);
10602 if (fndecl
10603 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10604 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10605 && call_expr_nargs (arg0) == 1
10606 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10608 tree iref = build_fold_indirect_ref_loc (loc,
10609 CALL_EXPR_ARG (arg0, 0));
10610 return fold_build2_loc (loc, code, type, iref,
10611 build_int_cst (TREE_TYPE (iref), 0));
10615 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10616 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10617 if (TREE_CODE (arg0) == RSHIFT_EXPR
10618 && integer_zerop (arg1)
10619 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10621 tree arg00 = TREE_OPERAND (arg0, 0);
10622 tree arg01 = TREE_OPERAND (arg0, 1);
10623 tree itype = TREE_TYPE (arg00);
10624 if (wi::to_wide (arg01) == element_precision (itype) - 1)
10626 if (TYPE_UNSIGNED (itype))
10628 itype = signed_type_for (itype);
10629 arg00 = fold_convert_loc (loc, itype, arg00);
10631 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10632 type, arg00, build_zero_cst (itype));
10636 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10637 (X & C) == 0 when C is a single bit. */
10638 if (TREE_CODE (arg0) == BIT_AND_EXPR
10639 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10640 && integer_zerop (arg1)
10641 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10643 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10644 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10645 TREE_OPERAND (arg0, 1));
10646 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10647 type, tem,
10648 fold_convert_loc (loc, TREE_TYPE (arg0),
10649 arg1));
10652 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10653 constant C is a power of two, i.e. a single bit. */
10654 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10655 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10656 && integer_zerop (arg1)
10657 && integer_pow2p (TREE_OPERAND (arg0, 1))
10658 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10659 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10661 tree arg00 = TREE_OPERAND (arg0, 0);
10662 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10663 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10666 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10667 when is C is a power of two, i.e. a single bit. */
10668 if (TREE_CODE (arg0) == BIT_AND_EXPR
10669 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10670 && integer_zerop (arg1)
10671 && integer_pow2p (TREE_OPERAND (arg0, 1))
10672 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10673 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10675 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10676 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10677 arg000, TREE_OPERAND (arg0, 1));
10678 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10679 tem, build_int_cst (TREE_TYPE (tem), 0));
10682 if (integer_zerop (arg1)
10683 && tree_expr_nonzero_p (arg0))
10685 tree res = constant_boolean_node (code==NE_EXPR, type);
10686 return omit_one_operand_loc (loc, type, res, arg0);
10689 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10690 if (TREE_CODE (arg0) == BIT_AND_EXPR
10691 && TREE_CODE (arg1) == BIT_AND_EXPR)
10693 tree arg00 = TREE_OPERAND (arg0, 0);
10694 tree arg01 = TREE_OPERAND (arg0, 1);
10695 tree arg10 = TREE_OPERAND (arg1, 0);
10696 tree arg11 = TREE_OPERAND (arg1, 1);
10697 tree itype = TREE_TYPE (arg0);
10699 if (operand_equal_p (arg01, arg11, 0))
10701 tem = fold_convert_loc (loc, itype, arg10);
10702 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10703 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10704 return fold_build2_loc (loc, code, type, tem,
10705 build_zero_cst (itype));
10707 if (operand_equal_p (arg01, arg10, 0))
10709 tem = fold_convert_loc (loc, itype, arg11);
10710 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10711 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10712 return fold_build2_loc (loc, code, type, tem,
10713 build_zero_cst (itype));
10715 if (operand_equal_p (arg00, arg11, 0))
10717 tem = fold_convert_loc (loc, itype, arg10);
10718 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10719 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10720 return fold_build2_loc (loc, code, type, tem,
10721 build_zero_cst (itype));
10723 if (operand_equal_p (arg00, arg10, 0))
10725 tem = fold_convert_loc (loc, itype, arg11);
10726 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10727 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10728 return fold_build2_loc (loc, code, type, tem,
10729 build_zero_cst (itype));
10733 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10734 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10736 tree arg00 = TREE_OPERAND (arg0, 0);
10737 tree arg01 = TREE_OPERAND (arg0, 1);
10738 tree arg10 = TREE_OPERAND (arg1, 0);
10739 tree arg11 = TREE_OPERAND (arg1, 1);
10740 tree itype = TREE_TYPE (arg0);
10742 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10743 operand_equal_p guarantees no side-effects so we don't need
10744 to use omit_one_operand on Z. */
10745 if (operand_equal_p (arg01, arg11, 0))
10746 return fold_build2_loc (loc, code, type, arg00,
10747 fold_convert_loc (loc, TREE_TYPE (arg00),
10748 arg10));
10749 if (operand_equal_p (arg01, arg10, 0))
10750 return fold_build2_loc (loc, code, type, arg00,
10751 fold_convert_loc (loc, TREE_TYPE (arg00),
10752 arg11));
10753 if (operand_equal_p (arg00, arg11, 0))
10754 return fold_build2_loc (loc, code, type, arg01,
10755 fold_convert_loc (loc, TREE_TYPE (arg01),
10756 arg10));
10757 if (operand_equal_p (arg00, arg10, 0))
10758 return fold_build2_loc (loc, code, type, arg01,
10759 fold_convert_loc (loc, TREE_TYPE (arg01),
10760 arg11));
10762 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10763 if (TREE_CODE (arg01) == INTEGER_CST
10764 && TREE_CODE (arg11) == INTEGER_CST)
10766 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10767 fold_convert_loc (loc, itype, arg11));
10768 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10769 return fold_build2_loc (loc, code, type, tem,
10770 fold_convert_loc (loc, itype, arg10));
10774 /* Attempt to simplify equality/inequality comparisons of complex
10775 values. Only lower the comparison if the result is known or
10776 can be simplified to a single scalar comparison. */
10777 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10778 || TREE_CODE (arg0) == COMPLEX_CST)
10779 && (TREE_CODE (arg1) == COMPLEX_EXPR
10780 || TREE_CODE (arg1) == COMPLEX_CST))
10782 tree real0, imag0, real1, imag1;
10783 tree rcond, icond;
10785 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10787 real0 = TREE_OPERAND (arg0, 0);
10788 imag0 = TREE_OPERAND (arg0, 1);
10790 else
10792 real0 = TREE_REALPART (arg0);
10793 imag0 = TREE_IMAGPART (arg0);
10796 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10798 real1 = TREE_OPERAND (arg1, 0);
10799 imag1 = TREE_OPERAND (arg1, 1);
10801 else
10803 real1 = TREE_REALPART (arg1);
10804 imag1 = TREE_IMAGPART (arg1);
10807 rcond = fold_binary_loc (loc, code, type, real0, real1);
10808 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10810 if (integer_zerop (rcond))
10812 if (code == EQ_EXPR)
10813 return omit_two_operands_loc (loc, type, boolean_false_node,
10814 imag0, imag1);
10815 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10817 else
10819 if (code == NE_EXPR)
10820 return omit_two_operands_loc (loc, type, boolean_true_node,
10821 imag0, imag1);
10822 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10826 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10827 if (icond && TREE_CODE (icond) == INTEGER_CST)
10829 if (integer_zerop (icond))
10831 if (code == EQ_EXPR)
10832 return omit_two_operands_loc (loc, type, boolean_false_node,
10833 real0, real1);
10834 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
10836 else
10838 if (code == NE_EXPR)
10839 return omit_two_operands_loc (loc, type, boolean_true_node,
10840 real0, real1);
10841 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
10846 return NULL_TREE;
10848 case LT_EXPR:
10849 case GT_EXPR:
10850 case LE_EXPR:
10851 case GE_EXPR:
10852 tem = fold_comparison (loc, code, type, op0, op1);
10853 if (tem != NULL_TREE)
10854 return tem;
10856 /* Transform comparisons of the form X +- C CMP X. */
10857 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10858 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10859 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
10860 && !HONOR_SNANS (arg0))
10862 tree arg01 = TREE_OPERAND (arg0, 1);
10863 enum tree_code code0 = TREE_CODE (arg0);
10864 int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
10866 /* (X - c) > X becomes false. */
10867 if (code == GT_EXPR
10868 && ((code0 == MINUS_EXPR && is_positive >= 0)
10869 || (code0 == PLUS_EXPR && is_positive <= 0)))
10870 return constant_boolean_node (0, type);
10872 /* Likewise (X + c) < X becomes false. */
10873 if (code == LT_EXPR
10874 && ((code0 == PLUS_EXPR && is_positive >= 0)
10875 || (code0 == MINUS_EXPR && is_positive <= 0)))
10876 return constant_boolean_node (0, type);
10878 /* Convert (X - c) <= X to true. */
10879 if (!HONOR_NANS (arg1)
10880 && code == LE_EXPR
10881 && ((code0 == MINUS_EXPR && is_positive >= 0)
10882 || (code0 == PLUS_EXPR && is_positive <= 0)))
10883 return constant_boolean_node (1, type);
10885 /* Convert (X + c) >= X to true. */
10886 if (!HONOR_NANS (arg1)
10887 && code == GE_EXPR
10888 && ((code0 == PLUS_EXPR && is_positive >= 0)
10889 || (code0 == MINUS_EXPR && is_positive <= 0)))
10890 return constant_boolean_node (1, type);
10893 /* If we are comparing an ABS_EXPR with a constant, we can
10894 convert all the cases into explicit comparisons, but they may
10895 well not be faster than doing the ABS and one comparison.
10896 But ABS (X) <= C is a range comparison, which becomes a subtraction
10897 and a comparison, and is probably faster. */
10898 if (code == LE_EXPR
10899 && TREE_CODE (arg1) == INTEGER_CST
10900 && TREE_CODE (arg0) == ABS_EXPR
10901 && ! TREE_SIDE_EFFECTS (arg0)
10902 && (0 != (tem = negate_expr (arg1)))
10903 && TREE_CODE (tem) == INTEGER_CST
10904 && !TREE_OVERFLOW (tem))
10905 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
10906 build2 (GE_EXPR, type,
10907 TREE_OPERAND (arg0, 0), tem),
10908 build2 (LE_EXPR, type,
10909 TREE_OPERAND (arg0, 0), arg1));
10911 /* Convert ABS_EXPR<x> >= 0 to true. */
10912 strict_overflow_p = false;
10913 if (code == GE_EXPR
10914 && (integer_zerop (arg1)
10915 || (! HONOR_NANS (arg0)
10916 && real_zerop (arg1)))
10917 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
10919 if (strict_overflow_p)
10920 fold_overflow_warning (("assuming signed overflow does not occur "
10921 "when simplifying comparison of "
10922 "absolute value and zero"),
10923 WARN_STRICT_OVERFLOW_CONDITIONAL);
10924 return omit_one_operand_loc (loc, type,
10925 constant_boolean_node (true, type),
10926 arg0);
10929 /* Convert ABS_EXPR<x> < 0 to false. */
10930 strict_overflow_p = false;
10931 if (code == LT_EXPR
10932 && (integer_zerop (arg1) || real_zerop (arg1))
10933 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
10935 if (strict_overflow_p)
10936 fold_overflow_warning (("assuming signed overflow does not occur "
10937 "when simplifying comparison of "
10938 "absolute value and zero"),
10939 WARN_STRICT_OVERFLOW_CONDITIONAL);
10940 return omit_one_operand_loc (loc, type,
10941 constant_boolean_node (false, type),
10942 arg0);
10945 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
10946 and similarly for >= into !=. */
10947 if ((code == LT_EXPR || code == GE_EXPR)
10948 && TYPE_UNSIGNED (TREE_TYPE (arg0))
10949 && TREE_CODE (arg1) == LSHIFT_EXPR
10950 && integer_onep (TREE_OPERAND (arg1, 0)))
10951 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
10952 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
10953 TREE_OPERAND (arg1, 1)),
10954 build_zero_cst (TREE_TYPE (arg0)));
10956 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
10957 otherwise Y might be >= # of bits in X's type and thus e.g.
10958 (unsigned char) (1 << Y) for Y 15 might be 0.
10959 If the cast is widening, then 1 << Y should have unsigned type,
10960 otherwise if Y is number of bits in the signed shift type minus 1,
10961 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
10962 31 might be 0xffffffff80000000. */
10963 if ((code == LT_EXPR || code == GE_EXPR)
10964 && TYPE_UNSIGNED (TREE_TYPE (arg0))
10965 && CONVERT_EXPR_P (arg1)
10966 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
10967 && (element_precision (TREE_TYPE (arg1))
10968 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
10969 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
10970 || (element_precision (TREE_TYPE (arg1))
10971 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
10972 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
10974 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
10975 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
10976 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
10977 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
10978 build_zero_cst (TREE_TYPE (arg0)));
10981 return NULL_TREE;
10983 case UNORDERED_EXPR:
10984 case ORDERED_EXPR:
10985 case UNLT_EXPR:
10986 case UNLE_EXPR:
10987 case UNGT_EXPR:
10988 case UNGE_EXPR:
10989 case UNEQ_EXPR:
10990 case LTGT_EXPR:
10991 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
10993 tree targ0 = strip_float_extensions (arg0);
10994 tree targ1 = strip_float_extensions (arg1);
10995 tree newtype = TREE_TYPE (targ0);
10997 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
10998 newtype = TREE_TYPE (targ1);
11000 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11001 return fold_build2_loc (loc, code, type,
11002 fold_convert_loc (loc, newtype, targ0),
11003 fold_convert_loc (loc, newtype, targ1));
11006 return NULL_TREE;
11008 case COMPOUND_EXPR:
11009 /* When pedantic, a compound expression can be neither an lvalue
11010 nor an integer constant expression. */
11011 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11012 return NULL_TREE;
11013 /* Don't let (0, 0) be null pointer constant. */
11014 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11015 : fold_convert_loc (loc, type, arg1);
11016 return pedantic_non_lvalue_loc (loc, tem);
11018 case ASSERT_EXPR:
11019 /* An ASSERT_EXPR should never be passed to fold_binary. */
11020 gcc_unreachable ();
11022 default:
11023 return NULL_TREE;
11024 } /* switch (code) */
11027 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11028 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11029 of GOTO_EXPR. */
11031 static tree
11032 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11034 switch (TREE_CODE (*tp))
11036 case LABEL_EXPR:
11037 return *tp;
11039 case GOTO_EXPR:
11040 *walk_subtrees = 0;
11042 /* fall through */
11044 default:
11045 return NULL_TREE;
11049 /* Return whether the sub-tree ST contains a label which is accessible from
11050 outside the sub-tree. */
11052 static bool
11053 contains_label_p (tree st)
11055 return
11056 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11059 /* Fold a ternary expression of code CODE and type TYPE with operands
11060 OP0, OP1, and OP2. Return the folded expression if folding is
11061 successful. Otherwise, return NULL_TREE. */
11063 tree
11064 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11065 tree op0, tree op1, tree op2)
11067 tree tem;
11068 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11069 enum tree_code_class kind = TREE_CODE_CLASS (code);
11071 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11072 && TREE_CODE_LENGTH (code) == 3);
11074 /* If this is a commutative operation, and OP0 is a constant, move it
11075 to OP1 to reduce the number of tests below. */
11076 if (commutative_ternary_tree_code (code)
11077 && tree_swap_operands_p (op0, op1))
11078 return fold_build3_loc (loc, code, type, op1, op0, op2);
11080 tem = generic_simplify (loc, code, type, op0, op1, op2);
11081 if (tem)
11082 return tem;
11084 /* Strip any conversions that don't change the mode. This is safe
11085 for every expression, except for a comparison expression because
11086 its signedness is derived from its operands. So, in the latter
11087 case, only strip conversions that don't change the signedness.
11089 Note that this is done as an internal manipulation within the
11090 constant folder, in order to find the simplest representation of
11091 the arguments so that their form can be studied. In any cases,
11092 the appropriate type conversions should be put back in the tree
11093 that will get out of the constant folder. */
11094 if (op0)
11096 arg0 = op0;
11097 STRIP_NOPS (arg0);
11100 if (op1)
11102 arg1 = op1;
11103 STRIP_NOPS (arg1);
11106 if (op2)
11108 arg2 = op2;
11109 STRIP_NOPS (arg2);
11112 switch (code)
11114 case COMPONENT_REF:
11115 if (TREE_CODE (arg0) == CONSTRUCTOR
11116 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11118 unsigned HOST_WIDE_INT idx;
11119 tree field, value;
11120 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11121 if (field == arg1)
11122 return value;
11124 return NULL_TREE;
11126 case COND_EXPR:
11127 case VEC_COND_EXPR:
11128 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11129 so all simple results must be passed through pedantic_non_lvalue. */
11130 if (TREE_CODE (arg0) == INTEGER_CST)
11132 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11133 tem = integer_zerop (arg0) ? op2 : op1;
11134 /* Only optimize constant conditions when the selected branch
11135 has the same type as the COND_EXPR. This avoids optimizing
11136 away "c ? x : throw", where the throw has a void type.
11137 Avoid throwing away that operand which contains label. */
11138 if ((!TREE_SIDE_EFFECTS (unused_op)
11139 || !contains_label_p (unused_op))
11140 && (! VOID_TYPE_P (TREE_TYPE (tem))
11141 || VOID_TYPE_P (type)))
11142 return pedantic_non_lvalue_loc (loc, tem);
11143 return NULL_TREE;
11145 else if (TREE_CODE (arg0) == VECTOR_CST)
11147 if ((TREE_CODE (arg1) == VECTOR_CST
11148 || TREE_CODE (arg1) == CONSTRUCTOR)
11149 && (TREE_CODE (arg2) == VECTOR_CST
11150 || TREE_CODE (arg2) == CONSTRUCTOR))
11152 unsigned int nelts = VECTOR_CST_NELTS (arg0), i;
11153 gcc_assert (nelts == TYPE_VECTOR_SUBPARTS (type));
11154 auto_vec_perm_indices sel (nelts);
11155 for (i = 0; i < nelts; i++)
11157 tree val = VECTOR_CST_ELT (arg0, i);
11158 if (integer_all_onesp (val))
11159 sel.quick_push (i);
11160 else if (integer_zerop (val))
11161 sel.quick_push (nelts + i);
11162 else /* Currently unreachable. */
11163 return NULL_TREE;
11165 tree t = fold_vec_perm (type, arg1, arg2, sel);
11166 if (t != NULL_TREE)
11167 return t;
11171 /* If we have A op B ? A : C, we may be able to convert this to a
11172 simpler expression, depending on the operation and the values
11173 of B and C. Signed zeros prevent all of these transformations,
11174 for reasons given above each one.
11176 Also try swapping the arguments and inverting the conditional. */
11177 if (COMPARISON_CLASS_P (arg0)
11178 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op1)
11179 && !HONOR_SIGNED_ZEROS (element_mode (op1)))
11181 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11182 if (tem)
11183 return tem;
11186 if (COMPARISON_CLASS_P (arg0)
11187 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2)
11188 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11190 location_t loc0 = expr_location_or (arg0, loc);
11191 tem = fold_invert_truthvalue (loc0, arg0);
11192 if (tem && COMPARISON_CLASS_P (tem))
11194 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11195 if (tem)
11196 return tem;
11200 /* If the second operand is simpler than the third, swap them
11201 since that produces better jump optimization results. */
11202 if (truth_value_p (TREE_CODE (arg0))
11203 && tree_swap_operands_p (op1, op2))
11205 location_t loc0 = expr_location_or (arg0, loc);
11206 /* See if this can be inverted. If it can't, possibly because
11207 it was a floating-point inequality comparison, don't do
11208 anything. */
11209 tem = fold_invert_truthvalue (loc0, arg0);
11210 if (tem)
11211 return fold_build3_loc (loc, code, type, tem, op2, op1);
11214 /* Convert A ? 1 : 0 to simply A. */
11215 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11216 : (integer_onep (op1)
11217 && !VECTOR_TYPE_P (type)))
11218 && integer_zerop (op2)
11219 /* If we try to convert OP0 to our type, the
11220 call to fold will try to move the conversion inside
11221 a COND, which will recurse. In that case, the COND_EXPR
11222 is probably the best choice, so leave it alone. */
11223 && type == TREE_TYPE (arg0))
11224 return pedantic_non_lvalue_loc (loc, arg0);
11226 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11227 over COND_EXPR in cases such as floating point comparisons. */
11228 if (integer_zerop (op1)
11229 && code == COND_EXPR
11230 && integer_onep (op2)
11231 && !VECTOR_TYPE_P (type)
11232 && truth_value_p (TREE_CODE (arg0)))
11233 return pedantic_non_lvalue_loc (loc,
11234 fold_convert_loc (loc, type,
11235 invert_truthvalue_loc (loc,
11236 arg0)));
11238 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11239 if (TREE_CODE (arg0) == LT_EXPR
11240 && integer_zerop (TREE_OPERAND (arg0, 1))
11241 && integer_zerop (op2)
11242 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11244 /* sign_bit_p looks through both zero and sign extensions,
11245 but for this optimization only sign extensions are
11246 usable. */
11247 tree tem2 = TREE_OPERAND (arg0, 0);
11248 while (tem != tem2)
11250 if (TREE_CODE (tem2) != NOP_EXPR
11251 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11253 tem = NULL_TREE;
11254 break;
11256 tem2 = TREE_OPERAND (tem2, 0);
11258 /* sign_bit_p only checks ARG1 bits within A's precision.
11259 If <sign bit of A> has wider type than A, bits outside
11260 of A's precision in <sign bit of A> need to be checked.
11261 If they are all 0, this optimization needs to be done
11262 in unsigned A's type, if they are all 1 in signed A's type,
11263 otherwise this can't be done. */
11264 if (tem
11265 && TYPE_PRECISION (TREE_TYPE (tem))
11266 < TYPE_PRECISION (TREE_TYPE (arg1))
11267 && TYPE_PRECISION (TREE_TYPE (tem))
11268 < TYPE_PRECISION (type))
11270 int inner_width, outer_width;
11271 tree tem_type;
11273 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11274 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11275 if (outer_width > TYPE_PRECISION (type))
11276 outer_width = TYPE_PRECISION (type);
11278 wide_int mask = wi::shifted_mask
11279 (inner_width, outer_width - inner_width, false,
11280 TYPE_PRECISION (TREE_TYPE (arg1)));
11282 wide_int common = mask & wi::to_wide (arg1);
11283 if (common == mask)
11285 tem_type = signed_type_for (TREE_TYPE (tem));
11286 tem = fold_convert_loc (loc, tem_type, tem);
11288 else if (common == 0)
11290 tem_type = unsigned_type_for (TREE_TYPE (tem));
11291 tem = fold_convert_loc (loc, tem_type, tem);
11293 else
11294 tem = NULL;
11297 if (tem)
11298 return
11299 fold_convert_loc (loc, type,
11300 fold_build2_loc (loc, BIT_AND_EXPR,
11301 TREE_TYPE (tem), tem,
11302 fold_convert_loc (loc,
11303 TREE_TYPE (tem),
11304 arg1)));
11307 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11308 already handled above. */
11309 if (TREE_CODE (arg0) == BIT_AND_EXPR
11310 && integer_onep (TREE_OPERAND (arg0, 1))
11311 && integer_zerop (op2)
11312 && integer_pow2p (arg1))
11314 tree tem = TREE_OPERAND (arg0, 0);
11315 STRIP_NOPS (tem);
11316 if (TREE_CODE (tem) == RSHIFT_EXPR
11317 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11318 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
11319 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
11320 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11321 fold_convert_loc (loc, type,
11322 TREE_OPERAND (tem, 0)),
11323 op1);
11326 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11327 is probably obsolete because the first operand should be a
11328 truth value (that's why we have the two cases above), but let's
11329 leave it in until we can confirm this for all front-ends. */
11330 if (integer_zerop (op2)
11331 && TREE_CODE (arg0) == NE_EXPR
11332 && integer_zerop (TREE_OPERAND (arg0, 1))
11333 && integer_pow2p (arg1)
11334 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11335 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11336 arg1, OEP_ONLY_CONST))
11337 return pedantic_non_lvalue_loc (loc,
11338 fold_convert_loc (loc, type,
11339 TREE_OPERAND (arg0, 0)));
11341 /* Disable the transformations below for vectors, since
11342 fold_binary_op_with_conditional_arg may undo them immediately,
11343 yielding an infinite loop. */
11344 if (code == VEC_COND_EXPR)
11345 return NULL_TREE;
11347 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11348 if (integer_zerop (op2)
11349 && truth_value_p (TREE_CODE (arg0))
11350 && truth_value_p (TREE_CODE (arg1))
11351 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11352 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11353 : TRUTH_ANDIF_EXPR,
11354 type, fold_convert_loc (loc, type, arg0), op1);
11356 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11357 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11358 && truth_value_p (TREE_CODE (arg0))
11359 && truth_value_p (TREE_CODE (arg1))
11360 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11362 location_t loc0 = expr_location_or (arg0, loc);
11363 /* Only perform transformation if ARG0 is easily inverted. */
11364 tem = fold_invert_truthvalue (loc0, arg0);
11365 if (tem)
11366 return fold_build2_loc (loc, code == VEC_COND_EXPR
11367 ? BIT_IOR_EXPR
11368 : TRUTH_ORIF_EXPR,
11369 type, fold_convert_loc (loc, type, tem),
11370 op1);
11373 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11374 if (integer_zerop (arg1)
11375 && truth_value_p (TREE_CODE (arg0))
11376 && truth_value_p (TREE_CODE (op2))
11377 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11379 location_t loc0 = expr_location_or (arg0, loc);
11380 /* Only perform transformation if ARG0 is easily inverted. */
11381 tem = fold_invert_truthvalue (loc0, arg0);
11382 if (tem)
11383 return fold_build2_loc (loc, code == VEC_COND_EXPR
11384 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11385 type, fold_convert_loc (loc, type, tem),
11386 op2);
11389 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11390 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11391 && truth_value_p (TREE_CODE (arg0))
11392 && truth_value_p (TREE_CODE (op2))
11393 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11394 return fold_build2_loc (loc, code == VEC_COND_EXPR
11395 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11396 type, fold_convert_loc (loc, type, arg0), op2);
11398 return NULL_TREE;
11400 case CALL_EXPR:
11401 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11402 of fold_ternary on them. */
11403 gcc_unreachable ();
11405 case BIT_FIELD_REF:
11406 if (TREE_CODE (arg0) == VECTOR_CST
11407 && (type == TREE_TYPE (TREE_TYPE (arg0))
11408 || (TREE_CODE (type) == VECTOR_TYPE
11409 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11411 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11412 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11413 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11414 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11416 if (n != 0
11417 && (idx % width) == 0
11418 && (n % width) == 0
11419 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11421 idx = idx / width;
11422 n = n / width;
11424 if (TREE_CODE (arg0) == VECTOR_CST)
11426 if (n == 1)
11427 return VECTOR_CST_ELT (arg0, idx);
11429 auto_vec<tree, 32> vals (n);
11430 for (unsigned i = 0; i < n; ++i)
11431 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i));
11432 return build_vector (type, vals);
11437 /* On constants we can use native encode/interpret to constant
11438 fold (nearly) all BIT_FIELD_REFs. */
11439 if (CONSTANT_CLASS_P (arg0)
11440 && can_native_interpret_type_p (type)
11441 && BITS_PER_UNIT == 8)
11443 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11444 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11445 /* Limit us to a reasonable amount of work. To relax the
11446 other limitations we need bit-shifting of the buffer
11447 and rounding up the size. */
11448 if (bitpos % BITS_PER_UNIT == 0
11449 && bitsize % BITS_PER_UNIT == 0
11450 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11452 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11453 unsigned HOST_WIDE_INT len
11454 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11455 bitpos / BITS_PER_UNIT);
11456 if (len > 0
11457 && len * BITS_PER_UNIT >= bitsize)
11459 tree v = native_interpret_expr (type, b,
11460 bitsize / BITS_PER_UNIT);
11461 if (v)
11462 return v;
11467 return NULL_TREE;
11469 case FMA_EXPR:
11470 /* For integers we can decompose the FMA if possible. */
11471 if (TREE_CODE (arg0) == INTEGER_CST
11472 && TREE_CODE (arg1) == INTEGER_CST)
11473 return fold_build2_loc (loc, PLUS_EXPR, type,
11474 const_binop (MULT_EXPR, arg0, arg1), arg2);
11475 if (integer_zerop (arg2))
11476 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11478 return fold_fma (loc, type, arg0, arg1, arg2);
11480 case VEC_PERM_EXPR:
11481 if (TREE_CODE (arg2) == VECTOR_CST)
11483 unsigned int nelts = VECTOR_CST_NELTS (arg2), i, mask, mask2;
11484 bool need_mask_canon = false;
11485 bool need_mask_canon2 = false;
11486 bool all_in_vec0 = true;
11487 bool all_in_vec1 = true;
11488 bool maybe_identity = true;
11489 bool single_arg = (op0 == op1);
11490 bool changed = false;
11492 mask2 = 2 * nelts - 1;
11493 mask = single_arg ? (nelts - 1) : mask2;
11494 gcc_assert (nelts == TYPE_VECTOR_SUBPARTS (type));
11495 auto_vec_perm_indices sel (nelts);
11496 auto_vec_perm_indices sel2 (nelts);
11497 for (i = 0; i < nelts; i++)
11499 tree val = VECTOR_CST_ELT (arg2, i);
11500 if (TREE_CODE (val) != INTEGER_CST)
11501 return NULL_TREE;
11503 /* Make sure that the perm value is in an acceptable
11504 range. */
11505 wi::tree_to_wide_ref t = wi::to_wide (val);
11506 need_mask_canon |= wi::gtu_p (t, mask);
11507 need_mask_canon2 |= wi::gtu_p (t, mask2);
11508 unsigned int elt = t.to_uhwi () & mask;
11509 unsigned int elt2 = t.to_uhwi () & mask2;
11511 if (elt < nelts)
11512 all_in_vec1 = false;
11513 else
11514 all_in_vec0 = false;
11516 if ((elt & (nelts - 1)) != i)
11517 maybe_identity = false;
11519 sel.quick_push (elt);
11520 sel2.quick_push (elt2);
11523 if (maybe_identity)
11525 if (all_in_vec0)
11526 return op0;
11527 if (all_in_vec1)
11528 return op1;
11531 if (all_in_vec0)
11532 op1 = op0;
11533 else if (all_in_vec1)
11535 op0 = op1;
11536 for (i = 0; i < nelts; i++)
11537 sel[i] -= nelts;
11538 need_mask_canon = true;
11541 if ((TREE_CODE (op0) == VECTOR_CST
11542 || TREE_CODE (op0) == CONSTRUCTOR)
11543 && (TREE_CODE (op1) == VECTOR_CST
11544 || TREE_CODE (op1) == CONSTRUCTOR))
11546 tree t = fold_vec_perm (type, op0, op1, sel);
11547 if (t != NULL_TREE)
11548 return t;
11551 if (op0 == op1 && !single_arg)
11552 changed = true;
11554 /* Some targets are deficient and fail to expand a single
11555 argument permutation while still allowing an equivalent
11556 2-argument version. */
11557 if (need_mask_canon && arg2 == op2
11558 && !can_vec_perm_p (TYPE_MODE (type), false, &sel)
11559 && can_vec_perm_p (TYPE_MODE (type), false, &sel2))
11561 need_mask_canon = need_mask_canon2;
11562 sel = sel2;
11565 if (need_mask_canon && arg2 == op2)
11567 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
11568 auto_vec<tree, 32> tsel (nelts);
11569 for (i = 0; i < nelts; i++)
11570 tsel.quick_push (build_int_cst (eltype, sel[i]));
11571 op2 = build_vector (TREE_TYPE (arg2), tsel);
11572 changed = true;
11575 if (changed)
11576 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11578 return NULL_TREE;
11580 case BIT_INSERT_EXPR:
11581 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11582 if (TREE_CODE (arg0) == INTEGER_CST
11583 && TREE_CODE (arg1) == INTEGER_CST)
11585 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11586 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11587 wide_int tem = (wi::to_wide (arg0)
11588 & wi::shifted_mask (bitpos, bitsize, true,
11589 TYPE_PRECISION (type)));
11590 wide_int tem2
11591 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11592 bitsize), bitpos);
11593 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11595 else if (TREE_CODE (arg0) == VECTOR_CST
11596 && CONSTANT_CLASS_P (arg1)
11597 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11598 TREE_TYPE (arg1)))
11600 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11601 unsigned HOST_WIDE_INT elsize
11602 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11603 if (bitpos % elsize == 0)
11605 unsigned k = bitpos / elsize;
11606 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11607 return arg0;
11608 else
11610 unsigned int nelts = VECTOR_CST_NELTS (arg0);
11611 auto_vec<tree, 32> elts (nelts);
11612 elts.quick_grow (nelts);
11613 for (unsigned int i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
11614 elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i));
11615 return build_vector (type, elts);
11619 return NULL_TREE;
11621 default:
11622 return NULL_TREE;
11623 } /* switch (code) */
11626 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11627 of an array (or vector). */
11629 tree
11630 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11632 tree index_type = NULL_TREE;
11633 offset_int low_bound = 0;
11635 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11637 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11638 if (domain_type && TYPE_MIN_VALUE (domain_type))
11640 /* Static constructors for variably sized objects makes no sense. */
11641 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11642 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11643 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11647 if (index_type)
11648 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11649 TYPE_SIGN (index_type));
11651 offset_int index = low_bound - 1;
11652 if (index_type)
11653 index = wi::ext (index, TYPE_PRECISION (index_type),
11654 TYPE_SIGN (index_type));
11656 offset_int max_index;
11657 unsigned HOST_WIDE_INT cnt;
11658 tree cfield, cval;
11660 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11662 /* Array constructor might explicitly set index, or specify a range,
11663 or leave index NULL meaning that it is next index after previous
11664 one. */
11665 if (cfield)
11667 if (TREE_CODE (cfield) == INTEGER_CST)
11668 max_index = index = wi::to_offset (cfield);
11669 else
11671 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11672 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11673 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11676 else
11678 index += 1;
11679 if (index_type)
11680 index = wi::ext (index, TYPE_PRECISION (index_type),
11681 TYPE_SIGN (index_type));
11682 max_index = index;
11685 /* Do we have match? */
11686 if (wi::cmpu (access_index, index) >= 0
11687 && wi::cmpu (access_index, max_index) <= 0)
11688 return cval;
11690 return NULL_TREE;
11693 /* Perform constant folding and related simplification of EXPR.
11694 The related simplifications include x*1 => x, x*0 => 0, etc.,
11695 and application of the associative law.
11696 NOP_EXPR conversions may be removed freely (as long as we
11697 are careful not to change the type of the overall expression).
11698 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11699 but we can constant-fold them if they have constant operands. */
11701 #ifdef ENABLE_FOLD_CHECKING
11702 # define fold(x) fold_1 (x)
11703 static tree fold_1 (tree);
11704 static
11705 #endif
11706 tree
11707 fold (tree expr)
11709 const tree t = expr;
11710 enum tree_code code = TREE_CODE (t);
11711 enum tree_code_class kind = TREE_CODE_CLASS (code);
11712 tree tem;
11713 location_t loc = EXPR_LOCATION (expr);
11715 /* Return right away if a constant. */
11716 if (kind == tcc_constant)
11717 return t;
11719 /* CALL_EXPR-like objects with variable numbers of operands are
11720 treated specially. */
11721 if (kind == tcc_vl_exp)
11723 if (code == CALL_EXPR)
11725 tem = fold_call_expr (loc, expr, false);
11726 return tem ? tem : expr;
11728 return expr;
11731 if (IS_EXPR_CODE_CLASS (kind))
11733 tree type = TREE_TYPE (t);
11734 tree op0, op1, op2;
11736 switch (TREE_CODE_LENGTH (code))
11738 case 1:
11739 op0 = TREE_OPERAND (t, 0);
11740 tem = fold_unary_loc (loc, code, type, op0);
11741 return tem ? tem : expr;
11742 case 2:
11743 op0 = TREE_OPERAND (t, 0);
11744 op1 = TREE_OPERAND (t, 1);
11745 tem = fold_binary_loc (loc, code, type, op0, op1);
11746 return tem ? tem : expr;
11747 case 3:
11748 op0 = TREE_OPERAND (t, 0);
11749 op1 = TREE_OPERAND (t, 1);
11750 op2 = TREE_OPERAND (t, 2);
11751 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
11752 return tem ? tem : expr;
11753 default:
11754 break;
11758 switch (code)
11760 case ARRAY_REF:
11762 tree op0 = TREE_OPERAND (t, 0);
11763 tree op1 = TREE_OPERAND (t, 1);
11765 if (TREE_CODE (op1) == INTEGER_CST
11766 && TREE_CODE (op0) == CONSTRUCTOR
11767 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
11769 tree val = get_array_ctor_element_at_index (op0,
11770 wi::to_offset (op1));
11771 if (val)
11772 return val;
11775 return t;
11778 /* Return a VECTOR_CST if possible. */
11779 case CONSTRUCTOR:
11781 tree type = TREE_TYPE (t);
11782 if (TREE_CODE (type) != VECTOR_TYPE)
11783 return t;
11785 unsigned i;
11786 tree val;
11787 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
11788 if (! CONSTANT_CLASS_P (val))
11789 return t;
11791 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
11794 case CONST_DECL:
11795 return fold (DECL_INITIAL (t));
11797 default:
11798 return t;
11799 } /* switch (code) */
11802 #ifdef ENABLE_FOLD_CHECKING
11803 #undef fold
11805 static void fold_checksum_tree (const_tree, struct md5_ctx *,
11806 hash_table<nofree_ptr_hash<const tree_node> > *);
11807 static void fold_check_failed (const_tree, const_tree);
11808 void print_fold_checksum (const_tree);
11810 /* When --enable-checking=fold, compute a digest of expr before
11811 and after actual fold call to see if fold did not accidentally
11812 change original expr. */
11814 tree
11815 fold (tree expr)
11817 tree ret;
11818 struct md5_ctx ctx;
11819 unsigned char checksum_before[16], checksum_after[16];
11820 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
11822 md5_init_ctx (&ctx);
11823 fold_checksum_tree (expr, &ctx, &ht);
11824 md5_finish_ctx (&ctx, checksum_before);
11825 ht.empty ();
11827 ret = fold_1 (expr);
11829 md5_init_ctx (&ctx);
11830 fold_checksum_tree (expr, &ctx, &ht);
11831 md5_finish_ctx (&ctx, checksum_after);
11833 if (memcmp (checksum_before, checksum_after, 16))
11834 fold_check_failed (expr, ret);
11836 return ret;
11839 void
11840 print_fold_checksum (const_tree expr)
11842 struct md5_ctx ctx;
11843 unsigned char checksum[16], cnt;
11844 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
11846 md5_init_ctx (&ctx);
11847 fold_checksum_tree (expr, &ctx, &ht);
11848 md5_finish_ctx (&ctx, checksum);
11849 for (cnt = 0; cnt < 16; ++cnt)
11850 fprintf (stderr, "%02x", checksum[cnt]);
11851 putc ('\n', stderr);
11854 static void
11855 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
11857 internal_error ("fold check: original tree changed by fold");
11860 static void
11861 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
11862 hash_table<nofree_ptr_hash <const tree_node> > *ht)
11864 const tree_node **slot;
11865 enum tree_code code;
11866 union tree_node buf;
11867 int i, len;
11869 recursive_label:
11870 if (expr == NULL)
11871 return;
11872 slot = ht->find_slot (expr, INSERT);
11873 if (*slot != NULL)
11874 return;
11875 *slot = expr;
11876 code = TREE_CODE (expr);
11877 if (TREE_CODE_CLASS (code) == tcc_declaration
11878 && HAS_DECL_ASSEMBLER_NAME_P (expr))
11880 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
11881 memcpy ((char *) &buf, expr, tree_size (expr));
11882 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
11883 buf.decl_with_vis.symtab_node = NULL;
11884 expr = (tree) &buf;
11886 else if (TREE_CODE_CLASS (code) == tcc_type
11887 && (TYPE_POINTER_TO (expr)
11888 || TYPE_REFERENCE_TO (expr)
11889 || TYPE_CACHED_VALUES_P (expr)
11890 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
11891 || TYPE_NEXT_VARIANT (expr)
11892 || TYPE_ALIAS_SET_KNOWN_P (expr)))
11894 /* Allow these fields to be modified. */
11895 tree tmp;
11896 memcpy ((char *) &buf, expr, tree_size (expr));
11897 expr = tmp = (tree) &buf;
11898 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
11899 TYPE_POINTER_TO (tmp) = NULL;
11900 TYPE_REFERENCE_TO (tmp) = NULL;
11901 TYPE_NEXT_VARIANT (tmp) = NULL;
11902 TYPE_ALIAS_SET (tmp) = -1;
11903 if (TYPE_CACHED_VALUES_P (tmp))
11905 TYPE_CACHED_VALUES_P (tmp) = 0;
11906 TYPE_CACHED_VALUES (tmp) = NULL;
11909 md5_process_bytes (expr, tree_size (expr), ctx);
11910 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
11911 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
11912 if (TREE_CODE_CLASS (code) != tcc_type
11913 && TREE_CODE_CLASS (code) != tcc_declaration
11914 && code != TREE_LIST
11915 && code != SSA_NAME
11916 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
11917 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
11918 switch (TREE_CODE_CLASS (code))
11920 case tcc_constant:
11921 switch (code)
11923 case STRING_CST:
11924 md5_process_bytes (TREE_STRING_POINTER (expr),
11925 TREE_STRING_LENGTH (expr), ctx);
11926 break;
11927 case COMPLEX_CST:
11928 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
11929 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
11930 break;
11931 case VECTOR_CST:
11932 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
11933 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
11934 break;
11935 default:
11936 break;
11938 break;
11939 case tcc_exceptional:
11940 switch (code)
11942 case TREE_LIST:
11943 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
11944 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
11945 expr = TREE_CHAIN (expr);
11946 goto recursive_label;
11947 break;
11948 case TREE_VEC:
11949 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
11950 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
11951 break;
11952 default:
11953 break;
11955 break;
11956 case tcc_expression:
11957 case tcc_reference:
11958 case tcc_comparison:
11959 case tcc_unary:
11960 case tcc_binary:
11961 case tcc_statement:
11962 case tcc_vl_exp:
11963 len = TREE_OPERAND_LENGTH (expr);
11964 for (i = 0; i < len; ++i)
11965 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
11966 break;
11967 case tcc_declaration:
11968 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
11969 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
11970 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
11972 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
11973 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
11974 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
11975 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
11976 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
11979 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
11981 if (TREE_CODE (expr) == FUNCTION_DECL)
11983 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
11984 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
11986 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
11988 break;
11989 case tcc_type:
11990 if (TREE_CODE (expr) == ENUMERAL_TYPE)
11991 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
11992 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
11993 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
11994 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
11995 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
11996 if (INTEGRAL_TYPE_P (expr)
11997 || SCALAR_FLOAT_TYPE_P (expr))
11999 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12000 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12002 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12003 if (TREE_CODE (expr) == RECORD_TYPE
12004 || TREE_CODE (expr) == UNION_TYPE
12005 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12006 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12007 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12008 break;
12009 default:
12010 break;
12014 /* Helper function for outputting the checksum of a tree T. When
12015 debugging with gdb, you can "define mynext" to be "next" followed
12016 by "call debug_fold_checksum (op0)", then just trace down till the
12017 outputs differ. */
12019 DEBUG_FUNCTION void
12020 debug_fold_checksum (const_tree t)
12022 int i;
12023 unsigned char checksum[16];
12024 struct md5_ctx ctx;
12025 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12027 md5_init_ctx (&ctx);
12028 fold_checksum_tree (t, &ctx, &ht);
12029 md5_finish_ctx (&ctx, checksum);
12030 ht.empty ();
12032 for (i = 0; i < 16; i++)
12033 fprintf (stderr, "%d ", checksum[i]);
12035 fprintf (stderr, "\n");
12038 #endif
12040 /* Fold a unary tree expression with code CODE of type TYPE with an
12041 operand OP0. LOC is the location of the resulting expression.
12042 Return a folded expression if successful. Otherwise, return a tree
12043 expression with code CODE of type TYPE with an operand OP0. */
12045 tree
12046 fold_build1_loc (location_t loc,
12047 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12049 tree tem;
12050 #ifdef ENABLE_FOLD_CHECKING
12051 unsigned char checksum_before[16], checksum_after[16];
12052 struct md5_ctx ctx;
12053 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12055 md5_init_ctx (&ctx);
12056 fold_checksum_tree (op0, &ctx, &ht);
12057 md5_finish_ctx (&ctx, checksum_before);
12058 ht.empty ();
12059 #endif
12061 tem = fold_unary_loc (loc, code, type, op0);
12062 if (!tem)
12063 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT);
12065 #ifdef ENABLE_FOLD_CHECKING
12066 md5_init_ctx (&ctx);
12067 fold_checksum_tree (op0, &ctx, &ht);
12068 md5_finish_ctx (&ctx, checksum_after);
12070 if (memcmp (checksum_before, checksum_after, 16))
12071 fold_check_failed (op0, tem);
12072 #endif
12073 return tem;
12076 /* Fold a binary tree expression with code CODE of type TYPE with
12077 operands OP0 and OP1. LOC is the location of the resulting
12078 expression. Return a folded expression if successful. Otherwise,
12079 return a tree expression with code CODE of type TYPE with operands
12080 OP0 and OP1. */
12082 tree
12083 fold_build2_loc (location_t loc,
12084 enum tree_code code, tree type, tree op0, tree op1
12085 MEM_STAT_DECL)
12087 tree tem;
12088 #ifdef ENABLE_FOLD_CHECKING
12089 unsigned char checksum_before_op0[16],
12090 checksum_before_op1[16],
12091 checksum_after_op0[16],
12092 checksum_after_op1[16];
12093 struct md5_ctx ctx;
12094 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12096 md5_init_ctx (&ctx);
12097 fold_checksum_tree (op0, &ctx, &ht);
12098 md5_finish_ctx (&ctx, checksum_before_op0);
12099 ht.empty ();
12101 md5_init_ctx (&ctx);
12102 fold_checksum_tree (op1, &ctx, &ht);
12103 md5_finish_ctx (&ctx, checksum_before_op1);
12104 ht.empty ();
12105 #endif
12107 tem = fold_binary_loc (loc, code, type, op0, op1);
12108 if (!tem)
12109 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12111 #ifdef ENABLE_FOLD_CHECKING
12112 md5_init_ctx (&ctx);
12113 fold_checksum_tree (op0, &ctx, &ht);
12114 md5_finish_ctx (&ctx, checksum_after_op0);
12115 ht.empty ();
12117 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12118 fold_check_failed (op0, tem);
12120 md5_init_ctx (&ctx);
12121 fold_checksum_tree (op1, &ctx, &ht);
12122 md5_finish_ctx (&ctx, checksum_after_op1);
12124 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12125 fold_check_failed (op1, tem);
12126 #endif
12127 return tem;
12130 /* Fold a ternary tree expression with code CODE of type TYPE with
12131 operands OP0, OP1, and OP2. Return a folded expression if
12132 successful. Otherwise, return a tree expression with code CODE of
12133 type TYPE with operands OP0, OP1, and OP2. */
12135 tree
12136 fold_build3_loc (location_t loc, enum tree_code code, tree type,
12137 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12139 tree tem;
12140 #ifdef ENABLE_FOLD_CHECKING
12141 unsigned char checksum_before_op0[16],
12142 checksum_before_op1[16],
12143 checksum_before_op2[16],
12144 checksum_after_op0[16],
12145 checksum_after_op1[16],
12146 checksum_after_op2[16];
12147 struct md5_ctx ctx;
12148 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12150 md5_init_ctx (&ctx);
12151 fold_checksum_tree (op0, &ctx, &ht);
12152 md5_finish_ctx (&ctx, checksum_before_op0);
12153 ht.empty ();
12155 md5_init_ctx (&ctx);
12156 fold_checksum_tree (op1, &ctx, &ht);
12157 md5_finish_ctx (&ctx, checksum_before_op1);
12158 ht.empty ();
12160 md5_init_ctx (&ctx);
12161 fold_checksum_tree (op2, &ctx, &ht);
12162 md5_finish_ctx (&ctx, checksum_before_op2);
12163 ht.empty ();
12164 #endif
12166 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12167 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12168 if (!tem)
12169 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12171 #ifdef ENABLE_FOLD_CHECKING
12172 md5_init_ctx (&ctx);
12173 fold_checksum_tree (op0, &ctx, &ht);
12174 md5_finish_ctx (&ctx, checksum_after_op0);
12175 ht.empty ();
12177 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12178 fold_check_failed (op0, tem);
12180 md5_init_ctx (&ctx);
12181 fold_checksum_tree (op1, &ctx, &ht);
12182 md5_finish_ctx (&ctx, checksum_after_op1);
12183 ht.empty ();
12185 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12186 fold_check_failed (op1, tem);
12188 md5_init_ctx (&ctx);
12189 fold_checksum_tree (op2, &ctx, &ht);
12190 md5_finish_ctx (&ctx, checksum_after_op2);
12192 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12193 fold_check_failed (op2, tem);
12194 #endif
12195 return tem;
12198 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12199 arguments in ARGARRAY, and a null static chain.
12200 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12201 of type TYPE from the given operands as constructed by build_call_array. */
12203 tree
12204 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12205 int nargs, tree *argarray)
12207 tree tem;
12208 #ifdef ENABLE_FOLD_CHECKING
12209 unsigned char checksum_before_fn[16],
12210 checksum_before_arglist[16],
12211 checksum_after_fn[16],
12212 checksum_after_arglist[16];
12213 struct md5_ctx ctx;
12214 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12215 int i;
12217 md5_init_ctx (&ctx);
12218 fold_checksum_tree (fn, &ctx, &ht);
12219 md5_finish_ctx (&ctx, checksum_before_fn);
12220 ht.empty ();
12222 md5_init_ctx (&ctx);
12223 for (i = 0; i < nargs; i++)
12224 fold_checksum_tree (argarray[i], &ctx, &ht);
12225 md5_finish_ctx (&ctx, checksum_before_arglist);
12226 ht.empty ();
12227 #endif
12229 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12230 if (!tem)
12231 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12233 #ifdef ENABLE_FOLD_CHECKING
12234 md5_init_ctx (&ctx);
12235 fold_checksum_tree (fn, &ctx, &ht);
12236 md5_finish_ctx (&ctx, checksum_after_fn);
12237 ht.empty ();
12239 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12240 fold_check_failed (fn, tem);
12242 md5_init_ctx (&ctx);
12243 for (i = 0; i < nargs; i++)
12244 fold_checksum_tree (argarray[i], &ctx, &ht);
12245 md5_finish_ctx (&ctx, checksum_after_arglist);
12247 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12248 fold_check_failed (NULL_TREE, tem);
12249 #endif
12250 return tem;
12253 /* Perform constant folding and related simplification of initializer
12254 expression EXPR. These behave identically to "fold_buildN" but ignore
12255 potential run-time traps and exceptions that fold must preserve. */
12257 #define START_FOLD_INIT \
12258 int saved_signaling_nans = flag_signaling_nans;\
12259 int saved_trapping_math = flag_trapping_math;\
12260 int saved_rounding_math = flag_rounding_math;\
12261 int saved_trapv = flag_trapv;\
12262 int saved_folding_initializer = folding_initializer;\
12263 flag_signaling_nans = 0;\
12264 flag_trapping_math = 0;\
12265 flag_rounding_math = 0;\
12266 flag_trapv = 0;\
12267 folding_initializer = 1;
12269 #define END_FOLD_INIT \
12270 flag_signaling_nans = saved_signaling_nans;\
12271 flag_trapping_math = saved_trapping_math;\
12272 flag_rounding_math = saved_rounding_math;\
12273 flag_trapv = saved_trapv;\
12274 folding_initializer = saved_folding_initializer;
12276 tree
12277 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12278 tree type, tree op)
12280 tree result;
12281 START_FOLD_INIT;
12283 result = fold_build1_loc (loc, code, type, op);
12285 END_FOLD_INIT;
12286 return result;
12289 tree
12290 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12291 tree type, tree op0, tree op1)
12293 tree result;
12294 START_FOLD_INIT;
12296 result = fold_build2_loc (loc, code, type, op0, op1);
12298 END_FOLD_INIT;
12299 return result;
12302 tree
12303 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12304 int nargs, tree *argarray)
12306 tree result;
12307 START_FOLD_INIT;
12309 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12311 END_FOLD_INIT;
12312 return result;
12315 #undef START_FOLD_INIT
12316 #undef END_FOLD_INIT
12318 /* Determine if first argument is a multiple of second argument. Return 0 if
12319 it is not, or we cannot easily determined it to be.
12321 An example of the sort of thing we care about (at this point; this routine
12322 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12323 fold cases do now) is discovering that
12325 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12327 is a multiple of
12329 SAVE_EXPR (J * 8)
12331 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12333 This code also handles discovering that
12335 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12337 is a multiple of 8 so we don't have to worry about dealing with a
12338 possible remainder.
12340 Note that we *look* inside a SAVE_EXPR only to determine how it was
12341 calculated; it is not safe for fold to do much of anything else with the
12342 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12343 at run time. For example, the latter example above *cannot* be implemented
12344 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12345 evaluation time of the original SAVE_EXPR is not necessarily the same at
12346 the time the new expression is evaluated. The only optimization of this
12347 sort that would be valid is changing
12349 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12351 divided by 8 to
12353 SAVE_EXPR (I) * SAVE_EXPR (J)
12355 (where the same SAVE_EXPR (J) is used in the original and the
12356 transformed version). */
12359 multiple_of_p (tree type, const_tree top, const_tree bottom)
12361 gimple *stmt;
12362 tree t1, op1, op2;
12364 if (operand_equal_p (top, bottom, 0))
12365 return 1;
12367 if (TREE_CODE (type) != INTEGER_TYPE)
12368 return 0;
12370 switch (TREE_CODE (top))
12372 case BIT_AND_EXPR:
12373 /* Bitwise and provides a power of two multiple. If the mask is
12374 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12375 if (!integer_pow2p (bottom))
12376 return 0;
12377 /* FALLTHRU */
12379 case MULT_EXPR:
12380 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12381 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12383 case MINUS_EXPR:
12384 /* It is impossible to prove if op0 - op1 is multiple of bottom
12385 precisely, so be conservative here checking if both op0 and op1
12386 are multiple of bottom. Note we check the second operand first
12387 since it's usually simpler. */
12388 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12389 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12391 case PLUS_EXPR:
12392 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12393 as op0 - 3 if the expression has unsigned type. For example,
12394 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12395 op1 = TREE_OPERAND (top, 1);
12396 if (TYPE_UNSIGNED (type)
12397 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12398 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12399 return (multiple_of_p (type, op1, bottom)
12400 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12402 case LSHIFT_EXPR:
12403 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12405 op1 = TREE_OPERAND (top, 1);
12406 /* const_binop may not detect overflow correctly,
12407 so check for it explicitly here. */
12408 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
12409 wi::to_wide (op1))
12410 && 0 != (t1 = fold_convert (type,
12411 const_binop (LSHIFT_EXPR,
12412 size_one_node,
12413 op1)))
12414 && !TREE_OVERFLOW (t1))
12415 return multiple_of_p (type, t1, bottom);
12417 return 0;
12419 case NOP_EXPR:
12420 /* Can't handle conversions from non-integral or wider integral type. */
12421 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12422 || (TYPE_PRECISION (type)
12423 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12424 return 0;
12426 /* fall through */
12428 case SAVE_EXPR:
12429 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12431 case COND_EXPR:
12432 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12433 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12435 case INTEGER_CST:
12436 if (TREE_CODE (bottom) != INTEGER_CST
12437 || integer_zerop (bottom)
12438 || (TYPE_UNSIGNED (type)
12439 && (tree_int_cst_sgn (top) < 0
12440 || tree_int_cst_sgn (bottom) < 0)))
12441 return 0;
12442 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12443 SIGNED);
12445 case SSA_NAME:
12446 if (TREE_CODE (bottom) == INTEGER_CST
12447 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12448 && gimple_code (stmt) == GIMPLE_ASSIGN)
12450 enum tree_code code = gimple_assign_rhs_code (stmt);
12452 /* Check for special cases to see if top is defined as multiple
12453 of bottom:
12455 top = (X & ~(bottom - 1) ; bottom is power of 2
12459 Y = X % bottom
12460 top = X - Y. */
12461 if (code == BIT_AND_EXPR
12462 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12463 && TREE_CODE (op2) == INTEGER_CST
12464 && integer_pow2p (bottom)
12465 && wi::multiple_of_p (wi::to_widest (op2),
12466 wi::to_widest (bottom), UNSIGNED))
12467 return 1;
12469 op1 = gimple_assign_rhs1 (stmt);
12470 if (code == MINUS_EXPR
12471 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12472 && TREE_CODE (op2) == SSA_NAME
12473 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12474 && gimple_code (stmt) == GIMPLE_ASSIGN
12475 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12476 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12477 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12478 return 1;
12481 /* fall through */
12483 default:
12484 return 0;
12488 #define tree_expr_nonnegative_warnv_p(X, Y) \
12489 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12491 #define RECURSE(X) \
12492 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12494 /* Return true if CODE or TYPE is known to be non-negative. */
12496 static bool
12497 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12499 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12500 && truth_value_p (code))
12501 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12502 have a signed:1 type (where the value is -1 and 0). */
12503 return true;
12504 return false;
12507 /* Return true if (CODE OP0) is known to be non-negative. If the return
12508 value is based on the assumption that signed overflow is undefined,
12509 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12510 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12512 bool
12513 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12514 bool *strict_overflow_p, int depth)
12516 if (TYPE_UNSIGNED (type))
12517 return true;
12519 switch (code)
12521 case ABS_EXPR:
12522 /* We can't return 1 if flag_wrapv is set because
12523 ABS_EXPR<INT_MIN> = INT_MIN. */
12524 if (!ANY_INTEGRAL_TYPE_P (type))
12525 return true;
12526 if (TYPE_OVERFLOW_UNDEFINED (type))
12528 *strict_overflow_p = true;
12529 return true;
12531 break;
12533 case NON_LVALUE_EXPR:
12534 case FLOAT_EXPR:
12535 case FIX_TRUNC_EXPR:
12536 return RECURSE (op0);
12538 CASE_CONVERT:
12540 tree inner_type = TREE_TYPE (op0);
12541 tree outer_type = type;
12543 if (TREE_CODE (outer_type) == REAL_TYPE)
12545 if (TREE_CODE (inner_type) == REAL_TYPE)
12546 return RECURSE (op0);
12547 if (INTEGRAL_TYPE_P (inner_type))
12549 if (TYPE_UNSIGNED (inner_type))
12550 return true;
12551 return RECURSE (op0);
12554 else if (INTEGRAL_TYPE_P (outer_type))
12556 if (TREE_CODE (inner_type) == REAL_TYPE)
12557 return RECURSE (op0);
12558 if (INTEGRAL_TYPE_P (inner_type))
12559 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12560 && TYPE_UNSIGNED (inner_type);
12563 break;
12565 default:
12566 return tree_simple_nonnegative_warnv_p (code, type);
12569 /* We don't know sign of `t', so be conservative and return false. */
12570 return false;
12573 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12574 value is based on the assumption that signed overflow is undefined,
12575 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12576 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12578 bool
12579 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12580 tree op1, bool *strict_overflow_p,
12581 int depth)
12583 if (TYPE_UNSIGNED (type))
12584 return true;
12586 switch (code)
12588 case POINTER_PLUS_EXPR:
12589 case PLUS_EXPR:
12590 if (FLOAT_TYPE_P (type))
12591 return RECURSE (op0) && RECURSE (op1);
12593 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12594 both unsigned and at least 2 bits shorter than the result. */
12595 if (TREE_CODE (type) == INTEGER_TYPE
12596 && TREE_CODE (op0) == NOP_EXPR
12597 && TREE_CODE (op1) == NOP_EXPR)
12599 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12600 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12601 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12602 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12604 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12605 TYPE_PRECISION (inner2)) + 1;
12606 return prec < TYPE_PRECISION (type);
12609 break;
12611 case MULT_EXPR:
12612 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12614 /* x * x is always non-negative for floating point x
12615 or without overflow. */
12616 if (operand_equal_p (op0, op1, 0)
12617 || (RECURSE (op0) && RECURSE (op1)))
12619 if (ANY_INTEGRAL_TYPE_P (type)
12620 && TYPE_OVERFLOW_UNDEFINED (type))
12621 *strict_overflow_p = true;
12622 return true;
12626 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12627 both unsigned and their total bits is shorter than the result. */
12628 if (TREE_CODE (type) == INTEGER_TYPE
12629 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12630 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12632 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12633 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12634 : TREE_TYPE (op0);
12635 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12636 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12637 : TREE_TYPE (op1);
12639 bool unsigned0 = TYPE_UNSIGNED (inner0);
12640 bool unsigned1 = TYPE_UNSIGNED (inner1);
12642 if (TREE_CODE (op0) == INTEGER_CST)
12643 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12645 if (TREE_CODE (op1) == INTEGER_CST)
12646 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12648 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12649 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12651 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12652 ? tree_int_cst_min_precision (op0, UNSIGNED)
12653 : TYPE_PRECISION (inner0);
12655 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12656 ? tree_int_cst_min_precision (op1, UNSIGNED)
12657 : TYPE_PRECISION (inner1);
12659 return precision0 + precision1 < TYPE_PRECISION (type);
12662 return false;
12664 case BIT_AND_EXPR:
12665 case MAX_EXPR:
12666 return RECURSE (op0) || RECURSE (op1);
12668 case BIT_IOR_EXPR:
12669 case BIT_XOR_EXPR:
12670 case MIN_EXPR:
12671 case RDIV_EXPR:
12672 case TRUNC_DIV_EXPR:
12673 case CEIL_DIV_EXPR:
12674 case FLOOR_DIV_EXPR:
12675 case ROUND_DIV_EXPR:
12676 return RECURSE (op0) && RECURSE (op1);
12678 case TRUNC_MOD_EXPR:
12679 return RECURSE (op0);
12681 case FLOOR_MOD_EXPR:
12682 return RECURSE (op1);
12684 case CEIL_MOD_EXPR:
12685 case ROUND_MOD_EXPR:
12686 default:
12687 return tree_simple_nonnegative_warnv_p (code, type);
12690 /* We don't know sign of `t', so be conservative and return false. */
12691 return false;
12694 /* Return true if T is known to be non-negative. If the return
12695 value is based on the assumption that signed overflow is undefined,
12696 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12697 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12699 bool
12700 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12702 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12703 return true;
12705 switch (TREE_CODE (t))
12707 case INTEGER_CST:
12708 return tree_int_cst_sgn (t) >= 0;
12710 case REAL_CST:
12711 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12713 case FIXED_CST:
12714 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12716 case COND_EXPR:
12717 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
12719 case SSA_NAME:
12720 /* Limit the depth of recursion to avoid quadratic behavior.
12721 This is expected to catch almost all occurrences in practice.
12722 If this code misses important cases that unbounded recursion
12723 would not, passes that need this information could be revised
12724 to provide it through dataflow propagation. */
12725 return (!name_registered_for_update_p (t)
12726 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
12727 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
12728 strict_overflow_p, depth));
12730 default:
12731 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
12735 /* Return true if T is known to be non-negative. If the return
12736 value is based on the assumption that signed overflow is undefined,
12737 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12738 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12740 bool
12741 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
12742 bool *strict_overflow_p, int depth)
12744 switch (fn)
12746 CASE_CFN_ACOS:
12747 CASE_CFN_ACOSH:
12748 CASE_CFN_CABS:
12749 CASE_CFN_COSH:
12750 CASE_CFN_ERFC:
12751 CASE_CFN_EXP:
12752 CASE_CFN_EXP10:
12753 CASE_CFN_EXP2:
12754 CASE_CFN_FABS:
12755 CASE_CFN_FDIM:
12756 CASE_CFN_HYPOT:
12757 CASE_CFN_POW10:
12758 CASE_CFN_FFS:
12759 CASE_CFN_PARITY:
12760 CASE_CFN_POPCOUNT:
12761 CASE_CFN_CLZ:
12762 CASE_CFN_CLRSB:
12763 case CFN_BUILT_IN_BSWAP32:
12764 case CFN_BUILT_IN_BSWAP64:
12765 /* Always true. */
12766 return true;
12768 CASE_CFN_SQRT:
12769 CASE_CFN_SQRT_FN:
12770 /* sqrt(-0.0) is -0.0. */
12771 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
12772 return true;
12773 return RECURSE (arg0);
12775 CASE_CFN_ASINH:
12776 CASE_CFN_ATAN:
12777 CASE_CFN_ATANH:
12778 CASE_CFN_CBRT:
12779 CASE_CFN_CEIL:
12780 CASE_CFN_ERF:
12781 CASE_CFN_EXPM1:
12782 CASE_CFN_FLOOR:
12783 CASE_CFN_FMOD:
12784 CASE_CFN_FREXP:
12785 CASE_CFN_ICEIL:
12786 CASE_CFN_IFLOOR:
12787 CASE_CFN_IRINT:
12788 CASE_CFN_IROUND:
12789 CASE_CFN_LCEIL:
12790 CASE_CFN_LDEXP:
12791 CASE_CFN_LFLOOR:
12792 CASE_CFN_LLCEIL:
12793 CASE_CFN_LLFLOOR:
12794 CASE_CFN_LLRINT:
12795 CASE_CFN_LLROUND:
12796 CASE_CFN_LRINT:
12797 CASE_CFN_LROUND:
12798 CASE_CFN_MODF:
12799 CASE_CFN_NEARBYINT:
12800 CASE_CFN_RINT:
12801 CASE_CFN_ROUND:
12802 CASE_CFN_SCALB:
12803 CASE_CFN_SCALBLN:
12804 CASE_CFN_SCALBN:
12805 CASE_CFN_SIGNBIT:
12806 CASE_CFN_SIGNIFICAND:
12807 CASE_CFN_SINH:
12808 CASE_CFN_TANH:
12809 CASE_CFN_TRUNC:
12810 /* True if the 1st argument is nonnegative. */
12811 return RECURSE (arg0);
12813 CASE_CFN_FMAX:
12814 CASE_CFN_FMAX_FN:
12815 /* True if the 1st OR 2nd arguments are nonnegative. */
12816 return RECURSE (arg0) || RECURSE (arg1);
12818 CASE_CFN_FMIN:
12819 CASE_CFN_FMIN_FN:
12820 /* True if the 1st AND 2nd arguments are nonnegative. */
12821 return RECURSE (arg0) && RECURSE (arg1);
12823 CASE_CFN_COPYSIGN:
12824 CASE_CFN_COPYSIGN_FN:
12825 /* True if the 2nd argument is nonnegative. */
12826 return RECURSE (arg1);
12828 CASE_CFN_POWI:
12829 /* True if the 1st argument is nonnegative or the second
12830 argument is an even integer. */
12831 if (TREE_CODE (arg1) == INTEGER_CST
12832 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
12833 return true;
12834 return RECURSE (arg0);
12836 CASE_CFN_POW:
12837 /* True if the 1st argument is nonnegative or the second
12838 argument is an even integer valued real. */
12839 if (TREE_CODE (arg1) == REAL_CST)
12841 REAL_VALUE_TYPE c;
12842 HOST_WIDE_INT n;
12844 c = TREE_REAL_CST (arg1);
12845 n = real_to_integer (&c);
12846 if ((n & 1) == 0)
12848 REAL_VALUE_TYPE cint;
12849 real_from_integer (&cint, VOIDmode, n, SIGNED);
12850 if (real_identical (&c, &cint))
12851 return true;
12854 return RECURSE (arg0);
12856 default:
12857 break;
12859 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
12862 /* Return true if T is known to be non-negative. If the return
12863 value is based on the assumption that signed overflow is undefined,
12864 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12865 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12867 static bool
12868 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12870 enum tree_code code = TREE_CODE (t);
12871 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12872 return true;
12874 switch (code)
12876 case TARGET_EXPR:
12878 tree temp = TARGET_EXPR_SLOT (t);
12879 t = TARGET_EXPR_INITIAL (t);
12881 /* If the initializer is non-void, then it's a normal expression
12882 that will be assigned to the slot. */
12883 if (!VOID_TYPE_P (t))
12884 return RECURSE (t);
12886 /* Otherwise, the initializer sets the slot in some way. One common
12887 way is an assignment statement at the end of the initializer. */
12888 while (1)
12890 if (TREE_CODE (t) == BIND_EXPR)
12891 t = expr_last (BIND_EXPR_BODY (t));
12892 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
12893 || TREE_CODE (t) == TRY_CATCH_EXPR)
12894 t = expr_last (TREE_OPERAND (t, 0));
12895 else if (TREE_CODE (t) == STATEMENT_LIST)
12896 t = expr_last (t);
12897 else
12898 break;
12900 if (TREE_CODE (t) == MODIFY_EXPR
12901 && TREE_OPERAND (t, 0) == temp)
12902 return RECURSE (TREE_OPERAND (t, 1));
12904 return false;
12907 case CALL_EXPR:
12909 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
12910 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
12912 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
12913 get_call_combined_fn (t),
12914 arg0,
12915 arg1,
12916 strict_overflow_p, depth);
12918 case COMPOUND_EXPR:
12919 case MODIFY_EXPR:
12920 return RECURSE (TREE_OPERAND (t, 1));
12922 case BIND_EXPR:
12923 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
12925 case SAVE_EXPR:
12926 return RECURSE (TREE_OPERAND (t, 0));
12928 default:
12929 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
12933 #undef RECURSE
12934 #undef tree_expr_nonnegative_warnv_p
12936 /* Return true if T is known to be non-negative. If the return
12937 value is based on the assumption that signed overflow is undefined,
12938 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12939 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12941 bool
12942 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12944 enum tree_code code;
12945 if (t == error_mark_node)
12946 return false;
12948 code = TREE_CODE (t);
12949 switch (TREE_CODE_CLASS (code))
12951 case tcc_binary:
12952 case tcc_comparison:
12953 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
12954 TREE_TYPE (t),
12955 TREE_OPERAND (t, 0),
12956 TREE_OPERAND (t, 1),
12957 strict_overflow_p, depth);
12959 case tcc_unary:
12960 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
12961 TREE_TYPE (t),
12962 TREE_OPERAND (t, 0),
12963 strict_overflow_p, depth);
12965 case tcc_constant:
12966 case tcc_declaration:
12967 case tcc_reference:
12968 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
12970 default:
12971 break;
12974 switch (code)
12976 case TRUTH_AND_EXPR:
12977 case TRUTH_OR_EXPR:
12978 case TRUTH_XOR_EXPR:
12979 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
12980 TREE_TYPE (t),
12981 TREE_OPERAND (t, 0),
12982 TREE_OPERAND (t, 1),
12983 strict_overflow_p, depth);
12984 case TRUTH_NOT_EXPR:
12985 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
12986 TREE_TYPE (t),
12987 TREE_OPERAND (t, 0),
12988 strict_overflow_p, depth);
12990 case COND_EXPR:
12991 case CONSTRUCTOR:
12992 case OBJ_TYPE_REF:
12993 case ASSERT_EXPR:
12994 case ADDR_EXPR:
12995 case WITH_SIZE_EXPR:
12996 case SSA_NAME:
12997 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
12999 default:
13000 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13004 /* Return true if `t' is known to be non-negative. Handle warnings
13005 about undefined signed overflow. */
13007 bool
13008 tree_expr_nonnegative_p (tree t)
13010 bool ret, strict_overflow_p;
13012 strict_overflow_p = false;
13013 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13014 if (strict_overflow_p)
13015 fold_overflow_warning (("assuming signed overflow does not occur when "
13016 "determining that expression is always "
13017 "non-negative"),
13018 WARN_STRICT_OVERFLOW_MISC);
13019 return ret;
13023 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13024 For floating point we further ensure that T is not denormal.
13025 Similar logic is present in nonzero_address in rtlanal.h.
13027 If the return value is based on the assumption that signed overflow
13028 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13029 change *STRICT_OVERFLOW_P. */
13031 bool
13032 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13033 bool *strict_overflow_p)
13035 switch (code)
13037 case ABS_EXPR:
13038 return tree_expr_nonzero_warnv_p (op0,
13039 strict_overflow_p);
13041 case NOP_EXPR:
13043 tree inner_type = TREE_TYPE (op0);
13044 tree outer_type = type;
13046 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13047 && tree_expr_nonzero_warnv_p (op0,
13048 strict_overflow_p));
13050 break;
13052 case NON_LVALUE_EXPR:
13053 return tree_expr_nonzero_warnv_p (op0,
13054 strict_overflow_p);
13056 default:
13057 break;
13060 return false;
13063 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13064 For floating point we further ensure that T is not denormal.
13065 Similar logic is present in nonzero_address in rtlanal.h.
13067 If the return value is based on the assumption that signed overflow
13068 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13069 change *STRICT_OVERFLOW_P. */
13071 bool
13072 tree_binary_nonzero_warnv_p (enum tree_code code,
13073 tree type,
13074 tree op0,
13075 tree op1, bool *strict_overflow_p)
13077 bool sub_strict_overflow_p;
13078 switch (code)
13080 case POINTER_PLUS_EXPR:
13081 case PLUS_EXPR:
13082 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13084 /* With the presence of negative values it is hard
13085 to say something. */
13086 sub_strict_overflow_p = false;
13087 if (!tree_expr_nonnegative_warnv_p (op0,
13088 &sub_strict_overflow_p)
13089 || !tree_expr_nonnegative_warnv_p (op1,
13090 &sub_strict_overflow_p))
13091 return false;
13092 /* One of operands must be positive and the other non-negative. */
13093 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13094 overflows, on a twos-complement machine the sum of two
13095 nonnegative numbers can never be zero. */
13096 return (tree_expr_nonzero_warnv_p (op0,
13097 strict_overflow_p)
13098 || tree_expr_nonzero_warnv_p (op1,
13099 strict_overflow_p));
13101 break;
13103 case MULT_EXPR:
13104 if (TYPE_OVERFLOW_UNDEFINED (type))
13106 if (tree_expr_nonzero_warnv_p (op0,
13107 strict_overflow_p)
13108 && tree_expr_nonzero_warnv_p (op1,
13109 strict_overflow_p))
13111 *strict_overflow_p = true;
13112 return true;
13115 break;
13117 case MIN_EXPR:
13118 sub_strict_overflow_p = false;
13119 if (tree_expr_nonzero_warnv_p (op0,
13120 &sub_strict_overflow_p)
13121 && tree_expr_nonzero_warnv_p (op1,
13122 &sub_strict_overflow_p))
13124 if (sub_strict_overflow_p)
13125 *strict_overflow_p = true;
13127 break;
13129 case MAX_EXPR:
13130 sub_strict_overflow_p = false;
13131 if (tree_expr_nonzero_warnv_p (op0,
13132 &sub_strict_overflow_p))
13134 if (sub_strict_overflow_p)
13135 *strict_overflow_p = true;
13137 /* When both operands are nonzero, then MAX must be too. */
13138 if (tree_expr_nonzero_warnv_p (op1,
13139 strict_overflow_p))
13140 return true;
13142 /* MAX where operand 0 is positive is positive. */
13143 return tree_expr_nonnegative_warnv_p (op0,
13144 strict_overflow_p);
13146 /* MAX where operand 1 is positive is positive. */
13147 else if (tree_expr_nonzero_warnv_p (op1,
13148 &sub_strict_overflow_p)
13149 && tree_expr_nonnegative_warnv_p (op1,
13150 &sub_strict_overflow_p))
13152 if (sub_strict_overflow_p)
13153 *strict_overflow_p = true;
13154 return true;
13156 break;
13158 case BIT_IOR_EXPR:
13159 return (tree_expr_nonzero_warnv_p (op1,
13160 strict_overflow_p)
13161 || tree_expr_nonzero_warnv_p (op0,
13162 strict_overflow_p));
13164 default:
13165 break;
13168 return false;
13171 /* Return true when T is an address and is known to be nonzero.
13172 For floating point we further ensure that T is not denormal.
13173 Similar logic is present in nonzero_address in rtlanal.h.
13175 If the return value is based on the assumption that signed overflow
13176 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13177 change *STRICT_OVERFLOW_P. */
13179 bool
13180 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13182 bool sub_strict_overflow_p;
13183 switch (TREE_CODE (t))
13185 case INTEGER_CST:
13186 return !integer_zerop (t);
13188 case ADDR_EXPR:
13190 tree base = TREE_OPERAND (t, 0);
13192 if (!DECL_P (base))
13193 base = get_base_address (base);
13195 if (base && TREE_CODE (base) == TARGET_EXPR)
13196 base = TARGET_EXPR_SLOT (base);
13198 if (!base)
13199 return false;
13201 /* For objects in symbol table check if we know they are non-zero.
13202 Don't do anything for variables and functions before symtab is built;
13203 it is quite possible that they will be declared weak later. */
13204 int nonzero_addr = maybe_nonzero_address (base);
13205 if (nonzero_addr >= 0)
13206 return nonzero_addr;
13208 /* Constants are never weak. */
13209 if (CONSTANT_CLASS_P (base))
13210 return true;
13212 return false;
13215 case COND_EXPR:
13216 sub_strict_overflow_p = false;
13217 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13218 &sub_strict_overflow_p)
13219 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13220 &sub_strict_overflow_p))
13222 if (sub_strict_overflow_p)
13223 *strict_overflow_p = true;
13224 return true;
13226 break;
13228 case SSA_NAME:
13229 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
13230 break;
13231 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
13233 default:
13234 break;
13236 return false;
13239 #define integer_valued_real_p(X) \
13240 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13242 #define RECURSE(X) \
13243 ((integer_valued_real_p) (X, depth + 1))
13245 /* Return true if the floating point result of (CODE OP0) has an
13246 integer value. We also allow +Inf, -Inf and NaN to be considered
13247 integer values. Return false for signaling NaN.
13249 DEPTH is the current nesting depth of the query. */
13251 bool
13252 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13254 switch (code)
13256 case FLOAT_EXPR:
13257 return true;
13259 case ABS_EXPR:
13260 return RECURSE (op0);
13262 CASE_CONVERT:
13264 tree type = TREE_TYPE (op0);
13265 if (TREE_CODE (type) == INTEGER_TYPE)
13266 return true;
13267 if (TREE_CODE (type) == REAL_TYPE)
13268 return RECURSE (op0);
13269 break;
13272 default:
13273 break;
13275 return false;
13278 /* Return true if the floating point result of (CODE OP0 OP1) has an
13279 integer value. We also allow +Inf, -Inf and NaN to be considered
13280 integer values. Return false for signaling NaN.
13282 DEPTH is the current nesting depth of the query. */
13284 bool
13285 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13287 switch (code)
13289 case PLUS_EXPR:
13290 case MINUS_EXPR:
13291 case MULT_EXPR:
13292 case MIN_EXPR:
13293 case MAX_EXPR:
13294 return RECURSE (op0) && RECURSE (op1);
13296 default:
13297 break;
13299 return false;
13302 /* Return true if the floating point result of calling FNDECL with arguments
13303 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13304 considered integer values. Return false for signaling NaN. If FNDECL
13305 takes fewer than 2 arguments, the remaining ARGn are null.
13307 DEPTH is the current nesting depth of the query. */
13309 bool
13310 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13312 switch (fn)
13314 CASE_CFN_CEIL:
13315 CASE_CFN_FLOOR:
13316 CASE_CFN_NEARBYINT:
13317 CASE_CFN_RINT:
13318 CASE_CFN_ROUND:
13319 CASE_CFN_TRUNC:
13320 return true;
13322 CASE_CFN_FMIN:
13323 CASE_CFN_FMIN_FN:
13324 CASE_CFN_FMAX:
13325 CASE_CFN_FMAX_FN:
13326 return RECURSE (arg0) && RECURSE (arg1);
13328 default:
13329 break;
13331 return false;
13334 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13335 has an integer value. We also allow +Inf, -Inf and NaN to be
13336 considered integer values. Return false for signaling NaN.
13338 DEPTH is the current nesting depth of the query. */
13340 bool
13341 integer_valued_real_single_p (tree t, int depth)
13343 switch (TREE_CODE (t))
13345 case REAL_CST:
13346 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13348 case COND_EXPR:
13349 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13351 case SSA_NAME:
13352 /* Limit the depth of recursion to avoid quadratic behavior.
13353 This is expected to catch almost all occurrences in practice.
13354 If this code misses important cases that unbounded recursion
13355 would not, passes that need this information could be revised
13356 to provide it through dataflow propagation. */
13357 return (!name_registered_for_update_p (t)
13358 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13359 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13360 depth));
13362 default:
13363 break;
13365 return false;
13368 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13369 has an integer value. We also allow +Inf, -Inf and NaN to be
13370 considered integer values. Return false for signaling NaN.
13372 DEPTH is the current nesting depth of the query. */
13374 static bool
13375 integer_valued_real_invalid_p (tree t, int depth)
13377 switch (TREE_CODE (t))
13379 case COMPOUND_EXPR:
13380 case MODIFY_EXPR:
13381 case BIND_EXPR:
13382 return RECURSE (TREE_OPERAND (t, 1));
13384 case SAVE_EXPR:
13385 return RECURSE (TREE_OPERAND (t, 0));
13387 default:
13388 break;
13390 return false;
13393 #undef RECURSE
13394 #undef integer_valued_real_p
13396 /* Return true if the floating point expression T has an integer value.
13397 We also allow +Inf, -Inf and NaN to be considered integer values.
13398 Return false for signaling NaN.
13400 DEPTH is the current nesting depth of the query. */
13402 bool
13403 integer_valued_real_p (tree t, int depth)
13405 if (t == error_mark_node)
13406 return false;
13408 tree_code code = TREE_CODE (t);
13409 switch (TREE_CODE_CLASS (code))
13411 case tcc_binary:
13412 case tcc_comparison:
13413 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13414 TREE_OPERAND (t, 1), depth);
13416 case tcc_unary:
13417 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13419 case tcc_constant:
13420 case tcc_declaration:
13421 case tcc_reference:
13422 return integer_valued_real_single_p (t, depth);
13424 default:
13425 break;
13428 switch (code)
13430 case COND_EXPR:
13431 case SSA_NAME:
13432 return integer_valued_real_single_p (t, depth);
13434 case CALL_EXPR:
13436 tree arg0 = (call_expr_nargs (t) > 0
13437 ? CALL_EXPR_ARG (t, 0)
13438 : NULL_TREE);
13439 tree arg1 = (call_expr_nargs (t) > 1
13440 ? CALL_EXPR_ARG (t, 1)
13441 : NULL_TREE);
13442 return integer_valued_real_call_p (get_call_combined_fn (t),
13443 arg0, arg1, depth);
13446 default:
13447 return integer_valued_real_invalid_p (t, depth);
13451 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13452 attempt to fold the expression to a constant without modifying TYPE,
13453 OP0 or OP1.
13455 If the expression could be simplified to a constant, then return
13456 the constant. If the expression would not be simplified to a
13457 constant, then return NULL_TREE. */
13459 tree
13460 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13462 tree tem = fold_binary (code, type, op0, op1);
13463 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13466 /* Given the components of a unary expression CODE, TYPE and OP0,
13467 attempt to fold the expression to a constant without modifying
13468 TYPE or OP0.
13470 If the expression could be simplified to a constant, then return
13471 the constant. If the expression would not be simplified to a
13472 constant, then return NULL_TREE. */
13474 tree
13475 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13477 tree tem = fold_unary (code, type, op0);
13478 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13481 /* If EXP represents referencing an element in a constant string
13482 (either via pointer arithmetic or array indexing), return the
13483 tree representing the value accessed, otherwise return NULL. */
13485 tree
13486 fold_read_from_constant_string (tree exp)
13488 if ((TREE_CODE (exp) == INDIRECT_REF
13489 || TREE_CODE (exp) == ARRAY_REF)
13490 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13492 tree exp1 = TREE_OPERAND (exp, 0);
13493 tree index;
13494 tree string;
13495 location_t loc = EXPR_LOCATION (exp);
13497 if (TREE_CODE (exp) == INDIRECT_REF)
13498 string = string_constant (exp1, &index);
13499 else
13501 tree low_bound = array_ref_low_bound (exp);
13502 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13504 /* Optimize the special-case of a zero lower bound.
13506 We convert the low_bound to sizetype to avoid some problems
13507 with constant folding. (E.g. suppose the lower bound is 1,
13508 and its mode is QI. Without the conversion,l (ARRAY
13509 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13510 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13511 if (! integer_zerop (low_bound))
13512 index = size_diffop_loc (loc, index,
13513 fold_convert_loc (loc, sizetype, low_bound));
13515 string = exp1;
13518 scalar_int_mode char_mode;
13519 if (string
13520 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13521 && TREE_CODE (string) == STRING_CST
13522 && TREE_CODE (index) == INTEGER_CST
13523 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13524 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))),
13525 &char_mode)
13526 && GET_MODE_SIZE (char_mode) == 1)
13527 return build_int_cst_type (TREE_TYPE (exp),
13528 (TREE_STRING_POINTER (string)
13529 [TREE_INT_CST_LOW (index)]));
13531 return NULL;
13534 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13535 an integer constant, real, or fixed-point constant.
13537 TYPE is the type of the result. */
13539 static tree
13540 fold_negate_const (tree arg0, tree type)
13542 tree t = NULL_TREE;
13544 switch (TREE_CODE (arg0))
13546 case INTEGER_CST:
13548 bool overflow;
13549 wide_int val = wi::neg (wi::to_wide (arg0), &overflow);
13550 t = force_fit_type (type, val, 1,
13551 (overflow && ! TYPE_UNSIGNED (type))
13552 || TREE_OVERFLOW (arg0));
13553 break;
13556 case REAL_CST:
13557 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13558 break;
13560 case FIXED_CST:
13562 FIXED_VALUE_TYPE f;
13563 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13564 &(TREE_FIXED_CST (arg0)), NULL,
13565 TYPE_SATURATING (type));
13566 t = build_fixed (type, f);
13567 /* Propagate overflow flags. */
13568 if (overflow_p | TREE_OVERFLOW (arg0))
13569 TREE_OVERFLOW (t) = 1;
13570 break;
13573 default:
13574 gcc_unreachable ();
13577 return t;
13580 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13581 an integer constant or real constant.
13583 TYPE is the type of the result. */
13585 tree
13586 fold_abs_const (tree arg0, tree type)
13588 tree t = NULL_TREE;
13590 switch (TREE_CODE (arg0))
13592 case INTEGER_CST:
13594 /* If the value is unsigned or non-negative, then the absolute value
13595 is the same as the ordinary value. */
13596 if (!wi::neg_p (wi::to_wide (arg0), TYPE_SIGN (type)))
13597 t = arg0;
13599 /* If the value is negative, then the absolute value is
13600 its negation. */
13601 else
13603 bool overflow;
13604 wide_int val = wi::neg (wi::to_wide (arg0), &overflow);
13605 t = force_fit_type (type, val, -1,
13606 overflow | TREE_OVERFLOW (arg0));
13609 break;
13611 case REAL_CST:
13612 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13613 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13614 else
13615 t = arg0;
13616 break;
13618 default:
13619 gcc_unreachable ();
13622 return t;
13625 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13626 constant. TYPE is the type of the result. */
13628 static tree
13629 fold_not_const (const_tree arg0, tree type)
13631 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13633 return force_fit_type (type, ~wi::to_wide (arg0), 0, TREE_OVERFLOW (arg0));
13636 /* Given CODE, a relational operator, the target type, TYPE and two
13637 constant operands OP0 and OP1, return the result of the
13638 relational operation. If the result is not a compile time
13639 constant, then return NULL_TREE. */
13641 static tree
13642 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13644 int result, invert;
13646 /* From here on, the only cases we handle are when the result is
13647 known to be a constant. */
13649 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13651 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13652 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13654 /* Handle the cases where either operand is a NaN. */
13655 if (real_isnan (c0) || real_isnan (c1))
13657 switch (code)
13659 case EQ_EXPR:
13660 case ORDERED_EXPR:
13661 result = 0;
13662 break;
13664 case NE_EXPR:
13665 case UNORDERED_EXPR:
13666 case UNLT_EXPR:
13667 case UNLE_EXPR:
13668 case UNGT_EXPR:
13669 case UNGE_EXPR:
13670 case UNEQ_EXPR:
13671 result = 1;
13672 break;
13674 case LT_EXPR:
13675 case LE_EXPR:
13676 case GT_EXPR:
13677 case GE_EXPR:
13678 case LTGT_EXPR:
13679 if (flag_trapping_math)
13680 return NULL_TREE;
13681 result = 0;
13682 break;
13684 default:
13685 gcc_unreachable ();
13688 return constant_boolean_node (result, type);
13691 return constant_boolean_node (real_compare (code, c0, c1), type);
13694 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13696 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13697 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13698 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13701 /* Handle equality/inequality of complex constants. */
13702 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13704 tree rcond = fold_relational_const (code, type,
13705 TREE_REALPART (op0),
13706 TREE_REALPART (op1));
13707 tree icond = fold_relational_const (code, type,
13708 TREE_IMAGPART (op0),
13709 TREE_IMAGPART (op1));
13710 if (code == EQ_EXPR)
13711 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13712 else if (code == NE_EXPR)
13713 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13714 else
13715 return NULL_TREE;
13718 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13720 if (!VECTOR_TYPE_P (type))
13722 /* Have vector comparison with scalar boolean result. */
13723 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
13724 && VECTOR_CST_NELTS (op0) == VECTOR_CST_NELTS (op1));
13725 for (unsigned i = 0; i < VECTOR_CST_NELTS (op0); i++)
13727 tree elem0 = VECTOR_CST_ELT (op0, i);
13728 tree elem1 = VECTOR_CST_ELT (op1, i);
13729 tree tmp = fold_relational_const (code, type, elem0, elem1);
13730 if (tmp == NULL_TREE)
13731 return NULL_TREE;
13732 if (integer_zerop (tmp))
13733 return constant_boolean_node (false, type);
13735 return constant_boolean_node (true, type);
13737 unsigned count = VECTOR_CST_NELTS (op0);
13738 gcc_assert (VECTOR_CST_NELTS (op1) == count
13739 && TYPE_VECTOR_SUBPARTS (type) == count);
13741 auto_vec<tree, 32> elts (count);
13742 for (unsigned i = 0; i < count; i++)
13744 tree elem_type = TREE_TYPE (type);
13745 tree elem0 = VECTOR_CST_ELT (op0, i);
13746 tree elem1 = VECTOR_CST_ELT (op1, i);
13748 tree tem = fold_relational_const (code, elem_type,
13749 elem0, elem1);
13751 if (tem == NULL_TREE)
13752 return NULL_TREE;
13754 elts.quick_push (build_int_cst (elem_type,
13755 integer_zerop (tem) ? 0 : -1));
13758 return build_vector (type, elts);
13761 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13763 To compute GT, swap the arguments and do LT.
13764 To compute GE, do LT and invert the result.
13765 To compute LE, swap the arguments, do LT and invert the result.
13766 To compute NE, do EQ and invert the result.
13768 Therefore, the code below must handle only EQ and LT. */
13770 if (code == LE_EXPR || code == GT_EXPR)
13772 std::swap (op0, op1);
13773 code = swap_tree_comparison (code);
13776 /* Note that it is safe to invert for real values here because we
13777 have already handled the one case that it matters. */
13779 invert = 0;
13780 if (code == NE_EXPR || code == GE_EXPR)
13782 invert = 1;
13783 code = invert_tree_comparison (code, false);
13786 /* Compute a result for LT or EQ if args permit;
13787 Otherwise return T. */
13788 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
13790 if (code == EQ_EXPR)
13791 result = tree_int_cst_equal (op0, op1);
13792 else
13793 result = tree_int_cst_lt (op0, op1);
13795 else
13796 return NULL_TREE;
13798 if (invert)
13799 result ^= 1;
13800 return constant_boolean_node (result, type);
13803 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13804 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13805 itself. */
13807 tree
13808 fold_build_cleanup_point_expr (tree type, tree expr)
13810 /* If the expression does not have side effects then we don't have to wrap
13811 it with a cleanup point expression. */
13812 if (!TREE_SIDE_EFFECTS (expr))
13813 return expr;
13815 /* If the expression is a return, check to see if the expression inside the
13816 return has no side effects or the right hand side of the modify expression
13817 inside the return. If either don't have side effects set we don't need to
13818 wrap the expression in a cleanup point expression. Note we don't check the
13819 left hand side of the modify because it should always be a return decl. */
13820 if (TREE_CODE (expr) == RETURN_EXPR)
13822 tree op = TREE_OPERAND (expr, 0);
13823 if (!op || !TREE_SIDE_EFFECTS (op))
13824 return expr;
13825 op = TREE_OPERAND (op, 1);
13826 if (!TREE_SIDE_EFFECTS (op))
13827 return expr;
13830 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr);
13833 /* Given a pointer value OP0 and a type TYPE, return a simplified version
13834 of an indirection through OP0, or NULL_TREE if no simplification is
13835 possible. */
13837 tree
13838 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
13840 tree sub = op0;
13841 tree subtype;
13843 STRIP_NOPS (sub);
13844 subtype = TREE_TYPE (sub);
13845 if (!POINTER_TYPE_P (subtype)
13846 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
13847 return NULL_TREE;
13849 if (TREE_CODE (sub) == ADDR_EXPR)
13851 tree op = TREE_OPERAND (sub, 0);
13852 tree optype = TREE_TYPE (op);
13853 /* *&CONST_DECL -> to the value of the const decl. */
13854 if (TREE_CODE (op) == CONST_DECL)
13855 return DECL_INITIAL (op);
13856 /* *&p => p; make sure to handle *&"str"[cst] here. */
13857 if (type == optype)
13859 tree fop = fold_read_from_constant_string (op);
13860 if (fop)
13861 return fop;
13862 else
13863 return op;
13865 /* *(foo *)&fooarray => fooarray[0] */
13866 else if (TREE_CODE (optype) == ARRAY_TYPE
13867 && type == TREE_TYPE (optype)
13868 && (!in_gimple_form
13869 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
13871 tree type_domain = TYPE_DOMAIN (optype);
13872 tree min_val = size_zero_node;
13873 if (type_domain && TYPE_MIN_VALUE (type_domain))
13874 min_val = TYPE_MIN_VALUE (type_domain);
13875 if (in_gimple_form
13876 && TREE_CODE (min_val) != INTEGER_CST)
13877 return NULL_TREE;
13878 return build4_loc (loc, ARRAY_REF, type, op, min_val,
13879 NULL_TREE, NULL_TREE);
13881 /* *(foo *)&complexfoo => __real__ complexfoo */
13882 else if (TREE_CODE (optype) == COMPLEX_TYPE
13883 && type == TREE_TYPE (optype))
13884 return fold_build1_loc (loc, REALPART_EXPR, type, op);
13885 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
13886 else if (TREE_CODE (optype) == VECTOR_TYPE
13887 && type == TREE_TYPE (optype))
13889 tree part_width = TYPE_SIZE (type);
13890 tree index = bitsize_int (0);
13891 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
13895 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
13896 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
13898 tree op00 = TREE_OPERAND (sub, 0);
13899 tree op01 = TREE_OPERAND (sub, 1);
13901 STRIP_NOPS (op00);
13902 if (TREE_CODE (op00) == ADDR_EXPR)
13904 tree op00type;
13905 op00 = TREE_OPERAND (op00, 0);
13906 op00type = TREE_TYPE (op00);
13908 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
13909 if (TREE_CODE (op00type) == VECTOR_TYPE
13910 && type == TREE_TYPE (op00type))
13912 tree part_width = TYPE_SIZE (type);
13913 unsigned HOST_WIDE_INT max_offset
13914 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
13915 * TYPE_VECTOR_SUBPARTS (op00type));
13916 if (tree_int_cst_sign_bit (op01) == 0
13917 && compare_tree_int (op01, max_offset) == -1)
13919 unsigned HOST_WIDE_INT offset = tree_to_uhwi (op01);
13920 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
13921 tree index = bitsize_int (indexi);
13922 return fold_build3_loc (loc,
13923 BIT_FIELD_REF, type, op00,
13924 part_width, index);
13927 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
13928 else if (TREE_CODE (op00type) == COMPLEX_TYPE
13929 && type == TREE_TYPE (op00type))
13931 tree size = TYPE_SIZE_UNIT (type);
13932 if (tree_int_cst_equal (size, op01))
13933 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
13935 /* ((foo *)&fooarray)[1] => fooarray[1] */
13936 else if (TREE_CODE (op00type) == ARRAY_TYPE
13937 && type == TREE_TYPE (op00type))
13939 tree type_domain = TYPE_DOMAIN (op00type);
13940 tree min = size_zero_node;
13941 if (type_domain && TYPE_MIN_VALUE (type_domain))
13942 min = TYPE_MIN_VALUE (type_domain);
13943 offset_int off = wi::to_offset (op01);
13944 offset_int el_sz = wi::to_offset (TYPE_SIZE_UNIT (type));
13945 offset_int remainder;
13946 off = wi::divmod_trunc (off, el_sz, SIGNED, &remainder);
13947 if (remainder == 0 && TREE_CODE (min) == INTEGER_CST)
13949 off = off + wi::to_offset (min);
13950 op01 = wide_int_to_tree (sizetype, off);
13951 return build4_loc (loc, ARRAY_REF, type, op00, op01,
13952 NULL_TREE, NULL_TREE);
13958 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
13959 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
13960 && type == TREE_TYPE (TREE_TYPE (subtype))
13961 && (!in_gimple_form
13962 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
13964 tree type_domain;
13965 tree min_val = size_zero_node;
13966 sub = build_fold_indirect_ref_loc (loc, sub);
13967 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
13968 if (type_domain && TYPE_MIN_VALUE (type_domain))
13969 min_val = TYPE_MIN_VALUE (type_domain);
13970 if (in_gimple_form
13971 && TREE_CODE (min_val) != INTEGER_CST)
13972 return NULL_TREE;
13973 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
13974 NULL_TREE);
13977 return NULL_TREE;
13980 /* Builds an expression for an indirection through T, simplifying some
13981 cases. */
13983 tree
13984 build_fold_indirect_ref_loc (location_t loc, tree t)
13986 tree type = TREE_TYPE (TREE_TYPE (t));
13987 tree sub = fold_indirect_ref_1 (loc, type, t);
13989 if (sub)
13990 return sub;
13992 return build1_loc (loc, INDIRECT_REF, type, t);
13995 /* Given an INDIRECT_REF T, return either T or a simplified version. */
13997 tree
13998 fold_indirect_ref_loc (location_t loc, tree t)
14000 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14002 if (sub)
14003 return sub;
14004 else
14005 return t;
14008 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14009 whose result is ignored. The type of the returned tree need not be
14010 the same as the original expression. */
14012 tree
14013 fold_ignored_result (tree t)
14015 if (!TREE_SIDE_EFFECTS (t))
14016 return integer_zero_node;
14018 for (;;)
14019 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14021 case tcc_unary:
14022 t = TREE_OPERAND (t, 0);
14023 break;
14025 case tcc_binary:
14026 case tcc_comparison:
14027 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14028 t = TREE_OPERAND (t, 0);
14029 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14030 t = TREE_OPERAND (t, 1);
14031 else
14032 return t;
14033 break;
14035 case tcc_expression:
14036 switch (TREE_CODE (t))
14038 case COMPOUND_EXPR:
14039 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14040 return t;
14041 t = TREE_OPERAND (t, 0);
14042 break;
14044 case COND_EXPR:
14045 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14046 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14047 return t;
14048 t = TREE_OPERAND (t, 0);
14049 break;
14051 default:
14052 return t;
14054 break;
14056 default:
14057 return t;
14061 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14063 tree
14064 round_up_loc (location_t loc, tree value, unsigned int divisor)
14066 tree div = NULL_TREE;
14068 if (divisor == 1)
14069 return value;
14071 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14072 have to do anything. Only do this when we are not given a const,
14073 because in that case, this check is more expensive than just
14074 doing it. */
14075 if (TREE_CODE (value) != INTEGER_CST)
14077 div = build_int_cst (TREE_TYPE (value), divisor);
14079 if (multiple_of_p (TREE_TYPE (value), value, div))
14080 return value;
14083 /* If divisor is a power of two, simplify this to bit manipulation. */
14084 if (pow2_or_zerop (divisor))
14086 if (TREE_CODE (value) == INTEGER_CST)
14088 wide_int val = wi::to_wide (value);
14089 bool overflow_p;
14091 if ((val & (divisor - 1)) == 0)
14092 return value;
14094 overflow_p = TREE_OVERFLOW (value);
14095 val += divisor - 1;
14096 val &= (int) -divisor;
14097 if (val == 0)
14098 overflow_p = true;
14100 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14102 else
14104 tree t;
14106 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14107 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14108 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14109 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14112 else
14114 if (!div)
14115 div = build_int_cst (TREE_TYPE (value), divisor);
14116 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14117 value = size_binop_loc (loc, MULT_EXPR, value, div);
14120 return value;
14123 /* Likewise, but round down. */
14125 tree
14126 round_down_loc (location_t loc, tree value, int divisor)
14128 tree div = NULL_TREE;
14130 gcc_assert (divisor > 0);
14131 if (divisor == 1)
14132 return value;
14134 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14135 have to do anything. Only do this when we are not given a const,
14136 because in that case, this check is more expensive than just
14137 doing it. */
14138 if (TREE_CODE (value) != INTEGER_CST)
14140 div = build_int_cst (TREE_TYPE (value), divisor);
14142 if (multiple_of_p (TREE_TYPE (value), value, div))
14143 return value;
14146 /* If divisor is a power of two, simplify this to bit manipulation. */
14147 if (pow2_or_zerop (divisor))
14149 tree t;
14151 t = build_int_cst (TREE_TYPE (value), -divisor);
14152 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14154 else
14156 if (!div)
14157 div = build_int_cst (TREE_TYPE (value), divisor);
14158 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14159 value = size_binop_loc (loc, MULT_EXPR, value, div);
14162 return value;
14165 /* Returns the pointer to the base of the object addressed by EXP and
14166 extracts the information about the offset of the access, storing it
14167 to PBITPOS and POFFSET. */
14169 static tree
14170 split_address_to_core_and_offset (tree exp,
14171 HOST_WIDE_INT *pbitpos, tree *poffset)
14173 tree core;
14174 machine_mode mode;
14175 int unsignedp, reversep, volatilep;
14176 HOST_WIDE_INT bitsize;
14177 location_t loc = EXPR_LOCATION (exp);
14179 if (TREE_CODE (exp) == ADDR_EXPR)
14181 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14182 poffset, &mode, &unsignedp, &reversep,
14183 &volatilep);
14184 core = build_fold_addr_expr_loc (loc, core);
14186 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
14188 core = TREE_OPERAND (exp, 0);
14189 STRIP_NOPS (core);
14190 *pbitpos = 0;
14191 *poffset = TREE_OPERAND (exp, 1);
14192 if (TREE_CODE (*poffset) == INTEGER_CST)
14194 offset_int tem = wi::sext (wi::to_offset (*poffset),
14195 TYPE_PRECISION (TREE_TYPE (*poffset)));
14196 tem <<= LOG2_BITS_PER_UNIT;
14197 if (wi::fits_shwi_p (tem))
14199 *pbitpos = tem.to_shwi ();
14200 *poffset = NULL_TREE;
14204 else
14206 core = exp;
14207 *pbitpos = 0;
14208 *poffset = NULL_TREE;
14211 return core;
14214 /* Returns true if addresses of E1 and E2 differ by a constant, false
14215 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14217 bool
14218 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14220 tree core1, core2;
14221 HOST_WIDE_INT bitpos1, bitpos2;
14222 tree toffset1, toffset2, tdiff, type;
14224 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14225 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14227 if (bitpos1 % BITS_PER_UNIT != 0
14228 || bitpos2 % BITS_PER_UNIT != 0
14229 || !operand_equal_p (core1, core2, 0))
14230 return false;
14232 if (toffset1 && toffset2)
14234 type = TREE_TYPE (toffset1);
14235 if (type != TREE_TYPE (toffset2))
14236 toffset2 = fold_convert (type, toffset2);
14238 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14239 if (!cst_and_fits_in_hwi (tdiff))
14240 return false;
14242 *diff = int_cst_value (tdiff);
14244 else if (toffset1 || toffset2)
14246 /* If only one of the offsets is non-constant, the difference cannot
14247 be a constant. */
14248 return false;
14250 else
14251 *diff = 0;
14253 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14254 return true;
14257 /* Return OFF converted to a pointer offset type suitable as offset for
14258 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14259 tree
14260 convert_to_ptrofftype_loc (location_t loc, tree off)
14262 return fold_convert_loc (loc, sizetype, off);
14265 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14266 tree
14267 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14269 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14270 ptr, convert_to_ptrofftype_loc (loc, off));
14273 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14274 tree
14275 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14277 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14278 ptr, size_int (off));
14281 /* Return a char pointer for a C string if it is a string constant
14282 or sum of string constant and integer constant. We only support
14283 string constants properly terminated with '\0' character.
14284 If STRLEN is a valid pointer, length (including terminating character)
14285 of returned string is stored to the argument. */
14287 const char *
14288 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen)
14290 tree offset_node;
14292 if (strlen)
14293 *strlen = 0;
14295 src = string_constant (src, &offset_node);
14296 if (src == 0)
14297 return NULL;
14299 unsigned HOST_WIDE_INT offset = 0;
14300 if (offset_node != NULL_TREE)
14302 if (!tree_fits_uhwi_p (offset_node))
14303 return NULL;
14304 else
14305 offset = tree_to_uhwi (offset_node);
14308 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
14309 const char *string = TREE_STRING_POINTER (src);
14311 /* Support only properly null-terminated strings. */
14312 if (string_length == 0
14313 || string[string_length - 1] != '\0'
14314 || offset >= string_length)
14315 return NULL;
14317 if (strlen)
14318 *strlen = string_length - offset;
14319 return string + offset;
14322 #if CHECKING_P
14324 namespace selftest {
14326 /* Helper functions for writing tests of folding trees. */
14328 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14330 static void
14331 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14332 tree constant)
14334 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14337 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14338 wrapping WRAPPED_EXPR. */
14340 static void
14341 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14342 tree wrapped_expr)
14344 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14345 ASSERT_NE (wrapped_expr, result);
14346 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14347 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14350 /* Verify that various arithmetic binary operations are folded
14351 correctly. */
14353 static void
14354 test_arithmetic_folding ()
14356 tree type = integer_type_node;
14357 tree x = create_tmp_var_raw (type, "x");
14358 tree zero = build_zero_cst (type);
14359 tree one = build_int_cst (type, 1);
14361 /* Addition. */
14362 /* 1 <-- (0 + 1) */
14363 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14364 one);
14365 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14366 one);
14368 /* (nonlvalue)x <-- (x + 0) */
14369 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14372 /* Subtraction. */
14373 /* 0 <-- (x - x) */
14374 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14375 zero);
14376 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14379 /* Multiplication. */
14380 /* 0 <-- (x * 0) */
14381 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14382 zero);
14384 /* (nonlvalue)x <-- (x * 1) */
14385 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14389 /* Verify that various binary operations on vectors are folded
14390 correctly. */
14392 static void
14393 test_vector_folding ()
14395 tree inner_type = integer_type_node;
14396 tree type = build_vector_type (inner_type, 4);
14397 tree zero = build_zero_cst (type);
14398 tree one = build_one_cst (type);
14400 /* Verify equality tests that return a scalar boolean result. */
14401 tree res_type = boolean_type_node;
14402 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
14403 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
14404 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
14405 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
14408 /* Run all of the selftests within this file. */
14410 void
14411 fold_const_c_tests ()
14413 test_arithmetic_folding ();
14414 test_vector_folding ();
14417 } // namespace selftest
14419 #endif /* CHECKING_P */