Added arg to RETURN_POPS_ARGS.
[official-gcc.git] / gcc / config / we32k / we32k.h
blobd0ba42bcce8d5cc0d24d2dc59a7ec61679160903
1 /* Definitions of target machine for GNU compiler. AT&T we32000 version.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by John Wehle (john@feith1.uucp)
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 1, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* Names to predefine in the preprocessor for this target machine. */
24 #define CPP_PREDEFINES "-Dwe32000 -Du3b2 -Dunix -Asystem(unix) -Acpu(we32000) -Amachine(we32000)"
26 /* Print subsidiary information on the compiler version in use. */
28 #define TARGET_VERSION fprintf (stderr, " (we32000)");
30 /* Run-time compilation parameters selecting different hardware subsets. */
32 extern int target_flags;
34 /* Macros used in the machine description to test the flags. */
36 /* Macro to define tables used to set the flags.
37 This is a list in braces of pairs in braces,
38 each pair being { "NAME", VALUE }
39 where VALUE is the bits to set or minus the bits to clear.
40 An empty string NAME is used to identify the default VALUE. */
42 #define TARGET_SWITCHES \
43 { { "", TARGET_DEFAULT}}
45 #define TARGET_DEFAULT 0
48 /* target machine storage layout */
50 /* Define this if most significant bit is lowest numbered
51 in instructions that operate on numbered bit-fields. */
52 #define BITS_BIG_ENDIAN 0
54 /* Define this if most significant byte of a word is the lowest numbered. */
55 /* That is true on the we32000. */
56 #define BYTES_BIG_ENDIAN 1
58 /* Define this if most significant word of a multiword is lowest numbered. */
59 /* For we32000 we can decide arbitrarily
60 since there are no machine instructions for them. */
61 #define WORDS_BIG_ENDIAN 1
63 /* number of bits in an addressable storage unit */
64 #define BITS_PER_UNIT 8
66 /* Width in bits of a "word", which is the contents of a machine register.
67 Note that this is not necessarily the width of data type `int';
68 if using 16-bit ints on a we32000, this would still be 32.
69 But on a machine with 16-bit registers, this would be 16. */
70 #define BITS_PER_WORD 32
72 /* Width of a word, in units (bytes). */
73 #define UNITS_PER_WORD 4
75 /* Width in bits of a pointer.
76 See also the macro `Pmode' defined below. */
77 #define POINTER_SIZE 32
79 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
80 #define PARM_BOUNDARY 32
82 /* Boundary (in *bits*) on which stack pointer should be aligned. */
83 #define STACK_BOUNDARY 32
85 /* Allocation boundary (in *bits*) for the code of a function. */
86 #define FUNCTION_BOUNDARY 32
88 /* Alignment of field after `int : 0' in a structure. */
89 #define EMPTY_FIELD_BOUNDARY 32
91 /* No data type wants to be aligned rounder than this. */
92 #define BIGGEST_ALIGNMENT 32
94 /* Every structure's size must be a multiple of this. */
95 #define STRUCTURE_SIZE_BOUNDARY 32
97 /* Define this if move instructions will actually fail to work
98 when given unaligned data. */
99 #define STRICT_ALIGNMENT 1
101 /* Define number of bits in most basic integer type.
102 (If undefined, default is BITS_PER_WORD). */
103 #define INT_TYPE_SIZE 32
105 /* Integer bit fields should have the same size and alignment
106 as actual integers */
107 #define PCC_BITFIELD_TYPE_MATTERS 1
109 /* Specify the size_t type. */
110 #define SIZE_TYPE "unsigned int"
112 /* Standard register usage. */
114 /* Number of actual hardware registers.
115 The hardware registers are assigned numbers for the compiler
116 from 0 to just below FIRST_PSEUDO_REGISTER.
117 All registers that the compiler knows about must be given numbers,
118 even those that are not normally considered general registers. */
119 #define FIRST_PSEUDO_REGISTER 16
121 /* 1 for registers that have pervasive standard uses
122 and are not available for the register allocator. */
123 #define FIXED_REGISTERS \
124 {0, 0, 0, 0, 0, 0, 0, 0, \
125 0, 1, 1, 1, 1, 1, 1, 1, }
127 /* 1 for registers not available across function calls.
128 These must include the FIXED_REGISTERS and also any
129 registers that can be used without being saved.
130 The latter must include the registers where values are returned
131 and the register where structure-value addresses are passed.
132 Aside from that, you can include as many other registers as you like. */
133 #define CALL_USED_REGISTERS \
134 {1, 1, 1, 0, 0, 0, 0, 0, \
135 0, 1, 1, 1, 1, 1, 1, 1, }
137 /* Make sure everything's fine if we *don't* have a given processor.
138 This assumes that putting a register in fixed_regs will keep the
139 compilers mitt's completely off it. We don't bother to zero it out
140 of register classes. */
141 /* #define CONDITIONAL_REGISTER_USAGE */
143 /* Return number of consecutive hard regs needed starting at reg REGNO
144 to hold something of mode MODE.
145 This is ordinarily the length in words of a value of mode MODE
146 but can be less for certain modes in special long registers. */
147 #define HARD_REGNO_NREGS(REGNO, MODE) \
148 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
150 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
151 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
153 /* Value is 1 if it is a good idea to tie two pseudo registers
154 when one has mode MODE1 and one has mode MODE2.
155 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
156 for any hard reg, then this must be 0 for correct output. */
157 #define MODES_TIEABLE_P(MODE1, MODE2) 0
159 /* Specify the registers used for certain standard purposes.
160 The values of these macros are register numbers. */
162 /* Register used for the program counter */
163 #define PC_REGNUM 15
165 /* Register to use for pushing function arguments. */
166 #define STACK_POINTER_REGNUM 12
168 /* Base register for access to local variables of the function. */
169 #define FRAME_POINTER_REGNUM 9
171 /* Value should be nonzero if functions must have frame pointers.
172 Zero means the frame pointer need not be set up (and parms
173 may be accessed via the stack pointer) in functions that seem suitable.
174 This is computed in `reload', in reload1.c. */
175 #define FRAME_POINTER_REQUIRED 1
177 /* Base register for access to arguments of the function. */
178 #define ARG_POINTER_REGNUM 10
180 /* Register in which static-chain is passed to a function. */
181 #define STATIC_CHAIN_REGNUM 8
183 /* Register in which address to store a structure value
184 is passed to a function. */
185 #define STRUCT_VALUE_REGNUM 2
187 /* Order in which to allocate registers. */
188 #define REG_ALLOC_ORDER \
189 {0, 1, 8, 7, 6, 5, 4, 3}
191 /* Define the classes of registers for register constraints in the
192 machine description. Also define ranges of constants.
194 One of the classes must always be named ALL_REGS and include all hard regs.
195 If there is more than one class, another class must be named NO_REGS
196 and contain no registers.
198 The name GENERAL_REGS must be the name of a class (or an alias for
199 another name such as ALL_REGS). This is the class of registers
200 that is allowed by "g" or "r" in a register constraint.
201 Also, registers outside this class are allocated only when
202 instructions express preferences for them.
204 The classes must be numbered in nondecreasing order; that is,
205 a larger-numbered class must never be contained completely
206 in a smaller-numbered class.
208 For any two classes, it is very desirable that there be another
209 class that represents their union. */
211 enum reg_class { NO_REGS, GENERAL_REGS,
212 ALL_REGS, LIM_REG_CLASSES };
214 #define N_REG_CLASSES (int) LIM_REG_CLASSES
216 /* Give names of register classes as strings for dump file. */
218 #define REG_CLASS_NAMES \
219 { "NO_REGS", "GENERAL_REGS", "ALL_REGS" }
221 /* Define which registers fit in which classes.
222 This is an initializer for a vector of HARD_REG_SET
223 of length N_REG_CLASSES. */
225 #define REG_CLASS_CONTENTS \
227 0, /* NO_REGS */ \
228 0x000017ff, /* GENERAL_REGS */ \
229 0x0000ffff, /* ALL_REGS */ \
232 /* The same information, inverted:
233 Return the class number of the smallest class containing
234 reg number REGNO. This could be a conditional expression
235 or could index an array. */
237 #define REGNO_REG_CLASS(REGNO) \
238 (((REGNO) < 11 || (REGNO) == 12) ? GENERAL_REGS : ALL_REGS)
240 /* The class value for index registers, and the one for base regs. */
242 #define INDEX_REG_CLASS NO_REGS
243 #define BASE_REG_CLASS GENERAL_REGS
245 /* Get reg_class from a letter such as appears in the machine description.
246 We do a trick here to modify the effective constraints on the
247 machine description; we zorch the constraint letters that aren't
248 appropriate for a specific target. This allows us to guarantee
249 that a specific kind of register will not be used for a given target
250 without fiddling with the register classes above. */
252 #define REG_CLASS_FROM_LETTER(C) \
253 ((C) == 'r' ? GENERAL_REGS : NO_REGS)
255 /* The letters I, J, K, L and M in a register constraint string
256 can be used to stand for particular ranges of immediate operands.
257 This macro defines what the ranges are.
258 C is the letter, and VALUE is a constant value.
259 Return 1 if VALUE is in the range specified by C. */
261 #define CONST_OK_FOR_LETTER_P(VALUE, C) 0
266 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
268 /* Given an rtx X being reloaded into a reg required to be
269 in class CLASS, return the class of reg to actually use.
270 In general this is just CLASS; but on some machines
271 in some cases it is preferable to use a more restrictive class. */
273 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
275 /* Return the maximum number of consecutive registers
276 needed to represent mode MODE in a register of class CLASS. */
277 #define CLASS_MAX_NREGS(CLASS, MODE) \
278 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
280 /* Stack layout; function entry, exit and calling. */
282 /* Define this if pushing a word on the stack
283 makes the stack pointer a smaller address. */
284 /* #define STACK_GROWS_DOWNWARD */
286 /* Define this if the nominal address of the stack frame
287 is at the high-address end of the local variables;
288 that is, each additional local variable allocated
289 goes at a more negative offset in the frame. */
290 /* #define FRAME_GROWS_DOWNWARD */
292 /* Offset within stack frame to start allocating local variables at.
293 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
294 first local allocated. Otherwise, it is the offset to the BEGINNING
295 of the first local allocated. */
296 #define STARTING_FRAME_OFFSET 0
298 /* If we generate an insn to push BYTES bytes,
299 this says how many the stack pointer really advances by. */
300 #define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
302 /* Offset of first parameter from the argument pointer register value. */
303 #define FIRST_PARM_OFFSET(FNDECL) 0
305 /* Value is 1 if returning from a function call automatically
306 pops the arguments described by the number-of-args field in the call.
307 FUNDECL is the declaration node of the function (as a tree),
308 FUNTYPE is the data type of the function (as a tree),
309 or for a library call it is an identifier node for the subroutine name. */
311 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
313 /* Define how to find the value returned by a function.
314 VALTYPE is the data type of the value (as a tree).
315 If the precise function being called is known, FUNC is its FUNCTION_DECL;
316 otherwise, FUNC is 0. */
318 /* On the we32000 the return value is in r0 regardless. */
320 #define FUNCTION_VALUE(VALTYPE, FUNC) \
321 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
323 /* Define how to find the value returned by a library function
324 assuming the value has mode MODE. */
326 /* On the we32000 the return value is in r0 regardless. */
328 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
330 /* 1 if N is a possible register number for a function value.
331 On the we32000, r0 is the only register thus used. */
333 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
335 /* Define this if PCC uses the nonreentrant convention for returning
336 structure and union values. */
338 /* #define PCC_STATIC_STRUCT_RETURN */
340 /* 1 if N is a possible register number for function argument passing.
341 On the we32000, no registers are used in this way. */
343 #define FUNCTION_ARG_REGNO_P(N) 0
345 /* Define a data type for recording info about an argument list
346 during the scan of that argument list. This data type should
347 hold all necessary information about the function itself
348 and about the args processed so far, enough to enable macros
349 such as FUNCTION_ARG to determine where the next arg should go.
351 On the we32k, this is a single integer, which is a number of bytes
352 of arguments scanned so far. */
354 #define CUMULATIVE_ARGS int
356 /* Initialize a variable CUM of type CUMULATIVE_ARGS
357 for a call to a function whose data type is FNTYPE.
358 For a library call, FNTYPE is 0.
360 On the we32k, the offset starts at 0. */
362 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
363 ((CUM) = 0)
365 /* Update the data in CUM to advance over an argument
366 of mode MODE and data type TYPE.
367 (TYPE is null for libcalls where that information may not be available.) */
369 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
370 ((CUM) += ((MODE) != BLKmode \
371 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
372 : (int_size_in_bytes (TYPE) + 3) & ~3))
374 /* Define where to put the arguments to a function.
375 Value is zero to push the argument on the stack,
376 or a hard register in which to store the argument.
378 MODE is the argument's machine mode.
379 TYPE is the data type of the argument (as a tree).
380 This is null for libcalls where that information may
381 not be available.
382 CUM is a variable of type CUMULATIVE_ARGS which gives info about
383 the preceding args and about the function being called.
384 NAMED is nonzero if this argument is a named parameter
385 (otherwise it is an extra parameter matching an ellipsis). */
387 /* On the we32000 all args are pushed */
389 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
391 /* For an arg passed partly in registers and partly in memory,
392 this is the number of registers used.
393 For args passed entirely in registers or entirely in memory, zero. */
395 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
397 /* This macro generates the assembly code for function entry.
398 FILE is a stdio stream to output the code to.
399 SIZE is an int: how many units of temporary storage to allocate.
400 Refer to the array `regs_ever_live' to determine which registers
401 to save; `regs_ever_live[I]' is nonzero if register number I
402 is ever used in the function. This macro is responsible for
403 knowing which registers should not be saved even if used. */
405 #define FUNCTION_PROLOGUE(FILE, SIZE) \
406 { register int nregs_to_save; \
407 register int regno; \
408 extern char call_used_regs[]; \
409 nregs_to_save = 0; \
410 for (regno = 8; regno > 2; regno--) \
411 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
412 nregs_to_save = (9 - regno); \
413 fprintf (FILE, "\tsave &%d\n", nregs_to_save); \
414 if (SIZE) \
415 fprintf (FILE, "\taddw2 &%d,%%sp\n", ((SIZE) + 3) & ~3); }
417 /* Output assembler code to FILE to increment profiler label # LABELNO
418 for profiling a function entry. */
420 #define FUNCTION_PROFILER(FILE, LABELNO) \
421 fprintf (FILE, "\tmovw &.LP%d,%%r0\n\tjsb _mcount\n", (LABELNO))
423 /* Output assembler code to FILE to initialize this source file's
424 basic block profiling info, if that has not already been done. */
426 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
427 fprintf (FILE, "\tcmpw .LPBX0,&0\n\tjne .LPI%d\n\tpushw &.LPBX0\n\tcall &1,__bb_init_func\n.LPI%d:\n", \
428 LABELNO, LABELNO);
430 /* Output assembler code to FILE to increment the entry-count for
431 the BLOCKNO'th basic block in this source file. */
433 #define BLOCK_PROFILER(FILE, BLOCKNO) \
434 fprintf (FILE, "\taddw2 &1,.LPBX2+%d\n", 4 * BLOCKNO)
436 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
437 the stack pointer does not matter. The value is tested only in
438 functions that have frame pointers.
439 No definition is equivalent to always zero. */
441 #define EXIT_IGNORE_STACK 0
443 /* This macro generates the assembly code for function exit,
444 on machines that need it. If FUNCTION_EPILOGUE is not defined
445 then individual return instructions are generated for each
446 return statement. Args are same as for FUNCTION_PROLOGUE.
448 The function epilogue should not depend on the current stack pointer!
449 It should use the frame pointer only. This is mandatory because
450 of alloca; we also take advantage of it to omit stack adjustments
451 before returning. */
453 #define FUNCTION_EPILOGUE(FILE, SIZE) \
454 { register int nregs_to_restore; \
455 register int regno; \
456 extern char call_used_regs[]; \
457 nregs_to_restore = 0; \
458 for (regno = 8; regno > 2; regno--) \
459 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
460 nregs_to_restore = (9 - regno); \
461 fprintf (FILE, "\tret &%d\n", nregs_to_restore); }
463 /* Store in the variable DEPTH the initial difference between the
464 frame pointer reg contents and the stack pointer reg contents,
465 as of the start of the function body. This depends on the layout
466 of the fixed parts of the stack frame and on how registers are saved.
468 On the we32k, FRAME_POINTER_REQUIRED is always 1, so the definition of this
469 macro doesn't matter. But it must be defined. */
471 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
473 /* Output assembler code for a block containing the constant parts
474 of a trampoline, leaving space for the variable parts. */
476 /* On the we32k, the trampoline contains two instructions:
477 mov #STATIC,%r8
478 jmp #FUNCTION */
480 #define TRAMPOLINE_TEMPLATE(FILE) \
482 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x844f)); \
483 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
484 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
485 ASM_OUTPUT_CHAR (FILE, gen_rtx (CONST_INT, VOIDmode, 0x48)); \
486 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x247f)); \
487 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
488 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
491 /* Length in units of the trampoline for entering a nested function. */
493 #define TRAMPOLINE_SIZE 13
495 /* Emit RTL insns to initialize the variable parts of a trampoline.
496 FNADDR is an RTX for the address of the function's pure code.
497 CXT is an RTX for the static chain value for the function. */
499 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
501 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 2)), CXT); \
502 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 9)), FNADDR); \
505 /* Generate calls to memcpy() and memset() rather
506 than bcopy() and bzero() */
507 #define TARGET_MEM_FUNCTIONS
509 /* Addressing modes, and classification of registers for them. */
511 /* #define HAVE_POST_INCREMENT */
512 /* #define HAVE_POST_DECREMENT */
514 /* #define HAVE_PRE_DECREMENT */
515 /* #define HAVE_PRE_INCREMENT */
517 /* Macros to check register numbers against specific register classes. */
519 /* These assume that REGNO is a hard or pseudo reg number.
520 They give nonzero only if REGNO is a hard reg of the suitable class
521 or a pseudo reg currently allocated to a suitable hard reg.
522 Since they use reg_renumber, they are safe only once reg_renumber
523 has been allocated, which happens in local-alloc.c. */
525 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
527 #define REGNO_OK_FOR_BASE_P(REGNO) \
528 ((REGNO) < 11 || (REGNO) == 12 || \
529 (unsigned)reg_renumber[REGNO] < 11 || (unsigned)reg_renumber[REGNO] == 12)
531 /* Maximum number of registers that can appear in a valid memory address. */
533 #define MAX_REGS_PER_ADDRESS 1
535 /* Recognize any constant value that is a valid address. */
537 #define CONSTANT_ADDRESS_P(X) \
538 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
539 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
540 || GET_CODE (X) == HIGH)
542 /* Nonzero if the constant value X is a legitimate general operand.
543 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
545 #define LEGITIMATE_CONSTANT_P(X) 1
547 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
548 and check its validity for a certain class.
549 We have two alternate definitions for each of them.
550 The usual definition accepts all pseudo regs; the other rejects
551 them unless they have been allocated suitable hard regs.
552 The symbol REG_OK_STRICT causes the latter definition to be used.
554 Most source files want to accept pseudo regs in the hope that
555 they will get allocated to the class that the insn wants them to be in.
556 Source files for reload pass need to be strict.
557 After reload, it makes no difference, since pseudo regs have
558 been eliminated by then. */
560 #ifndef REG_OK_STRICT
562 /* Nonzero if X is a hard reg that can be used as an index
563 or if it is a pseudo reg. */
564 #define REG_OK_FOR_INDEX_P(X) 0
566 /* Nonzero if X is a hard reg that can be used as a base reg
567 or if it is a pseudo reg. */
568 #define REG_OK_FOR_BASE_P(X) \
569 (REGNO(X) < 11 || REGNO(X) == 12 || REGNO(X) >= FIRST_PSEUDO_REGISTER)
571 #else
573 /* Nonzero if X is a hard reg that can be used as an index. */
574 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
575 /* Nonzero if X is a hard reg that can be used as a base reg. */
576 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
578 #endif
580 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
581 that is a valid memory address for an instruction.
582 The MODE argument is the machine mode for the MEM expression
583 that wants to use this address. */
585 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
586 { register rtx Addr = X; \
587 if ((MODE) == QImode || (MODE) == HImode || \
588 (MODE) == PSImode || (MODE) == SImode || (MODE) == SFmode) \
589 if (GET_CODE(Addr) == MEM) \
590 Addr = XEXP(Addr, 0); \
591 if (CONSTANT_ADDRESS_P(Addr)) \
592 goto LABEL; \
593 if (REG_P(Addr) && REG_OK_FOR_BASE_P(Addr)) \
594 goto LABEL; \
595 if (GET_CODE(Addr) == PLUS && \
596 ((REG_P(XEXP(Addr, 0)) && REG_OK_FOR_BASE_P(XEXP(Addr, 0)) && \
597 CONSTANT_ADDRESS_P(XEXP(Addr, 1))) || \
598 (REG_P(XEXP(Addr, 1)) && REG_OK_FOR_BASE_P(XEXP(Addr, 1)) && \
599 CONSTANT_ADDRESS_P(XEXP(Addr, 0))))) \
600 goto LABEL; \
603 /* Try machine-dependent ways of modifying an illegitimate address
604 to be legitimate. If we find one, return the new, valid address.
605 This macro is used in only one place: `memory_address' in explow.c.
607 OLDX is the address as it was before break_out_memory_refs was called.
608 In some cases it is useful to look at this to decide what needs to be done.
610 MODE and WIN are passed so that this macro can use
611 GO_IF_LEGITIMATE_ADDRESS.
613 It is always safe for this macro to do nothing. It exists to recognize
614 opportunities to optimize the output. */
616 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) { }
618 /* Go to LABEL if ADDR (a legitimate address expression)
619 has an effect that depends on the machine mode it is used for. */
621 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) { }
623 /* Specify the machine mode that this machine uses
624 for the index in the tablejump instruction. */
625 #define CASE_VECTOR_MODE SImode
627 /* Define this if the tablejump instruction expects the table
628 to contain offsets from the address of the table.
629 Do not define this if the table should contain absolute addresses. */
630 /* #define CASE_VECTOR_PC_RELATIVE */
632 /* Specify the tree operation to be used to convert reals to integers. */
633 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
635 /* This is the kind of divide that is easiest to do in the general case. */
636 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
638 /* Define this as 1 if `char' should by default be signed; else as 0. */
639 #define DEFAULT_SIGNED_CHAR 0
641 /* Max number of bytes we can move from memory to memory
642 in one reasonably fast instruction. */
643 #define MOVE_MAX 4
645 /* Define this if zero-extension is slow (more than one real instruction). */
646 /* #define SLOW_ZERO_EXTEND */
648 /* Nonzero if access to memory by bytes is slow and undesirable. */
649 #define SLOW_BYTE_ACCESS 0
651 /* Define this to be nonzero if shift instructions ignore all but the low-order
652 few bits. */
653 #define SHIFT_COUNT_TRUNCATED 1
655 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
656 is done just by pretending it is already truncated. */
657 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
659 /* We assume that the store-condition-codes instructions store 0 for false
660 and some other value for true. This is the value stored for true. */
662 #define STORE_FLAG_VALUE -1
664 /* When a prototype says `char' or `short', really pass an `int'. */
665 #define PROMOTE_PROTOTYPES
667 /* Specify the machine mode that pointers have.
668 After generation of rtl, the compiler makes no further distinction
669 between pointers and any other objects of this machine mode. */
670 #define Pmode SImode
672 /* A function address in a call instruction
673 is a byte address (for indexing purposes)
674 so give the MEM rtx a byte's mode. */
675 #define FUNCTION_MODE QImode
677 /* Compute the cost of computing a constant rtl expression RTX
678 whose rtx-code is CODE. The body of this macro is a portion
679 of a switch statement. If the code is computed here,
680 return it with a return statement. Otherwise, break from the switch. */
682 #define CONST_COSTS(RTX,CODE, OUTER_CODE) \
683 case CONST_INT: \
684 if (INTVAL (RTX) >= -16 && INTVAL (RTX) <= 63) return 0; \
685 if (INTVAL (RTX) >= -128 && INTVAL (RTX) <= 127) return 1; \
686 if (INTVAL (RTX) >= -32768 && INTVAL (RTX) <= 32767) return 2; \
687 case CONST: \
688 case LABEL_REF: \
689 case SYMBOL_REF: \
690 return 3; \
691 case CONST_DOUBLE: \
692 return 5;
694 /* Tell final.c how to eliminate redundant test instructions. */
696 /* Here we define machine-dependent flags and fields in cc_status
697 (see `conditions.h'). */
699 #define NOTICE_UPDATE_CC(EXP, INSN) \
701 { CC_STATUS_INIT; } \
704 /* Control the assembler format that we output. */
706 /* Use crt1.o as a startup file and crtn.o as a closing file. */
708 #define STARTFILE_SPEC "%{pg:gcrt1.o%s}%{!pg:%{p:mcrt1.o%s}%{!p:crt1.o%s}}"
710 #define ENDFILE_SPEC "crtn.o%s"
712 /* The .file command should always begin the output. */
714 #define ASM_FILE_START(FILE) output_file_directive ((FILE), main_input_filename)
716 /* Output to assembler file text saying following lines
717 may contain character constants, extra white space, comments, etc. */
719 #define ASM_APP_ON "#APP\n"
721 /* Output to assembler file text saying following lines
722 no longer contain unusual constructs. */
724 #define ASM_APP_OFF "#NO_APP\n"
726 /* Output before code. */
728 #define TEXT_SECTION_ASM_OP ".text"
730 /* Output before writable data. */
732 #define DATA_SECTION_ASM_OP ".data"
734 /* Read-only data goes in the data section because
735 AT&T's assembler doesn't guarantee the proper alignment
736 of data in the text section even if an align statement
737 is used. */
739 #define READONLY_DATA_SECTION() data_section()
741 /* How to refer to registers in assembler output.
742 This sequence is indexed by compiler's hard-register-number (see above). */
744 #define REGISTER_NAMES \
745 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
746 "r8", "fp", "ap", "psw", "sp", "pcbp", "isp", "pc" }
748 /* How to renumber registers for dbx and gdb. */
750 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
752 /* Output SDB debugging info in response to the -g option. */
754 #define SDB_DEBUGGING_INFO
756 /* This is how to output the definition of a user-level label named NAME,
757 such as the label on a static function or variable NAME. */
759 #define ASM_OUTPUT_LABEL(FILE,NAME) \
760 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
762 /* This is how to output a command to make the user-level label named NAME
763 defined for reference from other files. */
765 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
766 do { \
767 fputs (".globl ", FILE); \
768 assemble_name (FILE, NAME); \
769 fputs ("\n", FILE); \
770 } while (0)
772 /* This is how to output a reference to a user-level label named NAME.
773 `assemble_name' uses this. */
775 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
776 fprintf (FILE, "%s", NAME)
778 /* This is how to output an internal numbered label where
779 PREFIX is the class of label and NUM is the number within the class. */
781 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
782 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
784 /* This is how to store into the string LABEL
785 the symbol_ref name of an internal numbered label where
786 PREFIX is the class of label and NUM is the number within the class.
787 This is suitable for output with `assemble_name'. */
789 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
790 sprintf (LABEL, ".%s%d", PREFIX, NUM)
792 /* This is how to output an internal numbered label which
793 labels a jump table. */
795 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
796 do { \
797 ASM_OUTPUT_ALIGN (FILE, 2); \
798 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
799 } while (0)
801 /* Assembler pseudo to introduce byte constants. */
803 #define ASM_BYTE_OP "\t.byte"
805 /* This is how to output an assembler line defining a `double' constant. */
807 /* This is how to output an assembler line defining a `float' constant. */
809 /* AT&T's assembler can't handle floating constants written as floating.
810 However, when cross-compiling, always use that in case format differs. */
812 #ifdef CROSS_COMPILER
814 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
815 fprintf (FILE, "\t.double 0r%.20g\n", (VALUE))
817 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
818 fprintf (FILE, "\t.float 0r%.10g\n", (VALUE))
820 #else
822 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
823 do { union { double d; long l[2];} tem; \
824 tem.d = (VALUE); \
825 fprintf (FILE, "\t.word 0x%x, 0x%x\n", tem.l[0], tem.l[1]);\
826 } while (0)
828 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
829 do { union { float f; long l;} tem; \
830 tem.f = (VALUE); \
831 fprintf (FILE, "\t.word 0x%x\n", tem.l); \
832 } while (0)
834 #endif /* not CROSS_COMPILER */
836 /* This is how to output an assembler line defining an `int' constant. */
838 #define ASM_OUTPUT_INT(FILE,VALUE) \
839 ( fprintf (FILE, "\t.word "), \
840 output_addr_const (FILE, (VALUE)), \
841 fprintf (FILE, "\n"))
843 /* Likewise for `char' and `short' constants. */
845 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
846 ( fprintf (FILE, "\t.half "), \
847 output_addr_const (FILE, (VALUE)), \
848 fprintf (FILE, "\n"))
850 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
851 ( fprintf (FILE, "\t.byte "), \
852 output_addr_const (FILE, (VALUE)), \
853 fprintf (FILE, "\n"))
855 /* This is how to output an assembler line for a numeric constant byte. */
857 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
858 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
860 #define ASM_OUTPUT_ASCII(FILE,PTR,LEN) \
861 do { \
862 unsigned char *s; \
863 int i; \
864 for (i = 0, s = (unsigned char *)(PTR); i < (LEN); s++, i++) \
866 if ((i % 8) == 0) \
867 fprintf ((FILE),"%s\t.byte\t",(i?"\n":"")); \
868 fprintf ((FILE), "%s0x%x", (i%8?",":""), (unsigned)*s); \
870 fputs ("\n", (FILE)); \
871 } while (0)
873 /* This is how to output an insn to push a register on the stack.
874 It need not be very fast code. */
876 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
877 fprintf (FILE, "\tpushw %s\n", reg_names[REGNO])
879 /* This is how to output an insn to pop a register from the stack.
880 It need not be very fast code. */
882 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
883 fprintf (FILE, "\tPOPW %s\n", reg_names[REGNO])
885 /* This is how to output an element of a case-vector that is absolute. */
887 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
888 fprintf (FILE, "\t.word .L%d\n", VALUE)
890 /* This is how to output an element of a case-vector that is relative. */
892 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
893 fprintf (FILE, "\t.word .L%d-.L%d\n", VALUE, REL)
895 /* This is how to output an assembler line
896 that says to advance the location counter
897 to a multiple of 2**LOG bytes. */
899 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
900 if ((LOG) != 0) \
901 fprintf (FILE, "\t.align %d\n", 1 << (LOG))
903 /* This is how to output an assembler line
904 that says to advance the location counter by SIZE bytes. */
906 /* The `space' pseudo in the text segment outputs nop insns rather than 0s,
907 so we must output 0s explicitly in the text segment. */
909 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
910 if (in_text_section ()) \
912 int i; \
913 for (i = 0; i < (SIZE) - 20; i += 20) \
914 fprintf (FILE, "\t.byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n"); \
915 if (i < (SIZE)) \
917 fprintf (FILE, "\t.byte 0"); \
918 i++; \
919 for (; i < (SIZE); i++) \
920 fprintf (FILE, ",0"); \
921 fprintf (FILE, "\n"); \
924 else \
925 fprintf ((FILE), "\t.set .,.+%u\n", (SIZE))
927 /* This says how to output an assembler line
928 to define a global common symbol. */
930 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
931 do { \
932 data_section(); \
933 fputs ("\t.comm ", (FILE)); \
934 assemble_name ((FILE), (NAME)); \
935 fprintf ((FILE), ",%u\n", (SIZE)); \
936 } while (0)
938 /* This says how to output an assembler line
939 to define a local common symbol. */
941 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
942 do { \
943 data_section(); \
944 ASM_OUTPUT_ALIGN ((FILE), 2); \
945 ASM_OUTPUT_LABEL ((FILE), (NAME)); \
946 fprintf ((FILE), "\t.zero %u\n", (SIZE)); \
947 } while (0)
949 /* Store in OUTPUT a string (made with alloca) containing
950 an assembler-name for a local static variable named NAME.
951 LABELNO is an integer which is different for each call. */
953 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
954 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
955 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
957 /* Output #ident as a .ident. */
959 #define ASM_OUTPUT_IDENT(FILE, NAME) fprintf (FILE, "\t.ident \"%s\"\n", NAME)
961 /* Define the parentheses used to group arithmetic operations
962 in assembler code. */
964 #define ASM_OPEN_PAREN "("
965 #define ASM_CLOSE_PAREN ")"
967 /* Define results of standard character escape sequences. */
968 #define TARGET_BELL 007
969 #define TARGET_BS 010
970 #define TARGET_TAB 011
971 #define TARGET_NEWLINE 012
972 #define TARGET_VT 013
973 #define TARGET_FF 014
974 #define TARGET_CR 015
976 /* Print operand X (an rtx) in assembler syntax to file FILE.
977 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
978 For `%' followed by punctuation, CODE is the punctuation and X is null. */
980 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
982 #define PRINT_OPERAND(FILE, X, CODE) \
983 { int i; \
984 if (GET_CODE (X) == REG) \
985 fprintf (FILE, "%%%s", reg_names[REGNO (X)]); \
986 else if (GET_CODE (X) == MEM) \
987 output_address (XEXP (X, 0)); \
988 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
990 union { double d; long l[2]; } dtem; \
991 union { float f; long l; } ftem; \
993 dtem.l[0] = CONST_DOUBLE_LOW (X); \
994 dtem.l[1] = CONST_DOUBLE_HIGH (X); \
995 ftem.f = dtem.d; \
996 fprintf(FILE, "&0x%lx", ftem.l); \
998 else { putc ('&', FILE); output_addr_const (FILE, X); }}
1000 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1001 { register rtx Addr = ADDR; \
1002 rtx offset; \
1003 rtx reg; \
1004 if (GET_CODE (Addr) == MEM) { \
1005 putc ('*', FILE); \
1006 Addr = XEXP (Addr, 0); \
1007 if (GET_CODE (Addr) == REG) \
1008 putc ('0', FILE); \
1010 switch (GET_CODE (Addr)) \
1012 case REG: \
1013 fprintf (FILE, "(%%%s)", reg_names[REGNO (Addr)]); \
1014 break; \
1016 case PLUS: \
1017 offset = NULL; \
1018 if (CONSTANT_ADDRESS_P (XEXP (Addr, 0))) \
1020 offset = XEXP (Addr, 0); \
1021 Addr = XEXP (Addr, 1); \
1023 else if (CONSTANT_ADDRESS_P (XEXP (Addr, 1))) \
1025 offset = XEXP (Addr, 1); \
1026 Addr = XEXP (Addr, 0); \
1028 else \
1029 abort(); \
1030 if (REG_P (Addr)) \
1031 reg = Addr; \
1032 else \
1033 abort(); \
1034 output_addr_const(FILE, offset); \
1035 fprintf(FILE, "(%%%s)", reg_names[REGNO(reg)]); \
1036 break; \
1038 default: \
1039 if ( !CONSTANT_ADDRESS_P(Addr)) \
1040 abort(); \
1041 output_addr_const (FILE, Addr); \
1045 Local variables:
1046 version-control: t
1047 End: