Added arg to RETURN_POPS_ARGS.
[official-gcc.git] / gcc / config / pdp11 / pdp11.h
blob8cc075b496df5645fa81ca5e5d655e432149f26c
1 /* Definitions of target machine for GNU compiler, for the pdp-11
2 Copyright (C) 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at).
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 1, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* declarations */
23 char *output_jump();
24 char *output_move_double();
25 char *output_move_quad();
26 char *output_block_move();
28 /* check whther load_fpu_reg or not */
29 #define LOAD_FPU_REG_P(x) ((x)>=8 && (x)<=11)
30 #define NO_LOAD_FPU_REG_P(x) ((x)==12 || (x)==13)
31 #define FPU_REG_P(x) (LOAD_FPU_REG_P(x) || NO_LOAD_FPU_REG_P(x))
32 #define CPU_REG_P(x) ((x)<8)
34 /* Names to predefine in the preprocessor for this target machine. */
36 #define CPP_PREDEFINES "-Dpdp11"
38 /* Print subsidiary information on the compiler version in use. */
39 #define TARGET_VERSION fprintf (stderr, " (pdp11)");
42 /* Generate DBX debugging information. */
44 /* #define DBX_DEBUGGING_INFO */
46 /* Run-time compilation parameters selecting different hardware subsets.
49 extern int target_flags;
51 /* Macro to define tables used to set the flags.
52 This is a list in braces of pairs in braces,
53 each pair being { "NAME", VALUE }
54 where VALUE is the bits to set or minus the bits to clear.
55 An empty string NAME is used to identify the default VALUE. */
57 #define TARGET_SWITCHES \
58 { { "fpu", 1}, \
59 { "soft-float", -1}, \
60 /* return float result in ac0 */\
61 { "ac0", 2}, \
62 { "no-ac0", -2}, \
63 /* is 11/40 */ \
64 { "40", 4}, \
65 { "no-40", -4}, \
66 /* is 11/45 */ \
67 { "45", 8}, \
68 { "no-45", -8}, \
69 /* is 11/10 */ \
70 { "10", -12}, \
71 /* use movstrhi for bcopy */ \
72 { "bcopy", 16}, \
73 { "bcopy-builtin", -16}, \
74 /* use 32 bit for int */ \
75 { "int32", 32}, \
76 { "no-int16", 32}, \
77 { "int16", -32}, \
78 { "no-int32", -32}, \
79 /* use 32 bit for float */ \
80 { "float32", 64}, \
81 { "no-float64", 64}, \
82 { "float64", -64}, \
83 { "no-float32", -64}, \
84 /* allow abshi pattern? - can trigger "optimizations" which make code SLOW! */\
85 { "abshi", 128}, \
86 { "no-abshi", -128}, \
87 /* is branching expensive - on a PDP, it's actually really cheap */ \
88 /* this is just to play aroound and check what code gcc generates */ \
89 { "branch-expensive", 256}, \
90 { "branch-cheap", -256}, \
91 /* optimize for space instead of time - just in a couple of places */ \
92 { "space", 512 }, \
93 { "time", -512 }, \
94 /* split instruction and data memory? */ \
95 { "split", 1024 }, \
96 { "no-split", -1024 }, \
97 /* default */ \
98 { "", TARGET_DEFAULT} \
101 #define TARGET_DEFAULT (1 | 8 | 128)
103 #define TARGET_FPU (target_flags & 1)
104 #define TARGET_SOFT_FLOAT (!TARGET_FPU)
106 #define TARGET_AC0 ((target_flags & 2) && TARGET_FPU)
107 #define TARGET_NO_AC0 (! TARGET_AC0)
109 #define TARGET_45 (target_flags & 8)
110 #define TARGET_40_PLUS ((target_flags & 4) || (target_flags))
111 #define TARGET_10 (! TARGET_40_PLUS)
113 #define TARGET_BCOPY_BUILTIN (! (target_flags & 16))
115 #define TARGET_INT16 (! TARGET_INT32)
116 #define TARGET_INT32 (target_flags & 32)
118 #define TARGET_FLOAT32 (target_flags & 64)
119 #define TARGET_FLOAT64 (! TARGET_FLOAT32)
121 #define TARGET_ABSHI_BUILTIN (target_flags & 128)
123 #define TARGET_BRANCH_EXPENSIVE (target_flags & 256)
124 #define TARGET_BRANCH_CHEAP (!TARGET_BRANCH_EXPENSIVE)
126 #define TARGET_SPACE (target_flags & 512)
127 #define TARGET_TIME (! TARGET_SPACE)
129 #define TARGET_SPLIT (target_flags & 1024)
130 #define TARGET_NOSPLIT (! TARGET_SPLIT)
133 /* TYPE SIZES */
134 #define CHAR_TYPE_SIZE 8
135 #define SHORT_TYPE_SIZE 16
136 #define INT_TYPE_SIZE (TARGET_INT16 ? 16 : 32)
137 #define LONG_TYPE_SIZE 32
138 #define LONG_LONG_TYPE_SIZE 64
140 /* if we set FLOAT_TYPE_SIZE to 32, we could have the benefit
141 of saving core for huge arrays - the definitions are
142 already in md - but floats can never reside in
143 an FPU register - we keep the FPU in double float mode
144 all the time !! */
145 #define FLOAT_TYPE_SIZE (TARGET_FLOAT32 ? 32 : 64)
146 #define DOUBLE_TYPE_SIZE 64
147 #define LONG_DOUBLE_TYPE_SIZE 64
149 /* machine types from ansi */
150 #define SIZE_TYPE "unsigned int" /* definition of size_t */
152 /* is used in cexp.y - we don't have target_flags there,
153 so just give default definition
155 hope it does not come back to haunt us! */
156 #define WCHAR_TYPE "int" /* or long int???? */
157 #define WCHAR_TYPE_SIZE 16
159 #define PTRDIFF_TYPE "int"
161 /* target machine storage layout */
163 /* Define this if most significant bit is lowest numbered
164 in instructions that operate on numbered bit-fields. */
165 #define BITS_BIG_ENDIAN 0
167 /* Define this if most significant byte of a word is the lowest numbered. */
168 #define BYTES_BIG_ENDIAN 0
170 /* Define this if most significant word of a multiword number is numbered. */
171 #define WORDS_BIG_ENDIAN 1
173 /* number of bits in an addressible storage unit */
174 #define BITS_PER_UNIT 8
176 /* Width in bits of a "word", which is the contents of a machine register.
177 Note that this is not necessarily the width of data type `int';
178 if using 16-bit ints on a 68000, this would still be 32.
179 But on a machine with 16-bit registers, this would be 16. */
180 /* This is a machine with 16-bit registers */
181 #define BITS_PER_WORD 16
183 /* Width of a word, in units (bytes).
185 UNITS OR BYTES - seems like units */
186 #define UNITS_PER_WORD 2
188 /* Maximum sized of reasonable data type
189 DImode or Dfmode ...*/
190 #define MAX_FIXED_MODE_SIZE 64
192 /* Width in bits of a pointer.
193 See also the macro `Pmode' defined below. */
194 #define POINTER_SIZE 16
196 /* Allocation boundary (in *bits*) for storing pointers in memory. */
197 #define POINTER_BOUNDARY 16
199 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
200 #define PARM_BOUNDARY 16
202 /* Allocation boundary (in *bits*) for the code of a function. */
203 #define FUNCTION_BOUNDARY 16
205 /* Alignment of field after `int : 0' in a structure. */
206 #define EMPTY_FIELD_BOUNDARY 16
208 /* No data type wants to be aligned rounder than this. */
209 #define BIGGEST_ALIGNMENT 16
211 /* Define this if move instructions will actually fail to work
212 when given unaligned data. */
213 #define STRICT_ALIGNMENT 1
215 /* Standard register usage. */
217 /* Number of actual hardware registers.
218 The hardware registers are assigned numbers for the compiler
219 from 0 to just below FIRST_PSEUDO_REGISTER.
220 All registers that the compiler knows about must be given numbers,
221 even those that are not normally considered general registers.
223 we have 8 integer registers, plus 6 float
224 (don't use scratch float !) */
226 #define FIRST_PSEUDO_REGISTER 14
228 /* 1 for registers that have pervasive standard uses
229 and are not available for the register allocator.
231 On the pdp, these are:
232 Reg 7 = pc;
233 reg 6 = sp;
234 reg 5 = fp; not necessarily!
237 /* don't let them touch fp regs for the time being !*/
239 #define FIXED_REGISTERS \
240 {0, 0, 0, 0, 0, 0, 1, 1, \
241 0, 0, 0, 0, 0, 0 }
245 /* 1 for registers not available across function calls.
246 These must include the FIXED_REGISTERS and also any
247 registers that can be used without being saved.
248 The latter must include the registers where values are returned
249 and the register where structure-value addresses are passed.
250 Aside from that, you can include as many other registers as you like. */
252 /* don't know about fp */
253 #define CALL_USED_REGISTERS \
254 {1, 1, 0, 0, 0, 0, 1, 1, \
255 0, 0, 0, 0, 0, 0 }
258 /* Make sure everything's fine if we *don't* have an FPU.
259 This assumes that putting a register in fixed_regs will keep the
260 compiler's mitts completely off it. We don't bother to zero it out
261 of register classes.
263 #define CONDITIONAL_REGISTER_USAGE \
265 int i; \
266 HARD_REG_SET x; \
267 if (!TARGET_FPU) \
269 COPY_HARD_REG_SET (x, reg_class_contents[(int)FPU_REGS]); \
270 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
271 if (TEST_HARD_REG_BIT (x, i)) \
272 fixed_regs[i] = call_used_regs[i] = 1; \
275 if (TARGET_AC0) \
276 call_used_regs[8] = 1; \
279 /* Return number of consecutive hard regs needed starting at reg REGNO
280 to hold something of mode MODE.
281 This is ordinarily the length in words of a value of mode MODE
282 but can be less for certain modes in special long registers.
285 #define HARD_REGNO_NREGS(REGNO, MODE) \
286 ((REGNO < 8)? \
287 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
291 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
292 On the pdp, the cpu registers can hold any mode - check alignment
294 FPU can only hold DF - simplifies life!
296 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
297 ((REGNO < 8)? \
298 ((GET_MODE_BITSIZE(MODE) <= 16) \
299 || (GET_MODE_BITSIZE(MODE) == 32 && !(REGNO & 1))) \
300 :(MODE) == DFmode)
303 /* Value is 1 if it is a good idea to tie two pseudo registers
304 when one has mode MODE1 and one has mode MODE2.
305 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
306 for any hard reg, then this must be 0 for correct output. */
307 #define MODES_TIEABLE_P(MODE1, MODE2) 0
309 /* Specify the registers used for certain standard purposes.
310 The values of these macros are register numbers. */
312 /* the pdp11 pc overloaded on a register that the compiler knows about. */
313 #define PC_REGNUM 7
315 /* Register to use for pushing function arguments. */
316 #define STACK_POINTER_REGNUM 6
318 /* Base register for access to local variables of the function. */
319 #define FRAME_POINTER_REGNUM 5
321 /* Value should be nonzero if functions must have frame pointers.
322 Zero means the frame pointer need not be set up (and parms
323 may be accessed via the stack pointer) in functions that seem suitable.
324 This is computed in `reload', in reload1.c.
327 #define FRAME_POINTER_REQUIRED 0
329 /* Base register for access to arguments of the function. */
330 #define ARG_POINTER_REGNUM 5
332 /* Register in which static-chain is passed to a function. */
333 /* ??? - i don't want to give up a reg for this! */
334 #define STATIC_CHAIN_REGNUM 4
336 /* Register in which address to store a structure value
337 is passed to a function.
338 let's make it an invisible first argument!!! */
340 #define STRUCT_VALUE 0
343 /* Define the classes of registers for register constraints in the
344 machine description. Also define ranges of constants.
346 One of the classes must always be named ALL_REGS and include all hard regs.
347 If there is more than one class, another class must be named NO_REGS
348 and contain no registers.
350 The name GENERAL_REGS must be the name of a class (or an alias for
351 another name such as ALL_REGS). This is the class of registers
352 that is allowed by "g" or "r" in a register constraint.
353 Also, registers outside this class are allocated only when
354 instructions express preferences for them.
356 The classes must be numbered in nondecreasing order; that is,
357 a larger-numbered class must never be contained completely
358 in a smaller-numbered class.
360 For any two classes, it is very desirable that there be another
361 class that represents their union. */
363 /* The pdp has a couple of classes:
365 MUL_REGS are used for odd numbered regs, to use in 16 bit multiplication
366 (even numbered do 32 bit multiply)
367 LMUL_REGS long multiply registers (even numbered regs )
368 (don't need them, all 32 bit regs are even numbered!)
369 GENERAL_REGS is all cpu
370 LOAD_FPU_REGS is the first four cpu regs, they are easier to load
371 NO_LOAD_FPU_REGS is ac4 and ac5, currently - difficult to load them
372 FPU_REGS is all fpu regs
375 enum reg_class { NO_REGS, MUL_REGS, GENERAL_REGS, LOAD_FPU_REGS, NO_LOAD_FPU_REGS, FPU_REGS, ALL_REGS, LIM_REG_CLASSES };
377 #define N_REG_CLASSES (int) LIM_REG_CLASSES
379 /* have to allow this till cmpsi/tstsi are fixed in a better way !! */
380 #define SMALL_REGISTER_CLASSES
382 /* Since GENERAL_REGS is the same class as ALL_REGS,
383 don't give it a different class number; just make it an alias. */
385 /* #define GENERAL_REGS ALL_REGS */
387 /* Give names of register classes as strings for dump file. */
389 #define REG_CLASS_NAMES {"NO_REGS", "MUL_REGS", "GENERAL_REGS", "LOAD_FPU_REGS", "NO_LOAD_FPU_REGS", "FPU_REGS", "ALL_REGS" }
391 /* Define which registers fit in which classes.
392 This is an initializer for a vector of HARD_REG_SET
393 of length N_REG_CLASSES. */
395 #define REG_CLASS_CONTENTS {0, 0x00aa, 0x00ff, 0x0f00, 0x3000, 0x3f00, 0x3fff}
397 /* The same information, inverted:
398 Return the class number of the smallest class containing
399 reg number REGNO. This could be a conditional expression
400 or could index an array. */
402 #define REGNO_REG_CLASS(REGNO) \
403 ((REGNO)>=8?((REGNO)<=11?LOAD_FPU_REGS:NO_LOAD_FPU_REGS):((REGNO&1)?MUL_REGS:GENERAL_REGS))
406 /* The class value for index registers, and the one for base regs. */
407 #define INDEX_REG_CLASS GENERAL_REGS
408 #define BASE_REG_CLASS GENERAL_REGS
410 /* Get reg_class from a letter such as appears in the machine description. */
412 #define REG_CLASS_FROM_LETTER(C) \
413 ((C) == 'f' ? FPU_REGS : \
414 ((C) == 'd' ? MUL_REGS : \
415 ((C) == 'a' ? LOAD_FPU_REGS : NO_REGS)))
418 /* The letters I, J, K, L and M in a register constraint string
419 can be used to stand for particular ranges of immediate operands.
420 This macro defines what the ranges are.
421 C is the letter, and VALUE is a constant value.
422 Return 1 if VALUE is in the range specified by C.
424 I bits 31-16 0000
425 J bits 15-00 0000
426 K completely random 32 bit
427 L,M,N -1,1,0 respectively
428 O where doing shifts in sequence is faster than
429 one big shift
432 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
433 ((C) == 'I' ? ((VALUE) & 0xffff0000) == 0 \
434 : (C) == 'J' ? ((VALUE) & 0x0000ffff) == 0 \
435 : (C) == 'K' ? (((VALUE) & 0xffff0000) != 0 \
436 && ((VALUE) & 0x0000ffff) != 0) \
437 : (C) == 'L' ? ((VALUE) == 1) \
438 : (C) == 'M' ? ((VALUE) == -1) \
439 : (C) == 'N' ? ((VALUE) == 0) \
440 : (C) == 'O' ? (abs(VALUE) >1 && abs(VALUE) <= 4) \
441 : 0)
443 /* Similar, but for floating constants, and defining letters G and H.
444 Here VALUE is the CONST_DOUBLE rtx itself. */
446 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
447 ((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0)
450 /* Letters in the range `Q' through `U' may be defined in a
451 machine-dependent fashion to stand for arbitrary operand types.
452 The machine description macro `EXTRA_CONSTRAINT' is passed the
453 operand as its first argument and the constraint letter as its
454 second operand.
456 `Q' is for memory refereces using take more than 1 instruction.
457 `R' is for memory refereces which take 1 word for the instruction. */
459 #define EXTRA_CONSTRAINT(OP,CODE) \
460 ((GET_CODE (OP) != MEM) ? 0 \
461 : !legitimate_address_p (GET_MODE (OP), XEXP (OP, 0)) ? 0 \
462 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
463 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
464 : 0)
466 /* Given an rtx X being reloaded into a reg required to be
467 in class CLASS, return the class of reg to actually use.
468 In general this is just CLASS; but on some machines
469 in some cases it is preferable to use a more restrictive class.
471 loading is easier into LOAD_FPU_REGS than FPU_REGS! */
473 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
474 (((CLASS) != FPU_REGS)?(CLASS):LOAD_FPU_REGS)
476 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,x) \
477 (((CLASS) == NO_LOAD_FPU_REGS && !(REG_P(x) && LOAD_FPU_REG_P(REGNO(x))))?LOAD_FPU_REGS:NO_REGS)
479 /* Return the maximum number of consecutive registers
480 needed to represent mode MODE in a register of class CLASS. */
481 #define CLASS_MAX_NREGS(CLASS, MODE) \
482 ((CLASS == GENERAL_REGS || CLASS == MUL_REGS)? \
483 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD): \
488 /* Stack layout; function entry, exit and calling. */
490 /* Define this if pushing a word on the stack
491 makes the stack pointer a smaller address. */
492 #define STACK_GROWS_DOWNWARD
494 /* Define this if the nominal address of the stack frame
495 is at the high-address end of the local variables;
496 that is, each additional local variable allocated
497 goes at a more negative offset in the frame.
499 #define FRAME_GROWS_DOWNWARD
501 /* Offset within stack frame to start allocating local variables at.
502 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
503 first local allocated. Otherwise, it is the offset to the BEGINNING
504 of the first local allocated. */
505 #define STARTING_FRAME_OFFSET 0
507 /* If we generate an insn to push BYTES bytes,
508 this says how many the stack pointer really advances by.
509 On the pdp11, the stack is on an even boundary */
510 #define PUSH_ROUNDING(BYTES) ((BYTES + 1) & ~1)
512 /* current_first_parm_offset stores the # of registers pushed on the
513 stack */
514 extern int current_first_parm_offset;
516 /* Offset of first parameter from the argument pointer register value.
517 For the pdp11, this is non-zero to account for the return address.
518 1 - return address
519 2 - frame pointer (always saved, even when not used!!!!)
520 -- chnage some day !!!:q!
523 #define FIRST_PARM_OFFSET(FNDECL) 4
525 /* Value is 1 if returning from a function call automatically
526 pops the arguments described by the number-of-args field in the call.
527 FUNDECL is the declaration node of the function (as a tree),
528 FUNTYPE is the data type of the function (as a tree),
529 or for a library call it is an identifier node for the subroutine name. */
531 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
533 /* Define how to find the value returned by a function.
534 VALTYPE is the data type of the value (as a tree).
535 If the precise function being called is known, FUNC is its FUNCTION_DECL;
536 otherwise, FUNC is 0. */
537 #define BASE_RETURN_VALUE_REG(MODE) \
538 ((MODE) == DFmode ? 8 : 0)
540 /* On the pdp11 the value is found in R0 (or ac0???
541 not without FPU!!!! ) */
543 #define FUNCTION_VALUE(VALTYPE, FUNC) \
544 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
546 /* and the called function leaves it in the first register.
547 Difference only on machines with register windows. */
549 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
550 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
552 /* Define how to find the value returned by a library function
553 assuming the value has mode MODE. */
555 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG(MODE))
557 /* 1 if N is a possible register number for a function value
558 as seen by the caller.
559 On the pdp, the first "output" reg is the only register thus used.
561 maybe ac0 ? - as option someday! */
563 #define FUNCTION_VALUE_REGNO_P(N) (((N) == 0) || (TARGET_AC0 && (N) == 8))
565 /* should probably return DImode and DFmode in memory,lest
566 we fill up all regs!
568 have to, else we crash - exceptio: maybe return result in
569 ac0 if DFmode and FPU present - compatibility problem with
570 libraries for non-floating point ...
573 #define RETURN_IN_MEMORY(TYPE) \
574 (TYPE_MODE(TYPE) == DImode || (TYPE_MODE(TYPE) == DFmode && ! TARGET_AC0))
577 /* 1 if N is a possible register number for function argument passing.
578 - not used on pdp */
580 #define FUNCTION_ARG_REGNO_P(N) 0
582 /* Define a data type for recording info about an argument list
583 during the scan of that argument list. This data type should
584 hold all necessary information about the function itself
585 and about the args processed so far, enough to enable macros
586 such as FUNCTION_ARG to determine where the next arg should go.
590 #define CUMULATIVE_ARGS int
592 /* Initialize a variable CUM of type CUMULATIVE_ARGS
593 for a call to a function whose data type is FNTYPE.
594 For a library call, FNTYPE is 0.
596 ...., the offset normally starts at 0, but starts at 1 word
597 when the function gets a structure-value-address as an
598 invisible first argument. */
600 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
601 ((CUM) = 0)
603 /* Update the data in CUM to advance over an argument
604 of mode MODE and data type TYPE.
605 (TYPE is null for libcalls where that information may not be available.)
610 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
611 ((CUM) += ((MODE) != BLKmode \
612 ? (GET_MODE_SIZE (MODE)) \
613 : (int_size_in_bytes (TYPE))))
615 /* Determine where to put an argument to a function.
616 Value is zero to push the argument on the stack,
617 or a hard register in which to store the argument.
619 MODE is the argument's machine mode.
620 TYPE is the data type of the argument (as a tree).
621 This is null for libcalls where that information may
622 not be available.
623 CUM is a variable of type CUMULATIVE_ARGS which gives info about
624 the preceding args and about the function being called.
625 NAMED is nonzero if this argument is a named parameter
626 (otherwise it is an extra parameter matching an ellipsis). */
628 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
630 /* Define where a function finds its arguments.
631 This would be different from FUNCTION_ARG if we had register windows. */
633 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
634 FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
637 /* For an arg passed partly in registers and partly in memory,
638 this is the number of registers used.
639 For args passed entirely in registers or entirely in memory, zero. */
641 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
643 /* This macro generates the assembly code for function entry. */
644 #define FUNCTION_PROLOGUE(FILE, SIZE) \
645 output_function_prologue(FILE, SIZE);
647 /* Output assembler code to FILE to increment profiler label # LABELNO
648 for profiling a function entry. */
650 #define FUNCTION_PROFILER(FILE, LABELNO) \
651 abort ();
653 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
654 the stack pointer does not matter. The value is tested only in
655 functions that have frame pointers.
656 No definition is equivalent to always zero. */
658 extern int may_call_alloca;
659 extern int current_function_pretend_args_size;
661 #define EXIT_IGNORE_STACK 1
663 /* This macro generates the assembly code for function exit,
664 on machines that need it. If FUNCTION_EPILOGUE is not defined
665 then individual return instructions are generated for each
666 return statement. Args are same as for FUNCTION_PROLOGUE.
669 #define FUNCTION_EPILOGUE(FILE, SIZE) \
670 output_function_epilogue(FILE, SIZE);
672 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) \
674 int offset, regno; \
675 offset = get_frame_size(); \
676 for (regno = 0; regno < 8; regno++) \
677 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
678 offset += 2; \
679 for (regno = 8; regno < 14; regno++) \
680 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
681 offset += 8; \
682 /* offset -= 2; no fp on stack frame */ \
683 (DEPTH_VAR) = offset; \
687 /* Addressing modes, and classification of registers for them. */
689 #define HAVE_POST_INCREMENT
690 /* #define HAVE_POST_DECREMENT */
692 #define HAVE_PRE_DECREMENT
693 /* #define HAVE_PRE_INCREMENT */
695 /* Macros to check register numbers against specific register classes. */
697 /* These assume that REGNO is a hard or pseudo reg number.
698 They give nonzero only if REGNO is a hard reg of the suitable class
699 or a pseudo reg currently allocated to a suitable hard reg.
700 Since they use reg_renumber, they are safe only once reg_renumber
701 has been allocated, which happens in local-alloc.c. */
703 #define REGNO_OK_FOR_INDEX_P(REGNO) \
704 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
705 #define REGNO_OK_FOR_BASE_P(REGNO) \
706 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
708 /* Now macros that check whether X is a register and also,
709 strictly, whether it is in a specified class.
714 /* Maximum number of registers that can appear in a valid memory address. */
716 #define MAX_REGS_PER_ADDRESS 2
718 /* Recognize any constant value that is a valid address. */
720 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
722 /* Nonzero if the constant value X is a legitimate general operand.
723 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
725 #define LEGITIMATE_CONSTANT_P(X) (1)
727 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
728 and check its validity for a certain class.
729 We have two alternate definitions for each of them.
730 The usual definition accepts all pseudo regs; the other rejects
731 them unless they have been allocated suitable hard regs.
732 The symbol REG_OK_STRICT causes the latter definition to be used.
734 Most source files want to accept pseudo regs in the hope that
735 they will get allocated to the class that the insn wants them to be in.
736 Source files for reload pass need to be strict.
737 After reload, it makes no difference, since pseudo regs have
738 been eliminated by then. */
740 #ifndef REG_OK_STRICT
742 /* Nonzero if X is a hard reg that can be used as an index
743 or if it is a pseudo reg. */
744 #define REG_OK_FOR_INDEX_P(X) (1)
745 /* Nonzero if X is a hard reg that can be used as a base reg
746 or if it is a pseudo reg. */
747 #define REG_OK_FOR_BASE_P(X) (1)
749 #else
751 /* Nonzero if X is a hard reg that can be used as an index. */
752 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
753 /* Nonzero if X is a hard reg that can be used as a base reg. */
754 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
756 #endif
758 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
759 that is a valid memory address for an instruction.
760 The MODE argument is the machine mode for the MEM expression
761 that wants to use this address.
765 #define GO_IF_LEGITIMATE_ADDRESS(mode, operand, ADDR) \
767 rtx xfoob; \
769 /* accept (R0) */ \
770 if (GET_CODE (operand) == REG \
771 && REG_OK_FOR_BASE_P(operand)) \
772 goto ADDR; \
774 /* accept @#address */ \
775 if (CONSTANT_ADDRESS_P (operand)) \
776 goto ADDR; \
778 /* accept X(R0) */ \
779 if (GET_CODE (operand) == PLUS \
780 && GET_CODE (XEXP (operand, 0)) == REG \
781 && REG_OK_FOR_BASE_P (XEXP (operand, 0)) \
782 && CONSTANT_ADDRESS_P (XEXP (operand, 1))) \
783 goto ADDR; \
785 /* accept -(R0) */ \
786 if (GET_CODE (operand) == PRE_DEC \
787 && GET_CODE (XEXP (operand, 0)) == REG \
788 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
789 goto ADDR; \
791 /* accept (R0)+ */ \
792 if (GET_CODE (operand) == POST_INC \
793 && GET_CODE (XEXP (operand, 0)) == REG \
794 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
795 goto ADDR; \
797 /* handle another level of indirection ! */ \
798 if (GET_CODE(operand) != MEM) \
799 goto fail; \
801 xfoob = XEXP (operand, 0); \
803 /* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently */ \
804 /* also forbidden for float, because we have to handle this */ \
805 /* in output_move_double and/or output_move_quad() - we could */ \
806 /* do it, but currently it's not worth it!!! */ \
807 /* now that DFmode cannot go into CPU register file, */ \
808 /* maybe I should allow float ... */ \
809 /* but then I have to handle memory-to-memory moves in movdf ?? */ \
811 if (GET_MODE_BITSIZE(mode) > 16) \
812 goto fail; \
814 /* accept @(R0) - which is @0(R0) */ \
815 if (GET_CODE (xfoob) == REG \
816 && REG_OK_FOR_BASE_P(xfoob)) \
817 goto ADDR; \
819 /* accept @address */ \
820 if (CONSTANT_ADDRESS_P (xfoob)) \
821 goto ADDR; \
823 /* accept @X(R0) */ \
824 if (GET_CODE (xfoob) == PLUS \
825 && GET_CODE (XEXP (xfoob, 0)) == REG \
826 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0)) \
827 && CONSTANT_ADDRESS_P (XEXP (xfoob, 1))) \
828 goto ADDR; \
830 /* accept @-(R0) */ \
831 if (GET_CODE (xfoob) == PRE_DEC \
832 && GET_CODE (XEXP (xfoob, 0)) == REG \
833 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
834 goto ADDR; \
836 /* accept @(R0)+ */ \
837 if (GET_CODE (xfoob) == POST_INC \
838 && GET_CODE (XEXP (xfoob, 0)) == REG \
839 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
840 goto ADDR; \
842 /* anything else is invalid */ \
843 fail: ; \
847 /* Try machine-dependent ways of modifying an illegitimate address
848 to be legitimate. If we find one, return the new, valid address.
849 This macro is used in only one place: `memory_address' in explow.c.
851 OLDX is the address as it was before break_out_memory_refs was called.
852 In some cases it is useful to look at this to decide what needs to be done.
854 MODE and WIN are passed so that this macro can use
855 GO_IF_LEGITIMATE_ADDRESS.
857 It is always safe for this macro to do nothing. It exists to recognize
858 opportunities to optimize the output. */
860 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
863 /* Go to LABEL if ADDR (a legitimate address expression)
864 has an effect that depends on the machine mode it is used for.
865 On the the pdp this is for predec/postinc */
867 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
868 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
869 goto LABEL; \
873 /* Specify the machine mode that this machine uses
874 for the index in the tablejump instruction. */
875 #define CASE_VECTOR_MODE HImode
877 /* Define this if a raw index is all that is needed for a
878 `tablejump' insn. */
879 #define CASE_TAKES_INDEX_RAW
881 /* Define this if the tablejump instruction expects the table
882 to contain offsets from the address of the table.
883 Do not define this if the table should contain absolute addresses. */
884 /* #define CASE_VECTOR_PC_RELATIVE */
886 /* Specify the tree operation to be used to convert reals to integers. */
887 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
889 /* This is the kind of divide that is easiest to do in the general case. */
890 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
892 /* Define this as 1 if `char' should by default be signed; else as 0. */
893 #define DEFAULT_SIGNED_CHAR 1
895 /* Max number of bytes we can move from memory to memory
896 in one reasonably fast instruction.
899 #define MOVE_MAX 2
901 /* Zero extension is faster if the target is known to be zero */
902 /* #define SLOW_ZERO_EXTEND */
904 /* Nonzero if access to memory by byte is slow and undesirable. -
906 #define SLOW_BYTE_ACCESS 0
908 /* Do not break .stabs pseudos into continuations. */
909 #define DBX_CONTIN_LENGTH 0
911 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
912 is done just by pretending it is already truncated. */
913 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
916 /* Add any extra modes needed to represent the condition code.
918 CCFPmode is used for FPU, but should we use a separate reg? */
919 #define EXTRA_CC_MODES CCFPmode
921 /* the name for the mode above */
922 #define EXTRA_CC_NAMES "CCFPmode"
924 /* Give a comparison code (EQ, NE etc) and the first operand of a COMPARE,
925 return the mode to be used for the comparison. For floating-point, CCFPmode
926 should be used. */
928 #define SELECT_CC_MODE(OP,X,Y) \
929 (GET_MODE_CLASS(GET_MODE(X)) == MODE_FLOAT? CCFPmode : CCmode)
931 /* We assume that the store-condition-codes instructions store 0 for false
932 and some other value for true. This is the value stored for true. */
934 /* #define STORE_FLAG_VALUE 1 */
936 /* Specify the machine mode that pointers have.
937 After generation of rtl, the compiler makes no further distinction
938 between pointers and any other objects of this machine mode. */
939 #define Pmode HImode
941 /* A function address in a call instruction
942 is a word address (for indexing purposes)
943 so give the MEM rtx a word's mode. */
944 #define FUNCTION_MODE HImode
946 /* Define this if addresses of constant functions
947 shouldn't be put through pseudo regs where they can be cse'd.
948 Desirable on machines where ordinary constants are expensive
949 but a CALL with constant address is cheap. */
950 /* #define NO_FUNCTION_CSE */
952 /* Compute the cost of computing a constant rtl expression RTX
953 whose rtx-code is CODE. The body of this macro is a portion
954 of a switch statement. If the code is computed here,
955 return it with a return statement. Otherwise, break from the switch.
957 -1, 0, 1 are cheaper for add, sub ...
960 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
961 case CONST_INT: \
962 if (INTVAL(RTX) == 0 \
963 || INTVAL(RTX) == -1 \
964 || INTVAL(RTX) == 1) \
965 return 0; \
966 case CONST: \
967 case LABEL_REF: \
968 case SYMBOL_REF: \
969 /* twice as expensive as REG */ \
970 return 2; \
971 case CONST_DOUBLE: \
972 /* twice (or 4 times) as expensive as 16 bit */ \
973 return 4;
975 /* cost of moving one register class to another */
976 #define REGISTER_MOVE_COST(CLASS1, CLASS2) register_move_cost(CLASS1, CLASS2)
978 /* Tell emit-rtl.c how to initialize special values on a per-function base. */
979 extern int optimize;
980 extern struct rtx_def *cc0_reg_rtx;
982 #define CC_STATUS_MDEP rtx
984 #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0)
986 /* Tell final.c how to eliminate redundant test instructions. */
988 /* Here we define machine-dependent flags and fields in cc_status
989 (see `conditions.h'). */
991 #define CC_IN_FPU 04000
993 /* Do UPDATE_CC if EXP is a set, used in
994 NOTICE_UPDATE_CC
996 floats only do compare correctly, else nullify ...
998 get cc0 out soon ...
1001 /* Store in cc_status the expressions
1002 that the condition codes will describe
1003 after execution of an instruction whose pattern is EXP.
1004 Do not alter them if the instruction would not alter the cc's. */
1006 #define NOTICE_UPDATE_CC(EXP, INSN) \
1007 { if (GET_CODE (EXP) == SET) \
1009 notice_update_cc_on_set(EXP, INSN); \
1011 else if (GET_CODE (EXP) == PARALLEL \
1012 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
1014 notice_update_cc_on_set(XVECEXP (EXP, 0, 0), INSN); \
1016 else if (GET_CODE (EXP) == CALL) \
1017 { /* all bets are off */ CC_STATUS_INIT; } \
1018 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
1019 && cc_status.value2 \
1020 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
1021 printf ("here!\n", cc_status.value2 = 0); \
1024 /* Control the assembler format that we output. */
1026 /* Output at beginning of assembler file. */
1028 #if 0
1029 #define ASM_FILE_START(FILE) \
1031 fprintf (FILE, "\t.data\n"), \
1032 fprintf (FILE, "$help$: . = .+8 ; space for tmp moves!\n") \
1033 /* do we need reg def's R0 = %0 etc ??? */ \
1035 #else
1036 #define ASM_FILE_START(FILE) (0)
1037 #endif
1040 /* Output to assembler file text saying following lines
1041 may contain character constants, extra white space, comments, etc. */
1043 #define ASM_APP_ON ""
1045 /* Output to assembler file text saying following lines
1046 no longer contain unusual constructs. */
1048 #define ASM_APP_OFF ""
1050 /* Output before read-only data. */
1052 #define TEXT_SECTION_ASM_OP "\t.text\n"
1054 /* Output before writable data. */
1056 #define DATA_SECTION_ASM_OP "\t.data\n"
1058 /* How to refer to registers in assembler output.
1059 This sequence is indexed by compiler's hard-register-number (see above). */
1061 #define REGISTER_NAMES \
1062 {"r0", "r1", "r2", "r3", "r4", "fp", "sp", "pc", \
1063 "ac0", "ac1", "ac2", "ac3", "ac4", "ac5" }
1065 /* How to renumber registers for dbx and gdb. */
1067 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1069 /* This is how to output the definition of a user-level label named NAME,
1070 such as the label on a static function or variable NAME. */
1072 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1073 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1075 /* This is how to output a command to make the user-level label named NAME
1076 defined for reference from other files. */
1078 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1079 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs("\n", FILE); } while (0)
1081 /* This is how to output a reference to a user-level label named NAME.
1082 `assemble_name' uses this. */
1084 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1085 fprintf (FILE, "_%s", NAME)
1087 /* This is how to output an internal numbered label where
1088 PREFIX is the class of label and NUM is the number within the class. */
1090 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1091 fprintf (FILE, "%s_%d:\n", PREFIX, NUM)
1093 /* This is how to store into the string LABEL
1094 the symbol_ref name of an internal numbered label where
1095 PREFIX is the class of label and NUM is the number within the class.
1096 This is suitable for output with `assemble_name'. */
1098 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1099 sprintf (LABEL, "*%s_%d", PREFIX, NUM)
1101 /* This is how to output an assembler line defining a `double' constant. */
1103 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1104 fprintf (FILE, "\tdouble %.20e\n", (VALUE))
1106 /* This is how to output an assembler line defining a `float' constant. */
1108 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1109 fprintf (FILE, "\tfloat %.12e\n", (VALUE))
1111 /* This is how to output an assembler line defining an `int' constant. */
1113 #define ASM_OUTPUT_INT(FILE,VALUE) \
1114 ( fprintf (FILE, "\t.word "), \
1115 output_addr_const (FILE, (VALUE)), \
1116 fprintf (FILE, "\n"))
1118 /* Likewise for `short' and `char' constants. */
1120 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1121 ( fprintf (FILE, "\t.word "), \
1122 output_addr_const (FILE, (VALUE)), \
1123 fprintf (FILE, " /*short*/\n"))
1125 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1126 ( fprintf (FILE, "\t.byte "), \
1127 output_addr_const (FILE, (VALUE)), \
1128 fprintf (FILE, " /* char */\n"))
1130 /* This is how to output an assembler line for a numeric constant byte.-
1132 do we really NEED it ? let's output it with a comment and grep the
1133 assembly source ;-)
1136 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1137 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1139 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1140 output_ascii (FILE, P, SIZE)
1142 #define ASM_OUTPUT_ADDR_VEC_PROLOGUE(FILE, MODE, LEN) \
1143 fprintf (FILE, "\t/* HELP! */\n");
1145 /* This is how to output an element of a case-vector that is absolute. */
1147 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1148 fprintf (FILE, "\t.word L_%d\n", VALUE)
1150 /* This is how to output an element of a case-vector that is relative.
1151 (the pdp does not use such vectors,
1152 but we must define this macro anyway.) */
1154 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1155 fprintf (FILE, "\tERROR @L%d-@L%d ! error should not be used\n", VALUE, REL)
1157 /* This is how to output an assembler line
1158 that says to advance the location counter
1159 to a multiple of 2**LOG bytes.
1161 who needs this????
1164 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1165 if ((LOG) != 0) \
1166 fprintf (FILE, "\t.align %d\n", 1<<(LOG))
1168 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1169 fprintf (FILE, "\t.=.+ %d\n", (SIZE))
1171 /* This says how to output an assembler line
1172 to define a global common symbol. */
1174 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1175 ( fprintf ((FILE), ".globl "), \
1176 assemble_name ((FILE), (NAME)), \
1177 fprintf ((FILE), "\n"), \
1178 assemble_name ((FILE), (NAME)), \
1179 fprintf ((FILE), ": .=.+ %d\n", (ROUNDED)) \
1182 /* This says how to output an assembler line
1183 to define a local common symbol. */
1185 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1186 ( assemble_name ((FILE), (NAME)), \
1187 fprintf ((FILE), ":\t.=.+ %d\n", (ROUNDED)))
1189 /* Store in OUTPUT a string (made with alloca) containing
1190 an assembler-name for a local static variable named NAME.
1191 LABELNO is an integer which is different for each call. */
1193 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1194 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1195 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1197 /* Define the parentheses used to group arithmetic operations
1198 in assembler code. */
1200 #define ASM_OPEN_PAREN "("
1201 #define ASM_CLOSE_PAREN ")"
1203 /* Define results of standard character escape sequences. */
1204 #define TARGET_BELL 007
1205 #define TARGET_BS 010
1206 #define TARGET_TAB 011
1207 #define TARGET_NEWLINE 012
1208 #define TARGET_VT 013
1209 #define TARGET_FF 014
1210 #define TARGET_CR 015
1212 /* Print operand X (an rtx) in assembler syntax to file FILE.
1213 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1214 For `%' followed by punctuation, CODE is the punctuation and X is null.
1219 #define PRINT_OPERAND(FILE, X, CODE) \
1220 { if (CODE == '#') fprintf (FILE, "#"); \
1221 else if (GET_CODE (X) == REG) \
1222 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1223 else if (GET_CODE (X) == MEM) \
1224 output_address (XEXP (X, 0)); \
1225 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != SImode) \
1226 { union { double d; int i[2]; } u; \
1227 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1228 fprintf (FILE, "#%.20e", u.d); } \
1229 else { putc ('$', FILE); output_addr_const (FILE, X); }}
1231 /* Print a memory address as an operand to reference that memory location. */
1233 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1234 print_operand_address (FILE, ADDR)
1236 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1238 fprintf (FILE, "\tmov %s, -(sp)\n", reg_names[REGNO]) \
1241 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1243 fprintf (FILE, "\tmov (sp)+, %s\n", reg_names[REGNO]) \
1247 #define ASM_IDENTIFY_GCC(FILE) \
1248 fprintf(FILE, "gcc_compiled:\n")
1250 #define ASM_OUTPUT_DOUBLE_INT(a,b) fprintf(a,"%d", b)
1252 /* trampoline - how should i do it in separate i+d ?
1253 have some allocate_trampoline magic???
1255 the following should work for shared I/D: */
1257 /* lets see whether this works as trampoline:
1258 MV #STATIC, $4 0x940Y 0x0000 <- STATIC; Y = STATIC_CHAIN_REGNUM
1259 JMP FUNCTION 0x0058 0x0000 <- FUNCTION
1262 #define TRAMPOLINE_TEMPLATE(FILE) \
1264 if (TARGET_SPLIT) \
1265 abort(); \
1267 ASM_OUTPUT_INT (FILE, gen_rtx(CONST_INT, VOIDmode, 0x9400+STATIC_CHAIN_REGNUM)); \
1268 ASM_OUTPUT_INT (FILE, const0_rtx); \
1269 ASM_OUTPUT_INT (FILE, gen_rtx(CONST_INT, VOIDmode, 0x0058)); \
1270 ASM_OUTPUT_INT (FILE, const0_rtx); \
1273 #define TRAMPOLINE_SIZE 8
1274 #define TRAMPOLINE_ALIGN 16
1276 /* Emit RTL insns to initialize the variable parts of a trampoline.
1277 FNADDR is an RTX for the address of the function's pure code.
1278 CXT is an RTX for the static chain value for the function. */
1280 #define INITIALIZE_TRAMPOLINE(TRAMP,FNADDR,CXT) \
1282 if (TARGET_SPLIT) \
1283 abort(); \
1285 emit_move_insn (gen_rtx (MEM, HImode, plus_constant (TRAMP, 2)), CXT); \
1286 emit_move_insn (gen_rtx (MEM, HImode, plus_constant (TRAMP, 6)), FNADDR); \
1290 /* Some machines may desire to change what optimizations are
1291 performed for various optimization levels. This macro, if
1292 defined, is executed once just after the optimization level is
1293 determined and before the remainder of the command options have
1294 been parsed. Values set in this macro are used as the default
1295 values for the other command line options.
1297 LEVEL is the optimization level specified; 2 if -O2 is
1298 specified, 1 if -O is specified, and 0 if neither is specified. */
1300 #define OPTIMIZATION_OPTIONS(LEVEL) \
1302 if (LEVEL >= 3) \
1304 flag_inline_functions = 1; \
1305 flag_omit_frame_pointer = 1; \
1306 /* flag_unroll_loops = 1; */ \
1311 /* Provide the costs of a rtl expression. This is in the body of a
1312 switch on CODE.
1314 we don't say how expensive SImode is - pretty expensive!!!
1316 there is something wrong in MULT because MULT is not
1317 as cheap as total = 2 even if we can shift!
1319 if TARGET_SPACE make mult etc cheap, but not 1, so when
1320 in doubt the faster insn is chosen.
1323 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1324 case MULT: \
1325 if (TARGET_SPACE) \
1326 total = COSTS_N_INSNS(2); \
1327 else \
1328 total = COSTS_N_INSNS (11); \
1329 break; \
1330 case DIV: \
1331 if (TARGET_SPACE) \
1332 total = COSTS_N_INSNS(2); \
1333 else \
1334 total = COSTS_N_INSNS (25); \
1335 break; \
1336 case MOD: \
1337 if (TARGET_SPACE) \
1338 total = COSTS_N_INSNS(2); \
1339 else \
1340 total = COSTS_N_INSNS (26); \
1341 break; \
1342 case ABS: \
1343 /* equivalent to length, so same for TARGET_SPACE */ \
1344 total = COSTS_N_INSNS (3); \
1345 break; \
1346 case ZERO_EXTEND: \
1347 /* only used for: qi->hi */ \
1348 total = COSTS_N_INSNS(1); \
1349 break; \
1350 case SIGN_EXTEND: \
1351 if (GET_MODE(X) == HImode) \
1352 total = COSTS_N_INSNS(1); \
1353 else if (GET_MODE(X) == SImode) \
1354 total = COSTS_N_INSNS(6); \
1355 else \
1356 abort(); \
1357 break; \
1358 /* case LSHIFT: */ \
1359 case ASHIFT: \
1360 case LSHIFTRT: \
1361 case ASHIFTRT: \
1362 if (TARGET_SPACE) \
1363 total = COSTS_N_INSNS(1); \
1364 else if (GET_MODE(X) == QImode) \
1366 if (GET_CODE(XEXP (X,1)) != CONST_INT) \
1367 abort(); \
1368 total = COSTS_N_INSNS(INTVAL(XEXP (X,1))); \
1370 else if (GET_MODE(X) == HImode) \
1372 if (GET_CODE(XEXP (X,1)) == CONST_INT) \
1374 if (abs (INTVAL (XEXP (X, 1))) == 1) \
1375 total = COSTS_N_INSNS(1); \
1376 else \
1377 total = COSTS_N_INSNS(2.5 + 0.5 *INTVAL(XEXP(X,1))); \
1379 else /* worst case */ \
1380 total = COSTS_N_INSNS (10); \
1382 else if (GET_MODE(X) == SImode) \
1384 if (GET_CODE(XEXP (X,1)) == CONST_INT) \
1385 total = COSTS_N_INSNS(2.5 + 0.5 *INTVAL(XEXP(X,1))); \
1386 else /* worst case */ \
1387 total = COSTS_N_INSNS(18); \
1389 break;
1392 /* there is no point in avoiding branches on a pdp,
1393 since branches are really cheap - I just want to find out
1394 how much difference the BRANCH_COST macro makes in code */
1395 #define BRANCH_COST (TARGET_BRANCH_CHEAP ? 0 : 1)
1398 #define COMPARE_FLAG_MODE HImode