Added arg to RETURN_POPS_ARGS.
[official-gcc.git] / gcc / config / ns32k / ns32k.h
blobccf722754b5aeaed8f9094f0b27ba70625ca84a7
1 /* Definitions of target machine for GNU compiler. NS32000 version.
2 Copyright (C) 1988, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* Note that some other tm.h files include this one and then override
23 many of the definitions that relate to assembler syntax. */
25 extern enum reg_class secondary_reload_class();
27 /* Names to predefine in the preprocessor for this target machine. */
29 #define CPP_PREDEFINES "-Dns32000 -Dunix -Asystem(unix) -Acpu(ns32k) -Amachine(ns32k)"
31 /* Print subsidiary information on the compiler version in use. */
32 #define TARGET_VERSION fprintf (stderr, " (32000, GAS syntax)");
35 /* ABSOLUTE PREFIX, IMMEDIATE_PREFIX and EXTERNAL_PREFIX can be defined
36 to cover most NS32k addressing syntax variations. This way we don't
37 need to redefine long macros in all the tm.h files for just slight
38 variations in assembler syntax. */
40 #ifndef ABSOLUTE_PREFIX
41 #define ABSOLUTE_PREFIX '@'
42 #endif
44 #if defined(IMMEDIATE_PREFIX) && IMMEDIATE_PREFIX
45 #define PUT_IMMEDIATE_PREFIX(FILE) putc(IMMEDIATE_PREFIX, FILE)
46 #else
47 #define PUT_IMMEDIATE_PREFIX(FILE)
48 #endif
49 #if defined(ABSOLUTE_PREFIX) && ABSOLUTE_PREFIX
50 #define PUT_ABSOLUTE_PREFIX(FILE) putc(ABSOLUTE_PREFIX, FILE)
51 #else
52 #define PUT_ABSOLUTE_PREFIX(FILE)
53 #endif
54 #if defined(EXTERNAL_PREFIX) && EXTERNAL_PREFIX
55 #define PUT_EXTERNAL_PREFIX(FILE) putc(EXTERNAL_PREFIX, FILE)
56 #else
57 #define PUT_EXTERNAL_PREFIX(FILE)
58 #endif
60 /* Run-time compilation parameters selecting different hardware subsets. */
62 extern int target_flags;
64 /* Macros used in the machine description to test the flags. */
66 /* Compile 32081 insns for floating point (not library calls). */
67 #define TARGET_32081 (target_flags & 1)
69 /* Compile using rtd insn calling sequence.
70 This will not work unless you use prototypes at least
71 for all functions that can take varying numbers of args. */
72 #define TARGET_RTD (target_flags & 2)
74 /* Compile passing first two args in regs 0 and 1. */
75 #define TARGET_REGPARM (target_flags & 4)
77 /* Options to select type of CPU, for better optimization.
78 The output is correct for any kind of 32000 regardless of these options. */
79 #define TARGET_32532 (target_flags & 8)
80 #define TARGET_32332 (target_flags & 16)
82 /* Ok to use the static base register (and presume it's 0) */
83 #define TARGET_SB ((target_flags & 32) == 0)
84 #define TARGET_HIMEM (target_flags & 128)
86 /* Compile using bitfield insns. */
87 #define TARGET_BITFIELD ((target_flags & 64) == 0)
89 /* Macro to define tables used to set the flags.
90 This is a list in braces of pairs in braces,
91 each pair being { "NAME", VALUE }
92 where VALUE is the bits to set or minus the bits to clear.
93 An empty string NAME is used to identify the default VALUE. */
95 #define TARGET_SWITCHES \
96 { { "32081", 1}, \
97 { "soft-float", -1}, \
98 { "rtd", 2}, \
99 { "nortd", -2}, \
100 { "regparm", 4}, \
101 { "noregparm", -4}, \
102 { "32532", 24}, \
103 { "32332", -8}, \
104 { "32332", 16}, \
105 { "32032", -24}, \
106 { "sb", -32}, \
107 { "nosb", 32}, \
108 { "bitfield", -64}, \
109 { "nobitfield", 64}, \
110 { "himem", 128}, \
111 { "nohimem", -128}, \
112 { "", TARGET_DEFAULT}}
113 /* TARGET_DEFAULT is defined in encore.h, pc532.h, etc. */
115 /* When we are generating PIC, the sb is used as a pointer
116 to the GOT. */
118 #define OVERRIDE_OPTIONS \
120 if (flag_pic || TARGET_HIMEM) target_flags |= 32; \
124 /* target machine storage layout */
126 /* Define this if most significant bit is lowest numbered
127 in instructions that operate on numbered bit-fields.
128 This is not true on the ns32k. */
129 #define BITS_BIG_ENDIAN 0
131 /* Define this if most significant byte of a word is the lowest numbered. */
132 /* That is not true on the ns32k. */
133 #define BYTES_BIG_ENDIAN 0
135 /* Define this if most significant word of a multiword number is lowest
136 numbered. This is not true on the ns32k. */
137 #define WORDS_BIG_ENDIAN 0
139 /* Number of bits in an addressable storage unit */
140 #define BITS_PER_UNIT 8
142 /* Width in bits of a "word", which is the contents of a machine register.
143 Note that this is not necessarily the width of data type `int';
144 if using 16-bit ints on a 32000, this would still be 32.
145 But on a machine with 16-bit registers, this would be 16. */
146 #define BITS_PER_WORD 32
148 /* Width of a word, in units (bytes). */
149 #define UNITS_PER_WORD 4
151 /* Width in bits of a pointer.
152 See also the macro `Pmode' defined below. */
153 #define POINTER_SIZE 32
155 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
156 #define PARM_BOUNDARY 32
158 /* Boundary (in *bits*) on which stack pointer should be aligned. */
159 #define STACK_BOUNDARY 32
161 /* Allocation boundary (in *bits*) for the code of a function. */
162 #define FUNCTION_BOUNDARY 16
164 /* Alignment of field after `int : 0' in a structure. */
165 #define EMPTY_FIELD_BOUNDARY 32
167 /* Every structure's size must be a multiple of this. */
168 #define STRUCTURE_SIZE_BOUNDARY 8
170 /* No data type wants to be aligned rounder than this. */
171 #define BIGGEST_ALIGNMENT 32
173 /* Set this nonzero if move instructions will actually fail to work
174 when given unaligned data. National claims that the NS32032
175 works without strict alignment, but rumor has it that operands
176 crossing a page boundary cause unpredictable results. */
177 #define STRICT_ALIGNMENT 1
179 /* If bit field type is int, dont let it cross an int,
180 and give entire struct the alignment of an int. */
181 /* Required on the 386 since it doesn't have a full set of bitfield insns.
182 (There is no signed extv insn.) */
183 #define PCC_BITFIELD_TYPE_MATTERS 1
185 /* Standard register usage. */
187 /* Number of actual hardware registers.
188 The hardware registers are assigned numbers for the compiler
189 from 0 to just below FIRST_PSEUDO_REGISTER.
190 All registers that the compiler knows about must be given numbers,
191 even those that are not normally considered general registers. */
192 #define FIRST_PSEUDO_REGISTER 18
194 /* 1 for registers that have pervasive standard uses
195 and are not available for the register allocator.
196 On the ns32k, these are the FP, SP, (SB and PC are not included here). */
197 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, \
198 0, 0, 0, 0, 0, 0, 0, 0, \
199 1, 1}
201 /* 1 for registers not available across function calls.
202 These must include the FIXED_REGISTERS and also any
203 registers that can be used without being saved.
204 The latter must include the registers where values are returned
205 and the register where structure-value addresses are passed.
206 Aside from that, you can include as many other registers as you like. */
207 #define CALL_USED_REGISTERS {1, 1, 1, 0, 0, 0, 0, 0, \
208 1, 1, 1, 1, 0, 0, 0, 0, \
209 1, 1}
211 /* Return number of consecutive hard regs needed starting at reg REGNO
212 to hold something of mode MODE.
213 This is ordinarily the length in words of a value of mode MODE
214 but can be less for certain modes in special long registers.
215 On the ns32k, all registers are 32 bits long. */
216 #define HARD_REGNO_NREGS(REGNO, MODE) \
217 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
219 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
220 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok (REGNO, MODE)
222 /* Value is 1 if it is a good idea to tie two pseudo registers
223 when one has mode MODE1 and one has mode MODE2.
224 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
225 for any hard reg, then this must be 0 for correct output. */
226 #define MODES_TIEABLE_P(MODE1, MODE2) \
227 (((MODE1) == DFmode || (MODE1) == DCmode || (MODE1) == DImode) == \
228 ((MODE2) == DFmode || (MODE2) == DCmode || (MODE2) == DImode))
230 /* Specify the registers used for certain standard purposes.
231 The values of these macros are register numbers. */
233 /* NS32000 pc is not overloaded on a register. */
234 /* #define PC_REGNUM */
236 /* Register to use for pushing function arguments. */
237 #define STACK_POINTER_REGNUM 17
239 /* Base register for access to local variables of the function. */
240 #define FRAME_POINTER_REGNUM 16
242 /* Value should be nonzero if functions must have frame pointers.
243 Zero means the frame pointer need not be set up (and parms
244 may be accessed via the stack pointer) in functions that seem suitable.
245 This is computed in `reload', in reload1.c. */
246 #define FRAME_POINTER_REQUIRED 0
248 /* Base register for access to arguments of the function. */
249 #define ARG_POINTER_REGNUM 16
251 /* Register in which static-chain is passed to a function. */
252 #define STATIC_CHAIN_REGNUM 1
254 /* Register in which address to store a structure value
255 is passed to a function. */
256 #define STRUCT_VALUE_REGNUM 2
258 /* Define the classes of registers for register constraints in the
259 machine description. Also define ranges of constants.
261 One of the classes must always be named ALL_REGS and include all hard regs.
262 If there is more than one class, another class must be named NO_REGS
263 and contain no registers.
265 The name GENERAL_REGS must be the name of a class (or an alias for
266 another name such as ALL_REGS). This is the class of registers
267 that is allowed by "g" or "r" in a register constraint.
268 Also, registers outside this class are allocated only when
269 instructions express preferences for them.
271 The classes must be numbered in nondecreasing order; that is,
272 a larger-numbered class must never be contained completely
273 in a smaller-numbered class.
275 For any two classes, it is very desirable that there be another
276 class that represents their union. */
278 enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, GEN_AND_FP_REGS,
279 FRAME_POINTER_REG, STACK_POINTER_REG,
280 GEN_AND_MEM_REGS, ALL_REGS, LIM_REG_CLASSES };
282 #define N_REG_CLASSES (int) LIM_REG_CLASSES
284 /* Give names of register classes as strings for dump file. */
286 #define REG_CLASS_NAMES \
287 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "GEN_AND_FP_REGS", \
288 "FRAME_POINTER_REG", "STACK_POINTER_REG", "GEN_AND_MEM_REGS", "ALL_REGS" }
290 /* Define which registers fit in which classes.
291 This is an initializer for a vector of HARD_REG_SET
292 of length N_REG_CLASSES. */
294 #define REG_CLASS_CONTENTS {0, 0x00ff, 0xff00, 0xffff, \
295 0x10000, 0x20000, 0x300ff, 0x3ffff }
297 /* The same information, inverted:
298 Return the class number of the smallest class containing
299 reg number REGNO. This could be a conditional expression
300 or could index an array. */
302 #define REGNO_REG_CLASS(REGNO) \
303 ((REGNO) < 8 ? GENERAL_REGS \
304 : (REGNO) < 16 ? FLOAT_REGS \
305 : (REGNO) == 16 ? FRAME_POINTER_REG \
306 : (REGNO) == 17 ? STACK_POINTER_REG \
307 : NO_REGS)
309 /* The class value for index registers, and the one for base regs. */
311 #define INDEX_REG_CLASS GENERAL_REGS
312 #define BASE_REG_CLASS GEN_AND_MEM_REGS
314 /* Get reg_class from a letter such as appears in the machine description. */
316 #define REG_CLASS_FROM_LETTER(C) \
317 ((C) == 'f' ? FLOAT_REGS \
318 : (C) == 'x' ? FRAME_POINTER_REG \
319 : (C) == 'y' ? STACK_POINTER_REG \
320 : NO_REGS)
322 /* The letters I, J, K, L and M in a register constraint string
323 can be used to stand for particular ranges of immediate operands.
324 This macro defines what the ranges are.
325 C is the letter, and VALUE is a constant value.
326 Return 1 if VALUE is in the range specified by C.
328 On the ns32k, these letters are used as follows:
330 I : Matches integers which are valid shift amounts for scaled indexing.
331 These are 0, 1, 2, 3 for byte, word, double, and quadword.
332 Used for matching arithmetic shifts only on 32032 & 32332.
333 J : Matches integers which fit a "quick" operand.
334 K : Matches integers 0 to 7 (for inss and exts instructions).
337 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
338 ((VALUE) < 8 && (VALUE) + 8 >= 0 ? \
339 ((C) == 'I' ? (!TARGET_32532 && 0 <= (VALUE) && (VALUE) <= 3) : \
340 (C) == 'J' ? (VALUE) <= 7 : \
341 (C) == 'K' ? 0 <= (VALUE) : 0) : 0)
343 /* Similar, but for floating constants, and defining letters G and H.
344 Here VALUE is the CONST_DOUBLE rtx itself. */
346 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
348 /* Given an rtx X being reloaded into a reg required to be
349 in class CLASS, return the class of reg to actually use.
350 In general this is just CLASS; but on some machines
351 in some cases it is preferable to use a more restrictive class. */
353 /* We return GENERAL_REGS instead of GEN_AND_MEM_REGS.
354 The latter offers no real additional possibilities
355 and can cause spurious secondary reloading. */
356 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
357 ((CLASS) == GEN_AND_MEM_REGS ? GENERAL_REGS : (CLASS))
359 /* Return the maximum number of consecutive registers
360 needed to represent mode MODE in a register of class CLASS. */
361 /* On the 32000, this is the size of MODE in words */
362 #define CLASS_MAX_NREGS(CLASS, MODE) \
363 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
365 /* Stack layout; function entry, exit and calling. */
367 /* Define this if pushing a word on the stack
368 makes the stack pointer a smaller address. */
369 #define STACK_GROWS_DOWNWARD
371 /* Define this if the nominal address of the stack frame
372 is at the high-address end of the local variables;
373 that is, each additional local variable allocated
374 goes at a more negative offset in the frame. */
375 #define FRAME_GROWS_DOWNWARD
377 /* Offset within stack frame to start allocating local variables at.
378 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
379 first local allocated. Otherwise, it is the offset to the BEGINNING
380 of the first local allocated. */
381 #define STARTING_FRAME_OFFSET 0
383 /* If we generate an insn to push BYTES bytes,
384 this says how many the stack pointer really advances by.
385 On the 32000, sp@- in a byte insn really pushes a BYTE. */
386 #define PUSH_ROUNDING(BYTES) (BYTES)
388 /* Offset of first parameter from the argument pointer register value. */
389 #define FIRST_PARM_OFFSET(FNDECL) 8
391 /* Value is the number of byte of arguments automatically
392 popped when returning from a subroutine call.
393 FUNDECL is the declaration node of the function (as a tree),
394 FUNTYPE is the data type of the function (as a tree),
395 or for a library call it is an identifier node for the subroutine name.
396 SIZE is the number of bytes of arguments passed on the stack.
398 On the 32000, the RET insn may be used to pop them if the number
399 of args is fixed, but if the number is variable then the caller
400 must pop them all. RET can't be used for library calls now
401 because the library is compiled with the Unix compiler.
402 Use of RET is a selectable option, since it is incompatible with
403 standard Unix calling sequences. If the option is not selected,
404 the caller must always pop the args. */
406 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
407 ((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
408 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
409 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
410 == void_type_node))) \
411 ? (SIZE) : 0)
413 /* Define how to find the value returned by a function.
414 VALTYPE is the data type of the value (as a tree).
415 If the precise function being called is known, FUNC is its FUNCTION_DECL;
416 otherwise, FUNC is 0. */
418 /* On the 32000 the return value is in R0,
419 or perhaps in F0 is there is fp support. */
421 #define FUNCTION_VALUE(VALTYPE, FUNC) \
422 (TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_32081 \
423 ? gen_rtx (REG, TYPE_MODE (VALTYPE), 8) \
424 : gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
426 /* Define how to find the value returned by a library function
427 assuming the value has mode MODE. */
429 /* On the 32000 the return value is in R0,
430 or perhaps F0 is there is fp support. */
432 #define LIBCALL_VALUE(MODE) \
433 (((MODE) == DFmode || (MODE) == SFmode) && TARGET_32081 \
434 ? gen_rtx (REG, MODE, 8) \
435 : gen_rtx (REG, MODE, 0))
437 /* Define this if PCC uses the nonreentrant convention for returning
438 structure and union values. */
440 #define PCC_STATIC_STRUCT_RETURN
442 /* 1 if N is a possible register number for a function value.
443 On the 32000, R0 and F0 are the only registers thus used. */
445 #define FUNCTION_VALUE_REGNO_P(N) (((N) & ~8) == 0)
447 /* 1 if N is a possible register number for function argument passing.
448 On the 32000, no registers are used in this way. */
450 #define FUNCTION_ARG_REGNO_P(N) 0
452 /* Define a data type for recording info about an argument list
453 during the scan of that argument list. This data type should
454 hold all necessary information about the function itself
455 and about the args processed so far, enough to enable macros
456 such as FUNCTION_ARG to determine where the next arg should go.
458 On the ns32k, this is a single integer, which is a number of bytes
459 of arguments scanned so far. */
461 #define CUMULATIVE_ARGS int
463 /* Initialize a variable CUM of type CUMULATIVE_ARGS
464 for a call to a function whose data type is FNTYPE.
465 For a library call, FNTYPE is 0.
467 On the ns32k, the offset starts at 0. */
469 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
470 ((CUM) = 0)
472 /* Update the data in CUM to advance over an argument
473 of mode MODE and data type TYPE.
474 (TYPE is null for libcalls where that information may not be available.) */
476 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
477 ((CUM) += ((MODE) != BLKmode \
478 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
479 : (int_size_in_bytes (TYPE) + 3) & ~3))
481 /* Define where to put the arguments to a function.
482 Value is zero to push the argument on the stack,
483 or a hard register in which to store the argument.
485 MODE is the argument's machine mode.
486 TYPE is the data type of the argument (as a tree).
487 This is null for libcalls where that information may
488 not be available.
489 CUM is a variable of type CUMULATIVE_ARGS which gives info about
490 the preceding args and about the function being called.
491 NAMED is nonzero if this argument is a named parameter
492 (otherwise it is an extra parameter matching an ellipsis). */
494 /* On the 32000 all args are pushed, except if -mregparm is specified
495 then the first two words of arguments are passed in r0, r1.
496 *NOTE* -mregparm does not work.
497 It exists only to test register calling conventions. */
499 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
500 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
502 /* For an arg passed partly in registers and partly in memory,
503 this is the number of registers used.
504 For args passed entirely in registers or entirely in memory, zero. */
506 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
507 ((TARGET_REGPARM && (CUM) < 8 \
508 && 8 < ((CUM) + ((MODE) == BLKmode \
509 ? int_size_in_bytes (TYPE) \
510 : GET_MODE_SIZE (MODE)))) \
511 ? 2 - (CUM) / 4 : 0)
513 #ifndef MAIN_FUNCTION_PROLOGUE
514 #define MAIN_FUNCTION_PROLOGUE
515 #endif
518 * The function prologue for the ns32k is fairly simple.
519 * If a frame pointer is needed (decided in reload.c ?) then
520 * we need assembler of the form
522 * # Save the oldframe pointer, set the new frame pointer, make space
523 * # on the stack and save any general purpose registers necessary
525 * enter [<general purpose regs to save>], <local stack space>
527 * movf fn, tos # Save any floating point registers necessary
531 * If a frame pointer is not needed we need assembler of the form
533 * # Make space on the stack
535 * adjspd <local stack space + 4>
537 * # Save any general purpose registers necessary
539 * save [<general purpose regs to save>]
541 * movf fn, tos # Save any floating point registers necessary
545 #if defined(IMMEDIATE_PREFIX) && IMMEDIATE_PREFIX
546 #define ADJSP(FILE, n) \
547 fprintf (FILE, "\tadjspd %c%d\n", IMMEDIATE_PREFIX, (n))
548 #else
549 #define ADJSP(FILE, n) \
550 fprintf (FILE, "\tadjspd %d\n", (n))
551 #endif
553 #define FUNCTION_PROLOGUE(FILE, SIZE) \
554 { register int regno, g_regs_used = 0; \
555 int used_regs_buf[8], *bufp = used_regs_buf; \
556 int used_fregs_buf[8], *fbufp = used_fregs_buf; \
557 extern char call_used_regs[]; \
558 extern int current_function_uses_pic_offset_table, flag_pic; \
559 MAIN_FUNCTION_PROLOGUE; \
560 for (regno = 0; regno < 8; regno++) \
561 if (regs_ever_live[regno] \
562 && ! call_used_regs[regno]) \
564 *bufp++ = regno; g_regs_used++; \
566 *bufp = -1; \
567 for (; regno < 16; regno++) \
568 if (regs_ever_live[regno] && !call_used_regs[regno]) \
570 *fbufp++ = regno; \
572 *fbufp = -1; \
573 bufp = used_regs_buf; \
574 if (frame_pointer_needed) \
575 fprintf (FILE, "\tenter ["); \
576 else \
578 if (SIZE) \
579 ADJSP (FILE, SIZE + 4); \
580 if (g_regs_used && g_regs_used > 4) \
581 fprintf (FILE, "\tsave ["); \
582 else \
584 while (*bufp >= 0) \
585 fprintf (FILE, "\tmovd r%d,tos\n", *bufp++); \
586 g_regs_used = 0; \
589 while (*bufp >= 0) \
591 fprintf (FILE, "r%d", *bufp++); \
592 if (*bufp >= 0) \
593 fputc (',', FILE); \
595 if (frame_pointer_needed) \
596 fprintf (FILE, "],%d\n", SIZE); \
597 else if (g_regs_used) \
598 fprintf (FILE, "]\n"); \
599 fbufp = used_fregs_buf; \
600 while (*fbufp >= 0) \
602 if ((*fbufp & 1) || (fbufp[0] != fbufp[1] - 1)) \
603 fprintf (FILE, "\tmovf f%d,tos\n", *fbufp++ - 8); \
604 else \
606 fprintf (FILE, "\tmovl f%d,tos\n", fbufp[0] - 8); \
607 fbufp += 2; \
610 if (flag_pic && current_function_uses_pic_offset_table) \
612 fprintf (FILE, "\tsprd sb,tos\n"); \
613 if (TARGET_REGPARM) \
615 fprintf (FILE, "\taddr __GLOBAL_OFFSET_TABLE_(pc),tos\n"); \
616 fprintf (FILE, "\tlprd sb,tos\n"); \
618 else \
620 fprintf (FILE, "\taddr __GLOBAL_OFFSET_TABLE_(pc),r0\n"); \
621 fprintf (FILE, "\tlprd sb,r0\n"); \
626 /* Output assembler code to FILE to increment profiler label # LABELNO
627 for profiling a function entry.
629 THIS DEFINITION FOR THE 32000 IS A GUESS. IT HAS NOT BEEN TESTED. */
631 #define FUNCTION_PROFILER(FILE, LABELNO) \
632 fprintf (FILE, "\taddr LP%d,r0\n\tbsr mcount\n", (LABELNO))
634 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
635 the stack pointer does not matter. The value is tested only in
636 functions that have frame pointers.
637 No definition is equivalent to always zero.
639 We use 0, because using 1 requires hair in FUNCTION_EPILOGUE
640 that is worse than the stack adjust we could save. */
642 /* #define EXIT_IGNORE_STACK 1 */
644 /* This macro generates the assembly code for function exit,
645 on machines that need it. If FUNCTION_EPILOGUE is not defined
646 then individual return instructions are generated for each
647 return statement. Args are same as for FUNCTION_PROLOGUE.
649 The function epilogue should not depend on the current stack pointer,
650 if EXIT_IGNORE_STACK is nonzero. That doesn't apply here.
652 If a frame pointer is needed (decided in reload.c ?) then
653 we need assembler of the form
655 movf tos, fn # Restore any saved floating point registers
659 # Restore any saved general purpose registers, restore the stack
660 # pointer from the frame pointer, restore the old frame pointer.
661 exit [<general purpose regs to save>]
663 If a frame pointer is not needed we need assembler of the form
664 # Restore any general purpose registers saved
666 movf tos, fn # Restore any saved floating point registers
670 restore [<general purpose regs to save>]
672 # reclaim space allocated on stack
674 adjspd <-(local stack space + 4)> */
677 #define FUNCTION_EPILOGUE(FILE, SIZE) \
678 { register int regno, g_regs_used = 0, f_regs_used = 0; \
679 int used_regs_buf[8], *bufp = used_regs_buf; \
680 int used_fregs_buf[8], *fbufp = used_fregs_buf; \
681 extern char call_used_regs[]; \
682 extern int current_function_uses_pic_offset_table, flag_pic; \
683 if (flag_pic && current_function_uses_pic_offset_table) \
684 fprintf (FILE, "\tlprd sb,tos\n"); \
685 *fbufp++ = -2; \
686 for (regno = 8; regno < 16; regno++) \
687 if (regs_ever_live[regno] && !call_used_regs[regno]) \
689 *fbufp++ = regno; f_regs_used++; \
691 fbufp--; \
692 for (regno = 0; regno < 8; regno++) \
693 if (regs_ever_live[regno] \
694 && ! call_used_regs[regno]) \
696 *bufp++ = regno; g_regs_used++; \
698 while (fbufp > used_fregs_buf) \
700 if ((*fbufp & 1) && fbufp[0] == fbufp[-1] + 1) \
702 fprintf (FILE, "\tmovl tos,f%d\n", fbufp[-1] - 8); \
703 fbufp -= 2; \
705 else fprintf (FILE, "\tmovf tos,f%d\n", *fbufp-- - 8); \
707 if (frame_pointer_needed) \
708 fprintf (FILE, "\texit ["); \
709 else \
711 if (g_regs_used && g_regs_used > 4) \
712 fprintf (FILE, "\trestore ["); \
713 else \
715 while (bufp > used_regs_buf) \
716 fprintf (FILE, "\tmovd tos,r%d\n", *--bufp); \
717 g_regs_used = 0; \
720 while (bufp > used_regs_buf) \
722 fprintf (FILE, "r%d", *--bufp); \
723 if (bufp > used_regs_buf) \
724 fputc (',', FILE); \
726 if (g_regs_used || frame_pointer_needed) \
727 fprintf (FILE, "]\n"); \
728 if (SIZE && !frame_pointer_needed) \
729 ADJSP (FILE, -(SIZE + 4)); \
730 if (current_function_pops_args) \
731 fprintf (FILE, "\tret %d\n", current_function_pops_args); \
732 else fprintf (FILE, "\tret 0\n"); }
734 /* Store in the variable DEPTH the initial difference between the
735 frame pointer reg contents and the stack pointer reg contents,
736 as of the start of the function body. This depends on the layout
737 of the fixed parts of the stack frame and on how registers are saved. */
739 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
741 int regno; \
742 int offset = -4; \
743 extern int current_function_uses_pic_offset_table, flag_pic; \
744 for (regno = 0; regno < 16; regno++) \
745 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
746 offset += 4; \
747 if (flag_pic && current_function_uses_pic_offset_table) \
748 offset += 4; \
749 (DEPTH) = (offset + get_frame_size () \
750 + (get_frame_size () == 0 ? 0 : 4)); \
754 /* Output assembler code for a block containing the constant parts
755 of a trampoline, leaving space for the variable parts. */
757 /* On the 32k, the trampoline looks like this:
758 addr .,r2
759 jump @__trampoline
760 .int STATIC
761 .int FUNCTION
762 Doing trampolines with a library assist function is easier than figuring
763 out how to do stores to memory in reverse byte order (the way immediate
764 operands on the 32k are stored). */
766 #define TRAMPOLINE_TEMPLATE(FILE) \
768 fprintf (FILE, "\taddr .,r2\n" ); \
769 fprintf (FILE, "\tjump " ); \
770 PUT_ABSOLUTE_PREFIX (FILE); \
771 fprintf (FILE, "__trampoline\n" ); \
772 ASM_OUTPUT_INT (FILE, const0_rtx); \
773 ASM_OUTPUT_INT (FILE, const0_rtx); \
776 /* Length in units of the trampoline for entering a nested function. */
778 #define TRAMPOLINE_SIZE 20
780 /* Emit RTL insns to initialize the variable parts of a trampoline.
781 FNADDR is an RTX for the address of the function's pure code.
782 CXT is an RTX for the static chain value for the function. */
784 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
786 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), CXT); \
787 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), FNADDR); \
790 /* This is the library routine that is used
791 to transfer control from the trampoline
792 to the actual nested function. */
794 /* The function name __transfer_from_trampoline is not actually used.
795 The function definition just permits use of "asm with operands"
796 (though the operand list is empty). */
797 #define TRANSFER_FROM_TRAMPOLINE \
798 void \
799 __transfer_from_trampoline () \
801 asm ("___trampoline:"); \
802 asm ("movd 16(r2),tos"); \
803 asm ("movd 12(r2),r2"); \
804 asm ("ret 0"); \
807 /* Addressing modes, and classification of registers for them. */
809 /* #define HAVE_POST_INCREMENT */
810 /* #define HAVE_POST_DECREMENT */
812 /* #define HAVE_PRE_DECREMENT */
813 /* #define HAVE_PRE_INCREMENT */
815 /* Macros to check register numbers against specific register classes. */
817 /* These assume that REGNO is a hard or pseudo reg number.
818 They give nonzero only if REGNO is a hard reg of the suitable class
819 or a pseudo reg currently allocated to a suitable hard reg.
820 Since they use reg_renumber, they are safe only once reg_renumber
821 has been allocated, which happens in local-alloc.c. */
823 /* note that FP and SP cannot be used as an index. What about PC? */
824 #define REGNO_OK_FOR_INDEX_P(REGNO) \
825 ((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8)
826 #define REGNO_OK_FOR_BASE_P(REGNO) \
827 ((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8 \
828 || (REGNO) == FRAME_POINTER_REGNUM || (REGNO) == STACK_POINTER_REGNUM)
830 #define FP_REG_P(X) (GET_CODE (X) == REG && REGNO (X) > 7 && REGNO (X) < 16)
832 /* Maximum number of registers that can appear in a valid memory address. */
834 #define MAX_REGS_PER_ADDRESS 2
836 /* Recognize any constant value that is a valid address.
837 This might not work on future ns32k processors as negative
838 displacements are not officially allowed but a mode reserved
839 to National. This works on processors up to 32532, though. */
841 #define CONSTANT_ADDRESS_P(X) \
842 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
843 || GET_CODE (X) == CONST \
844 || (GET_CODE (X) == CONST_INT \
845 && ((unsigned)INTVAL (X) >= 0xe0000000 \
846 || (unsigned)INTVAL (X) < 0x20000000)))
848 #define CONSTANT_ADDRESS_NO_LABEL_P(X) \
849 (GET_CODE (X) == CONST_INT \
850 && ((unsigned)INTVAL (X) >= 0xe0000000 \
851 || (unsigned)INTVAL (X) < 0x20000000))
853 /* Return the register class of a scratch register needed to copy IN into
854 or out of a register in CLASS in MODE. If it can be done directly,
855 NO_REGS is returned. */
857 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
858 secondary_reload_class (CLASS, MODE, IN)
860 /* Nonzero if the constant value X is a legitimate general operand.
861 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
863 #define LEGITIMATE_CONSTANT_P(X) 1
865 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
866 and check its validity for a certain class.
867 We have two alternate definitions for each of them.
868 The usual definition accepts all pseudo regs; the other rejects
869 them unless they have been allocated suitable hard regs.
870 The symbol REG_OK_STRICT causes the latter definition to be used.
872 Most source files want to accept pseudo regs in the hope that
873 they will get allocated to the class that the insn wants them to be in.
874 Source files for reload pass need to be strict.
875 After reload, it makes no difference, since pseudo regs have
876 been eliminated by then. */
878 #ifndef REG_OK_STRICT
880 /* Nonzero if X is a hard reg that can be used as an index
881 or if it is a pseudo reg. */
882 #define REG_OK_FOR_INDEX_P(X) \
883 (REGNO (X) < 8 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
884 /* Nonzero if X is a hard reg that can be used as a base reg
885 of if it is a pseudo reg. */
886 #define REG_OK_FOR_BASE_P(X) (REGNO (X) < 8 || REGNO (X) >= FRAME_POINTER_REGNUM)
887 /* Nonzero if X is a floating point reg or a pseudo reg. */
889 #else
891 /* Nonzero if X is a hard reg that can be used as an index. */
892 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
893 /* Nonzero if X is a hard reg that can be used as a base reg. */
894 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
896 #endif
898 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
899 that is a valid memory address for an instruction.
900 The MODE argument is the machine mode for the MEM expression
901 that wants to use this address.
903 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
905 /* 1 if X is an address that we could indirect through. */
906 /***** NOTE ***** There is a bug in the Sequent assembler which fails
907 to fixup addressing information for symbols used as offsets
908 from registers which are not FP or SP (or SB or PC). This
909 makes _x(fp) valid, while _x(r0) is invalid. */
911 #define INDIRECTABLE_1_ADDRESS_P(X) \
912 (CONSTANT_ADDRESS_P (X) \
913 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
914 || (GET_CODE (X) == PLUS \
915 && GET_CODE (XEXP (X, 0)) == REG \
916 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
917 && ((flag_pic || TARGET_HIMEM) ? \
918 CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1)) \
920 CONSTANT_ADDRESS_P (XEXP (X, 1))) \
921 && (GET_CODE (X) != CONST_INT || NS32K_DISPLACEMENT_P (INTVAL (X)))))
923 /* 1 if integer I will fit in a 4 byte displacement field.
924 Strictly speaking, we can't be sure that a symbol will fit this range.
925 But, in practice, it always will. */
927 /* idall@eleceng.adelaide.edu.au says that the 32016 and 32032
928 can handle the full range of displacements--it is only the addresses
929 that have a limited range. So the following was deleted:
930 (((i) <= 16777215 && (i) >= -16777216)
931 || ((TARGET_32532 || TARGET_32332) && ...)) */
932 #define NS32K_DISPLACEMENT_P(i) \
933 ((i) < (1 << 29) && (i) >= - (1 << 29))
935 /* Check for frame pointer or stack pointer. */
936 #define MEM_REG(X) \
937 (GET_CODE (X) == REG && (REGNO (X) ^ 16) < 2)
939 /* A memory ref whose address is the FP or SP, with optional integer offset,
940 or (on certain machines) a constant address. */
941 #define INDIRECTABLE_2_ADDRESS_P(X) \
942 (GET_CODE (X) == MEM \
943 && (((xfoo0 = XEXP (X, 0), MEM_REG (xfoo0)) \
944 || (GET_CODE (xfoo0) == PLUS \
945 && MEM_REG (XEXP (xfoo0, 0)) \
946 && CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfoo0, 1)))) \
947 || (TARGET_SB && CONSTANT_ADDRESS_P (xfoo0))))
949 /* Go to ADDR if X is a valid address not using indexing.
950 (This much is the easy part.) */
951 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
952 { register rtx xfoob = (X); \
953 if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; \
954 if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
955 if (GET_CODE (X) == PLUS) \
956 if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1))) \
957 if (INDIRECTABLE_2_ADDRESS_P (XEXP (X, 0))) \
958 goto ADDR; \
961 /* Go to ADDR if X is a valid address not using indexing.
962 (This much is the easy part.) */
963 #define GO_IF_INDEXING(X, MODE, ADDR) \
964 { register rtx xfoob = (X); \
965 if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 0), MODE)) \
966 GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 1), ADDR); \
967 if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 1), MODE)) \
968 GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 0), ADDR); } \
970 #define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
971 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; \
972 if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
973 if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; \
976 /* 1 if PROD is either a reg times size of mode MODE
977 or just a reg, if MODE is just one byte. Actually, on the ns32k,
978 since the index mode is independent of the operand size,
979 we can match more stuff...
981 This macro's expansion uses the temporary variables xfoo0, xfoo1
982 and xfoo2 that must be declared in the surrounding context. */
983 #define INDEX_TERM_P(PROD, MODE) \
984 ((GET_CODE (PROD) == REG && REG_OK_FOR_INDEX_P (PROD)) \
985 || (GET_CODE (PROD) == MULT \
986 && (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
987 (GET_CODE (xfoo1) == CONST_INT \
988 && GET_CODE (xfoo0) == REG \
989 && FITS_INDEX_RANGE (INTVAL (xfoo1)) \
990 && REG_OK_FOR_INDEX_P (xfoo0)))))
992 #define FITS_INDEX_RANGE(X) \
993 ((xfoo2 = (unsigned)(X)-1), \
994 ((xfoo2 < 4 && xfoo2 != 2) || xfoo2 == 7))
996 /* Note that xfoo0, xfoo1, xfoo2 are used in some of the submacros above. */
997 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
998 { register rtx xfooy, xfoo0, xfoo1; \
999 unsigned xfoo2; \
1000 extern int current_function_uses_pic_offset_table, flag_pic; \
1001 xfooy = X; \
1002 if (flag_pic && ! current_function_uses_pic_offset_table \
1003 && global_symbolic_reference_mentioned_p (X, 1)) \
1004 current_function_uses_pic_offset_table = 1; \
1005 GO_IF_NONINDEXED_ADDRESS (xfooy, ADDR); \
1006 if (GET_CODE (xfooy) == PLUS) \
1008 if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 1)) \
1009 && GET_CODE (XEXP (xfooy, 0)) == PLUS) \
1010 xfooy = XEXP (xfooy, 0); \
1011 else if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 0)) \
1012 && GET_CODE (XEXP (xfooy, 1)) == PLUS) \
1013 xfooy = XEXP (xfooy, 1); \
1014 GO_IF_INDEXING (xfooy, MODE, ADDR); \
1016 else if (INDEX_TERM_P (xfooy, MODE)) \
1017 goto ADDR; \
1018 else if (GET_CODE (xfooy) == PRE_DEC) \
1019 if (REGNO (XEXP (xfooy, 0)) == STACK_POINTER_REGNUM) goto ADDR; \
1020 else abort (); \
1023 /* Try machine-dependent ways of modifying an illegitimate address
1024 to be legitimate. If we find one, return the new, valid address.
1025 This macro is used in only one place: `memory_address' in explow.c.
1027 OLDX is the address as it was before break_out_memory_refs was called.
1028 In some cases it is useful to look at this to decide what needs to be done.
1030 MODE and WIN are passed so that this macro can use
1031 GO_IF_LEGITIMATE_ADDRESS.
1033 It is always safe for this macro to do nothing. It exists to recognize
1034 opportunities to optimize the output.
1036 For the ns32k, we do nothing */
1038 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
1040 /* Nonzero if the constant value X is a legitimate general operand
1041 when generating PIC code. It is given that flag_pic is on and
1042 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1044 extern int current_function_uses_pic_offset_table, flag_pic;
1045 #define LEGITIMATE_PIC_OPERAND_P(X) \
1046 (((! current_function_uses_pic_offset_table \
1047 && global_symbolic_reference_mentioned_p (X, 1))? \
1048 (current_function_uses_pic_offset_table = 1):0 \
1049 ), 1)
1051 /* Define this macro if references to a symbol must be treated
1052 differently depending on something about the variable or
1053 function named by the symbol (such as what section it is in).
1055 On the ns32k, if using PIC, mark a SYMBOL_REF for a non-global
1056 symbol or a code symbol. These symbols are referenced via pc
1057 and not via sb. */
1059 #define ENCODE_SECTION_INFO(DECL) \
1060 do \
1062 extern int flag_pic; \
1063 if (flag_pic) \
1065 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1066 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
1067 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
1068 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1069 || ! TREE_PUBLIC (DECL)); \
1072 while (0)
1074 /* Go to LABEL if ADDR (a legitimate address expression)
1075 has an effect that depends on the machine mode it is used for.
1076 On the ns32k, only predecrement and postincrement address depend thus
1077 (the amount of decrement or increment being the length of the operand). */
1079 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1080 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
1081 goto LABEL;}
1083 /* Specify the machine mode that this machine uses
1084 for the index in the tablejump instruction.
1085 HI mode is more efficient but the range is not wide enough for
1086 all programs. */
1087 #define CASE_VECTOR_MODE SImode
1089 /* Define this if the tablejump instruction expects the table
1090 to contain offsets from the address of the table.
1091 Do not define this if the table should contain absolute addresses. */
1092 #define CASE_VECTOR_PC_RELATIVE
1094 /* Specify the tree operation to be used to convert reals to integers. */
1095 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1097 /* This is the kind of divide that is easiest to do in the general case. */
1098 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1100 /* Define this as 1 if `char' should by default be signed; else as 0. */
1101 #define DEFAULT_SIGNED_CHAR 1
1103 /* Max number of bytes we can move from memory to memory
1104 in one reasonably fast instruction. */
1105 #define MOVE_MAX 4
1107 /* Define this if zero-extension is slow (more than one real instruction). */
1108 /* #define SLOW_ZERO_EXTEND */
1110 /* Nonzero if access to memory by bytes is slow and undesirable. */
1111 #define SLOW_BYTE_ACCESS 0
1113 /* Define if shifts truncate the shift count
1114 which implies one can omit a sign-extension or zero-extension
1115 of a shift count. */
1116 /* #define SHIFT_COUNT_TRUNCATED */
1118 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1119 is done just by pretending it is already truncated. */
1120 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1122 /* We assume that the store-condition-codes instructions store 0 for false
1123 and some other value for true. This is the value stored for true. */
1125 #define STORE_FLAG_VALUE 1
1127 /* Specify the machine mode that pointers have.
1128 After generation of rtl, the compiler makes no further distinction
1129 between pointers and any other objects of this machine mode. */
1130 #define Pmode SImode
1132 /* A function address in a call instruction
1133 is a byte address (for indexing purposes)
1134 so give the MEM rtx a byte's mode. */
1135 #define FUNCTION_MODE QImode
1137 /* Compute the cost of address ADDRESS. */
1139 #define ADDRESS_COST(RTX) calc_address_cost (RTX)
1141 /* Compute the cost of computing a constant rtl expression RTX
1142 whose rtx-code is CODE. The body of this macro is a portion
1143 of a switch statement. If the code is computed here,
1144 return it with a return statement. Otherwise, break from the switch. */
1146 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1147 case CONST_INT: \
1148 if (INTVAL (RTX) <= 7 && INTVAL (RTX) >= -8) return 0; \
1149 if (INTVAL (RTX) < 0x2000 && INTVAL (RTX) >= -0x2000) \
1150 return 1; \
1151 case CONST: \
1152 case LABEL_REF: \
1153 case SYMBOL_REF: \
1154 return 3; \
1155 case CONST_DOUBLE: \
1156 return 5;
1158 /* Tell final.c how to eliminate redundant test instructions. */
1160 /* Here we define machine-dependent flags and fields in cc_status
1161 (see `conditions.h'). */
1163 /* This bit means that what ought to be in the Z bit
1164 should be tested in the F bit. */
1165 #define CC_Z_IN_F 04000
1167 /* This bit means that what ought to be in the Z bit
1168 is complemented in the F bit. */
1169 #define CC_Z_IN_NOT_F 010000
1171 /* Store in cc_status the expressions
1172 that the condition codes will describe
1173 after execution of an instruction whose pattern is EXP.
1174 Do not alter them if the instruction would not alter the cc's. */
1176 #define NOTICE_UPDATE_CC(EXP, INSN) \
1177 { if (GET_CODE (EXP) == SET) \
1178 { if (GET_CODE (SET_DEST (EXP)) == CC0) \
1179 { cc_status.flags = 0; \
1180 cc_status.value1 = SET_DEST (EXP); \
1181 cc_status.value2 = SET_SRC (EXP); \
1183 else if (GET_CODE (SET_SRC (EXP)) == CALL) \
1184 { CC_STATUS_INIT; } \
1185 else if (GET_CODE (SET_DEST (EXP)) == REG) \
1186 { if (cc_status.value1 \
1187 && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
1188 cc_status.value1 = 0; \
1189 if (cc_status.value2 \
1190 && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
1191 cc_status.value2 = 0; \
1193 else if (GET_CODE (SET_DEST (EXP)) == MEM) \
1194 { CC_STATUS_INIT; } \
1196 else if (GET_CODE (EXP) == PARALLEL \
1197 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
1198 { if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == CC0) \
1199 { cc_status.flags = 0; \
1200 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
1201 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \
1203 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == REG) \
1204 { if (cc_status.value1 \
1205 && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value1)) \
1206 cc_status.value1 = 0; \
1207 if (cc_status.value2 \
1208 && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value2)) \
1209 cc_status.value2 = 0; \
1211 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == MEM) \
1212 { CC_STATUS_INIT; } \
1214 else if (GET_CODE (EXP) == CALL) \
1215 { /* all bets are off */ CC_STATUS_INIT; } \
1216 else { /* nothing happens? CC_STATUS_INIT; */} \
1217 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
1218 && cc_status.value2 \
1219 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
1220 abort (); \
1223 /* Describe the costs of the following register moves which are discouraged:
1224 1.) Moves between the Floating point registers and the frame pointer and stack pointer
1225 2.) Moves between the stack pointer and the frame pointer
1226 3.) Moves between the floating point and general registers */
1228 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1229 ((((CLASS1) == FLOAT_REGS && ((CLASS2) == STACK_POINTER_REG || (CLASS2) == FRAME_POINTER_REG)) \
1230 || ((CLASS2) == FLOAT_REGS && ((CLASS1) == STACK_POINTER_REG || (CLASS1) == FRAME_POINTER_REG)) \
1231 || ((CLASS1) == STACK_POINTER_REG && (CLASS2) == FRAME_POINTER_REG) \
1232 || ((CLASS2) == STACK_POINTER_REG && (CLASS1) == FRAME_POINTER_REG) \
1233 || ((CLASS1) == FLOAT_REGS && (CLASS2) == GENERAL_REGS) \
1234 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FLOAT_REGS)) \
1235 ? 4 : 2)
1237 #define OUTPUT_JUMP(NORMAL, NO_OV) \
1238 { if (cc_status.flags & CC_NO_OVERFLOW) \
1239 return NO_OV; \
1240 return NORMAL; }
1242 /* Dividing the output into sections */
1244 /* Output before read-only data. */
1246 #define TEXT_SECTION_ASM_OP ".text"
1248 /* Output before writable data. */
1250 #define DATA_SECTION_ASM_OP ".data"
1252 /* Define the output Assembly Language */
1254 /* Output at beginning of assembler file. */
1256 #define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
1258 /* Output to assembler file text saying following lines
1259 may contain character constants, extra white space, comments, etc. */
1261 #define ASM_APP_ON "#APP\n"
1263 /* Output to assembler file text saying following lines
1264 no longer contain unusual constructs. */
1266 #define ASM_APP_OFF "#NO_APP\n"
1268 /* Output of Data */
1270 /* This is how to output an assembler line defining a `double' constant. */
1272 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1273 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1275 /* This is how to output an assembler line defining a `float' constant. */
1277 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1278 fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
1280 /* This is how to output an assembler line defining an `int' constant. */
1282 #define ASM_OUTPUT_INT(FILE,VALUE) \
1283 ( fprintf (FILE, "\t.long "), \
1284 output_addr_const (FILE, (VALUE)), \
1285 fprintf (FILE, "\n"))
1287 /* Likewise for `char' and `short' constants. */
1289 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1290 ( fprintf (FILE, "\t.word "), \
1291 output_addr_const (FILE, (VALUE)), \
1292 fprintf (FILE, "\n"))
1294 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1295 ( fprintf (FILE, "\t.byte "), \
1296 output_addr_const (FILE, (VALUE)), \
1297 fprintf (FILE, "\n"))
1299 /* This is how to output an assembler line for a numeric constant byte. */
1301 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1302 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1304 /* This is how to output an assembler line defining an external/static
1305 address which is not in tree format (for collect.c). */
1307 #define ASM_OUTPUT_LABELREF_AS_INT(STREAM, NAME) \
1308 do { \
1309 fprintf (STREAM, "\t.long\t"); \
1310 ASM_OUTPUT_LABELREF (STREAM, NAME); \
1311 fprintf (STREAM, "\n"); \
1312 } while (0)
1314 /* This is how to output an insn to push a register on the stack.
1315 It need not be very fast code. */
1317 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1318 fprintf (FILE, "\tmovd %s,tos\n", reg_names[REGNO])
1320 /* This is how to output an insn to pop a register from the stack.
1321 It need not be very fast code. */
1323 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1324 fprintf (FILE, "\tmovd tos,%s\n", reg_names[REGNO])
1326 /* How to refer to registers in assembler output.
1327 This sequence is indexed by compiler's hard-register-number (see above). */
1329 #define REGISTER_NAMES \
1330 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1331 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1332 "fp", "sp"}
1334 /* How to renumber registers for dbx and gdb.
1335 NS32000 may need more change in the numeration. */
1337 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO < 8) ? (REGNO)+4 : (REGNO))
1339 /* This is how to output the definition of a user-level label named NAME,
1340 such as the label on a static function or variable NAME. */
1342 #ifndef COLLECT
1343 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1344 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1345 #else
1346 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
1347 do { \
1348 fprintf (STREAM, "%s:\n", NAME); \
1349 } while (0)
1350 #endif
1352 /* This is how to output a command to make the user-level label named NAME
1353 defined for reference from other files. */
1355 #ifndef COLLECT
1356 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1357 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1358 #else
1359 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
1360 do { \
1361 fprintf (STREAM, "\t.globl\t%s\n", NAME); \
1362 } while (0)
1363 #endif
1365 /* This is how to output a reference to a user-level label named NAME.
1366 `assemble_name' uses this. */
1368 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1369 fprintf (FILE, "_%s", NAME)
1371 /* This is how to output an internal numbered label where
1372 PREFIX is the class of label and NUM is the number within the class. */
1374 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1375 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1377 /* This is how to store into the string LABEL
1378 the symbol_ref name of an internal numbered label where
1379 PREFIX is the class of label and NUM is the number within the class.
1380 This is suitable for output with `assemble_name'. */
1382 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1383 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1385 /* This is how to align the code that follows an unconditional branch.
1386 Note that 0xa2 is a no-op. */
1388 #define ASM_OUTPUT_ALIGN_CODE(FILE) \
1389 fprintf (FILE, "\t.align 2,0xa2\n")
1391 /* This is how to output an element of a case-vector that is absolute.
1392 (The ns32k does not use such vectors,
1393 but we must define this macro anyway.) */
1395 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1396 fprintf (FILE, "\t.long L%d\n", VALUE)
1398 /* This is how to output an element of a case-vector that is relative. */
1399 /* ** Notice that the second element is LI format! */
1400 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1401 fprintf (FILE, "\t.long L%d-LI%d\n", VALUE, REL)
1403 /* This is how to output an assembler line
1404 that says to advance the location counter
1405 to a multiple of 2**LOG bytes. */
1407 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1408 fprintf (FILE, "\t.align %d\n", (LOG))
1410 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1411 fprintf (FILE, "\t.space %u\n", (SIZE))
1413 /* This says how to output an assembler line
1414 to define a global common symbol. */
1416 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1417 ( fputs (".comm ", (FILE)), \
1418 assemble_name ((FILE), (NAME)), \
1419 fprintf ((FILE), ",%u\n", (ROUNDED)))
1421 /* This says how to output an assembler line
1422 to define a local common symbol. */
1424 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1425 ( fputs (".lcomm ", (FILE)), \
1426 assemble_name ((FILE), (NAME)), \
1427 fprintf ((FILE), ",%u\n", (ROUNDED)))
1429 /* Store in OUTPUT a string (made with alloca) containing
1430 an assembler-name for a local static variable named NAME.
1431 LABELNO is an integer which is different for each call. */
1433 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1434 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1435 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1437 /* Define the parentheses used to group arithmetic operations
1438 in assembler code. */
1440 #define ASM_OPEN_PAREN "("
1441 #define ASM_CLOSE_PAREN ")"
1443 /* Define results of standard character escape sequences. */
1444 #define TARGET_BELL 007
1445 #define TARGET_BS 010
1446 #define TARGET_TAB 011
1447 #define TARGET_NEWLINE 012
1448 #define TARGET_VT 013
1449 #define TARGET_FF 014
1450 #define TARGET_CR 015
1452 /* Print an instruction operand X on file FILE.
1453 CODE is the code from the %-spec that requested printing this operand;
1454 if `%z3' was used to print operand 3, then CODE is 'z'. */
1456 /* %$ means print the prefix for an immediate operand. */
1458 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1459 ((CODE) == '$' || (CODE) == '?')
1461 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
1463 /* Print a memory operand whose address is X, on file FILE. */
1465 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address(FILE, ADDR)
1467 /* Define functions in ns32k.c and used in insn-output.c. */
1469 extern char *output_move_double ();
1470 extern char *output_shift_insn ();
1471 extern char *output_move_dconst ();
1474 Local variables:
1475 version-control: t
1476 End: