2015-09-28 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / ada / sem_util.ads
blob650731746bfe47d48a8776ba486e26ce25830d2e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Einfo; use Einfo;
29 with Exp_Tss; use Exp_Tss;
30 with Namet; use Namet;
31 with Opt; use Opt;
32 with Snames; use Snames;
33 with Types; use Types;
34 with Uintp; use Uintp;
35 with Urealp; use Urealp;
37 package Sem_Util is
39 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
40 -- Given a type that implements interfaces look for its associated
41 -- definition node and return its list of interfaces.
43 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
44 -- Add A to the list of access types to process when expanding the
45 -- freeze node of E.
47 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
48 -- Given a block statement N, generate an internal E_Block label and make
49 -- it the identifier of the block. Id denotes the generated entity. If the
50 -- block already has an identifier, Id returns the entity of its label.
52 procedure Add_Contract_Item (Prag : Node_Id; Id : Entity_Id);
53 -- Add pragma Prag to the contract of a constant, entry, package [body],
54 -- subprogram [body] or variable denoted by Id. The following are valid
55 -- pragmas:
56 -- Abstract_State
57 -- Async_Readers
58 -- Async_Writers
59 -- Contract_Cases
60 -- Depends
61 -- Effective_Reads
62 -- Effective_Writes
63 -- Extensions_Visible
64 -- Global
65 -- Initial_Condition
66 -- Initializes
67 -- Part_Of
68 -- Postcondition
69 -- Precondition
70 -- Refined_Depends
71 -- Refined_Global
72 -- Refined_Post
73 -- Refined_States
74 -- Test_Case
76 procedure Add_Global_Declaration (N : Node_Id);
77 -- These procedures adds a declaration N at the library level, to be
78 -- elaborated before any other code in the unit. It is used for example
79 -- for the entity that marks whether a unit has been elaborated. The
80 -- declaration is added to the Declarations list of the Aux_Decls_Node
81 -- for the current unit. The declarations are added in the current scope,
82 -- so the caller should push a new scope as required before the call.
84 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
85 -- Given two types, returns True if we are in Allow_Integer_Address mode
86 -- and one of the types is (a descendent of) System.Address (and this type
87 -- is private), and the other type is any integer type.
89 function Addressable (V : Uint) return Boolean;
90 function Addressable (V : Int) return Boolean;
91 pragma Inline (Addressable);
92 -- Returns True if the value of V is the word size or an addressable factor
93 -- of the word size (typically 8, 16, 32 or 64).
95 procedure Aggregate_Constraint_Checks
96 (Exp : Node_Id;
97 Check_Typ : Entity_Id);
98 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
99 -- and Check_Typ a constrained record type with discriminants, we generate
100 -- the appropriate discriminant checks. If Exp is an array aggregate then
101 -- emit the appropriate length checks. If Exp is a scalar type, or a string
102 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
103 -- are performed at run time. Also used for expressions in the argument of
104 -- 'Update, which shares some of the features of an aggregate.
106 function Alignment_In_Bits (E : Entity_Id) return Uint;
107 -- If the alignment of the type or object E is currently known to the
108 -- compiler, then this function returns the alignment value in bits.
109 -- Otherwise Uint_0 is returned, indicating that the alignment of the
110 -- entity is not yet known to the compiler.
112 procedure Append_Inherited_Subprogram (S : Entity_Id);
113 -- If the parent of the operation is declared in the visible part of
114 -- the current scope, the inherited operation is visible even though the
115 -- derived type that inherits the operation may be completed in the private
116 -- part of the current package.
118 procedure Apply_Compile_Time_Constraint_Error
119 (N : Node_Id;
120 Msg : String;
121 Reason : RT_Exception_Code;
122 Ent : Entity_Id := Empty;
123 Typ : Entity_Id := Empty;
124 Loc : Source_Ptr := No_Location;
125 Rep : Boolean := True;
126 Warn : Boolean := False);
127 -- N is a subexpression which will raise constraint error when evaluated
128 -- at runtime. Msg is a message that explains the reason for raising the
129 -- exception. The last character is ? if the message is always a warning,
130 -- even in Ada 95, and is not a ? if the message represents an illegality
131 -- (because of violation of static expression rules) in Ada 95 (but not
132 -- in Ada 83). Typically this routine posts all messages at the Sloc of
133 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
134 -- the message. After posting the appropriate message, and if the flag
135 -- Rep is set, this routine replaces the expression with an appropriate
136 -- N_Raise_Constraint_Error node using the given Reason code. This node
137 -- is then marked as being static if the original node is static, but
138 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
139 -- The error message may contain a } or & insertion character. This
140 -- normally references Etype (N), unless the Ent argument is given
141 -- explicitly, in which case it is used instead. The type of the raise
142 -- node that is built is normally Etype (N), but if the Typ parameter
143 -- is present, this is used instead. Warn is normally False. If it is
144 -- True then the message is treated as a warning even though it does
145 -- not end with a ? (this is used when the caller wants to parameterize
146 -- whether an error or warning is given).
148 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
149 -- Given the entity of an abstract state or a variable, determine whether
150 -- Id is subject to external property Async_Readers and if it is, the
151 -- related expression evaluates to True.
153 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
154 -- Given the entity of an abstract state or a variable, determine whether
155 -- Id is subject to external property Async_Writers and if it is, the
156 -- related expression evaluates to True.
158 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
159 -- If at the point of declaration an array type has a private or limited
160 -- component, several array operations are not avaiable on the type, and
161 -- the array type is flagged accordingly. If in the immediate scope of
162 -- the array type the component becomes non-private or non-limited, these
163 -- operations become avaiable. This can happen if the scopes of both types
164 -- are open, and the scope of the array is not outside the scope of the
165 -- component.
167 procedure Bad_Attribute
168 (N : Node_Id;
169 Nam : Name_Id;
170 Warn : Boolean := False);
171 -- Called when node N is expected to contain a valid attribute name, and
172 -- Nam is found instead. If Warn is set True this is a warning, else this
173 -- is an error.
175 procedure Bad_Predicated_Subtype_Use
176 (Msg : String;
177 N : Node_Id;
178 Typ : Entity_Id;
179 Suggest_Static : Boolean := False);
180 -- This is called when Typ, a predicated subtype, is used in a context
181 -- which does not allow the use of a predicated subtype. Msg is passed to
182 -- Error_Msg_FE to output an appropriate message using N as the location,
183 -- and Typ as the entity. The caller must set up any insertions other than
184 -- the & for the type itself. Note that if Typ is a generic actual type,
185 -- then the message will be output as a warning, and a raise Program_Error
186 -- is inserted using Insert_Action with node N as the insertion point. Node
187 -- N also supplies the source location for construction of the raise node.
188 -- If Typ does not have any predicates, the call has no effect. Set flag
189 -- Suggest_Static when the context warrants an advice on how to avoid the
190 -- use error.
192 function Bad_Unordered_Enumeration_Reference
193 (N : Node_Id;
194 T : Entity_Id) return Boolean;
195 -- Node N contains a potentially dubious reference to type T, either an
196 -- explicit comparison, or an explicit range. This function returns True
197 -- if the type T is an enumeration type for which No pragma Order has been
198 -- given, and the reference N is not in the same extended source unit as
199 -- the declaration of T.
201 function Build_Actual_Subtype
202 (T : Entity_Id;
203 N : Node_Or_Entity_Id) return Node_Id;
204 -- Build an anonymous subtype for an entity or expression, using the
205 -- bounds of the entity or the discriminants of the enclosing record.
206 -- T is the type for which the actual subtype is required, and N is either
207 -- a defining identifier, or any subexpression.
209 function Build_Actual_Subtype_Of_Component
210 (T : Entity_Id;
211 N : Node_Id) return Node_Id;
212 -- Determine whether a selected component has a type that depends on
213 -- discriminants, and build actual subtype for it if so.
215 function Build_Default_Init_Cond_Call
216 (Loc : Source_Ptr;
217 Obj_Id : Entity_Id;
218 Typ : Entity_Id) return Node_Id;
219 -- Build a call to the default initial condition procedure of type Typ with
220 -- Obj_Id as the actual parameter.
222 procedure Build_Default_Init_Cond_Procedure_Bodies (Priv_Decls : List_Id);
223 -- Inspect the contents of private declarations Priv_Decls and build the
224 -- bodies the default initial condition procedures for all types subject
225 -- to pragma Default_Initial_Condition.
227 procedure Build_Default_Init_Cond_Procedure_Declaration (Typ : Entity_Id);
228 -- If private type Typ is subject to pragma Default_Initial_Condition,
229 -- build the declaration of the procedure which verifies the assumption
230 -- of the pragma at runtime. The declaration is inserted after the related
231 -- pragma.
233 function Build_Default_Subtype
234 (T : Entity_Id;
235 N : Node_Id) return Entity_Id;
236 -- If T is an unconstrained type with defaulted discriminants, build a
237 -- subtype constrained by the default values, insert the subtype
238 -- declaration in the tree before N, and return the entity of that
239 -- subtype. Otherwise, simply return T.
241 function Build_Discriminal_Subtype_Of_Component
242 (T : Entity_Id) return Node_Id;
243 -- Determine whether a record component has a type that depends on
244 -- discriminants, and build actual subtype for it if so.
246 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
247 -- Given a compilation unit node N, allocate an elaboration counter for
248 -- the compilation unit, and install it in the Elaboration_Entity field
249 -- of Spec_Id, the entity for the compilation unit.
251 procedure Build_Explicit_Dereference
252 (Expr : Node_Id;
253 Disc : Entity_Id);
254 -- AI05-139: Names with implicit dereference. If the expression N is a
255 -- reference type and the context imposes the corresponding designated
256 -- type, convert N into N.Disc.all. Such expressions are always over-
257 -- loaded with both interpretations, and the dereference interpretation
258 -- carries the name of the reference discriminant.
260 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
261 -- Returns True if the expression cannot possibly raise Constraint_Error.
262 -- The response is conservative in the sense that a result of False does
263 -- not necessarily mean that CE could be raised, but a response of True
264 -- means that for sure CE cannot be raised.
266 procedure Check_Dynamically_Tagged_Expression
267 (Expr : Node_Id;
268 Typ : Entity_Id;
269 Related_Nod : Node_Id);
270 -- Check wrong use of dynamically tagged expression
272 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
273 -- Verify that the full declaration of type T has been seen. If not, place
274 -- error message on node N. Used in object declarations, type conversions
275 -- and qualified expressions.
277 procedure Check_Function_Writable_Actuals (N : Node_Id);
278 -- (Ada 2012): If the construct N has two or more direct constituents that
279 -- are names or expressions whose evaluation may occur in an arbitrary
280 -- order, at least one of which contains a function call with an in out or
281 -- out parameter, then the construct is legal only if: for each name that
282 -- is passed as a parameter of mode in out or out to some inner function
283 -- call C2 (not including the construct N itself), there is no other name
284 -- anywhere within a direct constituent of the construct C other than
285 -- the one containing C2, that is known to refer to the same object (RM
286 -- 6.4.1(6.17/3)).
288 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
289 -- AI05-139-2: Accessors and iterators for containers. This procedure
290 -- checks whether T is a reference type, and if so it adds an interprettion
291 -- to N whose type is the designated type of the reference_discriminant.
292 -- If N is a generalized indexing operation, the interpretation is added
293 -- both to the corresponding function call, and to the indexing node.
295 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
296 -- Within a protected function, the current object is a constant, and
297 -- internal calls to a procedure or entry are illegal. Similarly, other
298 -- uses of a protected procedure in a renaming or a generic instantiation
299 -- in the context of a protected function are illegal (AI05-0225).
301 procedure Check_Later_Vs_Basic_Declarations
302 (Decls : List_Id;
303 During_Parsing : Boolean);
304 -- If During_Parsing is True, check for misplacement of later vs basic
305 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
306 -- restriction is set, do the same: although SPARK 95 removes the
307 -- distinction between initial and later declarative items, the distinction
308 -- remains in the Examiner (JB01-005). Note that the Examiner does not
309 -- count package declarations in later declarative items.
311 procedure Check_Nested_Access (Ent : Entity_Id);
312 -- Check whether Ent denotes an entity declared in an uplevel scope, which
313 -- is accessed inside a nested procedure, and set Has_Uplevel_Reference
314 -- flag accordingly. This is currently only enabled for if on a VM target.
316 procedure Check_No_Hidden_State (Id : Entity_Id);
317 -- Determine whether object or state Id introduces a hidden state. If this
318 -- is the case, emit an error.
320 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
321 -- N is one of the statement forms that is a potentially blocking
322 -- operation. If it appears within a protected action, emit warning.
324 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
325 -- Determine whether the contract of subprogram Subp_Id mentions attribute
326 -- 'Result and it contains an expression that evaluates differently in pre-
327 -- and post-state.
329 procedure Check_Unprotected_Access
330 (Context : Node_Id;
331 Expr : Node_Id);
332 -- Check whether the expression is a pointer to a protected component,
333 -- and the context is external to the protected operation, to warn against
334 -- a possible unlocked access to data.
336 procedure Collect_Interfaces
337 (T : Entity_Id;
338 Ifaces_List : out Elist_Id;
339 Exclude_Parents : Boolean := False;
340 Use_Full_View : Boolean := True);
341 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
342 -- directly or indirectly implemented by T. Exclude_Parents is used to
343 -- avoid the addition of inherited interfaces to the generated list.
344 -- Use_Full_View is used to collect the interfaces using the full-view
345 -- (if available).
347 procedure Collect_Interface_Components
348 (Tagged_Type : Entity_Id;
349 Components_List : out Elist_Id);
350 -- Ada 2005 (AI-251): Collect all the tag components associated with the
351 -- secondary dispatch tables of a tagged type.
353 procedure Collect_Interfaces_Info
354 (T : Entity_Id;
355 Ifaces_List : out Elist_Id;
356 Components_List : out Elist_Id;
357 Tags_List : out Elist_Id);
358 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
359 -- the record component and tag associated with each of these interfaces.
360 -- On exit Ifaces_List, Components_List and Tags_List have the same number
361 -- of elements, and elements at the same position on these tables provide
362 -- information on the same interface type.
364 procedure Collect_Parents
365 (T : Entity_Id;
366 List : out Elist_Id;
367 Use_Full_View : Boolean := True);
368 -- Collect all the parents of Typ. Use_Full_View is used to collect them
369 -- using the full-view of private parents (if available).
371 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
372 -- Called upon type derivation and extension. We scan the declarative part
373 -- in which the type appears, and collect subprograms that have one
374 -- subsidiary subtype of the type. These subprograms can only appear after
375 -- the type itself.
377 function Compile_Time_Constraint_Error
378 (N : Node_Id;
379 Msg : String;
380 Ent : Entity_Id := Empty;
381 Loc : Source_Ptr := No_Location;
382 Warn : Boolean := False) return Node_Id;
383 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
384 -- generates a warning (or error) message in the same manner, but it does
385 -- not replace any nodes. For convenience, the function always returns its
386 -- first argument. The message is a warning if the message ends with ?, or
387 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
389 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
390 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
391 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
393 function Contains_Refined_State (Prag : Node_Id) return Boolean;
394 -- Determine whether pragma Prag contains a reference to the entity of an
395 -- abstract state with a visible refinement. Prag must denote one of the
396 -- following pragmas:
397 -- Depends
398 -- Global
400 function Copy_Component_List
401 (R_Typ : Entity_Id;
402 Loc : Source_Ptr) return List_Id;
403 -- Copy components from record type R_Typ that come from source. Used to
404 -- create a new compatible record type. Loc is the source location assigned
405 -- to the created nodes.
407 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
408 -- Utility to create a parameter profile for a new subprogram spec, when
409 -- the subprogram has a body that acts as spec. This is done for some cases
410 -- of inlining, and for private protected ops. Also used to create bodies
411 -- for stubbed subprograms.
413 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
414 -- Replicate a function or a procedure specification denoted by Spec. The
415 -- resulting tree is an exact duplicate of the original tree. New entities
416 -- are created for the unit name and the formal parameters.
418 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
419 -- If a type is a generic actual type, return the corresponding formal in
420 -- the generic parent unit. There is no direct link in the tree for this
421 -- attribute, except in the case of formal private and derived types.
422 -- Possible optimization???
424 function Corresponding_Spec_Of (Decl : Node_Id) return Entity_Id;
425 -- Return the corresponding spec of Decl when it denotes a package or a
426 -- subprogram [stub], or the defining entity of Decl.
428 procedure Create_Generic_Contract (Unit : Node_Id);
429 -- Create a contract node for a generic package, generic subprogram or a
430 -- generic body denoted by Unit by collecting all source contract-related
431 -- pragmas in the contract of the unit.
433 function Current_Entity (N : Node_Id) return Entity_Id;
434 pragma Inline (Current_Entity);
435 -- Find the currently visible definition for a given identifier, that is to
436 -- say the first entry in the visibility chain for the Chars of N.
438 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
439 -- Find whether there is a previous definition for identifier N in the
440 -- current scope. Because declarations for a scope are not necessarily
441 -- contiguous (e.g. for packages) the first entry on the visibility chain
442 -- for N is not necessarily in the current scope.
444 function Current_Scope return Entity_Id;
445 -- Get entity representing current scope
447 function Current_Subprogram return Entity_Id;
448 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
449 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
450 -- Current_Scope is returned. The returned value is Empty if this is called
451 -- from a library package which is not within any subprogram.
453 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
454 -- Same as Type_Access_Level, except that if the type is the type of an Ada
455 -- 2012 stand-alone object of an anonymous access type, then return the
456 -- static accesssibility level of the object. In that case, the dynamic
457 -- accessibility level of the object may take on values in a range. The low
458 -- bound of that range is returned by Type_Access_Level; this function
459 -- yields the high bound of that range. Also differs from Type_Access_Level
460 -- in the case of a descendant of a generic formal type (returns Int'Last
461 -- instead of 0).
463 function Defining_Entity (N : Node_Id) return Entity_Id;
464 -- Given a declaration N, returns the associated defining entity. If the
465 -- declaration has a specification, the entity is obtained from the
466 -- specification. If the declaration has a defining unit name, then the
467 -- defining entity is obtained from the defining unit name ignoring any
468 -- child unit prefixes.
470 -- Iterator loops also have a defining entity, which holds the list of
471 -- local entities declared during loop expansion. These entities need
472 -- debugging information, generated through Qualify_Entity_Names, and
473 -- the loop declaration must be placed in the table Name_Qualify_Units.
475 function Denotes_Discriminant
476 (N : Node_Id;
477 Check_Concurrent : Boolean := False) return Boolean;
478 -- Returns True if node N is an Entity_Name node for a discriminant. If the
479 -- flag Check_Concurrent is true, function also returns true when N denotes
480 -- the discriminal of the discriminant of a concurrent type. This is needed
481 -- to disable some optimizations on private components of protected types,
482 -- and constraint checks on entry families constrained by discriminants.
484 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
485 -- Detect suspicious overlapping between actuals in a call, when both are
486 -- writable (RM 2012 6.4.1(6.4/3))
488 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
489 -- Functions to detect suspicious overlapping between actuals in a call,
490 -- when one of them is writable. The predicates are those proposed in
491 -- AI05-0144, to detect dangerous order dependence in complex calls.
492 -- I would add a parameter Warn which enables more extensive testing of
493 -- cases as we find appropriate when we are only warning ??? Or perhaps
494 -- return an indication of (Error, Warn, OK) ???
496 function Denotes_Variable (N : Node_Id) return Boolean;
497 -- Returns True if node N denotes a single variable without parentheses
499 function Depends_On_Discriminant (N : Node_Id) return Boolean;
500 -- Returns True if N denotes a discriminant or if N is a range, a subtype
501 -- indication or a scalar subtype where one of the bounds is a
502 -- discriminant.
504 function Designate_Same_Unit
505 (Name1 : Node_Id;
506 Name2 : Node_Id) return Boolean;
507 -- Returns True if Name1 and Name2 designate the same unit name; each of
508 -- these names is supposed to be a selected component name, an expanded
509 -- name, a defining program unit name or an identifier.
511 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
512 -- Expr should be an expression of an access type. Builds an integer
513 -- literal except in cases involving anonymous access types where
514 -- accessibility levels are tracked at runtime (access parameters and Ada
515 -- 2012 stand-alone objects).
517 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
518 -- Same as Einfo.Extra_Accessibility except thtat object renames
519 -- are looked through.
521 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
522 -- Given the entity of an abstract state or a variable, determine whether
523 -- Id is subject to external property Effective_Reads and if it is, the
524 -- related expression evaluates to True.
526 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
527 -- Given the entity of an abstract state or a variable, determine whether
528 -- Id is subject to external property Effective_Writes and if it is, the
529 -- related expression evaluates to True.
531 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
532 -- Returns the enclosing N_Compilation_Unit node that is the root of a
533 -- subtree containing N.
535 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
536 -- Returns the closest ancestor of Typ that is a CPP type.
538 function Enclosing_Declaration (N : Node_Id) return Node_Id;
539 -- Returns the declaration node enclosing N, if any, or Empty otherwise
541 function Enclosing_Generic_Body
542 (N : Node_Id) return Node_Id;
543 -- Returns the Node_Id associated with the innermost enclosing generic
544 -- body, if any. If none, then returns Empty.
546 function Enclosing_Generic_Unit
547 (N : Node_Id) return Node_Id;
548 -- Returns the Node_Id associated with the innermost enclosing generic
549 -- unit, if any. If none, then returns Empty.
551 function Enclosing_Lib_Unit_Entity
552 (E : Entity_Id := Current_Scope) return Entity_Id;
553 -- Returns the entity of enclosing library unit node which is the
554 -- root of the current scope (which must not be Standard_Standard, and the
555 -- caller is responsible for ensuring this condition) or other specified
556 -- entity.
558 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
559 -- Returns the N_Compilation_Unit node of the library unit that is directly
560 -- or indirectly (through a subunit) at the root of a subtree containing
561 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
562 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
563 -- library unit. If no such item is found, returns Empty.
565 function Enclosing_Package (E : Entity_Id) return Entity_Id;
566 -- Utility function to return the Ada entity of the package enclosing
567 -- the entity E, if any. Returns Empty if no enclosing package.
569 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
570 -- Returns the entity of the package or subprogram enclosing E, if any.
571 -- Returns Empty if no enclosing package or subprogram.
573 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
574 -- Utility function to return the Ada entity of the subprogram enclosing
575 -- the entity E, if any. Returns Empty if no enclosing subprogram.
577 procedure Ensure_Freeze_Node (E : Entity_Id);
578 -- Make sure a freeze node is allocated for entity E. If necessary, build
579 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
581 procedure Enter_Name (Def_Id : Entity_Id);
582 -- Insert new name in symbol table of current scope with check for
583 -- duplications (error message is issued if a conflict is found).
584 -- Note: Enter_Name is not used for overloadable entities, instead these
585 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
587 function Entity_Of (N : Node_Id) return Entity_Id;
588 -- Return the entity of N or Empty. If N is a renaming, return the entity
589 -- of the root renamed object.
591 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
592 -- This procedure is called after issuing a message complaining about an
593 -- inappropriate use of limited type T. If useful, it adds additional
594 -- continuation lines to the message explaining why type T is limited.
595 -- Messages are placed at node N.
597 type Extensions_Visible_Mode is
598 (Extensions_Visible_None,
599 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
600 -- value acts as a default in a non-SPARK compilation.
602 Extensions_Visible_False,
603 -- A value of "False" signifies that Extensions_Visible is either
604 -- missing or the pragma is present and the value of its Boolean
605 -- expression is False.
607 Extensions_Visible_True);
608 -- A value of "True" signifies that Extensions_Visible is present and
609 -- the value of its Boolean expression is True.
611 function Extensions_Visible_Status
612 (Id : Entity_Id) return Extensions_Visible_Mode;
613 -- Given the entity of a subprogram or formal parameter subject to pragma
614 -- Extensions_Visible, return the Boolean value denoted by the expression
615 -- of the pragma.
617 procedure Find_Actual
618 (N : Node_Id;
619 Formal : out Entity_Id;
620 Call : out Node_Id);
621 -- Determines if the node N is an actual parameter of a function of a
622 -- procedure call. If so, then Formal points to the entity for the formal
623 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
624 -- Call is set to the node for the corresponding call. If the node N is not
625 -- an actual parameter then Formal and Call are set to Empty.
627 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
628 -- Find specific type of a class-wide type, and handle the case of an
629 -- incomplete type coming either from a limited_with clause or from an
630 -- incomplete type declaration. If resulting type is private return its
631 -- full view.
633 function Find_Body_Discriminal
634 (Spec_Discriminant : Entity_Id) return Entity_Id;
635 -- Given a discriminant of the record type that implements a task or
636 -- protected type, return the discriminal of the corresponding discriminant
637 -- of the actual concurrent type.
639 function Find_Corresponding_Discriminant
640 (Id : Node_Id;
641 Typ : Entity_Id) return Entity_Id;
642 -- Because discriminants may have different names in a generic unit and in
643 -- an instance, they are resolved positionally when possible. A reference
644 -- to a discriminant carries the discriminant that it denotes when it is
645 -- analyzed. Subsequent uses of this id on a different type denotes the
646 -- discriminant at the same position in this new type.
648 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
649 -- Given an arbitrary entity, try to find the nearest enclosing iterator
650 -- loop. If such a loop is found, return the entity of its identifier (the
651 -- E_Loop scope), otherwise return Empty.
653 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
654 -- Find the nested loop statement in a conditional block. Loops subject to
655 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
656 -- loop are nested within the block.
658 procedure Find_Overlaid_Entity
659 (N : Node_Id;
660 Ent : out Entity_Id;
661 Off : out Boolean);
662 -- The node N should be an address representation clause. Determines if
663 -- the target expression is the address of an entity with an optional
664 -- offset. If so, set Ent to the entity and, if there is an offset, set
665 -- Off to True, otherwise to False. If N is not an address representation
666 -- clause, or if it is not possible to determine that the address is of
667 -- this form, then set Ent to Empty.
669 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
670 -- Return the type of formal parameter Param as determined by its
671 -- specification.
673 -- The following type describes the placement of an arbitrary entity with
674 -- respect to SPARK visible / hidden state space.
676 type State_Space_Kind is
677 (Not_In_Package,
678 -- An entity is not in the visible, private or body state space when
679 -- the immediate enclosing construct is not a package.
681 Visible_State_Space,
682 -- An entity is in the visible state space when it appears immediately
683 -- within the visible declarations of a package or when it appears in
684 -- the visible state space of a nested package which in turn is declared
685 -- in the visible declarations of an enclosing package:
687 -- package Pack is
688 -- Visible_Variable : ...
689 -- package Nested
690 -- with Abstract_State => Visible_State
691 -- is
692 -- Visible_Nested_Variable : ...
693 -- end Nested;
694 -- end Pack;
696 -- Entities associated with a package instantiation inherit the state
697 -- space from the instance placement:
699 -- generic
700 -- package Gen is
701 -- Generic_Variable : ...
702 -- end Gen;
704 -- with Gen;
705 -- package Pack is
706 -- package Inst is new Gen;
707 -- -- Generic_Variable is in the visible state space of Pack
708 -- end Pack;
710 Private_State_Space,
711 -- An entity is in the private state space when it appears immediately
712 -- within the private declarations of a package or when it appears in
713 -- the visible state space of a nested package which in turn is declared
714 -- in the private declarations of an enclosing package:
716 -- package Pack is
717 -- private
718 -- Private_Variable : ...
719 -- package Nested
720 -- with Abstract_State => Private_State
721 -- is
722 -- Private_Nested_Variable : ...
723 -- end Nested;
724 -- end Pack;
726 -- The same placement principle applies to package instantiations
728 Body_State_Space);
729 -- An entity is in the body state space when it appears immediately
730 -- within the declarations of a package body or when it appears in the
731 -- visible state space of a nested package which in turn is declared in
732 -- the declarations of an enclosing package body:
734 -- package body Pack is
735 -- Body_Variable : ...
736 -- package Nested
737 -- with Abstract_State => Body_State
738 -- is
739 -- Body_Nested_Variable : ...
740 -- end Nested;
741 -- end Pack;
743 -- The same placement principle applies to package instantiations
745 procedure Find_Placement_In_State_Space
746 (Item_Id : Entity_Id;
747 Placement : out State_Space_Kind;
748 Pack_Id : out Entity_Id);
749 -- Determine the state space placement of an item. Item_Id denotes the
750 -- entity of an abstract state, object or package instantiation. Placement
751 -- captures the precise placement of the item in the enclosing state space.
752 -- If the state space is that of a package, Pack_Id denotes its entity,
753 -- otherwise Pack_Id is Empty.
755 function Find_Static_Alternative (N : Node_Id) return Node_Id;
756 -- N is a case statement whose expression is a compile-time value.
757 -- Determine the alternative chosen, so that the code of non-selected
758 -- alternatives, and the warnings that may apply to them, are removed.
760 function First_Actual (Node : Node_Id) return Node_Id;
761 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
762 -- result returned is the first actual parameter in declaration order
763 -- (not the order of parameters as they appeared in the source, which
764 -- can be quite different as a result of the use of named parameters).
765 -- Empty is returned for a call with no parameters. The procedure for
766 -- iterating through the actuals in declaration order is to use this
767 -- function to find the first actual, and then use Next_Actual to obtain
768 -- the next actual in declaration order. Note that the value returned
769 -- is always the expression (not the N_Parameter_Association nodes,
770 -- even if named association is used).
772 procedure Gather_Components
773 (Typ : Entity_Id;
774 Comp_List : Node_Id;
775 Governed_By : List_Id;
776 Into : Elist_Id;
777 Report_Errors : out Boolean);
778 -- The purpose of this procedure is to gather the valid components in a
779 -- record type according to the values of its discriminants, in order to
780 -- validate the components of a record aggregate.
782 -- Typ is the type of the aggregate when its constrained discriminants
783 -- need to be collected, otherwise it is Empty.
785 -- Comp_List is an N_Component_List node.
787 -- Governed_By is a list of N_Component_Association nodes, where each
788 -- choice list contains the name of a discriminant and the expression
789 -- field gives its value. The values of the discriminants governing
790 -- the (possibly nested) variant parts in Comp_List are found in this
791 -- Component_Association List.
793 -- Into is the list where the valid components are appended. Note that
794 -- Into need not be an Empty list. If it's not, components are attached
795 -- to its tail.
797 -- Report_Errors is set to True if the values of the discriminants are
798 -- non-static.
800 -- This procedure is also used when building a record subtype. If the
801 -- discriminant constraint of the subtype is static, the components of the
802 -- subtype are only those of the variants selected by the values of the
803 -- discriminants. Otherwise all components of the parent must be included
804 -- in the subtype for semantic analysis.
806 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
807 -- Given a node for an expression, obtain the actual subtype of the
808 -- expression. In the case of a parameter where the formal is an
809 -- unconstrained array or discriminated type, this will be the previously
810 -- constructed subtype of the actual. Note that this is not quite the
811 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
812 -- it is the subtype of the value of the actual. The actual subtype is also
813 -- returned in other cases where it has already been constructed for an
814 -- object. Otherwise the expression type is returned unchanged, except for
815 -- the case of an unconstrained array type, where an actual subtype is
816 -- created, using Insert_Actions if necessary to insert any associated
817 -- actions.
819 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
820 -- This is like Get_Actual_Subtype, except that it never constructs an
821 -- actual subtype. If an actual subtype is already available, i.e. the
822 -- Actual_Subtype field of the corresponding entity is set, then it is
823 -- returned. Otherwise the Etype of the node is returned.
825 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
826 -- Return the body node for a stub.
828 function Get_Cursor_Type
829 (Aspect : Node_Id;
830 Typ : Entity_Id) return Entity_Id;
831 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
832 -- primitive operation First. For use in resolving the other primitive
833 -- operations of an Iterable type and expanding loops and quantified
834 -- expressions over formal containers.
836 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
837 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
838 -- primitive operation First. For use after resolving the primitive
839 -- operations of an Iterable type.
841 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
842 -- This is used to construct the string literal node representing a
843 -- default external name, i.e. one that is constructed from the name of an
844 -- entity, or (in the case of extended DEC import/export pragmas, an
845 -- identifier provided as the external name. Letters in the name are
846 -- according to the setting of Opt.External_Name_Default_Casing.
848 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
849 -- If expression N references a part of an object, return this object.
850 -- Otherwise return Empty. Expression N should have been resolved already.
852 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
853 -- Returns the true generic entity in an instantiation. If the name in the
854 -- instantiation is a renaming, the function returns the renamed generic.
856 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
857 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
858 -- in a child unit a derived type is within the derivation class of an
859 -- ancestor declared in a parent unit, even if there is an intermediate
860 -- derivation that does not see the full view of that ancestor.
862 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
863 -- This procedure assigns to L and H respectively the values of the low and
864 -- high bounds of node N, which must be a range, subtype indication, or the
865 -- name of a scalar subtype. The result in L, H may be set to Error if
866 -- there was an earlier error in the range.
868 function Get_Enum_Lit_From_Pos
869 (T : Entity_Id;
870 Pos : Uint;
871 Loc : Source_Ptr) return Node_Id;
872 -- This function returns an identifier denoting the E_Enumeration_Literal
873 -- entity for the specified value from the enumeration type or subtype T.
874 -- The second argument is the Pos value, which is assumed to be in range.
875 -- The third argument supplies a source location for constructed nodes
876 -- returned by this function.
878 function Get_Iterable_Type_Primitive
879 (Typ : Entity_Id;
880 Nam : Name_Id) return Entity_Id;
881 -- Retrieve one of the primitives First, Next, Has_Element, Element from
882 -- the value of the Iterable aspect of a formal type.
884 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
885 -- Retrieve the fully expanded name of the library unit declared by
886 -- Decl_Node into the name buffer.
888 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
889 pragma Inline (Get_Name_Entity_Id);
890 -- An entity value is associated with each name in the name table. The
891 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
892 -- is the innermost visible entity with the given name. See the body of
893 -- Sem_Ch8 for further details on handling of entity visibility.
895 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
896 -- Return the Name component of Test_Case pragma N
897 -- Bad name now that this no longer applies to Contract_Case ???
899 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
900 -- Get defining entity of parent unit of a child unit. In most cases this
901 -- is the defining entity of the unit, but for a child instance whose
902 -- parent needs a body for inlining, the instantiation node of the parent
903 -- has not yet been rewritten as a package declaration, and the entity has
904 -- to be retrieved from the Instance_Spec of the unit.
906 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
907 pragma Inline (Get_Pragma_Id);
908 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
910 procedure Get_Reason_String (N : Node_Id);
911 -- Recursive routine to analyze reason argument for pragma Warnings. The
912 -- value of the reason argument is appended to the current string using
913 -- Store_String_Chars. The reason argument is expected to be a string
914 -- literal or concatenation of string literals. An error is given for
915 -- any other form.
917 function Get_Referenced_Object (N : Node_Id) return Node_Id;
918 -- Given a node, return the renamed object if the node represents a renamed
919 -- object, otherwise return the node unchanged. The node may represent an
920 -- arbitrary expression.
922 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
923 -- Given an entity for an exception, package, subprogram or generic unit,
924 -- returns the ultimately renamed entity if this is a renaming. If this is
925 -- not a renamed entity, returns its argument. It is an error to call this
926 -- with any other kind of entity.
928 function Get_Return_Object (N : Node_Id) return Entity_Id;
929 -- Given an extended return statement, return the corresponding return
930 -- object, identified as the one for which Is_Return_Object = True.
932 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
933 -- Nod is either a procedure call statement, or a function call, or an
934 -- accept statement node. This procedure finds the Entity_Id of the related
935 -- subprogram or entry and returns it, or if no subprogram can be found,
936 -- returns Empty.
938 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
939 pragma Inline (Get_Task_Body_Procedure);
940 -- Given an entity for a task type or subtype, retrieves the
941 -- Task_Body_Procedure field from the corresponding task type declaration.
943 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
944 -- For a type entity, return the entity of the primitive equality function
945 -- for the type if it exists, otherwise return Empty.
947 function Has_Access_Values (T : Entity_Id) return Boolean;
948 -- Returns true if type or subtype T is an access type, or has a component
949 -- (at any recursive level) that is an access type. This is a conservative
950 -- predicate, if it is not known whether or not T contains access values
951 -- (happens for generic formals in some cases), then False is returned.
952 -- Note that tagged types return False. Even though the tag is implemented
953 -- as an access type internally, this function tests only for access types
954 -- known to the programmer. See also Has_Tagged_Component.
956 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
957 -- Simple predicate to test for defaulted discriminants
959 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
960 -- Result of Has_Compatible_Alignment test, description found below. Note
961 -- that the values are arranged in increasing order of problematicness.
963 function Has_Compatible_Alignment
964 (Obj : Entity_Id;
965 Expr : Node_Id) return Alignment_Result;
966 -- Obj is an object entity, and expr is a node for an object reference. If
967 -- the alignment of the object referenced by Expr is known to be compatible
968 -- with the alignment of Obj (i.e. is larger or the same), then the result
969 -- is Known_Compatible. If the alignment of the object referenced by Expr
970 -- is known to be less than the alignment of Obj, then Known_Incompatible
971 -- is returned. If neither condition can be reliably established at compile
972 -- time, then Unknown is returned. This is used to determine if alignment
973 -- checks are required for address clauses, and also whether copies must
974 -- be made when objects are passed by reference.
976 -- Note: Known_Incompatible does not mean that at run time the alignment
977 -- of Expr is known to be wrong for Obj, just that it can be determined
978 -- that alignments have been explicitly or implicitly specified which are
979 -- incompatible (whereas Unknown means that even this is not known). The
980 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
981 -- Unknown, but issue a warning that there may be an alignment error.
983 function Has_Declarations (N : Node_Id) return Boolean;
984 -- Determines if the node can have declarations
986 function Has_Denormals (E : Entity_Id) return Boolean;
987 -- Determines if the floating-point type E supports denormal numbers.
988 -- Returns False if E is not a floating-point type.
990 function Has_Discriminant_Dependent_Constraint
991 (Comp : Entity_Id) return Boolean;
992 -- Returns True if and only if Comp has a constrained subtype that depends
993 -- on a discriminant.
995 function Has_Infinities (E : Entity_Id) return Boolean;
996 -- Determines if the range of the floating-point type E includes
997 -- infinities. Returns False if E is not a floating-point type.
999 function Has_Interfaces
1000 (T : Entity_Id;
1001 Use_Full_View : Boolean := True) return Boolean;
1002 -- Where T is a concurrent type or a record type, returns true if T covers
1003 -- any abstract interface types. In case of private types the argument
1004 -- Use_Full_View controls if the check is done using its full view (if
1005 -- available).
1007 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1008 -- This is a simple minded function for determining whether an expression
1009 -- has no obvious side effects. It is used only for determining whether
1010 -- warnings are needed in certain situations, and is not guaranteed to
1011 -- be accurate in either direction. Exceptions may mean an expression
1012 -- does in fact have side effects, but this may be ignored and True is
1013 -- returned, or a complex expression may in fact be side effect free
1014 -- but we don't recognize it here and return False. The Side_Effect_Free
1015 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1016 -- be shared, so that this routine would be more accurate.
1018 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1019 -- Determine whether node N has a null exclusion
1021 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1022 -- Predicate to determine whether a controlled type has a user-defined
1023 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1024 -- non-null), which causes the type to not have preelaborable
1025 -- initialization.
1027 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
1028 -- Return True iff type E has preelaborable initialization as defined in
1029 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1031 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1032 -- Check if a type has a (sub)component of a private type that has not
1033 -- yet received a full declaration.
1035 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1036 -- Determines if the floating-point type E supports signed zeros.
1037 -- Returns False if E is not a floating-point type.
1039 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1040 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1041 -- All subprograms have a N_Contract node, but this does not mean that the
1042 -- contract is useful.
1044 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1045 -- Return whether an array type has static bounds
1047 function Has_Stream (T : Entity_Id) return Boolean;
1048 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1049 -- case of a composite type, has a component for which this predicate is
1050 -- True, and if so returns True. Otherwise a result of False means that
1051 -- there is no Stream type in sight. For a private type, the test is
1052 -- applied to the underlying type (or returns False if there is no
1053 -- underlying type).
1055 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1056 -- Returns true if the last character of E is Suffix. Used in Assertions.
1058 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
1059 -- Returns the name of E adding Suffix
1061 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
1062 -- Returns the name of E without Suffix
1064 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1065 -- Returns True if Typ is a composite type (array or record) which is
1066 -- either itself a tagged type, or has a component (recursively) which is
1067 -- a tagged type. Returns False for non-composite type, or if no tagged
1068 -- component is present. This function is used to check if "=" has to be
1069 -- expanded into a bunch component comparisons.
1071 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1072 -- Given an arbitrary type, determine whether it contains at least one
1073 -- volatile component.
1075 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1076 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1077 -- implementation requirement which the pragma imposes. The return value is
1078 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1080 function Implements_Interface
1081 (Typ_Ent : Entity_Id;
1082 Iface_Ent : Entity_Id;
1083 Exclude_Parents : Boolean := False) return Boolean;
1084 -- Returns true if the Typ_Ent implements interface Iface_Ent
1086 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1087 -- Determine whether an arbitrary node appears in a pragma that acts as an
1088 -- assertion expression. See Sem_Prag for the list of qualifying pragmas.
1090 function In_Instance return Boolean;
1091 -- Returns True if the current scope is within a generic instance
1093 function In_Instance_Body return Boolean;
1094 -- Returns True if current scope is within the body of an instance, where
1095 -- several semantic checks (e.g. accessibility checks) are relaxed.
1097 function In_Instance_Not_Visible return Boolean;
1098 -- Returns True if current scope is with the private part or the body of
1099 -- an instance. Other semantic checks are suppressed in this context.
1101 function In_Instance_Visible_Part return Boolean;
1102 -- Returns True if current scope is within the visible part of a package
1103 -- instance, where several additional semantic checks apply.
1105 function In_Package_Body return Boolean;
1106 -- Returns True if current scope is within a package body
1108 function In_Parameter_Specification (N : Node_Id) return Boolean;
1109 -- Returns True if node N belongs to a parameter specification
1111 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1112 -- Returns true if the expression N occurs within a pragma with name Nam
1114 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1115 -- Returns True if N denotes a component or subcomponent in a record or
1116 -- array that has Reverse_Storage_Order.
1118 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1119 -- Determines if the current scope is within a subprogram compilation unit
1120 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1121 -- declaration) or within a task or protected body. The test is for
1122 -- appearing anywhere within such a construct (that is it does not need
1123 -- to be directly within).
1125 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1126 -- Determine whether a declaration occurs within the visible part of a
1127 -- package specification. The package must be on the scope stack, and the
1128 -- corresponding private part must not.
1130 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1131 -- Given the entity of a constant or a type, retrieve the incomplete or
1132 -- partial view of the same entity. Note that Id may not have a partial
1133 -- view in which case the function returns Empty.
1135 procedure Inherit_Default_Init_Cond_Procedure (Typ : Entity_Id);
1136 -- Inherit the default initial condition procedure from the parent type of
1137 -- derived type Typ.
1139 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1140 -- Inherit the rep item chain of type From_Typ without clobbering any
1141 -- existing rep items on Typ's chain. Typ is the destination type.
1143 procedure Inherit_Subprogram_Contract
1144 (Subp : Entity_Id;
1145 From_Subp : Entity_Id);
1146 -- Inherit relevant contract items from source subprogram From_Subp. Subp
1147 -- denotes the destination subprogram. The inherited items are:
1148 -- Extensions_Visible
1149 -- ??? it would be nice if this routine handles Pre'Class and Post'Class
1151 procedure Insert_Explicit_Dereference (N : Node_Id);
1152 -- In a context that requires a composite or subprogram type and where a
1153 -- prefix is an access type, rewrite the access type node N (which is the
1154 -- prefix, e.g. of an indexed component) as an explicit dereference.
1156 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1157 -- Examine all deferred constants in the declaration list Decls and check
1158 -- whether they have been completed by a full constant declaration or an
1159 -- Import pragma. Emit the error message if that is not the case.
1161 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1162 -- Install both the generic formal parameters and the formal parameters of
1163 -- generic subprogram Subp_Id into visibility.
1165 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1166 -- Determines if N is an actual parameter of out mode in a subprogram call
1168 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1169 -- Determines if N is an actual parameter in a subprogram call
1171 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1172 -- Determines if N is an actual parameter of a formal of tagged type in a
1173 -- subprogram call.
1175 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1176 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1177 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1178 -- rules of the language, it does not take into account the restriction
1179 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1180 -- and Obj violates the restriction. The caller is responsible for calling
1181 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1182 -- requirement for obeying the restriction in the call context.
1184 function Is_Ancestor_Package
1185 (E1 : Entity_Id;
1186 E2 : Entity_Id) return Boolean;
1187 -- Determine whether package E1 is an ancestor of E2
1189 function Is_Atomic_Object (N : Node_Id) return Boolean;
1190 -- Determines if the given node denotes an atomic object in the sense of
1191 -- the legality checks described in RM C.6(12).
1193 function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean;
1194 -- Determines if the given node is an atomic object (Is_Atomic_Object true)
1195 -- or else is an object for which VFA is present.
1197 function Is_Attribute_Result (N : Node_Id) return Boolean;
1198 -- Determine whether node N denotes attribute 'Result
1200 function Is_Attribute_Update (N : Node_Id) return Boolean;
1201 -- Determine whether node N denotes attribute 'Update
1203 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1204 -- Determine whether node N denotes a body or a package declaration
1206 function Is_Bounded_String (T : Entity_Id) return Boolean;
1207 -- True if T is a bounded string type. Used to make sure "=" composes
1208 -- properly for bounded string types.
1210 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1211 -- Exp is the expression for an array bound. Determines whether the
1212 -- bound is a compile-time known value, or a constant entity, or an
1213 -- enumeration literal, or an expression composed of constant-bound
1214 -- subexpressions which are evaluated by means of standard operators.
1216 function Is_Container_Element (Exp : Node_Id) return Boolean;
1217 -- This routine recognizes expressions that denote an element of one of
1218 -- the predefined containers, when the source only contains an indexing
1219 -- operation and an implicit dereference is inserted by the compiler.
1220 -- In the absence of this optimization, the indexing creates a temporary
1221 -- controlled cursor that sets the tampering bit of the container, and
1222 -- restricts the use of the convenient notation C (X) to contexts that
1223 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1224 -- explicit dereference. The transformation applies when it has the form
1225 -- F (X).Discr.all.
1227 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1228 -- Determine whether aspect specification or pragma Item is a contract
1229 -- annotation.
1231 function Is_Controlling_Limited_Procedure
1232 (Proc_Nam : Entity_Id) return Boolean;
1233 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1234 -- of a limited interface with a controlling first parameter.
1236 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1237 -- Returns True if N is a call to a CPP constructor
1239 function Is_Child_Or_Sibling
1240 (Pack_1 : Entity_Id;
1241 Pack_2 : Entity_Id) return Boolean;
1242 -- Determine the following relations between two arbitrary packages:
1243 -- 1) One package is the parent of a child package
1244 -- 2) Both packages are siblings and share a common parent
1246 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1247 -- First determine whether type T is an interface and then check whether
1248 -- it is of protected, synchronized or task kind.
1250 function Is_Current_Instance (N : Node_Id) return Boolean;
1251 -- Predicate is true if N legally denotes a type name within its own
1252 -- declaration. Prior to Ada 2012 this covered only synchronized type
1253 -- declarations. In Ada 2012 it also covers type and subtype declarations
1254 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1256 function Is_Declaration (N : Node_Id) return Boolean;
1257 -- Determine whether arbitrary node N denotes a declaration
1259 function Is_Delegate (T : Entity_Id) return Boolean;
1260 -- Returns true if type T represents a delegate. A Delegate is the CIL
1261 -- object used to represent access-to-subprogram types. This is only
1262 -- relevant to CIL, will always return false for other targets.
1264 function Is_Dependent_Component_Of_Mutable_Object
1265 (Object : Node_Id) return Boolean;
1266 -- Returns True if Object is the name of a subcomponent that depends on
1267 -- discriminants of a variable whose nominal subtype is unconstrained and
1268 -- not indefinite, and the variable is not aliased. Otherwise returns
1269 -- False. The nodes passed to this function are assumed to denote objects.
1271 function Is_Dereferenced (N : Node_Id) return Boolean;
1272 -- N is a subexpression node of an access type. This function returns true
1273 -- if N appears as the prefix of a node that does a dereference of the
1274 -- access value (selected/indexed component, explicit dereference or a
1275 -- slice), and false otherwise.
1277 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1278 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
1279 -- This is the RM definition, a type is a descendent of another type if it
1280 -- is the same type or is derived from a descendent of the other type.
1282 function Is_Double_Precision_Floating_Point_Type
1283 (E : Entity_Id) return Boolean;
1284 -- Return whether E is a double precision floating point type,
1285 -- characterized by:
1286 -- . machine_radix = 2
1287 -- . machine_mantissa = 53
1288 -- . machine_emax = 2**10
1289 -- . machine_emin = 3 - machine_emax
1291 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean;
1292 -- The SPARK property "effectively volatile" applies to both types and
1293 -- objects. To qualify as such, an entity must be either volatile or be
1294 -- (of) an array type subject to aspect Volatile_Components.
1296 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean;
1297 -- Determine whether an arbitrary node denotes an effectively volatile
1298 -- object.
1300 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1301 -- Predicate to determine whether a scope entity comes from a rewritten
1302 -- expression function call, and should be inlined unconditionally. Also
1303 -- used to determine that such a call does not constitute a freeze point.
1305 function Is_EVF_Expression (N : Node_Id) return Boolean;
1306 -- Determine whether node N denotes a reference to a formal parameter of
1307 -- a specific tagged type whose related subprogram is subject to pragma
1308 -- Extensions_Visible with value "False". Several other constructs fall
1309 -- under this category:
1310 -- 1) A qualified expression whose operand is EVF
1311 -- 2) A type conversion whose operand is EVF
1312 -- 3) An if expression with at least one EVF dependent_expression
1313 -- 4) A case expression with at least one EVF dependent_expression
1315 function Is_False (U : Uint) return Boolean;
1316 pragma Inline (Is_False);
1317 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1318 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1319 -- if it is False (i.e. zero).
1321 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1322 -- Returns True iff the number U is a model number of the fixed-point type
1323 -- T, i.e. if it is an exact multiple of Small.
1325 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1326 -- Typ is a type entity. This function returns true if this type is fully
1327 -- initialized, meaning that an object of the type is fully initialized.
1328 -- Note that initialization resulting from use of pragma Normalized_Scalars
1329 -- does not count. Note that this is only used for the purpose of issuing
1330 -- warnings for objects that are potentially referenced uninitialized. This
1331 -- means that the result returned is not crucial, but should err on the
1332 -- side of thinking things are fully initialized if it does not know.
1334 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
1335 -- Determine whether arbitrary declaration Decl denotes a generic package,
1336 -- a generic subprogram or a generic body.
1338 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1339 -- E is a subprogram. Return True is E is an implicit operation inherited
1340 -- by a derived type declaration.
1342 function Is_Inherited_Operation_For_Type
1343 (E : Entity_Id;
1344 Typ : Entity_Id) return Boolean;
1345 -- E is a subprogram. Return True is E is an implicit operation inherited
1346 -- by the derived type declaration for type Typ.
1348 function Is_Iterator (Typ : Entity_Id) return Boolean;
1349 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1350 -- Ada.Iterator_Interfaces, or it is derived from one.
1352 type Is_LHS_Result is (Yes, No, Unknown);
1353 function Is_LHS (N : Node_Id) return Is_LHS_Result;
1354 -- Returns Yes if N is definitely used as Name in an assignment statement.
1355 -- Returns No if N is definitely NOT used as a Name in an assignment
1356 -- statement. Returns Unknown if we can't tell at this stage (happens in
1357 -- the case where we don't know the type of N yet, and we have something
1358 -- like N.A := 3, where this counts as N being used on the left side of
1359 -- an assignment only if N is not an access type. If it is an access type
1360 -- then it is N.all.A that is assigned, not N.
1362 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1363 -- A library-level declaration is one that is accessible from Standard,
1364 -- i.e. a library unit or an entity declared in a library package.
1366 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1367 -- Determine whether a given type is a limited class-wide type, in which
1368 -- case it needs a Master_Id, because extensions of its designated type
1369 -- may include task components. A class-wide type that comes from a
1370 -- limited view must be treated in the same way.
1372 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1373 -- Determines whether Expr is a reference to a variable or IN OUT mode
1374 -- parameter of the current enclosing subprogram.
1375 -- Why are OUT parameters not considered here ???
1377 function Is_Object_Reference (N : Node_Id) return Boolean;
1378 -- Determines if the tree referenced by N represents an object. Both
1379 -- variable and constant objects return True (compare Is_Variable).
1381 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1382 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1383 -- Note that the Is_Variable function is not quite the right test because
1384 -- this is a case in which conversions whose expression is a variable (in
1385 -- the Is_Variable sense) with an untagged type target are considered view
1386 -- conversions and hence variables.
1388 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
1389 -- Determine whether aspect specification or pragma Item is one of the
1390 -- following package contract annotations:
1391 -- Abstract_State
1392 -- Initial_Condition
1393 -- Initializes
1394 -- Refined_State
1396 function Is_Partially_Initialized_Type
1397 (Typ : Entity_Id;
1398 Include_Implicit : Boolean := True) return Boolean;
1399 -- Typ is a type entity. This function returns true if this type is partly
1400 -- initialized, meaning that an object of the type is at least partly
1401 -- initialized (in particular in the record case, that at least one
1402 -- component has an initialization expression). Note that initialization
1403 -- resulting from the use of pragma Normalized_Scalars does not count.
1404 -- Include_Implicit controls whether implicit initialization of access
1405 -- values to null, and of discriminant values, is counted as making the
1406 -- type be partially initialized. For the default setting of True, these
1407 -- implicit cases do count, and discriminated types or types containing
1408 -- access values not explicitly initialized will return True. Otherwise
1409 -- if Include_Implicit is False, these cases do not count as making the
1410 -- type be partially initialized.
1412 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1413 -- Predicate to implement definition given in RM 6.1.1 (20/3)
1415 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1416 -- Determines if type T is a potentially persistent type. A potentially
1417 -- persistent type is defined (recursively) as a scalar type, an untagged
1418 -- record whose components are all of a potentially persistent type, or an
1419 -- array with all static constraints whose component type is potentially
1420 -- persistent. A private type is potentially persistent if the full type
1421 -- is potentially persistent.
1423 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1424 -- Return True if node N denotes a protected type name which represents
1425 -- the current instance of a protected object according to RM 9.4(21/2).
1427 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1428 -- Return True if a compilation unit is the specification or the
1429 -- body of a remote call interface package.
1431 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1432 -- Return True if E is a remote access-to-class-wide type
1434 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1435 -- Return True if E is a remote access to subprogram type
1437 function Is_Remote_Call (N : Node_Id) return Boolean;
1438 -- Return True if N denotes a potentially remote call
1440 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1441 -- Return True if Proc_Nam is a procedure renaming of an entry
1443 function Is_Renaming_Declaration (N : Node_Id) return Boolean;
1444 -- Determine whether arbitrary node N denotes a renaming declaration
1446 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1447 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1448 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1450 function Is_Selector_Name (N : Node_Id) return Boolean;
1451 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1452 -- As described in Sinfo, Selector_Names are special because they
1453 -- represent use of the N_Identifier node for a true identifier, when
1454 -- normally such nodes represent a direct name.
1456 function Is_Single_Precision_Floating_Point_Type
1457 (E : Entity_Id) return Boolean;
1458 -- Return whether E is a single precision floating point type,
1459 -- characterized by:
1460 -- . machine_radix = 2
1461 -- . machine_mantissa = 24
1462 -- . machine_emax = 2**7
1463 -- . machine_emin = 3 - machine_emax
1465 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean;
1466 -- Determines if the tree referenced by N represents an initialization
1467 -- expression in SPARK 2005, suitable for initializing an object in an
1468 -- object declaration.
1470 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean;
1471 -- Determines if the tree referenced by N represents an object in SPARK
1472 -- 2005. This differs from Is_Object_Reference in that only variables,
1473 -- constants, formal parameters, and selected_components of those are
1474 -- valid objects in SPARK 2005.
1476 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
1477 -- Determine whether an arbitrary [private] type is specifically tagged
1479 function Is_Statement (N : Node_Id) return Boolean;
1480 pragma Inline (Is_Statement);
1481 -- Check if the node N is a statement node. Note that this includes
1482 -- the case of procedure call statements (unlike the direct use of
1483 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1484 -- Note that a label is *not* a statement, and will return False.
1486 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
1487 -- Determine whether aspect specification or pragma Item is one of the
1488 -- following subprogram contract annotations:
1489 -- Contract_Cases
1490 -- Depends
1491 -- Extensions_Visible
1492 -- Global
1493 -- Post
1494 -- Post_Class
1495 -- Postcondition
1496 -- Pre
1497 -- Pre_Class
1498 -- Precondition
1499 -- Refined_Depends
1500 -- Refined_Global
1501 -- Refined_Post
1502 -- Test_Case
1504 function Is_Subprogram_Stub_Without_Prior_Declaration
1505 (N : Node_Id) return Boolean;
1506 -- Return True if N is a subprogram stub with no prior subprogram
1507 -- declaration.
1509 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1510 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1512 function Is_Transfer (N : Node_Id) return Boolean;
1513 -- Returns True if the node N is a statement which is known to cause an
1514 -- unconditional transfer of control at runtime, i.e. the following
1515 -- statement definitely will not be executed.
1517 function Is_True (U : Uint) return Boolean;
1518 pragma Inline (Is_True);
1519 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1520 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1521 -- if it is True (i.e. non-zero).
1523 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
1524 -- Determine whether an arbitrary entity denotes an instance of function
1525 -- Ada.Unchecked_Conversion.
1527 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1528 pragma Inline (Is_Universal_Numeric_Type);
1529 -- True if T is Universal_Integer or Universal_Real
1531 function Is_Value_Type (T : Entity_Id) return Boolean;
1532 -- Returns true if type T represents a value type. This is only relevant to
1533 -- CIL, will always return false for other targets. A value type is a CIL
1534 -- object that is accessed directly, as opposed to the other CIL objects
1535 -- that are accessed through managed pointers.
1537 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1538 -- Returns true if E has variable size components
1540 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
1541 -- Returns true if E has variable size components
1543 function Is_Variable
1544 (N : Node_Id;
1545 Use_Original_Node : Boolean := True) return Boolean;
1546 -- Determines if the tree referenced by N represents a variable, i.e. can
1547 -- appear on the left side of an assignment. There is one situation (formal
1548 -- parameters) in which untagged type conversions are also considered
1549 -- variables, but Is_Variable returns False for such cases, since it has
1550 -- no knowledge of the context. Note that this is the point at which
1551 -- Assignment_OK is checked, and True is returned for any tree thus marked.
1552 -- Use_Original_Node is used to perform the test on Original_Node (N). By
1553 -- default is True since this routine is commonly invoked as part of the
1554 -- semantic analysis and it must not be disturbed by the rewriten nodes.
1556 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1557 -- Check whether T is derived from a visibly controlled type. This is true
1558 -- if the root type is declared in Ada.Finalization. If T is derived
1559 -- instead from a private type whose full view is controlled, an explicit
1560 -- Initialize/Adjust/Finalize subprogram does not override the inherited
1561 -- one.
1563 function Is_Volatile_Object (N : Node_Id) return Boolean;
1564 -- Determines if the given node denotes an volatile object in the sense of
1565 -- the legality checks described in RM C.6(12). Note that the test here is
1566 -- for something actually declared as volatile, not for an object that gets
1567 -- treated as volatile (see Einfo.Treat_As_Volatile).
1569 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1570 -- Applies to Itypes. True if the Itype is attached to a declaration for
1571 -- the type through its Parent field, which may or not be present in the
1572 -- tree.
1574 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1575 -- This procedure is called to clear all constant indications from all
1576 -- entities in the current scope and in any parent scopes if the current
1577 -- scope is a block or a package (and that recursion continues to the top
1578 -- scope that is not a block or a package). This is used when the
1579 -- sequential flow-of-control assumption is violated (occurrence of a
1580 -- label, head of a loop, or start of an exception handler). The effect of
1581 -- the call is to clear the Current_Value field (but we do not need to
1582 -- clear the Is_True_Constant flag, since that only gets reset if there
1583 -- really is an assignment somewhere in the entity scope). This procedure
1584 -- also calls Kill_All_Checks, since this is a special case of needing to
1585 -- forget saved values. This procedure also clears the Is_Known_Null and
1586 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1587 -- parameters since these are also not known to be trustable any more.
1589 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
1590 -- fields and leave other fields unchanged. This is used when we encounter
1591 -- an unconditional flow of control change (return, goto, raise). In such
1592 -- cases we don't need to clear the current values, since it may be that
1593 -- the flow of control change occurs in a conditional context, and if it
1594 -- is not taken, then it is just fine to keep the current values. But the
1595 -- Last_Assignment field is different, if we have a sequence assign-to-v,
1596 -- conditional-return, assign-to-v, we do not want to complain that the
1597 -- second assignment clobbers the first.
1599 procedure Kill_Current_Values
1600 (Ent : Entity_Id;
1601 Last_Assignment_Only : Boolean := False);
1602 -- This performs the same processing as described above for the form with
1603 -- no argument, but for the specific entity given. The call has no effect
1604 -- if the entity Ent is not for an object. Last_Assignment_Only has the
1605 -- same meaning as for the call with no Ent.
1607 procedure Kill_Size_Check_Code (E : Entity_Id);
1608 -- Called when an address clause or pragma Import is applied to an entity.
1609 -- If the entity is a variable or a constant, and size check code is
1610 -- present, this size check code is killed, since the object will not be
1611 -- allocated by the program.
1613 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1614 -- The node N is an entity reference. This function determines whether the
1615 -- reference is for sure an assignment of the entity, returning True if
1616 -- so. This differs from May_Be_Lvalue in that it defaults in the other
1617 -- direction. Cases which may possibly be assignments but are not known to
1618 -- be may return True from May_Be_Lvalue, but False from this function.
1620 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1621 -- HSS is a handled statement sequence. This function returns the last
1622 -- statement in Statements (HSS) that has Comes_From_Source set. If no
1623 -- such statement exists, Empty is returned.
1625 function Matching_Static_Array_Bounds
1626 (L_Typ : Node_Id;
1627 R_Typ : Node_Id) return Boolean;
1628 -- L_Typ and R_Typ are two array types. Returns True when they have the
1629 -- same number of dimensions, and the same static bounds for each index
1630 -- position.
1632 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1633 -- Given a node which designates the context of analysis and an origin in
1634 -- the tree, traverse from Root_Nod and mark all allocators as either
1635 -- dynamic or static depending on Context_Nod. Any incorrect marking is
1636 -- cleaned up during resolution.
1638 function May_Be_Lvalue (N : Node_Id) return Boolean;
1639 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1640 -- An lvalue is defined as any expression which appears in a context where
1641 -- a name is required by the syntax, and the identity, rather than merely
1642 -- the value of the node is needed (for example, the prefix of an Access
1643 -- attribute is in this category). Note that, as implied by the name, this
1644 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1645 -- it returns True. It tries hard to get the answer right, but it is hard
1646 -- to guarantee this in all cases. Note that it is more possible to give
1647 -- correct answer if the tree is fully analyzed.
1649 function Needs_One_Actual (E : Entity_Id) return Boolean;
1650 -- Returns True if a function has defaults for all but its first
1651 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1652 -- results from an indexing of a function call written in prefix form.
1654 function New_Copy_List_Tree (List : List_Id) return List_Id;
1655 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1656 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1657 -- nodes (entities) either directly or indirectly using this function.
1659 function New_Copy_Tree
1660 (Source : Node_Id;
1661 Map : Elist_Id := No_Elist;
1662 New_Sloc : Source_Ptr := No_Location;
1663 New_Scope : Entity_Id := Empty) return Node_Id;
1664 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1665 -- syntactic subtree, including recursively any descendents whose parent
1666 -- field references a copied node (descendents not linked to a copied node
1667 -- by the parent field are not copied, instead the copied tree references
1668 -- the same descendent as the original in this case, which is appropriate
1669 -- for non-syntactic fields such as Etype). The parent pointers in the
1670 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1671 -- The one exception to the rule of not copying semantic fields is that
1672 -- any implicit types attached to the subtree are duplicated, so that
1673 -- the copy contains a distinct set of implicit type entities. Thus this
1674 -- function is used when it is necessary to duplicate an analyzed tree,
1675 -- declared in the same or some other compilation unit. This function is
1676 -- declared here rather than in atree because it uses semantic information
1677 -- in particular concerning the structure of itypes and the generation of
1678 -- public symbols.
1680 -- The Map argument, if set to a non-empty Elist, specifies a set of
1681 -- mappings to be applied to entities in the tree. The map has the form:
1683 -- old entity 1
1684 -- new entity to replace references to entity 1
1685 -- old entity 2
1686 -- new entity to replace references to entity 2
1687 -- ...
1689 -- The call destroys the contents of Map in this case
1691 -- The parameter New_Sloc, if set to a value other than No_Location, is
1692 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1693 -- set to its default value No_Location, then the Sloc values of the
1694 -- nodes in the copy are simply copied from the corresponding original.
1696 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1697 -- the default No_Location value, but is reset if New_Sloc is given, since
1698 -- in this case the result clearly is neither a source node or an exact
1699 -- copy of a source node.
1701 -- The parameter New_Scope, if set to a value other than Empty, is the
1702 -- value to use as the Scope for any Itypes that are copied. The most
1703 -- typical value for this parameter, if given, is Current_Scope.
1705 function New_External_Entity
1706 (Kind : Entity_Kind;
1707 Scope_Id : Entity_Id;
1708 Sloc_Value : Source_Ptr;
1709 Related_Id : Entity_Id;
1710 Suffix : Character;
1711 Suffix_Index : Nat := 0;
1712 Prefix : Character := ' ') return Entity_Id;
1713 -- This function creates an N_Defining_Identifier node for an internal
1714 -- created entity, such as an implicit type or subtype, or a record
1715 -- initialization procedure. The entity name is constructed with a call
1716 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1717 -- that the generated name may be referenced as a public entry, and the
1718 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1719 -- entity is for a type or subtype, the size/align fields are initialized
1720 -- to unknown (Uint_0).
1722 function New_Internal_Entity
1723 (Kind : Entity_Kind;
1724 Scope_Id : Entity_Id;
1725 Sloc_Value : Source_Ptr;
1726 Id_Char : Character) return Entity_Id;
1727 -- This function is similar to New_External_Entity, except that the
1728 -- name is constructed by New_Internal_Name (Id_Char). This is used
1729 -- when the resulting entity does not have to be referenced as a
1730 -- public entity (and in this case Is_Public is not set).
1732 procedure Next_Actual (Actual_Id : in out Node_Id);
1733 pragma Inline (Next_Actual);
1734 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1735 -- inline this procedural form, but not the functional form that follows.
1737 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1738 -- Find next actual parameter in declaration order. As described for
1739 -- First_Actual, this is the next actual in the declaration order, not
1740 -- the call order, so this does not correspond to simply taking the
1741 -- next entry of the Parameter_Associations list. The argument is an
1742 -- actual previously returned by a call to First_Actual or Next_Actual.
1743 -- Note that the result produced is always an expression, not a parameter
1744 -- association node, even if named notation was used.
1746 procedure Normalize_Actuals
1747 (N : Node_Id;
1748 S : Entity_Id;
1749 Report : Boolean;
1750 Success : out Boolean);
1751 -- Reorders lists of actuals according to names of formals, value returned
1752 -- in Success indicates success of reordering. For more details, see body.
1753 -- Errors are reported only if Report is set to True.
1755 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1756 -- This routine is called if the sub-expression N maybe the target of
1757 -- an assignment (e.g. it is the left side of an assignment, used as
1758 -- an out parameters, or used as prefixes of access attributes). It
1759 -- sets May_Be_Modified in the associated entity if there is one,
1760 -- taking into account the rule that in the case of renamed objects,
1761 -- it is the flag in the renamed object that must be set.
1763 -- The parameter Sure is set True if the modification is sure to occur
1764 -- (e.g. target of assignment, or out parameter), and to False if the
1765 -- modification is only potential (e.g. address of entity taken).
1767 function Object_Access_Level (Obj : Node_Id) return Uint;
1768 -- Return the accessibility level of the view of the object Obj. For
1769 -- convenience, qualified expressions applied to object names are also
1770 -- allowed as actuals for this function.
1772 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1773 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1774 -- or overrides an inherited dispatching primitive S2, the original
1775 -- corresponding operation of S is the original corresponding operation of
1776 -- S2. Otherwise, it is S itself.
1778 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
1779 -- Retrieve the name of aspect or pragma N taking into account a possible
1780 -- rewrite and whether the pragma is generated from an aspect as the names
1781 -- may be different. The routine also deals with 'Class in which case it
1782 -- returns the following values:
1784 -- Invariant -> Name_uInvariant
1785 -- Post'Class -> Name_uPost
1786 -- Pre'Class -> Name_uPre
1787 -- Type_Invariant -> Name_uType_Invariant
1788 -- Type_Invariant'Class -> Name_uType_Invariant
1790 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
1791 -- Given a policy, return the policy identifier associated with it. If no
1792 -- such policy is in effect, the value returned is No_Name.
1794 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
1795 -- Subp is the entity for a subprogram call. This function returns True if
1796 -- predicate tests are required for the arguments in this call (this is the
1797 -- normal case). It returns False for special cases where these predicate
1798 -- tests should be skipped (see body for details).
1800 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1801 -- Returns True if the names of both entities correspond with matching
1802 -- primitives. This routine includes support for the case in which one
1803 -- or both entities correspond with entities built by Derive_Subprogram
1804 -- with a special name to avoid being overridden (i.e. return true in case
1805 -- of entities with names "nameP" and "name" or vice versa).
1807 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1808 -- Returns some private component (if any) of the given Type_Id.
1809 -- Used to enforce the rules on visibility of operations on composite
1810 -- types, that depend on the full view of the component type. For a
1811 -- record type there may be several such components, we just return
1812 -- the first one.
1814 procedure Process_End_Label
1815 (N : Node_Id;
1816 Typ : Character;
1817 Ent : Entity_Id);
1818 -- N is a node whose End_Label is to be processed, generating all
1819 -- appropriate cross-reference entries, and performing style checks
1820 -- for any identifier references in the end label. Typ is either
1821 -- 'e' or 't indicating the type of the cross-reference entity
1822 -- (e for spec, t for body, see Lib.Xref spec for details). The
1823 -- parameter Ent gives the entity to which the End_Label refers,
1824 -- and to which cross-references are to be generated.
1826 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
1827 -- Determine whether entity Id is referenced within expression Expr
1829 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1830 -- Returns True if the expression Expr contains any references to a
1831 -- generic type. This can only happen within a generic template.
1833 procedure Remove_Homonym (E : Entity_Id);
1834 -- Removes E from the homonym chain
1836 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1837 -- This is used to construct the second argument in a call to Rep_To_Pos
1838 -- which is Standard_True if range checks are enabled (E is an entity to
1839 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1840 -- if range checks are suppressed. Loc is the location for the node that
1841 -- is returned (which is a New_Occurrence of the appropriate entity).
1843 -- Note: one might think that it would be fine to always use True and
1844 -- to ignore the suppress in this case, but it is generally better to
1845 -- believe a request to suppress exceptions if possible, and further
1846 -- more there is at least one case in the generated code (the code for
1847 -- array assignment in a loop) that depends on this suppression.
1849 procedure Require_Entity (N : Node_Id);
1850 -- N is a node which should have an entity value if it is an entity name.
1851 -- If not, then check if there were previous errors. If so, just fill
1852 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1853 -- This is used as a defense mechanism against ill-formed trees caused by
1854 -- previous errors (particularly in -gnatq mode).
1856 function Requires_State_Refinement
1857 (Spec_Id : Entity_Id;
1858 Body_Id : Entity_Id) return Boolean;
1859 -- Determine whether a package denoted by its spec and body entities
1860 -- requires refinement of abstract states.
1862 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1863 -- Id is a type entity. The result is True when temporaries of this type
1864 -- need to be wrapped in a transient scope to be reclaimed properly when a
1865 -- secondary stack is in use. Examples of types requiring such wrapping are
1866 -- controlled types and variable-sized types including unconstrained
1867 -- arrays.
1869 procedure Reset_Analyzed_Flags (N : Node_Id);
1870 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1872 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type);
1873 -- Set the current SPARK_Mode to whatever Mode denotes. This routime must
1874 -- be used in tandem with Save_SPARK_Mode_And_Set.
1876 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
1877 -- Return true if Subp is a function that returns an unconstrained type
1879 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
1880 -- Similar to attribute Root_Type, but this version always follows the
1881 -- Full_View of a private type (if available) while searching for the
1882 -- ultimate derivation ancestor.
1884 function Safe_To_Capture_Value
1885 (N : Node_Id;
1886 Ent : Entity_Id;
1887 Cond : Boolean := False) return Boolean;
1888 -- The caller is interested in capturing a value (either the current value,
1889 -- or an indication that the value is non-null) for the given entity Ent.
1890 -- This value can only be captured if sequential execution semantics can be
1891 -- properly guaranteed so that a subsequent reference will indeed be sure
1892 -- that this current value indication is correct. The node N is the
1893 -- construct which resulted in the possible capture of the value (this
1894 -- is used to check if we are in a conditional).
1896 -- Cond is used to skip the test for being inside a conditional. It is used
1897 -- in the case of capturing values from if/while tests, which already do a
1898 -- proper job of handling scoping issues without this help.
1900 -- The only entities whose values can be captured are OUT and IN OUT formal
1901 -- parameters, and variables unless Cond is True, in which case we also
1902 -- allow IN formals, loop parameters and constants, where we cannot ever
1903 -- capture actual value information, but we can capture conditional tests.
1905 function Same_Name (N1, N2 : Node_Id) return Boolean;
1906 -- Determine if two (possibly expanded) names are the same name. This is
1907 -- a purely syntactic test, and N1 and N2 need not be analyzed.
1909 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1910 -- Determine if Node1 and Node2 are known to designate the same object.
1911 -- This is a semantic test and both nodes must be fully analyzed. A result
1912 -- of True is decisively correct. A result of False does not necessarily
1913 -- mean that different objects are designated, just that this could not
1914 -- be reliably determined at compile time.
1916 function Same_Type (T1, T2 : Entity_Id) return Boolean;
1917 -- Determines if T1 and T2 represent exactly the same type. Two types
1918 -- are the same if they are identical, or if one is an unconstrained
1919 -- subtype of the other, or they are both common subtypes of the same
1920 -- type with identical constraints. The result returned is conservative.
1921 -- It is True if the types are known to be the same, but a result of
1922 -- False is indecisive (e.g. the compiler may not be able to tell that
1923 -- two constraints are identical).
1925 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1926 -- Determines if Node1 and Node2 are known to be the same value, which is
1927 -- true if they are both compile time known values and have the same value,
1928 -- or if they are the same object (in the sense of function Same_Object).
1929 -- A result of False does not necessarily mean they have different values,
1930 -- just that it is not possible to determine they have the same value.
1932 procedure Save_SPARK_Mode_And_Set
1933 (Context : Entity_Id;
1934 Mode : out SPARK_Mode_Type);
1935 -- Save the current SPARK_Mode in effect in Mode. Establish the SPARK_Mode
1936 -- (if any) of a package or a subprogram denoted by Context. This routine
1937 -- must be used in tandem with Restore_SPARK_Mode.
1939 function Scalar_Part_Present (T : Entity_Id) return Boolean;
1940 -- Tests if type T can be determined at compile time to have at least one
1941 -- scalar part in the sense of the Valid_Scalars attribute. Returns True if
1942 -- this is the case, and False if no scalar parts are present (meaning that
1943 -- the result of Valid_Scalars applied to T is always vacuously True).
1945 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1946 -- Determines if the entity Scope1 is the same as Scope2, or if it is
1947 -- inside it, where both entities represent scopes. Note that scopes
1948 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
1949 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1951 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1952 -- Like Scope_Within_Or_Same, except that this function returns
1953 -- False in the case where Scope1 and Scope2 are the same scope.
1955 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1956 -- Same as Basic_Set_Convention, but with an extra check for access types.
1957 -- In particular, if E is an access-to-subprogram type, and Val is a
1958 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
1959 -- Also, if the Etype of E is set and is an anonymous access type with
1960 -- no convention set, this anonymous type inherits the convention of E.
1962 procedure Set_Current_Entity (E : Entity_Id);
1963 pragma Inline (Set_Current_Entity);
1964 -- Establish the entity E as the currently visible definition of its
1965 -- associated name (i.e. the Node_Id associated with its name).
1967 procedure Set_Debug_Info_Needed (T : Entity_Id);
1968 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
1969 -- that are needed by T (for an object, the type of the object is needed,
1970 -- and for a type, various subsidiary types are needed -- see body for
1971 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
1972 -- This routine should always be used instead of Set_Needs_Debug_Info to
1973 -- ensure that subsidiary entities are properly handled.
1975 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
1976 -- This procedure has the same calling sequence as Set_Entity, but it
1977 -- performs additional checks as follows:
1979 -- If Style_Check is set, then it calls a style checking routine which
1980 -- can check identifier spelling style. This procedure also takes care
1981 -- of checking the restriction No_Implementation_Identifiers.
1983 -- If restriction No_Abort_Statements is set, then it checks that the
1984 -- entity is not Ada.Task_Identification.Abort_Task.
1986 -- If restriction No_Dynamic_Attachment is set, then it checks that the
1987 -- entity is not one of the restricted names for this restriction.
1989 -- If restriction No_Long_Long_Integers is set, then it checks that the
1990 -- entity is not Standard.Long_Long_Integer.
1992 -- If restriction No_Implementation_Identifiers is set, then it checks
1993 -- that the entity is not implementation defined.
1995 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1996 pragma Inline (Set_Name_Entity_Id);
1997 -- Sets the Entity_Id value associated with the given name, which is the
1998 -- Id of the innermost visible entity with the given name. See the body
1999 -- of package Sem_Ch8 for further details on the handling of visibility.
2001 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
2002 -- The arguments may be parameter associations, whose descendants
2003 -- are the optional formal name and the actual parameter. Positional
2004 -- parameters are already members of a list, and do not need to be
2005 -- chained separately. See also First_Actual and Next_Actual.
2007 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
2008 pragma Inline (Set_Optimize_Alignment_Flags);
2009 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
2011 procedure Set_Public_Status (Id : Entity_Id);
2012 -- If an entity (visible or otherwise) is defined in a library
2013 -- package, or a package that is itself public, then this subprogram
2014 -- labels the entity public as well.
2016 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
2017 -- N is the node for either a left hand side (Out_Param set to False),
2018 -- or an Out or In_Out parameter (Out_Param set to True). If there is
2019 -- an assignable entity being referenced, then the appropriate flag
2020 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
2021 -- if Out_Param is True) is set True, and the other flag set False.
2023 procedure Set_Scope_Is_Transient (V : Boolean := True);
2024 -- Set the flag Is_Transient of the current scope
2026 procedure Set_Size_Info (T1, T2 : Entity_Id);
2027 pragma Inline (Set_Size_Info);
2028 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
2029 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
2030 -- in the fixed-point and discrete cases, and also copies the alignment
2031 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
2032 -- separately set if this is required to be copied also.
2034 function Scope_Is_Transient return Boolean;
2035 -- True if the current scope is transient
2037 function Static_Boolean (N : Node_Id) return Uint;
2038 -- This function analyzes the given expression node and then resolves it
2039 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
2040 -- returned corresponding to the value, otherwise an error message is
2041 -- output and No_Uint is returned.
2043 function Static_Integer (N : Node_Id) return Uint;
2044 -- This function analyzes the given expression node and then resolves it
2045 -- as any integer type. If the result is static, then the value of the
2046 -- universal expression is returned, otherwise an error message is output
2047 -- and a value of No_Uint is returned.
2049 function Statically_Different (E1, E2 : Node_Id) return Boolean;
2050 -- Return True if it can be statically determined that the Expressions
2051 -- E1 and E2 refer to different objects
2053 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
2054 -- Determine whether node N is a loop statement subject to at least one
2055 -- 'Loop_Entry attribute.
2057 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
2058 -- Return the accessibility level of the view denoted by Subp
2060 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
2061 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
2062 -- Typ is properly sized and aligned).
2064 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
2065 -- Print debugging information on entry to each unit being analyzed
2067 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
2068 -- Move a list of entities from one scope to another, and recompute
2069 -- Is_Public based upon the new scope.
2071 function Type_Access_Level (Typ : Entity_Id) return Uint;
2072 -- Return the accessibility level of Typ
2074 function Type_Without_Stream_Operation
2075 (T : Entity_Id;
2076 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
2077 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
2078 -- is active then we cannot generate stream subprograms for composite types
2079 -- with elementary subcomponents that lack user-defined stream subprograms.
2080 -- This predicate determines whether a type has such an elementary
2081 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
2082 -- prevents the construction of a composite stream operation. If Op is
2083 -- specified we check only for the given stream operation.
2085 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
2086 -- Return the entity which represents declaration N, so that different
2087 -- views of the same entity have the same unique defining entity:
2088 -- * package spec and body;
2089 -- * subprogram declaration, subprogram stub and subprogram body;
2090 -- * private view and full view of a type;
2091 -- * private view and full view of a deferred constant.
2092 -- In other cases, return the defining entity for N.
2094 function Unique_Entity (E : Entity_Id) return Entity_Id;
2095 -- Return the unique entity for entity E, which would be returned by
2096 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
2098 function Unique_Name (E : Entity_Id) return String;
2099 -- Return a unique name for entity E, which could be used to identify E
2100 -- across compilation units.
2102 function Unit_Is_Visible (U : Entity_Id) return Boolean;
2103 -- Determine whether a compilation unit is visible in the current context,
2104 -- because there is a with_clause that makes the unit available. Used to
2105 -- provide better messages on common visiblity errors on operators.
2107 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
2108 -- Yields Universal_Integer or Universal_Real if this is a candidate
2110 function Unqualify (Expr : Node_Id) return Node_Id;
2111 pragma Inline (Unqualify);
2112 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
2113 -- returns X. If Expr is not a qualified expression, returns Expr.
2115 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
2116 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
2117 -- of a type extension or private extension declaration. If the full-view
2118 -- of private parents and progenitors is available then it is used to
2119 -- generate the list of visible ancestors; otherwise their partial
2120 -- view is added to the resulting list.
2122 function Within_Init_Proc return Boolean;
2123 -- Determines if Current_Scope is within an init proc
2125 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
2126 -- Returns True if entity Id is declared within scope S
2128 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
2129 -- Output error message for incorrectly typed expression. Expr is the node
2130 -- for the incorrectly typed construct (Etype (Expr) is the type found),
2131 -- and Expected_Type is the entity for the expected type. Note that Expr
2132 -- does not have to be a subexpression, anything with an Etype field may
2133 -- be used.
2135 end Sem_Util;