2015-09-28 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / ada / sem_res.adb
blob9492fff6b0d354cca3f1d9a741cbb46156111783
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Ghost; use Ghost;
41 with Inline; use Inline;
42 with Itypes; use Itypes;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Nlists; use Nlists;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Par_SCO; use Par_SCO;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Aggr; use Sem_Aggr;
57 with Sem_Attr; use Sem_Attr;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch4; use Sem_Ch4;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elim; use Sem_Elim;
67 with Sem_Elab; use Sem_Elab;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
150 -- predicate.
152 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
158 (N : Node_Id;
159 Arg : Node_Id;
160 Typ : Entity_Id;
161 Is_Comp : Boolean);
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
210 function Operator_Kind
211 (Op_Name : Name_Id;
212 Is_Binary : Boolean) return Node_Kind;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
216 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
221 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
228 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
234 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
235 -- Ditto, for arithmetic unary operators
237 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
238 -- If an operator node resolves to a call to a user-defined operator,
239 -- rewrite the node as a function call.
241 procedure Make_Call_Into_Operator
242 (N : Node_Id;
243 Typ : Entity_Id;
244 Op_Id : Entity_Id);
245 -- Inverse transformation: if an operator is given in functional notation,
246 -- then after resolving the node, transform into an operator node, so that
247 -- operands are resolved properly. Recall that predefined operators do not
248 -- have a full signature and special resolution rules apply.
250 procedure Rewrite_Renamed_Operator
251 (N : Node_Id;
252 Op : Entity_Id;
253 Typ : Entity_Id);
254 -- An operator can rename another, e.g. in an instantiation. In that
255 -- case, the proper operator node must be constructed and resolved.
257 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
258 -- The String_Literal_Subtype is built for all strings that are not
259 -- operands of a static concatenation operation. If the argument is not
260 -- a N_String_Literal node, then the call has no effect.
262 procedure Set_Slice_Subtype (N : Node_Id);
263 -- Build subtype of array type, with the range specified by the slice
265 procedure Simplify_Type_Conversion (N : Node_Id);
266 -- Called after N has been resolved and evaluated, but before range checks
267 -- have been applied. Currently simplifies a combination of floating-point
268 -- to integer conversion and Rounding or Truncation attribute.
270 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
271 -- A universal_fixed expression in an universal context is unambiguous if
272 -- there is only one applicable fixed point type. Determining whether there
273 -- is only one requires a search over all visible entities, and happens
274 -- only in very pathological cases (see 6115-006).
276 -------------------------
277 -- Ambiguous_Character --
278 -------------------------
280 procedure Ambiguous_Character (C : Node_Id) is
281 E : Entity_Id;
283 begin
284 if Nkind (C) = N_Character_Literal then
285 Error_Msg_N ("ambiguous character literal", C);
287 -- First the ones in Standard
289 Error_Msg_N ("\\possible interpretation: Character!", C);
290 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
292 -- Include Wide_Wide_Character in Ada 2005 mode
294 if Ada_Version >= Ada_2005 then
295 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
296 end if;
298 -- Now any other types that match
300 E := Current_Entity (C);
301 while Present (E) loop
302 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
303 E := Homonym (E);
304 end loop;
305 end if;
306 end Ambiguous_Character;
308 -------------------------
309 -- Analyze_And_Resolve --
310 -------------------------
312 procedure Analyze_And_Resolve (N : Node_Id) is
313 begin
314 Analyze (N);
315 Resolve (N);
316 end Analyze_And_Resolve;
318 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
319 begin
320 Analyze (N);
321 Resolve (N, Typ);
322 end Analyze_And_Resolve;
324 -- Versions with check(s) suppressed
326 procedure Analyze_And_Resolve
327 (N : Node_Id;
328 Typ : Entity_Id;
329 Suppress : Check_Id)
331 Scop : constant Entity_Id := Current_Scope;
333 begin
334 if Suppress = All_Checks then
335 declare
336 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
337 begin
338 Scope_Suppress.Suppress := (others => True);
339 Analyze_And_Resolve (N, Typ);
340 Scope_Suppress.Suppress := Sva;
341 end;
343 else
344 declare
345 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
346 begin
347 Scope_Suppress.Suppress (Suppress) := True;
348 Analyze_And_Resolve (N, Typ);
349 Scope_Suppress.Suppress (Suppress) := Svg;
350 end;
351 end if;
353 if Current_Scope /= Scop
354 and then Scope_Is_Transient
355 then
356 -- This can only happen if a transient scope was created for an inner
357 -- expression, which will be removed upon completion of the analysis
358 -- of an enclosing construct. The transient scope must have the
359 -- suppress status of the enclosing environment, not of this Analyze
360 -- call.
362 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
363 Scope_Suppress;
364 end if;
365 end Analyze_And_Resolve;
367 procedure Analyze_And_Resolve
368 (N : Node_Id;
369 Suppress : Check_Id)
371 Scop : constant Entity_Id := Current_Scope;
373 begin
374 if Suppress = All_Checks then
375 declare
376 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
377 begin
378 Scope_Suppress.Suppress := (others => True);
379 Analyze_And_Resolve (N);
380 Scope_Suppress.Suppress := Sva;
381 end;
383 else
384 declare
385 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
386 begin
387 Scope_Suppress.Suppress (Suppress) := True;
388 Analyze_And_Resolve (N);
389 Scope_Suppress.Suppress (Suppress) := Svg;
390 end;
391 end if;
393 if Current_Scope /= Scop and then Scope_Is_Transient then
394 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
395 Scope_Suppress;
396 end if;
397 end Analyze_And_Resolve;
399 ----------------------------
400 -- Check_Discriminant_Use --
401 ----------------------------
403 procedure Check_Discriminant_Use (N : Node_Id) is
404 PN : constant Node_Id := Parent (N);
405 Disc : constant Entity_Id := Entity (N);
406 P : Node_Id;
407 D : Node_Id;
409 begin
410 -- Any use in a spec-expression is legal
412 if In_Spec_Expression then
413 null;
415 elsif Nkind (PN) = N_Range then
417 -- Discriminant cannot be used to constrain a scalar type
419 P := Parent (PN);
421 if Nkind (P) = N_Range_Constraint
422 and then Nkind (Parent (P)) = N_Subtype_Indication
423 and then Nkind (Parent (Parent (P))) = N_Component_Definition
424 then
425 Error_Msg_N ("discriminant cannot constrain scalar type", N);
427 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
429 -- The following check catches the unusual case where a
430 -- discriminant appears within an index constraint that is part
431 -- of a larger expression within a constraint on a component,
432 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
433 -- check case of record components, and note that a similar check
434 -- should also apply in the case of discriminant constraints
435 -- below. ???
437 -- Note that the check for N_Subtype_Declaration below is to
438 -- detect the valid use of discriminants in the constraints of a
439 -- subtype declaration when this subtype declaration appears
440 -- inside the scope of a record type (which is syntactically
441 -- illegal, but which may be created as part of derived type
442 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
443 -- for more info.
445 if Ekind (Current_Scope) = E_Record_Type
446 and then Scope (Disc) = Current_Scope
447 and then not
448 (Nkind (Parent (P)) = N_Subtype_Indication
449 and then
450 Nkind_In (Parent (Parent (P)), N_Component_Definition,
451 N_Subtype_Declaration)
452 and then Paren_Count (N) = 0)
453 then
454 Error_Msg_N
455 ("discriminant must appear alone in component constraint", N);
456 return;
457 end if;
459 -- Detect a common error:
461 -- type R (D : Positive := 100) is record
462 -- Name : String (1 .. D);
463 -- end record;
465 -- The default value causes an object of type R to be allocated
466 -- with room for Positive'Last characters. The RM does not mandate
467 -- the allocation of the maximum size, but that is what GNAT does
468 -- so we should warn the programmer that there is a problem.
470 Check_Large : declare
471 SI : Node_Id;
472 T : Entity_Id;
473 TB : Node_Id;
474 CB : Entity_Id;
476 function Large_Storage_Type (T : Entity_Id) return Boolean;
477 -- Return True if type T has a large enough range that any
478 -- array whose index type covered the whole range of the type
479 -- would likely raise Storage_Error.
481 ------------------------
482 -- Large_Storage_Type --
483 ------------------------
485 function Large_Storage_Type (T : Entity_Id) return Boolean is
486 begin
487 -- The type is considered large if its bounds are known at
488 -- compile time and if it requires at least as many bits as
489 -- a Positive to store the possible values.
491 return Compile_Time_Known_Value (Type_Low_Bound (T))
492 and then Compile_Time_Known_Value (Type_High_Bound (T))
493 and then
494 Minimum_Size (T, Biased => True) >=
495 RM_Size (Standard_Positive);
496 end Large_Storage_Type;
498 -- Start of processing for Check_Large
500 begin
501 -- Check that the Disc has a large range
503 if not Large_Storage_Type (Etype (Disc)) then
504 goto No_Danger;
505 end if;
507 -- If the enclosing type is limited, we allocate only the
508 -- default value, not the maximum, and there is no need for
509 -- a warning.
511 if Is_Limited_Type (Scope (Disc)) then
512 goto No_Danger;
513 end if;
515 -- Check that it is the high bound
517 if N /= High_Bound (PN)
518 or else No (Discriminant_Default_Value (Disc))
519 then
520 goto No_Danger;
521 end if;
523 -- Check the array allows a large range at this bound. First
524 -- find the array
526 SI := Parent (P);
528 if Nkind (SI) /= N_Subtype_Indication then
529 goto No_Danger;
530 end if;
532 T := Entity (Subtype_Mark (SI));
534 if not Is_Array_Type (T) then
535 goto No_Danger;
536 end if;
538 -- Next, find the dimension
540 TB := First_Index (T);
541 CB := First (Constraints (P));
542 while True
543 and then Present (TB)
544 and then Present (CB)
545 and then CB /= PN
546 loop
547 Next_Index (TB);
548 Next (CB);
549 end loop;
551 if CB /= PN then
552 goto No_Danger;
553 end if;
555 -- Now, check the dimension has a large range
557 if not Large_Storage_Type (Etype (TB)) then
558 goto No_Danger;
559 end if;
561 -- Warn about the danger
563 Error_Msg_N
564 ("??creation of & object may raise Storage_Error!",
565 Scope (Disc));
567 <<No_Danger>>
568 null;
570 end Check_Large;
571 end if;
573 -- Legal case is in index or discriminant constraint
575 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
576 N_Discriminant_Association)
577 then
578 if Paren_Count (N) > 0 then
579 Error_Msg_N
580 ("discriminant in constraint must appear alone", N);
582 elsif Nkind (N) = N_Expanded_Name
583 and then Comes_From_Source (N)
584 then
585 Error_Msg_N
586 ("discriminant must appear alone as a direct name", N);
587 end if;
589 return;
591 -- Otherwise, context is an expression. It should not be within (i.e. a
592 -- subexpression of) a constraint for a component.
594 else
595 D := PN;
596 P := Parent (PN);
597 while not Nkind_In (P, N_Component_Declaration,
598 N_Subtype_Indication,
599 N_Entry_Declaration)
600 loop
601 D := P;
602 P := Parent (P);
603 exit when No (P);
604 end loop;
606 -- If the discriminant is used in an expression that is a bound of a
607 -- scalar type, an Itype is created and the bounds are attached to
608 -- its range, not to the original subtype indication. Such use is of
609 -- course a double fault.
611 if (Nkind (P) = N_Subtype_Indication
612 and then Nkind_In (Parent (P), N_Component_Definition,
613 N_Derived_Type_Definition)
614 and then D = Constraint (P))
616 -- The constraint itself may be given by a subtype indication,
617 -- rather than by a more common discrete range.
619 or else (Nkind (P) = N_Subtype_Indication
620 and then
621 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
622 or else Nkind (P) = N_Entry_Declaration
623 or else Nkind (D) = N_Defining_Identifier
624 then
625 Error_Msg_N
626 ("discriminant in constraint must appear alone", N);
627 end if;
628 end if;
629 end Check_Discriminant_Use;
631 --------------------------------
632 -- Check_For_Visible_Operator --
633 --------------------------------
635 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
636 begin
637 if Is_Invisible_Operator (N, T) then
638 Error_Msg_NE -- CODEFIX
639 ("operator for} is not directly visible!", N, First_Subtype (T));
640 Error_Msg_N -- CODEFIX
641 ("use clause would make operation legal!", N);
642 end if;
643 end Check_For_Visible_Operator;
645 ----------------------------------
646 -- Check_Fully_Declared_Prefix --
647 ----------------------------------
649 procedure Check_Fully_Declared_Prefix
650 (Typ : Entity_Id;
651 Pref : Node_Id)
653 begin
654 -- Check that the designated type of the prefix of a dereference is
655 -- not an incomplete type. This cannot be done unconditionally, because
656 -- dereferences of private types are legal in default expressions. This
657 -- case is taken care of in Check_Fully_Declared, called below. There
658 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
660 -- This consideration also applies to similar checks for allocators,
661 -- qualified expressions, and type conversions.
663 -- An additional exception concerns other per-object expressions that
664 -- are not directly related to component declarations, in particular
665 -- representation pragmas for tasks. These will be per-object
666 -- expressions if they depend on discriminants or some global entity.
667 -- If the task has access discriminants, the designated type may be
668 -- incomplete at the point the expression is resolved. This resolution
669 -- takes place within the body of the initialization procedure, where
670 -- the discriminant is replaced by its discriminal.
672 if Is_Entity_Name (Pref)
673 and then Ekind (Entity (Pref)) = E_In_Parameter
674 then
675 null;
677 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
678 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
679 -- Analyze_Object_Renaming, and Freeze_Entity.
681 elsif Ada_Version >= Ada_2005
682 and then Is_Entity_Name (Pref)
683 and then Is_Access_Type (Etype (Pref))
684 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
685 E_Incomplete_Type
686 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
687 then
688 null;
689 else
690 Check_Fully_Declared (Typ, Parent (Pref));
691 end if;
692 end Check_Fully_Declared_Prefix;
694 ------------------------------
695 -- Check_Infinite_Recursion --
696 ------------------------------
698 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
699 P : Node_Id;
700 C : Node_Id;
702 function Same_Argument_List return Boolean;
703 -- Check whether list of actuals is identical to list of formals of
704 -- called function (which is also the enclosing scope).
706 ------------------------
707 -- Same_Argument_List --
708 ------------------------
710 function Same_Argument_List return Boolean is
711 A : Node_Id;
712 F : Entity_Id;
713 Subp : Entity_Id;
715 begin
716 if not Is_Entity_Name (Name (N)) then
717 return False;
718 else
719 Subp := Entity (Name (N));
720 end if;
722 F := First_Formal (Subp);
723 A := First_Actual (N);
724 while Present (F) and then Present (A) loop
725 if not Is_Entity_Name (A) or else Entity (A) /= F then
726 return False;
727 end if;
729 Next_Actual (A);
730 Next_Formal (F);
731 end loop;
733 return True;
734 end Same_Argument_List;
736 -- Start of processing for Check_Infinite_Recursion
738 begin
739 -- Special case, if this is a procedure call and is a call to the
740 -- current procedure with the same argument list, then this is for
741 -- sure an infinite recursion and we insert a call to raise SE.
743 if Is_List_Member (N)
744 and then List_Length (List_Containing (N)) = 1
745 and then Same_Argument_List
746 then
747 declare
748 P : constant Node_Id := Parent (N);
749 begin
750 if Nkind (P) = N_Handled_Sequence_Of_Statements
751 and then Nkind (Parent (P)) = N_Subprogram_Body
752 and then Is_Empty_List (Declarations (Parent (P)))
753 then
754 Error_Msg_Warn := SPARK_Mode /= On;
755 Error_Msg_N ("!infinite recursion<<", N);
756 Error_Msg_N ("\!Storage_Error [<<", N);
757 Insert_Action (N,
758 Make_Raise_Storage_Error (Sloc (N),
759 Reason => SE_Infinite_Recursion));
760 return True;
761 end if;
762 end;
763 end if;
765 -- If not that special case, search up tree, quitting if we reach a
766 -- construct (e.g. a conditional) that tells us that this is not a
767 -- case for an infinite recursion warning.
769 C := N;
770 loop
771 P := Parent (C);
773 -- If no parent, then we were not inside a subprogram, this can for
774 -- example happen when processing certain pragmas in a spec. Just
775 -- return False in this case.
777 if No (P) then
778 return False;
779 end if;
781 -- Done if we get to subprogram body, this is definitely an infinite
782 -- recursion case if we did not find anything to stop us.
784 exit when Nkind (P) = N_Subprogram_Body;
786 -- If appearing in conditional, result is false
788 if Nkind_In (P, N_Or_Else,
789 N_And_Then,
790 N_Case_Expression,
791 N_Case_Statement,
792 N_If_Expression,
793 N_If_Statement)
794 then
795 return False;
797 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
798 and then C /= First (Statements (P))
799 then
800 -- If the call is the expression of a return statement and the
801 -- actuals are identical to the formals, it's worth a warning.
802 -- However, we skip this if there is an immediately preceding
803 -- raise statement, since the call is never executed.
805 -- Furthermore, this corresponds to a common idiom:
807 -- function F (L : Thing) return Boolean is
808 -- begin
809 -- raise Program_Error;
810 -- return F (L);
811 -- end F;
813 -- for generating a stub function
815 if Nkind (Parent (N)) = N_Simple_Return_Statement
816 and then Same_Argument_List
817 then
818 exit when not Is_List_Member (Parent (N));
820 -- OK, return statement is in a statement list, look for raise
822 declare
823 Nod : Node_Id;
825 begin
826 -- Skip past N_Freeze_Entity nodes generated by expansion
828 Nod := Prev (Parent (N));
829 while Present (Nod)
830 and then Nkind (Nod) = N_Freeze_Entity
831 loop
832 Prev (Nod);
833 end loop;
835 -- If no raise statement, give warning. We look at the
836 -- original node, because in the case of "raise ... with
837 -- ...", the node has been transformed into a call.
839 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
840 and then
841 (Nkind (Nod) not in N_Raise_xxx_Error
842 or else Present (Condition (Nod)));
843 end;
844 end if;
846 return False;
848 else
849 C := P;
850 end if;
851 end loop;
853 Error_Msg_Warn := SPARK_Mode /= On;
854 Error_Msg_N ("!possible infinite recursion<<", N);
855 Error_Msg_N ("\!??Storage_Error ]<<", N);
857 return True;
858 end Check_Infinite_Recursion;
860 -------------------------------
861 -- Check_Initialization_Call --
862 -------------------------------
864 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
865 Typ : constant Entity_Id := Etype (First_Formal (Nam));
867 function Uses_SS (T : Entity_Id) return Boolean;
868 -- Check whether the creation of an object of the type will involve
869 -- use of the secondary stack. If T is a record type, this is true
870 -- if the expression for some component uses the secondary stack, e.g.
871 -- through a call to a function that returns an unconstrained value.
872 -- False if T is controlled, because cleanups occur elsewhere.
874 -------------
875 -- Uses_SS --
876 -------------
878 function Uses_SS (T : Entity_Id) return Boolean is
879 Comp : Entity_Id;
880 Expr : Node_Id;
881 Full_Type : Entity_Id := Underlying_Type (T);
883 begin
884 -- Normally we want to use the underlying type, but if it's not set
885 -- then continue with T.
887 if not Present (Full_Type) then
888 Full_Type := T;
889 end if;
891 if Is_Controlled (Full_Type) then
892 return False;
894 elsif Is_Array_Type (Full_Type) then
895 return Uses_SS (Component_Type (Full_Type));
897 elsif Is_Record_Type (Full_Type) then
898 Comp := First_Component (Full_Type);
899 while Present (Comp) loop
900 if Ekind (Comp) = E_Component
901 and then Nkind (Parent (Comp)) = N_Component_Declaration
902 then
903 -- The expression for a dynamic component may be rewritten
904 -- as a dereference, so retrieve original node.
906 Expr := Original_Node (Expression (Parent (Comp)));
908 -- Return True if the expression is a call to a function
909 -- (including an attribute function such as Image, or a
910 -- user-defined operator) with a result that requires a
911 -- transient scope.
913 if (Nkind (Expr) = N_Function_Call
914 or else Nkind (Expr) in N_Op
915 or else (Nkind (Expr) = N_Attribute_Reference
916 and then Present (Expressions (Expr))))
917 and then Requires_Transient_Scope (Etype (Expr))
918 then
919 return True;
921 elsif Uses_SS (Etype (Comp)) then
922 return True;
923 end if;
924 end if;
926 Next_Component (Comp);
927 end loop;
929 return False;
931 else
932 return False;
933 end if;
934 end Uses_SS;
936 -- Start of processing for Check_Initialization_Call
938 begin
939 -- Establish a transient scope if the type needs it
941 if Uses_SS (Typ) then
942 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
943 end if;
944 end Check_Initialization_Call;
946 ---------------------------------------
947 -- Check_No_Direct_Boolean_Operators --
948 ---------------------------------------
950 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
951 begin
952 if Scope (Entity (N)) = Standard_Standard
953 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
954 then
955 -- Restriction only applies to original source code
957 if Comes_From_Source (N) then
958 Check_Restriction (No_Direct_Boolean_Operators, N);
959 end if;
960 end if;
962 -- Do style check (but skip if in instance, error is on template)
964 if Style_Check then
965 if not In_Instance then
966 Check_Boolean_Operator (N);
967 end if;
968 end if;
969 end Check_No_Direct_Boolean_Operators;
971 ------------------------------
972 -- Check_Parameterless_Call --
973 ------------------------------
975 procedure Check_Parameterless_Call (N : Node_Id) is
976 Nam : Node_Id;
978 function Prefix_Is_Access_Subp return Boolean;
979 -- If the prefix is of an access_to_subprogram type, the node must be
980 -- rewritten as a call. Ditto if the prefix is overloaded and all its
981 -- interpretations are access to subprograms.
983 ---------------------------
984 -- Prefix_Is_Access_Subp --
985 ---------------------------
987 function Prefix_Is_Access_Subp return Boolean is
988 I : Interp_Index;
989 It : Interp;
991 begin
992 -- If the context is an attribute reference that can apply to
993 -- functions, this is never a parameterless call (RM 4.1.4(6)).
995 if Nkind (Parent (N)) = N_Attribute_Reference
996 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
997 Name_Code_Address,
998 Name_Access)
999 then
1000 return False;
1001 end if;
1003 if not Is_Overloaded (N) then
1004 return
1005 Ekind (Etype (N)) = E_Subprogram_Type
1006 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1007 else
1008 Get_First_Interp (N, I, It);
1009 while Present (It.Typ) loop
1010 if Ekind (It.Typ) /= E_Subprogram_Type
1011 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1012 then
1013 return False;
1014 end if;
1016 Get_Next_Interp (I, It);
1017 end loop;
1019 return True;
1020 end if;
1021 end Prefix_Is_Access_Subp;
1023 -- Start of processing for Check_Parameterless_Call
1025 begin
1026 -- Defend against junk stuff if errors already detected
1028 if Total_Errors_Detected /= 0 then
1029 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1030 return;
1031 elsif Nkind (N) in N_Has_Chars
1032 and then Chars (N) in Error_Name_Or_No_Name
1033 then
1034 return;
1035 end if;
1037 Require_Entity (N);
1038 end if;
1040 -- If the context expects a value, and the name is a procedure, this is
1041 -- most likely a missing 'Access. Don't try to resolve the parameterless
1042 -- call, error will be caught when the outer call is analyzed.
1044 if Is_Entity_Name (N)
1045 and then Ekind (Entity (N)) = E_Procedure
1046 and then not Is_Overloaded (N)
1047 and then
1048 Nkind_In (Parent (N), N_Parameter_Association,
1049 N_Function_Call,
1050 N_Procedure_Call_Statement)
1051 then
1052 return;
1053 end if;
1055 -- Rewrite as call if overloadable entity that is (or could be, in the
1056 -- overloaded case) a function call. If we know for sure that the entity
1057 -- is an enumeration literal, we do not rewrite it.
1059 -- If the entity is the name of an operator, it cannot be a call because
1060 -- operators cannot have default parameters. In this case, this must be
1061 -- a string whose contents coincide with an operator name. Set the kind
1062 -- of the node appropriately.
1064 if (Is_Entity_Name (N)
1065 and then Nkind (N) /= N_Operator_Symbol
1066 and then Is_Overloadable (Entity (N))
1067 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1068 or else Is_Overloaded (N)))
1070 -- Rewrite as call if it is an explicit dereference of an expression of
1071 -- a subprogram access type, and the subprogram type is not that of a
1072 -- procedure or entry.
1074 or else
1075 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1077 -- Rewrite as call if it is a selected component which is a function,
1078 -- this is the case of a call to a protected function (which may be
1079 -- overloaded with other protected operations).
1081 or else
1082 (Nkind (N) = N_Selected_Component
1083 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1084 or else
1085 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1086 E_Procedure)
1087 and then Is_Overloaded (Selector_Name (N)))))
1089 -- If one of the above three conditions is met, rewrite as call. Apply
1090 -- the rewriting only once.
1092 then
1093 if Nkind (Parent (N)) /= N_Function_Call
1094 or else N /= Name (Parent (N))
1095 then
1097 -- This may be a prefixed call that was not fully analyzed, e.g.
1098 -- an actual in an instance.
1100 if Ada_Version >= Ada_2005
1101 and then Nkind (N) = N_Selected_Component
1102 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1103 then
1104 Analyze_Selected_Component (N);
1106 if Nkind (N) /= N_Selected_Component then
1107 return;
1108 end if;
1109 end if;
1111 -- The node is the name of the parameterless call. Preserve its
1112 -- descendants, which may be complex expressions.
1114 Nam := Relocate_Node (N);
1116 -- If overloaded, overload set belongs to new copy
1118 Save_Interps (N, Nam);
1120 -- Change node to parameterless function call (note that the
1121 -- Parameter_Associations associations field is left set to Empty,
1122 -- its normal default value since there are no parameters)
1124 Change_Node (N, N_Function_Call);
1125 Set_Name (N, Nam);
1126 Set_Sloc (N, Sloc (Nam));
1127 Analyze_Call (N);
1128 end if;
1130 elsif Nkind (N) = N_Parameter_Association then
1131 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1133 elsif Nkind (N) = N_Operator_Symbol then
1134 Change_Operator_Symbol_To_String_Literal (N);
1135 Set_Is_Overloaded (N, False);
1136 Set_Etype (N, Any_String);
1137 end if;
1138 end Check_Parameterless_Call;
1140 --------------------------------
1141 -- Is_Atomic_Ref_With_Address --
1142 --------------------------------
1144 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1145 Pref : constant Node_Id := Prefix (N);
1147 begin
1148 if not Is_Entity_Name (Pref) then
1149 return False;
1151 else
1152 declare
1153 Pent : constant Entity_Id := Entity (Pref);
1154 Ptyp : constant Entity_Id := Etype (Pent);
1155 begin
1156 return not Is_Access_Type (Ptyp)
1157 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1158 and then Present (Address_Clause (Pent));
1159 end;
1160 end if;
1161 end Is_Atomic_Ref_With_Address;
1163 -----------------------------
1164 -- Is_Definite_Access_Type --
1165 -----------------------------
1167 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1168 Btyp : constant Entity_Id := Base_Type (E);
1169 begin
1170 return Ekind (Btyp) = E_Access_Type
1171 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1172 and then Comes_From_Source (Btyp));
1173 end Is_Definite_Access_Type;
1175 ----------------------
1176 -- Is_Predefined_Op --
1177 ----------------------
1179 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1180 begin
1181 -- Predefined operators are intrinsic subprograms
1183 if not Is_Intrinsic_Subprogram (Nam) then
1184 return False;
1185 end if;
1187 -- A call to a back-end builtin is never a predefined operator
1189 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1190 return False;
1191 end if;
1193 return not Is_Generic_Instance (Nam)
1194 and then Chars (Nam) in Any_Operator_Name
1195 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1196 end Is_Predefined_Op;
1198 -----------------------------
1199 -- Make_Call_Into_Operator --
1200 -----------------------------
1202 procedure Make_Call_Into_Operator
1203 (N : Node_Id;
1204 Typ : Entity_Id;
1205 Op_Id : Entity_Id)
1207 Op_Name : constant Name_Id := Chars (Op_Id);
1208 Act1 : Node_Id := First_Actual (N);
1209 Act2 : Node_Id := Next_Actual (Act1);
1210 Error : Boolean := False;
1211 Func : constant Entity_Id := Entity (Name (N));
1212 Is_Binary : constant Boolean := Present (Act2);
1213 Op_Node : Node_Id;
1214 Opnd_Type : Entity_Id;
1215 Orig_Type : Entity_Id := Empty;
1216 Pack : Entity_Id;
1218 type Kind_Test is access function (E : Entity_Id) return Boolean;
1220 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1221 -- If the operand is not universal, and the operator is given by an
1222 -- expanded name, verify that the operand has an interpretation with a
1223 -- type defined in the given scope of the operator.
1225 function Type_In_P (Test : Kind_Test) return Entity_Id;
1226 -- Find a type of the given class in package Pack that contains the
1227 -- operator.
1229 ---------------------------
1230 -- Operand_Type_In_Scope --
1231 ---------------------------
1233 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1234 Nod : constant Node_Id := Right_Opnd (Op_Node);
1235 I : Interp_Index;
1236 It : Interp;
1238 begin
1239 if not Is_Overloaded (Nod) then
1240 return Scope (Base_Type (Etype (Nod))) = S;
1242 else
1243 Get_First_Interp (Nod, I, It);
1244 while Present (It.Typ) loop
1245 if Scope (Base_Type (It.Typ)) = S then
1246 return True;
1247 end if;
1249 Get_Next_Interp (I, It);
1250 end loop;
1252 return False;
1253 end if;
1254 end Operand_Type_In_Scope;
1256 ---------------
1257 -- Type_In_P --
1258 ---------------
1260 function Type_In_P (Test : Kind_Test) return Entity_Id is
1261 E : Entity_Id;
1263 function In_Decl return Boolean;
1264 -- Verify that node is not part of the type declaration for the
1265 -- candidate type, which would otherwise be invisible.
1267 -------------
1268 -- In_Decl --
1269 -------------
1271 function In_Decl return Boolean is
1272 Decl_Node : constant Node_Id := Parent (E);
1273 N2 : Node_Id;
1275 begin
1276 N2 := N;
1278 if Etype (E) = Any_Type then
1279 return True;
1281 elsif No (Decl_Node) then
1282 return False;
1284 else
1285 while Present (N2)
1286 and then Nkind (N2) /= N_Compilation_Unit
1287 loop
1288 if N2 = Decl_Node then
1289 return True;
1290 else
1291 N2 := Parent (N2);
1292 end if;
1293 end loop;
1295 return False;
1296 end if;
1297 end In_Decl;
1299 -- Start of processing for Type_In_P
1301 begin
1302 -- If the context type is declared in the prefix package, this is the
1303 -- desired base type.
1305 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1306 return Base_Type (Typ);
1308 else
1309 E := First_Entity (Pack);
1310 while Present (E) loop
1311 if Test (E) and then not In_Decl then
1312 return E;
1313 end if;
1315 Next_Entity (E);
1316 end loop;
1318 return Empty;
1319 end if;
1320 end Type_In_P;
1322 -- Start of processing for Make_Call_Into_Operator
1324 begin
1325 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1327 -- Binary operator
1329 if Is_Binary then
1330 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1331 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1332 Save_Interps (Act1, Left_Opnd (Op_Node));
1333 Save_Interps (Act2, Right_Opnd (Op_Node));
1334 Act1 := Left_Opnd (Op_Node);
1335 Act2 := Right_Opnd (Op_Node);
1337 -- Unary operator
1339 else
1340 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1341 Save_Interps (Act1, Right_Opnd (Op_Node));
1342 Act1 := Right_Opnd (Op_Node);
1343 end if;
1345 -- If the operator is denoted by an expanded name, and the prefix is
1346 -- not Standard, but the operator is a predefined one whose scope is
1347 -- Standard, then this is an implicit_operator, inserted as an
1348 -- interpretation by the procedure of the same name. This procedure
1349 -- overestimates the presence of implicit operators, because it does
1350 -- not examine the type of the operands. Verify now that the operand
1351 -- type appears in the given scope. If right operand is universal,
1352 -- check the other operand. In the case of concatenation, either
1353 -- argument can be the component type, so check the type of the result.
1354 -- If both arguments are literals, look for a type of the right kind
1355 -- defined in the given scope. This elaborate nonsense is brought to
1356 -- you courtesy of b33302a. The type itself must be frozen, so we must
1357 -- find the type of the proper class in the given scope.
1359 -- A final wrinkle is the multiplication operator for fixed point types,
1360 -- which is defined in Standard only, and not in the scope of the
1361 -- fixed point type itself.
1363 if Nkind (Name (N)) = N_Expanded_Name then
1364 Pack := Entity (Prefix (Name (N)));
1366 -- If this is a package renaming, get renamed entity, which will be
1367 -- the scope of the operands if operaton is type-correct.
1369 if Present (Renamed_Entity (Pack)) then
1370 Pack := Renamed_Entity (Pack);
1371 end if;
1373 -- If the entity being called is defined in the given package, it is
1374 -- a renaming of a predefined operator, and known to be legal.
1376 if Scope (Entity (Name (N))) = Pack
1377 and then Pack /= Standard_Standard
1378 then
1379 null;
1381 -- Visibility does not need to be checked in an instance: if the
1382 -- operator was not visible in the generic it has been diagnosed
1383 -- already, else there is an implicit copy of it in the instance.
1385 elsif In_Instance then
1386 null;
1388 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1389 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1390 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1391 then
1392 if Pack /= Standard_Standard then
1393 Error := True;
1394 end if;
1396 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1397 -- available.
1399 elsif Ada_Version >= Ada_2005
1400 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1401 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1402 then
1403 null;
1405 else
1406 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1408 if Op_Name = Name_Op_Concat then
1409 Opnd_Type := Base_Type (Typ);
1411 elsif (Scope (Opnd_Type) = Standard_Standard
1412 and then Is_Binary)
1413 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1414 and then Is_Binary
1415 and then not Comes_From_Source (Opnd_Type))
1416 then
1417 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1418 end if;
1420 if Scope (Opnd_Type) = Standard_Standard then
1422 -- Verify that the scope contains a type that corresponds to
1423 -- the given literal. Optimize the case where Pack is Standard.
1425 if Pack /= Standard_Standard then
1427 if Opnd_Type = Universal_Integer then
1428 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1430 elsif Opnd_Type = Universal_Real then
1431 Orig_Type := Type_In_P (Is_Real_Type'Access);
1433 elsif Opnd_Type = Any_String then
1434 Orig_Type := Type_In_P (Is_String_Type'Access);
1436 elsif Opnd_Type = Any_Access then
1437 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1439 elsif Opnd_Type = Any_Composite then
1440 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1442 if Present (Orig_Type) then
1443 if Has_Private_Component (Orig_Type) then
1444 Orig_Type := Empty;
1445 else
1446 Set_Etype (Act1, Orig_Type);
1448 if Is_Binary then
1449 Set_Etype (Act2, Orig_Type);
1450 end if;
1451 end if;
1452 end if;
1454 else
1455 Orig_Type := Empty;
1456 end if;
1458 Error := No (Orig_Type);
1459 end if;
1461 elsif Ekind (Opnd_Type) = E_Allocator_Type
1462 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1463 then
1464 Error := True;
1466 -- If the type is defined elsewhere, and the operator is not
1467 -- defined in the given scope (by a renaming declaration, e.g.)
1468 -- then this is an error as well. If an extension of System is
1469 -- present, and the type may be defined there, Pack must be
1470 -- System itself.
1472 elsif Scope (Opnd_Type) /= Pack
1473 and then Scope (Op_Id) /= Pack
1474 and then (No (System_Aux_Id)
1475 or else Scope (Opnd_Type) /= System_Aux_Id
1476 or else Pack /= Scope (System_Aux_Id))
1477 then
1478 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1479 Error := True;
1480 else
1481 Error := not Operand_Type_In_Scope (Pack);
1482 end if;
1484 elsif Pack = Standard_Standard
1485 and then not Operand_Type_In_Scope (Standard_Standard)
1486 then
1487 Error := True;
1488 end if;
1489 end if;
1491 if Error then
1492 Error_Msg_Node_2 := Pack;
1493 Error_Msg_NE
1494 ("& not declared in&", N, Selector_Name (Name (N)));
1495 Set_Etype (N, Any_Type);
1496 return;
1498 -- Detect a mismatch between the context type and the result type
1499 -- in the named package, which is otherwise not detected if the
1500 -- operands are universal. Check is only needed if source entity is
1501 -- an operator, not a function that renames an operator.
1503 elsif Nkind (Parent (N)) /= N_Type_Conversion
1504 and then Ekind (Entity (Name (N))) = E_Operator
1505 and then Is_Numeric_Type (Typ)
1506 and then not Is_Universal_Numeric_Type (Typ)
1507 and then Scope (Base_Type (Typ)) /= Pack
1508 and then not In_Instance
1509 then
1510 if Is_Fixed_Point_Type (Typ)
1511 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1512 then
1513 -- Already checked above
1515 null;
1517 -- Operator may be defined in an extension of System
1519 elsif Present (System_Aux_Id)
1520 and then Scope (Opnd_Type) = System_Aux_Id
1521 then
1522 null;
1524 else
1525 -- Could we use Wrong_Type here??? (this would require setting
1526 -- Etype (N) to the actual type found where Typ was expected).
1528 Error_Msg_NE ("expect }", N, Typ);
1529 end if;
1530 end if;
1531 end if;
1533 Set_Chars (Op_Node, Op_Name);
1535 if not Is_Private_Type (Etype (N)) then
1536 Set_Etype (Op_Node, Base_Type (Etype (N)));
1537 else
1538 Set_Etype (Op_Node, Etype (N));
1539 end if;
1541 -- If this is a call to a function that renames a predefined equality,
1542 -- the renaming declaration provides a type that must be used to
1543 -- resolve the operands. This must be done now because resolution of
1544 -- the equality node will not resolve any remaining ambiguity, and it
1545 -- assumes that the first operand is not overloaded.
1547 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1548 and then Ekind (Func) = E_Function
1549 and then Is_Overloaded (Act1)
1550 then
1551 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1552 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1553 end if;
1555 Set_Entity (Op_Node, Op_Id);
1556 Generate_Reference (Op_Id, N, ' ');
1558 -- Do rewrite setting Comes_From_Source on the result if the original
1559 -- call came from source. Although it is not strictly the case that the
1560 -- operator as such comes from the source, logically it corresponds
1561 -- exactly to the function call in the source, so it should be marked
1562 -- this way (e.g. to make sure that validity checks work fine).
1564 declare
1565 CS : constant Boolean := Comes_From_Source (N);
1566 begin
1567 Rewrite (N, Op_Node);
1568 Set_Comes_From_Source (N, CS);
1569 end;
1571 -- If this is an arithmetic operator and the result type is private,
1572 -- the operands and the result must be wrapped in conversion to
1573 -- expose the underlying numeric type and expand the proper checks,
1574 -- e.g. on division.
1576 if Is_Private_Type (Typ) then
1577 case Nkind (N) is
1578 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1579 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1580 Resolve_Intrinsic_Operator (N, Typ);
1582 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1583 Resolve_Intrinsic_Unary_Operator (N, Typ);
1585 when others =>
1586 Resolve (N, Typ);
1587 end case;
1588 else
1589 Resolve (N, Typ);
1590 end if;
1592 -- If in ASIS_Mode, propagate operand types to original actuals of
1593 -- function call, which would otherwise not be fully resolved. If
1594 -- the call has already been constant-folded, nothing to do. We
1595 -- relocate the operand nodes rather than copy them, to preserve
1596 -- original_node pointers, given that the operands themselves may
1597 -- have been rewritten. If the call was itself a rewriting of an
1598 -- operator node, nothing to do.
1600 if ASIS_Mode
1601 and then Nkind (N) in N_Op
1602 and then Nkind (Original_Node (N)) = N_Function_Call
1603 then
1604 declare
1605 L : Node_Id;
1606 R : constant Node_Id := Right_Opnd (N);
1608 Old_First : constant Node_Id :=
1609 First (Parameter_Associations (Original_Node (N)));
1610 Old_Sec : Node_Id;
1612 begin
1613 if Is_Binary then
1614 L := Left_Opnd (N);
1615 Old_Sec := Next (Old_First);
1617 -- If the original call has named associations, replace the
1618 -- explicit actual parameter in the association with the proper
1619 -- resolved operand.
1621 if Nkind (Old_First) = N_Parameter_Association then
1622 if Chars (Selector_Name (Old_First)) =
1623 Chars (First_Entity (Op_Id))
1624 then
1625 Rewrite (Explicit_Actual_Parameter (Old_First),
1626 Relocate_Node (L));
1627 else
1628 Rewrite (Explicit_Actual_Parameter (Old_First),
1629 Relocate_Node (R));
1630 end if;
1632 else
1633 Rewrite (Old_First, Relocate_Node (L));
1634 end if;
1636 if Nkind (Old_Sec) = N_Parameter_Association then
1637 if Chars (Selector_Name (Old_Sec)) =
1638 Chars (First_Entity (Op_Id))
1639 then
1640 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1641 Relocate_Node (L));
1642 else
1643 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1644 Relocate_Node (R));
1645 end if;
1647 else
1648 Rewrite (Old_Sec, Relocate_Node (R));
1649 end if;
1651 else
1652 if Nkind (Old_First) = N_Parameter_Association then
1653 Rewrite (Explicit_Actual_Parameter (Old_First),
1654 Relocate_Node (R));
1655 else
1656 Rewrite (Old_First, Relocate_Node (R));
1657 end if;
1658 end if;
1659 end;
1661 Set_Parent (Original_Node (N), Parent (N));
1662 end if;
1663 end Make_Call_Into_Operator;
1665 -------------------
1666 -- Operator_Kind --
1667 -------------------
1669 function Operator_Kind
1670 (Op_Name : Name_Id;
1671 Is_Binary : Boolean) return Node_Kind
1673 Kind : Node_Kind;
1675 begin
1676 -- Use CASE statement or array???
1678 if Is_Binary then
1679 if Op_Name = Name_Op_And then
1680 Kind := N_Op_And;
1681 elsif Op_Name = Name_Op_Or then
1682 Kind := N_Op_Or;
1683 elsif Op_Name = Name_Op_Xor then
1684 Kind := N_Op_Xor;
1685 elsif Op_Name = Name_Op_Eq then
1686 Kind := N_Op_Eq;
1687 elsif Op_Name = Name_Op_Ne then
1688 Kind := N_Op_Ne;
1689 elsif Op_Name = Name_Op_Lt then
1690 Kind := N_Op_Lt;
1691 elsif Op_Name = Name_Op_Le then
1692 Kind := N_Op_Le;
1693 elsif Op_Name = Name_Op_Gt then
1694 Kind := N_Op_Gt;
1695 elsif Op_Name = Name_Op_Ge then
1696 Kind := N_Op_Ge;
1697 elsif Op_Name = Name_Op_Add then
1698 Kind := N_Op_Add;
1699 elsif Op_Name = Name_Op_Subtract then
1700 Kind := N_Op_Subtract;
1701 elsif Op_Name = Name_Op_Concat then
1702 Kind := N_Op_Concat;
1703 elsif Op_Name = Name_Op_Multiply then
1704 Kind := N_Op_Multiply;
1705 elsif Op_Name = Name_Op_Divide then
1706 Kind := N_Op_Divide;
1707 elsif Op_Name = Name_Op_Mod then
1708 Kind := N_Op_Mod;
1709 elsif Op_Name = Name_Op_Rem then
1710 Kind := N_Op_Rem;
1711 elsif Op_Name = Name_Op_Expon then
1712 Kind := N_Op_Expon;
1713 else
1714 raise Program_Error;
1715 end if;
1717 -- Unary operators
1719 else
1720 if Op_Name = Name_Op_Add then
1721 Kind := N_Op_Plus;
1722 elsif Op_Name = Name_Op_Subtract then
1723 Kind := N_Op_Minus;
1724 elsif Op_Name = Name_Op_Abs then
1725 Kind := N_Op_Abs;
1726 elsif Op_Name = Name_Op_Not then
1727 Kind := N_Op_Not;
1728 else
1729 raise Program_Error;
1730 end if;
1731 end if;
1733 return Kind;
1734 end Operator_Kind;
1736 ----------------------------
1737 -- Preanalyze_And_Resolve --
1738 ----------------------------
1740 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1741 Save_Full_Analysis : constant Boolean := Full_Analysis;
1743 begin
1744 Full_Analysis := False;
1745 Expander_Mode_Save_And_Set (False);
1747 -- Normally, we suppress all checks for this preanalysis. There is no
1748 -- point in processing them now, since they will be applied properly
1749 -- and in the proper location when the default expressions reanalyzed
1750 -- and reexpanded later on. We will also have more information at that
1751 -- point for possible suppression of individual checks.
1753 -- However, in SPARK mode, most expansion is suppressed, and this
1754 -- later reanalysis and reexpansion may not occur. SPARK mode does
1755 -- require the setting of checking flags for proof purposes, so we
1756 -- do the SPARK preanalysis without suppressing checks.
1758 -- This special handling for SPARK mode is required for example in the
1759 -- case of Ada 2012 constructs such as quantified expressions, which are
1760 -- expanded in two separate steps.
1762 if GNATprove_Mode then
1763 Analyze_And_Resolve (N, T);
1764 else
1765 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1766 end if;
1768 Expander_Mode_Restore;
1769 Full_Analysis := Save_Full_Analysis;
1770 end Preanalyze_And_Resolve;
1772 -- Version without context type
1774 procedure Preanalyze_And_Resolve (N : Node_Id) is
1775 Save_Full_Analysis : constant Boolean := Full_Analysis;
1777 begin
1778 Full_Analysis := False;
1779 Expander_Mode_Save_And_Set (False);
1781 Analyze (N);
1782 Resolve (N, Etype (N), Suppress => All_Checks);
1784 Expander_Mode_Restore;
1785 Full_Analysis := Save_Full_Analysis;
1786 end Preanalyze_And_Resolve;
1788 ----------------------------------
1789 -- Replace_Actual_Discriminants --
1790 ----------------------------------
1792 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1793 Loc : constant Source_Ptr := Sloc (N);
1794 Tsk : Node_Id := Empty;
1796 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1797 -- Comment needed???
1799 -------------------
1800 -- Process_Discr --
1801 -------------------
1803 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1804 Ent : Entity_Id;
1806 begin
1807 if Nkind (Nod) = N_Identifier then
1808 Ent := Entity (Nod);
1810 if Present (Ent)
1811 and then Ekind (Ent) = E_Discriminant
1812 then
1813 Rewrite (Nod,
1814 Make_Selected_Component (Loc,
1815 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1816 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1818 Set_Etype (Nod, Etype (Ent));
1819 end if;
1821 end if;
1823 return OK;
1824 end Process_Discr;
1826 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1828 -- Start of processing for Replace_Actual_Discriminants
1830 begin
1831 if not Expander_Active then
1832 return;
1833 end if;
1835 if Nkind (Name (N)) = N_Selected_Component then
1836 Tsk := Prefix (Name (N));
1838 elsif Nkind (Name (N)) = N_Indexed_Component then
1839 Tsk := Prefix (Prefix (Name (N)));
1840 end if;
1842 if No (Tsk) then
1843 return;
1844 else
1845 Replace_Discrs (Default);
1846 end if;
1847 end Replace_Actual_Discriminants;
1849 -------------
1850 -- Resolve --
1851 -------------
1853 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1854 Ambiguous : Boolean := False;
1855 Ctx_Type : Entity_Id := Typ;
1856 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1857 Err_Type : Entity_Id := Empty;
1858 Found : Boolean := False;
1859 From_Lib : Boolean;
1860 I : Interp_Index;
1861 I1 : Interp_Index := 0; -- prevent junk warning
1862 It : Interp;
1863 It1 : Interp;
1864 Seen : Entity_Id := Empty; -- prevent junk warning
1866 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1867 -- Determine whether a node comes from a predefined library unit or
1868 -- Standard.
1870 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1871 -- Try and fix up a literal so that it matches its expected type. New
1872 -- literals are manufactured if necessary to avoid cascaded errors.
1874 procedure Report_Ambiguous_Argument;
1875 -- Additional diagnostics when an ambiguous call has an ambiguous
1876 -- argument (typically a controlling actual).
1878 procedure Resolution_Failed;
1879 -- Called when attempt at resolving current expression fails
1881 ------------------------------------
1882 -- Comes_From_Predefined_Lib_Unit --
1883 -------------------------------------
1885 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1886 begin
1887 return
1888 Sloc (Nod) = Standard_Location
1889 or else Is_Predefined_File_Name
1890 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1891 end Comes_From_Predefined_Lib_Unit;
1893 --------------------
1894 -- Patch_Up_Value --
1895 --------------------
1897 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1898 begin
1899 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1900 Rewrite (N,
1901 Make_Real_Literal (Sloc (N),
1902 Realval => UR_From_Uint (Intval (N))));
1903 Set_Etype (N, Universal_Real);
1904 Set_Is_Static_Expression (N);
1906 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1907 Rewrite (N,
1908 Make_Integer_Literal (Sloc (N),
1909 Intval => UR_To_Uint (Realval (N))));
1910 Set_Etype (N, Universal_Integer);
1911 Set_Is_Static_Expression (N);
1913 elsif Nkind (N) = N_String_Literal
1914 and then Is_Character_Type (Typ)
1915 then
1916 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1917 Rewrite (N,
1918 Make_Character_Literal (Sloc (N),
1919 Chars => Name_Find,
1920 Char_Literal_Value =>
1921 UI_From_Int (Character'Pos ('A'))));
1922 Set_Etype (N, Any_Character);
1923 Set_Is_Static_Expression (N);
1925 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1926 Rewrite (N,
1927 Make_String_Literal (Sloc (N),
1928 Strval => End_String));
1930 elsif Nkind (N) = N_Range then
1931 Patch_Up_Value (Low_Bound (N), Typ);
1932 Patch_Up_Value (High_Bound (N), Typ);
1933 end if;
1934 end Patch_Up_Value;
1936 -------------------------------
1937 -- Report_Ambiguous_Argument --
1938 -------------------------------
1940 procedure Report_Ambiguous_Argument is
1941 Arg : constant Node_Id := First (Parameter_Associations (N));
1942 I : Interp_Index;
1943 It : Interp;
1945 begin
1946 if Nkind (Arg) = N_Function_Call
1947 and then Is_Entity_Name (Name (Arg))
1948 and then Is_Overloaded (Name (Arg))
1949 then
1950 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1952 -- Could use comments on what is going on here???
1954 Get_First_Interp (Name (Arg), I, It);
1955 while Present (It.Nam) loop
1956 Error_Msg_Sloc := Sloc (It.Nam);
1958 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1959 Error_Msg_N ("interpretation (inherited) #!", Arg);
1960 else
1961 Error_Msg_N ("interpretation #!", Arg);
1962 end if;
1964 Get_Next_Interp (I, It);
1965 end loop;
1966 end if;
1967 end Report_Ambiguous_Argument;
1969 -----------------------
1970 -- Resolution_Failed --
1971 -----------------------
1973 procedure Resolution_Failed is
1974 begin
1975 Patch_Up_Value (N, Typ);
1976 Set_Etype (N, Typ);
1977 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1978 Set_Is_Overloaded (N, False);
1980 -- The caller will return without calling the expander, so we need
1981 -- to set the analyzed flag. Note that it is fine to set Analyzed
1982 -- to True even if we are in the middle of a shallow analysis,
1983 -- (see the spec of sem for more details) since this is an error
1984 -- situation anyway, and there is no point in repeating the
1985 -- analysis later (indeed it won't work to repeat it later, since
1986 -- we haven't got a clear resolution of which entity is being
1987 -- referenced.)
1989 Set_Analyzed (N, True);
1990 return;
1991 end Resolution_Failed;
1993 -- Start of processing for Resolve
1995 begin
1996 if N = Error then
1997 return;
1998 end if;
2000 -- Access attribute on remote subprogram cannot be used for a non-remote
2001 -- access-to-subprogram type.
2003 if Nkind (N) = N_Attribute_Reference
2004 and then Nam_In (Attribute_Name (N), Name_Access,
2005 Name_Unrestricted_Access,
2006 Name_Unchecked_Access)
2007 and then Comes_From_Source (N)
2008 and then Is_Entity_Name (Prefix (N))
2009 and then Is_Subprogram (Entity (Prefix (N)))
2010 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2011 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2012 then
2013 Error_Msg_N
2014 ("prefix must statically denote a non-remote subprogram", N);
2015 end if;
2017 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2019 -- If the context is a Remote_Access_To_Subprogram, access attributes
2020 -- must be resolved with the corresponding fat pointer. There is no need
2021 -- to check for the attribute name since the return type of an
2022 -- attribute is never a remote type.
2024 if Nkind (N) = N_Attribute_Reference
2025 and then Comes_From_Source (N)
2026 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2027 then
2028 declare
2029 Attr : constant Attribute_Id :=
2030 Get_Attribute_Id (Attribute_Name (N));
2031 Pref : constant Node_Id := Prefix (N);
2032 Decl : Node_Id;
2033 Spec : Node_Id;
2034 Is_Remote : Boolean := True;
2036 begin
2037 -- Check that Typ is a remote access-to-subprogram type
2039 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2041 -- Prefix (N) must statically denote a remote subprogram
2042 -- declared in a package specification.
2044 if Attr = Attribute_Access or else
2045 Attr = Attribute_Unchecked_Access or else
2046 Attr = Attribute_Unrestricted_Access
2047 then
2048 Decl := Unit_Declaration_Node (Entity (Pref));
2050 if Nkind (Decl) = N_Subprogram_Body then
2051 Spec := Corresponding_Spec (Decl);
2053 if Present (Spec) then
2054 Decl := Unit_Declaration_Node (Spec);
2055 end if;
2056 end if;
2058 Spec := Parent (Decl);
2060 if not Is_Entity_Name (Prefix (N))
2061 or else Nkind (Spec) /= N_Package_Specification
2062 or else
2063 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2064 then
2065 Is_Remote := False;
2066 Error_Msg_N
2067 ("prefix must statically denote a remote subprogram ",
2069 end if;
2071 -- If we are generating code in distributed mode, perform
2072 -- semantic checks against corresponding remote entities.
2074 if Expander_Active
2075 and then Get_PCS_Name /= Name_No_DSA
2076 then
2077 Check_Subtype_Conformant
2078 (New_Id => Entity (Prefix (N)),
2079 Old_Id => Designated_Type
2080 (Corresponding_Remote_Type (Typ)),
2081 Err_Loc => N);
2083 if Is_Remote then
2084 Process_Remote_AST_Attribute (N, Typ);
2085 end if;
2086 end if;
2087 end if;
2088 end if;
2089 end;
2090 end if;
2092 Debug_A_Entry ("resolving ", N);
2094 if Debug_Flag_V then
2095 Write_Overloads (N);
2096 end if;
2098 if Comes_From_Source (N) then
2099 if Is_Fixed_Point_Type (Typ) then
2100 Check_Restriction (No_Fixed_Point, N);
2102 elsif Is_Floating_Point_Type (Typ)
2103 and then Typ /= Universal_Real
2104 and then Typ /= Any_Real
2105 then
2106 Check_Restriction (No_Floating_Point, N);
2107 end if;
2108 end if;
2110 -- Return if already analyzed
2112 if Analyzed (N) then
2113 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2114 Analyze_Dimension (N);
2115 return;
2117 -- Any case of Any_Type as the Etype value means that we had a
2118 -- previous error.
2120 elsif Etype (N) = Any_Type then
2121 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2122 return;
2123 end if;
2125 Check_Parameterless_Call (N);
2127 -- The resolution of an Expression_With_Actions is determined by
2128 -- its Expression.
2130 if Nkind (N) = N_Expression_With_Actions then
2131 Resolve (Expression (N), Typ);
2133 Found := True;
2134 Expr_Type := Etype (Expression (N));
2136 -- If not overloaded, then we know the type, and all that needs doing
2137 -- is to check that this type is compatible with the context.
2139 elsif not Is_Overloaded (N) then
2140 Found := Covers (Typ, Etype (N));
2141 Expr_Type := Etype (N);
2143 -- In the overloaded case, we must select the interpretation that
2144 -- is compatible with the context (i.e. the type passed to Resolve)
2146 else
2147 -- Loop through possible interpretations
2149 Get_First_Interp (N, I, It);
2150 Interp_Loop : while Present (It.Typ) loop
2151 if Debug_Flag_V then
2152 Write_Str ("Interp: ");
2153 Write_Interp (It);
2154 end if;
2156 -- We are only interested in interpretations that are compatible
2157 -- with the expected type, any other interpretations are ignored.
2159 if not Covers (Typ, It.Typ) then
2160 if Debug_Flag_V then
2161 Write_Str (" interpretation incompatible with context");
2162 Write_Eol;
2163 end if;
2165 else
2166 -- Skip the current interpretation if it is disabled by an
2167 -- abstract operator. This action is performed only when the
2168 -- type against which we are resolving is the same as the
2169 -- type of the interpretation.
2171 if Ada_Version >= Ada_2005
2172 and then It.Typ = Typ
2173 and then Typ /= Universal_Integer
2174 and then Typ /= Universal_Real
2175 and then Present (It.Abstract_Op)
2176 then
2177 if Debug_Flag_V then
2178 Write_Line ("Skip.");
2179 end if;
2181 goto Continue;
2182 end if;
2184 -- First matching interpretation
2186 if not Found then
2187 Found := True;
2188 I1 := I;
2189 Seen := It.Nam;
2190 Expr_Type := It.Typ;
2192 -- Matching interpretation that is not the first, maybe an
2193 -- error, but there are some cases where preference rules are
2194 -- used to choose between the two possibilities. These and
2195 -- some more obscure cases are handled in Disambiguate.
2197 else
2198 -- If the current statement is part of a predefined library
2199 -- unit, then all interpretations which come from user level
2200 -- packages should not be considered. Check previous and
2201 -- current one.
2203 if From_Lib then
2204 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2205 goto Continue;
2207 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2209 -- Previous interpretation must be discarded
2211 I1 := I;
2212 Seen := It.Nam;
2213 Expr_Type := It.Typ;
2214 Set_Entity (N, Seen);
2215 goto Continue;
2216 end if;
2217 end if;
2219 -- Otherwise apply further disambiguation steps
2221 Error_Msg_Sloc := Sloc (Seen);
2222 It1 := Disambiguate (N, I1, I, Typ);
2224 -- Disambiguation has succeeded. Skip the remaining
2225 -- interpretations.
2227 if It1 /= No_Interp then
2228 Seen := It1.Nam;
2229 Expr_Type := It1.Typ;
2231 while Present (It.Typ) loop
2232 Get_Next_Interp (I, It);
2233 end loop;
2235 else
2236 -- Before we issue an ambiguity complaint, check for
2237 -- the case of a subprogram call where at least one
2238 -- of the arguments is Any_Type, and if so, suppress
2239 -- the message, since it is a cascaded error.
2241 if Nkind (N) in N_Subprogram_Call then
2242 declare
2243 A : Node_Id;
2244 E : Node_Id;
2246 begin
2247 A := First_Actual (N);
2248 while Present (A) loop
2249 E := A;
2251 if Nkind (E) = N_Parameter_Association then
2252 E := Explicit_Actual_Parameter (E);
2253 end if;
2255 if Etype (E) = Any_Type then
2256 if Debug_Flag_V then
2257 Write_Str ("Any_Type in call");
2258 Write_Eol;
2259 end if;
2261 exit Interp_Loop;
2262 end if;
2264 Next_Actual (A);
2265 end loop;
2266 end;
2268 elsif Nkind (N) in N_Binary_Op
2269 and then (Etype (Left_Opnd (N)) = Any_Type
2270 or else Etype (Right_Opnd (N)) = Any_Type)
2271 then
2272 exit Interp_Loop;
2274 elsif Nkind (N) in N_Unary_Op
2275 and then Etype (Right_Opnd (N)) = Any_Type
2276 then
2277 exit Interp_Loop;
2278 end if;
2280 -- Not that special case, so issue message using the
2281 -- flag Ambiguous to control printing of the header
2282 -- message only at the start of an ambiguous set.
2284 if not Ambiguous then
2285 if Nkind (N) = N_Function_Call
2286 and then Nkind (Name (N)) = N_Explicit_Dereference
2287 then
2288 Error_Msg_N
2289 ("ambiguous expression "
2290 & "(cannot resolve indirect call)!", N);
2291 else
2292 Error_Msg_NE -- CODEFIX
2293 ("ambiguous expression (cannot resolve&)!",
2294 N, It.Nam);
2295 end if;
2297 Ambiguous := True;
2299 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2300 Error_Msg_N
2301 ("\\possible interpretation (inherited)#!", N);
2302 else
2303 Error_Msg_N -- CODEFIX
2304 ("\\possible interpretation#!", N);
2305 end if;
2307 if Nkind (N) in N_Subprogram_Call
2308 and then Present (Parameter_Associations (N))
2309 then
2310 Report_Ambiguous_Argument;
2311 end if;
2312 end if;
2314 Error_Msg_Sloc := Sloc (It.Nam);
2316 -- By default, the error message refers to the candidate
2317 -- interpretation. But if it is a predefined operator, it
2318 -- is implicitly declared at the declaration of the type
2319 -- of the operand. Recover the sloc of that declaration
2320 -- for the error message.
2322 if Nkind (N) in N_Op
2323 and then Scope (It.Nam) = Standard_Standard
2324 and then not Is_Overloaded (Right_Opnd (N))
2325 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2326 Standard_Standard
2327 then
2328 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2330 if Comes_From_Source (Err_Type)
2331 and then Present (Parent (Err_Type))
2332 then
2333 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2334 end if;
2336 elsif Nkind (N) in N_Binary_Op
2337 and then Scope (It.Nam) = Standard_Standard
2338 and then not Is_Overloaded (Left_Opnd (N))
2339 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2340 Standard_Standard
2341 then
2342 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2344 if Comes_From_Source (Err_Type)
2345 and then Present (Parent (Err_Type))
2346 then
2347 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2348 end if;
2350 -- If this is an indirect call, use the subprogram_type
2351 -- in the message, to have a meaningful location. Also
2352 -- indicate if this is an inherited operation, created
2353 -- by a type declaration.
2355 elsif Nkind (N) = N_Function_Call
2356 and then Nkind (Name (N)) = N_Explicit_Dereference
2357 and then Is_Type (It.Nam)
2358 then
2359 Err_Type := It.Nam;
2360 Error_Msg_Sloc :=
2361 Sloc (Associated_Node_For_Itype (Err_Type));
2362 else
2363 Err_Type := Empty;
2364 end if;
2366 if Nkind (N) in N_Op
2367 and then Scope (It.Nam) = Standard_Standard
2368 and then Present (Err_Type)
2369 then
2370 -- Special-case the message for universal_fixed
2371 -- operators, which are not declared with the type
2372 -- of the operand, but appear forever in Standard.
2374 if It.Typ = Universal_Fixed
2375 and then Scope (It.Nam) = Standard_Standard
2376 then
2377 Error_Msg_N
2378 ("\\possible interpretation as universal_fixed "
2379 & "operation (RM 4.5.5 (19))", N);
2380 else
2381 Error_Msg_N
2382 ("\\possible interpretation (predefined)#!", N);
2383 end if;
2385 elsif
2386 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2387 then
2388 Error_Msg_N
2389 ("\\possible interpretation (inherited)#!", N);
2390 else
2391 Error_Msg_N -- CODEFIX
2392 ("\\possible interpretation#!", N);
2393 end if;
2395 end if;
2396 end if;
2398 -- We have a matching interpretation, Expr_Type is the type
2399 -- from this interpretation, and Seen is the entity.
2401 -- For an operator, just set the entity name. The type will be
2402 -- set by the specific operator resolution routine.
2404 if Nkind (N) in N_Op then
2405 Set_Entity (N, Seen);
2406 Generate_Reference (Seen, N);
2408 elsif Nkind (N) = N_Case_Expression then
2409 Set_Etype (N, Expr_Type);
2411 elsif Nkind (N) = N_Character_Literal then
2412 Set_Etype (N, Expr_Type);
2414 elsif Nkind (N) = N_If_Expression then
2415 Set_Etype (N, Expr_Type);
2417 -- AI05-0139-2: Expression is overloaded because type has
2418 -- implicit dereference. If type matches context, no implicit
2419 -- dereference is involved.
2421 elsif Has_Implicit_Dereference (Expr_Type) then
2422 Set_Etype (N, Expr_Type);
2423 Set_Is_Overloaded (N, False);
2424 exit Interp_Loop;
2426 elsif Is_Overloaded (N)
2427 and then Present (It.Nam)
2428 and then Ekind (It.Nam) = E_Discriminant
2429 and then Has_Implicit_Dereference (It.Nam)
2430 then
2431 -- If the node is a general indexing, the dereference is
2432 -- is inserted when resolving the rewritten form, else
2433 -- insert it now.
2435 if Nkind (N) /= N_Indexed_Component
2436 or else No (Generalized_Indexing (N))
2437 then
2438 Build_Explicit_Dereference (N, It.Nam);
2439 end if;
2441 -- For an explicit dereference, attribute reference, range,
2442 -- short-circuit form (which is not an operator node), or call
2443 -- with a name that is an explicit dereference, there is
2444 -- nothing to be done at this point.
2446 elsif Nkind_In (N, N_Explicit_Dereference,
2447 N_Attribute_Reference,
2448 N_And_Then,
2449 N_Indexed_Component,
2450 N_Or_Else,
2451 N_Range,
2452 N_Selected_Component,
2453 N_Slice)
2454 or else Nkind (Name (N)) = N_Explicit_Dereference
2455 then
2456 null;
2458 -- For procedure or function calls, set the type of the name,
2459 -- and also the entity pointer for the prefix.
2461 elsif Nkind (N) in N_Subprogram_Call
2462 and then Is_Entity_Name (Name (N))
2463 then
2464 Set_Etype (Name (N), Expr_Type);
2465 Set_Entity (Name (N), Seen);
2466 Generate_Reference (Seen, Name (N));
2468 elsif Nkind (N) = N_Function_Call
2469 and then Nkind (Name (N)) = N_Selected_Component
2470 then
2471 Set_Etype (Name (N), Expr_Type);
2472 Set_Entity (Selector_Name (Name (N)), Seen);
2473 Generate_Reference (Seen, Selector_Name (Name (N)));
2475 -- For all other cases, just set the type of the Name
2477 else
2478 Set_Etype (Name (N), Expr_Type);
2479 end if;
2481 end if;
2483 <<Continue>>
2485 -- Move to next interpretation
2487 exit Interp_Loop when No (It.Typ);
2489 Get_Next_Interp (I, It);
2490 end loop Interp_Loop;
2491 end if;
2493 -- At this stage Found indicates whether or not an acceptable
2494 -- interpretation exists. If not, then we have an error, except that if
2495 -- the context is Any_Type as a result of some other error, then we
2496 -- suppress the error report.
2498 if not Found then
2499 if Typ /= Any_Type then
2501 -- If type we are looking for is Void, then this is the procedure
2502 -- call case, and the error is simply that what we gave is not a
2503 -- procedure name (we think of procedure calls as expressions with
2504 -- types internally, but the user doesn't think of them this way).
2506 if Typ = Standard_Void_Type then
2508 -- Special case message if function used as a procedure
2510 if Nkind (N) = N_Procedure_Call_Statement
2511 and then Is_Entity_Name (Name (N))
2512 and then Ekind (Entity (Name (N))) = E_Function
2513 then
2514 Error_Msg_NE
2515 ("cannot use function & in a procedure call",
2516 Name (N), Entity (Name (N)));
2518 -- Otherwise give general message (not clear what cases this
2519 -- covers, but no harm in providing for them).
2521 else
2522 Error_Msg_N ("expect procedure name in procedure call", N);
2523 end if;
2525 Found := True;
2527 -- Otherwise we do have a subexpression with the wrong type
2529 -- Check for the case of an allocator which uses an access type
2530 -- instead of the designated type. This is a common error and we
2531 -- specialize the message, posting an error on the operand of the
2532 -- allocator, complaining that we expected the designated type of
2533 -- the allocator.
2535 elsif Nkind (N) = N_Allocator
2536 and then Is_Access_Type (Typ)
2537 and then Is_Access_Type (Etype (N))
2538 and then Designated_Type (Etype (N)) = Typ
2539 then
2540 Wrong_Type (Expression (N), Designated_Type (Typ));
2541 Found := True;
2543 -- Check for view mismatch on Null in instances, for which the
2544 -- view-swapping mechanism has no identifier.
2546 elsif (In_Instance or else In_Inlined_Body)
2547 and then (Nkind (N) = N_Null)
2548 and then Is_Private_Type (Typ)
2549 and then Is_Access_Type (Full_View (Typ))
2550 then
2551 Resolve (N, Full_View (Typ));
2552 Set_Etype (N, Typ);
2553 return;
2555 -- Check for an aggregate. Sometimes we can get bogus aggregates
2556 -- from misuse of parentheses, and we are about to complain about
2557 -- the aggregate without even looking inside it.
2559 -- Instead, if we have an aggregate of type Any_Composite, then
2560 -- analyze and resolve the component fields, and then only issue
2561 -- another message if we get no errors doing this (otherwise
2562 -- assume that the errors in the aggregate caused the problem).
2564 elsif Nkind (N) = N_Aggregate
2565 and then Etype (N) = Any_Composite
2566 then
2567 -- Disable expansion in any case. If there is a type mismatch
2568 -- it may be fatal to try to expand the aggregate. The flag
2569 -- would otherwise be set to false when the error is posted.
2571 Expander_Active := False;
2573 declare
2574 procedure Check_Aggr (Aggr : Node_Id);
2575 -- Check one aggregate, and set Found to True if we have a
2576 -- definite error in any of its elements
2578 procedure Check_Elmt (Aelmt : Node_Id);
2579 -- Check one element of aggregate and set Found to True if
2580 -- we definitely have an error in the element.
2582 ----------------
2583 -- Check_Aggr --
2584 ----------------
2586 procedure Check_Aggr (Aggr : Node_Id) is
2587 Elmt : Node_Id;
2589 begin
2590 if Present (Expressions (Aggr)) then
2591 Elmt := First (Expressions (Aggr));
2592 while Present (Elmt) loop
2593 Check_Elmt (Elmt);
2594 Next (Elmt);
2595 end loop;
2596 end if;
2598 if Present (Component_Associations (Aggr)) then
2599 Elmt := First (Component_Associations (Aggr));
2600 while Present (Elmt) loop
2602 -- If this is a default-initialized component, then
2603 -- there is nothing to check. The box will be
2604 -- replaced by the appropriate call during late
2605 -- expansion.
2607 if not Box_Present (Elmt) then
2608 Check_Elmt (Expression (Elmt));
2609 end if;
2611 Next (Elmt);
2612 end loop;
2613 end if;
2614 end Check_Aggr;
2616 ----------------
2617 -- Check_Elmt --
2618 ----------------
2620 procedure Check_Elmt (Aelmt : Node_Id) is
2621 begin
2622 -- If we have a nested aggregate, go inside it (to
2623 -- attempt a naked analyze-resolve of the aggregate can
2624 -- cause undesirable cascaded errors). Do not resolve
2625 -- expression if it needs a type from context, as for
2626 -- integer * fixed expression.
2628 if Nkind (Aelmt) = N_Aggregate then
2629 Check_Aggr (Aelmt);
2631 else
2632 Analyze (Aelmt);
2634 if not Is_Overloaded (Aelmt)
2635 and then Etype (Aelmt) /= Any_Fixed
2636 then
2637 Resolve (Aelmt);
2638 end if;
2640 if Etype (Aelmt) = Any_Type then
2641 Found := True;
2642 end if;
2643 end if;
2644 end Check_Elmt;
2646 begin
2647 Check_Aggr (N);
2648 end;
2649 end if;
2651 -- Looks like we have a type error, but check for special case
2652 -- of Address wanted, integer found, with the configuration pragma
2653 -- Allow_Integer_Address active. If we have this case, introduce
2654 -- an unchecked conversion to allow the integer expression to be
2655 -- treated as an Address. The reverse case of integer wanted,
2656 -- Address found, is treated in an analogous manner.
2658 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2659 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2660 Analyze_And_Resolve (N, Typ);
2661 return;
2662 end if;
2664 -- That special Allow_Integer_Address check did not appply, so we
2665 -- have a real type error. If an error message was issued already,
2666 -- Found got reset to True, so if it's still False, issue standard
2667 -- Wrong_Type message.
2669 if not Found then
2670 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2671 declare
2672 Subp_Name : Node_Id;
2674 begin
2675 if Is_Entity_Name (Name (N)) then
2676 Subp_Name := Name (N);
2678 elsif Nkind (Name (N)) = N_Selected_Component then
2680 -- Protected operation: retrieve operation name
2682 Subp_Name := Selector_Name (Name (N));
2684 else
2685 raise Program_Error;
2686 end if;
2688 Error_Msg_Node_2 := Typ;
2689 Error_Msg_NE
2690 ("no visible interpretation of& "
2691 & "matches expected type&", N, Subp_Name);
2692 end;
2694 if All_Errors_Mode then
2695 declare
2696 Index : Interp_Index;
2697 It : Interp;
2699 begin
2700 Error_Msg_N ("\\possible interpretations:", N);
2702 Get_First_Interp (Name (N), Index, It);
2703 while Present (It.Nam) loop
2704 Error_Msg_Sloc := Sloc (It.Nam);
2705 Error_Msg_Node_2 := It.Nam;
2706 Error_Msg_NE
2707 ("\\ type& for & declared#", N, It.Typ);
2708 Get_Next_Interp (Index, It);
2709 end loop;
2710 end;
2712 else
2713 Error_Msg_N ("\use -gnatf for details", N);
2714 end if;
2716 else
2717 Wrong_Type (N, Typ);
2718 end if;
2719 end if;
2720 end if;
2722 Resolution_Failed;
2723 return;
2725 -- Test if we have more than one interpretation for the context
2727 elsif Ambiguous then
2728 Resolution_Failed;
2729 return;
2731 -- Only one intepretation
2733 else
2734 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2735 -- the "+" on T is abstract, and the operands are of universal type,
2736 -- the above code will have (incorrectly) resolved the "+" to the
2737 -- universal one in Standard. Therefore check for this case and give
2738 -- an error. We can't do this earlier, because it would cause legal
2739 -- cases to get errors (when some other type has an abstract "+").
2741 if Ada_Version >= Ada_2005
2742 and then Nkind (N) in N_Op
2743 and then Is_Overloaded (N)
2744 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2745 then
2746 Get_First_Interp (N, I, It);
2747 while Present (It.Typ) loop
2748 if Present (It.Abstract_Op) and then
2749 Etype (It.Abstract_Op) = Typ
2750 then
2751 Error_Msg_NE
2752 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2753 return;
2754 end if;
2756 Get_Next_Interp (I, It);
2757 end loop;
2758 end if;
2760 -- Here we have an acceptable interpretation for the context
2762 -- Propagate type information and normalize tree for various
2763 -- predefined operations. If the context only imposes a class of
2764 -- types, rather than a specific type, propagate the actual type
2765 -- downward.
2767 if Typ = Any_Integer or else
2768 Typ = Any_Boolean or else
2769 Typ = Any_Modular or else
2770 Typ = Any_Real or else
2771 Typ = Any_Discrete
2772 then
2773 Ctx_Type := Expr_Type;
2775 -- Any_Fixed is legal in a real context only if a specific fixed-
2776 -- point type is imposed. If Norman Cohen can be confused by this,
2777 -- it deserves a separate message.
2779 if Typ = Any_Real
2780 and then Expr_Type = Any_Fixed
2781 then
2782 Error_Msg_N ("illegal context for mixed mode operation", N);
2783 Set_Etype (N, Universal_Real);
2784 Ctx_Type := Universal_Real;
2785 end if;
2786 end if;
2788 -- A user-defined operator is transformed into a function call at
2789 -- this point, so that further processing knows that operators are
2790 -- really operators (i.e. are predefined operators). User-defined
2791 -- operators that are intrinsic are just renamings of the predefined
2792 -- ones, and need not be turned into calls either, but if they rename
2793 -- a different operator, we must transform the node accordingly.
2794 -- Instantiations of Unchecked_Conversion are intrinsic but are
2795 -- treated as functions, even if given an operator designator.
2797 if Nkind (N) in N_Op
2798 and then Present (Entity (N))
2799 and then Ekind (Entity (N)) /= E_Operator
2800 then
2802 if not Is_Predefined_Op (Entity (N)) then
2803 Rewrite_Operator_As_Call (N, Entity (N));
2805 elsif Present (Alias (Entity (N)))
2806 and then
2807 Nkind (Parent (Parent (Entity (N)))) =
2808 N_Subprogram_Renaming_Declaration
2809 then
2810 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2812 -- If the node is rewritten, it will be fully resolved in
2813 -- Rewrite_Renamed_Operator.
2815 if Analyzed (N) then
2816 return;
2817 end if;
2818 end if;
2819 end if;
2821 case N_Subexpr'(Nkind (N)) is
2823 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2825 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2827 when N_Short_Circuit
2828 => Resolve_Short_Circuit (N, Ctx_Type);
2830 when N_Attribute_Reference
2831 => Resolve_Attribute (N, Ctx_Type);
2833 when N_Case_Expression
2834 => Resolve_Case_Expression (N, Ctx_Type);
2836 when N_Character_Literal
2837 => Resolve_Character_Literal (N, Ctx_Type);
2839 when N_Expanded_Name
2840 => Resolve_Entity_Name (N, Ctx_Type);
2842 when N_Explicit_Dereference
2843 => Resolve_Explicit_Dereference (N, Ctx_Type);
2845 when N_Expression_With_Actions
2846 => Resolve_Expression_With_Actions (N, Ctx_Type);
2848 when N_Extension_Aggregate
2849 => Resolve_Extension_Aggregate (N, Ctx_Type);
2851 when N_Function_Call
2852 => Resolve_Call (N, Ctx_Type);
2854 when N_Identifier
2855 => Resolve_Entity_Name (N, Ctx_Type);
2857 when N_If_Expression
2858 => Resolve_If_Expression (N, Ctx_Type);
2860 when N_Indexed_Component
2861 => Resolve_Indexed_Component (N, Ctx_Type);
2863 when N_Integer_Literal
2864 => Resolve_Integer_Literal (N, Ctx_Type);
2866 when N_Membership_Test
2867 => Resolve_Membership_Op (N, Ctx_Type);
2869 when N_Null => Resolve_Null (N, Ctx_Type);
2871 when N_Op_And | N_Op_Or | N_Op_Xor
2872 => Resolve_Logical_Op (N, Ctx_Type);
2874 when N_Op_Eq | N_Op_Ne
2875 => Resolve_Equality_Op (N, Ctx_Type);
2877 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2878 => Resolve_Comparison_Op (N, Ctx_Type);
2880 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2882 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2883 N_Op_Divide | N_Op_Mod | N_Op_Rem
2885 => Resolve_Arithmetic_Op (N, Ctx_Type);
2887 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2889 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2891 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2892 => Resolve_Unary_Op (N, Ctx_Type);
2894 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2896 when N_Procedure_Call_Statement
2897 => Resolve_Call (N, Ctx_Type);
2899 when N_Operator_Symbol
2900 => Resolve_Operator_Symbol (N, Ctx_Type);
2902 when N_Qualified_Expression
2903 => Resolve_Qualified_Expression (N, Ctx_Type);
2905 -- Why is the following null, needs a comment ???
2907 when N_Quantified_Expression
2908 => null;
2910 when N_Raise_Expression
2911 => Resolve_Raise_Expression (N, Ctx_Type);
2913 when N_Raise_xxx_Error
2914 => Set_Etype (N, Ctx_Type);
2916 when N_Range => Resolve_Range (N, Ctx_Type);
2918 when N_Real_Literal
2919 => Resolve_Real_Literal (N, Ctx_Type);
2921 when N_Reference => Resolve_Reference (N, Ctx_Type);
2923 when N_Selected_Component
2924 => Resolve_Selected_Component (N, Ctx_Type);
2926 when N_Slice => Resolve_Slice (N, Ctx_Type);
2928 when N_String_Literal
2929 => Resolve_String_Literal (N, Ctx_Type);
2931 when N_Type_Conversion
2932 => Resolve_Type_Conversion (N, Ctx_Type);
2934 when N_Unchecked_Expression =>
2935 Resolve_Unchecked_Expression (N, Ctx_Type);
2937 when N_Unchecked_Type_Conversion =>
2938 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2939 end case;
2941 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2942 -- expression of an anonymous access type that occurs in the context
2943 -- of a named general access type, except when the expression is that
2944 -- of a membership test. This ensures proper legality checking in
2945 -- terms of allowed conversions (expressions that would be illegal to
2946 -- convert implicitly are allowed in membership tests).
2948 if Ada_Version >= Ada_2012
2949 and then Ekind (Ctx_Type) = E_General_Access_Type
2950 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2951 and then Nkind (Parent (N)) not in N_Membership_Test
2952 then
2953 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2954 Analyze_And_Resolve (N, Ctx_Type);
2955 end if;
2957 -- If the subexpression was replaced by a non-subexpression, then
2958 -- all we do is to expand it. The only legitimate case we know of
2959 -- is converting procedure call statement to entry call statements,
2960 -- but there may be others, so we are making this test general.
2962 if Nkind (N) not in N_Subexpr then
2963 Debug_A_Exit ("resolving ", N, " (done)");
2964 Expand (N);
2965 return;
2966 end if;
2968 -- The expression is definitely NOT overloaded at this point, so
2969 -- we reset the Is_Overloaded flag to avoid any confusion when
2970 -- reanalyzing the node.
2972 Set_Is_Overloaded (N, False);
2974 -- Freeze expression type, entity if it is a name, and designated
2975 -- type if it is an allocator (RM 13.14(10,11,13)).
2977 -- Now that the resolution of the type of the node is complete, and
2978 -- we did not detect an error, we can expand this node. We skip the
2979 -- expand call if we are in a default expression, see section
2980 -- "Handling of Default Expressions" in Sem spec.
2982 Debug_A_Exit ("resolving ", N, " (done)");
2984 -- We unconditionally freeze the expression, even if we are in
2985 -- default expression mode (the Freeze_Expression routine tests this
2986 -- flag and only freezes static types if it is set).
2988 -- Ada 2012 (AI05-177): The declaration of an expression function
2989 -- does not cause freezing, but we never reach here in that case.
2990 -- Here we are resolving the corresponding expanded body, so we do
2991 -- need to perform normal freezing.
2993 Freeze_Expression (N);
2995 -- Now we can do the expansion
2997 Expand (N);
2998 end if;
2999 end Resolve;
3001 -------------
3002 -- Resolve --
3003 -------------
3005 -- Version with check(s) suppressed
3007 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3008 begin
3009 if Suppress = All_Checks then
3010 declare
3011 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3012 begin
3013 Scope_Suppress.Suppress := (others => True);
3014 Resolve (N, Typ);
3015 Scope_Suppress.Suppress := Sva;
3016 end;
3018 else
3019 declare
3020 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3021 begin
3022 Scope_Suppress.Suppress (Suppress) := True;
3023 Resolve (N, Typ);
3024 Scope_Suppress.Suppress (Suppress) := Svg;
3025 end;
3026 end if;
3027 end Resolve;
3029 -------------
3030 -- Resolve --
3031 -------------
3033 -- Version with implicit type
3035 procedure Resolve (N : Node_Id) is
3036 begin
3037 Resolve (N, Etype (N));
3038 end Resolve;
3040 ---------------------
3041 -- Resolve_Actuals --
3042 ---------------------
3044 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3045 Loc : constant Source_Ptr := Sloc (N);
3046 A : Node_Id;
3047 A_Id : Entity_Id;
3048 A_Typ : Entity_Id;
3049 F : Entity_Id;
3050 F_Typ : Entity_Id;
3051 Prev : Node_Id := Empty;
3052 Orig_A : Node_Id;
3053 Real_F : Entity_Id;
3055 Real_Subp : Entity_Id;
3056 -- If the subprogram being called is an inherited operation for
3057 -- a formal derived type in an instance, Real_Subp is the subprogram
3058 -- that will be called. It may have different formal names than the
3059 -- operation of the formal in the generic, so after actual is resolved
3060 -- the name of the actual in a named association must carry the name
3061 -- of the actual of the subprogram being called.
3063 procedure Check_Aliased_Parameter;
3064 -- Check rules on aliased parameters and related accessibility rules
3065 -- in (RM 3.10.2 (10.2-10.4)).
3067 procedure Check_Argument_Order;
3068 -- Performs a check for the case where the actuals are all simple
3069 -- identifiers that correspond to the formal names, but in the wrong
3070 -- order, which is considered suspicious and cause for a warning.
3072 procedure Check_Prefixed_Call;
3073 -- If the original node is an overloaded call in prefix notation,
3074 -- insert an 'Access or a dereference as needed over the first actual.
3075 -- Try_Object_Operation has already verified that there is a valid
3076 -- interpretation, but the form of the actual can only be determined
3077 -- once the primitive operation is identified.
3079 procedure Insert_Default;
3080 -- If the actual is missing in a call, insert in the actuals list
3081 -- an instance of the default expression. The insertion is always
3082 -- a named association.
3084 procedure Property_Error
3085 (Var : Node_Id;
3086 Var_Id : Entity_Id;
3087 Prop_Nam : Name_Id);
3088 -- Emit an error concerning variable Var with entity Var_Id that has
3089 -- enabled property Prop_Nam when it acts as an actual parameter in a
3090 -- call and the corresponding formal parameter is of mode IN.
3092 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3093 -- Check whether T1 and T2, or their full views, are derived from a
3094 -- common type. Used to enforce the restrictions on array conversions
3095 -- of AI95-00246.
3097 function Static_Concatenation (N : Node_Id) return Boolean;
3098 -- Predicate to determine whether an actual that is a concatenation
3099 -- will be evaluated statically and does not need a transient scope.
3100 -- This must be determined before the actual is resolved and expanded
3101 -- because if needed the transient scope must be introduced earlier.
3103 -----------------------------
3104 -- Check_Aliased_Parameter --
3105 -----------------------------
3107 procedure Check_Aliased_Parameter is
3108 Nominal_Subt : Entity_Id;
3110 begin
3111 if Is_Aliased (F) then
3112 if Is_Tagged_Type (A_Typ) then
3113 null;
3115 elsif Is_Aliased_View (A) then
3116 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3117 Nominal_Subt := Base_Type (A_Typ);
3118 else
3119 Nominal_Subt := A_Typ;
3120 end if;
3122 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3123 null;
3125 -- In a generic body assume the worst for generic formals:
3126 -- they can have a constrained partial view (AI05-041).
3128 elsif Has_Discriminants (F_Typ)
3129 and then not Is_Constrained (F_Typ)
3130 and then not Has_Constrained_Partial_View (F_Typ)
3131 and then not Is_Generic_Type (F_Typ)
3132 then
3133 null;
3135 else
3136 Error_Msg_NE ("untagged actual does not match "
3137 & "aliased formal&", A, F);
3138 end if;
3140 else
3141 Error_Msg_NE ("actual for aliased formal& must be "
3142 & "aliased object", A, F);
3143 end if;
3145 if Ekind (Nam) = E_Procedure then
3146 null;
3148 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3149 if Nkind (Parent (N)) = N_Type_Conversion
3150 and then Type_Access_Level (Etype (Parent (N))) <
3151 Object_Access_Level (A)
3152 then
3153 Error_Msg_N ("aliased actual has wrong accessibility", A);
3154 end if;
3156 elsif Nkind (Parent (N)) = N_Qualified_Expression
3157 and then Nkind (Parent (Parent (N))) = N_Allocator
3158 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3159 Object_Access_Level (A)
3160 then
3161 Error_Msg_N
3162 ("aliased actual in allocator has wrong accessibility", A);
3163 end if;
3164 end if;
3165 end Check_Aliased_Parameter;
3167 --------------------------
3168 -- Check_Argument_Order --
3169 --------------------------
3171 procedure Check_Argument_Order is
3172 begin
3173 -- Nothing to do if no parameters, or original node is neither a
3174 -- function call nor a procedure call statement (happens in the
3175 -- operator-transformed-to-function call case), or the call does
3176 -- not come from source, or this warning is off.
3178 if not Warn_On_Parameter_Order
3179 or else No (Parameter_Associations (N))
3180 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3181 or else not Comes_From_Source (N)
3182 then
3183 return;
3184 end if;
3186 declare
3187 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3189 begin
3190 -- Nothing to do if only one parameter
3192 if Nargs < 2 then
3193 return;
3194 end if;
3196 -- Here if at least two arguments
3198 declare
3199 Actuals : array (1 .. Nargs) of Node_Id;
3200 Actual : Node_Id;
3201 Formal : Node_Id;
3203 Wrong_Order : Boolean := False;
3204 -- Set True if an out of order case is found
3206 begin
3207 -- Collect identifier names of actuals, fail if any actual is
3208 -- not a simple identifier, and record max length of name.
3210 Actual := First (Parameter_Associations (N));
3211 for J in Actuals'Range loop
3212 if Nkind (Actual) /= N_Identifier then
3213 return;
3214 else
3215 Actuals (J) := Actual;
3216 Next (Actual);
3217 end if;
3218 end loop;
3220 -- If we got this far, all actuals are identifiers and the list
3221 -- of their names is stored in the Actuals array.
3223 Formal := First_Formal (Nam);
3224 for J in Actuals'Range loop
3226 -- If we ran out of formals, that's odd, probably an error
3227 -- which will be detected elsewhere, but abandon the search.
3229 if No (Formal) then
3230 return;
3231 end if;
3233 -- If name matches and is in order OK
3235 if Chars (Formal) = Chars (Actuals (J)) then
3236 null;
3238 else
3239 -- If no match, see if it is elsewhere in list and if so
3240 -- flag potential wrong order if type is compatible.
3242 for K in Actuals'Range loop
3243 if Chars (Formal) = Chars (Actuals (K))
3244 and then
3245 Has_Compatible_Type (Actuals (K), Etype (Formal))
3246 then
3247 Wrong_Order := True;
3248 goto Continue;
3249 end if;
3250 end loop;
3252 -- No match
3254 return;
3255 end if;
3257 <<Continue>> Next_Formal (Formal);
3258 end loop;
3260 -- If Formals left over, also probably an error, skip warning
3262 if Present (Formal) then
3263 return;
3264 end if;
3266 -- Here we give the warning if something was out of order
3268 if Wrong_Order then
3269 Error_Msg_N
3270 ("?P?actuals for this call may be in wrong order", N);
3271 end if;
3272 end;
3273 end;
3274 end Check_Argument_Order;
3276 -------------------------
3277 -- Check_Prefixed_Call --
3278 -------------------------
3280 procedure Check_Prefixed_Call is
3281 Act : constant Node_Id := First_Actual (N);
3282 A_Type : constant Entity_Id := Etype (Act);
3283 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3284 Orig : constant Node_Id := Original_Node (N);
3285 New_A : Node_Id;
3287 begin
3288 -- Check whether the call is a prefixed call, with or without
3289 -- additional actuals.
3291 if Nkind (Orig) = N_Selected_Component
3292 or else
3293 (Nkind (Orig) = N_Indexed_Component
3294 and then Nkind (Prefix (Orig)) = N_Selected_Component
3295 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3296 and then Is_Entity_Name (Act)
3297 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3298 then
3299 if Is_Access_Type (A_Type)
3300 and then not Is_Access_Type (F_Type)
3301 then
3302 -- Introduce dereference on object in prefix
3304 New_A :=
3305 Make_Explicit_Dereference (Sloc (Act),
3306 Prefix => Relocate_Node (Act));
3307 Rewrite (Act, New_A);
3308 Analyze (Act);
3310 elsif Is_Access_Type (F_Type)
3311 and then not Is_Access_Type (A_Type)
3312 then
3313 -- Introduce an implicit 'Access in prefix
3315 if not Is_Aliased_View (Act) then
3316 Error_Msg_NE
3317 ("object in prefixed call to& must be aliased "
3318 & "(RM 4.1.3 (13 1/2))",
3319 Prefix (Act), Nam);
3320 end if;
3322 Rewrite (Act,
3323 Make_Attribute_Reference (Loc,
3324 Attribute_Name => Name_Access,
3325 Prefix => Relocate_Node (Act)));
3326 end if;
3328 Analyze (Act);
3329 end if;
3330 end Check_Prefixed_Call;
3332 --------------------
3333 -- Insert_Default --
3334 --------------------
3336 procedure Insert_Default is
3337 Actval : Node_Id;
3338 Assoc : Node_Id;
3340 begin
3341 -- Missing argument in call, nothing to insert
3343 if No (Default_Value (F)) then
3344 return;
3346 else
3347 -- Note that we do a full New_Copy_Tree, so that any associated
3348 -- Itypes are properly copied. This may not be needed any more,
3349 -- but it does no harm as a safety measure. Defaults of a generic
3350 -- formal may be out of bounds of the corresponding actual (see
3351 -- cc1311b) and an additional check may be required.
3353 Actval :=
3354 New_Copy_Tree
3355 (Default_Value (F),
3356 New_Scope => Current_Scope,
3357 New_Sloc => Loc);
3359 if Is_Concurrent_Type (Scope (Nam))
3360 and then Has_Discriminants (Scope (Nam))
3361 then
3362 Replace_Actual_Discriminants (N, Actval);
3363 end if;
3365 if Is_Overloadable (Nam)
3366 and then Present (Alias (Nam))
3367 then
3368 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3369 and then not Is_Tagged_Type (Etype (F))
3370 then
3371 -- If default is a real literal, do not introduce a
3372 -- conversion whose effect may depend on the run-time
3373 -- size of universal real.
3375 if Nkind (Actval) = N_Real_Literal then
3376 Set_Etype (Actval, Base_Type (Etype (F)));
3377 else
3378 Actval := Unchecked_Convert_To (Etype (F), Actval);
3379 end if;
3380 end if;
3382 if Is_Scalar_Type (Etype (F)) then
3383 Enable_Range_Check (Actval);
3384 end if;
3386 Set_Parent (Actval, N);
3388 -- Resolve aggregates with their base type, to avoid scope
3389 -- anomalies: the subtype was first built in the subprogram
3390 -- declaration, and the current call may be nested.
3392 if Nkind (Actval) = N_Aggregate then
3393 Analyze_And_Resolve (Actval, Etype (F));
3394 else
3395 Analyze_And_Resolve (Actval, Etype (Actval));
3396 end if;
3398 else
3399 Set_Parent (Actval, N);
3401 -- See note above concerning aggregates
3403 if Nkind (Actval) = N_Aggregate
3404 and then Has_Discriminants (Etype (Actval))
3405 then
3406 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3408 -- Resolve entities with their own type, which may differ from
3409 -- the type of a reference in a generic context (the view
3410 -- swapping mechanism did not anticipate the re-analysis of
3411 -- default values in calls).
3413 elsif Is_Entity_Name (Actval) then
3414 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3416 else
3417 Analyze_And_Resolve (Actval, Etype (Actval));
3418 end if;
3419 end if;
3421 -- If default is a tag indeterminate function call, propagate tag
3422 -- to obtain proper dispatching.
3424 if Is_Controlling_Formal (F)
3425 and then Nkind (Default_Value (F)) = N_Function_Call
3426 then
3427 Set_Is_Controlling_Actual (Actval);
3428 end if;
3430 end if;
3432 -- If the default expression raises constraint error, then just
3433 -- silently replace it with an N_Raise_Constraint_Error node, since
3434 -- we already gave the warning on the subprogram spec. If node is
3435 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3436 -- the warnings removal machinery.
3438 if Raises_Constraint_Error (Actval)
3439 and then Nkind (Actval) /= N_Raise_Constraint_Error
3440 then
3441 Rewrite (Actval,
3442 Make_Raise_Constraint_Error (Loc,
3443 Reason => CE_Range_Check_Failed));
3444 Set_Raises_Constraint_Error (Actval);
3445 Set_Etype (Actval, Etype (F));
3446 end if;
3448 Assoc :=
3449 Make_Parameter_Association (Loc,
3450 Explicit_Actual_Parameter => Actval,
3451 Selector_Name => Make_Identifier (Loc, Chars (F)));
3453 -- Case of insertion is first named actual
3455 if No (Prev) or else
3456 Nkind (Parent (Prev)) /= N_Parameter_Association
3457 then
3458 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3459 Set_First_Named_Actual (N, Actval);
3461 if No (Prev) then
3462 if No (Parameter_Associations (N)) then
3463 Set_Parameter_Associations (N, New_List (Assoc));
3464 else
3465 Append (Assoc, Parameter_Associations (N));
3466 end if;
3468 else
3469 Insert_After (Prev, Assoc);
3470 end if;
3472 -- Case of insertion is not first named actual
3474 else
3475 Set_Next_Named_Actual
3476 (Assoc, Next_Named_Actual (Parent (Prev)));
3477 Set_Next_Named_Actual (Parent (Prev), Actval);
3478 Append (Assoc, Parameter_Associations (N));
3479 end if;
3481 Mark_Rewrite_Insertion (Assoc);
3482 Mark_Rewrite_Insertion (Actval);
3484 Prev := Actval;
3485 end Insert_Default;
3487 --------------------
3488 -- Property_Error --
3489 --------------------
3491 procedure Property_Error
3492 (Var : Node_Id;
3493 Var_Id : Entity_Id;
3494 Prop_Nam : Name_Id)
3496 begin
3497 Error_Msg_Name_1 := Prop_Nam;
3498 Error_Msg_NE
3499 ("external variable & with enabled property % cannot appear as "
3500 & "actual in procedure call (SPARK RM 7.1.3(11))", Var, Var_Id);
3501 Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3502 end Property_Error;
3504 -------------------
3505 -- Same_Ancestor --
3506 -------------------
3508 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3509 FT1 : Entity_Id := T1;
3510 FT2 : Entity_Id := T2;
3512 begin
3513 if Is_Private_Type (T1)
3514 and then Present (Full_View (T1))
3515 then
3516 FT1 := Full_View (T1);
3517 end if;
3519 if Is_Private_Type (T2)
3520 and then Present (Full_View (T2))
3521 then
3522 FT2 := Full_View (T2);
3523 end if;
3525 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3526 end Same_Ancestor;
3528 --------------------------
3529 -- Static_Concatenation --
3530 --------------------------
3532 function Static_Concatenation (N : Node_Id) return Boolean is
3533 begin
3534 case Nkind (N) is
3535 when N_String_Literal =>
3536 return True;
3538 when N_Op_Concat =>
3540 -- Concatenation is static when both operands are static and
3541 -- the concatenation operator is a predefined one.
3543 return Scope (Entity (N)) = Standard_Standard
3544 and then
3545 Static_Concatenation (Left_Opnd (N))
3546 and then
3547 Static_Concatenation (Right_Opnd (N));
3549 when others =>
3550 if Is_Entity_Name (N) then
3551 declare
3552 Ent : constant Entity_Id := Entity (N);
3553 begin
3554 return Ekind (Ent) = E_Constant
3555 and then Present (Constant_Value (Ent))
3556 and then
3557 Is_OK_Static_Expression (Constant_Value (Ent));
3558 end;
3560 else
3561 return False;
3562 end if;
3563 end case;
3564 end Static_Concatenation;
3566 -- Start of processing for Resolve_Actuals
3568 begin
3569 Check_Argument_Order;
3571 if Is_Overloadable (Nam)
3572 and then Is_Inherited_Operation (Nam)
3573 and then In_Instance
3574 and then Present (Alias (Nam))
3575 and then Present (Overridden_Operation (Alias (Nam)))
3576 then
3577 Real_Subp := Alias (Nam);
3578 else
3579 Real_Subp := Empty;
3580 end if;
3582 if Present (First_Actual (N)) then
3583 Check_Prefixed_Call;
3584 end if;
3586 A := First_Actual (N);
3587 F := First_Formal (Nam);
3589 if Present (Real_Subp) then
3590 Real_F := First_Formal (Real_Subp);
3591 end if;
3593 while Present (F) loop
3594 if No (A) and then Needs_No_Actuals (Nam) then
3595 null;
3597 -- If we have an error in any actual or formal, indicated by a type
3598 -- of Any_Type, then abandon resolution attempt, and set result type
3599 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3600 -- type is imposed from context.
3602 elsif (Present (A) and then Etype (A) = Any_Type)
3603 or else Etype (F) = Any_Type
3604 then
3605 if Nkind (A) /= N_Raise_Expression then
3606 Set_Etype (N, Any_Type);
3607 return;
3608 end if;
3609 end if;
3611 -- Case where actual is present
3613 -- If the actual is an entity, generate a reference to it now. We
3614 -- do this before the actual is resolved, because a formal of some
3615 -- protected subprogram, or a task discriminant, will be rewritten
3616 -- during expansion, and the source entity reference may be lost.
3618 if Present (A)
3619 and then Is_Entity_Name (A)
3620 and then Comes_From_Source (N)
3621 then
3622 Orig_A := Entity (A);
3624 if Present (Orig_A) then
3625 if Is_Formal (Orig_A)
3626 and then Ekind (F) /= E_In_Parameter
3627 then
3628 Generate_Reference (Orig_A, A, 'm');
3630 elsif not Is_Overloaded (A) then
3631 if Ekind (F) /= E_Out_Parameter then
3632 Generate_Reference (Orig_A, A);
3634 -- RM 6.4.1(12): For an out parameter that is passed by
3635 -- copy, the formal parameter object is created, and:
3637 -- * For an access type, the formal parameter is initialized
3638 -- from the value of the actual, without checking that the
3639 -- value satisfies any constraint, any predicate, or any
3640 -- exclusion of the null value.
3642 -- * For a scalar type that has the Default_Value aspect
3643 -- specified, the formal parameter is initialized from the
3644 -- value of the actual, without checking that the value
3645 -- satisfies any constraint or any predicate.
3646 -- I do not understand why this case is included??? this is
3647 -- not a case where an OUT parameter is treated as IN OUT.
3649 -- * For a composite type with discriminants or that has
3650 -- implicit initial values for any subcomponents, the
3651 -- behavior is as for an in out parameter passed by copy.
3653 -- Hence for these cases we generate the read reference now
3654 -- (the write reference will be generated later by
3655 -- Note_Possible_Modification).
3657 elsif Is_By_Copy_Type (Etype (F))
3658 and then
3659 (Is_Access_Type (Etype (F))
3660 or else
3661 (Is_Scalar_Type (Etype (F))
3662 and then
3663 Present (Default_Aspect_Value (Etype (F))))
3664 or else
3665 (Is_Composite_Type (Etype (F))
3666 and then (Has_Discriminants (Etype (F))
3667 or else Is_Partially_Initialized_Type
3668 (Etype (F)))))
3669 then
3670 Generate_Reference (Orig_A, A);
3671 end if;
3672 end if;
3673 end if;
3674 end if;
3676 if Present (A)
3677 and then (Nkind (Parent (A)) /= N_Parameter_Association
3678 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3679 then
3680 -- If style checking mode on, check match of formal name
3682 if Style_Check then
3683 if Nkind (Parent (A)) = N_Parameter_Association then
3684 Check_Identifier (Selector_Name (Parent (A)), F);
3685 end if;
3686 end if;
3688 -- If the formal is Out or In_Out, do not resolve and expand the
3689 -- conversion, because it is subsequently expanded into explicit
3690 -- temporaries and assignments. However, the object of the
3691 -- conversion can be resolved. An exception is the case of tagged
3692 -- type conversion with a class-wide actual. In that case we want
3693 -- the tag check to occur and no temporary will be needed (no
3694 -- representation change can occur) and the parameter is passed by
3695 -- reference, so we go ahead and resolve the type conversion.
3696 -- Another exception is the case of reference to component or
3697 -- subcomponent of a bit-packed array, in which case we want to
3698 -- defer expansion to the point the in and out assignments are
3699 -- performed.
3701 if Ekind (F) /= E_In_Parameter
3702 and then Nkind (A) = N_Type_Conversion
3703 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3704 then
3705 if Ekind (F) = E_In_Out_Parameter
3706 and then Is_Array_Type (Etype (F))
3707 then
3708 -- In a view conversion, the conversion must be legal in
3709 -- both directions, and thus both component types must be
3710 -- aliased, or neither (4.6 (8)).
3712 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3713 -- the privacy requirement should not apply to generic
3714 -- types, and should be checked in an instance. ARG query
3715 -- is in order ???
3717 if Has_Aliased_Components (Etype (Expression (A))) /=
3718 Has_Aliased_Components (Etype (F))
3719 then
3720 Error_Msg_N
3721 ("both component types in a view conversion must be"
3722 & " aliased, or neither", A);
3724 -- Comment here??? what set of cases???
3726 elsif
3727 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3728 then
3729 -- Check view conv between unrelated by ref array types
3731 if Is_By_Reference_Type (Etype (F))
3732 or else Is_By_Reference_Type (Etype (Expression (A)))
3733 then
3734 Error_Msg_N
3735 ("view conversion between unrelated by reference "
3736 & "array types not allowed (\'A'I-00246)", A);
3738 -- In Ada 2005 mode, check view conversion component
3739 -- type cannot be private, tagged, or volatile. Note
3740 -- that we only apply this to source conversions. The
3741 -- generated code can contain conversions which are
3742 -- not subject to this test, and we cannot extract the
3743 -- component type in such cases since it is not present.
3745 elsif Comes_From_Source (A)
3746 and then Ada_Version >= Ada_2005
3747 then
3748 declare
3749 Comp_Type : constant Entity_Id :=
3750 Component_Type
3751 (Etype (Expression (A)));
3752 begin
3753 if (Is_Private_Type (Comp_Type)
3754 and then not Is_Generic_Type (Comp_Type))
3755 or else Is_Tagged_Type (Comp_Type)
3756 or else Is_Volatile (Comp_Type)
3757 then
3758 Error_Msg_N
3759 ("component type of a view conversion cannot"
3760 & " be private, tagged, or volatile"
3761 & " (RM 4.6 (24))",
3762 Expression (A));
3763 end if;
3764 end;
3765 end if;
3766 end if;
3767 end if;
3769 -- Resolve expression if conversion is all OK
3771 if (Conversion_OK (A)
3772 or else Valid_Conversion (A, Etype (A), Expression (A)))
3773 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3774 then
3775 Resolve (Expression (A));
3776 end if;
3778 -- If the actual is a function call that returns a limited
3779 -- unconstrained object that needs finalization, create a
3780 -- transient scope for it, so that it can receive the proper
3781 -- finalization list.
3783 elsif Nkind (A) = N_Function_Call
3784 and then Is_Limited_Record (Etype (F))
3785 and then not Is_Constrained (Etype (F))
3786 and then Expander_Active
3787 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3788 then
3789 Establish_Transient_Scope (A, Sec_Stack => False);
3790 Resolve (A, Etype (F));
3792 -- A small optimization: if one of the actuals is a concatenation
3793 -- create a block around a procedure call to recover stack space.
3794 -- This alleviates stack usage when several procedure calls in
3795 -- the same statement list use concatenation. We do not perform
3796 -- this wrapping for code statements, where the argument is a
3797 -- static string, and we want to preserve warnings involving
3798 -- sequences of such statements.
3800 elsif Nkind (A) = N_Op_Concat
3801 and then Nkind (N) = N_Procedure_Call_Statement
3802 and then Expander_Active
3803 and then
3804 not (Is_Intrinsic_Subprogram (Nam)
3805 and then Chars (Nam) = Name_Asm)
3806 and then not Static_Concatenation (A)
3807 then
3808 Establish_Transient_Scope (A, Sec_Stack => False);
3809 Resolve (A, Etype (F));
3811 else
3812 if Nkind (A) = N_Type_Conversion
3813 and then Is_Array_Type (Etype (F))
3814 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3815 and then
3816 (Is_Limited_Type (Etype (F))
3817 or else Is_Limited_Type (Etype (Expression (A))))
3818 then
3819 Error_Msg_N
3820 ("conversion between unrelated limited array types "
3821 & "not allowed ('A'I-00246)", A);
3823 if Is_Limited_Type (Etype (F)) then
3824 Explain_Limited_Type (Etype (F), A);
3825 end if;
3827 if Is_Limited_Type (Etype (Expression (A))) then
3828 Explain_Limited_Type (Etype (Expression (A)), A);
3829 end if;
3830 end if;
3832 -- (Ada 2005: AI-251): If the actual is an allocator whose
3833 -- directly designated type is a class-wide interface, we build
3834 -- an anonymous access type to use it as the type of the
3835 -- allocator. Later, when the subprogram call is expanded, if
3836 -- the interface has a secondary dispatch table the expander
3837 -- will add a type conversion to force the correct displacement
3838 -- of the pointer.
3840 if Nkind (A) = N_Allocator then
3841 declare
3842 DDT : constant Entity_Id :=
3843 Directly_Designated_Type (Base_Type (Etype (F)));
3845 New_Itype : Entity_Id;
3847 begin
3848 if Is_Class_Wide_Type (DDT)
3849 and then Is_Interface (DDT)
3850 then
3851 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3852 Set_Etype (New_Itype, Etype (A));
3853 Set_Directly_Designated_Type
3854 (New_Itype, Directly_Designated_Type (Etype (A)));
3855 Set_Etype (A, New_Itype);
3856 end if;
3858 -- Ada 2005, AI-162:If the actual is an allocator, the
3859 -- innermost enclosing statement is the master of the
3860 -- created object. This needs to be done with expansion
3861 -- enabled only, otherwise the transient scope will not
3862 -- be removed in the expansion of the wrapped construct.
3864 if (Is_Controlled (DDT) or else Has_Task (DDT))
3865 and then Expander_Active
3866 then
3867 Establish_Transient_Scope (A, Sec_Stack => False);
3868 end if;
3869 end;
3871 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3872 Check_Restriction (No_Access_Parameter_Allocators, A);
3873 end if;
3874 end if;
3876 -- (Ada 2005): The call may be to a primitive operation of a
3877 -- tagged synchronized type, declared outside of the type. In
3878 -- this case the controlling actual must be converted to its
3879 -- corresponding record type, which is the formal type. The
3880 -- actual may be a subtype, either because of a constraint or
3881 -- because it is a generic actual, so use base type to locate
3882 -- concurrent type.
3884 F_Typ := Base_Type (Etype (F));
3886 if Is_Tagged_Type (F_Typ)
3887 and then (Is_Concurrent_Type (F_Typ)
3888 or else Is_Concurrent_Record_Type (F_Typ))
3889 then
3890 -- If the actual is overloaded, look for an interpretation
3891 -- that has a synchronized type.
3893 if not Is_Overloaded (A) then
3894 A_Typ := Base_Type (Etype (A));
3896 else
3897 declare
3898 Index : Interp_Index;
3899 It : Interp;
3901 begin
3902 Get_First_Interp (A, Index, It);
3903 while Present (It.Typ) loop
3904 if Is_Concurrent_Type (It.Typ)
3905 or else Is_Concurrent_Record_Type (It.Typ)
3906 then
3907 A_Typ := Base_Type (It.Typ);
3908 exit;
3909 end if;
3911 Get_Next_Interp (Index, It);
3912 end loop;
3913 end;
3914 end if;
3916 declare
3917 Full_A_Typ : Entity_Id;
3919 begin
3920 if Present (Full_View (A_Typ)) then
3921 Full_A_Typ := Base_Type (Full_View (A_Typ));
3922 else
3923 Full_A_Typ := A_Typ;
3924 end if;
3926 -- Tagged synchronized type (case 1): the actual is a
3927 -- concurrent type.
3929 if Is_Concurrent_Type (A_Typ)
3930 and then Corresponding_Record_Type (A_Typ) = F_Typ
3931 then
3932 Rewrite (A,
3933 Unchecked_Convert_To
3934 (Corresponding_Record_Type (A_Typ), A));
3935 Resolve (A, Etype (F));
3937 -- Tagged synchronized type (case 2): the formal is a
3938 -- concurrent type.
3940 elsif Ekind (Full_A_Typ) = E_Record_Type
3941 and then Present
3942 (Corresponding_Concurrent_Type (Full_A_Typ))
3943 and then Is_Concurrent_Type (F_Typ)
3944 and then Present (Corresponding_Record_Type (F_Typ))
3945 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3946 then
3947 Resolve (A, Corresponding_Record_Type (F_Typ));
3949 -- Common case
3951 else
3952 Resolve (A, Etype (F));
3953 end if;
3954 end;
3956 -- Not a synchronized operation
3958 else
3959 Resolve (A, Etype (F));
3960 end if;
3961 end if;
3963 A_Typ := Etype (A);
3964 F_Typ := Etype (F);
3966 -- An actual cannot be an untagged formal incomplete type
3968 if Ekind (A_Typ) = E_Incomplete_Type
3969 and then not Is_Tagged_Type (A_Typ)
3970 and then Is_Generic_Type (A_Typ)
3971 then
3972 Error_Msg_N
3973 ("invalid use of untagged formal incomplete type", A);
3974 end if;
3976 if Comes_From_Source (Original_Node (N))
3977 and then Nkind_In (Original_Node (N), N_Function_Call,
3978 N_Procedure_Call_Statement)
3979 then
3980 -- In formal mode, check that actual parameters matching
3981 -- formals of tagged types are objects (or ancestor type
3982 -- conversions of objects), not general expressions.
3984 if Is_Actual_Tagged_Parameter (A) then
3985 if Is_SPARK_05_Object_Reference (A) then
3986 null;
3988 elsif Nkind (A) = N_Type_Conversion then
3989 declare
3990 Operand : constant Node_Id := Expression (A);
3991 Operand_Typ : constant Entity_Id := Etype (Operand);
3992 Target_Typ : constant Entity_Id := A_Typ;
3994 begin
3995 if not Is_SPARK_05_Object_Reference (Operand) then
3996 Check_SPARK_05_Restriction
3997 ("object required", Operand);
3999 -- In formal mode, the only view conversions are those
4000 -- involving ancestor conversion of an extended type.
4002 elsif not
4003 (Is_Tagged_Type (Target_Typ)
4004 and then not Is_Class_Wide_Type (Target_Typ)
4005 and then Is_Tagged_Type (Operand_Typ)
4006 and then not Is_Class_Wide_Type (Operand_Typ)
4007 and then Is_Ancestor (Target_Typ, Operand_Typ))
4008 then
4009 if Ekind_In
4010 (F, E_Out_Parameter, E_In_Out_Parameter)
4011 then
4012 Check_SPARK_05_Restriction
4013 ("ancestor conversion is the only permitted "
4014 & "view conversion", A);
4015 else
4016 Check_SPARK_05_Restriction
4017 ("ancestor conversion required", A);
4018 end if;
4020 else
4021 null;
4022 end if;
4023 end;
4025 else
4026 Check_SPARK_05_Restriction ("object required", A);
4027 end if;
4029 -- In formal mode, the only view conversions are those
4030 -- involving ancestor conversion of an extended type.
4032 elsif Nkind (A) = N_Type_Conversion
4033 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4034 then
4035 Check_SPARK_05_Restriction
4036 ("ancestor conversion is the only permitted view "
4037 & "conversion", A);
4038 end if;
4039 end if;
4041 -- has warnings suppressed, then we reset Never_Set_In_Source for
4042 -- the calling entity. The reason for this is to catch cases like
4043 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4044 -- uses trickery to modify an IN parameter.
4046 if Ekind (F) = E_In_Parameter
4047 and then Is_Entity_Name (A)
4048 and then Present (Entity (A))
4049 and then Ekind (Entity (A)) = E_Variable
4050 and then Has_Warnings_Off (F_Typ)
4051 then
4052 Set_Never_Set_In_Source (Entity (A), False);
4053 end if;
4055 -- Perform error checks for IN and IN OUT parameters
4057 if Ekind (F) /= E_Out_Parameter then
4059 -- Check unset reference. For scalar parameters, it is clearly
4060 -- wrong to pass an uninitialized value as either an IN or
4061 -- IN-OUT parameter. For composites, it is also clearly an
4062 -- error to pass a completely uninitialized value as an IN
4063 -- parameter, but the case of IN OUT is trickier. We prefer
4064 -- not to give a warning here. For example, suppose there is
4065 -- a routine that sets some component of a record to False.
4066 -- It is perfectly reasonable to make this IN-OUT and allow
4067 -- either initialized or uninitialized records to be passed
4068 -- in this case.
4070 -- For partially initialized composite values, we also avoid
4071 -- warnings, since it is quite likely that we are passing a
4072 -- partially initialized value and only the initialized fields
4073 -- will in fact be read in the subprogram.
4075 if Is_Scalar_Type (A_Typ)
4076 or else (Ekind (F) = E_In_Parameter
4077 and then not Is_Partially_Initialized_Type (A_Typ))
4078 then
4079 Check_Unset_Reference (A);
4080 end if;
4082 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4083 -- actual to a nested call, since this constitutes a reading of
4084 -- the parameter, which is not allowed.
4086 if Is_Entity_Name (A)
4087 and then Ekind (Entity (A)) = E_Out_Parameter
4088 then
4089 if Ada_Version = Ada_83 then
4090 Error_Msg_N
4091 ("(Ada 83) illegal reading of out parameter", A);
4093 -- An effectively volatile OUT parameter cannot act as IN or
4094 -- IN OUT actual in a call (SPARK RM 7.1.3(11)).
4096 elsif SPARK_Mode = On
4097 and then Is_Effectively_Volatile (Entity (A))
4098 then
4099 Error_Msg_N
4100 ("illegal reading of volatile OUT parameter", A);
4101 end if;
4102 end if;
4103 end if;
4105 -- Case of OUT or IN OUT parameter
4107 if Ekind (F) /= E_In_Parameter then
4109 -- For an Out parameter, check for useless assignment. Note
4110 -- that we can't set Last_Assignment this early, because we may
4111 -- kill current values in Resolve_Call, and that call would
4112 -- clobber the Last_Assignment field.
4114 -- Note: call Warn_On_Useless_Assignment before doing the check
4115 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4116 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4117 -- reflects the last assignment, not this one.
4119 if Ekind (F) = E_Out_Parameter then
4120 if Warn_On_Modified_As_Out_Parameter (F)
4121 and then Is_Entity_Name (A)
4122 and then Present (Entity (A))
4123 and then Comes_From_Source (N)
4124 then
4125 Warn_On_Useless_Assignment (Entity (A), A);
4126 end if;
4127 end if;
4129 -- Validate the form of the actual. Note that the call to
4130 -- Is_OK_Variable_For_Out_Formal generates the required
4131 -- reference in this case.
4133 -- A call to an initialization procedure for an aggregate
4134 -- component may initialize a nested component of a constant
4135 -- designated object. In this context the object is variable.
4137 if not Is_OK_Variable_For_Out_Formal (A)
4138 and then not Is_Init_Proc (Nam)
4139 then
4140 Error_Msg_NE ("actual for& must be a variable", A, F);
4142 if Is_Subprogram (Current_Scope)
4143 and then
4144 (Is_Invariant_Procedure (Current_Scope)
4145 or else Is_Predicate_Function (Current_Scope))
4146 then
4147 Error_Msg_N
4148 ("function used in predicate cannot "
4149 & "modify its argument", F);
4150 end if;
4151 end if;
4153 -- What's the following about???
4155 if Is_Entity_Name (A) then
4156 Kill_Checks (Entity (A));
4157 else
4158 Kill_All_Checks;
4159 end if;
4160 end if;
4162 if Etype (A) = Any_Type then
4163 Set_Etype (N, Any_Type);
4164 return;
4165 end if;
4167 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4169 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4171 -- Apply predicate tests except in certain special cases. Note
4172 -- that it might be more consistent to apply these only when
4173 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4174 -- for the outbound predicate tests ???
4176 if Predicate_Tests_On_Arguments (Nam) then
4177 Apply_Predicate_Check (A, F_Typ);
4178 end if;
4180 -- Apply required constraint checks
4182 -- Gigi looks at the check flag and uses the appropriate types.
4183 -- For now since one flag is used there is an optimization
4184 -- which might not be done in the IN OUT case since Gigi does
4185 -- not do any analysis. More thought required about this ???
4187 -- In fact is this comment obsolete??? doesn't the expander now
4188 -- generate all these tests anyway???
4190 if Is_Scalar_Type (Etype (A)) then
4191 Apply_Scalar_Range_Check (A, F_Typ);
4193 elsif Is_Array_Type (Etype (A)) then
4194 Apply_Length_Check (A, F_Typ);
4196 elsif Is_Record_Type (F_Typ)
4197 and then Has_Discriminants (F_Typ)
4198 and then Is_Constrained (F_Typ)
4199 and then (not Is_Derived_Type (F_Typ)
4200 or else Comes_From_Source (Nam))
4201 then
4202 Apply_Discriminant_Check (A, F_Typ);
4204 -- For view conversions of a discriminated object, apply
4205 -- check to object itself, the conversion alreay has the
4206 -- proper type.
4208 if Nkind (A) = N_Type_Conversion
4209 and then Is_Constrained (Etype (Expression (A)))
4210 then
4211 Apply_Discriminant_Check (Expression (A), F_Typ);
4212 end if;
4214 elsif Is_Access_Type (F_Typ)
4215 and then Is_Array_Type (Designated_Type (F_Typ))
4216 and then Is_Constrained (Designated_Type (F_Typ))
4217 then
4218 Apply_Length_Check (A, F_Typ);
4220 elsif Is_Access_Type (F_Typ)
4221 and then Has_Discriminants (Designated_Type (F_Typ))
4222 and then Is_Constrained (Designated_Type (F_Typ))
4223 then
4224 Apply_Discriminant_Check (A, F_Typ);
4226 else
4227 Apply_Range_Check (A, F_Typ);
4228 end if;
4230 -- Ada 2005 (AI-231): Note that the controlling parameter case
4231 -- already existed in Ada 95, which is partially checked
4232 -- elsewhere (see Checks), and we don't want the warning
4233 -- message to differ.
4235 if Is_Access_Type (F_Typ)
4236 and then Can_Never_Be_Null (F_Typ)
4237 and then Known_Null (A)
4238 then
4239 if Is_Controlling_Formal (F) then
4240 Apply_Compile_Time_Constraint_Error
4241 (N => A,
4242 Msg => "null value not allowed here??",
4243 Reason => CE_Access_Check_Failed);
4245 elsif Ada_Version >= Ada_2005 then
4246 Apply_Compile_Time_Constraint_Error
4247 (N => A,
4248 Msg => "(Ada 2005) null not allowed in "
4249 & "null-excluding formal??",
4250 Reason => CE_Null_Not_Allowed);
4251 end if;
4252 end if;
4253 end if;
4255 -- Checks for OUT parameters and IN OUT parameters
4257 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4259 -- If there is a type conversion, to make sure the return value
4260 -- meets the constraints of the variable before the conversion.
4262 if Nkind (A) = N_Type_Conversion then
4263 if Is_Scalar_Type (A_Typ) then
4264 Apply_Scalar_Range_Check
4265 (Expression (A), Etype (Expression (A)), A_Typ);
4266 else
4267 Apply_Range_Check
4268 (Expression (A), Etype (Expression (A)), A_Typ);
4269 end if;
4271 -- If no conversion apply scalar range checks and length checks
4272 -- base on the subtype of the actual (NOT that of the formal).
4274 else
4275 if Is_Scalar_Type (F_Typ) then
4276 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4277 elsif Is_Array_Type (F_Typ)
4278 and then Ekind (F) = E_Out_Parameter
4279 then
4280 Apply_Length_Check (A, F_Typ);
4281 else
4282 Apply_Range_Check (A, A_Typ, F_Typ);
4283 end if;
4284 end if;
4286 -- Note: we do not apply the predicate checks for the case of
4287 -- OUT and IN OUT parameters. They are instead applied in the
4288 -- Expand_Actuals routine in Exp_Ch6.
4289 end if;
4291 -- An actual associated with an access parameter is implicitly
4292 -- converted to the anonymous access type of the formal and must
4293 -- satisfy the legality checks for access conversions.
4295 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4296 if not Valid_Conversion (A, F_Typ, A) then
4297 Error_Msg_N
4298 ("invalid implicit conversion for access parameter", A);
4299 end if;
4301 -- If the actual is an access selected component of a variable,
4302 -- the call may modify its designated object. It is reasonable
4303 -- to treat this as a potential modification of the enclosing
4304 -- record, to prevent spurious warnings that it should be
4305 -- declared as a constant, because intuitively programmers
4306 -- regard the designated subcomponent as part of the record.
4308 if Nkind (A) = N_Selected_Component
4309 and then Is_Entity_Name (Prefix (A))
4310 and then not Is_Constant_Object (Entity (Prefix (A)))
4311 then
4312 Note_Possible_Modification (A, Sure => False);
4313 end if;
4314 end if;
4316 -- Check bad case of atomic/volatile argument (RM C.6(12))
4318 if Is_By_Reference_Type (Etype (F))
4319 and then Comes_From_Source (N)
4320 then
4321 if Is_Atomic_Object (A)
4322 and then not Is_Atomic (Etype (F))
4323 then
4324 Error_Msg_NE
4325 ("cannot pass atomic argument to non-atomic formal&",
4326 A, F);
4328 elsif Is_Volatile_Object (A)
4329 and then not Is_Volatile (Etype (F))
4330 then
4331 Error_Msg_NE
4332 ("cannot pass volatile argument to non-volatile formal&",
4333 A, F);
4334 end if;
4335 end if;
4337 -- Check that subprograms don't have improper controlling
4338 -- arguments (RM 3.9.2 (9)).
4340 -- A primitive operation may have an access parameter of an
4341 -- incomplete tagged type, but a dispatching call is illegal
4342 -- if the type is still incomplete.
4344 if Is_Controlling_Formal (F) then
4345 Set_Is_Controlling_Actual (A);
4347 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4348 declare
4349 Desig : constant Entity_Id := Designated_Type (Etype (F));
4350 begin
4351 if Ekind (Desig) = E_Incomplete_Type
4352 and then No (Full_View (Desig))
4353 and then No (Non_Limited_View (Desig))
4354 then
4355 Error_Msg_NE
4356 ("premature use of incomplete type& "
4357 & "in dispatching call", A, Desig);
4358 end if;
4359 end;
4360 end if;
4362 elsif Nkind (A) = N_Explicit_Dereference then
4363 Validate_Remote_Access_To_Class_Wide_Type (A);
4364 end if;
4366 -- Apply legality rule 3.9.2 (9/1)
4368 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4369 and then not Is_Class_Wide_Type (F_Typ)
4370 and then not Is_Controlling_Formal (F)
4371 and then not In_Instance
4372 then
4373 Error_Msg_N ("class-wide argument not allowed here!", A);
4375 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4376 Error_Msg_Node_2 := F_Typ;
4377 Error_Msg_NE
4378 ("& is not a dispatching operation of &!", A, Nam);
4379 end if;
4381 -- Apply the checks described in 3.10.2(27): if the context is a
4382 -- specific access-to-object, the actual cannot be class-wide.
4383 -- Use base type to exclude access_to_subprogram cases.
4385 elsif Is_Access_Type (A_Typ)
4386 and then Is_Access_Type (F_Typ)
4387 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4388 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4389 or else (Nkind (A) = N_Attribute_Reference
4390 and then
4391 Is_Class_Wide_Type (Etype (Prefix (A)))))
4392 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4393 and then not Is_Controlling_Formal (F)
4395 -- Disable these checks for call to imported C++ subprograms
4397 and then not
4398 (Is_Entity_Name (Name (N))
4399 and then Is_Imported (Entity (Name (N)))
4400 and then Convention (Entity (Name (N))) = Convention_CPP)
4401 then
4402 Error_Msg_N
4403 ("access to class-wide argument not allowed here!", A);
4405 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4406 Error_Msg_Node_2 := Designated_Type (F_Typ);
4407 Error_Msg_NE
4408 ("& is not a dispatching operation of &!", A, Nam);
4409 end if;
4410 end if;
4412 Check_Aliased_Parameter;
4414 Eval_Actual (A);
4416 -- If it is a named association, treat the selector_name as a
4417 -- proper identifier, and mark the corresponding entity.
4419 if Nkind (Parent (A)) = N_Parameter_Association
4421 -- Ignore reference in SPARK mode, as it refers to an entity not
4422 -- in scope at the point of reference, so the reference should
4423 -- be ignored for computing effects of subprograms.
4425 and then not GNATprove_Mode
4426 then
4427 -- If subprogram is overridden, use name of formal that
4428 -- is being called.
4430 if Present (Real_Subp) then
4431 Set_Entity (Selector_Name (Parent (A)), Real_F);
4432 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4434 else
4435 Set_Entity (Selector_Name (Parent (A)), F);
4436 Generate_Reference (F, Selector_Name (Parent (A)));
4437 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4438 Generate_Reference (F_Typ, N, ' ');
4439 end if;
4440 end if;
4442 Prev := A;
4444 if Ekind (F) /= E_Out_Parameter then
4445 Check_Unset_Reference (A);
4446 end if;
4448 -- The following checks are only relevant when SPARK_Mode is on as
4449 -- they are not standard Ada legality rule. Internally generated
4450 -- temporaries are ignored.
4452 if SPARK_Mode = On
4453 and then Is_Effectively_Volatile_Object (A)
4454 and then Comes_From_Source (A)
4455 then
4456 -- An effectively volatile object may act as an actual
4457 -- parameter when the corresponding formal is of a non-scalar
4458 -- volatile type.
4460 if Is_Volatile (Etype (F))
4461 and then not Is_Scalar_Type (Etype (F))
4462 then
4463 null;
4465 -- An effectively volatile object may act as an actual
4466 -- parameter in a call to an instance of Unchecked_Conversion.
4468 elsif Is_Unchecked_Conversion_Instance (Nam) then
4469 null;
4471 else
4472 Error_Msg_N
4473 ("volatile object cannot act as actual in a call (SPARK "
4474 & "RM 7.1.3(12))", A);
4475 end if;
4477 -- Detect an external variable with an enabled property that
4478 -- does not match the mode of the corresponding formal in a
4479 -- procedure call. Functions are not considered because they
4480 -- cannot have effectively volatile formal parameters in the
4481 -- first place.
4483 if Ekind (Nam) = E_Procedure
4484 and then Ekind (F) = E_In_Parameter
4485 and then Is_Entity_Name (A)
4486 and then Present (Entity (A))
4487 and then Ekind (Entity (A)) = E_Variable
4488 then
4489 A_Id := Entity (A);
4491 if Async_Readers_Enabled (A_Id) then
4492 Property_Error (A, A_Id, Name_Async_Readers);
4493 elsif Effective_Reads_Enabled (A_Id) then
4494 Property_Error (A, A_Id, Name_Effective_Reads);
4495 elsif Effective_Writes_Enabled (A_Id) then
4496 Property_Error (A, A_Id, Name_Effective_Writes);
4497 end if;
4498 end if;
4499 end if;
4501 -- A formal parameter of a specific tagged type whose related
4502 -- subprogram is subject to pragma Extensions_Visible with value
4503 -- "False" cannot act as an actual in a subprogram with value
4504 -- "True" (SPARK RM 6.1.7(3)).
4506 if Is_EVF_Expression (A)
4507 and then Extensions_Visible_Status (Nam) =
4508 Extensions_Visible_True
4509 then
4510 Error_Msg_N
4511 ("formal parameter with Extensions_Visible False cannot act "
4512 & "as actual parameter", A);
4513 Error_Msg_NE
4514 ("\subprogram & has Extensions_Visible True", A, Nam);
4515 end if;
4517 -- The actual parameter of a Ghost subprogram whose formal is of
4518 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(13)).
4520 if Is_Ghost_Entity (Nam)
4521 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4522 and then Is_Entity_Name (A)
4523 and then Present (Entity (A))
4524 and then not Is_Ghost_Entity (Entity (A))
4525 then
4526 Error_Msg_NE
4527 ("non-ghost variable & cannot appear as actual in call to "
4528 & "ghost procedure", A, Entity (A));
4530 if Ekind (F) = E_In_Out_Parameter then
4531 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4532 else
4533 Error_Msg_N ("\corresponding formal has mode OUT", A);
4534 end if;
4535 end if;
4537 Next_Actual (A);
4539 -- Case where actual is not present
4541 else
4542 Insert_Default;
4543 end if;
4545 Next_Formal (F);
4547 if Present (Real_Subp) then
4548 Next_Formal (Real_F);
4549 end if;
4550 end loop;
4551 end Resolve_Actuals;
4553 -----------------------
4554 -- Resolve_Allocator --
4555 -----------------------
4557 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4558 Desig_T : constant Entity_Id := Designated_Type (Typ);
4559 E : constant Node_Id := Expression (N);
4560 Subtyp : Entity_Id;
4561 Discrim : Entity_Id;
4562 Constr : Node_Id;
4563 Aggr : Node_Id;
4564 Assoc : Node_Id := Empty;
4565 Disc_Exp : Node_Id;
4567 procedure Check_Allocator_Discrim_Accessibility
4568 (Disc_Exp : Node_Id;
4569 Alloc_Typ : Entity_Id);
4570 -- Check that accessibility level associated with an access discriminant
4571 -- initialized in an allocator by the expression Disc_Exp is not deeper
4572 -- than the level of the allocator type Alloc_Typ. An error message is
4573 -- issued if this condition is violated. Specialized checks are done for
4574 -- the cases of a constraint expression which is an access attribute or
4575 -- an access discriminant.
4577 function In_Dispatching_Context return Boolean;
4578 -- If the allocator is an actual in a call, it is allowed to be class-
4579 -- wide when the context is not because it is a controlling actual.
4581 -------------------------------------------
4582 -- Check_Allocator_Discrim_Accessibility --
4583 -------------------------------------------
4585 procedure Check_Allocator_Discrim_Accessibility
4586 (Disc_Exp : Node_Id;
4587 Alloc_Typ : Entity_Id)
4589 begin
4590 if Type_Access_Level (Etype (Disc_Exp)) >
4591 Deepest_Type_Access_Level (Alloc_Typ)
4592 then
4593 Error_Msg_N
4594 ("operand type has deeper level than allocator type", Disc_Exp);
4596 -- When the expression is an Access attribute the level of the prefix
4597 -- object must not be deeper than that of the allocator's type.
4599 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4600 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4601 Attribute_Access
4602 and then Object_Access_Level (Prefix (Disc_Exp)) >
4603 Deepest_Type_Access_Level (Alloc_Typ)
4604 then
4605 Error_Msg_N
4606 ("prefix of attribute has deeper level than allocator type",
4607 Disc_Exp);
4609 -- When the expression is an access discriminant the check is against
4610 -- the level of the prefix object.
4612 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4613 and then Nkind (Disc_Exp) = N_Selected_Component
4614 and then Object_Access_Level (Prefix (Disc_Exp)) >
4615 Deepest_Type_Access_Level (Alloc_Typ)
4616 then
4617 Error_Msg_N
4618 ("access discriminant has deeper level than allocator type",
4619 Disc_Exp);
4621 -- All other cases are legal
4623 else
4624 null;
4625 end if;
4626 end Check_Allocator_Discrim_Accessibility;
4628 ----------------------------
4629 -- In_Dispatching_Context --
4630 ----------------------------
4632 function In_Dispatching_Context return Boolean is
4633 Par : constant Node_Id := Parent (N);
4635 begin
4636 return Nkind (Par) in N_Subprogram_Call
4637 and then Is_Entity_Name (Name (Par))
4638 and then Is_Dispatching_Operation (Entity (Name (Par)));
4639 end In_Dispatching_Context;
4641 -- Start of processing for Resolve_Allocator
4643 begin
4644 -- Replace general access with specific type
4646 if Ekind (Etype (N)) = E_Allocator_Type then
4647 Set_Etype (N, Base_Type (Typ));
4648 end if;
4650 if Is_Abstract_Type (Typ) then
4651 Error_Msg_N ("type of allocator cannot be abstract", N);
4652 end if;
4654 -- For qualified expression, resolve the expression using the given
4655 -- subtype (nothing to do for type mark, subtype indication)
4657 if Nkind (E) = N_Qualified_Expression then
4658 if Is_Class_Wide_Type (Etype (E))
4659 and then not Is_Class_Wide_Type (Desig_T)
4660 and then not In_Dispatching_Context
4661 then
4662 Error_Msg_N
4663 ("class-wide allocator not allowed for this access type", N);
4664 end if;
4666 Resolve (Expression (E), Etype (E));
4667 Check_Non_Static_Context (Expression (E));
4668 Check_Unset_Reference (Expression (E));
4670 -- A qualified expression requires an exact match of the type.
4671 -- Class-wide matching is not allowed.
4673 if (Is_Class_Wide_Type (Etype (Expression (E)))
4674 or else Is_Class_Wide_Type (Etype (E)))
4675 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4676 then
4677 Wrong_Type (Expression (E), Etype (E));
4678 end if;
4680 -- Calls to build-in-place functions are not currently supported in
4681 -- allocators for access types associated with a simple storage pool.
4682 -- Supporting such allocators may require passing additional implicit
4683 -- parameters to build-in-place functions (or a significant revision
4684 -- of the current b-i-p implementation to unify the handling for
4685 -- multiple kinds of storage pools). ???
4687 if Is_Limited_View (Desig_T)
4688 and then Nkind (Expression (E)) = N_Function_Call
4689 then
4690 declare
4691 Pool : constant Entity_Id :=
4692 Associated_Storage_Pool (Root_Type (Typ));
4693 begin
4694 if Present (Pool)
4695 and then
4696 Present (Get_Rep_Pragma
4697 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4698 then
4699 Error_Msg_N
4700 ("limited function calls not yet supported in simple "
4701 & "storage pool allocators", Expression (E));
4702 end if;
4703 end;
4704 end if;
4706 -- A special accessibility check is needed for allocators that
4707 -- constrain access discriminants. The level of the type of the
4708 -- expression used to constrain an access discriminant cannot be
4709 -- deeper than the type of the allocator (in contrast to access
4710 -- parameters, where the level of the actual can be arbitrary).
4712 -- We can't use Valid_Conversion to perform this check because in
4713 -- general the type of the allocator is unrelated to the type of
4714 -- the access discriminant.
4716 if Ekind (Typ) /= E_Anonymous_Access_Type
4717 or else Is_Local_Anonymous_Access (Typ)
4718 then
4719 Subtyp := Entity (Subtype_Mark (E));
4721 Aggr := Original_Node (Expression (E));
4723 if Has_Discriminants (Subtyp)
4724 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4725 then
4726 Discrim := First_Discriminant (Base_Type (Subtyp));
4728 -- Get the first component expression of the aggregate
4730 if Present (Expressions (Aggr)) then
4731 Disc_Exp := First (Expressions (Aggr));
4733 elsif Present (Component_Associations (Aggr)) then
4734 Assoc := First (Component_Associations (Aggr));
4736 if Present (Assoc) then
4737 Disc_Exp := Expression (Assoc);
4738 else
4739 Disc_Exp := Empty;
4740 end if;
4742 else
4743 Disc_Exp := Empty;
4744 end if;
4746 while Present (Discrim) and then Present (Disc_Exp) loop
4747 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4748 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4749 end if;
4751 Next_Discriminant (Discrim);
4753 if Present (Discrim) then
4754 if Present (Assoc) then
4755 Next (Assoc);
4756 Disc_Exp := Expression (Assoc);
4758 elsif Present (Next (Disc_Exp)) then
4759 Next (Disc_Exp);
4761 else
4762 Assoc := First (Component_Associations (Aggr));
4764 if Present (Assoc) then
4765 Disc_Exp := Expression (Assoc);
4766 else
4767 Disc_Exp := Empty;
4768 end if;
4769 end if;
4770 end if;
4771 end loop;
4772 end if;
4773 end if;
4775 -- For a subtype mark or subtype indication, freeze the subtype
4777 else
4778 Freeze_Expression (E);
4780 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4781 Error_Msg_N
4782 ("initialization required for access-to-constant allocator", N);
4783 end if;
4785 -- A special accessibility check is needed for allocators that
4786 -- constrain access discriminants. The level of the type of the
4787 -- expression used to constrain an access discriminant cannot be
4788 -- deeper than the type of the allocator (in contrast to access
4789 -- parameters, where the level of the actual can be arbitrary).
4790 -- We can't use Valid_Conversion to perform this check because
4791 -- in general the type of the allocator is unrelated to the type
4792 -- of the access discriminant.
4794 if Nkind (Original_Node (E)) = N_Subtype_Indication
4795 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4796 or else Is_Local_Anonymous_Access (Typ))
4797 then
4798 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4800 if Has_Discriminants (Subtyp) then
4801 Discrim := First_Discriminant (Base_Type (Subtyp));
4802 Constr := First (Constraints (Constraint (Original_Node (E))));
4803 while Present (Discrim) and then Present (Constr) loop
4804 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4805 if Nkind (Constr) = N_Discriminant_Association then
4806 Disc_Exp := Original_Node (Expression (Constr));
4807 else
4808 Disc_Exp := Original_Node (Constr);
4809 end if;
4811 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4812 end if;
4814 Next_Discriminant (Discrim);
4815 Next (Constr);
4816 end loop;
4817 end if;
4818 end if;
4819 end if;
4821 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4822 -- check that the level of the type of the created object is not deeper
4823 -- than the level of the allocator's access type, since extensions can
4824 -- now occur at deeper levels than their ancestor types. This is a
4825 -- static accessibility level check; a run-time check is also needed in
4826 -- the case of an initialized allocator with a class-wide argument (see
4827 -- Expand_Allocator_Expression).
4829 if Ada_Version >= Ada_2005
4830 and then Is_Class_Wide_Type (Desig_T)
4831 then
4832 declare
4833 Exp_Typ : Entity_Id;
4835 begin
4836 if Nkind (E) = N_Qualified_Expression then
4837 Exp_Typ := Etype (E);
4838 elsif Nkind (E) = N_Subtype_Indication then
4839 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4840 else
4841 Exp_Typ := Entity (E);
4842 end if;
4844 if Type_Access_Level (Exp_Typ) >
4845 Deepest_Type_Access_Level (Typ)
4846 then
4847 if In_Instance_Body then
4848 Error_Msg_Warn := SPARK_Mode /= On;
4849 Error_Msg_N
4850 ("type in allocator has deeper level than "
4851 & "designated class-wide type<<", E);
4852 Error_Msg_N ("\Program_Error [<<", E);
4853 Rewrite (N,
4854 Make_Raise_Program_Error (Sloc (N),
4855 Reason => PE_Accessibility_Check_Failed));
4856 Set_Etype (N, Typ);
4858 -- Do not apply Ada 2005 accessibility checks on a class-wide
4859 -- allocator if the type given in the allocator is a formal
4860 -- type. A run-time check will be performed in the instance.
4862 elsif not Is_Generic_Type (Exp_Typ) then
4863 Error_Msg_N ("type in allocator has deeper level than "
4864 & "designated class-wide type", E);
4865 end if;
4866 end if;
4867 end;
4868 end if;
4870 -- Check for allocation from an empty storage pool
4872 if No_Pool_Assigned (Typ) then
4873 Error_Msg_N ("allocation from empty storage pool!", N);
4875 -- If the context is an unchecked conversion, as may happen within an
4876 -- inlined subprogram, the allocator is being resolved with its own
4877 -- anonymous type. In that case, if the target type has a specific
4878 -- storage pool, it must be inherited explicitly by the allocator type.
4880 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4881 and then No (Associated_Storage_Pool (Typ))
4882 then
4883 Set_Associated_Storage_Pool
4884 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4885 end if;
4887 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4888 Check_Restriction (No_Anonymous_Allocators, N);
4889 end if;
4891 -- Check that an allocator with task parts isn't for a nested access
4892 -- type when restriction No_Task_Hierarchy applies.
4894 if not Is_Library_Level_Entity (Base_Type (Typ))
4895 and then Has_Task (Base_Type (Desig_T))
4896 then
4897 Check_Restriction (No_Task_Hierarchy, N);
4898 end if;
4900 -- An illegal allocator may be rewritten as a raise Program_Error
4901 -- statement.
4903 if Nkind (N) = N_Allocator then
4905 -- An anonymous access discriminant is the definition of a
4906 -- coextension.
4908 if Ekind (Typ) = E_Anonymous_Access_Type
4909 and then Nkind (Associated_Node_For_Itype (Typ)) =
4910 N_Discriminant_Specification
4911 then
4912 declare
4913 Discr : constant Entity_Id :=
4914 Defining_Identifier (Associated_Node_For_Itype (Typ));
4916 begin
4917 Check_Restriction (No_Coextensions, N);
4919 -- Ada 2012 AI05-0052: If the designated type of the allocator
4920 -- is limited, then the allocator shall not be used to define
4921 -- the value of an access discriminant unless the discriminated
4922 -- type is immutably limited.
4924 if Ada_Version >= Ada_2012
4925 and then Is_Limited_Type (Desig_T)
4926 and then not Is_Limited_View (Scope (Discr))
4927 then
4928 Error_Msg_N
4929 ("only immutably limited types can have anonymous "
4930 & "access discriminants designating a limited type", N);
4931 end if;
4932 end;
4934 -- Avoid marking an allocator as a dynamic coextension if it is
4935 -- within a static construct.
4937 if not Is_Static_Coextension (N) then
4938 Set_Is_Dynamic_Coextension (N);
4939 end if;
4941 -- Cleanup for potential static coextensions
4943 else
4944 Set_Is_Dynamic_Coextension (N, False);
4945 Set_Is_Static_Coextension (N, False);
4946 end if;
4947 end if;
4949 -- Report a simple error: if the designated object is a local task,
4950 -- its body has not been seen yet, and its activation will fail an
4951 -- elaboration check.
4953 if Is_Task_Type (Desig_T)
4954 and then Scope (Base_Type (Desig_T)) = Current_Scope
4955 and then Is_Compilation_Unit (Current_Scope)
4956 and then Ekind (Current_Scope) = E_Package
4957 and then not In_Package_Body (Current_Scope)
4958 then
4959 Error_Msg_Warn := SPARK_Mode /= On;
4960 Error_Msg_N ("cannot activate task before body seen<<", N);
4961 Error_Msg_N ("\Program_Error [<<", N);
4962 end if;
4964 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4965 -- type with a task component on a subpool. This action must raise
4966 -- Program_Error at runtime.
4968 if Ada_Version >= Ada_2012
4969 and then Nkind (N) = N_Allocator
4970 and then Present (Subpool_Handle_Name (N))
4971 and then Has_Task (Desig_T)
4972 then
4973 Error_Msg_Warn := SPARK_Mode /= On;
4974 Error_Msg_N ("cannot allocate task on subpool<<", N);
4975 Error_Msg_N ("\Program_Error [<<", N);
4977 Rewrite (N,
4978 Make_Raise_Program_Error (Sloc (N),
4979 Reason => PE_Explicit_Raise));
4980 Set_Etype (N, Typ);
4981 end if;
4982 end Resolve_Allocator;
4984 ---------------------------
4985 -- Resolve_Arithmetic_Op --
4986 ---------------------------
4988 -- Used for resolving all arithmetic operators except exponentiation
4990 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
4991 L : constant Node_Id := Left_Opnd (N);
4992 R : constant Node_Id := Right_Opnd (N);
4993 TL : constant Entity_Id := Base_Type (Etype (L));
4994 TR : constant Entity_Id := Base_Type (Etype (R));
4995 T : Entity_Id;
4996 Rop : Node_Id;
4998 B_Typ : constant Entity_Id := Base_Type (Typ);
4999 -- We do the resolution using the base type, because intermediate values
5000 -- in expressions always are of the base type, not a subtype of it.
5002 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5003 -- Returns True if N is in a context that expects "any real type"
5005 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5006 -- Return True iff given type is Integer or universal real/integer
5008 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5009 -- Choose type of integer literal in fixed-point operation to conform
5010 -- to available fixed-point type. T is the type of the other operand,
5011 -- which is needed to determine the expected type of N.
5013 procedure Set_Operand_Type (N : Node_Id);
5014 -- Set operand type to T if universal
5016 -------------------------------
5017 -- Expected_Type_Is_Any_Real --
5018 -------------------------------
5020 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5021 begin
5022 -- N is the expression after "delta" in a fixed_point_definition;
5023 -- see RM-3.5.9(6):
5025 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5026 N_Decimal_Fixed_Point_Definition,
5028 -- N is one of the bounds in a real_range_specification;
5029 -- see RM-3.5.7(5):
5031 N_Real_Range_Specification,
5033 -- N is the expression of a delta_constraint;
5034 -- see RM-J.3(3):
5036 N_Delta_Constraint);
5037 end Expected_Type_Is_Any_Real;
5039 -----------------------------
5040 -- Is_Integer_Or_Universal --
5041 -----------------------------
5043 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5044 T : Entity_Id;
5045 Index : Interp_Index;
5046 It : Interp;
5048 begin
5049 if not Is_Overloaded (N) then
5050 T := Etype (N);
5051 return Base_Type (T) = Base_Type (Standard_Integer)
5052 or else T = Universal_Integer
5053 or else T = Universal_Real;
5054 else
5055 Get_First_Interp (N, Index, It);
5056 while Present (It.Typ) loop
5057 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5058 or else It.Typ = Universal_Integer
5059 or else It.Typ = Universal_Real
5060 then
5061 return True;
5062 end if;
5064 Get_Next_Interp (Index, It);
5065 end loop;
5066 end if;
5068 return False;
5069 end Is_Integer_Or_Universal;
5071 ----------------------------
5072 -- Set_Mixed_Mode_Operand --
5073 ----------------------------
5075 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5076 Index : Interp_Index;
5077 It : Interp;
5079 begin
5080 if Universal_Interpretation (N) = Universal_Integer then
5082 -- A universal integer literal is resolved as standard integer
5083 -- except in the case of a fixed-point result, where we leave it
5084 -- as universal (to be handled by Exp_Fixd later on)
5086 if Is_Fixed_Point_Type (T) then
5087 Resolve (N, Universal_Integer);
5088 else
5089 Resolve (N, Standard_Integer);
5090 end if;
5092 elsif Universal_Interpretation (N) = Universal_Real
5093 and then (T = Base_Type (Standard_Integer)
5094 or else T = Universal_Integer
5095 or else T = Universal_Real)
5096 then
5097 -- A universal real can appear in a fixed-type context. We resolve
5098 -- the literal with that context, even though this might raise an
5099 -- exception prematurely (the other operand may be zero).
5101 Resolve (N, B_Typ);
5103 elsif Etype (N) = Base_Type (Standard_Integer)
5104 and then T = Universal_Real
5105 and then Is_Overloaded (N)
5106 then
5107 -- Integer arg in mixed-mode operation. Resolve with universal
5108 -- type, in case preference rule must be applied.
5110 Resolve (N, Universal_Integer);
5112 elsif Etype (N) = T
5113 and then B_Typ /= Universal_Fixed
5114 then
5115 -- Not a mixed-mode operation, resolve with context
5117 Resolve (N, B_Typ);
5119 elsif Etype (N) = Any_Fixed then
5121 -- N may itself be a mixed-mode operation, so use context type
5123 Resolve (N, B_Typ);
5125 elsif Is_Fixed_Point_Type (T)
5126 and then B_Typ = Universal_Fixed
5127 and then Is_Overloaded (N)
5128 then
5129 -- Must be (fixed * fixed) operation, operand must have one
5130 -- compatible interpretation.
5132 Resolve (N, Any_Fixed);
5134 elsif Is_Fixed_Point_Type (B_Typ)
5135 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5136 and then Is_Overloaded (N)
5137 then
5138 -- C * F(X) in a fixed context, where C is a real literal or a
5139 -- fixed-point expression. F must have either a fixed type
5140 -- interpretation or an integer interpretation, but not both.
5142 Get_First_Interp (N, Index, It);
5143 while Present (It.Typ) loop
5144 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5145 if Analyzed (N) then
5146 Error_Msg_N ("ambiguous operand in fixed operation", N);
5147 else
5148 Resolve (N, Standard_Integer);
5149 end if;
5151 elsif Is_Fixed_Point_Type (It.Typ) then
5152 if Analyzed (N) then
5153 Error_Msg_N ("ambiguous operand in fixed operation", N);
5154 else
5155 Resolve (N, It.Typ);
5156 end if;
5157 end if;
5159 Get_Next_Interp (Index, It);
5160 end loop;
5162 -- Reanalyze the literal with the fixed type of the context. If
5163 -- context is Universal_Fixed, we are within a conversion, leave
5164 -- the literal as a universal real because there is no usable
5165 -- fixed type, and the target of the conversion plays no role in
5166 -- the resolution.
5168 declare
5169 Op2 : Node_Id;
5170 T2 : Entity_Id;
5172 begin
5173 if N = L then
5174 Op2 := R;
5175 else
5176 Op2 := L;
5177 end if;
5179 if B_Typ = Universal_Fixed
5180 and then Nkind (Op2) = N_Real_Literal
5181 then
5182 T2 := Universal_Real;
5183 else
5184 T2 := B_Typ;
5185 end if;
5187 Set_Analyzed (Op2, False);
5188 Resolve (Op2, T2);
5189 end;
5191 else
5192 Resolve (N);
5193 end if;
5194 end Set_Mixed_Mode_Operand;
5196 ----------------------
5197 -- Set_Operand_Type --
5198 ----------------------
5200 procedure Set_Operand_Type (N : Node_Id) is
5201 begin
5202 if Etype (N) = Universal_Integer
5203 or else Etype (N) = Universal_Real
5204 then
5205 Set_Etype (N, T);
5206 end if;
5207 end Set_Operand_Type;
5209 -- Start of processing for Resolve_Arithmetic_Op
5211 begin
5212 if Comes_From_Source (N)
5213 and then Ekind (Entity (N)) = E_Function
5214 and then Is_Imported (Entity (N))
5215 and then Is_Intrinsic_Subprogram (Entity (N))
5216 then
5217 Resolve_Intrinsic_Operator (N, Typ);
5218 return;
5220 -- Special-case for mixed-mode universal expressions or fixed point type
5221 -- operation: each argument is resolved separately. The same treatment
5222 -- is required if one of the operands of a fixed point operation is
5223 -- universal real, since in this case we don't do a conversion to a
5224 -- specific fixed-point type (instead the expander handles the case).
5226 -- Set the type of the node to its universal interpretation because
5227 -- legality checks on an exponentiation operand need the context.
5229 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5230 and then Present (Universal_Interpretation (L))
5231 and then Present (Universal_Interpretation (R))
5232 then
5233 Set_Etype (N, B_Typ);
5234 Resolve (L, Universal_Interpretation (L));
5235 Resolve (R, Universal_Interpretation (R));
5237 elsif (B_Typ = Universal_Real
5238 or else Etype (N) = Universal_Fixed
5239 or else (Etype (N) = Any_Fixed
5240 and then Is_Fixed_Point_Type (B_Typ))
5241 or else (Is_Fixed_Point_Type (B_Typ)
5242 and then (Is_Integer_Or_Universal (L)
5243 or else
5244 Is_Integer_Or_Universal (R))))
5245 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5246 then
5247 if TL = Universal_Integer or else TR = Universal_Integer then
5248 Check_For_Visible_Operator (N, B_Typ);
5249 end if;
5251 -- If context is a fixed type and one operand is integer, the other
5252 -- is resolved with the type of the context.
5254 if Is_Fixed_Point_Type (B_Typ)
5255 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5256 or else TL = Universal_Integer)
5257 then
5258 Resolve (R, B_Typ);
5259 Resolve (L, TL);
5261 elsif Is_Fixed_Point_Type (B_Typ)
5262 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5263 or else TR = Universal_Integer)
5264 then
5265 Resolve (L, B_Typ);
5266 Resolve (R, TR);
5268 else
5269 Set_Mixed_Mode_Operand (L, TR);
5270 Set_Mixed_Mode_Operand (R, TL);
5271 end if;
5273 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5274 -- multiplying operators from being used when the expected type is
5275 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5276 -- some cases where the expected type is actually Any_Real;
5277 -- Expected_Type_Is_Any_Real takes care of that case.
5279 if Etype (N) = Universal_Fixed
5280 or else Etype (N) = Any_Fixed
5281 then
5282 if B_Typ = Universal_Fixed
5283 and then not Expected_Type_Is_Any_Real (N)
5284 and then not Nkind_In (Parent (N), N_Type_Conversion,
5285 N_Unchecked_Type_Conversion)
5286 then
5287 Error_Msg_N ("type cannot be determined from context!", N);
5288 Error_Msg_N ("\explicit conversion to result type required", N);
5290 Set_Etype (L, Any_Type);
5291 Set_Etype (R, Any_Type);
5293 else
5294 if Ada_Version = Ada_83
5295 and then Etype (N) = Universal_Fixed
5296 and then not
5297 Nkind_In (Parent (N), N_Type_Conversion,
5298 N_Unchecked_Type_Conversion)
5299 then
5300 Error_Msg_N
5301 ("(Ada 83) fixed-point operation needs explicit "
5302 & "conversion", N);
5303 end if;
5305 -- The expected type is "any real type" in contexts like
5307 -- type T is delta <universal_fixed-expression> ...
5309 -- in which case we need to set the type to Universal_Real
5310 -- so that static expression evaluation will work properly.
5312 if Expected_Type_Is_Any_Real (N) then
5313 Set_Etype (N, Universal_Real);
5314 else
5315 Set_Etype (N, B_Typ);
5316 end if;
5317 end if;
5319 elsif Is_Fixed_Point_Type (B_Typ)
5320 and then (Is_Integer_Or_Universal (L)
5321 or else Nkind (L) = N_Real_Literal
5322 or else Nkind (R) = N_Real_Literal
5323 or else Is_Integer_Or_Universal (R))
5324 then
5325 Set_Etype (N, B_Typ);
5327 elsif Etype (N) = Any_Fixed then
5329 -- If no previous errors, this is only possible if one operand is
5330 -- overloaded and the context is universal. Resolve as such.
5332 Set_Etype (N, B_Typ);
5333 end if;
5335 else
5336 if (TL = Universal_Integer or else TL = Universal_Real)
5337 and then
5338 (TR = Universal_Integer or else TR = Universal_Real)
5339 then
5340 Check_For_Visible_Operator (N, B_Typ);
5341 end if;
5343 -- If the context is Universal_Fixed and the operands are also
5344 -- universal fixed, this is an error, unless there is only one
5345 -- applicable fixed_point type (usually Duration).
5347 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5348 T := Unique_Fixed_Point_Type (N);
5350 if T = Any_Type then
5351 Set_Etype (N, T);
5352 return;
5353 else
5354 Resolve (L, T);
5355 Resolve (R, T);
5356 end if;
5358 else
5359 Resolve (L, B_Typ);
5360 Resolve (R, B_Typ);
5361 end if;
5363 -- If one of the arguments was resolved to a non-universal type.
5364 -- label the result of the operation itself with the same type.
5365 -- Do the same for the universal argument, if any.
5367 T := Intersect_Types (L, R);
5368 Set_Etype (N, Base_Type (T));
5369 Set_Operand_Type (L);
5370 Set_Operand_Type (R);
5371 end if;
5373 Generate_Operator_Reference (N, Typ);
5374 Analyze_Dimension (N);
5375 Eval_Arithmetic_Op (N);
5377 -- In SPARK, a multiplication or division with operands of fixed point
5378 -- types must be qualified or explicitly converted to identify the
5379 -- result type.
5381 if (Is_Fixed_Point_Type (Etype (L))
5382 or else Is_Fixed_Point_Type (Etype (R)))
5383 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5384 and then
5385 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5386 then
5387 Check_SPARK_05_Restriction
5388 ("operation should be qualified or explicitly converted", N);
5389 end if;
5391 -- Set overflow and division checking bit
5393 if Nkind (N) in N_Op then
5394 if not Overflow_Checks_Suppressed (Etype (N)) then
5395 Enable_Overflow_Check (N);
5396 end if;
5398 -- Give warning if explicit division by zero
5400 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5401 and then not Division_Checks_Suppressed (Etype (N))
5402 then
5403 Rop := Right_Opnd (N);
5405 if Compile_Time_Known_Value (Rop)
5406 and then ((Is_Integer_Type (Etype (Rop))
5407 and then Expr_Value (Rop) = Uint_0)
5408 or else
5409 (Is_Real_Type (Etype (Rop))
5410 and then Expr_Value_R (Rop) = Ureal_0))
5411 then
5412 -- Specialize the warning message according to the operation.
5413 -- The following warnings are for the case
5415 case Nkind (N) is
5416 when N_Op_Divide =>
5418 -- For division, we have two cases, for float division
5419 -- of an unconstrained float type, on a machine where
5420 -- Machine_Overflows is false, we don't get an exception
5421 -- at run-time, but rather an infinity or Nan. The Nan
5422 -- case is pretty obscure, so just warn about infinities.
5424 if Is_Floating_Point_Type (Typ)
5425 and then not Is_Constrained (Typ)
5426 and then not Machine_Overflows_On_Target
5427 then
5428 Error_Msg_N
5429 ("float division by zero, may generate "
5430 & "'+'/'- infinity??", Right_Opnd (N));
5432 -- For all other cases, we get a Constraint_Error
5434 else
5435 Apply_Compile_Time_Constraint_Error
5436 (N, "division by zero??", CE_Divide_By_Zero,
5437 Loc => Sloc (Right_Opnd (N)));
5438 end if;
5440 when N_Op_Rem =>
5441 Apply_Compile_Time_Constraint_Error
5442 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5443 Loc => Sloc (Right_Opnd (N)));
5445 when N_Op_Mod =>
5446 Apply_Compile_Time_Constraint_Error
5447 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5448 Loc => Sloc (Right_Opnd (N)));
5450 -- Division by zero can only happen with division, rem,
5451 -- and mod operations.
5453 when others =>
5454 raise Program_Error;
5455 end case;
5457 -- Otherwise just set the flag to check at run time
5459 else
5460 Activate_Division_Check (N);
5461 end if;
5462 end if;
5464 -- If Restriction No_Implicit_Conditionals is active, then it is
5465 -- violated if either operand can be negative for mod, or for rem
5466 -- if both operands can be negative.
5468 if Restriction_Check_Required (No_Implicit_Conditionals)
5469 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5470 then
5471 declare
5472 Lo : Uint;
5473 Hi : Uint;
5474 OK : Boolean;
5476 LNeg : Boolean;
5477 RNeg : Boolean;
5478 -- Set if corresponding operand might be negative
5480 begin
5481 Determine_Range
5482 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5483 LNeg := (not OK) or else Lo < 0;
5485 Determine_Range
5486 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5487 RNeg := (not OK) or else Lo < 0;
5489 -- Check if we will be generating conditionals. There are two
5490 -- cases where that can happen, first for REM, the only case
5491 -- is largest negative integer mod -1, where the division can
5492 -- overflow, but we still have to give the right result. The
5493 -- front end generates a test for this annoying case. Here we
5494 -- just test if both operands can be negative (that's what the
5495 -- expander does, so we match its logic here).
5497 -- The second case is mod where either operand can be negative.
5498 -- In this case, the back end has to generate additional tests.
5500 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5501 or else
5502 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5503 then
5504 Check_Restriction (No_Implicit_Conditionals, N);
5505 end if;
5506 end;
5507 end if;
5508 end if;
5510 Check_Unset_Reference (L);
5511 Check_Unset_Reference (R);
5512 end Resolve_Arithmetic_Op;
5514 ------------------
5515 -- Resolve_Call --
5516 ------------------
5518 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5519 function Same_Or_Aliased_Subprograms
5520 (S : Entity_Id;
5521 E : Entity_Id) return Boolean;
5522 -- Returns True if the subprogram entity S is the same as E or else
5523 -- S is an alias of E.
5525 ---------------------------------
5526 -- Same_Or_Aliased_Subprograms --
5527 ---------------------------------
5529 function Same_Or_Aliased_Subprograms
5530 (S : Entity_Id;
5531 E : Entity_Id) return Boolean
5533 Subp_Alias : constant Entity_Id := Alias (S);
5534 begin
5535 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5536 end Same_Or_Aliased_Subprograms;
5538 -- Local variables
5540 Loc : constant Source_Ptr := Sloc (N);
5541 Subp : constant Node_Id := Name (N);
5542 Body_Id : Entity_Id;
5543 I : Interp_Index;
5544 It : Interp;
5545 Nam : Entity_Id;
5546 Nam_Decl : Node_Id;
5547 Nam_UA : Entity_Id;
5548 Norm_OK : Boolean;
5549 Rtype : Entity_Id;
5550 Scop : Entity_Id;
5552 -- Start of processing for Resolve_Call
5554 begin
5555 -- The context imposes a unique interpretation with type Typ on a
5556 -- procedure or function call. Find the entity of the subprogram that
5557 -- yields the expected type, and propagate the corresponding formal
5558 -- constraints on the actuals. The caller has established that an
5559 -- interpretation exists, and emitted an error if not unique.
5561 -- First deal with the case of a call to an access-to-subprogram,
5562 -- dereference made explicit in Analyze_Call.
5564 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5565 if not Is_Overloaded (Subp) then
5566 Nam := Etype (Subp);
5568 else
5569 -- Find the interpretation whose type (a subprogram type) has a
5570 -- return type that is compatible with the context. Analysis of
5571 -- the node has established that one exists.
5573 Nam := Empty;
5575 Get_First_Interp (Subp, I, It);
5576 while Present (It.Typ) loop
5577 if Covers (Typ, Etype (It.Typ)) then
5578 Nam := It.Typ;
5579 exit;
5580 end if;
5582 Get_Next_Interp (I, It);
5583 end loop;
5585 if No (Nam) then
5586 raise Program_Error;
5587 end if;
5588 end if;
5590 -- If the prefix is not an entity, then resolve it
5592 if not Is_Entity_Name (Subp) then
5593 Resolve (Subp, Nam);
5594 end if;
5596 -- For an indirect call, we always invalidate checks, since we do not
5597 -- know whether the subprogram is local or global. Yes we could do
5598 -- better here, e.g. by knowing that there are no local subprograms,
5599 -- but it does not seem worth the effort. Similarly, we kill all
5600 -- knowledge of current constant values.
5602 Kill_Current_Values;
5604 -- If this is a procedure call which is really an entry call, do
5605 -- the conversion of the procedure call to an entry call. Protected
5606 -- operations use the same circuitry because the name in the call
5607 -- can be an arbitrary expression with special resolution rules.
5609 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5610 or else (Is_Entity_Name (Subp)
5611 and then Ekind (Entity (Subp)) = E_Entry)
5612 then
5613 Resolve_Entry_Call (N, Typ);
5614 Check_Elab_Call (N);
5616 -- Kill checks and constant values, as above for indirect case
5617 -- Who knows what happens when another task is activated?
5619 Kill_Current_Values;
5620 return;
5622 -- Normal subprogram call with name established in Resolve
5624 elsif not (Is_Type (Entity (Subp))) then
5625 Nam := Entity (Subp);
5626 Set_Entity_With_Checks (Subp, Nam);
5628 -- Otherwise we must have the case of an overloaded call
5630 else
5631 pragma Assert (Is_Overloaded (Subp));
5633 -- Initialize Nam to prevent warning (we know it will be assigned
5634 -- in the loop below, but the compiler does not know that).
5636 Nam := Empty;
5638 Get_First_Interp (Subp, I, It);
5639 while Present (It.Typ) loop
5640 if Covers (Typ, It.Typ) then
5641 Nam := It.Nam;
5642 Set_Entity_With_Checks (Subp, Nam);
5643 exit;
5644 end if;
5646 Get_Next_Interp (I, It);
5647 end loop;
5648 end if;
5650 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5651 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5652 and then Nkind (Subp) /= N_Explicit_Dereference
5653 and then Present (Parameter_Associations (N))
5654 then
5655 -- The prefix is a parameterless function call that returns an access
5656 -- to subprogram. If parameters are present in the current call, add
5657 -- add an explicit dereference. We use the base type here because
5658 -- within an instance these may be subtypes.
5660 -- The dereference is added either in Analyze_Call or here. Should
5661 -- be consolidated ???
5663 Set_Is_Overloaded (Subp, False);
5664 Set_Etype (Subp, Etype (Nam));
5665 Insert_Explicit_Dereference (Subp);
5666 Nam := Designated_Type (Etype (Nam));
5667 Resolve (Subp, Nam);
5668 end if;
5670 -- Check that a call to Current_Task does not occur in an entry body
5672 if Is_RTE (Nam, RE_Current_Task) then
5673 declare
5674 P : Node_Id;
5676 begin
5677 P := N;
5678 loop
5679 P := Parent (P);
5681 -- Exclude calls that occur within the default of a formal
5682 -- parameter of the entry, since those are evaluated outside
5683 -- of the body.
5685 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5687 if Nkind (P) = N_Entry_Body
5688 or else (Nkind (P) = N_Subprogram_Body
5689 and then Is_Entry_Barrier_Function (P))
5690 then
5691 Rtype := Etype (N);
5692 Error_Msg_Warn := SPARK_Mode /= On;
5693 Error_Msg_NE
5694 ("& should not be used in entry body (RM C.7(17))<<",
5695 N, Nam);
5696 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5697 Rewrite (N,
5698 Make_Raise_Program_Error (Loc,
5699 Reason => PE_Current_Task_In_Entry_Body));
5700 Set_Etype (N, Rtype);
5701 return;
5702 end if;
5703 end loop;
5704 end;
5705 end if;
5707 -- Check that a procedure call does not occur in the context of the
5708 -- entry call statement of a conditional or timed entry call. Note that
5709 -- the case of a call to a subprogram renaming of an entry will also be
5710 -- rejected. The test for N not being an N_Entry_Call_Statement is
5711 -- defensive, covering the possibility that the processing of entry
5712 -- calls might reach this point due to later modifications of the code
5713 -- above.
5715 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5716 and then Nkind (N) /= N_Entry_Call_Statement
5717 and then Entry_Call_Statement (Parent (N)) = N
5718 then
5719 if Ada_Version < Ada_2005 then
5720 Error_Msg_N ("entry call required in select statement", N);
5722 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5723 -- for a procedure_or_entry_call, the procedure_name or
5724 -- procedure_prefix of the procedure_call_statement shall denote
5725 -- an entry renamed by a procedure, or (a view of) a primitive
5726 -- subprogram of a limited interface whose first parameter is
5727 -- a controlling parameter.
5729 elsif Nkind (N) = N_Procedure_Call_Statement
5730 and then not Is_Renamed_Entry (Nam)
5731 and then not Is_Controlling_Limited_Procedure (Nam)
5732 then
5733 Error_Msg_N
5734 ("entry call or dispatching primitive of interface required", N);
5735 end if;
5736 end if;
5738 -- If the SPARK_05 restriction is active, we are not allowed
5739 -- to have a call to a subprogram before we see its completion.
5741 if not Has_Completion (Nam)
5742 and then Restriction_Check_Required (SPARK_05)
5744 -- Don't flag strange internal calls
5746 and then Comes_From_Source (N)
5747 and then Comes_From_Source (Nam)
5749 -- Only flag calls in extended main source
5751 and then In_Extended_Main_Source_Unit (Nam)
5752 and then In_Extended_Main_Source_Unit (N)
5754 -- Exclude enumeration literals from this processing
5756 and then Ekind (Nam) /= E_Enumeration_Literal
5757 then
5758 Check_SPARK_05_Restriction
5759 ("call to subprogram cannot appear before its body", N);
5760 end if;
5762 -- Check that this is not a call to a protected procedure or entry from
5763 -- within a protected function.
5765 Check_Internal_Protected_Use (N, Nam);
5767 -- Freeze the subprogram name if not in a spec-expression. Note that
5768 -- we freeze procedure calls as well as function calls. Procedure calls
5769 -- are not frozen according to the rules (RM 13.14(14)) because it is
5770 -- impossible to have a procedure call to a non-frozen procedure in
5771 -- pure Ada, but in the code that we generate in the expander, this
5772 -- rule needs extending because we can generate procedure calls that
5773 -- need freezing.
5775 -- In Ada 2012, expression functions may be called within pre/post
5776 -- conditions of subsequent functions or expression functions. Such
5777 -- calls do not freeze when they appear within generated bodies,
5778 -- (including the body of another expression function) which would
5779 -- place the freeze node in the wrong scope. An expression function
5780 -- is frozen in the usual fashion, by the appearance of a real body,
5781 -- or at the end of a declarative part.
5783 if Is_Entity_Name (Subp) and then not In_Spec_Expression
5784 and then not Is_Expression_Function (Current_Scope)
5785 and then
5786 (not Is_Expression_Function (Entity (Subp))
5787 or else Scope (Entity (Subp)) = Current_Scope)
5788 then
5789 Freeze_Expression (Subp);
5790 end if;
5792 -- For a predefined operator, the type of the result is the type imposed
5793 -- by context, except for a predefined operation on universal fixed.
5794 -- Otherwise The type of the call is the type returned by the subprogram
5795 -- being called.
5797 if Is_Predefined_Op (Nam) then
5798 if Etype (N) /= Universal_Fixed then
5799 Set_Etype (N, Typ);
5800 end if;
5802 -- If the subprogram returns an array type, and the context requires the
5803 -- component type of that array type, the node is really an indexing of
5804 -- the parameterless call. Resolve as such. A pathological case occurs
5805 -- when the type of the component is an access to the array type. In
5806 -- this case the call is truly ambiguous.
5808 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5809 and then
5810 ((Is_Array_Type (Etype (Nam))
5811 and then Covers (Typ, Component_Type (Etype (Nam))))
5812 or else
5813 (Is_Access_Type (Etype (Nam))
5814 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5815 and then
5816 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))))
5817 then
5818 declare
5819 Index_Node : Node_Id;
5820 New_Subp : Node_Id;
5821 Ret_Type : constant Entity_Id := Etype (Nam);
5823 begin
5824 if Is_Access_Type (Ret_Type)
5825 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5826 then
5827 Error_Msg_N
5828 ("cannot disambiguate function call and indexing", N);
5829 else
5830 New_Subp := Relocate_Node (Subp);
5832 -- The called entity may be an explicit dereference, in which
5833 -- case there is no entity to set.
5835 if Nkind (New_Subp) /= N_Explicit_Dereference then
5836 Set_Entity (Subp, Nam);
5837 end if;
5839 if (Is_Array_Type (Ret_Type)
5840 and then Component_Type (Ret_Type) /= Any_Type)
5841 or else
5842 (Is_Access_Type (Ret_Type)
5843 and then
5844 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5845 then
5846 if Needs_No_Actuals (Nam) then
5848 -- Indexed call to a parameterless function
5850 Index_Node :=
5851 Make_Indexed_Component (Loc,
5852 Prefix =>
5853 Make_Function_Call (Loc, Name => New_Subp),
5854 Expressions => Parameter_Associations (N));
5855 else
5856 -- An Ada 2005 prefixed call to a primitive operation
5857 -- whose first parameter is the prefix. This prefix was
5858 -- prepended to the parameter list, which is actually a
5859 -- list of indexes. Remove the prefix in order to build
5860 -- the proper indexed component.
5862 Index_Node :=
5863 Make_Indexed_Component (Loc,
5864 Prefix =>
5865 Make_Function_Call (Loc,
5866 Name => New_Subp,
5867 Parameter_Associations =>
5868 New_List
5869 (Remove_Head (Parameter_Associations (N)))),
5870 Expressions => Parameter_Associations (N));
5871 end if;
5873 -- Preserve the parenthesis count of the node
5875 Set_Paren_Count (Index_Node, Paren_Count (N));
5877 -- Since we are correcting a node classification error made
5878 -- by the parser, we call Replace rather than Rewrite.
5880 Replace (N, Index_Node);
5882 Set_Etype (Prefix (N), Ret_Type);
5883 Set_Etype (N, Typ);
5884 Resolve_Indexed_Component (N, Typ);
5885 Check_Elab_Call (Prefix (N));
5886 end if;
5887 end if;
5889 return;
5890 end;
5892 else
5893 Set_Etype (N, Etype (Nam));
5894 end if;
5896 -- In the case where the call is to an overloaded subprogram, Analyze
5897 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5898 -- such a case Normalize_Actuals needs to be called once more to order
5899 -- the actuals correctly. Otherwise the call will have the ordering
5900 -- given by the last overloaded subprogram whether this is the correct
5901 -- one being called or not.
5903 if Is_Overloaded (Subp) then
5904 Normalize_Actuals (N, Nam, False, Norm_OK);
5905 pragma Assert (Norm_OK);
5906 end if;
5908 -- In any case, call is fully resolved now. Reset Overload flag, to
5909 -- prevent subsequent overload resolution if node is analyzed again
5911 Set_Is_Overloaded (Subp, False);
5912 Set_Is_Overloaded (N, False);
5914 -- A Ghost entity must appear in a specific context
5916 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
5917 Check_Ghost_Context (Nam, N);
5918 end if;
5920 -- If we are calling the current subprogram from immediately within its
5921 -- body, then that is the case where we can sometimes detect cases of
5922 -- infinite recursion statically. Do not try this in case restriction
5923 -- No_Recursion is in effect anyway, and do it only for source calls.
5925 if Comes_From_Source (N) then
5926 Scop := Current_Scope;
5928 -- Check violation of SPARK_05 restriction which does not permit
5929 -- a subprogram body to contain a call to the subprogram directly.
5931 if Restriction_Check_Required (SPARK_05)
5932 and then Same_Or_Aliased_Subprograms (Nam, Scop)
5933 then
5934 Check_SPARK_05_Restriction
5935 ("subprogram may not contain direct call to itself", N);
5936 end if;
5938 -- Issue warning for possible infinite recursion in the absence
5939 -- of the No_Recursion restriction.
5941 if Same_Or_Aliased_Subprograms (Nam, Scop)
5942 and then not Restriction_Active (No_Recursion)
5943 and then Check_Infinite_Recursion (N)
5944 then
5945 -- Here we detected and flagged an infinite recursion, so we do
5946 -- not need to test the case below for further warnings. Also we
5947 -- are all done if we now have a raise SE node.
5949 if Nkind (N) = N_Raise_Storage_Error then
5950 return;
5951 end if;
5953 -- If call is to immediately containing subprogram, then check for
5954 -- the case of a possible run-time detectable infinite recursion.
5956 else
5957 Scope_Loop : while Scop /= Standard_Standard loop
5958 if Same_Or_Aliased_Subprograms (Nam, Scop) then
5960 -- Although in general case, recursion is not statically
5961 -- checkable, the case of calling an immediately containing
5962 -- subprogram is easy to catch.
5964 Check_Restriction (No_Recursion, N);
5966 -- If the recursive call is to a parameterless subprogram,
5967 -- then even if we can't statically detect infinite
5968 -- recursion, this is pretty suspicious, and we output a
5969 -- warning. Furthermore, we will try later to detect some
5970 -- cases here at run time by expanding checking code (see
5971 -- Detect_Infinite_Recursion in package Exp_Ch6).
5973 -- If the recursive call is within a handler, do not emit a
5974 -- warning, because this is a common idiom: loop until input
5975 -- is correct, catch illegal input in handler and restart.
5977 if No (First_Formal (Nam))
5978 and then Etype (Nam) = Standard_Void_Type
5979 and then not Error_Posted (N)
5980 and then Nkind (Parent (N)) /= N_Exception_Handler
5981 then
5982 -- For the case of a procedure call. We give the message
5983 -- only if the call is the first statement in a sequence
5984 -- of statements, or if all previous statements are
5985 -- simple assignments. This is simply a heuristic to
5986 -- decrease false positives, without losing too many good
5987 -- warnings. The idea is that these previous statements
5988 -- may affect global variables the procedure depends on.
5989 -- We also exclude raise statements, that may arise from
5990 -- constraint checks and are probably unrelated to the
5991 -- intended control flow.
5993 if Nkind (N) = N_Procedure_Call_Statement
5994 and then Is_List_Member (N)
5995 then
5996 declare
5997 P : Node_Id;
5998 begin
5999 P := Prev (N);
6000 while Present (P) loop
6001 if not Nkind_In (P, N_Assignment_Statement,
6002 N_Raise_Constraint_Error)
6003 then
6004 exit Scope_Loop;
6005 end if;
6007 Prev (P);
6008 end loop;
6009 end;
6010 end if;
6012 -- Do not give warning if we are in a conditional context
6014 declare
6015 K : constant Node_Kind := Nkind (Parent (N));
6016 begin
6017 if (K = N_Loop_Statement
6018 and then Present (Iteration_Scheme (Parent (N))))
6019 or else K = N_If_Statement
6020 or else K = N_Elsif_Part
6021 or else K = N_Case_Statement_Alternative
6022 then
6023 exit Scope_Loop;
6024 end if;
6025 end;
6027 -- Here warning is to be issued
6029 Set_Has_Recursive_Call (Nam);
6030 Error_Msg_Warn := SPARK_Mode /= On;
6031 Error_Msg_N ("possible infinite recursion<<!", N);
6032 Error_Msg_N ("\Storage_Error ]<<!", N);
6033 end if;
6035 exit Scope_Loop;
6036 end if;
6038 Scop := Scope (Scop);
6039 end loop Scope_Loop;
6040 end if;
6041 end if;
6043 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6045 Check_Obsolescent_2005_Entity (Nam, Subp);
6047 -- If subprogram name is a predefined operator, it was given in
6048 -- functional notation. Replace call node with operator node, so
6049 -- that actuals can be resolved appropriately.
6051 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6052 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6053 return;
6055 elsif Present (Alias (Nam))
6056 and then Is_Predefined_Op (Alias (Nam))
6057 then
6058 Resolve_Actuals (N, Nam);
6059 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6060 return;
6061 end if;
6063 -- Create a transient scope if the resulting type requires it
6065 -- There are several notable exceptions:
6067 -- a) In init procs, the transient scope overhead is not needed, and is
6068 -- even incorrect when the call is a nested initialization call for a
6069 -- component whose expansion may generate adjust calls. However, if the
6070 -- call is some other procedure call within an initialization procedure
6071 -- (for example a call to Create_Task in the init_proc of the task
6072 -- run-time record) a transient scope must be created around this call.
6074 -- b) Enumeration literal pseudo-calls need no transient scope
6076 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6077 -- functions) do not use the secondary stack even though the return
6078 -- type may be unconstrained.
6080 -- d) Calls to a build-in-place function, since such functions may
6081 -- allocate their result directly in a target object, and cases where
6082 -- the result does get allocated in the secondary stack are checked for
6083 -- within the specialized Exp_Ch6 procedures for expanding those
6084 -- build-in-place calls.
6086 -- e) If the subprogram is marked Inline_Always, then even if it returns
6087 -- an unconstrained type the call does not require use of the secondary
6088 -- stack. However, inlining will only take place if the body to inline
6089 -- is already present. It may not be available if e.g. the subprogram is
6090 -- declared in a child instance.
6092 -- If this is an initialization call for a type whose construction
6093 -- uses the secondary stack, and it is not a nested call to initialize
6094 -- a component, we do need to create a transient scope for it. We
6095 -- check for this by traversing the type in Check_Initialization_Call.
6097 if Is_Inlined (Nam)
6098 and then Has_Pragma_Inline (Nam)
6099 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6100 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6101 then
6102 null;
6104 elsif Ekind (Nam) = E_Enumeration_Literal
6105 or else Is_Build_In_Place_Function (Nam)
6106 or else Is_Intrinsic_Subprogram (Nam)
6107 then
6108 null;
6110 elsif Expander_Active
6111 and then Is_Type (Etype (Nam))
6112 and then Requires_Transient_Scope (Etype (Nam))
6113 and then
6114 (not Within_Init_Proc
6115 or else
6116 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6117 then
6118 Establish_Transient_Scope (N, Sec_Stack => True);
6120 -- If the call appears within the bounds of a loop, it will
6121 -- be rewritten and reanalyzed, nothing left to do here.
6123 if Nkind (N) /= N_Function_Call then
6124 return;
6125 end if;
6127 elsif Is_Init_Proc (Nam)
6128 and then not Within_Init_Proc
6129 then
6130 Check_Initialization_Call (N, Nam);
6131 end if;
6133 -- A protected function cannot be called within the definition of the
6134 -- enclosing protected type, unless it is part of a pre/postcondition
6135 -- on another protected operation.
6137 if Is_Protected_Type (Scope (Nam))
6138 and then In_Open_Scopes (Scope (Nam))
6139 and then not Has_Completion (Scope (Nam))
6140 and then not In_Spec_Expression
6141 then
6142 Error_Msg_NE
6143 ("& cannot be called before end of protected definition", N, Nam);
6144 end if;
6146 -- Propagate interpretation to actuals, and add default expressions
6147 -- where needed.
6149 if Present (First_Formal (Nam)) then
6150 Resolve_Actuals (N, Nam);
6152 -- Overloaded literals are rewritten as function calls, for purpose of
6153 -- resolution. After resolution, we can replace the call with the
6154 -- literal itself.
6156 elsif Ekind (Nam) = E_Enumeration_Literal then
6157 Copy_Node (Subp, N);
6158 Resolve_Entity_Name (N, Typ);
6160 -- Avoid validation, since it is a static function call
6162 Generate_Reference (Nam, Subp);
6163 return;
6164 end if;
6166 -- If the subprogram is not global, then kill all saved values and
6167 -- checks. This is a bit conservative, since in many cases we could do
6168 -- better, but it is not worth the effort. Similarly, we kill constant
6169 -- values. However we do not need to do this for internal entities
6170 -- (unless they are inherited user-defined subprograms), since they
6171 -- are not in the business of molesting local values.
6173 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6174 -- kill all checks and values for calls to global subprograms. This
6175 -- takes care of the case where an access to a local subprogram is
6176 -- taken, and could be passed directly or indirectly and then called
6177 -- from almost any context.
6179 -- Note: we do not do this step till after resolving the actuals. That
6180 -- way we still take advantage of the current value information while
6181 -- scanning the actuals.
6183 -- We suppress killing values if we are processing the nodes associated
6184 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6185 -- type kills all the values as part of analyzing the code that
6186 -- initializes the dispatch tables.
6188 if Inside_Freezing_Actions = 0
6189 and then (not Is_Library_Level_Entity (Nam)
6190 or else Suppress_Value_Tracking_On_Call
6191 (Nearest_Dynamic_Scope (Current_Scope)))
6192 and then (Comes_From_Source (Nam)
6193 or else (Present (Alias (Nam))
6194 and then Comes_From_Source (Alias (Nam))))
6195 then
6196 Kill_Current_Values;
6197 end if;
6199 -- If we are warning about unread OUT parameters, this is the place to
6200 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6201 -- after the above call to Kill_Current_Values (since that call clears
6202 -- the Last_Assignment field of all local variables).
6204 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6205 and then Comes_From_Source (N)
6206 and then In_Extended_Main_Source_Unit (N)
6207 then
6208 declare
6209 F : Entity_Id;
6210 A : Node_Id;
6212 begin
6213 F := First_Formal (Nam);
6214 A := First_Actual (N);
6215 while Present (F) and then Present (A) loop
6216 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6217 and then Warn_On_Modified_As_Out_Parameter (F)
6218 and then Is_Entity_Name (A)
6219 and then Present (Entity (A))
6220 and then Comes_From_Source (N)
6221 and then Safe_To_Capture_Value (N, Entity (A))
6222 then
6223 Set_Last_Assignment (Entity (A), A);
6224 end if;
6226 Next_Formal (F);
6227 Next_Actual (A);
6228 end loop;
6229 end;
6230 end if;
6232 -- If the subprogram is a primitive operation, check whether or not
6233 -- it is a correct dispatching call.
6235 if Is_Overloadable (Nam)
6236 and then Is_Dispatching_Operation (Nam)
6237 then
6238 Check_Dispatching_Call (N);
6240 elsif Ekind (Nam) /= E_Subprogram_Type
6241 and then Is_Abstract_Subprogram (Nam)
6242 and then not In_Instance
6243 then
6244 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6245 end if;
6247 -- If this is a dispatching call, generate the appropriate reference,
6248 -- for better source navigation in GPS.
6250 if Is_Overloadable (Nam)
6251 and then Present (Controlling_Argument (N))
6252 then
6253 Generate_Reference (Nam, Subp, 'R');
6255 -- Normal case, not a dispatching call: generate a call reference
6257 else
6258 Generate_Reference (Nam, Subp, 's');
6259 end if;
6261 if Is_Intrinsic_Subprogram (Nam) then
6262 Check_Intrinsic_Call (N);
6263 end if;
6265 -- Check for violation of restriction No_Specific_Termination_Handlers
6266 -- and warn on a potentially blocking call to Abort_Task.
6268 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6269 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6270 or else
6271 Is_RTE (Nam, RE_Specific_Handler))
6272 then
6273 Check_Restriction (No_Specific_Termination_Handlers, N);
6275 elsif Is_RTE (Nam, RE_Abort_Task) then
6276 Check_Potentially_Blocking_Operation (N);
6277 end if;
6279 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6280 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6281 -- need to check the second argument to determine whether it is an
6282 -- absolute or relative timing event.
6284 if Restriction_Check_Required (No_Relative_Delay)
6285 and then Is_RTE (Nam, RE_Set_Handler)
6286 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6287 then
6288 Check_Restriction (No_Relative_Delay, N);
6289 end if;
6291 -- Issue an error for a call to an eliminated subprogram. This routine
6292 -- will not perform the check if the call appears within a default
6293 -- expression.
6295 Check_For_Eliminated_Subprogram (Subp, Nam);
6297 -- In formal mode, the primitive operations of a tagged type or type
6298 -- extension do not include functions that return the tagged type.
6300 if Nkind (N) = N_Function_Call
6301 and then Is_Tagged_Type (Etype (N))
6302 and then Is_Entity_Name (Name (N))
6303 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6304 then
6305 Check_SPARK_05_Restriction ("function not inherited", N);
6306 end if;
6308 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6309 -- class-wide and the call dispatches on result in a context that does
6310 -- not provide a tag, the call raises Program_Error.
6312 if Nkind (N) = N_Function_Call
6313 and then In_Instance
6314 and then Is_Generic_Actual_Type (Typ)
6315 and then Is_Class_Wide_Type (Typ)
6316 and then Has_Controlling_Result (Nam)
6317 and then Nkind (Parent (N)) = N_Object_Declaration
6318 then
6319 -- Verify that none of the formals are controlling
6321 declare
6322 Call_OK : Boolean := False;
6323 F : Entity_Id;
6325 begin
6326 F := First_Formal (Nam);
6327 while Present (F) loop
6328 if Is_Controlling_Formal (F) then
6329 Call_OK := True;
6330 exit;
6331 end if;
6333 Next_Formal (F);
6334 end loop;
6336 if not Call_OK then
6337 Error_Msg_Warn := SPARK_Mode /= On;
6338 Error_Msg_N ("!cannot determine tag of result<<", N);
6339 Error_Msg_N ("\Program_Error [<<!", N);
6340 Insert_Action (N,
6341 Make_Raise_Program_Error (Sloc (N),
6342 Reason => PE_Explicit_Raise));
6343 end if;
6344 end;
6345 end if;
6347 -- Check for calling a function with OUT or IN OUT parameter when the
6348 -- calling context (us right now) is not Ada 2012, so does not allow
6349 -- OUT or IN OUT parameters in function calls. Functions declared in
6350 -- a predefined unit are OK, as they may be called indirectly from a
6351 -- user-declared instantiation.
6353 if Ada_Version < Ada_2012
6354 and then Ekind (Nam) = E_Function
6355 and then Has_Out_Or_In_Out_Parameter (Nam)
6356 and then not In_Predefined_Unit (Nam)
6357 then
6358 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6359 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6360 end if;
6362 -- Check the dimensions of the actuals in the call. For function calls,
6363 -- propagate the dimensions from the returned type to N.
6365 Analyze_Dimension_Call (N, Nam);
6367 -- All done, evaluate call and deal with elaboration issues
6369 Eval_Call (N);
6370 Check_Elab_Call (N);
6372 -- In GNATprove mode, expansion is disabled, but we want to inline some
6373 -- subprograms to facilitate formal verification. Indirect calls through
6374 -- a subprogram type or within a generic cannot be inlined. Inlining is
6375 -- performed only for calls subject to SPARK_Mode on.
6377 if GNATprove_Mode
6378 and then SPARK_Mode = On
6379 and then Is_Overloadable (Nam)
6380 and then not Inside_A_Generic
6381 then
6382 Nam_UA := Ultimate_Alias (Nam);
6383 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6385 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6386 Body_Id := Corresponding_Body (Nam_Decl);
6388 -- Nothing to do if the subprogram is not eligible for inlining in
6389 -- GNATprove mode.
6391 if not Is_Inlined_Always (Nam_UA)
6392 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6393 then
6394 null;
6396 -- Calls cannot be inlined inside assertions, as GNATprove treats
6397 -- assertions as logic expressions.
6399 elsif In_Assertion_Expr /= 0 then
6400 Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6401 Error_Msg_N ("\call appears in assertion expression", N);
6402 Set_Is_Inlined_Always (Nam_UA, False);
6404 -- Calls cannot be inlined inside default expressions
6406 elsif In_Default_Expr then
6407 Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6408 Error_Msg_N ("\call appears in default expression", N);
6409 Set_Is_Inlined_Always (Nam_UA, False);
6411 -- Inlining should not be performed during pre-analysis
6413 elsif Full_Analysis then
6415 -- With the one-pass inlining technique, a call cannot be
6416 -- inlined if the corresponding body has not been seen yet.
6418 if No (Body_Id) then
6419 Error_Msg_NE
6420 ("?no contextual analysis of & (body not seen yet)",
6421 N, Nam);
6422 Set_Is_Inlined_Always (Nam_UA, False);
6424 -- Nothing to do if there is no body to inline, indicating that
6425 -- the subprogram is not suitable for inlining in GNATprove
6426 -- mode.
6428 elsif No (Body_To_Inline (Nam_Decl)) then
6429 null;
6431 -- Calls cannot be inlined inside potentially unevaluated
6432 -- expressions, as this would create complex actions inside
6433 -- expressions, that are not handled by GNATprove.
6435 elsif Is_Potentially_Unevaluated (N) then
6436 Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6437 Error_Msg_N
6438 ("\call appears in potentially unevaluated context", N);
6439 Set_Is_Inlined_Always (Nam_UA, False);
6441 -- Otherwise, inline the call
6443 else
6444 Expand_Inlined_Call (N, Nam_UA, Nam);
6445 end if;
6446 end if;
6447 end if;
6448 end if;
6450 Warn_On_Overlapping_Actuals (Nam, N);
6451 end Resolve_Call;
6453 -----------------------------
6454 -- Resolve_Case_Expression --
6455 -----------------------------
6457 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6458 Alt : Node_Id;
6459 Is_Dyn : Boolean;
6461 begin
6462 Alt := First (Alternatives (N));
6463 while Present (Alt) loop
6464 Resolve (Expression (Alt), Typ);
6465 Next (Alt);
6466 end loop;
6468 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6469 -- dynamically tagged must be known statically.
6471 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6472 Alt := First (Alternatives (N));
6473 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6475 while Present (Alt) loop
6476 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6477 Error_Msg_N ("all or none of the dependent expressions "
6478 & "can be dynamically tagged", N);
6479 end if;
6481 Next (Alt);
6482 end loop;
6483 end if;
6485 Set_Etype (N, Typ);
6486 Eval_Case_Expression (N);
6487 end Resolve_Case_Expression;
6489 -------------------------------
6490 -- Resolve_Character_Literal --
6491 -------------------------------
6493 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6494 B_Typ : constant Entity_Id := Base_Type (Typ);
6495 C : Entity_Id;
6497 begin
6498 -- Verify that the character does belong to the type of the context
6500 Set_Etype (N, B_Typ);
6501 Eval_Character_Literal (N);
6503 -- Wide_Wide_Character literals must always be defined, since the set
6504 -- of wide wide character literals is complete, i.e. if a character
6505 -- literal is accepted by the parser, then it is OK for wide wide
6506 -- character (out of range character literals are rejected).
6508 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6509 return;
6511 -- Always accept character literal for type Any_Character, which
6512 -- occurs in error situations and in comparisons of literals, both
6513 -- of which should accept all literals.
6515 elsif B_Typ = Any_Character then
6516 return;
6518 -- For Standard.Character or a type derived from it, check that the
6519 -- literal is in range.
6521 elsif Root_Type (B_Typ) = Standard_Character then
6522 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6523 return;
6524 end if;
6526 -- For Standard.Wide_Character or a type derived from it, check that the
6527 -- literal is in range.
6529 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6530 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6531 return;
6532 end if;
6534 -- For Standard.Wide_Wide_Character or a type derived from it, we
6535 -- know the literal is in range, since the parser checked.
6537 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6538 return;
6540 -- If the entity is already set, this has already been resolved in a
6541 -- generic context, or comes from expansion. Nothing else to do.
6543 elsif Present (Entity (N)) then
6544 return;
6546 -- Otherwise we have a user defined character type, and we can use the
6547 -- standard visibility mechanisms to locate the referenced entity.
6549 else
6550 C := Current_Entity (N);
6551 while Present (C) loop
6552 if Etype (C) = B_Typ then
6553 Set_Entity_With_Checks (N, C);
6554 Generate_Reference (C, N);
6555 return;
6556 end if;
6558 C := Homonym (C);
6559 end loop;
6560 end if;
6562 -- If we fall through, then the literal does not match any of the
6563 -- entries of the enumeration type. This isn't just a constraint error
6564 -- situation, it is an illegality (see RM 4.2).
6566 Error_Msg_NE
6567 ("character not defined for }", N, First_Subtype (B_Typ));
6568 end Resolve_Character_Literal;
6570 ---------------------------
6571 -- Resolve_Comparison_Op --
6572 ---------------------------
6574 -- Context requires a boolean type, and plays no role in resolution.
6575 -- Processing identical to that for equality operators. The result type is
6576 -- the base type, which matters when pathological subtypes of booleans with
6577 -- limited ranges are used.
6579 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6580 L : constant Node_Id := Left_Opnd (N);
6581 R : constant Node_Id := Right_Opnd (N);
6582 T : Entity_Id;
6584 begin
6585 -- If this is an intrinsic operation which is not predefined, use the
6586 -- types of its declared arguments to resolve the possibly overloaded
6587 -- operands. Otherwise the operands are unambiguous and specify the
6588 -- expected type.
6590 if Scope (Entity (N)) /= Standard_Standard then
6591 T := Etype (First_Entity (Entity (N)));
6593 else
6594 T := Find_Unique_Type (L, R);
6596 if T = Any_Fixed then
6597 T := Unique_Fixed_Point_Type (L);
6598 end if;
6599 end if;
6601 Set_Etype (N, Base_Type (Typ));
6602 Generate_Reference (T, N, ' ');
6604 -- Skip remaining processing if already set to Any_Type
6606 if T = Any_Type then
6607 return;
6608 end if;
6610 -- Deal with other error cases
6612 if T = Any_String or else
6613 T = Any_Composite or else
6614 T = Any_Character
6615 then
6616 if T = Any_Character then
6617 Ambiguous_Character (L);
6618 else
6619 Error_Msg_N ("ambiguous operands for comparison", N);
6620 end if;
6622 Set_Etype (N, Any_Type);
6623 return;
6624 end if;
6626 -- Resolve the operands if types OK
6628 Resolve (L, T);
6629 Resolve (R, T);
6630 Check_Unset_Reference (L);
6631 Check_Unset_Reference (R);
6632 Generate_Operator_Reference (N, T);
6633 Check_Low_Bound_Tested (N);
6635 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6636 -- types or array types except String.
6638 if Is_Boolean_Type (T) then
6639 Check_SPARK_05_Restriction
6640 ("comparison is not defined on Boolean type", N);
6642 elsif Is_Array_Type (T)
6643 and then Base_Type (T) /= Standard_String
6644 then
6645 Check_SPARK_05_Restriction
6646 ("comparison is not defined on array types other than String", N);
6647 end if;
6649 -- Check comparison on unordered enumeration
6651 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6652 Error_Msg_Sloc := Sloc (Etype (L));
6653 Error_Msg_NE
6654 ("comparison on unordered enumeration type& declared#?U?",
6655 N, Etype (L));
6656 end if;
6658 -- Evaluate the relation (note we do this after the above check since
6659 -- this Eval call may change N to True/False.
6661 Analyze_Dimension (N);
6662 Eval_Relational_Op (N);
6663 end Resolve_Comparison_Op;
6665 -----------------------------------------
6666 -- Resolve_Discrete_Subtype_Indication --
6667 -----------------------------------------
6669 procedure Resolve_Discrete_Subtype_Indication
6670 (N : Node_Id;
6671 Typ : Entity_Id)
6673 R : Node_Id;
6674 S : Entity_Id;
6676 begin
6677 Analyze (Subtype_Mark (N));
6678 S := Entity (Subtype_Mark (N));
6680 if Nkind (Constraint (N)) /= N_Range_Constraint then
6681 Error_Msg_N ("expect range constraint for discrete type", N);
6682 Set_Etype (N, Any_Type);
6684 else
6685 R := Range_Expression (Constraint (N));
6687 if R = Error then
6688 return;
6689 end if;
6691 Analyze (R);
6693 if Base_Type (S) /= Base_Type (Typ) then
6694 Error_Msg_NE
6695 ("expect subtype of }", N, First_Subtype (Typ));
6697 -- Rewrite the constraint as a range of Typ
6698 -- to allow compilation to proceed further.
6700 Set_Etype (N, Typ);
6701 Rewrite (Low_Bound (R),
6702 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6703 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6704 Attribute_Name => Name_First));
6705 Rewrite (High_Bound (R),
6706 Make_Attribute_Reference (Sloc (High_Bound (R)),
6707 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6708 Attribute_Name => Name_First));
6710 else
6711 Resolve (R, Typ);
6712 Set_Etype (N, Etype (R));
6714 -- Additionally, we must check that the bounds are compatible
6715 -- with the given subtype, which might be different from the
6716 -- type of the context.
6718 Apply_Range_Check (R, S);
6720 -- ??? If the above check statically detects a Constraint_Error
6721 -- it replaces the offending bound(s) of the range R with a
6722 -- Constraint_Error node. When the itype which uses these bounds
6723 -- is frozen the resulting call to Duplicate_Subexpr generates
6724 -- a new temporary for the bounds.
6726 -- Unfortunately there are other itypes that are also made depend
6727 -- on these bounds, so when Duplicate_Subexpr is called they get
6728 -- a forward reference to the newly created temporaries and Gigi
6729 -- aborts on such forward references. This is probably sign of a
6730 -- more fundamental problem somewhere else in either the order of
6731 -- itype freezing or the way certain itypes are constructed.
6733 -- To get around this problem we call Remove_Side_Effects right
6734 -- away if either bounds of R are a Constraint_Error.
6736 declare
6737 L : constant Node_Id := Low_Bound (R);
6738 H : constant Node_Id := High_Bound (R);
6740 begin
6741 if Nkind (L) = N_Raise_Constraint_Error then
6742 Remove_Side_Effects (L);
6743 end if;
6745 if Nkind (H) = N_Raise_Constraint_Error then
6746 Remove_Side_Effects (H);
6747 end if;
6748 end;
6750 Check_Unset_Reference (Low_Bound (R));
6751 Check_Unset_Reference (High_Bound (R));
6752 end if;
6753 end if;
6754 end Resolve_Discrete_Subtype_Indication;
6756 -------------------------
6757 -- Resolve_Entity_Name --
6758 -------------------------
6760 -- Used to resolve identifiers and expanded names
6762 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6763 function Is_Assignment_Or_Object_Expression
6764 (Context : Node_Id;
6765 Expr : Node_Id) return Boolean;
6766 -- Determine whether node Context denotes an assignment statement or an
6767 -- object declaration whose expression is node Expr.
6769 function Is_OK_Volatile_Context
6770 (Context : Node_Id;
6771 Obj_Ref : Node_Id) return Boolean;
6772 -- Determine whether node Context denotes a "non-interfering context"
6773 -- (as defined in SPARK RM 7.1.3(13)) where volatile reference Obj_Ref
6774 -- can safely reside.
6776 ----------------------------------------
6777 -- Is_Assignment_Or_Object_Expression --
6778 ----------------------------------------
6780 function Is_Assignment_Or_Object_Expression
6781 (Context : Node_Id;
6782 Expr : Node_Id) return Boolean
6784 begin
6785 if Nkind_In (Context, N_Assignment_Statement,
6786 N_Object_Declaration)
6787 and then Expression (Context) = Expr
6788 then
6789 return True;
6791 -- Check whether a construct that yields a name is the expression of
6792 -- an assignment statement or an object declaration.
6794 elsif (Nkind_In (Context, N_Attribute_Reference,
6795 N_Explicit_Dereference,
6796 N_Indexed_Component,
6797 N_Selected_Component,
6798 N_Slice)
6799 and then Prefix (Context) = Expr)
6800 or else
6801 (Nkind_In (Context, N_Type_Conversion,
6802 N_Unchecked_Type_Conversion)
6803 and then Expression (Context) = Expr)
6804 then
6805 return
6806 Is_Assignment_Or_Object_Expression
6807 (Context => Parent (Context),
6808 Expr => Context);
6810 -- Otherwise the context is not an assignment statement or an object
6811 -- declaration.
6813 else
6814 return False;
6815 end if;
6816 end Is_Assignment_Or_Object_Expression;
6818 ----------------------------
6819 -- Is_OK_Volatile_Context --
6820 ----------------------------
6822 function Is_OK_Volatile_Context
6823 (Context : Node_Id;
6824 Obj_Ref : Node_Id) return Boolean
6826 function Within_Check (Nod : Node_Id) return Boolean;
6827 -- Determine whether an arbitrary node appears in a check node
6829 function Within_Procedure_Call (Nod : Node_Id) return Boolean;
6830 -- Determine whether an arbitrary node appears in a procedure call
6832 ------------------
6833 -- Within_Check --
6834 ------------------
6836 function Within_Check (Nod : Node_Id) return Boolean is
6837 Par : Node_Id;
6839 begin
6840 -- Climb the parent chain looking for a check node
6842 Par := Nod;
6843 while Present (Par) loop
6844 if Nkind (Par) in N_Raise_xxx_Error then
6845 return True;
6847 -- Prevent the search from going too far
6849 elsif Is_Body_Or_Package_Declaration (Par) then
6850 exit;
6851 end if;
6853 Par := Parent (Par);
6854 end loop;
6856 return False;
6857 end Within_Check;
6859 ---------------------------
6860 -- Within_Procedure_Call --
6861 ---------------------------
6863 function Within_Procedure_Call (Nod : Node_Id) return Boolean is
6864 Par : Node_Id;
6866 begin
6867 -- Climb the parent chain looking for a procedure call
6869 Par := Nod;
6870 while Present (Par) loop
6871 if Nkind (Par) = N_Procedure_Call_Statement then
6872 return True;
6874 -- Prevent the search from going too far
6876 elsif Is_Body_Or_Package_Declaration (Par) then
6877 exit;
6878 end if;
6880 Par := Parent (Par);
6881 end loop;
6883 return False;
6884 end Within_Procedure_Call;
6886 -- Start of processing for Is_OK_Volatile_Context
6888 begin
6889 -- The volatile object appears on either side of an assignment
6891 if Nkind (Context) = N_Assignment_Statement then
6892 return True;
6894 -- The volatile object is part of the initialization expression of
6895 -- another object. Ensure that the climb of the parent chain came
6896 -- from the expression side and not from the name side.
6898 elsif Nkind (Context) = N_Object_Declaration
6899 and then Present (Expression (Context))
6900 and then Expression (Context) = Obj_Ref
6901 then
6902 return True;
6904 -- The volatile object appears as an actual parameter in a call to an
6905 -- instance of Unchecked_Conversion whose result is renamed.
6907 elsif Nkind (Context) = N_Function_Call
6908 and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
6909 and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
6910 then
6911 return True;
6913 -- The volatile object appears as the prefix of a name occurring
6914 -- in a non-interfering context.
6916 elsif Nkind_In (Context, N_Attribute_Reference,
6917 N_Explicit_Dereference,
6918 N_Indexed_Component,
6919 N_Selected_Component,
6920 N_Slice)
6921 and then Prefix (Context) = Obj_Ref
6922 and then Is_OK_Volatile_Context
6923 (Context => Parent (Context),
6924 Obj_Ref => Context)
6925 then
6926 return True;
6928 -- The volatile object appears as the expression of a type conversion
6929 -- occurring in a non-interfering context.
6931 elsif Nkind_In (Context, N_Type_Conversion,
6932 N_Unchecked_Type_Conversion)
6933 and then Expression (Context) = Obj_Ref
6934 and then Is_OK_Volatile_Context
6935 (Context => Parent (Context),
6936 Obj_Ref => Context)
6937 then
6938 return True;
6940 -- Allow references to volatile objects in various checks. This is
6941 -- not a direct SPARK 2014 requirement.
6943 elsif Within_Check (Context) then
6944 return True;
6946 -- Assume that references to effectively volatile objects that appear
6947 -- as actual parameters in a procedure call are always legal. A full
6948 -- legality check is done when the actuals are resolved.
6950 elsif Within_Procedure_Call (Context) then
6951 return True;
6953 -- Otherwise the context is not suitable for an effectively volatile
6954 -- object.
6956 else
6957 return False;
6958 end if;
6959 end Is_OK_Volatile_Context;
6961 -- Local variables
6963 E : constant Entity_Id := Entity (N);
6964 Par : Node_Id;
6966 -- Start of processing for Resolve_Entity_Name
6968 begin
6969 -- If garbage from errors, set to Any_Type and return
6971 if No (E) and then Total_Errors_Detected /= 0 then
6972 Set_Etype (N, Any_Type);
6973 return;
6974 end if;
6976 -- Replace named numbers by corresponding literals. Note that this is
6977 -- the one case where Resolve_Entity_Name must reset the Etype, since
6978 -- it is currently marked as universal.
6980 if Ekind (E) = E_Named_Integer then
6981 Set_Etype (N, Typ);
6982 Eval_Named_Integer (N);
6984 elsif Ekind (E) = E_Named_Real then
6985 Set_Etype (N, Typ);
6986 Eval_Named_Real (N);
6988 -- For enumeration literals, we need to make sure that a proper style
6989 -- check is done, since such literals are overloaded, and thus we did
6990 -- not do a style check during the first phase of analysis.
6992 elsif Ekind (E) = E_Enumeration_Literal then
6993 Set_Entity_With_Checks (N, E);
6994 Eval_Entity_Name (N);
6996 -- Case of (sub)type name appearing in a context where an expression
6997 -- is expected. This is legal if occurrence is a current instance.
6998 -- See RM 8.6 (17/3).
7000 elsif Is_Type (E) then
7001 if Is_Current_Instance (N) then
7002 null;
7004 -- Any other use is an error
7006 else
7007 Error_Msg_N
7008 ("invalid use of subtype mark in expression or call", N);
7009 end if;
7011 -- Check discriminant use if entity is discriminant in current scope,
7012 -- i.e. discriminant of record or concurrent type currently being
7013 -- analyzed. Uses in corresponding body are unrestricted.
7015 elsif Ekind (E) = E_Discriminant
7016 and then Scope (E) = Current_Scope
7017 and then not Has_Completion (Current_Scope)
7018 then
7019 Check_Discriminant_Use (N);
7021 -- A parameterless generic function cannot appear in a context that
7022 -- requires resolution.
7024 elsif Ekind (E) = E_Generic_Function then
7025 Error_Msg_N ("illegal use of generic function", N);
7027 -- In Ada 83 an OUT parameter cannot be read
7029 elsif Ekind (E) = E_Out_Parameter
7030 and then (Nkind (Parent (N)) in N_Op
7031 or else Nkind (Parent (N)) = N_Explicit_Dereference
7032 or else Is_Assignment_Or_Object_Expression
7033 (Context => Parent (N),
7034 Expr => N))
7035 then
7036 if Ada_Version = Ada_83 then
7037 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7039 -- An effectively volatile OUT parameter cannot be read
7040 -- (SPARK RM 7.1.3(11)).
7042 elsif SPARK_Mode = On
7043 and then Is_Effectively_Volatile (E)
7044 then
7045 Error_Msg_N ("illegal reading of volatile OUT parameter", N);
7046 end if;
7048 -- In all other cases, just do the possible static evaluation
7050 else
7051 -- A deferred constant that appears in an expression must have a
7052 -- completion, unless it has been removed by in-place expansion of
7053 -- an aggregate.
7055 if Ekind (E) = E_Constant
7056 and then Comes_From_Source (E)
7057 and then No (Constant_Value (E))
7058 and then Is_Frozen (Etype (E))
7059 and then not In_Spec_Expression
7060 and then not Is_Imported (E)
7061 then
7062 if No_Initialization (Parent (E))
7063 or else (Present (Full_View (E))
7064 and then No_Initialization (Parent (Full_View (E))))
7065 then
7066 null;
7067 else
7068 Error_Msg_N (
7069 "deferred constant is frozen before completion", N);
7070 end if;
7071 end if;
7073 Eval_Entity_Name (N);
7074 end if;
7076 Par := Parent (N);
7078 -- When the entity appears in a parameter association, retrieve the
7079 -- related subprogram call.
7081 if Nkind (Par) = N_Parameter_Association then
7082 Par := Parent (Par);
7083 end if;
7085 -- The following checks are only relevant when SPARK_Mode is on as they
7086 -- are not standard Ada legality rules. An effectively volatile object
7087 -- subject to enabled properties Async_Writers or Effective_Reads must
7088 -- appear in a specific context.
7090 if SPARK_Mode = On
7091 and then Is_Object (E)
7092 and then Is_Effectively_Volatile (E)
7093 and then (Async_Writers_Enabled (E)
7094 or else Effective_Reads_Enabled (E))
7095 and then Comes_From_Source (N)
7096 then
7097 -- The effectively volatile objects appears in a "non-interfering
7098 -- context" as defined in SPARK RM 7.1.3(13).
7100 if Is_OK_Volatile_Context (Par, N) then
7101 null;
7103 -- Otherwise the context causes a side effect with respect to the
7104 -- effectively volatile object.
7106 else
7107 SPARK_Msg_N
7108 ("volatile object cannot appear in this context "
7109 & "(SPARK RM 7.1.3(13))", N);
7110 end if;
7111 end if;
7113 -- A Ghost entity must appear in a specific context
7115 if Is_Ghost_Entity (E) and then Comes_From_Source (N) then
7116 Check_Ghost_Context (E, N);
7117 end if;
7119 -- In SPARK mode, need to check possible elaboration issues
7121 if SPARK_Mode = On and then Ekind (E) = E_Variable then
7122 Check_Elab_Call (N);
7123 end if;
7124 end Resolve_Entity_Name;
7126 -------------------
7127 -- Resolve_Entry --
7128 -------------------
7130 procedure Resolve_Entry (Entry_Name : Node_Id) is
7131 Loc : constant Source_Ptr := Sloc (Entry_Name);
7132 Nam : Entity_Id;
7133 New_N : Node_Id;
7134 S : Entity_Id;
7135 Tsk : Entity_Id;
7136 E_Name : Node_Id;
7137 Index : Node_Id;
7139 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7140 -- If the bounds of the entry family being called depend on task
7141 -- discriminants, build a new index subtype where a discriminant is
7142 -- replaced with the value of the discriminant of the target task.
7143 -- The target task is the prefix of the entry name in the call.
7145 -----------------------
7146 -- Actual_Index_Type --
7147 -----------------------
7149 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7150 Typ : constant Entity_Id := Entry_Index_Type (E);
7151 Tsk : constant Entity_Id := Scope (E);
7152 Lo : constant Node_Id := Type_Low_Bound (Typ);
7153 Hi : constant Node_Id := Type_High_Bound (Typ);
7154 New_T : Entity_Id;
7156 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7157 -- If the bound is given by a discriminant, replace with a reference
7158 -- to the discriminant of the same name in the target task. If the
7159 -- entry name is the target of a requeue statement and the entry is
7160 -- in the current protected object, the bound to be used is the
7161 -- discriminal of the object (see Apply_Range_Checks for details of
7162 -- the transformation).
7164 -----------------------------
7165 -- Actual_Discriminant_Ref --
7166 -----------------------------
7168 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7169 Typ : constant Entity_Id := Etype (Bound);
7170 Ref : Node_Id;
7172 begin
7173 Remove_Side_Effects (Bound);
7175 if not Is_Entity_Name (Bound)
7176 or else Ekind (Entity (Bound)) /= E_Discriminant
7177 then
7178 return Bound;
7180 elsif Is_Protected_Type (Tsk)
7181 and then In_Open_Scopes (Tsk)
7182 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7183 then
7184 -- Note: here Bound denotes a discriminant of the corresponding
7185 -- record type tskV, whose discriminal is a formal of the
7186 -- init-proc tskVIP. What we want is the body discriminal,
7187 -- which is associated to the discriminant of the original
7188 -- concurrent type tsk.
7190 return New_Occurrence_Of
7191 (Find_Body_Discriminal (Entity (Bound)), Loc);
7193 else
7194 Ref :=
7195 Make_Selected_Component (Loc,
7196 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7197 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7198 Analyze (Ref);
7199 Resolve (Ref, Typ);
7200 return Ref;
7201 end if;
7202 end Actual_Discriminant_Ref;
7204 -- Start of processing for Actual_Index_Type
7206 begin
7207 if not Has_Discriminants (Tsk)
7208 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7209 then
7210 return Entry_Index_Type (E);
7212 else
7213 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7214 Set_Etype (New_T, Base_Type (Typ));
7215 Set_Size_Info (New_T, Typ);
7216 Set_RM_Size (New_T, RM_Size (Typ));
7217 Set_Scalar_Range (New_T,
7218 Make_Range (Sloc (Entry_Name),
7219 Low_Bound => Actual_Discriminant_Ref (Lo),
7220 High_Bound => Actual_Discriminant_Ref (Hi)));
7222 return New_T;
7223 end if;
7224 end Actual_Index_Type;
7226 -- Start of processing of Resolve_Entry
7228 begin
7229 -- Find name of entry being called, and resolve prefix of name with its
7230 -- own type. The prefix can be overloaded, and the name and signature of
7231 -- the entry must be taken into account.
7233 if Nkind (Entry_Name) = N_Indexed_Component then
7235 -- Case of dealing with entry family within the current tasks
7237 E_Name := Prefix (Entry_Name);
7239 else
7240 E_Name := Entry_Name;
7241 end if;
7243 if Is_Entity_Name (E_Name) then
7245 -- Entry call to an entry (or entry family) in the current task. This
7246 -- is legal even though the task will deadlock. Rewrite as call to
7247 -- current task.
7249 -- This can also be a call to an entry in an enclosing task. If this
7250 -- is a single task, we have to retrieve its name, because the scope
7251 -- of the entry is the task type, not the object. If the enclosing
7252 -- task is a task type, the identity of the task is given by its own
7253 -- self variable.
7255 -- Finally this can be a requeue on an entry of the same task or
7256 -- protected object.
7258 S := Scope (Entity (E_Name));
7260 for J in reverse 0 .. Scope_Stack.Last loop
7261 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7262 and then not Comes_From_Source (S)
7263 then
7264 -- S is an enclosing task or protected object. The concurrent
7265 -- declaration has been converted into a type declaration, and
7266 -- the object itself has an object declaration that follows
7267 -- the type in the same declarative part.
7269 Tsk := Next_Entity (S);
7270 while Etype (Tsk) /= S loop
7271 Next_Entity (Tsk);
7272 end loop;
7274 S := Tsk;
7275 exit;
7277 elsif S = Scope_Stack.Table (J).Entity then
7279 -- Call to current task. Will be transformed into call to Self
7281 exit;
7283 end if;
7284 end loop;
7286 New_N :=
7287 Make_Selected_Component (Loc,
7288 Prefix => New_Occurrence_Of (S, Loc),
7289 Selector_Name =>
7290 New_Occurrence_Of (Entity (E_Name), Loc));
7291 Rewrite (E_Name, New_N);
7292 Analyze (E_Name);
7294 elsif Nkind (Entry_Name) = N_Selected_Component
7295 and then Is_Overloaded (Prefix (Entry_Name))
7296 then
7297 -- Use the entry name (which must be unique at this point) to find
7298 -- the prefix that returns the corresponding task/protected type.
7300 declare
7301 Pref : constant Node_Id := Prefix (Entry_Name);
7302 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7303 I : Interp_Index;
7304 It : Interp;
7306 begin
7307 Get_First_Interp (Pref, I, It);
7308 while Present (It.Typ) loop
7309 if Scope (Ent) = It.Typ then
7310 Set_Etype (Pref, It.Typ);
7311 exit;
7312 end if;
7314 Get_Next_Interp (I, It);
7315 end loop;
7316 end;
7317 end if;
7319 if Nkind (Entry_Name) = N_Selected_Component then
7320 Resolve (Prefix (Entry_Name));
7322 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7323 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7324 Resolve (Prefix (Prefix (Entry_Name)));
7325 Index := First (Expressions (Entry_Name));
7326 Resolve (Index, Entry_Index_Type (Nam));
7328 -- Up to this point the expression could have been the actual in a
7329 -- simple entry call, and be given by a named association.
7331 if Nkind (Index) = N_Parameter_Association then
7332 Error_Msg_N ("expect expression for entry index", Index);
7333 else
7334 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7335 end if;
7336 end if;
7337 end Resolve_Entry;
7339 ------------------------
7340 -- Resolve_Entry_Call --
7341 ------------------------
7343 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7344 Entry_Name : constant Node_Id := Name (N);
7345 Loc : constant Source_Ptr := Sloc (Entry_Name);
7346 Actuals : List_Id;
7347 First_Named : Node_Id;
7348 Nam : Entity_Id;
7349 Norm_OK : Boolean;
7350 Obj : Node_Id;
7351 Was_Over : Boolean;
7353 begin
7354 -- We kill all checks here, because it does not seem worth the effort to
7355 -- do anything better, an entry call is a big operation.
7357 Kill_All_Checks;
7359 -- Processing of the name is similar for entry calls and protected
7360 -- operation calls. Once the entity is determined, we can complete
7361 -- the resolution of the actuals.
7363 -- The selector may be overloaded, in the case of a protected object
7364 -- with overloaded functions. The type of the context is used for
7365 -- resolution.
7367 if Nkind (Entry_Name) = N_Selected_Component
7368 and then Is_Overloaded (Selector_Name (Entry_Name))
7369 and then Typ /= Standard_Void_Type
7370 then
7371 declare
7372 I : Interp_Index;
7373 It : Interp;
7375 begin
7376 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7377 while Present (It.Typ) loop
7378 if Covers (Typ, It.Typ) then
7379 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7380 Set_Etype (Entry_Name, It.Typ);
7382 Generate_Reference (It.Typ, N, ' ');
7383 end if;
7385 Get_Next_Interp (I, It);
7386 end loop;
7387 end;
7388 end if;
7390 Resolve_Entry (Entry_Name);
7392 if Nkind (Entry_Name) = N_Selected_Component then
7394 -- Simple entry call
7396 Nam := Entity (Selector_Name (Entry_Name));
7397 Obj := Prefix (Entry_Name);
7398 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7400 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7402 -- Call to member of entry family
7404 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7405 Obj := Prefix (Prefix (Entry_Name));
7406 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7407 end if;
7409 -- We cannot in general check the maximum depth of protected entry calls
7410 -- at compile time. But we can tell that any protected entry call at all
7411 -- violates a specified nesting depth of zero.
7413 if Is_Protected_Type (Scope (Nam)) then
7414 Check_Restriction (Max_Entry_Queue_Length, N);
7415 end if;
7417 -- Use context type to disambiguate a protected function that can be
7418 -- called without actuals and that returns an array type, and where the
7419 -- argument list may be an indexing of the returned value.
7421 if Ekind (Nam) = E_Function
7422 and then Needs_No_Actuals (Nam)
7423 and then Present (Parameter_Associations (N))
7424 and then
7425 ((Is_Array_Type (Etype (Nam))
7426 and then Covers (Typ, Component_Type (Etype (Nam))))
7428 or else (Is_Access_Type (Etype (Nam))
7429 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7430 and then
7431 Covers
7432 (Typ,
7433 Component_Type (Designated_Type (Etype (Nam))))))
7434 then
7435 declare
7436 Index_Node : Node_Id;
7438 begin
7439 Index_Node :=
7440 Make_Indexed_Component (Loc,
7441 Prefix =>
7442 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7443 Expressions => Parameter_Associations (N));
7445 -- Since we are correcting a node classification error made by the
7446 -- parser, we call Replace rather than Rewrite.
7448 Replace (N, Index_Node);
7449 Set_Etype (Prefix (N), Etype (Nam));
7450 Set_Etype (N, Typ);
7451 Resolve_Indexed_Component (N, Typ);
7452 return;
7453 end;
7454 end if;
7456 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7457 and then Present (PPC_Wrapper (Nam))
7458 and then Current_Scope /= PPC_Wrapper (Nam)
7459 then
7460 -- Rewrite as call to the precondition wrapper, adding the task
7461 -- object to the list of actuals. If the call is to a member of an
7462 -- entry family, include the index as well.
7464 declare
7465 New_Call : Node_Id;
7466 New_Actuals : List_Id;
7468 begin
7469 New_Actuals := New_List (Obj);
7471 if Nkind (Entry_Name) = N_Indexed_Component then
7472 Append_To (New_Actuals,
7473 New_Copy_Tree (First (Expressions (Entry_Name))));
7474 end if;
7476 Append_List (Parameter_Associations (N), New_Actuals);
7477 New_Call :=
7478 Make_Procedure_Call_Statement (Loc,
7479 Name =>
7480 New_Occurrence_Of (PPC_Wrapper (Nam), Loc),
7481 Parameter_Associations => New_Actuals);
7482 Rewrite (N, New_Call);
7484 -- Preanalyze and resolve new call. Current procedure is called
7485 -- from Resolve_Call, after which expansion will take place.
7487 Preanalyze_And_Resolve (N);
7488 return;
7489 end;
7490 end if;
7492 -- The operation name may have been overloaded. Order the actuals
7493 -- according to the formals of the resolved entity, and set the return
7494 -- type to that of the operation.
7496 if Was_Over then
7497 Normalize_Actuals (N, Nam, False, Norm_OK);
7498 pragma Assert (Norm_OK);
7499 Set_Etype (N, Etype (Nam));
7500 end if;
7502 Resolve_Actuals (N, Nam);
7503 Check_Internal_Protected_Use (N, Nam);
7505 -- Create a call reference to the entry
7507 Generate_Reference (Nam, Entry_Name, 's');
7509 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7510 Check_Potentially_Blocking_Operation (N);
7511 end if;
7513 -- Verify that a procedure call cannot masquerade as an entry
7514 -- call where an entry call is expected.
7516 if Ekind (Nam) = E_Procedure then
7517 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7518 and then N = Entry_Call_Statement (Parent (N))
7519 then
7520 Error_Msg_N ("entry call required in select statement", N);
7522 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7523 and then N = Triggering_Statement (Parent (N))
7524 then
7525 Error_Msg_N ("triggering statement cannot be procedure call", N);
7527 elsif Ekind (Scope (Nam)) = E_Task_Type
7528 and then not In_Open_Scopes (Scope (Nam))
7529 then
7530 Error_Msg_N ("task has no entry with this name", Entry_Name);
7531 end if;
7532 end if;
7534 -- After resolution, entry calls and protected procedure calls are
7535 -- changed into entry calls, for expansion. The structure of the node
7536 -- does not change, so it can safely be done in place. Protected
7537 -- function calls must keep their structure because they are
7538 -- subexpressions.
7540 if Ekind (Nam) /= E_Function then
7542 -- A protected operation that is not a function may modify the
7543 -- corresponding object, and cannot apply to a constant. If this
7544 -- is an internal call, the prefix is the type itself.
7546 if Is_Protected_Type (Scope (Nam))
7547 and then not Is_Variable (Obj)
7548 and then (not Is_Entity_Name (Obj)
7549 or else not Is_Type (Entity (Obj)))
7550 then
7551 Error_Msg_N
7552 ("prefix of protected procedure or entry call must be variable",
7553 Entry_Name);
7554 end if;
7556 Actuals := Parameter_Associations (N);
7557 First_Named := First_Named_Actual (N);
7559 Rewrite (N,
7560 Make_Entry_Call_Statement (Loc,
7561 Name => Entry_Name,
7562 Parameter_Associations => Actuals));
7564 Set_First_Named_Actual (N, First_Named);
7565 Set_Analyzed (N, True);
7567 -- Protected functions can return on the secondary stack, in which
7568 -- case we must trigger the transient scope mechanism.
7570 elsif Expander_Active
7571 and then Requires_Transient_Scope (Etype (Nam))
7572 then
7573 Establish_Transient_Scope (N, Sec_Stack => True);
7574 end if;
7575 end Resolve_Entry_Call;
7577 -------------------------
7578 -- Resolve_Equality_Op --
7579 -------------------------
7581 -- Both arguments must have the same type, and the boolean context does
7582 -- not participate in the resolution. The first pass verifies that the
7583 -- interpretation is not ambiguous, and the type of the left argument is
7584 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7585 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7586 -- though they carry a single (universal) type. Diagnose this case here.
7588 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7589 L : constant Node_Id := Left_Opnd (N);
7590 R : constant Node_Id := Right_Opnd (N);
7591 T : Entity_Id := Find_Unique_Type (L, R);
7593 procedure Check_If_Expression (Cond : Node_Id);
7594 -- The resolution rule for if expressions requires that each such must
7595 -- have a unique type. This means that if several dependent expressions
7596 -- are of a non-null anonymous access type, and the context does not
7597 -- impose an expected type (as can be the case in an equality operation)
7598 -- the expression must be rejected.
7600 procedure Explain_Redundancy (N : Node_Id);
7601 -- Attempt to explain the nature of a redundant comparison with True. If
7602 -- the expression N is too complex, this routine issues a general error
7603 -- message.
7605 function Find_Unique_Access_Type return Entity_Id;
7606 -- In the case of allocators and access attributes, the context must
7607 -- provide an indication of the specific access type to be used. If
7608 -- one operand is of such a "generic" access type, check whether there
7609 -- is a specific visible access type that has the same designated type.
7610 -- This is semantically dubious, and of no interest to any real code,
7611 -- but c48008a makes it all worthwhile.
7613 -------------------------
7614 -- Check_If_Expression --
7615 -------------------------
7617 procedure Check_If_Expression (Cond : Node_Id) is
7618 Then_Expr : Node_Id;
7619 Else_Expr : Node_Id;
7621 begin
7622 if Nkind (Cond) = N_If_Expression then
7623 Then_Expr := Next (First (Expressions (Cond)));
7624 Else_Expr := Next (Then_Expr);
7626 if Nkind (Then_Expr) /= N_Null
7627 and then Nkind (Else_Expr) /= N_Null
7628 then
7629 Error_Msg_N ("cannot determine type of if expression", Cond);
7630 end if;
7631 end if;
7632 end Check_If_Expression;
7634 ------------------------
7635 -- Explain_Redundancy --
7636 ------------------------
7638 procedure Explain_Redundancy (N : Node_Id) is
7639 Error : Name_Id;
7640 Val : Node_Id;
7641 Val_Id : Entity_Id;
7643 begin
7644 Val := N;
7646 -- Strip the operand down to an entity
7648 loop
7649 if Nkind (Val) = N_Selected_Component then
7650 Val := Selector_Name (Val);
7651 else
7652 exit;
7653 end if;
7654 end loop;
7656 -- The construct denotes an entity
7658 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7659 Val_Id := Entity (Val);
7661 -- Do not generate an error message when the comparison is done
7662 -- against the enumeration literal Standard.True.
7664 if Ekind (Val_Id) /= E_Enumeration_Literal then
7666 -- Build a customized error message
7668 Name_Len := 0;
7669 Add_Str_To_Name_Buffer ("?r?");
7671 if Ekind (Val_Id) = E_Component then
7672 Add_Str_To_Name_Buffer ("component ");
7674 elsif Ekind (Val_Id) = E_Constant then
7675 Add_Str_To_Name_Buffer ("constant ");
7677 elsif Ekind (Val_Id) = E_Discriminant then
7678 Add_Str_To_Name_Buffer ("discriminant ");
7680 elsif Is_Formal (Val_Id) then
7681 Add_Str_To_Name_Buffer ("parameter ");
7683 elsif Ekind (Val_Id) = E_Variable then
7684 Add_Str_To_Name_Buffer ("variable ");
7685 end if;
7687 Add_Str_To_Name_Buffer ("& is always True!");
7688 Error := Name_Find;
7690 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7691 end if;
7693 -- The construct is too complex to disect, issue a general message
7695 else
7696 Error_Msg_N ("?r?expression is always True!", Val);
7697 end if;
7698 end Explain_Redundancy;
7700 -----------------------------
7701 -- Find_Unique_Access_Type --
7702 -----------------------------
7704 function Find_Unique_Access_Type return Entity_Id is
7705 Acc : Entity_Id;
7706 E : Entity_Id;
7707 S : Entity_Id;
7709 begin
7710 if Ekind_In (Etype (R), E_Allocator_Type,
7711 E_Access_Attribute_Type)
7712 then
7713 Acc := Designated_Type (Etype (R));
7715 elsif Ekind_In (Etype (L), E_Allocator_Type,
7716 E_Access_Attribute_Type)
7717 then
7718 Acc := Designated_Type (Etype (L));
7719 else
7720 return Empty;
7721 end if;
7723 S := Current_Scope;
7724 while S /= Standard_Standard loop
7725 E := First_Entity (S);
7726 while Present (E) loop
7727 if Is_Type (E)
7728 and then Is_Access_Type (E)
7729 and then Ekind (E) /= E_Allocator_Type
7730 and then Designated_Type (E) = Base_Type (Acc)
7731 then
7732 return E;
7733 end if;
7735 Next_Entity (E);
7736 end loop;
7738 S := Scope (S);
7739 end loop;
7741 return Empty;
7742 end Find_Unique_Access_Type;
7744 -- Start of processing for Resolve_Equality_Op
7746 begin
7747 Set_Etype (N, Base_Type (Typ));
7748 Generate_Reference (T, N, ' ');
7750 if T = Any_Fixed then
7751 T := Unique_Fixed_Point_Type (L);
7752 end if;
7754 if T /= Any_Type then
7755 if T = Any_String or else
7756 T = Any_Composite or else
7757 T = Any_Character
7758 then
7759 if T = Any_Character then
7760 Ambiguous_Character (L);
7761 else
7762 Error_Msg_N ("ambiguous operands for equality", N);
7763 end if;
7765 Set_Etype (N, Any_Type);
7766 return;
7768 elsif T = Any_Access
7769 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7770 then
7771 T := Find_Unique_Access_Type;
7773 if No (T) then
7774 Error_Msg_N ("ambiguous operands for equality", N);
7775 Set_Etype (N, Any_Type);
7776 return;
7777 end if;
7779 -- If expressions must have a single type, and if the context does
7780 -- not impose one the dependent expressions cannot be anonymous
7781 -- access types.
7783 -- Why no similar processing for case expressions???
7785 elsif Ada_Version >= Ada_2012
7786 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7787 E_Anonymous_Access_Subprogram_Type)
7788 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7789 E_Anonymous_Access_Subprogram_Type)
7790 then
7791 Check_If_Expression (L);
7792 Check_If_Expression (R);
7793 end if;
7795 Resolve (L, T);
7796 Resolve (R, T);
7798 -- In SPARK, equality operators = and /= for array types other than
7799 -- String are only defined when, for each index position, the
7800 -- operands have equal static bounds.
7802 if Is_Array_Type (T) then
7804 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7805 -- operation if not needed.
7807 if Restriction_Check_Required (SPARK_05)
7808 and then Base_Type (T) /= Standard_String
7809 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7810 and then Etype (L) /= Any_Composite -- or else L in error
7811 and then Etype (R) /= Any_Composite -- or else R in error
7812 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7813 then
7814 Check_SPARK_05_Restriction
7815 ("array types should have matching static bounds", N);
7816 end if;
7817 end if;
7819 -- If the unique type is a class-wide type then it will be expanded
7820 -- into a dispatching call to the predefined primitive. Therefore we
7821 -- check here for potential violation of such restriction.
7823 if Is_Class_Wide_Type (T) then
7824 Check_Restriction (No_Dispatching_Calls, N);
7825 end if;
7827 if Warn_On_Redundant_Constructs
7828 and then Comes_From_Source (N)
7829 and then Comes_From_Source (R)
7830 and then Is_Entity_Name (R)
7831 and then Entity (R) = Standard_True
7832 then
7833 Error_Msg_N -- CODEFIX
7834 ("?r?comparison with True is redundant!", N);
7835 Explain_Redundancy (Original_Node (R));
7836 end if;
7838 Check_Unset_Reference (L);
7839 Check_Unset_Reference (R);
7840 Generate_Operator_Reference (N, T);
7841 Check_Low_Bound_Tested (N);
7843 -- If this is an inequality, it may be the implicit inequality
7844 -- created for a user-defined operation, in which case the corres-
7845 -- ponding equality operation is not intrinsic, and the operation
7846 -- cannot be constant-folded. Else fold.
7848 if Nkind (N) = N_Op_Eq
7849 or else Comes_From_Source (Entity (N))
7850 or else Ekind (Entity (N)) = E_Operator
7851 or else Is_Intrinsic_Subprogram
7852 (Corresponding_Equality (Entity (N)))
7853 then
7854 Analyze_Dimension (N);
7855 Eval_Relational_Op (N);
7857 elsif Nkind (N) = N_Op_Ne
7858 and then Is_Abstract_Subprogram (Entity (N))
7859 then
7860 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7861 end if;
7863 -- Ada 2005: If one operand is an anonymous access type, convert the
7864 -- other operand to it, to ensure that the underlying types match in
7865 -- the back-end. Same for access_to_subprogram, and the conversion
7866 -- verifies that the types are subtype conformant.
7868 -- We apply the same conversion in the case one of the operands is a
7869 -- private subtype of the type of the other.
7871 -- Why the Expander_Active test here ???
7873 if Expander_Active
7874 and then
7875 (Ekind_In (T, E_Anonymous_Access_Type,
7876 E_Anonymous_Access_Subprogram_Type)
7877 or else Is_Private_Type (T))
7878 then
7879 if Etype (L) /= T then
7880 Rewrite (L,
7881 Make_Unchecked_Type_Conversion (Sloc (L),
7882 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7883 Expression => Relocate_Node (L)));
7884 Analyze_And_Resolve (L, T);
7885 end if;
7887 if (Etype (R)) /= T then
7888 Rewrite (R,
7889 Make_Unchecked_Type_Conversion (Sloc (R),
7890 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7891 Expression => Relocate_Node (R)));
7892 Analyze_And_Resolve (R, T);
7893 end if;
7894 end if;
7895 end if;
7896 end Resolve_Equality_Op;
7898 ----------------------------------
7899 -- Resolve_Explicit_Dereference --
7900 ----------------------------------
7902 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
7903 Loc : constant Source_Ptr := Sloc (N);
7904 New_N : Node_Id;
7905 P : constant Node_Id := Prefix (N);
7907 P_Typ : Entity_Id;
7908 -- The candidate prefix type, if overloaded
7910 I : Interp_Index;
7911 It : Interp;
7913 begin
7914 Check_Fully_Declared_Prefix (Typ, P);
7915 P_Typ := Empty;
7917 -- A useful optimization: check whether the dereference denotes an
7918 -- element of a container, and if so rewrite it as a call to the
7919 -- corresponding Element function.
7921 -- Disabled for now, on advice of ARG. A more restricted form of the
7922 -- predicate might be acceptable ???
7924 -- if Is_Container_Element (N) then
7925 -- return;
7926 -- end if;
7928 if Is_Overloaded (P) then
7930 -- Use the context type to select the prefix that has the correct
7931 -- designated type. Keep the first match, which will be the inner-
7932 -- most.
7934 Get_First_Interp (P, I, It);
7936 while Present (It.Typ) loop
7937 if Is_Access_Type (It.Typ)
7938 and then Covers (Typ, Designated_Type (It.Typ))
7939 then
7940 if No (P_Typ) then
7941 P_Typ := It.Typ;
7942 end if;
7944 -- Remove access types that do not match, but preserve access
7945 -- to subprogram interpretations, in case a further dereference
7946 -- is needed (see below).
7948 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
7949 Remove_Interp (I);
7950 end if;
7952 Get_Next_Interp (I, It);
7953 end loop;
7955 if Present (P_Typ) then
7956 Resolve (P, P_Typ);
7957 Set_Etype (N, Designated_Type (P_Typ));
7959 else
7960 -- If no interpretation covers the designated type of the prefix,
7961 -- this is the pathological case where not all implementations of
7962 -- the prefix allow the interpretation of the node as a call. Now
7963 -- that the expected type is known, Remove other interpretations
7964 -- from prefix, rewrite it as a call, and resolve again, so that
7965 -- the proper call node is generated.
7967 Get_First_Interp (P, I, It);
7968 while Present (It.Typ) loop
7969 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
7970 Remove_Interp (I);
7971 end if;
7973 Get_Next_Interp (I, It);
7974 end loop;
7976 New_N :=
7977 Make_Function_Call (Loc,
7978 Name =>
7979 Make_Explicit_Dereference (Loc,
7980 Prefix => P),
7981 Parameter_Associations => New_List);
7983 Save_Interps (N, New_N);
7984 Rewrite (N, New_N);
7985 Analyze_And_Resolve (N, Typ);
7986 return;
7987 end if;
7989 -- If not overloaded, resolve P with its own type
7991 else
7992 Resolve (P);
7993 end if;
7995 if Is_Access_Type (Etype (P)) then
7996 Apply_Access_Check (N);
7997 end if;
7999 -- If the designated type is a packed unconstrained array type, and the
8000 -- explicit dereference is not in the context of an attribute reference,
8001 -- then we must compute and set the actual subtype, since it is needed
8002 -- by Gigi. The reason we exclude the attribute case is that this is
8003 -- handled fine by Gigi, and in fact we use such attributes to build the
8004 -- actual subtype. We also exclude generated code (which builds actual
8005 -- subtypes directly if they are needed).
8007 if Is_Array_Type (Etype (N))
8008 and then Is_Packed (Etype (N))
8009 and then not Is_Constrained (Etype (N))
8010 and then Nkind (Parent (N)) /= N_Attribute_Reference
8011 and then Comes_From_Source (N)
8012 then
8013 Set_Etype (N, Get_Actual_Subtype (N));
8014 end if;
8016 -- Note: No Eval processing is required for an explicit dereference,
8017 -- because such a name can never be static.
8019 end Resolve_Explicit_Dereference;
8021 -------------------------------------
8022 -- Resolve_Expression_With_Actions --
8023 -------------------------------------
8025 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8026 begin
8027 Set_Etype (N, Typ);
8029 -- If N has no actions, and its expression has been constant folded,
8030 -- then rewrite N as just its expression. Note, we can't do this in
8031 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8032 -- Expression (N) to be expanded again.
8034 if Is_Empty_List (Actions (N))
8035 and then Compile_Time_Known_Value (Expression (N))
8036 then
8037 Rewrite (N, Expression (N));
8038 end if;
8039 end Resolve_Expression_With_Actions;
8041 ----------------------------------
8042 -- Resolve_Generalized_Indexing --
8043 ----------------------------------
8045 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8046 Indexing : constant Node_Id := Generalized_Indexing (N);
8047 Call : Node_Id;
8048 Indexes : List_Id;
8049 Pref : Node_Id;
8051 begin
8052 -- In ASIS mode, propagate the information about the indexes back to
8053 -- to the original indexing node. The generalized indexing is either
8054 -- a function call, or a dereference of one. The actuals include the
8055 -- prefix of the original node, which is the container expression.
8057 if ASIS_Mode then
8058 Resolve (Indexing, Typ);
8059 Set_Etype (N, Etype (Indexing));
8060 Set_Is_Overloaded (N, False);
8062 Call := Indexing;
8063 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8064 loop
8065 Call := Prefix (Call);
8066 end loop;
8068 if Nkind (Call) = N_Function_Call then
8069 Indexes := Parameter_Associations (Call);
8070 Pref := Remove_Head (Indexes);
8071 Set_Expressions (N, Indexes);
8072 Set_Prefix (N, Pref);
8073 end if;
8075 else
8076 Rewrite (N, Indexing);
8077 Resolve (N, Typ);
8078 end if;
8079 end Resolve_Generalized_Indexing;
8081 ---------------------------
8082 -- Resolve_If_Expression --
8083 ---------------------------
8085 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8086 Condition : constant Node_Id := First (Expressions (N));
8087 Then_Expr : constant Node_Id := Next (Condition);
8088 Else_Expr : Node_Id := Next (Then_Expr);
8089 Else_Typ : Entity_Id;
8090 Then_Typ : Entity_Id;
8092 begin
8093 Resolve (Condition, Any_Boolean);
8094 Resolve (Then_Expr, Typ);
8095 Then_Typ := Etype (Then_Expr);
8097 -- When the "then" expression is of a scalar subtype different from the
8098 -- result subtype, then insert a conversion to ensure the generation of
8099 -- a constraint check. The same is done for the else part below, again
8100 -- comparing subtypes rather than base types.
8102 if Is_Scalar_Type (Then_Typ)
8103 and then Then_Typ /= Typ
8104 then
8105 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8106 Analyze_And_Resolve (Then_Expr, Typ);
8107 end if;
8109 -- If ELSE expression present, just resolve using the determined type
8111 if Present (Else_Expr) then
8112 Resolve (Else_Expr, Typ);
8113 Else_Typ := Etype (Else_Expr);
8115 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8116 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8117 Analyze_And_Resolve (Else_Expr, Typ);
8119 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8120 -- dynamically tagged must be known statically.
8122 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8123 if Is_Dynamically_Tagged (Then_Expr) /=
8124 Is_Dynamically_Tagged (Else_Expr)
8125 then
8126 Error_Msg_N ("all or none of the dependent expressions "
8127 & "can be dynamically tagged", N);
8128 end if;
8129 end if;
8131 -- If no ELSE expression is present, root type must be Standard.Boolean
8132 -- and we provide a Standard.True result converted to the appropriate
8133 -- Boolean type (in case it is a derived boolean type).
8135 elsif Root_Type (Typ) = Standard_Boolean then
8136 Else_Expr :=
8137 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8138 Analyze_And_Resolve (Else_Expr, Typ);
8139 Append_To (Expressions (N), Else_Expr);
8141 else
8142 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8143 Append_To (Expressions (N), Error);
8144 end if;
8146 Set_Etype (N, Typ);
8147 Eval_If_Expression (N);
8148 end Resolve_If_Expression;
8150 -------------------------------
8151 -- Resolve_Indexed_Component --
8152 -------------------------------
8154 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8155 Name : constant Node_Id := Prefix (N);
8156 Expr : Node_Id;
8157 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8158 Index : Node_Id;
8160 begin
8161 if Present (Generalized_Indexing (N)) then
8162 Resolve_Generalized_Indexing (N, Typ);
8163 return;
8164 end if;
8166 if Is_Overloaded (Name) then
8168 -- Use the context type to select the prefix that yields the correct
8169 -- component type.
8171 declare
8172 I : Interp_Index;
8173 It : Interp;
8174 I1 : Interp_Index := 0;
8175 P : constant Node_Id := Prefix (N);
8176 Found : Boolean := False;
8178 begin
8179 Get_First_Interp (P, I, It);
8180 while Present (It.Typ) loop
8181 if (Is_Array_Type (It.Typ)
8182 and then Covers (Typ, Component_Type (It.Typ)))
8183 or else (Is_Access_Type (It.Typ)
8184 and then Is_Array_Type (Designated_Type (It.Typ))
8185 and then
8186 Covers
8187 (Typ,
8188 Component_Type (Designated_Type (It.Typ))))
8189 then
8190 if Found then
8191 It := Disambiguate (P, I1, I, Any_Type);
8193 if It = No_Interp then
8194 Error_Msg_N ("ambiguous prefix for indexing", N);
8195 Set_Etype (N, Typ);
8196 return;
8198 else
8199 Found := True;
8200 Array_Type := It.Typ;
8201 I1 := I;
8202 end if;
8204 else
8205 Found := True;
8206 Array_Type := It.Typ;
8207 I1 := I;
8208 end if;
8209 end if;
8211 Get_Next_Interp (I, It);
8212 end loop;
8213 end;
8215 else
8216 Array_Type := Etype (Name);
8217 end if;
8219 Resolve (Name, Array_Type);
8220 Array_Type := Get_Actual_Subtype_If_Available (Name);
8222 -- If prefix is access type, dereference to get real array type.
8223 -- Note: we do not apply an access check because the expander always
8224 -- introduces an explicit dereference, and the check will happen there.
8226 if Is_Access_Type (Array_Type) then
8227 Array_Type := Designated_Type (Array_Type);
8228 end if;
8230 -- If name was overloaded, set component type correctly now
8231 -- If a misplaced call to an entry family (which has no index types)
8232 -- return. Error will be diagnosed from calling context.
8234 if Is_Array_Type (Array_Type) then
8235 Set_Etype (N, Component_Type (Array_Type));
8236 else
8237 return;
8238 end if;
8240 Index := First_Index (Array_Type);
8241 Expr := First (Expressions (N));
8243 -- The prefix may have resolved to a string literal, in which case its
8244 -- etype has a special representation. This is only possible currently
8245 -- if the prefix is a static concatenation, written in functional
8246 -- notation.
8248 if Ekind (Array_Type) = E_String_Literal_Subtype then
8249 Resolve (Expr, Standard_Positive);
8251 else
8252 while Present (Index) and Present (Expr) loop
8253 Resolve (Expr, Etype (Index));
8254 Check_Unset_Reference (Expr);
8256 if Is_Scalar_Type (Etype (Expr)) then
8257 Apply_Scalar_Range_Check (Expr, Etype (Index));
8258 else
8259 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8260 end if;
8262 Next_Index (Index);
8263 Next (Expr);
8264 end loop;
8265 end if;
8267 Analyze_Dimension (N);
8269 -- Do not generate the warning on suspicious index if we are analyzing
8270 -- package Ada.Tags; otherwise we will report the warning with the
8271 -- Prims_Ptr field of the dispatch table.
8273 if Scope (Etype (Prefix (N))) = Standard_Standard
8274 or else not
8275 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8276 Ada_Tags)
8277 then
8278 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8279 Eval_Indexed_Component (N);
8280 end if;
8282 -- If the array type is atomic, and the component is not atomic, then
8283 -- this is worth a warning, since we have a situation where the access
8284 -- to the component may cause extra read/writes of the atomic array
8285 -- object, or partial word accesses, which could be unexpected.
8287 if Nkind (N) = N_Indexed_Component
8288 and then Is_Atomic_Ref_With_Address (N)
8289 and then not (Has_Atomic_Components (Array_Type)
8290 or else (Is_Entity_Name (Prefix (N))
8291 and then Has_Atomic_Components
8292 (Entity (Prefix (N)))))
8293 and then not Is_Atomic (Component_Type (Array_Type))
8294 then
8295 Error_Msg_N
8296 ("??access to non-atomic component of atomic array", Prefix (N));
8297 Error_Msg_N
8298 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8299 end if;
8300 end Resolve_Indexed_Component;
8302 -----------------------------
8303 -- Resolve_Integer_Literal --
8304 -----------------------------
8306 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8307 begin
8308 Set_Etype (N, Typ);
8309 Eval_Integer_Literal (N);
8310 end Resolve_Integer_Literal;
8312 --------------------------------
8313 -- Resolve_Intrinsic_Operator --
8314 --------------------------------
8316 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8317 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8318 Op : Entity_Id;
8319 Arg1 : Node_Id;
8320 Arg2 : Node_Id;
8322 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8323 -- If the operand is a literal, it cannot be the expression in a
8324 -- conversion. Use a qualified expression instead.
8326 ---------------------
8327 -- Convert_Operand --
8328 ---------------------
8330 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8331 Loc : constant Source_Ptr := Sloc (Opnd);
8332 Res : Node_Id;
8334 begin
8335 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8336 Res :=
8337 Make_Qualified_Expression (Loc,
8338 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8339 Expression => Relocate_Node (Opnd));
8340 Analyze (Res);
8342 else
8343 Res := Unchecked_Convert_To (Btyp, Opnd);
8344 end if;
8346 return Res;
8347 end Convert_Operand;
8349 -- Start of processing for Resolve_Intrinsic_Operator
8351 begin
8352 -- We must preserve the original entity in a generic setting, so that
8353 -- the legality of the operation can be verified in an instance.
8355 if not Expander_Active then
8356 return;
8357 end if;
8359 Op := Entity (N);
8360 while Scope (Op) /= Standard_Standard loop
8361 Op := Homonym (Op);
8362 pragma Assert (Present (Op));
8363 end loop;
8365 Set_Entity (N, Op);
8366 Set_Is_Overloaded (N, False);
8368 -- If the result or operand types are private, rewrite with unchecked
8369 -- conversions on the operands and the result, to expose the proper
8370 -- underlying numeric type.
8372 if Is_Private_Type (Typ)
8373 or else Is_Private_Type (Etype (Left_Opnd (N)))
8374 or else Is_Private_Type (Etype (Right_Opnd (N)))
8375 then
8376 Arg1 := Convert_Operand (Left_Opnd (N));
8378 if Nkind (N) = N_Op_Expon then
8379 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8380 else
8381 Arg2 := Convert_Operand (Right_Opnd (N));
8382 end if;
8384 if Nkind (Arg1) = N_Type_Conversion then
8385 Save_Interps (Left_Opnd (N), Expression (Arg1));
8386 end if;
8388 if Nkind (Arg2) = N_Type_Conversion then
8389 Save_Interps (Right_Opnd (N), Expression (Arg2));
8390 end if;
8392 Set_Left_Opnd (N, Arg1);
8393 Set_Right_Opnd (N, Arg2);
8395 Set_Etype (N, Btyp);
8396 Rewrite (N, Unchecked_Convert_To (Typ, N));
8397 Resolve (N, Typ);
8399 elsif Typ /= Etype (Left_Opnd (N))
8400 or else Typ /= Etype (Right_Opnd (N))
8401 then
8402 -- Add explicit conversion where needed, and save interpretations in
8403 -- case operands are overloaded.
8405 Arg1 := Convert_To (Typ, Left_Opnd (N));
8406 Arg2 := Convert_To (Typ, Right_Opnd (N));
8408 if Nkind (Arg1) = N_Type_Conversion then
8409 Save_Interps (Left_Opnd (N), Expression (Arg1));
8410 else
8411 Save_Interps (Left_Opnd (N), Arg1);
8412 end if;
8414 if Nkind (Arg2) = N_Type_Conversion then
8415 Save_Interps (Right_Opnd (N), Expression (Arg2));
8416 else
8417 Save_Interps (Right_Opnd (N), Arg2);
8418 end if;
8420 Rewrite (Left_Opnd (N), Arg1);
8421 Rewrite (Right_Opnd (N), Arg2);
8422 Analyze (Arg1);
8423 Analyze (Arg2);
8424 Resolve_Arithmetic_Op (N, Typ);
8426 else
8427 Resolve_Arithmetic_Op (N, Typ);
8428 end if;
8429 end Resolve_Intrinsic_Operator;
8431 --------------------------------------
8432 -- Resolve_Intrinsic_Unary_Operator --
8433 --------------------------------------
8435 procedure Resolve_Intrinsic_Unary_Operator
8436 (N : Node_Id;
8437 Typ : Entity_Id)
8439 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8440 Op : Entity_Id;
8441 Arg2 : Node_Id;
8443 begin
8444 Op := Entity (N);
8445 while Scope (Op) /= Standard_Standard loop
8446 Op := Homonym (Op);
8447 pragma Assert (Present (Op));
8448 end loop;
8450 Set_Entity (N, Op);
8452 if Is_Private_Type (Typ) then
8453 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8454 Save_Interps (Right_Opnd (N), Expression (Arg2));
8456 Set_Right_Opnd (N, Arg2);
8458 Set_Etype (N, Btyp);
8459 Rewrite (N, Unchecked_Convert_To (Typ, N));
8460 Resolve (N, Typ);
8462 else
8463 Resolve_Unary_Op (N, Typ);
8464 end if;
8465 end Resolve_Intrinsic_Unary_Operator;
8467 ------------------------
8468 -- Resolve_Logical_Op --
8469 ------------------------
8471 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8472 B_Typ : Entity_Id;
8474 begin
8475 Check_No_Direct_Boolean_Operators (N);
8477 -- Predefined operations on scalar types yield the base type. On the
8478 -- other hand, logical operations on arrays yield the type of the
8479 -- arguments (and the context).
8481 if Is_Array_Type (Typ) then
8482 B_Typ := Typ;
8483 else
8484 B_Typ := Base_Type (Typ);
8485 end if;
8487 -- The following test is required because the operands of the operation
8488 -- may be literals, in which case the resulting type appears to be
8489 -- compatible with a signed integer type, when in fact it is compatible
8490 -- only with modular types. If the context itself is universal, the
8491 -- operation is illegal.
8493 if not Valid_Boolean_Arg (Typ) then
8494 Error_Msg_N ("invalid context for logical operation", N);
8495 Set_Etype (N, Any_Type);
8496 return;
8498 elsif Typ = Any_Modular then
8499 Error_Msg_N
8500 ("no modular type available in this context", N);
8501 Set_Etype (N, Any_Type);
8502 return;
8504 elsif Is_Modular_Integer_Type (Typ)
8505 and then Etype (Left_Opnd (N)) = Universal_Integer
8506 and then Etype (Right_Opnd (N)) = Universal_Integer
8507 then
8508 Check_For_Visible_Operator (N, B_Typ);
8509 end if;
8511 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8512 -- is active and the result type is standard Boolean (do not mess with
8513 -- ops that return a nonstandard Boolean type, because something strange
8514 -- is going on).
8516 -- Note: you might expect this replacement to be done during expansion,
8517 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8518 -- is used, no part of the right operand of an "and" or "or" operator
8519 -- should be executed if the left operand would short-circuit the
8520 -- evaluation of the corresponding "and then" or "or else". If we left
8521 -- the replacement to expansion time, then run-time checks associated
8522 -- with such operands would be evaluated unconditionally, due to being
8523 -- before the condition prior to the rewriting as short-circuit forms
8524 -- during expansion.
8526 if Short_Circuit_And_Or
8527 and then B_Typ = Standard_Boolean
8528 and then Nkind_In (N, N_Op_And, N_Op_Or)
8529 then
8530 -- Mark the corresponding putative SCO operator as truly a logical
8531 -- (and short-circuit) operator.
8533 if Generate_SCO and then Comes_From_Source (N) then
8534 Set_SCO_Logical_Operator (N);
8535 end if;
8537 if Nkind (N) = N_Op_And then
8538 Rewrite (N,
8539 Make_And_Then (Sloc (N),
8540 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8541 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8542 Analyze_And_Resolve (N, B_Typ);
8544 -- Case of OR changed to OR ELSE
8546 else
8547 Rewrite (N,
8548 Make_Or_Else (Sloc (N),
8549 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8550 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8551 Analyze_And_Resolve (N, B_Typ);
8552 end if;
8554 -- Return now, since analysis of the rewritten ops will take care of
8555 -- other reference bookkeeping and expression folding.
8557 return;
8558 end if;
8560 Resolve (Left_Opnd (N), B_Typ);
8561 Resolve (Right_Opnd (N), B_Typ);
8563 Check_Unset_Reference (Left_Opnd (N));
8564 Check_Unset_Reference (Right_Opnd (N));
8566 Set_Etype (N, B_Typ);
8567 Generate_Operator_Reference (N, B_Typ);
8568 Eval_Logical_Op (N);
8570 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8571 -- only when both operands have same static lower and higher bounds. Of
8572 -- course the types have to match, so only check if operands are
8573 -- compatible and the node itself has no errors.
8575 if Is_Array_Type (B_Typ)
8576 and then Nkind (N) in N_Binary_Op
8577 then
8578 declare
8579 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8580 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8582 begin
8583 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8584 -- operation if not needed.
8586 if Restriction_Check_Required (SPARK_05)
8587 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8588 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8589 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8590 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8591 then
8592 Check_SPARK_05_Restriction
8593 ("array types should have matching static bounds", N);
8594 end if;
8595 end;
8596 end if;
8597 end Resolve_Logical_Op;
8599 ---------------------------
8600 -- Resolve_Membership_Op --
8601 ---------------------------
8603 -- The context can only be a boolean type, and does not determine the
8604 -- arguments. Arguments should be unambiguous, but the preference rule for
8605 -- universal types applies.
8607 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8608 pragma Warnings (Off, Typ);
8610 L : constant Node_Id := Left_Opnd (N);
8611 R : constant Node_Id := Right_Opnd (N);
8612 T : Entity_Id;
8614 procedure Resolve_Set_Membership;
8615 -- Analysis has determined a unique type for the left operand. Use it to
8616 -- resolve the disjuncts.
8618 ----------------------------
8619 -- Resolve_Set_Membership --
8620 ----------------------------
8622 procedure Resolve_Set_Membership is
8623 Alt : Node_Id;
8624 Ltyp : Entity_Id;
8626 begin
8627 -- If the left operand is overloaded, find type compatible with not
8628 -- overloaded alternative of the right operand.
8630 if Is_Overloaded (L) then
8631 Ltyp := Empty;
8632 Alt := First (Alternatives (N));
8633 while Present (Alt) loop
8634 if not Is_Overloaded (Alt) then
8635 Ltyp := Intersect_Types (L, Alt);
8636 exit;
8637 else
8638 Next (Alt);
8639 end if;
8640 end loop;
8642 -- Unclear how to resolve expression if all alternatives are also
8643 -- overloaded.
8645 if No (Ltyp) then
8646 Error_Msg_N ("ambiguous expression", N);
8647 end if;
8649 else
8650 Ltyp := Etype (L);
8651 end if;
8653 Resolve (L, Ltyp);
8655 Alt := First (Alternatives (N));
8656 while Present (Alt) loop
8658 -- Alternative is an expression, a range
8659 -- or a subtype mark.
8661 if not Is_Entity_Name (Alt)
8662 or else not Is_Type (Entity (Alt))
8663 then
8664 Resolve (Alt, Ltyp);
8665 end if;
8667 Next (Alt);
8668 end loop;
8670 -- Check for duplicates for discrete case
8672 if Is_Discrete_Type (Ltyp) then
8673 declare
8674 type Ent is record
8675 Alt : Node_Id;
8676 Val : Uint;
8677 end record;
8679 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8680 Nalts : Nat;
8682 begin
8683 -- Loop checking duplicates. This is quadratic, but giant sets
8684 -- are unlikely in this context so it's a reasonable choice.
8686 Nalts := 0;
8687 Alt := First (Alternatives (N));
8688 while Present (Alt) loop
8689 if Is_OK_Static_Expression (Alt)
8690 and then (Nkind_In (Alt, N_Integer_Literal,
8691 N_Character_Literal)
8692 or else Nkind (Alt) in N_Has_Entity)
8693 then
8694 Nalts := Nalts + 1;
8695 Alts (Nalts) := (Alt, Expr_Value (Alt));
8697 for J in 1 .. Nalts - 1 loop
8698 if Alts (J).Val = Alts (Nalts).Val then
8699 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8700 Error_Msg_N ("duplicate of value given#??", Alt);
8701 end if;
8702 end loop;
8703 end if;
8705 Alt := Next (Alt);
8706 end loop;
8707 end;
8708 end if;
8709 end Resolve_Set_Membership;
8711 -- Start of processing for Resolve_Membership_Op
8713 begin
8714 if L = Error or else R = Error then
8715 return;
8716 end if;
8718 if Present (Alternatives (N)) then
8719 Resolve_Set_Membership;
8720 goto SM_Exit;
8722 elsif not Is_Overloaded (R)
8723 and then
8724 (Etype (R) = Universal_Integer
8725 or else
8726 Etype (R) = Universal_Real)
8727 and then Is_Overloaded (L)
8728 then
8729 T := Etype (R);
8731 -- Ada 2005 (AI-251): Support the following case:
8733 -- type I is interface;
8734 -- type T is tagged ...
8736 -- function Test (O : I'Class) is
8737 -- begin
8738 -- return O in T'Class.
8739 -- end Test;
8741 -- In this case we have nothing else to do. The membership test will be
8742 -- done at run time.
8744 elsif Ada_Version >= Ada_2005
8745 and then Is_Class_Wide_Type (Etype (L))
8746 and then Is_Interface (Etype (L))
8747 and then Is_Class_Wide_Type (Etype (R))
8748 and then not Is_Interface (Etype (R))
8749 then
8750 return;
8751 else
8752 T := Intersect_Types (L, R);
8753 end if;
8755 -- If mixed-mode operations are present and operands are all literal,
8756 -- the only interpretation involves Duration, which is probably not
8757 -- the intention of the programmer.
8759 if T = Any_Fixed then
8760 T := Unique_Fixed_Point_Type (N);
8762 if T = Any_Type then
8763 return;
8764 end if;
8765 end if;
8767 Resolve (L, T);
8768 Check_Unset_Reference (L);
8770 if Nkind (R) = N_Range
8771 and then not Is_Scalar_Type (T)
8772 then
8773 Error_Msg_N ("scalar type required for range", R);
8774 end if;
8776 if Is_Entity_Name (R) then
8777 Freeze_Expression (R);
8778 else
8779 Resolve (R, T);
8780 Check_Unset_Reference (R);
8781 end if;
8783 -- Here after resolving membership operation
8785 <<SM_Exit>>
8787 Eval_Membership_Op (N);
8788 end Resolve_Membership_Op;
8790 ------------------
8791 -- Resolve_Null --
8792 ------------------
8794 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8795 Loc : constant Source_Ptr := Sloc (N);
8797 begin
8798 -- Handle restriction against anonymous null access values This
8799 -- restriction can be turned off using -gnatdj.
8801 -- Ada 2005 (AI-231): Remove restriction
8803 if Ada_Version < Ada_2005
8804 and then not Debug_Flag_J
8805 and then Ekind (Typ) = E_Anonymous_Access_Type
8806 and then Comes_From_Source (N)
8807 then
8808 -- In the common case of a call which uses an explicitly null value
8809 -- for an access parameter, give specialized error message.
8811 if Nkind (Parent (N)) in N_Subprogram_Call then
8812 Error_Msg_N
8813 ("null is not allowed as argument for an access parameter", N);
8815 -- Standard message for all other cases (are there any?)
8817 else
8818 Error_Msg_N
8819 ("null cannot be of an anonymous access type", N);
8820 end if;
8821 end if;
8823 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8824 -- assignment to a null-excluding object
8826 if Ada_Version >= Ada_2005
8827 and then Can_Never_Be_Null (Typ)
8828 and then Nkind (Parent (N)) = N_Assignment_Statement
8829 then
8830 if not Inside_Init_Proc then
8831 Insert_Action
8832 (Compile_Time_Constraint_Error (N,
8833 "(Ada 2005) null not allowed in null-excluding objects??"),
8834 Make_Raise_Constraint_Error (Loc,
8835 Reason => CE_Access_Check_Failed));
8836 else
8837 Insert_Action (N,
8838 Make_Raise_Constraint_Error (Loc,
8839 Reason => CE_Access_Check_Failed));
8840 end if;
8841 end if;
8843 -- In a distributed context, null for a remote access to subprogram may
8844 -- need to be replaced with a special record aggregate. In this case,
8845 -- return after having done the transformation.
8847 if (Ekind (Typ) = E_Record_Type
8848 or else Is_Remote_Access_To_Subprogram_Type (Typ))
8849 and then Remote_AST_Null_Value (N, Typ)
8850 then
8851 return;
8852 end if;
8854 -- The null literal takes its type from the context
8856 Set_Etype (N, Typ);
8857 end Resolve_Null;
8859 -----------------------
8860 -- Resolve_Op_Concat --
8861 -----------------------
8863 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
8865 -- We wish to avoid deep recursion, because concatenations are often
8866 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8867 -- operands nonrecursively until we find something that is not a simple
8868 -- concatenation (A in this case). We resolve that, and then walk back
8869 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8870 -- to do the rest of the work at each level. The Parent pointers allow
8871 -- us to avoid recursion, and thus avoid running out of memory. See also
8872 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8874 NN : Node_Id := N;
8875 Op1 : Node_Id;
8877 begin
8878 -- The following code is equivalent to:
8880 -- Resolve_Op_Concat_First (NN, Typ);
8881 -- Resolve_Op_Concat_Arg (N, ...);
8882 -- Resolve_Op_Concat_Rest (N, Typ);
8884 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
8885 -- operand is a concatenation.
8887 -- Walk down left operands
8889 loop
8890 Resolve_Op_Concat_First (NN, Typ);
8891 Op1 := Left_Opnd (NN);
8892 exit when not (Nkind (Op1) = N_Op_Concat
8893 and then not Is_Array_Type (Component_Type (Typ))
8894 and then Entity (Op1) = Entity (NN));
8895 NN := Op1;
8896 end loop;
8898 -- Now (given the above example) NN is A&B and Op1 is A
8900 -- First resolve Op1 ...
8902 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
8904 -- ... then walk NN back up until we reach N (where we started), calling
8905 -- Resolve_Op_Concat_Rest along the way.
8907 loop
8908 Resolve_Op_Concat_Rest (NN, Typ);
8909 exit when NN = N;
8910 NN := Parent (NN);
8911 end loop;
8913 if Base_Type (Etype (N)) /= Standard_String then
8914 Check_SPARK_05_Restriction
8915 ("result of concatenation should have type String", N);
8916 end if;
8917 end Resolve_Op_Concat;
8919 ---------------------------
8920 -- Resolve_Op_Concat_Arg --
8921 ---------------------------
8923 procedure Resolve_Op_Concat_Arg
8924 (N : Node_Id;
8925 Arg : Node_Id;
8926 Typ : Entity_Id;
8927 Is_Comp : Boolean)
8929 Btyp : constant Entity_Id := Base_Type (Typ);
8930 Ctyp : constant Entity_Id := Component_Type (Typ);
8932 begin
8933 if In_Instance then
8934 if Is_Comp
8935 or else (not Is_Overloaded (Arg)
8936 and then Etype (Arg) /= Any_Composite
8937 and then Covers (Ctyp, Etype (Arg)))
8938 then
8939 Resolve (Arg, Ctyp);
8940 else
8941 Resolve (Arg, Btyp);
8942 end if;
8944 -- If both Array & Array and Array & Component are visible, there is a
8945 -- potential ambiguity that must be reported.
8947 elsif Has_Compatible_Type (Arg, Ctyp) then
8948 if Nkind (Arg) = N_Aggregate
8949 and then Is_Composite_Type (Ctyp)
8950 then
8951 if Is_Private_Type (Ctyp) then
8952 Resolve (Arg, Btyp);
8954 -- If the operation is user-defined and not overloaded use its
8955 -- profile. The operation may be a renaming, in which case it has
8956 -- been rewritten, and we want the original profile.
8958 elsif not Is_Overloaded (N)
8959 and then Comes_From_Source (Entity (Original_Node (N)))
8960 and then Ekind (Entity (Original_Node (N))) = E_Function
8961 then
8962 Resolve (Arg,
8963 Etype
8964 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
8965 return;
8967 -- Otherwise an aggregate may match both the array type and the
8968 -- component type.
8970 else
8971 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
8972 Set_Etype (Arg, Any_Type);
8973 end if;
8975 else
8976 if Is_Overloaded (Arg)
8977 and then Has_Compatible_Type (Arg, Typ)
8978 and then Etype (Arg) /= Any_Type
8979 then
8980 declare
8981 I : Interp_Index;
8982 It : Interp;
8983 Func : Entity_Id;
8985 begin
8986 Get_First_Interp (Arg, I, It);
8987 Func := It.Nam;
8988 Get_Next_Interp (I, It);
8990 -- Special-case the error message when the overloading is
8991 -- caused by a function that yields an array and can be
8992 -- called without parameters.
8994 if It.Nam = Func then
8995 Error_Msg_Sloc := Sloc (Func);
8996 Error_Msg_N ("ambiguous call to function#", Arg);
8997 Error_Msg_NE
8998 ("\\interpretation as call yields&", Arg, Typ);
8999 Error_Msg_NE
9000 ("\\interpretation as indexing of call yields&",
9001 Arg, Component_Type (Typ));
9003 else
9004 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9006 Get_First_Interp (Arg, I, It);
9007 while Present (It.Nam) loop
9008 Error_Msg_Sloc := Sloc (It.Nam);
9010 if Base_Type (It.Typ) = Btyp
9011 or else
9012 Base_Type (It.Typ) = Base_Type (Ctyp)
9013 then
9014 Error_Msg_N -- CODEFIX
9015 ("\\possible interpretation#", Arg);
9016 end if;
9018 Get_Next_Interp (I, It);
9019 end loop;
9020 end if;
9021 end;
9022 end if;
9024 Resolve (Arg, Component_Type (Typ));
9026 if Nkind (Arg) = N_String_Literal then
9027 Set_Etype (Arg, Component_Type (Typ));
9028 end if;
9030 if Arg = Left_Opnd (N) then
9031 Set_Is_Component_Left_Opnd (N);
9032 else
9033 Set_Is_Component_Right_Opnd (N);
9034 end if;
9035 end if;
9037 else
9038 Resolve (Arg, Btyp);
9039 end if;
9041 -- Concatenation is restricted in SPARK: each operand must be either a
9042 -- string literal, the name of a string constant, a static character or
9043 -- string expression, or another concatenation. Arg cannot be a
9044 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9045 -- separately on each final operand, past concatenation operations.
9047 if Is_Character_Type (Etype (Arg)) then
9048 if not Is_OK_Static_Expression (Arg) then
9049 Check_SPARK_05_Restriction
9050 ("character operand for concatenation should be static", Arg);
9051 end if;
9053 elsif Is_String_Type (Etype (Arg)) then
9054 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9055 and then Is_Constant_Object (Entity (Arg)))
9056 and then not Is_OK_Static_Expression (Arg)
9057 then
9058 Check_SPARK_05_Restriction
9059 ("string operand for concatenation should be static", Arg);
9060 end if;
9062 -- Do not issue error on an operand that is neither a character nor a
9063 -- string, as the error is issued in Resolve_Op_Concat.
9065 else
9066 null;
9067 end if;
9069 Check_Unset_Reference (Arg);
9070 end Resolve_Op_Concat_Arg;
9072 -----------------------------
9073 -- Resolve_Op_Concat_First --
9074 -----------------------------
9076 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9077 Btyp : constant Entity_Id := Base_Type (Typ);
9078 Op1 : constant Node_Id := Left_Opnd (N);
9079 Op2 : constant Node_Id := Right_Opnd (N);
9081 begin
9082 -- The parser folds an enormous sequence of concatenations of string
9083 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9084 -- in the right operand. If the expression resolves to a predefined "&"
9085 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9086 -- we give an error. See P_Simple_Expression in Par.Ch4.
9088 if Nkind (Op2) = N_String_Literal
9089 and then Is_Folded_In_Parser (Op2)
9090 and then Ekind (Entity (N)) = E_Function
9091 then
9092 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9093 and then String_Length (Strval (Op1)) = 0);
9094 Error_Msg_N ("too many user-defined concatenations", N);
9095 return;
9096 end if;
9098 Set_Etype (N, Btyp);
9100 if Is_Limited_Composite (Btyp) then
9101 Error_Msg_N ("concatenation not available for limited array", N);
9102 Explain_Limited_Type (Btyp, N);
9103 end if;
9104 end Resolve_Op_Concat_First;
9106 ----------------------------
9107 -- Resolve_Op_Concat_Rest --
9108 ----------------------------
9110 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9111 Op1 : constant Node_Id := Left_Opnd (N);
9112 Op2 : constant Node_Id := Right_Opnd (N);
9114 begin
9115 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9117 Generate_Operator_Reference (N, Typ);
9119 if Is_String_Type (Typ) then
9120 Eval_Concatenation (N);
9121 end if;
9123 -- If this is not a static concatenation, but the result is a string
9124 -- type (and not an array of strings) ensure that static string operands
9125 -- have their subtypes properly constructed.
9127 if Nkind (N) /= N_String_Literal
9128 and then Is_Character_Type (Component_Type (Typ))
9129 then
9130 Set_String_Literal_Subtype (Op1, Typ);
9131 Set_String_Literal_Subtype (Op2, Typ);
9132 end if;
9133 end Resolve_Op_Concat_Rest;
9135 ----------------------
9136 -- Resolve_Op_Expon --
9137 ----------------------
9139 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9140 B_Typ : constant Entity_Id := Base_Type (Typ);
9142 begin
9143 -- Catch attempts to do fixed-point exponentiation with universal
9144 -- operands, which is a case where the illegality is not caught during
9145 -- normal operator analysis. This is not done in preanalysis mode
9146 -- since the tree is not fully decorated during preanalysis.
9148 if Full_Analysis then
9149 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9150 Error_Msg_N ("exponentiation not available for fixed point", N);
9151 return;
9153 elsif Nkind (Parent (N)) in N_Op
9154 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9155 and then Etype (N) = Universal_Real
9156 and then Comes_From_Source (N)
9157 then
9158 Error_Msg_N ("exponentiation not available for fixed point", N);
9159 return;
9160 end if;
9161 end if;
9163 if Comes_From_Source (N)
9164 and then Ekind (Entity (N)) = E_Function
9165 and then Is_Imported (Entity (N))
9166 and then Is_Intrinsic_Subprogram (Entity (N))
9167 then
9168 Resolve_Intrinsic_Operator (N, Typ);
9169 return;
9170 end if;
9172 if Etype (Left_Opnd (N)) = Universal_Integer
9173 or else Etype (Left_Opnd (N)) = Universal_Real
9174 then
9175 Check_For_Visible_Operator (N, B_Typ);
9176 end if;
9178 -- We do the resolution using the base type, because intermediate values
9179 -- in expressions are always of the base type, not a subtype of it.
9181 Resolve (Left_Opnd (N), B_Typ);
9182 Resolve (Right_Opnd (N), Standard_Integer);
9184 -- For integer types, right argument must be in Natural range
9186 if Is_Integer_Type (Typ) then
9187 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9188 end if;
9190 Check_Unset_Reference (Left_Opnd (N));
9191 Check_Unset_Reference (Right_Opnd (N));
9193 Set_Etype (N, B_Typ);
9194 Generate_Operator_Reference (N, B_Typ);
9196 Analyze_Dimension (N);
9198 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9199 -- Evaluate the exponentiation operator for dimensioned type
9201 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9202 else
9203 Eval_Op_Expon (N);
9204 end if;
9206 -- Set overflow checking bit. Much cleverer code needed here eventually
9207 -- and perhaps the Resolve routines should be separated for the various
9208 -- arithmetic operations, since they will need different processing. ???
9210 if Nkind (N) in N_Op then
9211 if not Overflow_Checks_Suppressed (Etype (N)) then
9212 Enable_Overflow_Check (N);
9213 end if;
9214 end if;
9215 end Resolve_Op_Expon;
9217 --------------------
9218 -- Resolve_Op_Not --
9219 --------------------
9221 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9222 B_Typ : Entity_Id;
9224 function Parent_Is_Boolean return Boolean;
9225 -- This function determines if the parent node is a boolean operator or
9226 -- operation (comparison op, membership test, or short circuit form) and
9227 -- the not in question is the left operand of this operation. Note that
9228 -- if the not is in parens, then false is returned.
9230 -----------------------
9231 -- Parent_Is_Boolean --
9232 -----------------------
9234 function Parent_Is_Boolean return Boolean is
9235 begin
9236 if Paren_Count (N) /= 0 then
9237 return False;
9239 else
9240 case Nkind (Parent (N)) is
9241 when N_Op_And |
9242 N_Op_Eq |
9243 N_Op_Ge |
9244 N_Op_Gt |
9245 N_Op_Le |
9246 N_Op_Lt |
9247 N_Op_Ne |
9248 N_Op_Or |
9249 N_Op_Xor |
9250 N_In |
9251 N_Not_In |
9252 N_And_Then |
9253 N_Or_Else =>
9255 return Left_Opnd (Parent (N)) = N;
9257 when others =>
9258 return False;
9259 end case;
9260 end if;
9261 end Parent_Is_Boolean;
9263 -- Start of processing for Resolve_Op_Not
9265 begin
9266 -- Predefined operations on scalar types yield the base type. On the
9267 -- other hand, logical operations on arrays yield the type of the
9268 -- arguments (and the context).
9270 if Is_Array_Type (Typ) then
9271 B_Typ := Typ;
9272 else
9273 B_Typ := Base_Type (Typ);
9274 end if;
9276 -- Straightforward case of incorrect arguments
9278 if not Valid_Boolean_Arg (Typ) then
9279 Error_Msg_N ("invalid operand type for operator&", N);
9280 Set_Etype (N, Any_Type);
9281 return;
9283 -- Special case of probable missing parens
9285 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9286 if Parent_Is_Boolean then
9287 Error_Msg_N
9288 ("operand of not must be enclosed in parentheses",
9289 Right_Opnd (N));
9290 else
9291 Error_Msg_N
9292 ("no modular type available in this context", N);
9293 end if;
9295 Set_Etype (N, Any_Type);
9296 return;
9298 -- OK resolution of NOT
9300 else
9301 -- Warn if non-boolean types involved. This is a case like not a < b
9302 -- where a and b are modular, where we will get (not a) < b and most
9303 -- likely not (a < b) was intended.
9305 if Warn_On_Questionable_Missing_Parens
9306 and then not Is_Boolean_Type (Typ)
9307 and then Parent_Is_Boolean
9308 then
9309 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9310 end if;
9312 -- Warn on double negation if checking redundant constructs
9314 if Warn_On_Redundant_Constructs
9315 and then Comes_From_Source (N)
9316 and then Comes_From_Source (Right_Opnd (N))
9317 and then Root_Type (Typ) = Standard_Boolean
9318 and then Nkind (Right_Opnd (N)) = N_Op_Not
9319 then
9320 Error_Msg_N ("redundant double negation?r?", N);
9321 end if;
9323 -- Complete resolution and evaluation of NOT
9325 Resolve (Right_Opnd (N), B_Typ);
9326 Check_Unset_Reference (Right_Opnd (N));
9327 Set_Etype (N, B_Typ);
9328 Generate_Operator_Reference (N, B_Typ);
9329 Eval_Op_Not (N);
9330 end if;
9331 end Resolve_Op_Not;
9333 -----------------------------
9334 -- Resolve_Operator_Symbol --
9335 -----------------------------
9337 -- Nothing to be done, all resolved already
9339 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9340 pragma Warnings (Off, N);
9341 pragma Warnings (Off, Typ);
9343 begin
9344 null;
9345 end Resolve_Operator_Symbol;
9347 ----------------------------------
9348 -- Resolve_Qualified_Expression --
9349 ----------------------------------
9351 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9352 pragma Warnings (Off, Typ);
9354 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9355 Expr : constant Node_Id := Expression (N);
9357 begin
9358 Resolve (Expr, Target_Typ);
9360 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9361 -- operation if not needed.
9363 if Restriction_Check_Required (SPARK_05)
9364 and then Is_Array_Type (Target_Typ)
9365 and then Is_Array_Type (Etype (Expr))
9366 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9367 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9368 then
9369 Check_SPARK_05_Restriction
9370 ("array types should have matching static bounds", N);
9371 end if;
9373 -- A qualified expression requires an exact match of the type, class-
9374 -- wide matching is not allowed. However, if the qualifying type is
9375 -- specific and the expression has a class-wide type, it may still be
9376 -- okay, since it can be the result of the expansion of a call to a
9377 -- dispatching function, so we also have to check class-wideness of the
9378 -- type of the expression's original node.
9380 if (Is_Class_Wide_Type (Target_Typ)
9381 or else
9382 (Is_Class_Wide_Type (Etype (Expr))
9383 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9384 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9385 then
9386 Wrong_Type (Expr, Target_Typ);
9387 end if;
9389 -- If the target type is unconstrained, then we reset the type of the
9390 -- result from the type of the expression. For other cases, the actual
9391 -- subtype of the expression is the target type.
9393 if Is_Composite_Type (Target_Typ)
9394 and then not Is_Constrained (Target_Typ)
9395 then
9396 Set_Etype (N, Etype (Expr));
9397 end if;
9399 Analyze_Dimension (N);
9400 Eval_Qualified_Expression (N);
9402 -- If we still have a qualified expression after the static evaluation,
9403 -- then apply a scalar range check if needed. The reason that we do this
9404 -- after the Eval call is that otherwise, the application of the range
9405 -- check may convert an illegal static expression and result in warning
9406 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9408 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9409 Apply_Scalar_Range_Check (Expr, Typ);
9410 end if;
9411 end Resolve_Qualified_Expression;
9413 ------------------------------
9414 -- Resolve_Raise_Expression --
9415 ------------------------------
9417 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9418 begin
9419 if Typ = Raise_Type then
9420 Error_Msg_N ("cannot find unique type for raise expression", N);
9421 Set_Etype (N, Any_Type);
9422 else
9423 Set_Etype (N, Typ);
9424 end if;
9425 end Resolve_Raise_Expression;
9427 -------------------
9428 -- Resolve_Range --
9429 -------------------
9431 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9432 L : constant Node_Id := Low_Bound (N);
9433 H : constant Node_Id := High_Bound (N);
9435 function First_Last_Ref return Boolean;
9436 -- Returns True if N is of the form X'First .. X'Last where X is the
9437 -- same entity for both attributes.
9439 --------------------
9440 -- First_Last_Ref --
9441 --------------------
9443 function First_Last_Ref return Boolean is
9444 Lorig : constant Node_Id := Original_Node (L);
9445 Horig : constant Node_Id := Original_Node (H);
9447 begin
9448 if Nkind (Lorig) = N_Attribute_Reference
9449 and then Nkind (Horig) = N_Attribute_Reference
9450 and then Attribute_Name (Lorig) = Name_First
9451 and then Attribute_Name (Horig) = Name_Last
9452 then
9453 declare
9454 PL : constant Node_Id := Prefix (Lorig);
9455 PH : constant Node_Id := Prefix (Horig);
9456 begin
9457 if Is_Entity_Name (PL)
9458 and then Is_Entity_Name (PH)
9459 and then Entity (PL) = Entity (PH)
9460 then
9461 return True;
9462 end if;
9463 end;
9464 end if;
9466 return False;
9467 end First_Last_Ref;
9469 -- Start of processing for Resolve_Range
9471 begin
9472 Set_Etype (N, Typ);
9473 Resolve (L, Typ);
9474 Resolve (H, Typ);
9476 -- Check for inappropriate range on unordered enumeration type
9478 if Bad_Unordered_Enumeration_Reference (N, Typ)
9480 -- Exclude X'First .. X'Last if X is the same entity for both
9482 and then not First_Last_Ref
9483 then
9484 Error_Msg_Sloc := Sloc (Typ);
9485 Error_Msg_NE
9486 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9487 end if;
9489 Check_Unset_Reference (L);
9490 Check_Unset_Reference (H);
9492 -- We have to check the bounds for being within the base range as
9493 -- required for a non-static context. Normally this is automatic and
9494 -- done as part of evaluating expressions, but the N_Range node is an
9495 -- exception, since in GNAT we consider this node to be a subexpression,
9496 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9497 -- this, but that would put the test on the main evaluation path for
9498 -- expressions.
9500 Check_Non_Static_Context (L);
9501 Check_Non_Static_Context (H);
9503 -- Check for an ambiguous range over character literals. This will
9504 -- happen with a membership test involving only literals.
9506 if Typ = Any_Character then
9507 Ambiguous_Character (L);
9508 Set_Etype (N, Any_Type);
9509 return;
9510 end if;
9512 -- If bounds are static, constant-fold them, so size computations are
9513 -- identical between front-end and back-end. Do not perform this
9514 -- transformation while analyzing generic units, as type information
9515 -- would be lost when reanalyzing the constant node in the instance.
9517 if Is_Discrete_Type (Typ) and then Expander_Active then
9518 if Is_OK_Static_Expression (L) then
9519 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9520 end if;
9522 if Is_OK_Static_Expression (H) then
9523 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9524 end if;
9525 end if;
9526 end Resolve_Range;
9528 --------------------------
9529 -- Resolve_Real_Literal --
9530 --------------------------
9532 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9533 Actual_Typ : constant Entity_Id := Etype (N);
9535 begin
9536 -- Special processing for fixed-point literals to make sure that the
9537 -- value is an exact multiple of small where this is required. We skip
9538 -- this for the universal real case, and also for generic types.
9540 if Is_Fixed_Point_Type (Typ)
9541 and then Typ /= Universal_Fixed
9542 and then Typ /= Any_Fixed
9543 and then not Is_Generic_Type (Typ)
9544 then
9545 declare
9546 Val : constant Ureal := Realval (N);
9547 Cintr : constant Ureal := Val / Small_Value (Typ);
9548 Cint : constant Uint := UR_Trunc (Cintr);
9549 Den : constant Uint := Norm_Den (Cintr);
9550 Stat : Boolean;
9552 begin
9553 -- Case of literal is not an exact multiple of the Small
9555 if Den /= 1 then
9557 -- For a source program literal for a decimal fixed-point type,
9558 -- this is statically illegal (RM 4.9(36)).
9560 if Is_Decimal_Fixed_Point_Type (Typ)
9561 and then Actual_Typ = Universal_Real
9562 and then Comes_From_Source (N)
9563 then
9564 Error_Msg_N ("value has extraneous low order digits", N);
9565 end if;
9567 -- Generate a warning if literal from source
9569 if Is_OK_Static_Expression (N)
9570 and then Warn_On_Bad_Fixed_Value
9571 then
9572 Error_Msg_N
9573 ("?b?static fixed-point value is not a multiple of Small!",
9575 end if;
9577 -- Replace literal by a value that is the exact representation
9578 -- of a value of the type, i.e. a multiple of the small value,
9579 -- by truncation, since Machine_Rounds is false for all GNAT
9580 -- fixed-point types (RM 4.9(38)).
9582 Stat := Is_OK_Static_Expression (N);
9583 Rewrite (N,
9584 Make_Real_Literal (Sloc (N),
9585 Realval => Small_Value (Typ) * Cint));
9587 Set_Is_Static_Expression (N, Stat);
9588 end if;
9590 -- In all cases, set the corresponding integer field
9592 Set_Corresponding_Integer_Value (N, Cint);
9593 end;
9594 end if;
9596 -- Now replace the actual type by the expected type as usual
9598 Set_Etype (N, Typ);
9599 Eval_Real_Literal (N);
9600 end Resolve_Real_Literal;
9602 -----------------------
9603 -- Resolve_Reference --
9604 -----------------------
9606 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9607 P : constant Node_Id := Prefix (N);
9609 begin
9610 -- Replace general access with specific type
9612 if Ekind (Etype (N)) = E_Allocator_Type then
9613 Set_Etype (N, Base_Type (Typ));
9614 end if;
9616 Resolve (P, Designated_Type (Etype (N)));
9618 -- If we are taking the reference of a volatile entity, then treat it as
9619 -- a potential modification of this entity. This is too conservative,
9620 -- but necessary because remove side effects can cause transformations
9621 -- of normal assignments into reference sequences that otherwise fail to
9622 -- notice the modification.
9624 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9625 Note_Possible_Modification (P, Sure => False);
9626 end if;
9627 end Resolve_Reference;
9629 --------------------------------
9630 -- Resolve_Selected_Component --
9631 --------------------------------
9633 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9634 Comp : Entity_Id;
9635 Comp1 : Entity_Id := Empty; -- prevent junk warning
9636 P : constant Node_Id := Prefix (N);
9637 S : constant Node_Id := Selector_Name (N);
9638 T : Entity_Id := Etype (P);
9639 I : Interp_Index;
9640 I1 : Interp_Index := 0; -- prevent junk warning
9641 It : Interp;
9642 It1 : Interp;
9643 Found : Boolean;
9645 function Init_Component return Boolean;
9646 -- Check whether this is the initialization of a component within an
9647 -- init proc (by assignment or call to another init proc). If true,
9648 -- there is no need for a discriminant check.
9650 --------------------
9651 -- Init_Component --
9652 --------------------
9654 function Init_Component return Boolean is
9655 begin
9656 return Inside_Init_Proc
9657 and then Nkind (Prefix (N)) = N_Identifier
9658 and then Chars (Prefix (N)) = Name_uInit
9659 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9660 end Init_Component;
9662 -- Start of processing for Resolve_Selected_Component
9664 begin
9665 if Is_Overloaded (P) then
9667 -- Use the context type to select the prefix that has a selector
9668 -- of the correct name and type.
9670 Found := False;
9671 Get_First_Interp (P, I, It);
9673 Search : while Present (It.Typ) loop
9674 if Is_Access_Type (It.Typ) then
9675 T := Designated_Type (It.Typ);
9676 else
9677 T := It.Typ;
9678 end if;
9680 -- Locate selected component. For a private prefix the selector
9681 -- can denote a discriminant.
9683 if Is_Record_Type (T) or else Is_Private_Type (T) then
9685 -- The visible components of a class-wide type are those of
9686 -- the root type.
9688 if Is_Class_Wide_Type (T) then
9689 T := Etype (T);
9690 end if;
9692 Comp := First_Entity (T);
9693 while Present (Comp) loop
9694 if Chars (Comp) = Chars (S)
9695 and then Covers (Typ, Etype (Comp))
9696 then
9697 if not Found then
9698 Found := True;
9699 I1 := I;
9700 It1 := It;
9701 Comp1 := Comp;
9703 else
9704 It := Disambiguate (P, I1, I, Any_Type);
9706 if It = No_Interp then
9707 Error_Msg_N
9708 ("ambiguous prefix for selected component", N);
9709 Set_Etype (N, Typ);
9710 return;
9712 else
9713 It1 := It;
9715 -- There may be an implicit dereference. Retrieve
9716 -- designated record type.
9718 if Is_Access_Type (It1.Typ) then
9719 T := Designated_Type (It1.Typ);
9720 else
9721 T := It1.Typ;
9722 end if;
9724 if Scope (Comp1) /= T then
9726 -- Resolution chooses the new interpretation.
9727 -- Find the component with the right name.
9729 Comp1 := First_Entity (T);
9730 while Present (Comp1)
9731 and then Chars (Comp1) /= Chars (S)
9732 loop
9733 Comp1 := Next_Entity (Comp1);
9734 end loop;
9735 end if;
9737 exit Search;
9738 end if;
9739 end if;
9740 end if;
9742 Comp := Next_Entity (Comp);
9743 end loop;
9744 end if;
9746 Get_Next_Interp (I, It);
9747 end loop Search;
9749 -- There must be a legal interpretation at this point
9751 pragma Assert (Found);
9752 Resolve (P, It1.Typ);
9753 Set_Etype (N, Typ);
9754 Set_Entity_With_Checks (S, Comp1);
9756 else
9757 -- Resolve prefix with its type
9759 Resolve (P, T);
9760 end if;
9762 -- Generate cross-reference. We needed to wait until full overloading
9763 -- resolution was complete to do this, since otherwise we can't tell if
9764 -- we are an lvalue or not.
9766 if May_Be_Lvalue (N) then
9767 Generate_Reference (Entity (S), S, 'm');
9768 else
9769 Generate_Reference (Entity (S), S, 'r');
9770 end if;
9772 -- If prefix is an access type, the node will be transformed into an
9773 -- explicit dereference during expansion. The type of the node is the
9774 -- designated type of that of the prefix.
9776 if Is_Access_Type (Etype (P)) then
9777 T := Designated_Type (Etype (P));
9778 Check_Fully_Declared_Prefix (T, P);
9779 else
9780 T := Etype (P);
9781 end if;
9783 -- Set flag for expander if discriminant check required
9785 if Has_Discriminants (T)
9786 and then Ekind_In (Entity (S), E_Component, E_Discriminant)
9787 and then Present (Original_Record_Component (Entity (S)))
9788 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9789 and then not Discriminant_Checks_Suppressed (T)
9790 and then not Init_Component
9791 then
9792 Set_Do_Discriminant_Check (N);
9793 end if;
9795 if Ekind (Entity (S)) = E_Void then
9796 Error_Msg_N ("premature use of component", S);
9797 end if;
9799 -- If the prefix is a record conversion, this may be a renamed
9800 -- discriminant whose bounds differ from those of the original
9801 -- one, so we must ensure that a range check is performed.
9803 if Nkind (P) = N_Type_Conversion
9804 and then Ekind (Entity (S)) = E_Discriminant
9805 and then Is_Discrete_Type (Typ)
9806 then
9807 Set_Etype (N, Base_Type (Typ));
9808 end if;
9810 -- Note: No Eval processing is required, because the prefix is of a
9811 -- record type, or protected type, and neither can possibly be static.
9813 -- If the record type is atomic, and the component is non-atomic, then
9814 -- this is worth a warning, since we have a situation where the access
9815 -- to the component may cause extra read/writes of the atomic array
9816 -- object, or partial word accesses, both of which may be unexpected.
9818 if Nkind (N) = N_Selected_Component
9819 and then Is_Atomic_Ref_With_Address (N)
9820 and then not Is_Atomic (Entity (S))
9821 and then not Is_Atomic (Etype (Entity (S)))
9822 then
9823 Error_Msg_N
9824 ("??access to non-atomic component of atomic record",
9825 Prefix (N));
9826 Error_Msg_N
9827 ("\??may cause unexpected accesses to atomic object",
9828 Prefix (N));
9829 end if;
9831 Analyze_Dimension (N);
9832 end Resolve_Selected_Component;
9834 -------------------
9835 -- Resolve_Shift --
9836 -------------------
9838 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
9839 B_Typ : constant Entity_Id := Base_Type (Typ);
9840 L : constant Node_Id := Left_Opnd (N);
9841 R : constant Node_Id := Right_Opnd (N);
9843 begin
9844 -- We do the resolution using the base type, because intermediate values
9845 -- in expressions always are of the base type, not a subtype of it.
9847 Resolve (L, B_Typ);
9848 Resolve (R, Standard_Natural);
9850 Check_Unset_Reference (L);
9851 Check_Unset_Reference (R);
9853 Set_Etype (N, B_Typ);
9854 Generate_Operator_Reference (N, B_Typ);
9855 Eval_Shift (N);
9856 end Resolve_Shift;
9858 ---------------------------
9859 -- Resolve_Short_Circuit --
9860 ---------------------------
9862 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
9863 B_Typ : constant Entity_Id := Base_Type (Typ);
9864 L : constant Node_Id := Left_Opnd (N);
9865 R : constant Node_Id := Right_Opnd (N);
9867 begin
9868 -- Ensure all actions associated with the left operand (e.g.
9869 -- finalization of transient controlled objects) are fully evaluated
9870 -- locally within an expression with actions. This is particularly
9871 -- helpful for coverage analysis. However this should not happen in
9872 -- generics.
9874 if Expander_Active then
9875 declare
9876 Reloc_L : constant Node_Id := Relocate_Node (L);
9877 begin
9878 Save_Interps (Old_N => L, New_N => Reloc_L);
9880 Rewrite (L,
9881 Make_Expression_With_Actions (Sloc (L),
9882 Actions => New_List,
9883 Expression => Reloc_L));
9885 -- Set Comes_From_Source on L to preserve warnings for unset
9886 -- reference.
9888 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
9889 end;
9890 end if;
9892 Resolve (L, B_Typ);
9893 Resolve (R, B_Typ);
9895 -- Check for issuing warning for always False assert/check, this happens
9896 -- when assertions are turned off, in which case the pragma Assert/Check
9897 -- was transformed into:
9899 -- if False and then <condition> then ...
9901 -- and we detect this pattern
9903 if Warn_On_Assertion_Failure
9904 and then Is_Entity_Name (R)
9905 and then Entity (R) = Standard_False
9906 and then Nkind (Parent (N)) = N_If_Statement
9907 and then Nkind (N) = N_And_Then
9908 and then Is_Entity_Name (L)
9909 and then Entity (L) = Standard_False
9910 then
9911 declare
9912 Orig : constant Node_Id := Original_Node (Parent (N));
9914 begin
9915 -- Special handling of Asssert pragma
9917 if Nkind (Orig) = N_Pragma
9918 and then Pragma_Name (Orig) = Name_Assert
9919 then
9920 declare
9921 Expr : constant Node_Id :=
9922 Original_Node
9923 (Expression
9924 (First (Pragma_Argument_Associations (Orig))));
9926 begin
9927 -- Don't warn if original condition is explicit False,
9928 -- since obviously the failure is expected in this case.
9930 if Is_Entity_Name (Expr)
9931 and then Entity (Expr) = Standard_False
9932 then
9933 null;
9935 -- Issue warning. We do not want the deletion of the
9936 -- IF/AND-THEN to take this message with it. We achieve this
9937 -- by making sure that the expanded code points to the Sloc
9938 -- of the expression, not the original pragma.
9940 else
9941 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
9942 -- The source location of the expression is not usually
9943 -- the best choice here. For example, it gets located on
9944 -- the last AND keyword in a chain of boolean expressiond
9945 -- AND'ed together. It is best to put the message on the
9946 -- first character of the assertion, which is the effect
9947 -- of the First_Node call here.
9949 Error_Msg_F
9950 ("?A?assertion would fail at run time!",
9951 Expression
9952 (First (Pragma_Argument_Associations (Orig))));
9953 end if;
9954 end;
9956 -- Similar processing for Check pragma
9958 elsif Nkind (Orig) = N_Pragma
9959 and then Pragma_Name (Orig) = Name_Check
9960 then
9961 -- Don't want to warn if original condition is explicit False
9963 declare
9964 Expr : constant Node_Id :=
9965 Original_Node
9966 (Expression
9967 (Next (First (Pragma_Argument_Associations (Orig)))));
9968 begin
9969 if Is_Entity_Name (Expr)
9970 and then Entity (Expr) = Standard_False
9971 then
9972 null;
9974 -- Post warning
9976 else
9977 -- Again use Error_Msg_F rather than Error_Msg_N, see
9978 -- comment above for an explanation of why we do this.
9980 Error_Msg_F
9981 ("?A?check would fail at run time!",
9982 Expression
9983 (Last (Pragma_Argument_Associations (Orig))));
9984 end if;
9985 end;
9986 end if;
9987 end;
9988 end if;
9990 -- Continue with processing of short circuit
9992 Check_Unset_Reference (L);
9993 Check_Unset_Reference (R);
9995 Set_Etype (N, B_Typ);
9996 Eval_Short_Circuit (N);
9997 end Resolve_Short_Circuit;
9999 -------------------
10000 -- Resolve_Slice --
10001 -------------------
10003 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10004 Drange : constant Node_Id := Discrete_Range (N);
10005 Name : constant Node_Id := Prefix (N);
10006 Array_Type : Entity_Id := Empty;
10007 Dexpr : Node_Id := Empty;
10008 Index_Type : Entity_Id;
10010 begin
10011 if Is_Overloaded (Name) then
10013 -- Use the context type to select the prefix that yields the correct
10014 -- array type.
10016 declare
10017 I : Interp_Index;
10018 I1 : Interp_Index := 0;
10019 It : Interp;
10020 P : constant Node_Id := Prefix (N);
10021 Found : Boolean := False;
10023 begin
10024 Get_First_Interp (P, I, It);
10025 while Present (It.Typ) loop
10026 if (Is_Array_Type (It.Typ)
10027 and then Covers (Typ, It.Typ))
10028 or else (Is_Access_Type (It.Typ)
10029 and then Is_Array_Type (Designated_Type (It.Typ))
10030 and then Covers (Typ, Designated_Type (It.Typ)))
10031 then
10032 if Found then
10033 It := Disambiguate (P, I1, I, Any_Type);
10035 if It = No_Interp then
10036 Error_Msg_N ("ambiguous prefix for slicing", N);
10037 Set_Etype (N, Typ);
10038 return;
10039 else
10040 Found := True;
10041 Array_Type := It.Typ;
10042 I1 := I;
10043 end if;
10044 else
10045 Found := True;
10046 Array_Type := It.Typ;
10047 I1 := I;
10048 end if;
10049 end if;
10051 Get_Next_Interp (I, It);
10052 end loop;
10053 end;
10055 else
10056 Array_Type := Etype (Name);
10057 end if;
10059 Resolve (Name, Array_Type);
10061 if Is_Access_Type (Array_Type) then
10062 Apply_Access_Check (N);
10063 Array_Type := Designated_Type (Array_Type);
10065 -- If the prefix is an access to an unconstrained array, we must use
10066 -- the actual subtype of the object to perform the index checks. The
10067 -- object denoted by the prefix is implicit in the node, so we build
10068 -- an explicit representation for it in order to compute the actual
10069 -- subtype.
10071 if not Is_Constrained (Array_Type) then
10072 Remove_Side_Effects (Prefix (N));
10074 declare
10075 Obj : constant Node_Id :=
10076 Make_Explicit_Dereference (Sloc (N),
10077 Prefix => New_Copy_Tree (Prefix (N)));
10078 begin
10079 Set_Etype (Obj, Array_Type);
10080 Set_Parent (Obj, Parent (N));
10081 Array_Type := Get_Actual_Subtype (Obj);
10082 end;
10083 end if;
10085 elsif Is_Entity_Name (Name)
10086 or else Nkind (Name) = N_Explicit_Dereference
10087 or else (Nkind (Name) = N_Function_Call
10088 and then not Is_Constrained (Etype (Name)))
10089 then
10090 Array_Type := Get_Actual_Subtype (Name);
10092 -- If the name is a selected component that depends on discriminants,
10093 -- build an actual subtype for it. This can happen only when the name
10094 -- itself is overloaded; otherwise the actual subtype is created when
10095 -- the selected component is analyzed.
10097 elsif Nkind (Name) = N_Selected_Component
10098 and then Full_Analysis
10099 and then Depends_On_Discriminant (First_Index (Array_Type))
10100 then
10101 declare
10102 Act_Decl : constant Node_Id :=
10103 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10104 begin
10105 Insert_Action (N, Act_Decl);
10106 Array_Type := Defining_Identifier (Act_Decl);
10107 end;
10109 -- Maybe this should just be "else", instead of checking for the
10110 -- specific case of slice??? This is needed for the case where the
10111 -- prefix is an Image attribute, which gets expanded to a slice, and so
10112 -- has a constrained subtype which we want to use for the slice range
10113 -- check applied below (the range check won't get done if the
10114 -- unconstrained subtype of the 'Image is used).
10116 elsif Nkind (Name) = N_Slice then
10117 Array_Type := Etype (Name);
10118 end if;
10120 -- Obtain the type of the array index
10122 if Ekind (Array_Type) = E_String_Literal_Subtype then
10123 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10124 else
10125 Index_Type := Etype (First_Index (Array_Type));
10126 end if;
10128 -- If name was overloaded, set slice type correctly now
10130 Set_Etype (N, Array_Type);
10132 -- Handle the generation of a range check that compares the array index
10133 -- against the discrete_range. The check is not applied to internally
10134 -- built nodes associated with the expansion of dispatch tables. Check
10135 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10136 -- the unit.
10138 if Tagged_Type_Expansion
10139 and then RTU_Loaded (Ada_Tags)
10140 and then Nkind (Prefix (N)) = N_Selected_Component
10141 and then Present (Entity (Selector_Name (Prefix (N))))
10142 and then Entity (Selector_Name (Prefix (N))) =
10143 RTE_Record_Component (RE_Prims_Ptr)
10144 then
10145 null;
10147 -- The discrete_range is specified by a subtype indication. Create a
10148 -- shallow copy and inherit the type, parent and source location from
10149 -- the discrete_range. This ensures that the range check is inserted
10150 -- relative to the slice and that the runtime exception points to the
10151 -- proper construct.
10153 elsif Is_Entity_Name (Drange) then
10154 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10156 Set_Etype (Dexpr, Etype (Drange));
10157 Set_Parent (Dexpr, Parent (Drange));
10158 Set_Sloc (Dexpr, Sloc (Drange));
10160 -- The discrete_range is a regular range. Resolve the bounds and remove
10161 -- their side effects.
10163 else
10164 Resolve (Drange, Base_Type (Index_Type));
10166 if Nkind (Drange) = N_Range then
10167 Force_Evaluation (Low_Bound (Drange));
10168 Force_Evaluation (High_Bound (Drange));
10170 Dexpr := Drange;
10171 end if;
10172 end if;
10174 if Present (Dexpr) then
10175 Apply_Range_Check (Dexpr, Index_Type);
10176 end if;
10178 Set_Slice_Subtype (N);
10180 -- Check bad use of type with predicates
10182 declare
10183 Subt : Entity_Id;
10185 begin
10186 if Nkind (Drange) = N_Subtype_Indication
10187 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10188 then
10189 Subt := Entity (Subtype_Mark (Drange));
10190 else
10191 Subt := Etype (Drange);
10192 end if;
10194 if Has_Predicates (Subt) then
10195 Bad_Predicated_Subtype_Use
10196 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10197 end if;
10198 end;
10200 -- Otherwise here is where we check suspicious indexes
10202 if Nkind (Drange) = N_Range then
10203 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10204 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10205 end if;
10207 Analyze_Dimension (N);
10208 Eval_Slice (N);
10209 end Resolve_Slice;
10211 ----------------------------
10212 -- Resolve_String_Literal --
10213 ----------------------------
10215 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10216 C_Typ : constant Entity_Id := Component_Type (Typ);
10217 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10218 Loc : constant Source_Ptr := Sloc (N);
10219 Str : constant String_Id := Strval (N);
10220 Strlen : constant Nat := String_Length (Str);
10221 Subtype_Id : Entity_Id;
10222 Need_Check : Boolean;
10224 begin
10225 -- For a string appearing in a concatenation, defer creation of the
10226 -- string_literal_subtype until the end of the resolution of the
10227 -- concatenation, because the literal may be constant-folded away. This
10228 -- is a useful optimization for long concatenation expressions.
10230 -- If the string is an aggregate built for a single character (which
10231 -- happens in a non-static context) or a is null string to which special
10232 -- checks may apply, we build the subtype. Wide strings must also get a
10233 -- string subtype if they come from a one character aggregate. Strings
10234 -- generated by attributes might be static, but it is often hard to
10235 -- determine whether the enclosing context is static, so we generate
10236 -- subtypes for them as well, thus losing some rarer optimizations ???
10237 -- Same for strings that come from a static conversion.
10239 Need_Check :=
10240 (Strlen = 0 and then Typ /= Standard_String)
10241 or else Nkind (Parent (N)) /= N_Op_Concat
10242 or else (N /= Left_Opnd (Parent (N))
10243 and then N /= Right_Opnd (Parent (N)))
10244 or else ((Typ = Standard_Wide_String
10245 or else Typ = Standard_Wide_Wide_String)
10246 and then Nkind (Original_Node (N)) /= N_String_Literal);
10248 -- If the resolving type is itself a string literal subtype, we can just
10249 -- reuse it, since there is no point in creating another.
10251 if Ekind (Typ) = E_String_Literal_Subtype then
10252 Subtype_Id := Typ;
10254 elsif Nkind (Parent (N)) = N_Op_Concat
10255 and then not Need_Check
10256 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10257 N_Attribute_Reference,
10258 N_Qualified_Expression,
10259 N_Type_Conversion)
10260 then
10261 Subtype_Id := Typ;
10263 -- Do not generate a string literal subtype for the default expression
10264 -- of a formal parameter in GNATprove mode. This is because the string
10265 -- subtype is associated with the freezing actions of the subprogram,
10266 -- however freezing is disabled in GNATprove mode and as a result the
10267 -- subtype is unavailable.
10269 elsif GNATprove_Mode
10270 and then Nkind (Parent (N)) = N_Parameter_Specification
10271 then
10272 Subtype_Id := Typ;
10274 -- Otherwise we must create a string literal subtype. Note that the
10275 -- whole idea of string literal subtypes is simply to avoid the need
10276 -- for building a full fledged array subtype for each literal.
10278 else
10279 Set_String_Literal_Subtype (N, Typ);
10280 Subtype_Id := Etype (N);
10281 end if;
10283 if Nkind (Parent (N)) /= N_Op_Concat
10284 or else Need_Check
10285 then
10286 Set_Etype (N, Subtype_Id);
10287 Eval_String_Literal (N);
10288 end if;
10290 if Is_Limited_Composite (Typ)
10291 or else Is_Private_Composite (Typ)
10292 then
10293 Error_Msg_N ("string literal not available for private array", N);
10294 Set_Etype (N, Any_Type);
10295 return;
10296 end if;
10298 -- The validity of a null string has been checked in the call to
10299 -- Eval_String_Literal.
10301 if Strlen = 0 then
10302 return;
10304 -- Always accept string literal with component type Any_Character, which
10305 -- occurs in error situations and in comparisons of literals, both of
10306 -- which should accept all literals.
10308 elsif R_Typ = Any_Character then
10309 return;
10311 -- If the type is bit-packed, then we always transform the string
10312 -- literal into a full fledged aggregate.
10314 elsif Is_Bit_Packed_Array (Typ) then
10315 null;
10317 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10319 else
10320 -- For Standard.Wide_Wide_String, or any other type whose component
10321 -- type is Standard.Wide_Wide_Character, we know that all the
10322 -- characters in the string must be acceptable, since the parser
10323 -- accepted the characters as valid character literals.
10325 if R_Typ = Standard_Wide_Wide_Character then
10326 null;
10328 -- For the case of Standard.String, or any other type whose component
10329 -- type is Standard.Character, we must make sure that there are no
10330 -- wide characters in the string, i.e. that it is entirely composed
10331 -- of characters in range of type Character.
10333 -- If the string literal is the result of a static concatenation, the
10334 -- test has already been performed on the components, and need not be
10335 -- repeated.
10337 elsif R_Typ = Standard_Character
10338 and then Nkind (Original_Node (N)) /= N_Op_Concat
10339 then
10340 for J in 1 .. Strlen loop
10341 if not In_Character_Range (Get_String_Char (Str, J)) then
10343 -- If we are out of range, post error. This is one of the
10344 -- very few places that we place the flag in the middle of
10345 -- a token, right under the offending wide character. Not
10346 -- quite clear if this is right wrt wide character encoding
10347 -- sequences, but it's only an error message.
10349 Error_Msg
10350 ("literal out of range of type Standard.Character",
10351 Source_Ptr (Int (Loc) + J));
10352 return;
10353 end if;
10354 end loop;
10356 -- For the case of Standard.Wide_String, or any other type whose
10357 -- component type is Standard.Wide_Character, we must make sure that
10358 -- there are no wide characters in the string, i.e. that it is
10359 -- entirely composed of characters in range of type Wide_Character.
10361 -- If the string literal is the result of a static concatenation,
10362 -- the test has already been performed on the components, and need
10363 -- not be repeated.
10365 elsif R_Typ = Standard_Wide_Character
10366 and then Nkind (Original_Node (N)) /= N_Op_Concat
10367 then
10368 for J in 1 .. Strlen loop
10369 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10371 -- If we are out of range, post error. This is one of the
10372 -- very few places that we place the flag in the middle of
10373 -- a token, right under the offending wide character.
10375 -- This is not quite right, because characters in general
10376 -- will take more than one character position ???
10378 Error_Msg
10379 ("literal out of range of type Standard.Wide_Character",
10380 Source_Ptr (Int (Loc) + J));
10381 return;
10382 end if;
10383 end loop;
10385 -- If the root type is not a standard character, then we will convert
10386 -- the string into an aggregate and will let the aggregate code do
10387 -- the checking. Standard Wide_Wide_Character is also OK here.
10389 else
10390 null;
10391 end if;
10393 -- See if the component type of the array corresponding to the string
10394 -- has compile time known bounds. If yes we can directly check
10395 -- whether the evaluation of the string will raise constraint error.
10396 -- Otherwise we need to transform the string literal into the
10397 -- corresponding character aggregate and let the aggregate code do
10398 -- the checking.
10400 if Is_Standard_Character_Type (R_Typ) then
10402 -- Check for the case of full range, where we are definitely OK
10404 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10405 return;
10406 end if;
10408 -- Here the range is not the complete base type range, so check
10410 declare
10411 Comp_Typ_Lo : constant Node_Id :=
10412 Type_Low_Bound (Component_Type (Typ));
10413 Comp_Typ_Hi : constant Node_Id :=
10414 Type_High_Bound (Component_Type (Typ));
10416 Char_Val : Uint;
10418 begin
10419 if Compile_Time_Known_Value (Comp_Typ_Lo)
10420 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10421 then
10422 for J in 1 .. Strlen loop
10423 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10425 if Char_Val < Expr_Value (Comp_Typ_Lo)
10426 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10427 then
10428 Apply_Compile_Time_Constraint_Error
10429 (N, "character out of range??",
10430 CE_Range_Check_Failed,
10431 Loc => Source_Ptr (Int (Loc) + J));
10432 end if;
10433 end loop;
10435 return;
10436 end if;
10437 end;
10438 end if;
10439 end if;
10441 -- If we got here we meed to transform the string literal into the
10442 -- equivalent qualified positional array aggregate. This is rather
10443 -- heavy artillery for this situation, but it is hard work to avoid.
10445 declare
10446 Lits : constant List_Id := New_List;
10447 P : Source_Ptr := Loc + 1;
10448 C : Char_Code;
10450 begin
10451 -- Build the character literals, we give them source locations that
10452 -- correspond to the string positions, which is a bit tricky given
10453 -- the possible presence of wide character escape sequences.
10455 for J in 1 .. Strlen loop
10456 C := Get_String_Char (Str, J);
10457 Set_Character_Literal_Name (C);
10459 Append_To (Lits,
10460 Make_Character_Literal (P,
10461 Chars => Name_Find,
10462 Char_Literal_Value => UI_From_CC (C)));
10464 if In_Character_Range (C) then
10465 P := P + 1;
10467 -- Should we have a call to Skip_Wide here ???
10469 -- ??? else
10470 -- Skip_Wide (P);
10472 end if;
10473 end loop;
10475 Rewrite (N,
10476 Make_Qualified_Expression (Loc,
10477 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10478 Expression =>
10479 Make_Aggregate (Loc, Expressions => Lits)));
10481 Analyze_And_Resolve (N, Typ);
10482 end;
10483 end Resolve_String_Literal;
10485 -----------------------------
10486 -- Resolve_Type_Conversion --
10487 -----------------------------
10489 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10490 Conv_OK : constant Boolean := Conversion_OK (N);
10491 Operand : constant Node_Id := Expression (N);
10492 Operand_Typ : constant Entity_Id := Etype (Operand);
10493 Target_Typ : constant Entity_Id := Etype (N);
10494 Rop : Node_Id;
10495 Orig_N : Node_Id;
10496 Orig_T : Node_Id;
10498 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10499 -- Set to False to suppress cases where we want to suppress the test
10500 -- for redundancy to avoid possible false positives on this warning.
10502 begin
10503 if not Conv_OK
10504 and then not Valid_Conversion (N, Target_Typ, Operand)
10505 then
10506 return;
10507 end if;
10509 -- If the Operand Etype is Universal_Fixed, then the conversion is
10510 -- never redundant. We need this check because by the time we have
10511 -- finished the rather complex transformation, the conversion looks
10512 -- redundant when it is not.
10514 if Operand_Typ = Universal_Fixed then
10515 Test_Redundant := False;
10517 -- If the operand is marked as Any_Fixed, then special processing is
10518 -- required. This is also a case where we suppress the test for a
10519 -- redundant conversion, since most certainly it is not redundant.
10521 elsif Operand_Typ = Any_Fixed then
10522 Test_Redundant := False;
10524 -- Mixed-mode operation involving a literal. Context must be a fixed
10525 -- type which is applied to the literal subsequently.
10527 if Is_Fixed_Point_Type (Typ) then
10528 Set_Etype (Operand, Universal_Real);
10530 elsif Is_Numeric_Type (Typ)
10531 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10532 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10533 or else
10534 Etype (Left_Opnd (Operand)) = Universal_Real)
10535 then
10536 -- Return if expression is ambiguous
10538 if Unique_Fixed_Point_Type (N) = Any_Type then
10539 return;
10541 -- If nothing else, the available fixed type is Duration
10543 else
10544 Set_Etype (Operand, Standard_Duration);
10545 end if;
10547 -- Resolve the real operand with largest available precision
10549 if Etype (Right_Opnd (Operand)) = Universal_Real then
10550 Rop := New_Copy_Tree (Right_Opnd (Operand));
10551 else
10552 Rop := New_Copy_Tree (Left_Opnd (Operand));
10553 end if;
10555 Resolve (Rop, Universal_Real);
10557 -- If the operand is a literal (it could be a non-static and
10558 -- illegal exponentiation) check whether the use of Duration
10559 -- is potentially inaccurate.
10561 if Nkind (Rop) = N_Real_Literal
10562 and then Realval (Rop) /= Ureal_0
10563 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10564 then
10565 Error_Msg_N
10566 ("??universal real operand can only "
10567 & "be interpreted as Duration!", Rop);
10568 Error_Msg_N
10569 ("\??precision will be lost in the conversion!", Rop);
10570 end if;
10572 elsif Is_Numeric_Type (Typ)
10573 and then Nkind (Operand) in N_Op
10574 and then Unique_Fixed_Point_Type (N) /= Any_Type
10575 then
10576 Set_Etype (Operand, Standard_Duration);
10578 else
10579 Error_Msg_N ("invalid context for mixed mode operation", N);
10580 Set_Etype (Operand, Any_Type);
10581 return;
10582 end if;
10583 end if;
10585 Resolve (Operand);
10587 -- In SPARK, a type conversion between array types should be restricted
10588 -- to types which have matching static bounds.
10590 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10591 -- operation if not needed.
10593 if Restriction_Check_Required (SPARK_05)
10594 and then Is_Array_Type (Target_Typ)
10595 and then Is_Array_Type (Operand_Typ)
10596 and then Operand_Typ /= Any_Composite -- or else Operand in error
10597 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10598 then
10599 Check_SPARK_05_Restriction
10600 ("array types should have matching static bounds", N);
10601 end if;
10603 -- In formal mode, the operand of an ancestor type conversion must be an
10604 -- object (not an expression).
10606 if Is_Tagged_Type (Target_Typ)
10607 and then not Is_Class_Wide_Type (Target_Typ)
10608 and then Is_Tagged_Type (Operand_Typ)
10609 and then not Is_Class_Wide_Type (Operand_Typ)
10610 and then Is_Ancestor (Target_Typ, Operand_Typ)
10611 and then not Is_SPARK_05_Object_Reference (Operand)
10612 then
10613 Check_SPARK_05_Restriction ("object required", Operand);
10614 end if;
10616 Analyze_Dimension (N);
10618 -- Note: we do the Eval_Type_Conversion call before applying the
10619 -- required checks for a subtype conversion. This is important, since
10620 -- both are prepared under certain circumstances to change the type
10621 -- conversion to a constraint error node, but in the case of
10622 -- Eval_Type_Conversion this may reflect an illegality in the static
10623 -- case, and we would miss the illegality (getting only a warning
10624 -- message), if we applied the type conversion checks first.
10626 Eval_Type_Conversion (N);
10628 -- Even when evaluation is not possible, we may be able to simplify the
10629 -- conversion or its expression. This needs to be done before applying
10630 -- checks, since otherwise the checks may use the original expression
10631 -- and defeat the simplifications. This is specifically the case for
10632 -- elimination of the floating-point Truncation attribute in
10633 -- float-to-int conversions.
10635 Simplify_Type_Conversion (N);
10637 -- If after evaluation we still have a type conversion, then we may need
10638 -- to apply checks required for a subtype conversion.
10640 -- Skip these type conversion checks if universal fixed operands
10641 -- operands involved, since range checks are handled separately for
10642 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10644 if Nkind (N) = N_Type_Conversion
10645 and then not Is_Generic_Type (Root_Type (Target_Typ))
10646 and then Target_Typ /= Universal_Fixed
10647 and then Operand_Typ /= Universal_Fixed
10648 then
10649 Apply_Type_Conversion_Checks (N);
10650 end if;
10652 -- Issue warning for conversion of simple object to its own type. We
10653 -- have to test the original nodes, since they may have been rewritten
10654 -- by various optimizations.
10656 Orig_N := Original_Node (N);
10658 -- Here we test for a redundant conversion if the warning mode is
10659 -- active (and was not locally reset), and we have a type conversion
10660 -- from source not appearing in a generic instance.
10662 if Test_Redundant
10663 and then Nkind (Orig_N) = N_Type_Conversion
10664 and then Comes_From_Source (Orig_N)
10665 and then not In_Instance
10666 then
10667 Orig_N := Original_Node (Expression (Orig_N));
10668 Orig_T := Target_Typ;
10670 -- If the node is part of a larger expression, the Target_Type
10671 -- may not be the original type of the node if the context is a
10672 -- condition. Recover original type to see if conversion is needed.
10674 if Is_Boolean_Type (Orig_T)
10675 and then Nkind (Parent (N)) in N_Op
10676 then
10677 Orig_T := Etype (Parent (N));
10678 end if;
10680 -- If we have an entity name, then give the warning if the entity
10681 -- is the right type, or if it is a loop parameter covered by the
10682 -- original type (that's needed because loop parameters have an
10683 -- odd subtype coming from the bounds).
10685 if (Is_Entity_Name (Orig_N)
10686 and then
10687 (Etype (Entity (Orig_N)) = Orig_T
10688 or else
10689 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10690 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10692 -- If not an entity, then type of expression must match
10694 or else Etype (Orig_N) = Orig_T
10695 then
10696 -- One more check, do not give warning if the analyzed conversion
10697 -- has an expression with non-static bounds, and the bounds of the
10698 -- target are static. This avoids junk warnings in cases where the
10699 -- conversion is necessary to establish staticness, for example in
10700 -- a case statement.
10702 if not Is_OK_Static_Subtype (Operand_Typ)
10703 and then Is_OK_Static_Subtype (Target_Typ)
10704 then
10705 null;
10707 -- Finally, if this type conversion occurs in a context requiring
10708 -- a prefix, and the expression is a qualified expression then the
10709 -- type conversion is not redundant, since a qualified expression
10710 -- is not a prefix, whereas a type conversion is. For example, "X
10711 -- := T'(Funx(...)).Y;" is illegal because a selected component
10712 -- requires a prefix, but a type conversion makes it legal: "X :=
10713 -- T(T'(Funx(...))).Y;"
10715 -- In Ada 2012, a qualified expression is a name, so this idiom is
10716 -- no longer needed, but we still suppress the warning because it
10717 -- seems unfriendly for warnings to pop up when you switch to the
10718 -- newer language version.
10720 elsif Nkind (Orig_N) = N_Qualified_Expression
10721 and then Nkind_In (Parent (N), N_Attribute_Reference,
10722 N_Indexed_Component,
10723 N_Selected_Component,
10724 N_Slice,
10725 N_Explicit_Dereference)
10726 then
10727 null;
10729 -- Never warn on conversion to Long_Long_Integer'Base since
10730 -- that is most likely an artifact of the extended overflow
10731 -- checking and comes from complex expanded code.
10733 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10734 null;
10736 -- Here we give the redundant conversion warning. If it is an
10737 -- entity, give the name of the entity in the message. If not,
10738 -- just mention the expression.
10740 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10742 else
10743 if Is_Entity_Name (Orig_N) then
10744 Error_Msg_Node_2 := Orig_T;
10745 Error_Msg_NE -- CODEFIX
10746 ("??redundant conversion, & is of type &!",
10747 N, Entity (Orig_N));
10748 else
10749 Error_Msg_NE
10750 ("??redundant conversion, expression is of type&!",
10751 N, Orig_T);
10752 end if;
10753 end if;
10754 end if;
10755 end if;
10757 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10758 -- No need to perform any interface conversion if the type of the
10759 -- expression coincides with the target type.
10761 if Ada_Version >= Ada_2005
10762 and then Expander_Active
10763 and then Operand_Typ /= Target_Typ
10764 then
10765 declare
10766 Opnd : Entity_Id := Operand_Typ;
10767 Target : Entity_Id := Target_Typ;
10769 begin
10770 -- If the type of the operand is a limited view, use nonlimited
10771 -- view when available. If it is a class-wide type, recover the
10772 -- class-wide type of the nonlimited view.
10774 if From_Limited_With (Opnd)
10775 and then Has_Non_Limited_View (Opnd)
10776 then
10777 Opnd := Non_Limited_View (Opnd);
10778 Set_Etype (Expression (N), Opnd);
10779 end if;
10781 if Is_Access_Type (Opnd) then
10782 Opnd := Designated_Type (Opnd);
10783 end if;
10785 if Is_Access_Type (Target_Typ) then
10786 Target := Designated_Type (Target);
10787 end if;
10789 if Opnd = Target then
10790 null;
10792 -- Conversion from interface type
10794 elsif Is_Interface (Opnd) then
10796 -- Ada 2005 (AI-217): Handle entities from limited views
10798 if From_Limited_With (Opnd) then
10799 Error_Msg_Qual_Level := 99;
10800 Error_Msg_NE -- CODEFIX
10801 ("missing WITH clause on package &", N,
10802 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10803 Error_Msg_N
10804 ("type conversions require visibility of the full view",
10807 elsif From_Limited_With (Target)
10808 and then not
10809 (Is_Access_Type (Target_Typ)
10810 and then Present (Non_Limited_View (Etype (Target))))
10811 then
10812 Error_Msg_Qual_Level := 99;
10813 Error_Msg_NE -- CODEFIX
10814 ("missing WITH clause on package &", N,
10815 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10816 Error_Msg_N
10817 ("type conversions require visibility of the full view",
10820 else
10821 Expand_Interface_Conversion (N);
10822 end if;
10824 -- Conversion to interface type
10826 elsif Is_Interface (Target) then
10828 -- Handle subtypes
10830 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
10831 Opnd := Etype (Opnd);
10832 end if;
10834 if Is_Class_Wide_Type (Opnd)
10835 or else Interface_Present_In_Ancestor
10836 (Typ => Opnd,
10837 Iface => Target)
10838 then
10839 Expand_Interface_Conversion (N);
10840 else
10841 Error_Msg_Name_1 := Chars (Etype (Target));
10842 Error_Msg_Name_2 := Chars (Opnd);
10843 Error_Msg_N
10844 ("wrong interface conversion (% is not a progenitor "
10845 & "of %)", N);
10846 end if;
10847 end if;
10848 end;
10849 end if;
10851 -- Ada 2012: if target type has predicates, the result requires a
10852 -- predicate check. If the context is a call to another predicate
10853 -- check we must prevent infinite recursion.
10855 if Has_Predicates (Target_Typ) then
10856 if Nkind (Parent (N)) = N_Function_Call
10857 and then Present (Name (Parent (N)))
10858 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
10859 or else
10860 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
10861 then
10862 null;
10864 else
10865 Apply_Predicate_Check (N, Target_Typ);
10866 end if;
10867 end if;
10869 -- If at this stage we have a real to integer conversion, make sure
10870 -- that the Do_Range_Check flag is set, because such conversions in
10871 -- general need a range check. We only need this if expansion is off
10872 -- or we are in GNATProve mode.
10874 if Nkind (N) = N_Type_Conversion
10875 and then (GNATprove_Mode or not Expander_Active)
10876 and then Is_Integer_Type (Target_Typ)
10877 and then Is_Real_Type (Operand_Typ)
10878 then
10879 Set_Do_Range_Check (Operand);
10880 end if;
10881 end Resolve_Type_Conversion;
10883 ----------------------
10884 -- Resolve_Unary_Op --
10885 ----------------------
10887 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
10888 B_Typ : constant Entity_Id := Base_Type (Typ);
10889 R : constant Node_Id := Right_Opnd (N);
10890 OK : Boolean;
10891 Lo : Uint;
10892 Hi : Uint;
10894 begin
10895 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
10896 Error_Msg_Name_1 := Chars (Typ);
10897 Check_SPARK_05_Restriction
10898 ("unary operator not defined for modular type%", N);
10899 end if;
10901 -- Deal with intrinsic unary operators
10903 if Comes_From_Source (N)
10904 and then Ekind (Entity (N)) = E_Function
10905 and then Is_Imported (Entity (N))
10906 and then Is_Intrinsic_Subprogram (Entity (N))
10907 then
10908 Resolve_Intrinsic_Unary_Operator (N, Typ);
10909 return;
10910 end if;
10912 -- Deal with universal cases
10914 if Etype (R) = Universal_Integer
10915 or else
10916 Etype (R) = Universal_Real
10917 then
10918 Check_For_Visible_Operator (N, B_Typ);
10919 end if;
10921 Set_Etype (N, B_Typ);
10922 Resolve (R, B_Typ);
10924 -- Generate warning for expressions like abs (x mod 2)
10926 if Warn_On_Redundant_Constructs
10927 and then Nkind (N) = N_Op_Abs
10928 then
10929 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
10931 if OK and then Hi >= Lo and then Lo >= 0 then
10932 Error_Msg_N -- CODEFIX
10933 ("?r?abs applied to known non-negative value has no effect", N);
10934 end if;
10935 end if;
10937 -- Deal with reference generation
10939 Check_Unset_Reference (R);
10940 Generate_Operator_Reference (N, B_Typ);
10941 Analyze_Dimension (N);
10942 Eval_Unary_Op (N);
10944 -- Set overflow checking bit. Much cleverer code needed here eventually
10945 -- and perhaps the Resolve routines should be separated for the various
10946 -- arithmetic operations, since they will need different processing ???
10948 if Nkind (N) in N_Op then
10949 if not Overflow_Checks_Suppressed (Etype (N)) then
10950 Enable_Overflow_Check (N);
10951 end if;
10952 end if;
10954 -- Generate warning for expressions like -5 mod 3 for integers. No need
10955 -- to worry in the floating-point case, since parens do not affect the
10956 -- result so there is no point in giving in a warning.
10958 declare
10959 Norig : constant Node_Id := Original_Node (N);
10960 Rorig : Node_Id;
10961 Val : Uint;
10962 HB : Uint;
10963 LB : Uint;
10964 Lval : Uint;
10965 Opnd : Node_Id;
10967 begin
10968 if Warn_On_Questionable_Missing_Parens
10969 and then Comes_From_Source (Norig)
10970 and then Is_Integer_Type (Typ)
10971 and then Nkind (Norig) = N_Op_Minus
10972 then
10973 Rorig := Original_Node (Right_Opnd (Norig));
10975 -- We are looking for cases where the right operand is not
10976 -- parenthesized, and is a binary operator, multiply, divide, or
10977 -- mod. These are the cases where the grouping can affect results.
10979 if Paren_Count (Rorig) = 0
10980 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
10981 then
10982 -- For mod, we always give the warning, since the value is
10983 -- affected by the parenthesization (e.g. (-5) mod 315 /=
10984 -- -(5 mod 315)). But for the other cases, the only concern is
10985 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
10986 -- overflows, but (-2) * 64 does not). So we try to give the
10987 -- message only when overflow is possible.
10989 if Nkind (Rorig) /= N_Op_Mod
10990 and then Compile_Time_Known_Value (R)
10991 then
10992 Val := Expr_Value (R);
10994 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
10995 HB := Expr_Value (Type_High_Bound (Typ));
10996 else
10997 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
10998 end if;
11000 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11001 LB := Expr_Value (Type_Low_Bound (Typ));
11002 else
11003 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11004 end if;
11006 -- Note that the test below is deliberately excluding the
11007 -- largest negative number, since that is a potentially
11008 -- troublesome case (e.g. -2 * x, where the result is the
11009 -- largest negative integer has an overflow with 2 * x).
11011 if Val > LB and then Val <= HB then
11012 return;
11013 end if;
11014 end if;
11016 -- For the multiplication case, the only case we have to worry
11017 -- about is when (-a)*b is exactly the largest negative number
11018 -- so that -(a*b) can cause overflow. This can only happen if
11019 -- a is a power of 2, and more generally if any operand is a
11020 -- constant that is not a power of 2, then the parentheses
11021 -- cannot affect whether overflow occurs. We only bother to
11022 -- test the left most operand
11024 -- Loop looking at left operands for one that has known value
11026 Opnd := Rorig;
11027 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11028 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11029 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11031 -- Operand value of 0 or 1 skips warning
11033 if Lval <= 1 then
11034 return;
11036 -- Otherwise check power of 2, if power of 2, warn, if
11037 -- anything else, skip warning.
11039 else
11040 while Lval /= 2 loop
11041 if Lval mod 2 = 1 then
11042 return;
11043 else
11044 Lval := Lval / 2;
11045 end if;
11046 end loop;
11048 exit Opnd_Loop;
11049 end if;
11050 end if;
11052 -- Keep looking at left operands
11054 Opnd := Left_Opnd (Opnd);
11055 end loop Opnd_Loop;
11057 -- For rem or "/" we can only have a problematic situation
11058 -- if the divisor has a value of minus one or one. Otherwise
11059 -- overflow is impossible (divisor > 1) or we have a case of
11060 -- division by zero in any case.
11062 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11063 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11064 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11065 then
11066 return;
11067 end if;
11069 -- If we fall through warning should be issued
11071 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11073 Error_Msg_N
11074 ("??unary minus expression should be parenthesized here!", N);
11075 end if;
11076 end if;
11077 end;
11078 end Resolve_Unary_Op;
11080 ----------------------------------
11081 -- Resolve_Unchecked_Expression --
11082 ----------------------------------
11084 procedure Resolve_Unchecked_Expression
11085 (N : Node_Id;
11086 Typ : Entity_Id)
11088 begin
11089 Resolve (Expression (N), Typ, Suppress => All_Checks);
11090 Set_Etype (N, Typ);
11091 end Resolve_Unchecked_Expression;
11093 ---------------------------------------
11094 -- Resolve_Unchecked_Type_Conversion --
11095 ---------------------------------------
11097 procedure Resolve_Unchecked_Type_Conversion
11098 (N : Node_Id;
11099 Typ : Entity_Id)
11101 pragma Warnings (Off, Typ);
11103 Operand : constant Node_Id := Expression (N);
11104 Opnd_Type : constant Entity_Id := Etype (Operand);
11106 begin
11107 -- Resolve operand using its own type
11109 Resolve (Operand, Opnd_Type);
11111 -- In an inlined context, the unchecked conversion may be applied
11112 -- to a literal, in which case its type is the type of the context.
11113 -- (In other contexts conversions cannot apply to literals).
11115 if In_Inlined_Body
11116 and then (Opnd_Type = Any_Character or else
11117 Opnd_Type = Any_Integer or else
11118 Opnd_Type = Any_Real)
11119 then
11120 Set_Etype (Operand, Typ);
11121 end if;
11123 Analyze_Dimension (N);
11124 Eval_Unchecked_Conversion (N);
11125 end Resolve_Unchecked_Type_Conversion;
11127 ------------------------------
11128 -- Rewrite_Operator_As_Call --
11129 ------------------------------
11131 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11132 Loc : constant Source_Ptr := Sloc (N);
11133 Actuals : constant List_Id := New_List;
11134 New_N : Node_Id;
11136 begin
11137 if Nkind (N) in N_Binary_Op then
11138 Append (Left_Opnd (N), Actuals);
11139 end if;
11141 Append (Right_Opnd (N), Actuals);
11143 New_N :=
11144 Make_Function_Call (Sloc => Loc,
11145 Name => New_Occurrence_Of (Nam, Loc),
11146 Parameter_Associations => Actuals);
11148 Preserve_Comes_From_Source (New_N, N);
11149 Preserve_Comes_From_Source (Name (New_N), N);
11150 Rewrite (N, New_N);
11151 Set_Etype (N, Etype (Nam));
11152 end Rewrite_Operator_As_Call;
11154 ------------------------------
11155 -- Rewrite_Renamed_Operator --
11156 ------------------------------
11158 procedure Rewrite_Renamed_Operator
11159 (N : Node_Id;
11160 Op : Entity_Id;
11161 Typ : Entity_Id)
11163 Nam : constant Name_Id := Chars (Op);
11164 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11165 Op_Node : Node_Id;
11167 begin
11168 -- Do not perform this transformation within a pre/postcondition,
11169 -- because the expression will be re-analyzed, and the transformation
11170 -- might affect the visibility of the operator, e.g. in an instance.
11172 if In_Assertion_Expr > 0 then
11173 return;
11174 end if;
11176 -- Rewrite the operator node using the real operator, not its renaming.
11177 -- Exclude user-defined intrinsic operations of the same name, which are
11178 -- treated separately and rewritten as calls.
11180 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11181 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11182 Set_Chars (Op_Node, Nam);
11183 Set_Etype (Op_Node, Etype (N));
11184 Set_Entity (Op_Node, Op);
11185 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11187 -- Indicate that both the original entity and its renaming are
11188 -- referenced at this point.
11190 Generate_Reference (Entity (N), N);
11191 Generate_Reference (Op, N);
11193 if Is_Binary then
11194 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11195 end if;
11197 Rewrite (N, Op_Node);
11199 -- If the context type is private, add the appropriate conversions so
11200 -- that the operator is applied to the full view. This is done in the
11201 -- routines that resolve intrinsic operators.
11203 if Is_Intrinsic_Subprogram (Op)
11204 and then Is_Private_Type (Typ)
11205 then
11206 case Nkind (N) is
11207 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11208 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
11209 Resolve_Intrinsic_Operator (N, Typ);
11211 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
11212 Resolve_Intrinsic_Unary_Operator (N, Typ);
11214 when others =>
11215 Resolve (N, Typ);
11216 end case;
11217 end if;
11219 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11221 -- Operator renames a user-defined operator of the same name. Use the
11222 -- original operator in the node, which is the one Gigi knows about.
11224 Set_Entity (N, Op);
11225 Set_Is_Overloaded (N, False);
11226 end if;
11227 end Rewrite_Renamed_Operator;
11229 -----------------------
11230 -- Set_Slice_Subtype --
11231 -----------------------
11233 -- Build an implicit subtype declaration to represent the type delivered by
11234 -- the slice. This is an abbreviated version of an array subtype. We define
11235 -- an index subtype for the slice, using either the subtype name or the
11236 -- discrete range of the slice. To be consistent with index usage elsewhere
11237 -- we create a list header to hold the single index. This list is not
11238 -- otherwise attached to the syntax tree.
11240 procedure Set_Slice_Subtype (N : Node_Id) is
11241 Loc : constant Source_Ptr := Sloc (N);
11242 Index_List : constant List_Id := New_List;
11243 Index : Node_Id;
11244 Index_Subtype : Entity_Id;
11245 Index_Type : Entity_Id;
11246 Slice_Subtype : Entity_Id;
11247 Drange : constant Node_Id := Discrete_Range (N);
11249 begin
11250 Index_Type := Base_Type (Etype (Drange));
11252 if Is_Entity_Name (Drange) then
11253 Index_Subtype := Entity (Drange);
11255 else
11256 -- We force the evaluation of a range. This is definitely needed in
11257 -- the renamed case, and seems safer to do unconditionally. Note in
11258 -- any case that since we will create and insert an Itype referring
11259 -- to this range, we must make sure any side effect removal actions
11260 -- are inserted before the Itype definition.
11262 if Nkind (Drange) = N_Range then
11263 Force_Evaluation (Low_Bound (Drange));
11264 Force_Evaluation (High_Bound (Drange));
11266 -- If the discrete range is given by a subtype indication, the
11267 -- type of the slice is the base of the subtype mark.
11269 elsif Nkind (Drange) = N_Subtype_Indication then
11270 declare
11271 R : constant Node_Id := Range_Expression (Constraint (Drange));
11272 begin
11273 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11274 Force_Evaluation (Low_Bound (R));
11275 Force_Evaluation (High_Bound (R));
11276 end;
11277 end if;
11279 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11281 -- Take a new copy of Drange (where bounds have been rewritten to
11282 -- reference side-effect-free names). Using a separate tree ensures
11283 -- that further expansion (e.g. while rewriting a slice assignment
11284 -- into a FOR loop) does not attempt to remove side effects on the
11285 -- bounds again (which would cause the bounds in the index subtype
11286 -- definition to refer to temporaries before they are defined) (the
11287 -- reason is that some names are considered side effect free here
11288 -- for the subtype, but not in the context of a loop iteration
11289 -- scheme).
11291 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11292 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11293 Set_Etype (Index_Subtype, Index_Type);
11294 Set_Size_Info (Index_Subtype, Index_Type);
11295 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11296 end if;
11298 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11300 Index := New_Occurrence_Of (Index_Subtype, Loc);
11301 Set_Etype (Index, Index_Subtype);
11302 Append (Index, Index_List);
11304 Set_First_Index (Slice_Subtype, Index);
11305 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11306 Set_Is_Constrained (Slice_Subtype, True);
11308 Check_Compile_Time_Size (Slice_Subtype);
11310 -- The Etype of the existing Slice node is reset to this slice subtype.
11311 -- Its bounds are obtained from its first index.
11313 Set_Etype (N, Slice_Subtype);
11315 -- For packed slice subtypes, freeze immediately (except in the case of
11316 -- being in a "spec expression" where we never freeze when we first see
11317 -- the expression).
11319 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
11320 Freeze_Itype (Slice_Subtype, N);
11322 -- For all other cases insert an itype reference in the slice's actions
11323 -- so that the itype is frozen at the proper place in the tree (i.e. at
11324 -- the point where actions for the slice are analyzed). Note that this
11325 -- is different from freezing the itype immediately, which might be
11326 -- premature (e.g. if the slice is within a transient scope). This needs
11327 -- to be done only if expansion is enabled.
11329 elsif Expander_Active then
11330 Ensure_Defined (Typ => Slice_Subtype, N => N);
11331 end if;
11332 end Set_Slice_Subtype;
11334 --------------------------------
11335 -- Set_String_Literal_Subtype --
11336 --------------------------------
11338 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11339 Loc : constant Source_Ptr := Sloc (N);
11340 Low_Bound : constant Node_Id :=
11341 Type_Low_Bound (Etype (First_Index (Typ)));
11342 Subtype_Id : Entity_Id;
11344 begin
11345 if Nkind (N) /= N_String_Literal then
11346 return;
11347 end if;
11349 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11350 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11351 (String_Length (Strval (N))));
11352 Set_Etype (Subtype_Id, Base_Type (Typ));
11353 Set_Is_Constrained (Subtype_Id);
11354 Set_Etype (N, Subtype_Id);
11356 -- The low bound is set from the low bound of the corresponding index
11357 -- type. Note that we do not store the high bound in the string literal
11358 -- subtype, but it can be deduced if necessary from the length and the
11359 -- low bound.
11361 if Is_OK_Static_Expression (Low_Bound) then
11362 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11364 -- If the lower bound is not static we create a range for the string
11365 -- literal, using the index type and the known length of the literal.
11366 -- The index type is not necessarily Positive, so the upper bound is
11367 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11369 else
11370 declare
11371 Index_List : constant List_Id := New_List;
11372 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11373 High_Bound : constant Node_Id :=
11374 Make_Attribute_Reference (Loc,
11375 Attribute_Name => Name_Val,
11376 Prefix =>
11377 New_Occurrence_Of (Index_Type, Loc),
11378 Expressions => New_List (
11379 Make_Op_Add (Loc,
11380 Left_Opnd =>
11381 Make_Attribute_Reference (Loc,
11382 Attribute_Name => Name_Pos,
11383 Prefix =>
11384 New_Occurrence_Of (Index_Type, Loc),
11385 Expressions =>
11386 New_List (New_Copy_Tree (Low_Bound))),
11387 Right_Opnd =>
11388 Make_Integer_Literal (Loc,
11389 String_Length (Strval (N)) - 1))));
11391 Array_Subtype : Entity_Id;
11392 Drange : Node_Id;
11393 Index : Node_Id;
11394 Index_Subtype : Entity_Id;
11396 begin
11397 if Is_Integer_Type (Index_Type) then
11398 Set_String_Literal_Low_Bound
11399 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11401 else
11402 -- If the index type is an enumeration type, build bounds
11403 -- expression with attributes.
11405 Set_String_Literal_Low_Bound
11406 (Subtype_Id,
11407 Make_Attribute_Reference (Loc,
11408 Attribute_Name => Name_First,
11409 Prefix =>
11410 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11411 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11412 end if;
11414 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11416 -- Build bona fide subtype for the string, and wrap it in an
11417 -- unchecked conversion, because the backend expects the
11418 -- String_Literal_Subtype to have a static lower bound.
11420 Index_Subtype :=
11421 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11422 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11423 Set_Scalar_Range (Index_Subtype, Drange);
11424 Set_Parent (Drange, N);
11425 Analyze_And_Resolve (Drange, Index_Type);
11427 -- In the context, the Index_Type may already have a constraint,
11428 -- so use common base type on string subtype. The base type may
11429 -- be used when generating attributes of the string, for example
11430 -- in the context of a slice assignment.
11432 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11433 Set_Size_Info (Index_Subtype, Index_Type);
11434 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11436 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11438 Index := New_Occurrence_Of (Index_Subtype, Loc);
11439 Set_Etype (Index, Index_Subtype);
11440 Append (Index, Index_List);
11442 Set_First_Index (Array_Subtype, Index);
11443 Set_Etype (Array_Subtype, Base_Type (Typ));
11444 Set_Is_Constrained (Array_Subtype, True);
11446 Rewrite (N,
11447 Make_Unchecked_Type_Conversion (Loc,
11448 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11449 Expression => Relocate_Node (N)));
11450 Set_Etype (N, Array_Subtype);
11451 end;
11452 end if;
11453 end Set_String_Literal_Subtype;
11455 ------------------------------
11456 -- Simplify_Type_Conversion --
11457 ------------------------------
11459 procedure Simplify_Type_Conversion (N : Node_Id) is
11460 begin
11461 if Nkind (N) = N_Type_Conversion then
11462 declare
11463 Operand : constant Node_Id := Expression (N);
11464 Target_Typ : constant Entity_Id := Etype (N);
11465 Opnd_Typ : constant Entity_Id := Etype (Operand);
11467 begin
11468 -- Special processing if the conversion is the expression of a
11469 -- Rounding or Truncation attribute reference. In this case we
11470 -- replace:
11472 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11474 -- by
11476 -- ityp (x)
11478 -- with the Float_Truncate flag set to False or True respectively,
11479 -- which is more efficient.
11481 if Is_Floating_Point_Type (Opnd_Typ)
11482 and then
11483 (Is_Integer_Type (Target_Typ)
11484 or else (Is_Fixed_Point_Type (Target_Typ)
11485 and then Conversion_OK (N)))
11486 and then Nkind (Operand) = N_Attribute_Reference
11487 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11488 Name_Truncation)
11489 then
11490 declare
11491 Truncate : constant Boolean :=
11492 Attribute_Name (Operand) = Name_Truncation;
11493 begin
11494 Rewrite (Operand,
11495 Relocate_Node (First (Expressions (Operand))));
11496 Set_Float_Truncate (N, Truncate);
11497 end;
11498 end if;
11499 end;
11500 end if;
11501 end Simplify_Type_Conversion;
11503 -----------------------------
11504 -- Unique_Fixed_Point_Type --
11505 -----------------------------
11507 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11508 T1 : Entity_Id := Empty;
11509 T2 : Entity_Id;
11510 Item : Node_Id;
11511 Scop : Entity_Id;
11513 procedure Fixed_Point_Error;
11514 -- Give error messages for true ambiguity. Messages are posted on node
11515 -- N, and entities T1, T2 are the possible interpretations.
11517 -----------------------
11518 -- Fixed_Point_Error --
11519 -----------------------
11521 procedure Fixed_Point_Error is
11522 begin
11523 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11524 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11525 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11526 end Fixed_Point_Error;
11528 -- Start of processing for Unique_Fixed_Point_Type
11530 begin
11531 -- The operations on Duration are visible, so Duration is always a
11532 -- possible interpretation.
11534 T1 := Standard_Duration;
11536 -- Look for fixed-point types in enclosing scopes
11538 Scop := Current_Scope;
11539 while Scop /= Standard_Standard loop
11540 T2 := First_Entity (Scop);
11541 while Present (T2) loop
11542 if Is_Fixed_Point_Type (T2)
11543 and then Current_Entity (T2) = T2
11544 and then Scope (Base_Type (T2)) = Scop
11545 then
11546 if Present (T1) then
11547 Fixed_Point_Error;
11548 return Any_Type;
11549 else
11550 T1 := T2;
11551 end if;
11552 end if;
11554 Next_Entity (T2);
11555 end loop;
11557 Scop := Scope (Scop);
11558 end loop;
11560 -- Look for visible fixed type declarations in the context
11562 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11563 while Present (Item) loop
11564 if Nkind (Item) = N_With_Clause then
11565 Scop := Entity (Name (Item));
11566 T2 := First_Entity (Scop);
11567 while Present (T2) loop
11568 if Is_Fixed_Point_Type (T2)
11569 and then Scope (Base_Type (T2)) = Scop
11570 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11571 then
11572 if Present (T1) then
11573 Fixed_Point_Error;
11574 return Any_Type;
11575 else
11576 T1 := T2;
11577 end if;
11578 end if;
11580 Next_Entity (T2);
11581 end loop;
11582 end if;
11584 Next (Item);
11585 end loop;
11587 if Nkind (N) = N_Real_Literal then
11588 Error_Msg_NE
11589 ("??real literal interpreted as }!", N, T1);
11590 else
11591 Error_Msg_NE
11592 ("??universal_fixed expression interpreted as }!", N, T1);
11593 end if;
11595 return T1;
11596 end Unique_Fixed_Point_Type;
11598 ----------------------
11599 -- Valid_Conversion --
11600 ----------------------
11602 function Valid_Conversion
11603 (N : Node_Id;
11604 Target : Entity_Id;
11605 Operand : Node_Id;
11606 Report_Errs : Boolean := True) return Boolean
11608 Target_Type : constant Entity_Id := Base_Type (Target);
11609 Opnd_Type : Entity_Id := Etype (Operand);
11610 Inc_Ancestor : Entity_Id;
11612 function Conversion_Check
11613 (Valid : Boolean;
11614 Msg : String) return Boolean;
11615 -- Little routine to post Msg if Valid is False, returns Valid value
11617 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11618 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11620 procedure Conversion_Error_NE
11621 (Msg : String;
11622 N : Node_Or_Entity_Id;
11623 E : Node_Or_Entity_Id);
11624 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11626 function Valid_Tagged_Conversion
11627 (Target_Type : Entity_Id;
11628 Opnd_Type : Entity_Id) return Boolean;
11629 -- Specifically test for validity of tagged conversions
11631 function Valid_Array_Conversion return Boolean;
11632 -- Check index and component conformance, and accessibility levels if
11633 -- the component types are anonymous access types (Ada 2005).
11635 ----------------------
11636 -- Conversion_Check --
11637 ----------------------
11639 function Conversion_Check
11640 (Valid : Boolean;
11641 Msg : String) return Boolean
11643 begin
11644 if not Valid
11646 -- A generic unit has already been analyzed and we have verified
11647 -- that a particular conversion is OK in that context. Since the
11648 -- instance is reanalyzed without relying on the relationships
11649 -- established during the analysis of the generic, it is possible
11650 -- to end up with inconsistent views of private types. Do not emit
11651 -- the error message in such cases. The rest of the machinery in
11652 -- Valid_Conversion still ensures the proper compatibility of
11653 -- target and operand types.
11655 and then not In_Instance
11656 then
11657 Conversion_Error_N (Msg, Operand);
11658 end if;
11660 return Valid;
11661 end Conversion_Check;
11663 ------------------------
11664 -- Conversion_Error_N --
11665 ------------------------
11667 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11668 begin
11669 if Report_Errs then
11670 Error_Msg_N (Msg, N);
11671 end if;
11672 end Conversion_Error_N;
11674 -------------------------
11675 -- Conversion_Error_NE --
11676 -------------------------
11678 procedure Conversion_Error_NE
11679 (Msg : String;
11680 N : Node_Or_Entity_Id;
11681 E : Node_Or_Entity_Id)
11683 begin
11684 if Report_Errs then
11685 Error_Msg_NE (Msg, N, E);
11686 end if;
11687 end Conversion_Error_NE;
11689 ----------------------------
11690 -- Valid_Array_Conversion --
11691 ----------------------------
11693 function Valid_Array_Conversion return Boolean
11695 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11696 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11698 Opnd_Index : Node_Id;
11699 Opnd_Index_Type : Entity_Id;
11701 Target_Comp_Type : constant Entity_Id :=
11702 Component_Type (Target_Type);
11703 Target_Comp_Base : constant Entity_Id :=
11704 Base_Type (Target_Comp_Type);
11706 Target_Index : Node_Id;
11707 Target_Index_Type : Entity_Id;
11709 begin
11710 -- Error if wrong number of dimensions
11713 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11714 then
11715 Conversion_Error_N
11716 ("incompatible number of dimensions for conversion", Operand);
11717 return False;
11719 -- Number of dimensions matches
11721 else
11722 -- Loop through indexes of the two arrays
11724 Target_Index := First_Index (Target_Type);
11725 Opnd_Index := First_Index (Opnd_Type);
11726 while Present (Target_Index) and then Present (Opnd_Index) loop
11727 Target_Index_Type := Etype (Target_Index);
11728 Opnd_Index_Type := Etype (Opnd_Index);
11730 -- Error if index types are incompatible
11732 if not (Is_Integer_Type (Target_Index_Type)
11733 and then Is_Integer_Type (Opnd_Index_Type))
11734 and then (Root_Type (Target_Index_Type)
11735 /= Root_Type (Opnd_Index_Type))
11736 then
11737 Conversion_Error_N
11738 ("incompatible index types for array conversion",
11739 Operand);
11740 return False;
11741 end if;
11743 Next_Index (Target_Index);
11744 Next_Index (Opnd_Index);
11745 end loop;
11747 -- If component types have same base type, all set
11749 if Target_Comp_Base = Opnd_Comp_Base then
11750 null;
11752 -- Here if base types of components are not the same. The only
11753 -- time this is allowed is if we have anonymous access types.
11755 -- The conversion of arrays of anonymous access types can lead
11756 -- to dangling pointers. AI-392 formalizes the accessibility
11757 -- checks that must be applied to such conversions to prevent
11758 -- out-of-scope references.
11760 elsif Ekind_In
11761 (Target_Comp_Base, E_Anonymous_Access_Type,
11762 E_Anonymous_Access_Subprogram_Type)
11763 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11764 and then
11765 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11766 then
11767 if Type_Access_Level (Target_Type) <
11768 Deepest_Type_Access_Level (Opnd_Type)
11769 then
11770 if In_Instance_Body then
11771 Error_Msg_Warn := SPARK_Mode /= On;
11772 Conversion_Error_N
11773 ("source array type has deeper accessibility "
11774 & "level than target<<", Operand);
11775 Conversion_Error_N ("\Program_Error [<<", Operand);
11776 Rewrite (N,
11777 Make_Raise_Program_Error (Sloc (N),
11778 Reason => PE_Accessibility_Check_Failed));
11779 Set_Etype (N, Target_Type);
11780 return False;
11782 -- Conversion not allowed because of accessibility levels
11784 else
11785 Conversion_Error_N
11786 ("source array type has deeper accessibility "
11787 & "level than target", Operand);
11788 return False;
11789 end if;
11791 else
11792 null;
11793 end if;
11795 -- All other cases where component base types do not match
11797 else
11798 Conversion_Error_N
11799 ("incompatible component types for array conversion",
11800 Operand);
11801 return False;
11802 end if;
11804 -- Check that component subtypes statically match. For numeric
11805 -- types this means that both must be either constrained or
11806 -- unconstrained. For enumeration types the bounds must match.
11807 -- All of this is checked in Subtypes_Statically_Match.
11809 if not Subtypes_Statically_Match
11810 (Target_Comp_Type, Opnd_Comp_Type)
11811 then
11812 Conversion_Error_N
11813 ("component subtypes must statically match", Operand);
11814 return False;
11815 end if;
11816 end if;
11818 return True;
11819 end Valid_Array_Conversion;
11821 -----------------------------
11822 -- Valid_Tagged_Conversion --
11823 -----------------------------
11825 function Valid_Tagged_Conversion
11826 (Target_Type : Entity_Id;
11827 Opnd_Type : Entity_Id) return Boolean
11829 begin
11830 -- Upward conversions are allowed (RM 4.6(22))
11832 if Covers (Target_Type, Opnd_Type)
11833 or else Is_Ancestor (Target_Type, Opnd_Type)
11834 then
11835 return True;
11837 -- Downward conversion are allowed if the operand is class-wide
11838 -- (RM 4.6(23)).
11840 elsif Is_Class_Wide_Type (Opnd_Type)
11841 and then Covers (Opnd_Type, Target_Type)
11842 then
11843 return True;
11845 elsif Covers (Opnd_Type, Target_Type)
11846 or else Is_Ancestor (Opnd_Type, Target_Type)
11847 then
11848 return
11849 Conversion_Check (False,
11850 "downward conversion of tagged objects not allowed");
11852 -- Ada 2005 (AI-251): The conversion to/from interface types is
11853 -- always valid
11855 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
11856 return True;
11858 -- If the operand is a class-wide type obtained through a limited_
11859 -- with clause, and the context includes the nonlimited view, use
11860 -- it to determine whether the conversion is legal.
11862 elsif Is_Class_Wide_Type (Opnd_Type)
11863 and then From_Limited_With (Opnd_Type)
11864 and then Present (Non_Limited_View (Etype (Opnd_Type)))
11865 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
11866 then
11867 return True;
11869 elsif Is_Access_Type (Opnd_Type)
11870 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
11871 then
11872 return True;
11874 else
11875 Conversion_Error_NE
11876 ("invalid tagged conversion, not compatible with}",
11877 N, First_Subtype (Opnd_Type));
11878 return False;
11879 end if;
11880 end Valid_Tagged_Conversion;
11882 -- Start of processing for Valid_Conversion
11884 begin
11885 Check_Parameterless_Call (Operand);
11887 if Is_Overloaded (Operand) then
11888 declare
11889 I : Interp_Index;
11890 I1 : Interp_Index;
11891 It : Interp;
11892 It1 : Interp;
11893 N1 : Entity_Id;
11894 T1 : Entity_Id;
11896 begin
11897 -- Remove procedure calls, which syntactically cannot appear in
11898 -- this context, but which cannot be removed by type checking,
11899 -- because the context does not impose a type.
11901 -- The node may be labelled overloaded, but still contain only one
11902 -- interpretation because others were discarded earlier. If this
11903 -- is the case, retain the single interpretation if legal.
11905 Get_First_Interp (Operand, I, It);
11906 Opnd_Type := It.Typ;
11907 Get_Next_Interp (I, It);
11909 if Present (It.Typ)
11910 and then Opnd_Type /= Standard_Void_Type
11911 then
11912 -- More than one candidate interpretation is available
11914 Get_First_Interp (Operand, I, It);
11915 while Present (It.Typ) loop
11916 if It.Typ = Standard_Void_Type then
11917 Remove_Interp (I);
11918 end if;
11920 -- When compiling for a system where Address is of a visible
11921 -- integer type, spurious ambiguities can be produced when
11922 -- arithmetic operations have a literal operand and return
11923 -- System.Address or a descendant of it. These ambiguities
11924 -- are usually resolved by the context, but for conversions
11925 -- there is no context type and the removal of the spurious
11926 -- operations must be done explicitly here.
11928 if not Address_Is_Private
11929 and then Is_Descendent_Of_Address (It.Typ)
11930 then
11931 Remove_Interp (I);
11932 end if;
11934 Get_Next_Interp (I, It);
11935 end loop;
11936 end if;
11938 Get_First_Interp (Operand, I, It);
11939 I1 := I;
11940 It1 := It;
11942 if No (It.Typ) then
11943 Conversion_Error_N ("illegal operand in conversion", Operand);
11944 return False;
11945 end if;
11947 Get_Next_Interp (I, It);
11949 if Present (It.Typ) then
11950 N1 := It1.Nam;
11951 T1 := It1.Typ;
11952 It1 := Disambiguate (Operand, I1, I, Any_Type);
11954 if It1 = No_Interp then
11955 Conversion_Error_N
11956 ("ambiguous operand in conversion", Operand);
11958 -- If the interpretation involves a standard operator, use
11959 -- the location of the type, which may be user-defined.
11961 if Sloc (It.Nam) = Standard_Location then
11962 Error_Msg_Sloc := Sloc (It.Typ);
11963 else
11964 Error_Msg_Sloc := Sloc (It.Nam);
11965 end if;
11967 Conversion_Error_N -- CODEFIX
11968 ("\\possible interpretation#!", Operand);
11970 if Sloc (N1) = Standard_Location then
11971 Error_Msg_Sloc := Sloc (T1);
11972 else
11973 Error_Msg_Sloc := Sloc (N1);
11974 end if;
11976 Conversion_Error_N -- CODEFIX
11977 ("\\possible interpretation#!", Operand);
11979 return False;
11980 end if;
11981 end if;
11983 Set_Etype (Operand, It1.Typ);
11984 Opnd_Type := It1.Typ;
11985 end;
11986 end if;
11988 -- Deal with conversion of integer type to address if the pragma
11989 -- Allow_Integer_Address is in effect. We convert the conversion to
11990 -- an unchecked conversion in this case and we are all done.
11992 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
11993 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
11994 Analyze_And_Resolve (N, Target_Type);
11995 return True;
11996 end if;
11998 -- If we are within a child unit, check whether the type of the
11999 -- expression has an ancestor in a parent unit, in which case it
12000 -- belongs to its derivation class even if the ancestor is private.
12001 -- See RM 7.3.1 (5.2/3).
12003 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12005 -- Numeric types
12007 if Is_Numeric_Type (Target_Type) then
12009 -- A universal fixed expression can be converted to any numeric type
12011 if Opnd_Type = Universal_Fixed then
12012 return True;
12014 -- Also no need to check when in an instance or inlined body, because
12015 -- the legality has been established when the template was analyzed.
12016 -- Furthermore, numeric conversions may occur where only a private
12017 -- view of the operand type is visible at the instantiation point.
12018 -- This results in a spurious error if we check that the operand type
12019 -- is a numeric type.
12021 -- Note: in a previous version of this unit, the following tests were
12022 -- applied only for generated code (Comes_From_Source set to False),
12023 -- but in fact the test is required for source code as well, since
12024 -- this situation can arise in source code.
12026 elsif In_Instance or else In_Inlined_Body then
12027 return True;
12029 -- Otherwise we need the conversion check
12031 else
12032 return Conversion_Check
12033 (Is_Numeric_Type (Opnd_Type)
12034 or else
12035 (Present (Inc_Ancestor)
12036 and then Is_Numeric_Type (Inc_Ancestor)),
12037 "illegal operand for numeric conversion");
12038 end if;
12040 -- Array types
12042 elsif Is_Array_Type (Target_Type) then
12043 if not Is_Array_Type (Opnd_Type)
12044 or else Opnd_Type = Any_Composite
12045 or else Opnd_Type = Any_String
12046 then
12047 Conversion_Error_N
12048 ("illegal operand for array conversion", Operand);
12049 return False;
12051 else
12052 return Valid_Array_Conversion;
12053 end if;
12055 -- Ada 2005 (AI-251): Internally generated conversions of access to
12056 -- interface types added to force the displacement of the pointer to
12057 -- reference the corresponding dispatch table.
12059 elsif not Comes_From_Source (N)
12060 and then Is_Access_Type (Target_Type)
12061 and then Is_Interface (Designated_Type (Target_Type))
12062 then
12063 return True;
12065 -- Ada 2005 (AI-251): Anonymous access types where target references an
12066 -- interface type.
12068 elsif Is_Access_Type (Opnd_Type)
12069 and then Ekind_In (Target_Type, E_General_Access_Type,
12070 E_Anonymous_Access_Type)
12071 and then Is_Interface (Directly_Designated_Type (Target_Type))
12072 then
12073 -- Check the static accessibility rule of 4.6(17). Note that the
12074 -- check is not enforced when within an instance body, since the
12075 -- RM requires such cases to be caught at run time.
12077 -- If the operand is a rewriting of an allocator no check is needed
12078 -- because there are no accessibility issues.
12080 if Nkind (Original_Node (N)) = N_Allocator then
12081 null;
12083 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12084 if Type_Access_Level (Opnd_Type) >
12085 Deepest_Type_Access_Level (Target_Type)
12086 then
12087 -- In an instance, this is a run-time check, but one we know
12088 -- will fail, so generate an appropriate warning. The raise
12089 -- will be generated by Expand_N_Type_Conversion.
12091 if In_Instance_Body then
12092 Error_Msg_Warn := SPARK_Mode /= On;
12093 Conversion_Error_N
12094 ("cannot convert local pointer to non-local access type<<",
12095 Operand);
12096 Conversion_Error_N ("\Program_Error [<<", Operand);
12098 else
12099 Conversion_Error_N
12100 ("cannot convert local pointer to non-local access type",
12101 Operand);
12102 return False;
12103 end if;
12105 -- Special accessibility checks are needed in the case of access
12106 -- discriminants declared for a limited type.
12108 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12109 and then not Is_Local_Anonymous_Access (Opnd_Type)
12110 then
12111 -- When the operand is a selected access discriminant the check
12112 -- needs to be made against the level of the object denoted by
12113 -- the prefix of the selected name (Object_Access_Level handles
12114 -- checking the prefix of the operand for this case).
12116 if Nkind (Operand) = N_Selected_Component
12117 and then Object_Access_Level (Operand) >
12118 Deepest_Type_Access_Level (Target_Type)
12119 then
12120 -- In an instance, this is a run-time check, but one we know
12121 -- will fail, so generate an appropriate warning. The raise
12122 -- will be generated by Expand_N_Type_Conversion.
12124 if In_Instance_Body then
12125 Error_Msg_Warn := SPARK_Mode /= On;
12126 Conversion_Error_N
12127 ("cannot convert access discriminant to non-local "
12128 & "access type<<", Operand);
12129 Conversion_Error_N ("\Program_Error [<<", Operand);
12131 -- Real error if not in instance body
12133 else
12134 Conversion_Error_N
12135 ("cannot convert access discriminant to non-local "
12136 & "access type", Operand);
12137 return False;
12138 end if;
12139 end if;
12141 -- The case of a reference to an access discriminant from
12142 -- within a limited type declaration (which will appear as
12143 -- a discriminal) is always illegal because the level of the
12144 -- discriminant is considered to be deeper than any (nameable)
12145 -- access type.
12147 if Is_Entity_Name (Operand)
12148 and then not Is_Local_Anonymous_Access (Opnd_Type)
12149 and then
12150 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12151 and then Present (Discriminal_Link (Entity (Operand)))
12152 then
12153 Conversion_Error_N
12154 ("discriminant has deeper accessibility level than target",
12155 Operand);
12156 return False;
12157 end if;
12158 end if;
12159 end if;
12161 return True;
12163 -- General and anonymous access types
12165 elsif Ekind_In (Target_Type, E_General_Access_Type,
12166 E_Anonymous_Access_Type)
12167 and then
12168 Conversion_Check
12169 (Is_Access_Type (Opnd_Type)
12170 and then not
12171 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12172 E_Access_Protected_Subprogram_Type),
12173 "must be an access-to-object type")
12174 then
12175 if Is_Access_Constant (Opnd_Type)
12176 and then not Is_Access_Constant (Target_Type)
12177 then
12178 Conversion_Error_N
12179 ("access-to-constant operand type not allowed", Operand);
12180 return False;
12181 end if;
12183 -- Check the static accessibility rule of 4.6(17). Note that the
12184 -- check is not enforced when within an instance body, since the RM
12185 -- requires such cases to be caught at run time.
12187 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12188 or else Is_Local_Anonymous_Access (Target_Type)
12189 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12190 N_Object_Declaration
12191 then
12192 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12193 -- conversions from an anonymous access type to a named general
12194 -- access type. Such conversions are not allowed in the case of
12195 -- access parameters and stand-alone objects of an anonymous
12196 -- access type. The implicit conversion case is recognized by
12197 -- testing that Comes_From_Source is False and that it's been
12198 -- rewritten. The Comes_From_Source test isn't sufficient because
12199 -- nodes in inlined calls to predefined library routines can have
12200 -- Comes_From_Source set to False. (Is there a better way to test
12201 -- for implicit conversions???)
12203 if Ada_Version >= Ada_2012
12204 and then not Comes_From_Source (N)
12205 and then N /= Original_Node (N)
12206 and then Ekind (Target_Type) = E_General_Access_Type
12207 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12208 then
12209 if Is_Itype (Opnd_Type) then
12211 -- Implicit conversions aren't allowed for objects of an
12212 -- anonymous access type, since such objects have nonstatic
12213 -- levels in Ada 2012.
12215 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12216 N_Object_Declaration
12217 then
12218 Conversion_Error_N
12219 ("implicit conversion of stand-alone anonymous "
12220 & "access object not allowed", Operand);
12221 return False;
12223 -- Implicit conversions aren't allowed for anonymous access
12224 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12225 -- is done to exclude anonymous access results.
12227 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12228 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12229 N_Function_Specification,
12230 N_Procedure_Specification)
12231 then
12232 Conversion_Error_N
12233 ("implicit conversion of anonymous access formal "
12234 & "not allowed", Operand);
12235 return False;
12237 -- This is a case where there's an enclosing object whose
12238 -- to which the "statically deeper than" relationship does
12239 -- not apply (such as an access discriminant selected from
12240 -- a dereference of an access parameter).
12242 elsif Object_Access_Level (Operand)
12243 = Scope_Depth (Standard_Standard)
12244 then
12245 Conversion_Error_N
12246 ("implicit conversion of anonymous access value "
12247 & "not allowed", Operand);
12248 return False;
12250 -- In other cases, the level of the operand's type must be
12251 -- statically less deep than that of the target type, else
12252 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12254 elsif Type_Access_Level (Opnd_Type) >
12255 Deepest_Type_Access_Level (Target_Type)
12256 then
12257 Conversion_Error_N
12258 ("implicit conversion of anonymous access value "
12259 & "violates accessibility", Operand);
12260 return False;
12261 end if;
12262 end if;
12264 elsif Type_Access_Level (Opnd_Type) >
12265 Deepest_Type_Access_Level (Target_Type)
12266 then
12267 -- In an instance, this is a run-time check, but one we know
12268 -- will fail, so generate an appropriate warning. The raise
12269 -- will be generated by Expand_N_Type_Conversion.
12271 if In_Instance_Body then
12272 Error_Msg_Warn := SPARK_Mode /= On;
12273 Conversion_Error_N
12274 ("cannot convert local pointer to non-local access type<<",
12275 Operand);
12276 Conversion_Error_N ("\Program_Error [<<", Operand);
12278 -- If not in an instance body, this is a real error
12280 else
12281 -- Avoid generation of spurious error message
12283 if not Error_Posted (N) then
12284 Conversion_Error_N
12285 ("cannot convert local pointer to non-local access type",
12286 Operand);
12287 end if;
12289 return False;
12290 end if;
12292 -- Special accessibility checks are needed in the case of access
12293 -- discriminants declared for a limited type.
12295 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12296 and then not Is_Local_Anonymous_Access (Opnd_Type)
12297 then
12298 -- When the operand is a selected access discriminant the check
12299 -- needs to be made against the level of the object denoted by
12300 -- the prefix of the selected name (Object_Access_Level handles
12301 -- checking the prefix of the operand for this case).
12303 if Nkind (Operand) = N_Selected_Component
12304 and then Object_Access_Level (Operand) >
12305 Deepest_Type_Access_Level (Target_Type)
12306 then
12307 -- In an instance, this is a run-time check, but one we know
12308 -- will fail, so generate an appropriate warning. The raise
12309 -- will be generated by Expand_N_Type_Conversion.
12311 if In_Instance_Body then
12312 Error_Msg_Warn := SPARK_Mode /= On;
12313 Conversion_Error_N
12314 ("cannot convert access discriminant to non-local "
12315 & "access type<<", Operand);
12316 Conversion_Error_N ("\Program_Error [<<", Operand);
12318 -- If not in an instance body, this is a real error
12320 else
12321 Conversion_Error_N
12322 ("cannot convert access discriminant to non-local "
12323 & "access type", Operand);
12324 return False;
12325 end if;
12326 end if;
12328 -- The case of a reference to an access discriminant from
12329 -- within a limited type declaration (which will appear as
12330 -- a discriminal) is always illegal because the level of the
12331 -- discriminant is considered to be deeper than any (nameable)
12332 -- access type.
12334 if Is_Entity_Name (Operand)
12335 and then
12336 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12337 and then Present (Discriminal_Link (Entity (Operand)))
12338 then
12339 Conversion_Error_N
12340 ("discriminant has deeper accessibility level than target",
12341 Operand);
12342 return False;
12343 end if;
12344 end if;
12345 end if;
12347 -- In the presence of limited_with clauses we have to use nonlimited
12348 -- views, if available.
12350 Check_Limited : declare
12351 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12352 -- Helper function to handle limited views
12354 --------------------------
12355 -- Full_Designated_Type --
12356 --------------------------
12358 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12359 Desig : constant Entity_Id := Designated_Type (T);
12361 begin
12362 -- Handle the limited view of a type
12364 if From_Limited_With (Desig)
12365 and then Has_Non_Limited_View (Desig)
12366 then
12367 return Available_View (Desig);
12368 else
12369 return Desig;
12370 end if;
12371 end Full_Designated_Type;
12373 -- Local Declarations
12375 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12376 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12378 Same_Base : constant Boolean :=
12379 Base_Type (Target) = Base_Type (Opnd);
12381 -- Start of processing for Check_Limited
12383 begin
12384 if Is_Tagged_Type (Target) then
12385 return Valid_Tagged_Conversion (Target, Opnd);
12387 else
12388 if not Same_Base then
12389 Conversion_Error_NE
12390 ("target designated type not compatible with }",
12391 N, Base_Type (Opnd));
12392 return False;
12394 -- Ada 2005 AI-384: legality rule is symmetric in both
12395 -- designated types. The conversion is legal (with possible
12396 -- constraint check) if either designated type is
12397 -- unconstrained.
12399 elsif Subtypes_Statically_Match (Target, Opnd)
12400 or else
12401 (Has_Discriminants (Target)
12402 and then
12403 (not Is_Constrained (Opnd)
12404 or else not Is_Constrained (Target)))
12405 then
12406 -- Special case, if Value_Size has been used to make the
12407 -- sizes different, the conversion is not allowed even
12408 -- though the subtypes statically match.
12410 if Known_Static_RM_Size (Target)
12411 and then Known_Static_RM_Size (Opnd)
12412 and then RM_Size (Target) /= RM_Size (Opnd)
12413 then
12414 Conversion_Error_NE
12415 ("target designated subtype not compatible with }",
12416 N, Opnd);
12417 Conversion_Error_NE
12418 ("\because sizes of the two designated subtypes differ",
12419 N, Opnd);
12420 return False;
12422 -- Normal case where conversion is allowed
12424 else
12425 return True;
12426 end if;
12428 else
12429 Error_Msg_NE
12430 ("target designated subtype not compatible with }",
12431 N, Opnd);
12432 return False;
12433 end if;
12434 end if;
12435 end Check_Limited;
12437 -- Access to subprogram types. If the operand is an access parameter,
12438 -- the type has a deeper accessibility that any master, and cannot be
12439 -- assigned. We must make an exception if the conversion is part of an
12440 -- assignment and the target is the return object of an extended return
12441 -- statement, because in that case the accessibility check takes place
12442 -- after the return.
12444 elsif Is_Access_Subprogram_Type (Target_Type)
12446 -- Note: this test of Opnd_Type is there to prevent entering this
12447 -- branch in the case of a remote access to subprogram type, which
12448 -- is internally represented as an E_Record_Type.
12450 and then Is_Access_Type (Opnd_Type)
12451 then
12452 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12453 and then Is_Entity_Name (Operand)
12454 and then Ekind (Entity (Operand)) = E_In_Parameter
12455 and then
12456 (Nkind (Parent (N)) /= N_Assignment_Statement
12457 or else not Is_Entity_Name (Name (Parent (N)))
12458 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12459 then
12460 Conversion_Error_N
12461 ("illegal attempt to store anonymous access to subprogram",
12462 Operand);
12463 Conversion_Error_N
12464 ("\value has deeper accessibility than any master "
12465 & "(RM 3.10.2 (13))",
12466 Operand);
12468 Error_Msg_NE
12469 ("\use named access type for& instead of access parameter",
12470 Operand, Entity (Operand));
12471 end if;
12473 -- Check that the designated types are subtype conformant
12475 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12476 Old_Id => Designated_Type (Opnd_Type),
12477 Err_Loc => N);
12479 -- Check the static accessibility rule of 4.6(20)
12481 if Type_Access_Level (Opnd_Type) >
12482 Deepest_Type_Access_Level (Target_Type)
12483 then
12484 Conversion_Error_N
12485 ("operand type has deeper accessibility level than target",
12486 Operand);
12488 -- Check that if the operand type is declared in a generic body,
12489 -- then the target type must be declared within that same body
12490 -- (enforces last sentence of 4.6(20)).
12492 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12493 declare
12494 O_Gen : constant Node_Id :=
12495 Enclosing_Generic_Body (Opnd_Type);
12497 T_Gen : Node_Id;
12499 begin
12500 T_Gen := Enclosing_Generic_Body (Target_Type);
12501 while Present (T_Gen) and then T_Gen /= O_Gen loop
12502 T_Gen := Enclosing_Generic_Body (T_Gen);
12503 end loop;
12505 if T_Gen /= O_Gen then
12506 Conversion_Error_N
12507 ("target type must be declared in same generic body "
12508 & "as operand type", N);
12509 end if;
12510 end;
12511 end if;
12513 return True;
12515 -- Remote access to subprogram types
12517 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12518 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12519 then
12520 -- It is valid to convert from one RAS type to another provided
12521 -- that their specification statically match.
12523 -- Note: at this point, remote access to subprogram types have been
12524 -- expanded to their E_Record_Type representation, and we need to
12525 -- go back to the original access type definition using the
12526 -- Corresponding_Remote_Type attribute in order to check that the
12527 -- designated profiles match.
12529 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12530 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12532 Check_Subtype_Conformant
12533 (New_Id =>
12534 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12535 Old_Id =>
12536 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12537 Err_Loc =>
12539 return True;
12541 -- If it was legal in the generic, it's legal in the instance
12543 elsif In_Instance_Body then
12544 return True;
12546 -- If both are tagged types, check legality of view conversions
12548 elsif Is_Tagged_Type (Target_Type)
12549 and then
12550 Is_Tagged_Type (Opnd_Type)
12551 then
12552 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12554 -- Types derived from the same root type are convertible
12556 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12557 return True;
12559 -- In an instance or an inlined body, there may be inconsistent views of
12560 -- the same type, or of types derived from a common root.
12562 elsif (In_Instance or In_Inlined_Body)
12563 and then
12564 Root_Type (Underlying_Type (Target_Type)) =
12565 Root_Type (Underlying_Type (Opnd_Type))
12566 then
12567 return True;
12569 -- Special check for common access type error case
12571 elsif Ekind (Target_Type) = E_Access_Type
12572 and then Is_Access_Type (Opnd_Type)
12573 then
12574 Conversion_Error_N ("target type must be general access type!", N);
12575 Conversion_Error_NE -- CODEFIX
12576 ("add ALL to }!", N, Target_Type);
12577 return False;
12579 -- Here we have a real conversion error
12581 else
12582 Conversion_Error_NE
12583 ("invalid conversion, not compatible with }", N, Opnd_Type);
12584 return False;
12585 end if;
12586 end Valid_Conversion;
12588 end Sem_Res;