2015-09-28 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob2b2e918da3659c99ac8caa279fbfe46b41716eba
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Lib; use Lib;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Rtsfind; use Rtsfind;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Ch3; use Sem_Ch3;
49 with Sem_Ch6; use Sem_Ch6;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Dim; use Sem_Dim;
52 with Sem_Disp; use Sem_Disp;
53 with Sem_Elab; use Sem_Elab;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Res; use Sem_Res;
56 with Sem_Type; use Sem_Type;
57 with Sem_Util; use Sem_Util;
58 with Sem_Warn; use Sem_Warn;
59 with Snames; use Snames;
60 with Stand; use Stand;
61 with Sinfo; use Sinfo;
62 with Targparm; use Targparm;
63 with Tbuild; use Tbuild;
64 with Uintp; use Uintp;
66 package body Sem_Ch5 is
68 Unblocked_Exit_Count : Nat := 0;
69 -- This variable is used when processing if statements, case statements,
70 -- and block statements. It counts the number of exit points that are not
71 -- blocked by unconditional transfer instructions: for IF and CASE, these
72 -- are the branches of the conditional; for a block, they are the statement
73 -- sequence of the block, and the statement sequences of any exception
74 -- handlers that are part of the block. When processing is complete, if
75 -- this count is zero, it means that control cannot fall through the IF,
76 -- CASE or block statement. This is used for the generation of warning
77 -- messages. This variable is recursively saved on entry to processing the
78 -- construct, and restored on exit.
80 procedure Preanalyze_Range (R_Copy : Node_Id);
81 -- Determine expected type of range or domain of iteration of Ada 2012
82 -- loop by analyzing separate copy. Do the analysis and resolution of the
83 -- copy of the bound(s) with expansion disabled, to prevent the generation
84 -- of finalization actions. This prevents memory leaks when the bounds
85 -- contain calls to functions returning controlled arrays or when the
86 -- domain of iteration is a container.
88 ------------------------
89 -- Analyze_Assignment --
90 ------------------------
92 procedure Analyze_Assignment (N : Node_Id) is
93 GM : constant Ghost_Mode_Type := Ghost_Mode;
94 Lhs : constant Node_Id := Name (N);
95 Rhs : constant Node_Id := Expression (N);
96 T1 : Entity_Id;
97 T2 : Entity_Id;
98 Decl : Node_Id;
100 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
101 -- N is the node for the left hand side of an assignment, and it is not
102 -- a variable. This routine issues an appropriate diagnostic.
104 procedure Kill_Lhs;
105 -- This is called to kill current value settings of a simple variable
106 -- on the left hand side. We call it if we find any error in analyzing
107 -- the assignment, and at the end of processing before setting any new
108 -- current values in place.
110 procedure Restore_Globals;
111 -- Restore the values of all saved global variables
113 procedure Set_Assignment_Type
114 (Opnd : Node_Id;
115 Opnd_Type : in out Entity_Id);
116 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
117 -- nominal subtype. This procedure is used to deal with cases where the
118 -- nominal subtype must be replaced by the actual subtype.
120 -------------------------------
121 -- Diagnose_Non_Variable_Lhs --
122 -------------------------------
124 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
125 begin
126 -- Not worth posting another error if left hand side already flagged
127 -- as being illegal in some respect.
129 if Error_Posted (N) then
130 return;
132 -- Some special bad cases of entity names
134 elsif Is_Entity_Name (N) then
135 declare
136 Ent : constant Entity_Id := Entity (N);
138 begin
139 if Ekind (Ent) = E_In_Parameter then
140 Error_Msg_N
141 ("assignment to IN mode parameter not allowed", N);
142 return;
144 -- Renamings of protected private components are turned into
145 -- constants when compiling a protected function. In the case
146 -- of single protected types, the private component appears
147 -- directly.
149 elsif (Is_Prival (Ent)
150 and then
151 (Ekind (Current_Scope) = E_Function
152 or else Ekind (Enclosing_Dynamic_Scope
153 (Current_Scope)) = E_Function))
154 or else
155 (Ekind (Ent) = E_Component
156 and then Is_Protected_Type (Scope (Ent)))
157 then
158 Error_Msg_N
159 ("protected function cannot modify protected object", N);
160 return;
162 elsif Ekind (Ent) = E_Loop_Parameter then
163 Error_Msg_N ("assignment to loop parameter not allowed", N);
164 return;
165 end if;
166 end;
168 -- For indexed components, test prefix if it is in array. We do not
169 -- want to recurse for cases where the prefix is a pointer, since we
170 -- may get a message confusing the pointer and what it references.
172 elsif Nkind (N) = N_Indexed_Component
173 and then Is_Array_Type (Etype (Prefix (N)))
174 then
175 Diagnose_Non_Variable_Lhs (Prefix (N));
176 return;
178 -- Another special case for assignment to discriminant
180 elsif Nkind (N) = N_Selected_Component then
181 if Present (Entity (Selector_Name (N)))
182 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
183 then
184 Error_Msg_N ("assignment to discriminant not allowed", N);
185 return;
187 -- For selection from record, diagnose prefix, but note that again
188 -- we only do this for a record, not e.g. for a pointer.
190 elsif Is_Record_Type (Etype (Prefix (N))) then
191 Diagnose_Non_Variable_Lhs (Prefix (N));
192 return;
193 end if;
194 end if;
196 -- If we fall through, we have no special message to issue
198 Error_Msg_N ("left hand side of assignment must be a variable", N);
199 end Diagnose_Non_Variable_Lhs;
201 --------------
202 -- Kill_Lhs --
203 --------------
205 procedure Kill_Lhs is
206 begin
207 if Is_Entity_Name (Lhs) then
208 declare
209 Ent : constant Entity_Id := Entity (Lhs);
210 begin
211 if Present (Ent) then
212 Kill_Current_Values (Ent);
213 end if;
214 end;
215 end if;
216 end Kill_Lhs;
218 ---------------------
219 -- Restore_Globals --
220 ---------------------
222 procedure Restore_Globals is
223 begin
224 Ghost_Mode := GM;
225 end Restore_Globals;
227 -------------------------
228 -- Set_Assignment_Type --
229 -------------------------
231 procedure Set_Assignment_Type
232 (Opnd : Node_Id;
233 Opnd_Type : in out Entity_Id)
235 begin
236 Require_Entity (Opnd);
238 -- If the assignment operand is an in-out or out parameter, then we
239 -- get the actual subtype (needed for the unconstrained case). If the
240 -- operand is the actual in an entry declaration, then within the
241 -- accept statement it is replaced with a local renaming, which may
242 -- also have an actual subtype.
244 if Is_Entity_Name (Opnd)
245 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
246 or else Ekind_In (Entity (Opnd),
247 E_In_Out_Parameter,
248 E_Generic_In_Out_Parameter)
249 or else
250 (Ekind (Entity (Opnd)) = E_Variable
251 and then Nkind (Parent (Entity (Opnd))) =
252 N_Object_Renaming_Declaration
253 and then Nkind (Parent (Parent (Entity (Opnd)))) =
254 N_Accept_Statement))
255 then
256 Opnd_Type := Get_Actual_Subtype (Opnd);
258 -- If assignment operand is a component reference, then we get the
259 -- actual subtype of the component for the unconstrained case.
261 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
262 and then not Is_Unchecked_Union (Opnd_Type)
263 then
264 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
266 if Present (Decl) then
267 Insert_Action (N, Decl);
268 Mark_Rewrite_Insertion (Decl);
269 Analyze (Decl);
270 Opnd_Type := Defining_Identifier (Decl);
271 Set_Etype (Opnd, Opnd_Type);
272 Freeze_Itype (Opnd_Type, N);
274 elsif Is_Constrained (Etype (Opnd)) then
275 Opnd_Type := Etype (Opnd);
276 end if;
278 -- For slice, use the constrained subtype created for the slice
280 elsif Nkind (Opnd) = N_Slice then
281 Opnd_Type := Etype (Opnd);
282 end if;
283 end Set_Assignment_Type;
285 -- Start of processing for Analyze_Assignment
287 begin
288 Mark_Coextensions (N, Rhs);
290 -- Analyze the target of the assignment first in case the expression
291 -- contains references to Ghost entities. The checks that verify the
292 -- proper use of a Ghost entity need to know the enclosing context.
294 Analyze (Lhs);
296 -- The left hand side of an assignment may reference an entity subject
297 -- to pragma Ghost with policy Ignore. Set the mode now to ensure that
298 -- any nodes generated during analysis and expansion are properly
299 -- flagged as ignored Ghost.
301 Set_Ghost_Mode (N);
302 Analyze (Rhs);
304 -- Ensure that we never do an assignment on a variable marked as
305 -- as Safe_To_Reevaluate.
307 pragma Assert (not Is_Entity_Name (Lhs)
308 or else Ekind (Entity (Lhs)) /= E_Variable
309 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
311 -- Start type analysis for assignment
313 T1 := Etype (Lhs);
315 -- In the most general case, both Lhs and Rhs can be overloaded, and we
316 -- must compute the intersection of the possible types on each side.
318 if Is_Overloaded (Lhs) then
319 declare
320 I : Interp_Index;
321 It : Interp;
323 begin
324 T1 := Any_Type;
325 Get_First_Interp (Lhs, I, It);
327 while Present (It.Typ) loop
328 if Has_Compatible_Type (Rhs, It.Typ) then
329 if T1 /= Any_Type then
331 -- An explicit dereference is overloaded if the prefix
332 -- is. Try to remove the ambiguity on the prefix, the
333 -- error will be posted there if the ambiguity is real.
335 if Nkind (Lhs) = N_Explicit_Dereference then
336 declare
337 PI : Interp_Index;
338 PI1 : Interp_Index := 0;
339 PIt : Interp;
340 Found : Boolean;
342 begin
343 Found := False;
344 Get_First_Interp (Prefix (Lhs), PI, PIt);
346 while Present (PIt.Typ) loop
347 if Is_Access_Type (PIt.Typ)
348 and then Has_Compatible_Type
349 (Rhs, Designated_Type (PIt.Typ))
350 then
351 if Found then
352 PIt :=
353 Disambiguate (Prefix (Lhs),
354 PI1, PI, Any_Type);
356 if PIt = No_Interp then
357 Error_Msg_N
358 ("ambiguous left-hand side"
359 & " in assignment", Lhs);
360 exit;
361 else
362 Resolve (Prefix (Lhs), PIt.Typ);
363 end if;
365 exit;
366 else
367 Found := True;
368 PI1 := PI;
369 end if;
370 end if;
372 Get_Next_Interp (PI, PIt);
373 end loop;
374 end;
376 else
377 Error_Msg_N
378 ("ambiguous left-hand side in assignment", Lhs);
379 exit;
380 end if;
381 else
382 T1 := It.Typ;
383 end if;
384 end if;
386 Get_Next_Interp (I, It);
387 end loop;
388 end;
390 if T1 = Any_Type then
391 Error_Msg_N
392 ("no valid types for left-hand side for assignment", Lhs);
393 Kill_Lhs;
394 Restore_Globals;
395 return;
396 end if;
397 end if;
399 -- The resulting assignment type is T1, so now we will resolve the left
400 -- hand side of the assignment using this determined type.
402 Resolve (Lhs, T1);
404 -- Cases where Lhs is not a variable
406 if not Is_Variable (Lhs) then
408 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
409 -- protected object.
411 declare
412 Ent : Entity_Id;
413 S : Entity_Id;
415 begin
416 if Ada_Version >= Ada_2005 then
418 -- Handle chains of renamings
420 Ent := Lhs;
421 while Nkind (Ent) in N_Has_Entity
422 and then Present (Entity (Ent))
423 and then Present (Renamed_Object (Entity (Ent)))
424 loop
425 Ent := Renamed_Object (Entity (Ent));
426 end loop;
428 if (Nkind (Ent) = N_Attribute_Reference
429 and then Attribute_Name (Ent) = Name_Priority)
431 -- Renamings of the attribute Priority applied to protected
432 -- objects have been previously expanded into calls to the
433 -- Get_Ceiling run-time subprogram.
435 or else
436 (Nkind (Ent) = N_Function_Call
437 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
438 or else
439 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
440 then
441 -- The enclosing subprogram cannot be a protected function
443 S := Current_Scope;
444 while not (Is_Subprogram (S)
445 and then Convention (S) = Convention_Protected)
446 and then S /= Standard_Standard
447 loop
448 S := Scope (S);
449 end loop;
451 if Ekind (S) = E_Function
452 and then Convention (S) = Convention_Protected
453 then
454 Error_Msg_N
455 ("protected function cannot modify protected object",
456 Lhs);
457 end if;
459 -- Changes of the ceiling priority of the protected object
460 -- are only effective if the Ceiling_Locking policy is in
461 -- effect (AARM D.5.2 (5/2)).
463 if Locking_Policy /= 'C' then
464 Error_Msg_N ("assignment to the attribute PRIORITY has " &
465 "no effect??", Lhs);
466 Error_Msg_N ("\since no Locking_Policy has been " &
467 "specified??", Lhs);
468 end if;
470 Restore_Globals;
471 return;
472 end if;
473 end if;
474 end;
476 Diagnose_Non_Variable_Lhs (Lhs);
477 Restore_Globals;
478 return;
480 -- Error of assigning to limited type. We do however allow this in
481 -- certain cases where the front end generates the assignments.
483 elsif Is_Limited_Type (T1)
484 and then not Assignment_OK (Lhs)
485 and then not Assignment_OK (Original_Node (Lhs))
486 and then not Is_Value_Type (T1)
487 then
488 -- CPP constructors can only be called in declarations
490 if Is_CPP_Constructor_Call (Rhs) then
491 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
492 else
493 Error_Msg_N
494 ("left hand of assignment must not be limited type", Lhs);
495 Explain_Limited_Type (T1, Lhs);
496 end if;
498 Restore_Globals;
499 return;
501 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
502 -- abstract. This is only checked when the assignment Comes_From_Source,
503 -- because in some cases the expander generates such assignments (such
504 -- in the _assign operation for an abstract type).
506 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
507 Error_Msg_N
508 ("target of assignment operation must not be abstract", Lhs);
509 end if;
511 -- Resolution may have updated the subtype, in case the left-hand side
512 -- is a private protected component. Use the correct subtype to avoid
513 -- scoping issues in the back-end.
515 T1 := Etype (Lhs);
517 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
518 -- type. For example:
520 -- limited with P;
521 -- package Pkg is
522 -- type Acc is access P.T;
523 -- end Pkg;
525 -- with Pkg; use Acc;
526 -- procedure Example is
527 -- A, B : Acc;
528 -- begin
529 -- A.all := B.all; -- ERROR
530 -- end Example;
532 if Nkind (Lhs) = N_Explicit_Dereference
533 and then Ekind (T1) = E_Incomplete_Type
534 then
535 Error_Msg_N ("invalid use of incomplete type", Lhs);
536 Kill_Lhs;
537 Restore_Globals;
538 return;
539 end if;
541 -- Now we can complete the resolution of the right hand side
543 Set_Assignment_Type (Lhs, T1);
544 Resolve (Rhs, T1);
546 -- This is the point at which we check for an unset reference
548 Check_Unset_Reference (Rhs);
549 Check_Unprotected_Access (Lhs, Rhs);
551 -- Remaining steps are skipped if Rhs was syntactically in error
553 if Rhs = Error then
554 Kill_Lhs;
555 Restore_Globals;
556 return;
557 end if;
559 T2 := Etype (Rhs);
561 if not Covers (T1, T2) then
562 Wrong_Type (Rhs, Etype (Lhs));
563 Kill_Lhs;
564 Restore_Globals;
565 return;
566 end if;
568 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
569 -- types, use the non-limited view if available
571 if Nkind (Rhs) = N_Explicit_Dereference
572 and then Is_Tagged_Type (T2)
573 and then Has_Non_Limited_View (T2)
574 then
575 T2 := Non_Limited_View (T2);
576 end if;
578 Set_Assignment_Type (Rhs, T2);
580 if Total_Errors_Detected /= 0 then
581 if No (T1) then
582 T1 := Any_Type;
583 end if;
585 if No (T2) then
586 T2 := Any_Type;
587 end if;
588 end if;
590 if T1 = Any_Type or else T2 = Any_Type then
591 Kill_Lhs;
592 Restore_Globals;
593 return;
594 end if;
596 -- If the rhs is class-wide or dynamically tagged, then require the lhs
597 -- to be class-wide. The case where the rhs is a dynamically tagged call
598 -- to a dispatching operation with a controlling access result is
599 -- excluded from this check, since the target has an access type (and
600 -- no tag propagation occurs in that case).
602 if (Is_Class_Wide_Type (T2)
603 or else (Is_Dynamically_Tagged (Rhs)
604 and then not Is_Access_Type (T1)))
605 and then not Is_Class_Wide_Type (T1)
606 then
607 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
609 elsif Is_Class_Wide_Type (T1)
610 and then not Is_Class_Wide_Type (T2)
611 and then not Is_Tag_Indeterminate (Rhs)
612 and then not Is_Dynamically_Tagged (Rhs)
613 then
614 Error_Msg_N ("dynamically tagged expression required!", Rhs);
615 end if;
617 -- Propagate the tag from a class-wide target to the rhs when the rhs
618 -- is a tag-indeterminate call.
620 if Is_Tag_Indeterminate (Rhs) then
621 if Is_Class_Wide_Type (T1) then
622 Propagate_Tag (Lhs, Rhs);
624 elsif Nkind (Rhs) = N_Function_Call
625 and then Is_Entity_Name (Name (Rhs))
626 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
627 then
628 Error_Msg_N
629 ("call to abstract function must be dispatching", Name (Rhs));
631 elsif Nkind (Rhs) = N_Qualified_Expression
632 and then Nkind (Expression (Rhs)) = N_Function_Call
633 and then Is_Entity_Name (Name (Expression (Rhs)))
634 and then
635 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
636 then
637 Error_Msg_N
638 ("call to abstract function must be dispatching",
639 Name (Expression (Rhs)));
640 end if;
641 end if;
643 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
644 -- apply an implicit conversion of the rhs to that type to force
645 -- appropriate static and run-time accessibility checks. This applies
646 -- as well to anonymous access-to-subprogram types that are component
647 -- subtypes or formal parameters.
649 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
650 if Is_Local_Anonymous_Access (T1)
651 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
653 -- Handle assignment to an Ada 2012 stand-alone object
654 -- of an anonymous access type.
656 or else (Ekind (T1) = E_Anonymous_Access_Type
657 and then Nkind (Associated_Node_For_Itype (T1)) =
658 N_Object_Declaration)
660 then
661 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
662 Analyze_And_Resolve (Rhs, T1);
663 end if;
664 end if;
666 -- Ada 2005 (AI-231): Assignment to not null variable
668 if Ada_Version >= Ada_2005
669 and then Can_Never_Be_Null (T1)
670 and then not Assignment_OK (Lhs)
671 then
672 -- Case where we know the right hand side is null
674 if Known_Null (Rhs) then
675 Apply_Compile_Time_Constraint_Error
676 (N => Rhs,
677 Msg =>
678 "(Ada 2005) null not allowed in null-excluding objects??",
679 Reason => CE_Null_Not_Allowed);
681 -- We still mark this as a possible modification, that's necessary
682 -- to reset Is_True_Constant, and desirable for xref purposes.
684 Note_Possible_Modification (Lhs, Sure => True);
685 Restore_Globals;
686 return;
688 -- If we know the right hand side is non-null, then we convert to the
689 -- target type, since we don't need a run time check in that case.
691 elsif not Can_Never_Be_Null (T2) then
692 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
693 Analyze_And_Resolve (Rhs, T1);
694 end if;
695 end if;
697 if Is_Scalar_Type (T1) then
698 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
700 -- For array types, verify that lengths match. If the right hand side
701 -- is a function call that has been inlined, the assignment has been
702 -- rewritten as a block, and the constraint check will be applied to the
703 -- assignment within the block.
705 elsif Is_Array_Type (T1)
706 and then (Nkind (Rhs) /= N_Type_Conversion
707 or else Is_Constrained (Etype (Rhs)))
708 and then (Nkind (Rhs) /= N_Function_Call
709 or else Nkind (N) /= N_Block_Statement)
710 then
711 -- Assignment verifies that the length of the Lsh and Rhs are equal,
712 -- but of course the indexes do not have to match. If the right-hand
713 -- side is a type conversion to an unconstrained type, a length check
714 -- is performed on the expression itself during expansion. In rare
715 -- cases, the redundant length check is computed on an index type
716 -- with a different representation, triggering incorrect code in the
717 -- back end.
719 Apply_Length_Check (Rhs, Etype (Lhs));
721 else
722 -- Discriminant checks are applied in the course of expansion
724 null;
725 end if;
727 -- Note: modifications of the Lhs may only be recorded after
728 -- checks have been applied.
730 Note_Possible_Modification (Lhs, Sure => True);
732 -- ??? a real accessibility check is needed when ???
734 -- Post warning for redundant assignment or variable to itself
736 if Warn_On_Redundant_Constructs
738 -- We only warn for source constructs
740 and then Comes_From_Source (N)
742 -- Where the object is the same on both sides
744 and then Same_Object (Lhs, Original_Node (Rhs))
746 -- But exclude the case where the right side was an operation that
747 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
748 -- don't want to warn in such a case, since it is reasonable to write
749 -- such expressions especially when K is defined symbolically in some
750 -- other package.
752 and then Nkind (Original_Node (Rhs)) not in N_Op
753 then
754 if Nkind (Lhs) in N_Has_Entity then
755 Error_Msg_NE -- CODEFIX
756 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
757 else
758 Error_Msg_N -- CODEFIX
759 ("?r?useless assignment of object to itself!", N);
760 end if;
761 end if;
763 -- Check for non-allowed composite assignment
765 if not Support_Composite_Assign_On_Target
766 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
767 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
768 then
769 Error_Msg_CRT ("composite assignment", N);
770 end if;
772 -- Check elaboration warning for left side if not in elab code
774 if not In_Subprogram_Or_Concurrent_Unit then
775 Check_Elab_Assign (Lhs);
776 end if;
778 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
779 -- assignment is a source assignment in the extended main source unit.
780 -- We are not interested in any reference information outside this
781 -- context, or in compiler generated assignment statements.
783 if Comes_From_Source (N)
784 and then In_Extended_Main_Source_Unit (Lhs)
785 then
786 Set_Referenced_Modified (Lhs, Out_Param => False);
787 end if;
789 -- RM 7.3.2 (12/3) An assignment to a view conversion (from a type
790 -- to one of its ancestors) requires an invariant check. Apply check
791 -- only if expression comes from source, otherwise it will be applied
792 -- when value is assigned to source entity.
794 if Nkind (Lhs) = N_Type_Conversion
795 and then Has_Invariants (Etype (Expression (Lhs)))
796 and then Comes_From_Source (Expression (Lhs))
797 then
798 Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
799 end if;
801 -- Final step. If left side is an entity, then we may be able to reset
802 -- the current tracked values to new safe values. We only have something
803 -- to do if the left side is an entity name, and expansion has not
804 -- modified the node into something other than an assignment, and of
805 -- course we only capture values if it is safe to do so.
807 if Is_Entity_Name (Lhs)
808 and then Nkind (N) = N_Assignment_Statement
809 then
810 declare
811 Ent : constant Entity_Id := Entity (Lhs);
813 begin
814 if Safe_To_Capture_Value (N, Ent) then
816 -- If simple variable on left side, warn if this assignment
817 -- blots out another one (rendering it useless). We only do
818 -- this for source assignments, otherwise we can generate bogus
819 -- warnings when an assignment is rewritten as another
820 -- assignment, and gets tied up with itself.
822 if Warn_On_Modified_Unread
823 and then Is_Assignable (Ent)
824 and then Comes_From_Source (N)
825 and then In_Extended_Main_Source_Unit (Ent)
826 then
827 Warn_On_Useless_Assignment (Ent, N);
828 end if;
830 -- If we are assigning an access type and the left side is an
831 -- entity, then make sure that the Is_Known_[Non_]Null flags
832 -- properly reflect the state of the entity after assignment.
834 if Is_Access_Type (T1) then
835 if Known_Non_Null (Rhs) then
836 Set_Is_Known_Non_Null (Ent, True);
838 elsif Known_Null (Rhs)
839 and then not Can_Never_Be_Null (Ent)
840 then
841 Set_Is_Known_Null (Ent, True);
843 else
844 Set_Is_Known_Null (Ent, False);
846 if not Can_Never_Be_Null (Ent) then
847 Set_Is_Known_Non_Null (Ent, False);
848 end if;
849 end if;
851 -- For discrete types, we may be able to set the current value
852 -- if the value is known at compile time.
854 elsif Is_Discrete_Type (T1)
855 and then Compile_Time_Known_Value (Rhs)
856 then
857 Set_Current_Value (Ent, Rhs);
858 else
859 Set_Current_Value (Ent, Empty);
860 end if;
862 -- If not safe to capture values, kill them
864 else
865 Kill_Lhs;
866 end if;
867 end;
868 end if;
870 -- If assigning to an object in whole or in part, note location of
871 -- assignment in case no one references value. We only do this for
872 -- source assignments, otherwise we can generate bogus warnings when an
873 -- assignment is rewritten as another assignment, and gets tied up with
874 -- itself.
876 declare
877 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
878 begin
879 if Present (Ent)
880 and then Safe_To_Capture_Value (N, Ent)
881 and then Nkind (N) = N_Assignment_Statement
882 and then Warn_On_Modified_Unread
883 and then Is_Assignable (Ent)
884 and then Comes_From_Source (N)
885 and then In_Extended_Main_Source_Unit (Ent)
886 then
887 Set_Last_Assignment (Ent, Lhs);
888 end if;
889 end;
891 Analyze_Dimension (N);
892 Restore_Globals;
893 end Analyze_Assignment;
895 -----------------------------
896 -- Analyze_Block_Statement --
897 -----------------------------
899 procedure Analyze_Block_Statement (N : Node_Id) is
900 procedure Install_Return_Entities (Scop : Entity_Id);
901 -- Install all entities of return statement scope Scop in the visibility
902 -- chain except for the return object since its entity is reused in a
903 -- renaming.
905 -----------------------------
906 -- Install_Return_Entities --
907 -----------------------------
909 procedure Install_Return_Entities (Scop : Entity_Id) is
910 Id : Entity_Id;
912 begin
913 Id := First_Entity (Scop);
914 while Present (Id) loop
916 -- Do not install the return object
918 if not Ekind_In (Id, E_Constant, E_Variable)
919 or else not Is_Return_Object (Id)
920 then
921 Install_Entity (Id);
922 end if;
924 Next_Entity (Id);
925 end loop;
926 end Install_Return_Entities;
928 -- Local constants and variables
930 Decls : constant List_Id := Declarations (N);
931 Id : constant Node_Id := Identifier (N);
932 HSS : constant Node_Id := Handled_Statement_Sequence (N);
934 Is_BIP_Return_Statement : Boolean;
936 -- Start of processing for Analyze_Block_Statement
938 begin
939 -- In SPARK mode, we reject block statements. Note that the case of
940 -- block statements generated by the expander is fine.
942 if Nkind (Original_Node (N)) = N_Block_Statement then
943 Check_SPARK_05_Restriction ("block statement is not allowed", N);
944 end if;
946 -- If no handled statement sequence is present, things are really messed
947 -- up, and we just return immediately (defence against previous errors).
949 if No (HSS) then
950 Check_Error_Detected;
951 return;
952 end if;
954 -- Detect whether the block is actually a rewritten return statement of
955 -- a build-in-place function.
957 Is_BIP_Return_Statement :=
958 Present (Id)
959 and then Present (Entity (Id))
960 and then Ekind (Entity (Id)) = E_Return_Statement
961 and then Is_Build_In_Place_Function
962 (Return_Applies_To (Entity (Id)));
964 -- Normal processing with HSS present
966 declare
967 EH : constant List_Id := Exception_Handlers (HSS);
968 Ent : Entity_Id := Empty;
969 S : Entity_Id;
971 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
972 -- Recursively save value of this global, will be restored on exit
974 begin
975 -- Initialize unblocked exit count for statements of begin block
976 -- plus one for each exception handler that is present.
978 Unblocked_Exit_Count := 1;
980 if Present (EH) then
981 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
982 end if;
984 -- If a label is present analyze it and mark it as referenced
986 if Present (Id) then
987 Analyze (Id);
988 Ent := Entity (Id);
990 -- An error defense. If we have an identifier, but no entity, then
991 -- something is wrong. If previous errors, then just remove the
992 -- identifier and continue, otherwise raise an exception.
994 if No (Ent) then
995 Check_Error_Detected;
996 Set_Identifier (N, Empty);
998 else
999 Set_Ekind (Ent, E_Block);
1000 Generate_Reference (Ent, N, ' ');
1001 Generate_Definition (Ent);
1003 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1004 Set_Label_Construct (Parent (Ent), N);
1005 end if;
1006 end if;
1007 end if;
1009 -- If no entity set, create a label entity
1011 if No (Ent) then
1012 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
1013 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
1014 Set_Parent (Ent, N);
1015 end if;
1017 Set_Etype (Ent, Standard_Void_Type);
1018 Set_Block_Node (Ent, Identifier (N));
1019 Push_Scope (Ent);
1021 -- The block served as an extended return statement. Ensure that any
1022 -- entities created during the analysis and expansion of the return
1023 -- object declaration are once again visible.
1025 if Is_BIP_Return_Statement then
1026 Install_Return_Entities (Ent);
1027 end if;
1029 if Present (Decls) then
1030 Analyze_Declarations (Decls);
1031 Check_Completion;
1032 Inspect_Deferred_Constant_Completion (Decls);
1033 end if;
1035 Analyze (HSS);
1036 Process_End_Label (HSS, 'e', Ent);
1038 -- If exception handlers are present, then we indicate that enclosing
1039 -- scopes contain a block with handlers. We only need to mark non-
1040 -- generic scopes.
1042 if Present (EH) then
1043 S := Scope (Ent);
1044 loop
1045 Set_Has_Nested_Block_With_Handler (S);
1046 exit when Is_Overloadable (S)
1047 or else Ekind (S) = E_Package
1048 or else Is_Generic_Unit (S);
1049 S := Scope (S);
1050 end loop;
1051 end if;
1053 Check_References (Ent);
1054 Warn_On_Useless_Assignments (Ent);
1055 End_Scope;
1057 if Unblocked_Exit_Count = 0 then
1058 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1059 Check_Unreachable_Code (N);
1060 else
1061 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1062 end if;
1063 end;
1064 end Analyze_Block_Statement;
1066 --------------------------------
1067 -- Analyze_Compound_Statement --
1068 --------------------------------
1070 procedure Analyze_Compound_Statement (N : Node_Id) is
1071 begin
1072 Analyze_List (Actions (N));
1073 end Analyze_Compound_Statement;
1075 ----------------------------
1076 -- Analyze_Case_Statement --
1077 ----------------------------
1079 procedure Analyze_Case_Statement (N : Node_Id) is
1080 Exp : Node_Id;
1081 Exp_Type : Entity_Id;
1082 Exp_Btype : Entity_Id;
1083 Last_Choice : Nat;
1085 Others_Present : Boolean;
1086 -- Indicates if Others was present
1088 pragma Warnings (Off, Last_Choice);
1089 -- Don't care about assigned value
1091 Statements_Analyzed : Boolean := False;
1092 -- Set True if at least some statement sequences get analyzed. If False
1093 -- on exit, means we had a serious error that prevented full analysis of
1094 -- the case statement, and as a result it is not a good idea to output
1095 -- warning messages about unreachable code.
1097 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1098 -- Recursively save value of this global, will be restored on exit
1100 procedure Non_Static_Choice_Error (Choice : Node_Id);
1101 -- Error routine invoked by the generic instantiation below when the
1102 -- case statement has a non static choice.
1104 procedure Process_Statements (Alternative : Node_Id);
1105 -- Analyzes the statements associated with a case alternative. Needed
1106 -- by instantiation below.
1108 package Analyze_Case_Choices is new
1109 Generic_Analyze_Choices
1110 (Process_Associated_Node => Process_Statements);
1111 use Analyze_Case_Choices;
1112 -- Instantiation of the generic choice analysis package
1114 package Check_Case_Choices is new
1115 Generic_Check_Choices
1116 (Process_Empty_Choice => No_OP,
1117 Process_Non_Static_Choice => Non_Static_Choice_Error,
1118 Process_Associated_Node => No_OP);
1119 use Check_Case_Choices;
1120 -- Instantiation of the generic choice processing package
1122 -----------------------------
1123 -- Non_Static_Choice_Error --
1124 -----------------------------
1126 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1127 begin
1128 Flag_Non_Static_Expr
1129 ("choice given in case statement is not static!", Choice);
1130 end Non_Static_Choice_Error;
1132 ------------------------
1133 -- Process_Statements --
1134 ------------------------
1136 procedure Process_Statements (Alternative : Node_Id) is
1137 Choices : constant List_Id := Discrete_Choices (Alternative);
1138 Ent : Entity_Id;
1140 begin
1141 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1142 Statements_Analyzed := True;
1144 -- An interesting optimization. If the case statement expression
1145 -- is a simple entity, then we can set the current value within an
1146 -- alternative if the alternative has one possible value.
1148 -- case N is
1149 -- when 1 => alpha
1150 -- when 2 | 3 => beta
1151 -- when others => gamma
1153 -- Here we know that N is initially 1 within alpha, but for beta and
1154 -- gamma, we do not know anything more about the initial value.
1156 if Is_Entity_Name (Exp) then
1157 Ent := Entity (Exp);
1159 if Ekind_In (Ent, E_Variable,
1160 E_In_Out_Parameter,
1161 E_Out_Parameter)
1162 then
1163 if List_Length (Choices) = 1
1164 and then Nkind (First (Choices)) in N_Subexpr
1165 and then Compile_Time_Known_Value (First (Choices))
1166 then
1167 Set_Current_Value (Entity (Exp), First (Choices));
1168 end if;
1170 Analyze_Statements (Statements (Alternative));
1172 -- After analyzing the case, set the current value to empty
1173 -- since we won't know what it is for the next alternative
1174 -- (unless reset by this same circuit), or after the case.
1176 Set_Current_Value (Entity (Exp), Empty);
1177 return;
1178 end if;
1179 end if;
1181 -- Case where expression is not an entity name of a variable
1183 Analyze_Statements (Statements (Alternative));
1184 end Process_Statements;
1186 -- Start of processing for Analyze_Case_Statement
1188 begin
1189 Unblocked_Exit_Count := 0;
1190 Exp := Expression (N);
1191 Analyze (Exp);
1193 -- The expression must be of any discrete type. In rare cases, the
1194 -- expander constructs a case statement whose expression has a private
1195 -- type whose full view is discrete. This can happen when generating
1196 -- a stream operation for a variant type after the type is frozen,
1197 -- when the partial of view of the type of the discriminant is private.
1198 -- In that case, use the full view to analyze case alternatives.
1200 if not Is_Overloaded (Exp)
1201 and then not Comes_From_Source (N)
1202 and then Is_Private_Type (Etype (Exp))
1203 and then Present (Full_View (Etype (Exp)))
1204 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1205 then
1206 Resolve (Exp, Etype (Exp));
1207 Exp_Type := Full_View (Etype (Exp));
1209 else
1210 Analyze_And_Resolve (Exp, Any_Discrete);
1211 Exp_Type := Etype (Exp);
1212 end if;
1214 Check_Unset_Reference (Exp);
1215 Exp_Btype := Base_Type (Exp_Type);
1217 -- The expression must be of a discrete type which must be determinable
1218 -- independently of the context in which the expression occurs, but
1219 -- using the fact that the expression must be of a discrete type.
1220 -- Moreover, the type this expression must not be a character literal
1221 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1223 -- If error already reported by Resolve, nothing more to do
1225 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1226 return;
1228 elsif Exp_Btype = Any_Character then
1229 Error_Msg_N
1230 ("character literal as case expression is ambiguous", Exp);
1231 return;
1233 elsif Ada_Version = Ada_83
1234 and then (Is_Generic_Type (Exp_Btype)
1235 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1236 then
1237 Error_Msg_N
1238 ("(Ada 83) case expression cannot be of a generic type", Exp);
1239 return;
1240 end if;
1242 -- If the case expression is a formal object of mode in out, then treat
1243 -- it as having a nonstatic subtype by forcing use of the base type
1244 -- (which has to get passed to Check_Case_Choices below). Also use base
1245 -- type when the case expression is parenthesized.
1247 if Paren_Count (Exp) > 0
1248 or else (Is_Entity_Name (Exp)
1249 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1250 then
1251 Exp_Type := Exp_Btype;
1252 end if;
1254 -- Call instantiated procedures to analyzwe and check discrete choices
1256 Analyze_Choices (Alternatives (N), Exp_Type);
1257 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1259 -- Case statement with single OTHERS alternative not allowed in SPARK
1261 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1262 Check_SPARK_05_Restriction
1263 ("OTHERS as unique case alternative is not allowed", N);
1264 end if;
1266 if Exp_Type = Universal_Integer and then not Others_Present then
1267 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1268 end if;
1270 -- If all our exits were blocked by unconditional transfers of control,
1271 -- then the entire CASE statement acts as an unconditional transfer of
1272 -- control, so treat it like one, and check unreachable code. Skip this
1273 -- test if we had serious errors preventing any statement analysis.
1275 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1276 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1277 Check_Unreachable_Code (N);
1278 else
1279 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1280 end if;
1282 -- If the expander is active it will detect the case of a statically
1283 -- determined single alternative and remove warnings for the case, but
1284 -- if we are not doing expansion, that circuit won't be active. Here we
1285 -- duplicate the effect of removing warnings in the same way, so that
1286 -- we will get the same set of warnings in -gnatc mode.
1288 if not Expander_Active
1289 and then Compile_Time_Known_Value (Expression (N))
1290 and then Serious_Errors_Detected = 0
1291 then
1292 declare
1293 Chosen : constant Node_Id := Find_Static_Alternative (N);
1294 Alt : Node_Id;
1296 begin
1297 Alt := First (Alternatives (N));
1298 while Present (Alt) loop
1299 if Alt /= Chosen then
1300 Remove_Warning_Messages (Statements (Alt));
1301 end if;
1303 Next (Alt);
1304 end loop;
1305 end;
1306 end if;
1307 end Analyze_Case_Statement;
1309 ----------------------------
1310 -- Analyze_Exit_Statement --
1311 ----------------------------
1313 -- If the exit includes a name, it must be the name of a currently open
1314 -- loop. Otherwise there must be an innermost open loop on the stack, to
1315 -- which the statement implicitly refers.
1317 -- Additionally, in SPARK mode:
1319 -- The exit can only name the closest enclosing loop;
1321 -- An exit with a when clause must be directly contained in a loop;
1323 -- An exit without a when clause must be directly contained in an
1324 -- if-statement with no elsif or else, which is itself directly contained
1325 -- in a loop. The exit must be the last statement in the if-statement.
1327 procedure Analyze_Exit_Statement (N : Node_Id) is
1328 Target : constant Node_Id := Name (N);
1329 Cond : constant Node_Id := Condition (N);
1330 Scope_Id : Entity_Id;
1331 U_Name : Entity_Id;
1332 Kind : Entity_Kind;
1334 begin
1335 if No (Cond) then
1336 Check_Unreachable_Code (N);
1337 end if;
1339 if Present (Target) then
1340 Analyze (Target);
1341 U_Name := Entity (Target);
1343 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1344 Error_Msg_N ("invalid loop name in exit statement", N);
1345 return;
1347 else
1348 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1349 Check_SPARK_05_Restriction
1350 ("exit label must name the closest enclosing loop", N);
1351 end if;
1353 Set_Has_Exit (U_Name);
1354 end if;
1356 else
1357 U_Name := Empty;
1358 end if;
1360 for J in reverse 0 .. Scope_Stack.Last loop
1361 Scope_Id := Scope_Stack.Table (J).Entity;
1362 Kind := Ekind (Scope_Id);
1364 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1365 Set_Has_Exit (Scope_Id);
1366 exit;
1368 elsif Kind = E_Block
1369 or else Kind = E_Loop
1370 or else Kind = E_Return_Statement
1371 then
1372 null;
1374 else
1375 Error_Msg_N
1376 ("cannot exit from program unit or accept statement", N);
1377 return;
1378 end if;
1379 end loop;
1381 -- Verify that if present the condition is a Boolean expression
1383 if Present (Cond) then
1384 Analyze_And_Resolve (Cond, Any_Boolean);
1385 Check_Unset_Reference (Cond);
1386 end if;
1388 -- In SPARK mode, verify that the exit statement respects the SPARK
1389 -- restrictions.
1391 if Present (Cond) then
1392 if Nkind (Parent (N)) /= N_Loop_Statement then
1393 Check_SPARK_05_Restriction
1394 ("exit with when clause must be directly in loop", N);
1395 end if;
1397 else
1398 if Nkind (Parent (N)) /= N_If_Statement then
1399 if Nkind (Parent (N)) = N_Elsif_Part then
1400 Check_SPARK_05_Restriction
1401 ("exit must be in IF without ELSIF", N);
1402 else
1403 Check_SPARK_05_Restriction ("exit must be directly in IF", N);
1404 end if;
1406 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1407 Check_SPARK_05_Restriction
1408 ("exit must be in IF directly in loop", N);
1410 -- First test the presence of ELSE, so that an exit in an ELSE leads
1411 -- to an error mentioning the ELSE.
1413 elsif Present (Else_Statements (Parent (N))) then
1414 Check_SPARK_05_Restriction ("exit must be in IF without ELSE", N);
1416 -- An exit in an ELSIF does not reach here, as it would have been
1417 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1419 elsif Present (Elsif_Parts (Parent (N))) then
1420 Check_SPARK_05_Restriction ("exit must be in IF without ELSIF", N);
1421 end if;
1422 end if;
1424 -- Chain exit statement to associated loop entity
1426 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1427 Set_First_Exit_Statement (Scope_Id, N);
1429 -- Since the exit may take us out of a loop, any previous assignment
1430 -- statement is not useless, so clear last assignment indications. It
1431 -- is OK to keep other current values, since if the exit statement
1432 -- does not exit, then the current values are still valid.
1434 Kill_Current_Values (Last_Assignment_Only => True);
1435 end Analyze_Exit_Statement;
1437 ----------------------------
1438 -- Analyze_Goto_Statement --
1439 ----------------------------
1441 procedure Analyze_Goto_Statement (N : Node_Id) is
1442 Label : constant Node_Id := Name (N);
1443 Scope_Id : Entity_Id;
1444 Label_Scope : Entity_Id;
1445 Label_Ent : Entity_Id;
1447 begin
1448 Check_SPARK_05_Restriction ("goto statement is not allowed", N);
1450 -- Actual semantic checks
1452 Check_Unreachable_Code (N);
1453 Kill_Current_Values (Last_Assignment_Only => True);
1455 Analyze (Label);
1456 Label_Ent := Entity (Label);
1458 -- Ignore previous error
1460 if Label_Ent = Any_Id then
1461 Check_Error_Detected;
1462 return;
1464 -- We just have a label as the target of a goto
1466 elsif Ekind (Label_Ent) /= E_Label then
1467 Error_Msg_N ("target of goto statement must be a label", Label);
1468 return;
1470 -- Check that the target of the goto is reachable according to Ada
1471 -- scoping rules. Note: the special gotos we generate for optimizing
1472 -- local handling of exceptions would violate these rules, but we mark
1473 -- such gotos as analyzed when built, so this code is never entered.
1475 elsif not Reachable (Label_Ent) then
1476 Error_Msg_N ("target of goto statement is not reachable", Label);
1477 return;
1478 end if;
1480 -- Here if goto passes initial validity checks
1482 Label_Scope := Enclosing_Scope (Label_Ent);
1484 for J in reverse 0 .. Scope_Stack.Last loop
1485 Scope_Id := Scope_Stack.Table (J).Entity;
1487 if Label_Scope = Scope_Id
1488 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1489 then
1490 if Scope_Id /= Label_Scope then
1491 Error_Msg_N
1492 ("cannot exit from program unit or accept statement", N);
1493 end if;
1495 return;
1496 end if;
1497 end loop;
1499 raise Program_Error;
1500 end Analyze_Goto_Statement;
1502 --------------------------
1503 -- Analyze_If_Statement --
1504 --------------------------
1506 -- A special complication arises in the analysis of if statements
1508 -- The expander has circuitry to completely delete code that it can tell
1509 -- will not be executed (as a result of compile time known conditions). In
1510 -- the analyzer, we ensure that code that will be deleted in this manner
1511 -- is analyzed but not expanded. This is obviously more efficient, but
1512 -- more significantly, difficulties arise if code is expanded and then
1513 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1514 -- generated in deleted code must be frozen from start, because the nodes
1515 -- on which they depend will not be available at the freeze point.
1517 procedure Analyze_If_Statement (N : Node_Id) is
1518 E : Node_Id;
1520 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1521 -- Recursively save value of this global, will be restored on exit
1523 Save_In_Deleted_Code : Boolean;
1525 Del : Boolean := False;
1526 -- This flag gets set True if a True condition has been found, which
1527 -- means that remaining ELSE/ELSIF parts are deleted.
1529 procedure Analyze_Cond_Then (Cnode : Node_Id);
1530 -- This is applied to either the N_If_Statement node itself or to an
1531 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1532 -- statements associated with it.
1534 -----------------------
1535 -- Analyze_Cond_Then --
1536 -----------------------
1538 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1539 Cond : constant Node_Id := Condition (Cnode);
1540 Tstm : constant List_Id := Then_Statements (Cnode);
1542 begin
1543 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1544 Analyze_And_Resolve (Cond, Any_Boolean);
1545 Check_Unset_Reference (Cond);
1546 Set_Current_Value_Condition (Cnode);
1548 -- If already deleting, then just analyze then statements
1550 if Del then
1551 Analyze_Statements (Tstm);
1553 -- Compile time known value, not deleting yet
1555 elsif Compile_Time_Known_Value (Cond) then
1556 Save_In_Deleted_Code := In_Deleted_Code;
1558 -- If condition is True, then analyze the THEN statements and set
1559 -- no expansion for ELSE and ELSIF parts.
1561 if Is_True (Expr_Value (Cond)) then
1562 Analyze_Statements (Tstm);
1563 Del := True;
1564 Expander_Mode_Save_And_Set (False);
1565 In_Deleted_Code := True;
1567 -- If condition is False, analyze THEN with expansion off
1569 else -- Is_False (Expr_Value (Cond))
1570 Expander_Mode_Save_And_Set (False);
1571 In_Deleted_Code := True;
1572 Analyze_Statements (Tstm);
1573 Expander_Mode_Restore;
1574 In_Deleted_Code := Save_In_Deleted_Code;
1575 end if;
1577 -- Not known at compile time, not deleting, normal analysis
1579 else
1580 Analyze_Statements (Tstm);
1581 end if;
1582 end Analyze_Cond_Then;
1584 -- Start of Analyze_If_Statement
1586 begin
1587 -- Initialize exit count for else statements. If there is no else part,
1588 -- this count will stay non-zero reflecting the fact that the uncovered
1589 -- else case is an unblocked exit.
1591 Unblocked_Exit_Count := 1;
1592 Analyze_Cond_Then (N);
1594 -- Now to analyze the elsif parts if any are present
1596 if Present (Elsif_Parts (N)) then
1597 E := First (Elsif_Parts (N));
1598 while Present (E) loop
1599 Analyze_Cond_Then (E);
1600 Next (E);
1601 end loop;
1602 end if;
1604 if Present (Else_Statements (N)) then
1605 Analyze_Statements (Else_Statements (N));
1606 end if;
1608 -- If all our exits were blocked by unconditional transfers of control,
1609 -- then the entire IF statement acts as an unconditional transfer of
1610 -- control, so treat it like one, and check unreachable code.
1612 if Unblocked_Exit_Count = 0 then
1613 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1614 Check_Unreachable_Code (N);
1615 else
1616 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1617 end if;
1619 if Del then
1620 Expander_Mode_Restore;
1621 In_Deleted_Code := Save_In_Deleted_Code;
1622 end if;
1624 if not Expander_Active
1625 and then Compile_Time_Known_Value (Condition (N))
1626 and then Serious_Errors_Detected = 0
1627 then
1628 if Is_True (Expr_Value (Condition (N))) then
1629 Remove_Warning_Messages (Else_Statements (N));
1631 if Present (Elsif_Parts (N)) then
1632 E := First (Elsif_Parts (N));
1633 while Present (E) loop
1634 Remove_Warning_Messages (Then_Statements (E));
1635 Next (E);
1636 end loop;
1637 end if;
1639 else
1640 Remove_Warning_Messages (Then_Statements (N));
1641 end if;
1642 end if;
1644 -- Warn on redundant if statement that has no effect
1646 -- Note, we could also check empty ELSIF parts ???
1648 if Warn_On_Redundant_Constructs
1650 -- If statement must be from source
1652 and then Comes_From_Source (N)
1654 -- Condition must not have obvious side effect
1656 and then Has_No_Obvious_Side_Effects (Condition (N))
1658 -- No elsif parts of else part
1660 and then No (Elsif_Parts (N))
1661 and then No (Else_Statements (N))
1663 -- Then must be a single null statement
1665 and then List_Length (Then_Statements (N)) = 1
1666 then
1667 -- Go to original node, since we may have rewritten something as
1668 -- a null statement (e.g. a case we could figure the outcome of).
1670 declare
1671 T : constant Node_Id := First (Then_Statements (N));
1672 S : constant Node_Id := Original_Node (T);
1674 begin
1675 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
1676 Error_Msg_N ("if statement has no effect?r?", N);
1677 end if;
1678 end;
1679 end if;
1680 end Analyze_If_Statement;
1682 ----------------------------------------
1683 -- Analyze_Implicit_Label_Declaration --
1684 ----------------------------------------
1686 -- An implicit label declaration is generated in the innermost enclosing
1687 -- declarative part. This is done for labels, and block and loop names.
1689 -- Note: any changes in this routine may need to be reflected in
1690 -- Analyze_Label_Entity.
1692 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1693 Id : constant Node_Id := Defining_Identifier (N);
1694 begin
1695 Enter_Name (Id);
1696 Set_Ekind (Id, E_Label);
1697 Set_Etype (Id, Standard_Void_Type);
1698 Set_Enclosing_Scope (Id, Current_Scope);
1699 end Analyze_Implicit_Label_Declaration;
1701 ------------------------------
1702 -- Analyze_Iteration_Scheme --
1703 ------------------------------
1705 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1706 Cond : Node_Id;
1707 Iter_Spec : Node_Id;
1708 Loop_Spec : Node_Id;
1710 begin
1711 -- For an infinite loop, there is no iteration scheme
1713 if No (N) then
1714 return;
1715 end if;
1717 Cond := Condition (N);
1718 Iter_Spec := Iterator_Specification (N);
1719 Loop_Spec := Loop_Parameter_Specification (N);
1721 if Present (Cond) then
1722 Analyze_And_Resolve (Cond, Any_Boolean);
1723 Check_Unset_Reference (Cond);
1724 Set_Current_Value_Condition (N);
1726 elsif Present (Iter_Spec) then
1727 Analyze_Iterator_Specification (Iter_Spec);
1729 else
1730 Analyze_Loop_Parameter_Specification (Loop_Spec);
1731 end if;
1732 end Analyze_Iteration_Scheme;
1734 ------------------------------------
1735 -- Analyze_Iterator_Specification --
1736 ------------------------------------
1738 procedure Analyze_Iterator_Specification (N : Node_Id) is
1739 Loc : constant Source_Ptr := Sloc (N);
1740 Def_Id : constant Node_Id := Defining_Identifier (N);
1741 Subt : constant Node_Id := Subtype_Indication (N);
1742 Iter_Name : constant Node_Id := Name (N);
1744 Ent : Entity_Id;
1745 Typ : Entity_Id;
1746 Bas : Entity_Id;
1748 procedure Check_Reverse_Iteration (Typ : Entity_Id);
1749 -- For an iteration over a container, if the loop carries the Reverse
1750 -- indicator, verify that the container type has an Iterate aspect that
1751 -- implements the reversible iterator interface.
1753 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1754 -- For containers with Iterator and related aspects, the cursor is
1755 -- obtained by locating an entity with the proper name in the scope
1756 -- of the type.
1758 -----------------------------
1759 -- Check_Reverse_Iteration --
1760 -----------------------------
1762 procedure Check_Reverse_Iteration (Typ : Entity_Id) is
1763 begin
1764 if Reverse_Present (N)
1765 and then not Is_Array_Type (Typ)
1766 and then not Is_Reversible_Iterator (Typ)
1767 then
1768 Error_Msg_NE
1769 ("container type does not support reverse iteration", N, Typ);
1770 end if;
1771 end Check_Reverse_Iteration;
1773 ---------------------
1774 -- Get_Cursor_Type --
1775 ---------------------
1777 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
1778 Ent : Entity_Id;
1780 begin
1781 Ent := First_Entity (Scope (Typ));
1782 while Present (Ent) loop
1783 exit when Chars (Ent) = Name_Cursor;
1784 Next_Entity (Ent);
1785 end loop;
1787 if No (Ent) then
1788 return Any_Type;
1789 end if;
1791 -- The cursor is the target of generated assignments in the
1792 -- loop, and cannot have a limited type.
1794 if Is_Limited_Type (Etype (Ent)) then
1795 Error_Msg_N ("cursor type cannot be limited", N);
1796 end if;
1798 return Etype (Ent);
1799 end Get_Cursor_Type;
1801 -- Start of processing for Analyze_iterator_Specification
1803 begin
1804 Enter_Name (Def_Id);
1806 -- AI12-0151 specifies that when the subtype indication is present, it
1807 -- must statically match the type of the array or container element.
1808 -- To simplify this check, we introduce a subtype declaration with the
1809 -- given subtype indication when it carries a constraint, and rewrite
1810 -- the original as a reference to the created subtype entity.
1812 if Present (Subt) then
1813 if Nkind (Subt) = N_Subtype_Indication then
1814 declare
1815 S : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
1816 Decl : constant Node_Id :=
1817 Make_Subtype_Declaration (Loc,
1818 Defining_Identifier => S,
1819 Subtype_Indication => New_Copy_Tree (Subt));
1820 begin
1821 Insert_Before (Parent (Parent (N)), Decl);
1822 Analyze (Decl);
1823 Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
1824 end;
1825 else
1826 Analyze (Subt);
1827 end if;
1829 -- Save entity of subtype indication for subsequent check
1831 Bas := Entity (Subt);
1832 end if;
1834 Preanalyze_Range (Iter_Name);
1836 -- Set the kind of the loop variable, which is not visible within
1837 -- the iterator name.
1839 Set_Ekind (Def_Id, E_Variable);
1841 -- Provide a link between the iterator variable and the container, for
1842 -- subsequent use in cross-reference and modification information.
1844 if Of_Present (N) then
1845 Set_Related_Expression (Def_Id, Iter_Name);
1847 -- For a container, the iterator is specified through the aspect
1849 if not Is_Array_Type (Etype (Iter_Name)) then
1850 declare
1851 Iterator : constant Entity_Id :=
1852 Find_Value_Of_Aspect
1853 (Etype (Iter_Name), Aspect_Default_Iterator);
1855 I : Interp_Index;
1856 It : Interp;
1858 begin
1859 if No (Iterator) then
1860 null; -- error reported below.
1862 elsif not Is_Overloaded (Iterator) then
1863 Check_Reverse_Iteration (Etype (Iterator));
1865 -- If Iterator is overloaded, use reversible iterator if
1866 -- one is available.
1868 elsif Is_Overloaded (Iterator) then
1869 Get_First_Interp (Iterator, I, It);
1870 while Present (It.Nam) loop
1871 if Ekind (It.Nam) = E_Function
1872 and then Is_Reversible_Iterator (Etype (It.Nam))
1873 then
1874 Set_Etype (Iterator, It.Typ);
1875 Set_Entity (Iterator, It.Nam);
1876 exit;
1877 end if;
1879 Get_Next_Interp (I, It);
1880 end loop;
1882 Check_Reverse_Iteration (Etype (Iterator));
1883 end if;
1884 end;
1885 end if;
1886 end if;
1888 -- If the domain of iteration is an expression, create a declaration for
1889 -- it, so that finalization actions are introduced outside of the loop.
1890 -- The declaration must be a renaming because the body of the loop may
1891 -- assign to elements.
1893 if not Is_Entity_Name (Iter_Name)
1895 -- When the context is a quantified expression, the renaming
1896 -- declaration is delayed until the expansion phase if we are
1897 -- doing expansion.
1899 and then (Nkind (Parent (N)) /= N_Quantified_Expression
1900 or else Operating_Mode = Check_Semantics)
1902 -- Do not perform this expansion in SPARK mode, since the formal
1903 -- verification directly deals with the source form of the iterator.
1904 -- Ditto for ASIS, where the temporary may hide the transformation
1905 -- of a selected component into a prefixed function call.
1907 and then not GNATprove_Mode
1908 and then not ASIS_Mode
1909 then
1910 declare
1911 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
1912 Decl : Node_Id;
1913 Act_S : Node_Id;
1915 begin
1917 -- If the domain of iteration is an array component that depends
1918 -- on a discriminant, create actual subtype for it. Pre-analysis
1919 -- does not generate the actual subtype of a selected component.
1921 if Nkind (Iter_Name) = N_Selected_Component
1922 and then Is_Array_Type (Etype (Iter_Name))
1923 then
1924 Act_S :=
1925 Build_Actual_Subtype_Of_Component
1926 (Etype (Selector_Name (Iter_Name)), Iter_Name);
1927 Insert_Action (N, Act_S);
1929 if Present (Act_S) then
1930 Typ := Defining_Identifier (Act_S);
1931 else
1932 Typ := Etype (Iter_Name);
1933 end if;
1935 else
1936 Typ := Etype (Iter_Name);
1938 -- Verify that the expression produces an iterator
1940 if not Of_Present (N) and then not Is_Iterator (Typ)
1941 and then not Is_Array_Type (Typ)
1942 and then No (Find_Aspect (Typ, Aspect_Iterable))
1943 then
1944 Error_Msg_N
1945 ("expect object that implements iterator interface",
1946 Iter_Name);
1947 end if;
1948 end if;
1950 -- Protect against malformed iterator
1952 if Typ = Any_Type then
1953 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
1954 return;
1955 end if;
1957 if not Of_Present (N) then
1958 Check_Reverse_Iteration (Typ);
1959 end if;
1961 -- The name in the renaming declaration may be a function call.
1962 -- Indicate that it does not come from source, to suppress
1963 -- spurious warnings on renamings of parameterless functions,
1964 -- a common enough idiom in user-defined iterators.
1966 Decl :=
1967 Make_Object_Renaming_Declaration (Loc,
1968 Defining_Identifier => Id,
1969 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
1970 Name =>
1971 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
1973 Insert_Actions (Parent (Parent (N)), New_List (Decl));
1974 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
1975 Set_Etype (Id, Typ);
1976 Set_Etype (Name (N), Typ);
1977 end;
1979 -- Container is an entity or an array with uncontrolled components, or
1980 -- else it is a container iterator given by a function call, typically
1981 -- called Iterate in the case of predefined containers, even though
1982 -- Iterate is not a reserved name. What matters is that the return type
1983 -- of the function is an iterator type.
1985 elsif Is_Entity_Name (Iter_Name) then
1986 Analyze (Iter_Name);
1988 if Nkind (Iter_Name) = N_Function_Call then
1989 declare
1990 C : constant Node_Id := Name (Iter_Name);
1991 I : Interp_Index;
1992 It : Interp;
1994 begin
1995 if not Is_Overloaded (Iter_Name) then
1996 Resolve (Iter_Name, Etype (C));
1998 else
1999 Get_First_Interp (C, I, It);
2000 while It.Typ /= Empty loop
2001 if Reverse_Present (N) then
2002 if Is_Reversible_Iterator (It.Typ) then
2003 Resolve (Iter_Name, It.Typ);
2004 exit;
2005 end if;
2007 elsif Is_Iterator (It.Typ) then
2008 Resolve (Iter_Name, It.Typ);
2009 exit;
2010 end if;
2012 Get_Next_Interp (I, It);
2013 end loop;
2014 end if;
2015 end;
2017 -- Domain of iteration is not overloaded
2019 else
2020 Resolve (Iter_Name, Etype (Iter_Name));
2021 end if;
2023 if not Of_Present (N) then
2024 Check_Reverse_Iteration (Etype (Iter_Name));
2025 end if;
2026 end if;
2028 -- Get base type of container, for proper retrieval of Cursor type
2029 -- and primitive operations.
2031 Typ := Base_Type (Etype (Iter_Name));
2033 if Is_Array_Type (Typ) then
2034 if Of_Present (N) then
2035 Set_Etype (Def_Id, Component_Type (Typ));
2037 -- The loop variable is aliased if the array components are
2038 -- aliased.
2040 Set_Is_Aliased (Def_Id, Has_Aliased_Components (Typ));
2042 -- AI12-0151 stipulates that the container cannot be a component
2043 -- that depends on a discriminant if the enclosing object is
2044 -- mutable, to prevent a modification of the container in the
2045 -- course of an iteration.
2047 -- Should comment on need to go to Original_Node ???
2049 if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
2050 and then Is_Dependent_Component_Of_Mutable_Object
2051 (Original_Node (Iter_Name))
2052 then
2053 Error_Msg_N
2054 ("container cannot be a discriminant-dependent "
2055 & "component of a mutable object", N);
2056 end if;
2058 if Present (Subt)
2059 and then
2060 (Base_Type (Bas) /= Base_Type (Component_Type (Typ))
2061 or else
2062 not Subtypes_Statically_Match (Bas, Component_Type (Typ)))
2063 then
2064 Error_Msg_N
2065 ("subtype indication does not match component type", Subt);
2066 end if;
2068 -- Here we have a missing Range attribute
2070 else
2071 Error_Msg_N
2072 ("missing Range attribute in iteration over an array", N);
2074 -- In Ada 2012 mode, this may be an attempt at an iterator
2076 if Ada_Version >= Ada_2012 then
2077 Error_Msg_NE
2078 ("\if& is meant to designate an element of the array, use OF",
2079 N, Def_Id);
2080 end if;
2082 -- Prevent cascaded errors
2084 Set_Ekind (Def_Id, E_Loop_Parameter);
2085 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2086 end if;
2088 -- Check for type error in iterator
2090 elsif Typ = Any_Type then
2091 return;
2093 -- Iteration over a container
2095 else
2096 Set_Ekind (Def_Id, E_Loop_Parameter);
2097 Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
2099 -- OF present
2101 if Of_Present (N) then
2102 if Has_Aspect (Typ, Aspect_Iterable) then
2103 declare
2104 Elt : constant Entity_Id :=
2105 Get_Iterable_Type_Primitive (Typ, Name_Element);
2106 begin
2107 if No (Elt) then
2108 Error_Msg_N
2109 ("missing Element primitive for iteration", N);
2110 else
2111 Set_Etype (Def_Id, Etype (Elt));
2112 end if;
2113 end;
2115 -- For a predefined container, The type of the loop variable is
2116 -- the Iterator_Element aspect of the container type.
2118 else
2119 declare
2120 Element : constant Entity_Id :=
2121 Find_Value_Of_Aspect (Typ, Aspect_Iterator_Element);
2122 Iterator : constant Entity_Id :=
2123 Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator);
2124 Cursor_Type : Entity_Id;
2126 begin
2127 if No (Element) then
2128 Error_Msg_NE ("cannot iterate over&", N, Typ);
2129 return;
2131 else
2132 Set_Etype (Def_Id, Entity (Element));
2133 Cursor_Type := Get_Cursor_Type (Typ);
2134 pragma Assert (Present (Cursor_Type));
2136 -- If subtype indication was given, verify that it covers
2137 -- the element type of the container.
2139 if Present (Subt)
2140 and then (not Covers (Bas, Etype (Def_Id))
2141 or else not Subtypes_Statically_Match
2142 (Bas, Etype (Def_Id)))
2143 then
2144 Error_Msg_N
2145 ("subtype indication does not match element type",
2146 Subt);
2147 end if;
2149 -- If the container has a variable indexing aspect, the
2150 -- element is a variable and is modifiable in the loop.
2152 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
2153 Set_Ekind (Def_Id, E_Variable);
2154 end if;
2156 -- If the container is a constant, iterating over it
2157 -- requires a Constant_Indexing operation.
2159 if not Is_Variable (Iter_Name)
2160 and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
2161 then
2162 Error_Msg_N ("iteration over constant container "
2163 & "require constant_indexing aspect", N);
2165 -- The Iterate function may have an in_out parameter,
2166 -- and a constant container is thus illegal.
2168 elsif Present (Iterator)
2169 and then Ekind (Entity (Iterator)) = E_Function
2170 and then Ekind (First_Formal (Entity (Iterator))) /=
2171 E_In_Parameter
2172 and then not Is_Variable (Iter_Name)
2173 then
2174 Error_Msg_N
2175 ("variable container expected", N);
2176 end if;
2178 if Nkind (Original_Node (Iter_Name))
2179 = N_Selected_Component
2180 and then
2181 Is_Dependent_Component_Of_Mutable_Object
2182 (Original_Node (Iter_Name))
2183 then
2184 Error_Msg_N
2185 ("container cannot be a discriminant-dependent "
2186 & "component of a mutable object", N);
2187 end if;
2188 end if;
2189 end;
2190 end if;
2192 -- IN iterator, domain is a range, or a call to Iterate function
2194 else
2195 -- For an iteration of the form IN, the name must denote an
2196 -- iterator, typically the result of a call to Iterate. Give a
2197 -- useful error message when the name is a container by itself.
2199 -- The type may be a formal container type, which has to have
2200 -- an Iterable aspect detailing the required primitives.
2202 if Is_Entity_Name (Original_Node (Name (N)))
2203 and then not Is_Iterator (Typ)
2204 then
2205 if Has_Aspect (Typ, Aspect_Iterable) then
2206 null;
2208 elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
2209 Error_Msg_NE
2210 ("cannot iterate over&", Name (N), Typ);
2211 else
2212 Error_Msg_N
2213 ("name must be an iterator, not a container", Name (N));
2214 end if;
2216 if Has_Aspect (Typ, Aspect_Iterable) then
2217 null;
2218 else
2219 Error_Msg_NE
2220 ("\to iterate directly over the elements of a container, "
2221 & "write `of &`", Name (N), Original_Node (Name (N)));
2223 -- No point in continuing analysis of iterator spec
2225 return;
2226 end if;
2227 end if;
2229 -- If the name is a call (typically prefixed) to some Iterate
2230 -- function, it has been rewritten as an object declaration.
2231 -- If that object is a selected component, verify that it is not
2232 -- a component of an unconstrained mutable object.
2234 if Nkind (Iter_Name) = N_Identifier then
2235 declare
2236 Orig_Node : constant Node_Id := Original_Node (Iter_Name);
2237 Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
2238 Obj : Node_Id;
2240 begin
2241 if Iter_Kind = N_Selected_Component then
2242 Obj := Prefix (Orig_Node);
2244 elsif Iter_Kind = N_Function_Call then
2245 Obj := First_Actual (Orig_Node);
2247 -- If neither, the name comes from source
2249 else
2250 Obj := Iter_Name;
2251 end if;
2253 if Nkind (Obj) = N_Selected_Component
2254 and then Is_Dependent_Component_Of_Mutable_Object (Obj)
2255 then
2256 Error_Msg_N
2257 ("container cannot be a discriminant-dependent "
2258 & "component of a mutable object", N);
2259 end if;
2260 end;
2261 end if;
2263 -- The result type of Iterate function is the classwide type of
2264 -- the interface parent. We need the specific Cursor type defined
2265 -- in the container package. We obtain it by name for a predefined
2266 -- container, or through the Iterable aspect for a formal one.
2268 if Has_Aspect (Typ, Aspect_Iterable) then
2269 Set_Etype (Def_Id,
2270 Get_Cursor_Type
2271 (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
2272 Typ));
2273 Ent := Etype (Def_Id);
2275 else
2276 Set_Etype (Def_Id, Get_Cursor_Type (Typ));
2277 end if;
2279 end if;
2280 end if;
2282 -- A loop parameter cannot be effectively volatile. This check is
2283 -- peformed only when SPARK_Mode is on as it is not a standard Ada
2284 -- legality check (SPARK RM 7.1.3(6)).
2286 -- Not clear whether this applies to element iterators, where the
2287 -- cursor is not an explicit entity ???
2289 if SPARK_Mode = On
2290 and then not Of_Present (N)
2291 and then Is_Effectively_Volatile (Ent)
2292 then
2293 Error_Msg_N ("loop parameter cannot be volatile", Ent);
2294 end if;
2295 end Analyze_Iterator_Specification;
2297 -------------------
2298 -- Analyze_Label --
2299 -------------------
2301 -- Note: the semantic work required for analyzing labels (setting them as
2302 -- reachable) was done in a prepass through the statements in the block,
2303 -- so that forward gotos would be properly handled. See Analyze_Statements
2304 -- for further details. The only processing required here is to deal with
2305 -- optimizations that depend on an assumption of sequential control flow,
2306 -- since of course the occurrence of a label breaks this assumption.
2308 procedure Analyze_Label (N : Node_Id) is
2309 pragma Warnings (Off, N);
2310 begin
2311 Kill_Current_Values;
2312 end Analyze_Label;
2314 --------------------------
2315 -- Analyze_Label_Entity --
2316 --------------------------
2318 procedure Analyze_Label_Entity (E : Entity_Id) is
2319 begin
2320 Set_Ekind (E, E_Label);
2321 Set_Etype (E, Standard_Void_Type);
2322 Set_Enclosing_Scope (E, Current_Scope);
2323 Set_Reachable (E, True);
2324 end Analyze_Label_Entity;
2326 ------------------------------------------
2327 -- Analyze_Loop_Parameter_Specification --
2328 ------------------------------------------
2330 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
2331 Loop_Nod : constant Node_Id := Parent (Parent (N));
2333 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
2334 -- If the bounds are given by a 'Range reference on a function call
2335 -- that returns a controlled array, introduce an explicit declaration
2336 -- to capture the bounds, so that the function result can be finalized
2337 -- in timely fashion.
2339 procedure Check_Predicate_Use (T : Entity_Id);
2340 -- Diagnose Attempt to iterate through non-static predicate. Note that
2341 -- a type with inherited predicates may have both static and dynamic
2342 -- forms. In this case it is not sufficent to check the static predicate
2343 -- function only, look for a dynamic predicate aspect as well.
2345 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
2346 -- N is the node for an arbitrary construct. This function searches the
2347 -- construct N to see if any expressions within it contain function
2348 -- calls that use the secondary stack, returning True if any such call
2349 -- is found, and False otherwise.
2351 procedure Process_Bounds (R : Node_Id);
2352 -- If the iteration is given by a range, create temporaries and
2353 -- assignment statements block to capture the bounds and perform
2354 -- required finalization actions in case a bound includes a function
2355 -- call that uses the temporary stack. We first pre-analyze a copy of
2356 -- the range in order to determine the expected type, and analyze and
2357 -- resolve the original bounds.
2359 --------------------------------------
2360 -- Check_Controlled_Array_Attribute --
2361 --------------------------------------
2363 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
2364 begin
2365 if Nkind (DS) = N_Attribute_Reference
2366 and then Is_Entity_Name (Prefix (DS))
2367 and then Ekind (Entity (Prefix (DS))) = E_Function
2368 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
2369 and then
2370 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
2371 and then Expander_Active
2372 then
2373 declare
2374 Loc : constant Source_Ptr := Sloc (N);
2375 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
2376 Indx : constant Entity_Id :=
2377 Base_Type (Etype (First_Index (Arr)));
2378 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
2379 Decl : Node_Id;
2381 begin
2382 Decl :=
2383 Make_Subtype_Declaration (Loc,
2384 Defining_Identifier => Subt,
2385 Subtype_Indication =>
2386 Make_Subtype_Indication (Loc,
2387 Subtype_Mark => New_Occurrence_Of (Indx, Loc),
2388 Constraint =>
2389 Make_Range_Constraint (Loc, Relocate_Node (DS))));
2390 Insert_Before (Loop_Nod, Decl);
2391 Analyze (Decl);
2393 Rewrite (DS,
2394 Make_Attribute_Reference (Loc,
2395 Prefix => New_Occurrence_Of (Subt, Loc),
2396 Attribute_Name => Attribute_Name (DS)));
2398 Analyze (DS);
2399 end;
2400 end if;
2401 end Check_Controlled_Array_Attribute;
2403 -------------------------
2404 -- Check_Predicate_Use --
2405 -------------------------
2407 procedure Check_Predicate_Use (T : Entity_Id) is
2408 begin
2409 -- A predicated subtype is illegal in loops and related constructs
2410 -- if the predicate is not static, or if it is a non-static subtype
2411 -- of a statically predicated subtype.
2413 if Is_Discrete_Type (T)
2414 and then Has_Predicates (T)
2415 and then (not Has_Static_Predicate (T)
2416 or else not Is_Static_Subtype (T)
2417 or else Has_Dynamic_Predicate_Aspect (T))
2418 then
2419 -- Seems a confusing message for the case of a static predicate
2420 -- with a non-static subtype???
2422 Bad_Predicated_Subtype_Use
2423 ("cannot use subtype& with non-static predicate for loop "
2424 & "iteration", Discrete_Subtype_Definition (N),
2425 T, Suggest_Static => True);
2427 elsif Inside_A_Generic and then Is_Generic_Formal (T) then
2428 Set_No_Dynamic_Predicate_On_Actual (T);
2429 end if;
2430 end Check_Predicate_Use;
2432 ------------------------------------
2433 -- Has_Call_Using_Secondary_Stack --
2434 ------------------------------------
2436 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
2438 function Check_Call (N : Node_Id) return Traverse_Result;
2439 -- Check if N is a function call which uses the secondary stack
2441 ----------------
2442 -- Check_Call --
2443 ----------------
2445 function Check_Call (N : Node_Id) return Traverse_Result is
2446 Nam : Node_Id;
2447 Subp : Entity_Id;
2448 Return_Typ : Entity_Id;
2450 begin
2451 if Nkind (N) = N_Function_Call then
2452 Nam := Name (N);
2454 -- Call using access to subprogram with explicit dereference
2456 if Nkind (Nam) = N_Explicit_Dereference then
2457 Subp := Etype (Nam);
2459 -- Call using a selected component notation or Ada 2005 object
2460 -- operation notation
2462 elsif Nkind (Nam) = N_Selected_Component then
2463 Subp := Entity (Selector_Name (Nam));
2465 -- Common case
2467 else
2468 Subp := Entity (Nam);
2469 end if;
2471 Return_Typ := Etype (Subp);
2473 if Is_Composite_Type (Return_Typ)
2474 and then not Is_Constrained (Return_Typ)
2475 then
2476 return Abandon;
2478 elsif Sec_Stack_Needed_For_Return (Subp) then
2479 return Abandon;
2480 end if;
2481 end if;
2483 -- Continue traversing the tree
2485 return OK;
2486 end Check_Call;
2488 function Check_Calls is new Traverse_Func (Check_Call);
2490 -- Start of processing for Has_Call_Using_Secondary_Stack
2492 begin
2493 return Check_Calls (N) = Abandon;
2494 end Has_Call_Using_Secondary_Stack;
2496 --------------------
2497 -- Process_Bounds --
2498 --------------------
2500 procedure Process_Bounds (R : Node_Id) is
2501 Loc : constant Source_Ptr := Sloc (N);
2503 function One_Bound
2504 (Original_Bound : Node_Id;
2505 Analyzed_Bound : Node_Id;
2506 Typ : Entity_Id) return Node_Id;
2507 -- Capture value of bound and return captured value
2509 ---------------
2510 -- One_Bound --
2511 ---------------
2513 function One_Bound
2514 (Original_Bound : Node_Id;
2515 Analyzed_Bound : Node_Id;
2516 Typ : Entity_Id) return Node_Id
2518 Assign : Node_Id;
2519 Decl : Node_Id;
2520 Id : Entity_Id;
2522 begin
2523 -- If the bound is a constant or an object, no need for a separate
2524 -- declaration. If the bound is the result of previous expansion
2525 -- it is already analyzed and should not be modified. Note that
2526 -- the Bound will be resolved later, if needed, as part of the
2527 -- call to Make_Index (literal bounds may need to be resolved to
2528 -- type Integer).
2530 if Analyzed (Original_Bound) then
2531 return Original_Bound;
2533 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2534 N_Character_Literal)
2535 or else Is_Entity_Name (Analyzed_Bound)
2536 then
2537 Analyze_And_Resolve (Original_Bound, Typ);
2538 return Original_Bound;
2539 end if;
2541 -- Normally, the best approach is simply to generate a constant
2542 -- declaration that captures the bound. However, there is a nasty
2543 -- case where this is wrong. If the bound is complex, and has a
2544 -- possible use of the secondary stack, we need to generate a
2545 -- separate assignment statement to ensure the creation of a block
2546 -- which will release the secondary stack.
2548 -- We prefer the constant declaration, since it leaves us with a
2549 -- proper trace of the value, useful in optimizations that get rid
2550 -- of junk range checks.
2552 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2553 Analyze_And_Resolve (Original_Bound, Typ);
2555 -- Ensure that the bound is valid. This check should not be
2556 -- generated when the range belongs to a quantified expression
2557 -- as the construct is still not expanded into its final form.
2559 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
2560 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
2561 then
2562 Ensure_Valid (Original_Bound);
2563 end if;
2565 Force_Evaluation (Original_Bound);
2566 return Original_Bound;
2567 end if;
2569 Id := Make_Temporary (Loc, 'R', Original_Bound);
2571 -- Here we make a declaration with a separate assignment
2572 -- statement, and insert before loop header.
2574 Decl :=
2575 Make_Object_Declaration (Loc,
2576 Defining_Identifier => Id,
2577 Object_Definition => New_Occurrence_Of (Typ, Loc));
2579 Assign :=
2580 Make_Assignment_Statement (Loc,
2581 Name => New_Occurrence_Of (Id, Loc),
2582 Expression => Relocate_Node (Original_Bound));
2584 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2586 -- Now that this temporary variable is initialized we decorate it
2587 -- as safe-to-reevaluate to inform to the backend that no further
2588 -- asignment will be issued and hence it can be handled as side
2589 -- effect free. Note that this decoration must be done when the
2590 -- assignment has been analyzed because otherwise it will be
2591 -- rejected (see Analyze_Assignment).
2593 Set_Is_Safe_To_Reevaluate (Id);
2595 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2597 if Nkind (Assign) = N_Assignment_Statement then
2598 return Expression (Assign);
2599 else
2600 return Original_Bound;
2601 end if;
2602 end One_Bound;
2604 Hi : constant Node_Id := High_Bound (R);
2605 Lo : constant Node_Id := Low_Bound (R);
2606 R_Copy : constant Node_Id := New_Copy_Tree (R);
2607 New_Hi : Node_Id;
2608 New_Lo : Node_Id;
2609 Typ : Entity_Id;
2611 -- Start of processing for Process_Bounds
2613 begin
2614 Set_Parent (R_Copy, Parent (R));
2615 Preanalyze_Range (R_Copy);
2616 Typ := Etype (R_Copy);
2618 -- If the type of the discrete range is Universal_Integer, then the
2619 -- bound's type must be resolved to Integer, and any object used to
2620 -- hold the bound must also have type Integer, unless the literal
2621 -- bounds are constant-folded expressions with a user-defined type.
2623 if Typ = Universal_Integer then
2624 if Nkind (Lo) = N_Integer_Literal
2625 and then Present (Etype (Lo))
2626 and then Scope (Etype (Lo)) /= Standard_Standard
2627 then
2628 Typ := Etype (Lo);
2630 elsif Nkind (Hi) = N_Integer_Literal
2631 and then Present (Etype (Hi))
2632 and then Scope (Etype (Hi)) /= Standard_Standard
2633 then
2634 Typ := Etype (Hi);
2636 else
2637 Typ := Standard_Integer;
2638 end if;
2639 end if;
2641 Set_Etype (R, Typ);
2643 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2644 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2646 -- Propagate staticness to loop range itself, in case the
2647 -- corresponding subtype is static.
2649 if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
2650 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2651 end if;
2653 if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
2654 Rewrite (High_Bound (R), New_Copy (New_Hi));
2655 end if;
2656 end Process_Bounds;
2658 -- Local variables
2660 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2661 Id : constant Entity_Id := Defining_Identifier (N);
2663 DS_Copy : Node_Id;
2665 -- Start of processing for Analyze_Loop_Parameter_Specification
2667 begin
2668 Enter_Name (Id);
2670 -- We always consider the loop variable to be referenced, since the loop
2671 -- may be used just for counting purposes.
2673 Generate_Reference (Id, N, ' ');
2675 -- Check for the case of loop variable hiding a local variable (used
2676 -- later on to give a nice warning if the hidden variable is never
2677 -- assigned).
2679 declare
2680 H : constant Entity_Id := Homonym (Id);
2681 begin
2682 if Present (H)
2683 and then Ekind (H) = E_Variable
2684 and then Is_Discrete_Type (Etype (H))
2685 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2686 then
2687 Set_Hiding_Loop_Variable (H, Id);
2688 end if;
2689 end;
2691 -- Loop parameter specification must include subtype mark in SPARK
2693 if Nkind (DS) = N_Range then
2694 Check_SPARK_05_Restriction
2695 ("loop parameter specification must include subtype mark", N);
2696 end if;
2698 -- Analyze the subtype definition and create temporaries for the bounds.
2699 -- Do not evaluate the range when preanalyzing a quantified expression
2700 -- because bounds expressed as function calls with side effects will be
2701 -- incorrectly replicated.
2703 if Nkind (DS) = N_Range
2704 and then Expander_Active
2705 and then Nkind (Parent (N)) /= N_Quantified_Expression
2706 then
2707 Process_Bounds (DS);
2709 -- Either the expander not active or the range of iteration is a subtype
2710 -- indication, an entity, or a function call that yields an aggregate or
2711 -- a container.
2713 else
2714 DS_Copy := New_Copy_Tree (DS);
2715 Set_Parent (DS_Copy, Parent (DS));
2716 Preanalyze_Range (DS_Copy);
2718 -- Ada 2012: If the domain of iteration is:
2720 -- a) a function call,
2721 -- b) an identifier that is not a type,
2722 -- c) an attribute reference 'Old (within a postcondition)
2723 -- d) an unchecked conversion
2725 -- then it is an iteration over a container. It was classified as
2726 -- a loop specification by the parser, and must be rewritten now
2727 -- to activate container iteration. The last case will occur within
2728 -- an expanded inlined call, where the expansion wraps an actual in
2729 -- an unchecked conversion when needed. The expression of the
2730 -- conversion is always an object.
2732 if Nkind (DS_Copy) = N_Function_Call
2733 or else (Is_Entity_Name (DS_Copy)
2734 and then not Is_Type (Entity (DS_Copy)))
2735 or else (Nkind (DS_Copy) = N_Attribute_Reference
2736 and then Nam_In (Attribute_Name (DS_Copy),
2737 Name_Old, Name_Loop_Entry))
2738 or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
2739 or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
2740 then
2741 -- This is an iterator specification. Rewrite it as such and
2742 -- analyze it to capture function calls that may require
2743 -- finalization actions.
2745 declare
2746 I_Spec : constant Node_Id :=
2747 Make_Iterator_Specification (Sloc (N),
2748 Defining_Identifier => Relocate_Node (Id),
2749 Name => DS_Copy,
2750 Subtype_Indication => Empty,
2751 Reverse_Present => Reverse_Present (N));
2752 Scheme : constant Node_Id := Parent (N);
2754 begin
2755 Set_Iterator_Specification (Scheme, I_Spec);
2756 Set_Loop_Parameter_Specification (Scheme, Empty);
2757 Analyze_Iterator_Specification (I_Spec);
2759 -- In a generic context, analyze the original domain of
2760 -- iteration, for name capture.
2762 if not Expander_Active then
2763 Analyze (DS);
2764 end if;
2766 -- Set kind of loop parameter, which may be used in the
2767 -- subsequent analysis of the condition in a quantified
2768 -- expression.
2770 Set_Ekind (Id, E_Loop_Parameter);
2771 return;
2772 end;
2774 -- Domain of iteration is not a function call, and is side-effect
2775 -- free.
2777 else
2778 -- A quantified expression that appears in a pre/post condition
2779 -- is pre-analyzed several times. If the range is given by an
2780 -- attribute reference it is rewritten as a range, and this is
2781 -- done even with expansion disabled. If the type is already set
2782 -- do not reanalyze, because a range with static bounds may be
2783 -- typed Integer by default.
2785 if Nkind (Parent (N)) = N_Quantified_Expression
2786 and then Present (Etype (DS))
2787 then
2788 null;
2789 else
2790 Analyze (DS);
2791 end if;
2792 end if;
2793 end if;
2795 if DS = Error then
2796 return;
2797 end if;
2799 -- Some additional checks if we are iterating through a type
2801 if Is_Entity_Name (DS)
2802 and then Present (Entity (DS))
2803 and then Is_Type (Entity (DS))
2804 then
2805 -- The subtype indication may denote the completion of an incomplete
2806 -- type declaration.
2808 if Ekind (Entity (DS)) = E_Incomplete_Type then
2809 Set_Entity (DS, Get_Full_View (Entity (DS)));
2810 Set_Etype (DS, Entity (DS));
2811 end if;
2813 Check_Predicate_Use (Entity (DS));
2814 end if;
2816 -- Error if not discrete type
2818 if not Is_Discrete_Type (Etype (DS)) then
2819 Wrong_Type (DS, Any_Discrete);
2820 Set_Etype (DS, Any_Type);
2821 end if;
2823 Check_Controlled_Array_Attribute (DS);
2825 if Nkind (DS) = N_Subtype_Indication then
2826 Check_Predicate_Use (Entity (Subtype_Mark (DS)));
2827 end if;
2829 Make_Index (DS, N, In_Iter_Schm => True);
2830 Set_Ekind (Id, E_Loop_Parameter);
2832 -- A quantified expression which appears in a pre- or post-condition may
2833 -- be analyzed multiple times. The analysis of the range creates several
2834 -- itypes which reside in different scopes depending on whether the pre-
2835 -- or post-condition has been expanded. Update the type of the loop
2836 -- variable to reflect the proper itype at each stage of analysis.
2838 if No (Etype (Id))
2839 or else Etype (Id) = Any_Type
2840 or else
2841 (Present (Etype (Id))
2842 and then Is_Itype (Etype (Id))
2843 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
2844 and then Nkind (Original_Node (Parent (Loop_Nod))) =
2845 N_Quantified_Expression)
2846 then
2847 Set_Etype (Id, Etype (DS));
2848 end if;
2850 -- Treat a range as an implicit reference to the type, to inhibit
2851 -- spurious warnings.
2853 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
2854 Set_Is_Known_Valid (Id, True);
2856 -- The loop is not a declarative part, so the loop variable must be
2857 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2858 -- expression because the freeze node will not be inserted into the
2859 -- tree due to flag Is_Spec_Expression being set.
2861 if Nkind (Parent (N)) /= N_Quantified_Expression then
2862 declare
2863 Flist : constant List_Id := Freeze_Entity (Id, N);
2864 begin
2865 if Is_Non_Empty_List (Flist) then
2866 Insert_Actions (N, Flist);
2867 end if;
2868 end;
2869 end if;
2871 -- Case where we have a range or a subtype, get type bounds
2873 if Nkind_In (DS, N_Range, N_Subtype_Indication)
2874 and then not Error_Posted (DS)
2875 and then Etype (DS) /= Any_Type
2876 and then Is_Discrete_Type (Etype (DS))
2877 then
2878 declare
2879 L : Node_Id;
2880 H : Node_Id;
2882 begin
2883 if Nkind (DS) = N_Range then
2884 L := Low_Bound (DS);
2885 H := High_Bound (DS);
2886 else
2887 L :=
2888 Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2889 H :=
2890 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2891 end if;
2893 -- Check for null or possibly null range and issue warning. We
2894 -- suppress such messages in generic templates and instances,
2895 -- because in practice they tend to be dubious in these cases. The
2896 -- check applies as well to rewritten array element loops where a
2897 -- null range may be detected statically.
2899 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
2901 -- Suppress the warning if inside a generic template or
2902 -- instance, since in practice they tend to be dubious in these
2903 -- cases since they can result from intended parameterization.
2905 if not Inside_A_Generic and then not In_Instance then
2907 -- Specialize msg if invalid values could make the loop
2908 -- non-null after all.
2910 if Compile_Time_Compare
2911 (L, H, Assume_Valid => False) = GT
2912 then
2913 -- Since we know the range of the loop is null, set the
2914 -- appropriate flag to remove the loop entirely during
2915 -- expansion.
2917 Set_Is_Null_Loop (Loop_Nod);
2919 if Comes_From_Source (N) then
2920 Error_Msg_N
2921 ("??loop range is null, loop will not execute", DS);
2922 end if;
2924 -- Here is where the loop could execute because of
2925 -- invalid values, so issue appropriate message and in
2926 -- this case we do not set the Is_Null_Loop flag since
2927 -- the loop may execute.
2929 elsif Comes_From_Source (N) then
2930 Error_Msg_N
2931 ("??loop range may be null, loop may not execute",
2932 DS);
2933 Error_Msg_N
2934 ("??can only execute if invalid values are present",
2935 DS);
2936 end if;
2937 end if;
2939 -- In either case, suppress warnings in the body of the loop,
2940 -- since it is likely that these warnings will be inappropriate
2941 -- if the loop never actually executes, which is likely.
2943 Set_Suppress_Loop_Warnings (Loop_Nod);
2945 -- The other case for a warning is a reverse loop where the
2946 -- upper bound is the integer literal zero or one, and the
2947 -- lower bound may exceed this value.
2949 -- For example, we have
2951 -- for J in reverse N .. 1 loop
2953 -- In practice, this is very likely to be a case of reversing
2954 -- the bounds incorrectly in the range.
2956 elsif Reverse_Present (N)
2957 and then Nkind (Original_Node (H)) = N_Integer_Literal
2958 and then
2959 (Intval (Original_Node (H)) = Uint_0
2960 or else
2961 Intval (Original_Node (H)) = Uint_1)
2962 then
2963 -- Lower bound may in fact be known and known not to exceed
2964 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
2966 if Compile_Time_Known_Value (L)
2967 and then Expr_Value (L) <= Expr_Value (H)
2968 then
2969 null;
2971 -- Otherwise warning is warranted
2973 else
2974 Error_Msg_N ("??loop range may be null", DS);
2975 Error_Msg_N ("\??bounds may be wrong way round", DS);
2976 end if;
2977 end if;
2979 -- Check if either bound is known to be outside the range of the
2980 -- loop parameter type, this is e.g. the case of a loop from
2981 -- 20..X where the type is 1..19.
2983 -- Such a loop is dubious since either it raises CE or it executes
2984 -- zero times, and that cannot be useful!
2986 if Etype (DS) /= Any_Type
2987 and then not Error_Posted (DS)
2988 and then Nkind (DS) = N_Subtype_Indication
2989 and then Nkind (Constraint (DS)) = N_Range_Constraint
2990 then
2991 declare
2992 LLo : constant Node_Id :=
2993 Low_Bound (Range_Expression (Constraint (DS)));
2994 LHi : constant Node_Id :=
2995 High_Bound (Range_Expression (Constraint (DS)));
2997 Bad_Bound : Node_Id := Empty;
2998 -- Suspicious loop bound
3000 begin
3001 -- At this stage L, H are the bounds of the type, and LLo
3002 -- Lhi are the low bound and high bound of the loop.
3004 if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
3005 or else
3006 Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
3007 then
3008 Bad_Bound := LLo;
3009 end if;
3011 if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
3012 or else
3013 Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
3014 then
3015 Bad_Bound := LHi;
3016 end if;
3018 if Present (Bad_Bound) then
3019 Error_Msg_N
3020 ("suspicious loop bound out of range of "
3021 & "loop subtype??", Bad_Bound);
3022 Error_Msg_N
3023 ("\loop executes zero times or raises "
3024 & "Constraint_Error??", Bad_Bound);
3025 end if;
3026 end;
3027 end if;
3029 -- This declare block is about warnings, if we get an exception while
3030 -- testing for warnings, we simply abandon the attempt silently. This
3031 -- most likely occurs as the result of a previous error, but might
3032 -- just be an obscure case we have missed. In either case, not giving
3033 -- the warning is perfectly acceptable.
3035 exception
3036 when others => null;
3037 end;
3038 end if;
3040 -- A loop parameter cannot be effectively volatile. This check is
3041 -- peformed only when SPARK_Mode is on as it is not a standard Ada
3042 -- legality check (SPARK RM 7.1.3(6)).
3044 if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
3045 Error_Msg_N ("loop parameter cannot be volatile", Id);
3046 end if;
3047 end Analyze_Loop_Parameter_Specification;
3049 ----------------------------
3050 -- Analyze_Loop_Statement --
3051 ----------------------------
3053 procedure Analyze_Loop_Statement (N : Node_Id) is
3055 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
3056 -- Given a loop iteration scheme, determine whether it is an Ada 2012
3057 -- container iteration.
3059 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
3060 -- Determine whether loop statement N has been wrapped in a block to
3061 -- capture finalization actions that may be generated for container
3062 -- iterators. Prevents infinite recursion when block is analyzed.
3063 -- Routine is a noop if loop is single statement within source block.
3065 ---------------------------
3066 -- Is_Container_Iterator --
3067 ---------------------------
3069 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
3070 begin
3071 -- Infinite loop
3073 if No (Iter) then
3074 return False;
3076 -- While loop
3078 elsif Present (Condition (Iter)) then
3079 return False;
3081 -- for Def_Id in [reverse] Name loop
3082 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
3084 elsif Present (Iterator_Specification (Iter)) then
3085 declare
3086 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
3087 Nam_Copy : Node_Id;
3089 begin
3090 Nam_Copy := New_Copy_Tree (Nam);
3091 Set_Parent (Nam_Copy, Parent (Nam));
3092 Preanalyze_Range (Nam_Copy);
3094 -- The only two options here are iteration over a container or
3095 -- an array.
3097 return not Is_Array_Type (Etype (Nam_Copy));
3098 end;
3100 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
3102 else
3103 declare
3104 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
3105 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
3106 DS_Copy : Node_Id;
3108 begin
3109 DS_Copy := New_Copy_Tree (DS);
3110 Set_Parent (DS_Copy, Parent (DS));
3111 Preanalyze_Range (DS_Copy);
3113 -- Check for a call to Iterate ()
3115 return
3116 Nkind (DS_Copy) = N_Function_Call
3117 and then Needs_Finalization (Etype (DS_Copy));
3118 end;
3119 end if;
3120 end Is_Container_Iterator;
3122 -------------------------
3123 -- Is_Wrapped_In_Block --
3124 -------------------------
3126 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
3127 HSS : Node_Id;
3128 Stat : Node_Id;
3130 begin
3132 -- Check if current scope is a block that is not a transient block.
3134 if Ekind (Current_Scope) /= E_Block
3135 or else No (Block_Node (Current_Scope))
3136 then
3137 return False;
3139 else
3140 HSS :=
3141 Handled_Statement_Sequence (Parent (Block_Node (Current_Scope)));
3143 -- Skip leading pragmas that may be introduced for invariant and
3144 -- predicate checks.
3146 Stat := First (Statements (HSS));
3147 while Present (Stat) and then Nkind (Stat) = N_Pragma loop
3148 Stat := Next (Stat);
3149 end loop;
3151 return Stat = N and then No (Next (Stat));
3152 end if;
3153 end Is_Wrapped_In_Block;
3155 -- Local declarations
3157 Id : constant Node_Id := Identifier (N);
3158 Iter : constant Node_Id := Iteration_Scheme (N);
3159 Loc : constant Source_Ptr := Sloc (N);
3160 Ent : Entity_Id;
3161 Stmt : Node_Id;
3163 -- Start of processing for Analyze_Loop_Statement
3165 begin
3166 if Present (Id) then
3168 -- Make name visible, e.g. for use in exit statements. Loop labels
3169 -- are always considered to be referenced.
3171 Analyze (Id);
3172 Ent := Entity (Id);
3174 -- Guard against serious error (typically, a scope mismatch when
3175 -- semantic analysis is requested) by creating loop entity to
3176 -- continue analysis.
3178 if No (Ent) then
3179 if Total_Errors_Detected /= 0 then
3180 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3181 else
3182 raise Program_Error;
3183 end if;
3185 -- Verify that the loop name is hot hidden by an unrelated
3186 -- declaration in an inner scope.
3188 elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
3189 Error_Msg_Sloc := Sloc (Ent);
3190 Error_Msg_N ("implicit label declaration for & is hidden#", Id);
3192 if Present (Homonym (Ent))
3193 and then Ekind (Homonym (Ent)) = E_Label
3194 then
3195 Set_Entity (Id, Ent);
3196 Set_Ekind (Ent, E_Loop);
3197 end if;
3199 else
3200 Generate_Reference (Ent, N, ' ');
3201 Generate_Definition (Ent);
3203 -- If we found a label, mark its type. If not, ignore it, since it
3204 -- means we have a conflicting declaration, which would already
3205 -- have been diagnosed at declaration time. Set Label_Construct
3206 -- of the implicit label declaration, which is not created by the
3207 -- parser for generic units.
3209 if Ekind (Ent) = E_Label then
3210 Set_Ekind (Ent, E_Loop);
3212 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
3213 Set_Label_Construct (Parent (Ent), N);
3214 end if;
3215 end if;
3216 end if;
3218 -- Case of no identifier present
3220 else
3221 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3222 Set_Etype (Ent, Standard_Void_Type);
3223 Set_Parent (Ent, N);
3224 end if;
3226 -- Iteration over a container in Ada 2012 involves the creation of a
3227 -- controlled iterator object. Wrap the loop in a block to ensure the
3228 -- timely finalization of the iterator and release of container locks.
3229 -- The same applies to the use of secondary stack when obtaining an
3230 -- iterator.
3232 if Ada_Version >= Ada_2012
3233 and then Is_Container_Iterator (Iter)
3234 and then not Is_Wrapped_In_Block (N)
3235 then
3236 declare
3237 Block_Nod : Node_Id;
3238 Block_Id : Entity_Id;
3240 begin
3241 Block_Nod :=
3242 Make_Block_Statement (Loc,
3243 Declarations => New_List,
3244 Handled_Statement_Sequence =>
3245 Make_Handled_Sequence_Of_Statements (Loc,
3246 Statements => New_List (Relocate_Node (N))));
3248 Add_Block_Identifier (Block_Nod, Block_Id);
3250 -- The expansion of iterator loops generates an iterator in order
3251 -- to traverse the elements of a container:
3253 -- Iter : <iterator type> := Iterate (Container)'reference;
3255 -- The iterator is controlled and returned on the secondary stack.
3256 -- The analysis of the call to Iterate establishes a transient
3257 -- scope to deal with the secondary stack management, but never
3258 -- really creates a physical block as this would kill the iterator
3259 -- too early (see Wrap_Transient_Declaration). To address this
3260 -- case, mark the generated block as needing secondary stack
3261 -- management.
3263 Set_Uses_Sec_Stack (Block_Id);
3265 Rewrite (N, Block_Nod);
3266 Analyze (N);
3267 return;
3268 end;
3269 end if;
3271 -- Kill current values on entry to loop, since statements in the body of
3272 -- the loop may have been executed before the loop is entered. Similarly
3273 -- we kill values after the loop, since we do not know that the body of
3274 -- the loop was executed.
3276 Kill_Current_Values;
3277 Push_Scope (Ent);
3278 Analyze_Iteration_Scheme (Iter);
3280 -- Check for following case which merits a warning if the type E of is
3281 -- a multi-dimensional array (and no explicit subscript ranges present).
3283 -- for J in E'Range
3284 -- for K in E'Range
3286 if Present (Iter)
3287 and then Present (Loop_Parameter_Specification (Iter))
3288 then
3289 declare
3290 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
3291 DSD : constant Node_Id :=
3292 Original_Node (Discrete_Subtype_Definition (LPS));
3293 begin
3294 if Nkind (DSD) = N_Attribute_Reference
3295 and then Attribute_Name (DSD) = Name_Range
3296 and then No (Expressions (DSD))
3297 then
3298 declare
3299 Typ : constant Entity_Id := Etype (Prefix (DSD));
3300 begin
3301 if Is_Array_Type (Typ)
3302 and then Number_Dimensions (Typ) > 1
3303 and then Nkind (Parent (N)) = N_Loop_Statement
3304 and then Present (Iteration_Scheme (Parent (N)))
3305 then
3306 declare
3307 OIter : constant Node_Id :=
3308 Iteration_Scheme (Parent (N));
3309 OLPS : constant Node_Id :=
3310 Loop_Parameter_Specification (OIter);
3311 ODSD : constant Node_Id :=
3312 Original_Node (Discrete_Subtype_Definition (OLPS));
3313 begin
3314 if Nkind (ODSD) = N_Attribute_Reference
3315 and then Attribute_Name (ODSD) = Name_Range
3316 and then No (Expressions (ODSD))
3317 and then Etype (Prefix (ODSD)) = Typ
3318 then
3319 Error_Msg_Sloc := Sloc (ODSD);
3320 Error_Msg_N
3321 ("inner range same as outer range#??", DSD);
3322 end if;
3323 end;
3324 end if;
3325 end;
3326 end if;
3327 end;
3328 end if;
3330 -- Analyze the statements of the body except in the case of an Ada 2012
3331 -- iterator with the expander active. In this case the expander will do
3332 -- a rewrite of the loop into a while loop. We will then analyze the
3333 -- loop body when we analyze this while loop.
3335 -- We need to do this delay because if the container is for indefinite
3336 -- types the actual subtype of the components will only be determined
3337 -- when the cursor declaration is analyzed.
3339 -- If the expander is not active, or in SPARK mode, then we want to
3340 -- analyze the loop body now even in the Ada 2012 iterator case, since
3341 -- the rewriting will not be done. Insert the loop variable in the
3342 -- current scope, if not done when analysing the iteration scheme.
3343 -- Set its kind properly to detect improper uses in the loop body.
3345 if Present (Iter)
3346 and then Present (Iterator_Specification (Iter))
3347 then
3348 if not Expander_Active then
3349 declare
3350 I_Spec : constant Node_Id := Iterator_Specification (Iter);
3351 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3353 begin
3354 if Scope (Id) /= Current_Scope then
3355 Enter_Name (Id);
3356 end if;
3358 -- In an element iterator, The loop parameter is a variable if
3359 -- the domain of iteration (container or array) is a variable.
3361 if not Of_Present (I_Spec)
3362 or else not Is_Variable (Name (I_Spec))
3363 then
3364 Set_Ekind (Id, E_Loop_Parameter);
3365 end if;
3366 end;
3368 Analyze_Statements (Statements (N));
3369 end if;
3371 else
3373 -- Pre-Ada2012 for-loops and while loops.
3375 Analyze_Statements (Statements (N));
3376 end if;
3378 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3379 -- the loop is transformed into a conditional block. Retrieve the loop.
3381 Stmt := N;
3383 if Subject_To_Loop_Entry_Attributes (Stmt) then
3384 Stmt := Find_Loop_In_Conditional_Block (Stmt);
3385 end if;
3387 -- Finish up processing for the loop. We kill all current values, since
3388 -- in general we don't know if the statements in the loop have been
3389 -- executed. We could do a bit better than this with a loop that we
3390 -- know will execute at least once, but it's not worth the trouble and
3391 -- the front end is not in the business of flow tracing.
3393 Process_End_Label (Stmt, 'e', Ent);
3394 End_Scope;
3395 Kill_Current_Values;
3397 -- Check for infinite loop. Skip check for generated code, since it
3398 -- justs waste time and makes debugging the routine called harder.
3400 -- Note that we have to wait till the body of the loop is fully analyzed
3401 -- before making this call, since Check_Infinite_Loop_Warning relies on
3402 -- being able to use semantic visibility information to find references.
3404 if Comes_From_Source (Stmt) then
3405 Check_Infinite_Loop_Warning (Stmt);
3406 end if;
3408 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3409 -- contains no EXIT statements within the body of the loop.
3411 if No (Iter) and then not Has_Exit (Ent) then
3412 Check_Unreachable_Code (Stmt);
3413 end if;
3414 end Analyze_Loop_Statement;
3416 ----------------------------
3417 -- Analyze_Null_Statement --
3418 ----------------------------
3420 -- Note: the semantics of the null statement is implemented by a single
3421 -- null statement, too bad everything isn't as simple as this.
3423 procedure Analyze_Null_Statement (N : Node_Id) is
3424 pragma Warnings (Off, N);
3425 begin
3426 null;
3427 end Analyze_Null_Statement;
3429 ------------------------
3430 -- Analyze_Statements --
3431 ------------------------
3433 procedure Analyze_Statements (L : List_Id) is
3434 S : Node_Id;
3435 Lab : Entity_Id;
3437 begin
3438 -- The labels declared in the statement list are reachable from
3439 -- statements in the list. We do this as a prepass so that any goto
3440 -- statement will be properly flagged if its target is not reachable.
3441 -- This is not required, but is nice behavior.
3443 S := First (L);
3444 while Present (S) loop
3445 if Nkind (S) = N_Label then
3446 Analyze (Identifier (S));
3447 Lab := Entity (Identifier (S));
3449 -- If we found a label mark it as reachable
3451 if Ekind (Lab) = E_Label then
3452 Generate_Definition (Lab);
3453 Set_Reachable (Lab);
3455 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
3456 Set_Label_Construct (Parent (Lab), S);
3457 end if;
3459 -- If we failed to find a label, it means the implicit declaration
3460 -- of the label was hidden. A for-loop parameter can do this to
3461 -- a label with the same name inside the loop, since the implicit
3462 -- label declaration is in the innermost enclosing body or block
3463 -- statement.
3465 else
3466 Error_Msg_Sloc := Sloc (Lab);
3467 Error_Msg_N
3468 ("implicit label declaration for & is hidden#",
3469 Identifier (S));
3470 end if;
3471 end if;
3473 Next (S);
3474 end loop;
3476 -- Perform semantic analysis on all statements
3478 Conditional_Statements_Begin;
3480 S := First (L);
3481 while Present (S) loop
3482 Analyze (S);
3484 -- Remove dimension in all statements
3486 Remove_Dimension_In_Statement (S);
3487 Next (S);
3488 end loop;
3490 Conditional_Statements_End;
3492 -- Make labels unreachable. Visibility is not sufficient, because labels
3493 -- in one if-branch for example are not reachable from the other branch,
3494 -- even though their declarations are in the enclosing declarative part.
3496 S := First (L);
3497 while Present (S) loop
3498 if Nkind (S) = N_Label then
3499 Set_Reachable (Entity (Identifier (S)), False);
3500 end if;
3502 Next (S);
3503 end loop;
3504 end Analyze_Statements;
3506 ----------------------------
3507 -- Check_Unreachable_Code --
3508 ----------------------------
3510 procedure Check_Unreachable_Code (N : Node_Id) is
3511 Error_Node : Node_Id;
3512 P : Node_Id;
3514 begin
3515 if Is_List_Member (N) and then Comes_From_Source (N) then
3516 declare
3517 Nxt : Node_Id;
3519 begin
3520 Nxt := Original_Node (Next (N));
3522 -- Skip past pragmas
3524 while Nkind (Nxt) = N_Pragma loop
3525 Nxt := Original_Node (Next (Nxt));
3526 end loop;
3528 -- If a label follows us, then we never have dead code, since
3529 -- someone could branch to the label, so we just ignore it, unless
3530 -- we are in formal mode where goto statements are not allowed.
3532 if Nkind (Nxt) = N_Label
3533 and then not Restriction_Check_Required (SPARK_05)
3534 then
3535 return;
3537 -- Otherwise see if we have a real statement following us
3539 elsif Present (Nxt)
3540 and then Comes_From_Source (Nxt)
3541 and then Is_Statement (Nxt)
3542 then
3543 -- Special very annoying exception. If we have a return that
3544 -- follows a raise, then we allow it without a warning, since
3545 -- the Ada RM annoyingly requires a useless return here.
3547 if Nkind (Original_Node (N)) /= N_Raise_Statement
3548 or else Nkind (Nxt) /= N_Simple_Return_Statement
3549 then
3550 -- The rather strange shenanigans with the warning message
3551 -- here reflects the fact that Kill_Dead_Code is very good
3552 -- at removing warnings in deleted code, and this is one
3553 -- warning we would prefer NOT to have removed.
3555 Error_Node := Nxt;
3557 -- If we have unreachable code, analyze and remove the
3558 -- unreachable code, since it is useless and we don't
3559 -- want to generate junk warnings.
3561 -- We skip this step if we are not in code generation mode
3562 -- or CodePeer mode.
3564 -- This is the one case where we remove dead code in the
3565 -- semantics as opposed to the expander, and we do not want
3566 -- to remove code if we are not in code generation mode,
3567 -- since this messes up the ASIS trees or loses useful
3568 -- information in the CodePeer tree.
3570 -- Note that one might react by moving the whole circuit to
3571 -- exp_ch5, but then we lose the warning in -gnatc mode.
3573 if Operating_Mode = Generate_Code
3574 and then not CodePeer_Mode
3575 then
3576 loop
3577 Nxt := Next (N);
3579 -- Quit deleting when we have nothing more to delete
3580 -- or if we hit a label (since someone could transfer
3581 -- control to a label, so we should not delete it).
3583 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
3585 -- Statement/declaration is to be deleted
3587 Analyze (Nxt);
3588 Remove (Nxt);
3589 Kill_Dead_Code (Nxt);
3590 end loop;
3591 end if;
3593 -- Now issue the warning (or error in formal mode)
3595 if Restriction_Check_Required (SPARK_05) then
3596 Check_SPARK_05_Restriction
3597 ("unreachable code is not allowed", Error_Node);
3598 else
3599 Error_Msg ("??unreachable code!", Sloc (Error_Node));
3600 end if;
3601 end if;
3603 -- If the unconditional transfer of control instruction is the
3604 -- last statement of a sequence, then see if our parent is one of
3605 -- the constructs for which we count unblocked exits, and if so,
3606 -- adjust the count.
3608 else
3609 P := Parent (N);
3611 -- Statements in THEN part or ELSE part of IF statement
3613 if Nkind (P) = N_If_Statement then
3614 null;
3616 -- Statements in ELSIF part of an IF statement
3618 elsif Nkind (P) = N_Elsif_Part then
3619 P := Parent (P);
3620 pragma Assert (Nkind (P) = N_If_Statement);
3622 -- Statements in CASE statement alternative
3624 elsif Nkind (P) = N_Case_Statement_Alternative then
3625 P := Parent (P);
3626 pragma Assert (Nkind (P) = N_Case_Statement);
3628 -- Statements in body of block
3630 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
3631 and then Nkind (Parent (P)) = N_Block_Statement
3632 then
3633 -- The original loop is now placed inside a block statement
3634 -- due to the expansion of attribute 'Loop_Entry. Return as
3635 -- this is not a "real" block for the purposes of exit
3636 -- counting.
3638 if Nkind (N) = N_Loop_Statement
3639 and then Subject_To_Loop_Entry_Attributes (N)
3640 then
3641 return;
3642 end if;
3644 -- Statements in exception handler in a block
3646 elsif Nkind (P) = N_Exception_Handler
3647 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
3648 and then Nkind (Parent (Parent (P))) = N_Block_Statement
3649 then
3650 null;
3652 -- None of these cases, so return
3654 else
3655 return;
3656 end if;
3658 -- This was one of the cases we are looking for (i.e. the
3659 -- parent construct was IF, CASE or block) so decrement count.
3661 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
3662 end if;
3663 end;
3664 end if;
3665 end Check_Unreachable_Code;
3667 ----------------------
3668 -- Preanalyze_Range --
3669 ----------------------
3671 procedure Preanalyze_Range (R_Copy : Node_Id) is
3672 Save_Analysis : constant Boolean := Full_Analysis;
3673 Typ : Entity_Id;
3675 begin
3676 Full_Analysis := False;
3677 Expander_Mode_Save_And_Set (False);
3679 Analyze (R_Copy);
3681 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
3683 -- Apply preference rules for range of predefined integer types, or
3684 -- diagnose true ambiguity.
3686 declare
3687 I : Interp_Index;
3688 It : Interp;
3689 Found : Entity_Id := Empty;
3691 begin
3692 Get_First_Interp (R_Copy, I, It);
3693 while Present (It.Typ) loop
3694 if Is_Discrete_Type (It.Typ) then
3695 if No (Found) then
3696 Found := It.Typ;
3697 else
3698 if Scope (Found) = Standard_Standard then
3699 null;
3701 elsif Scope (It.Typ) = Standard_Standard then
3702 Found := It.Typ;
3704 else
3705 -- Both of them are user-defined
3707 Error_Msg_N
3708 ("ambiguous bounds in range of iteration", R_Copy);
3709 Error_Msg_N ("\possible interpretations:", R_Copy);
3710 Error_Msg_NE ("\\} ", R_Copy, Found);
3711 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
3712 exit;
3713 end if;
3714 end if;
3715 end if;
3717 Get_Next_Interp (I, It);
3718 end loop;
3719 end;
3720 end if;
3722 -- Subtype mark in iteration scheme
3724 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
3725 null;
3727 -- Expression in range, or Ada 2012 iterator
3729 elsif Nkind (R_Copy) in N_Subexpr then
3730 Resolve (R_Copy);
3731 Typ := Etype (R_Copy);
3733 if Is_Discrete_Type (Typ) then
3734 null;
3736 -- Check that the resulting object is an iterable container
3738 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
3739 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
3740 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
3741 then
3742 null;
3744 -- The expression may yield an implicit reference to an iterable
3745 -- container. Insert explicit dereference so that proper type is
3746 -- visible in the loop.
3748 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
3749 declare
3750 Disc : Entity_Id;
3752 begin
3753 Disc := First_Discriminant (Typ);
3754 while Present (Disc) loop
3755 if Has_Implicit_Dereference (Disc) then
3756 Build_Explicit_Dereference (R_Copy, Disc);
3757 exit;
3758 end if;
3760 Next_Discriminant (Disc);
3761 end loop;
3762 end;
3764 end if;
3765 end if;
3767 Expander_Mode_Restore;
3768 Full_Analysis := Save_Analysis;
3769 end Preanalyze_Range;
3771 end Sem_Ch5;