2015-09-28 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob473d65ef7256d71dd490a157f95b061f228dd6cc
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Itypes; use Itypes;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Namet.Sp; use Namet.Sp;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Output; use Output;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Dist; use Sem_Dist;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Stand; use Stand;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Tbuild; use Tbuild;
64 with Uintp; use Uintp;
66 package body Sem_Ch4 is
68 -- Tables which speed up the identification of dangerous calls to Ada 2012
69 -- functions with writable actuals (AI05-0144).
71 -- The following table enumerates the Ada constructs which may evaluate in
72 -- arbitrary order. It does not cover all the language constructs which can
73 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
75 Has_Arbitrary_Evaluation_Order : constant array (Node_Kind) of Boolean :=
76 (N_Aggregate => True,
77 N_Assignment_Statement => True,
78 N_Entry_Call_Statement => True,
79 N_Extension_Aggregate => True,
80 N_Full_Type_Declaration => True,
81 N_Indexed_Component => True,
82 N_Object_Declaration => True,
83 N_Pragma => True,
84 N_Range => True,
85 N_Slice => True,
86 N_Array_Type_Definition => True,
87 N_Membership_Test => True,
88 N_Binary_Op => True,
89 N_Subprogram_Call => True,
90 others => False);
92 -- The following table enumerates the nodes on which we stop climbing when
93 -- locating the outermost Ada construct that can be evaluated in arbitrary
94 -- order.
96 Stop_Subtree_Climbing : constant array (Node_Kind) of Boolean :=
97 (N_Aggregate => True,
98 N_Assignment_Statement => True,
99 N_Entry_Call_Statement => True,
100 N_Extended_Return_Statement => True,
101 N_Extension_Aggregate => True,
102 N_Full_Type_Declaration => True,
103 N_Object_Declaration => True,
104 N_Object_Renaming_Declaration => True,
105 N_Package_Specification => True,
106 N_Pragma => True,
107 N_Procedure_Call_Statement => True,
108 N_Simple_Return_Statement => True,
109 N_Has_Condition => True,
110 others => False);
112 -----------------------
113 -- Local Subprograms --
114 -----------------------
116 procedure Analyze_Concatenation_Rest (N : Node_Id);
117 -- Does the "rest" of the work of Analyze_Concatenation, after the left
118 -- operand has been analyzed. See Analyze_Concatenation for details.
120 procedure Analyze_Expression (N : Node_Id);
121 -- For expressions that are not names, this is just a call to analyze. If
122 -- the expression is a name, it may be a call to a parameterless function,
123 -- and if so must be converted into an explicit call node and analyzed as
124 -- such. This deproceduring must be done during the first pass of overload
125 -- resolution, because otherwise a procedure call with overloaded actuals
126 -- may fail to resolve.
128 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
129 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
130 -- operator name or an expanded name whose selector is an operator name,
131 -- and one possible interpretation is as a predefined operator.
133 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
134 -- If the prefix of a selected_component is overloaded, the proper
135 -- interpretation that yields a record type with the proper selector
136 -- name must be selected.
138 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
139 -- Procedure to analyze a user defined binary operator, which is resolved
140 -- like a function, but instead of a list of actuals it is presented
141 -- with the left and right operands of an operator node.
143 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
144 -- Procedure to analyze a user defined unary operator, which is resolved
145 -- like a function, but instead of a list of actuals, it is presented with
146 -- the operand of the operator node.
148 procedure Ambiguous_Operands (N : Node_Id);
149 -- For equality, membership, and comparison operators with overloaded
150 -- arguments, list possible interpretations.
152 procedure Analyze_One_Call
153 (N : Node_Id;
154 Nam : Entity_Id;
155 Report : Boolean;
156 Success : out Boolean;
157 Skip_First : Boolean := False);
158 -- Check one interpretation of an overloaded subprogram name for
159 -- compatibility with the types of the actuals in a call. If there is a
160 -- single interpretation which does not match, post error if Report is
161 -- set to True.
163 -- Nam is the entity that provides the formals against which the actuals
164 -- are checked. Nam is either the name of a subprogram, or the internal
165 -- subprogram type constructed for an access_to_subprogram. If the actuals
166 -- are compatible with Nam, then Nam is added to the list of candidate
167 -- interpretations for N, and Success is set to True.
169 -- The flag Skip_First is used when analyzing a call that was rewritten
170 -- from object notation. In this case the first actual may have to receive
171 -- an explicit dereference, depending on the first formal of the operation
172 -- being called. The caller will have verified that the object is legal
173 -- for the call. If the remaining parameters match, the first parameter
174 -- will rewritten as a dereference if needed, prior to completing analysis.
176 procedure Check_Misspelled_Selector
177 (Prefix : Entity_Id;
178 Sel : Node_Id);
179 -- Give possible misspelling message if Sel seems likely to be a mis-
180 -- spelling of one of the selectors of the Prefix. This is called by
181 -- Analyze_Selected_Component after producing an invalid selector error
182 -- message.
184 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
185 -- Verify that type T is declared in scope S. Used to find interpretations
186 -- for operators given by expanded names. This is abstracted as a separate
187 -- function to handle extensions to System, where S is System, but T is
188 -- declared in the extension.
190 procedure Find_Arithmetic_Types
191 (L, R : Node_Id;
192 Op_Id : Entity_Id;
193 N : Node_Id);
194 -- L and R are the operands of an arithmetic operator. Find consistent
195 -- pairs of interpretations for L and R that have a numeric type consistent
196 -- with the semantics of the operator.
198 procedure Find_Comparison_Types
199 (L, R : Node_Id;
200 Op_Id : Entity_Id;
201 N : Node_Id);
202 -- L and R are operands of a comparison operator. Find consistent pairs of
203 -- interpretations for L and R.
205 procedure Find_Concatenation_Types
206 (L, R : Node_Id;
207 Op_Id : Entity_Id;
208 N : Node_Id);
209 -- For the four varieties of concatenation
211 procedure Find_Equality_Types
212 (L, R : Node_Id;
213 Op_Id : Entity_Id;
214 N : Node_Id);
215 -- Ditto for equality operators
217 procedure Find_Boolean_Types
218 (L, R : Node_Id;
219 Op_Id : Entity_Id;
220 N : Node_Id);
221 -- Ditto for binary logical operations
223 procedure Find_Negation_Types
224 (R : Node_Id;
225 Op_Id : Entity_Id;
226 N : Node_Id);
227 -- Find consistent interpretation for operand of negation operator
229 procedure Find_Non_Universal_Interpretations
230 (N : Node_Id;
231 R : Node_Id;
232 Op_Id : Entity_Id;
233 T1 : Entity_Id);
234 -- For equality and comparison operators, the result is always boolean,
235 -- and the legality of the operation is determined from the visibility
236 -- of the operand types. If one of the operands has a universal interpre-
237 -- tation, the legality check uses some compatible non-universal
238 -- interpretation of the other operand. N can be an operator node, or
239 -- a function call whose name is an operator designator. Any_Access, which
240 -- is the initial type of the literal NULL, is a universal type for the
241 -- purpose of this routine.
243 function Find_Primitive_Operation (N : Node_Id) return Boolean;
244 -- Find candidate interpretations for the name Obj.Proc when it appears
245 -- in a subprogram renaming declaration.
247 procedure Find_Unary_Types
248 (R : Node_Id;
249 Op_Id : Entity_Id;
250 N : Node_Id);
251 -- Unary arithmetic types: plus, minus, abs
253 procedure Check_Arithmetic_Pair
254 (T1, T2 : Entity_Id;
255 Op_Id : Entity_Id;
256 N : Node_Id);
257 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
258 -- for left and right operand. Determine whether they constitute a valid
259 -- pair for the given operator, and record the corresponding interpretation
260 -- of the operator node. The node N may be an operator node (the usual
261 -- case) or a function call whose prefix is an operator designator. In
262 -- both cases Op_Id is the operator name itself.
264 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
265 -- Give detailed information on overloaded call where none of the
266 -- interpretations match. N is the call node, Nam the designator for
267 -- the overloaded entity being called.
269 function Junk_Operand (N : Node_Id) return Boolean;
270 -- Test for an operand that is an inappropriate entity (e.g. a package
271 -- name or a label). If so, issue an error message and return True. If
272 -- the operand is not an inappropriate entity kind, return False.
274 procedure Operator_Check (N : Node_Id);
275 -- Verify that an operator has received some valid interpretation. If none
276 -- was found, determine whether a use clause would make the operation
277 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
278 -- every type compatible with the operator, even if the operator for the
279 -- type is not directly visible. The routine uses this type to emit a more
280 -- informative message.
282 function Process_Implicit_Dereference_Prefix
283 (E : Entity_Id;
284 P : Node_Id) return Entity_Id;
285 -- Called when P is the prefix of an implicit dereference, denoting an
286 -- object E. The function returns the designated type of the prefix, taking
287 -- into account that the designated type of an anonymous access type may be
288 -- a limited view, when the non-limited view is visible.
290 -- If in semantics only mode (-gnatc or generic), the function also records
291 -- that the prefix is a reference to E, if any. Normally, such a reference
292 -- is generated only when the implicit dereference is expanded into an
293 -- explicit one, but for consistency we must generate the reference when
294 -- expansion is disabled as well.
296 procedure Remove_Abstract_Operations (N : Node_Id);
297 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
298 -- operation is not a candidate interpretation.
300 function Try_Container_Indexing
301 (N : Node_Id;
302 Prefix : Node_Id;
303 Exprs : List_Id) return Boolean;
304 -- AI05-0139: Generalized indexing to support iterators over containers
306 function Try_Indexed_Call
307 (N : Node_Id;
308 Nam : Entity_Id;
309 Typ : Entity_Id;
310 Skip_First : Boolean) return Boolean;
311 -- If a function has defaults for all its actuals, a call to it may in fact
312 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
313 -- interpretation as an indexing, prior to analysis as a call. If both are
314 -- possible, the node is overloaded with both interpretations (same symbol
315 -- but two different types). If the call is written in prefix form, the
316 -- prefix becomes the first parameter in the call, and only the remaining
317 -- actuals must be checked for the presence of defaults.
319 function Try_Indirect_Call
320 (N : Node_Id;
321 Nam : Entity_Id;
322 Typ : Entity_Id) return Boolean;
323 -- Similarly, a function F that needs no actuals can return an access to a
324 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
325 -- the call may be overloaded with both interpretations.
327 function Try_Object_Operation
328 (N : Node_Id;
329 CW_Test_Only : Boolean := False) return Boolean;
330 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
331 -- is a call in this notation, it is transformed into a normal subprogram
332 -- call where the prefix is a parameter, and True is returned. If node
333 -- N is not of this form, it is unchanged, and False is returned. If
334 -- CW_Test_Only is true then N is an N_Selected_Component node which
335 -- is part of a call to an entry or procedure of a tagged concurrent
336 -- type and this routine is invoked to search for class-wide subprograms
337 -- conflicting with the target entity.
339 procedure wpo (T : Entity_Id);
340 pragma Warnings (Off, wpo);
341 -- Used for debugging: obtain list of primitive operations even if
342 -- type is not frozen and dispatch table is not built yet.
344 ------------------------
345 -- Ambiguous_Operands --
346 ------------------------
348 procedure Ambiguous_Operands (N : Node_Id) is
349 procedure List_Operand_Interps (Opnd : Node_Id);
351 --------------------------
352 -- List_Operand_Interps --
353 --------------------------
355 procedure List_Operand_Interps (Opnd : Node_Id) is
356 Nam : Node_Id;
357 Err : Node_Id := N;
359 begin
360 if Is_Overloaded (Opnd) then
361 if Nkind (Opnd) in N_Op then
362 Nam := Opnd;
364 elsif Nkind (Opnd) = N_Function_Call then
365 Nam := Name (Opnd);
367 elsif Ada_Version >= Ada_2012 then
368 declare
369 It : Interp;
370 I : Interp_Index;
372 begin
373 Get_First_Interp (Opnd, I, It);
374 while Present (It.Nam) loop
375 if Has_Implicit_Dereference (It.Typ) then
376 Error_Msg_N
377 ("can be interpreted as implicit dereference", Opnd);
378 return;
379 end if;
381 Get_Next_Interp (I, It);
382 end loop;
383 end;
385 return;
386 end if;
388 else
389 return;
390 end if;
392 if Opnd = Left_Opnd (N) then
393 Error_Msg_N
394 ("\left operand has the following interpretations", N);
395 else
396 Error_Msg_N
397 ("\right operand has the following interpretations", N);
398 Err := Opnd;
399 end if;
401 List_Interps (Nam, Err);
402 end List_Operand_Interps;
404 -- Start of processing for Ambiguous_Operands
406 begin
407 if Nkind (N) in N_Membership_Test then
408 Error_Msg_N ("ambiguous operands for membership", N);
410 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
411 Error_Msg_N ("ambiguous operands for equality", N);
413 else
414 Error_Msg_N ("ambiguous operands for comparison", N);
415 end if;
417 if All_Errors_Mode then
418 List_Operand_Interps (Left_Opnd (N));
419 List_Operand_Interps (Right_Opnd (N));
420 else
421 Error_Msg_N ("\use -gnatf switch for details", N);
422 end if;
423 end Ambiguous_Operands;
425 -----------------------
426 -- Analyze_Aggregate --
427 -----------------------
429 -- Most of the analysis of Aggregates requires that the type be known,
430 -- and is therefore put off until resolution.
432 procedure Analyze_Aggregate (N : Node_Id) is
433 begin
434 if No (Etype (N)) then
435 Set_Etype (N, Any_Composite);
436 end if;
437 end Analyze_Aggregate;
439 -----------------------
440 -- Analyze_Allocator --
441 -----------------------
443 procedure Analyze_Allocator (N : Node_Id) is
444 Loc : constant Source_Ptr := Sloc (N);
445 Sav_Errs : constant Nat := Serious_Errors_Detected;
446 E : Node_Id := Expression (N);
447 Acc_Type : Entity_Id;
448 Type_Id : Entity_Id;
449 P : Node_Id;
450 C : Node_Id;
451 Onode : Node_Id;
453 begin
454 Check_SPARK_05_Restriction ("allocator is not allowed", N);
456 -- Deal with allocator restrictions
458 -- In accordance with H.4(7), the No_Allocators restriction only applies
459 -- to user-written allocators. The same consideration applies to the
460 -- No_Standard_Allocators_Before_Elaboration restriction.
462 if Comes_From_Source (N) then
463 Check_Restriction (No_Allocators, N);
465 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
466 -- look at enclosing context, checking task/main subprogram case.
468 C := N;
469 P := Parent (C);
470 while Present (P) loop
472 -- For the task case we need a handled sequence of statements,
473 -- where the occurrence of the allocator is within the statements
474 -- and the parent is a task body
476 if Nkind (P) = N_Handled_Sequence_Of_Statements
477 and then Is_List_Member (C)
478 and then List_Containing (C) = Statements (P)
479 then
480 Onode := Original_Node (Parent (P));
482 -- Check for allocator within task body, this is a definite
483 -- violation of No_Allocators_After_Elaboration we can detect
484 -- at compile time.
486 if Nkind (Onode) = N_Task_Body then
487 Check_Restriction
488 (No_Standard_Allocators_After_Elaboration, N);
489 exit;
490 end if;
491 end if;
493 -- The other case is appearance in a subprogram body. This is
494 -- a violation if this is a library level subprogram with no
495 -- parameters. Note that this is now a static error even if the
496 -- subprogram is not the main program (this is a change, in an
497 -- earlier version only the main program was affected, and the
498 -- check had to be done in the binder.
500 if Nkind (P) = N_Subprogram_Body
501 and then Nkind (Parent (P)) = N_Compilation_Unit
502 and then No (Parameter_Specifications (Specification (P)))
503 then
504 Check_Restriction
505 (No_Standard_Allocators_After_Elaboration, N);
506 end if;
508 C := P;
509 P := Parent (C);
510 end loop;
511 end if;
513 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
514 -- any. The expected type for the name is any type. A non-overloading
515 -- rule then requires it to be of a type descended from
516 -- System.Storage_Pools.Subpools.Subpool_Handle.
518 -- This isn't exactly what the AI says, but it seems to be the right
519 -- rule. The AI should be fixed.???
521 declare
522 Subpool : constant Node_Id := Subpool_Handle_Name (N);
524 begin
525 if Present (Subpool) then
526 Analyze (Subpool);
528 if Is_Overloaded (Subpool) then
529 Error_Msg_N ("ambiguous subpool handle", Subpool);
530 end if;
532 -- Check that Etype (Subpool) is descended from Subpool_Handle
534 Resolve (Subpool);
535 end if;
536 end;
538 -- Analyze the qualified expression or subtype indication
540 if Nkind (E) = N_Qualified_Expression then
541 Acc_Type := Create_Itype (E_Allocator_Type, N);
542 Set_Etype (Acc_Type, Acc_Type);
543 Find_Type (Subtype_Mark (E));
545 -- Analyze the qualified expression, and apply the name resolution
546 -- rule given in 4.7(3).
548 Analyze (E);
549 Type_Id := Etype (E);
550 Set_Directly_Designated_Type (Acc_Type, Type_Id);
552 -- Allocators generated by the build-in-place expansion mechanism
553 -- are explicitly marked as coming from source but do not need to be
554 -- checked for limited initialization. To exclude this case, ensure
555 -- that the parent of the allocator is a source node.
557 if Is_Limited_Type (Type_Id)
558 and then Comes_From_Source (N)
559 and then Comes_From_Source (Parent (N))
560 and then not In_Instance_Body
561 then
562 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
563 Error_Msg_N ("initialization not allowed for limited types", N);
564 Explain_Limited_Type (Type_Id, N);
565 end if;
566 end if;
568 -- A qualified expression requires an exact match of the type,
569 -- class-wide matching is not allowed.
571 -- if Is_Class_Wide_Type (Type_Id)
572 -- and then Base_Type
573 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
574 -- then
575 -- Wrong_Type (Expression (E), Type_Id);
576 -- end if;
578 -- We don't analyze the qualified expression itself because it's
579 -- part of the allocator. It is fully analyzed and resolved when
580 -- the allocator is resolved with the context type.
582 Set_Etype (E, Type_Id);
584 -- Case where allocator has a subtype indication
586 else
587 declare
588 Def_Id : Entity_Id;
589 Base_Typ : Entity_Id;
591 begin
592 -- If the allocator includes a N_Subtype_Indication then a
593 -- constraint is present, otherwise the node is a subtype mark.
594 -- Introduce an explicit subtype declaration into the tree
595 -- defining some anonymous subtype and rewrite the allocator to
596 -- use this subtype rather than the subtype indication.
598 -- It is important to introduce the explicit subtype declaration
599 -- so that the bounds of the subtype indication are attached to
600 -- the tree in case the allocator is inside a generic unit.
602 if Nkind (E) = N_Subtype_Indication then
604 -- A constraint is only allowed for a composite type in Ada
605 -- 95. In Ada 83, a constraint is also allowed for an
606 -- access-to-composite type, but the constraint is ignored.
608 Find_Type (Subtype_Mark (E));
609 Base_Typ := Entity (Subtype_Mark (E));
611 if Is_Elementary_Type (Base_Typ) then
612 if not (Ada_Version = Ada_83
613 and then Is_Access_Type (Base_Typ))
614 then
615 Error_Msg_N ("constraint not allowed here", E);
617 if Nkind (Constraint (E)) =
618 N_Index_Or_Discriminant_Constraint
619 then
620 Error_Msg_N -- CODEFIX
621 ("\if qualified expression was meant, " &
622 "use apostrophe", Constraint (E));
623 end if;
624 end if;
626 -- Get rid of the bogus constraint:
628 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
629 Analyze_Allocator (N);
630 return;
631 end if;
633 if Expander_Active then
634 Def_Id := Make_Temporary (Loc, 'S');
636 Insert_Action (E,
637 Make_Subtype_Declaration (Loc,
638 Defining_Identifier => Def_Id,
639 Subtype_Indication => Relocate_Node (E)));
641 if Sav_Errs /= Serious_Errors_Detected
642 and then Nkind (Constraint (E)) =
643 N_Index_Or_Discriminant_Constraint
644 then
645 Error_Msg_N -- CODEFIX
646 ("if qualified expression was meant, "
647 & "use apostrophe!", Constraint (E));
648 end if;
650 E := New_Occurrence_Of (Def_Id, Loc);
651 Rewrite (Expression (N), E);
652 end if;
653 end if;
655 Type_Id := Process_Subtype (E, N);
656 Acc_Type := Create_Itype (E_Allocator_Type, N);
657 Set_Etype (Acc_Type, Acc_Type);
658 Set_Directly_Designated_Type (Acc_Type, Type_Id);
659 Check_Fully_Declared (Type_Id, N);
661 -- Ada 2005 (AI-231): If the designated type is itself an access
662 -- type that excludes null, its default initialization will
663 -- be a null object, and we can insert an unconditional raise
664 -- before the allocator.
666 -- Ada 2012 (AI-104): A not null indication here is altogether
667 -- illegal.
669 if Can_Never_Be_Null (Type_Id) then
670 declare
671 Not_Null_Check : constant Node_Id :=
672 Make_Raise_Constraint_Error (Sloc (E),
673 Reason => CE_Null_Not_Allowed);
675 begin
676 if Expander_Active then
677 Insert_Action (N, Not_Null_Check);
678 Analyze (Not_Null_Check);
680 elsif Warn_On_Ada_2012_Compatibility then
681 Error_Msg_N
682 ("null value not allowed here in Ada 2012?y?", E);
683 end if;
684 end;
685 end if;
687 -- Check for missing initialization. Skip this check if we already
688 -- had errors on analyzing the allocator, since in that case these
689 -- are probably cascaded errors.
691 if not Is_Definite_Subtype (Type_Id)
692 and then Serious_Errors_Detected = Sav_Errs
693 then
694 -- The build-in-place machinery may produce an allocator when
695 -- the designated type is indefinite but the underlying type is
696 -- not. In this case the unknown discriminants are meaningless
697 -- and should not trigger error messages. Check the parent node
698 -- because the allocator is marked as coming from source.
700 if Present (Underlying_Type (Type_Id))
701 and then Is_Definite_Subtype (Underlying_Type (Type_Id))
702 and then not Comes_From_Source (Parent (N))
703 then
704 null;
706 elsif Is_Class_Wide_Type (Type_Id) then
707 Error_Msg_N
708 ("initialization required in class-wide allocation", N);
710 else
711 if Ada_Version < Ada_2005
712 and then Is_Limited_Type (Type_Id)
713 then
714 Error_Msg_N ("unconstrained allocation not allowed", N);
716 if Is_Array_Type (Type_Id) then
717 Error_Msg_N
718 ("\constraint with array bounds required", N);
720 elsif Has_Unknown_Discriminants (Type_Id) then
721 null;
723 else pragma Assert (Has_Discriminants (Type_Id));
724 Error_Msg_N
725 ("\constraint with discriminant values required", N);
726 end if;
728 -- Limited Ada 2005 and general non-limited case
730 else
731 Error_Msg_N
732 ("uninitialized unconstrained allocation not "
733 & "allowed", N);
735 if Is_Array_Type (Type_Id) then
736 Error_Msg_N
737 ("\qualified expression or constraint with "
738 & "array bounds required", N);
740 elsif Has_Unknown_Discriminants (Type_Id) then
741 Error_Msg_N ("\qualified expression required", N);
743 else pragma Assert (Has_Discriminants (Type_Id));
744 Error_Msg_N
745 ("\qualified expression or constraint with "
746 & "discriminant values required", N);
747 end if;
748 end if;
749 end if;
750 end if;
751 end;
752 end if;
754 if Is_Abstract_Type (Type_Id) then
755 Error_Msg_N ("cannot allocate abstract object", E);
756 end if;
758 if Has_Task (Designated_Type (Acc_Type)) then
759 Check_Restriction (No_Tasking, N);
760 Check_Restriction (Max_Tasks, N);
761 Check_Restriction (No_Task_Allocators, N);
762 end if;
764 -- Check restriction against dynamically allocated protected objects
766 if Has_Protected (Designated_Type (Acc_Type)) then
767 Check_Restriction (No_Protected_Type_Allocators, N);
768 end if;
770 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
771 -- type is nested, and the designated type needs finalization. The rule
772 -- is conservative in that class-wide types need finalization.
774 if Needs_Finalization (Designated_Type (Acc_Type))
775 and then not Is_Library_Level_Entity (Acc_Type)
776 then
777 Check_Restriction (No_Nested_Finalization, N);
778 end if;
780 -- Check that an allocator of a nested access type doesn't create a
781 -- protected object when restriction No_Local_Protected_Objects applies.
783 if Has_Protected (Designated_Type (Acc_Type))
784 and then not Is_Library_Level_Entity (Acc_Type)
785 then
786 Check_Restriction (No_Local_Protected_Objects, N);
787 end if;
789 -- If the No_Streams restriction is set, check that the type of the
790 -- object is not, and does not contain, any subtype derived from
791 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
792 -- Has_Stream just for efficiency reasons. There is no point in
793 -- spending time on a Has_Stream check if the restriction is not set.
795 if Restriction_Check_Required (No_Streams) then
796 if Has_Stream (Designated_Type (Acc_Type)) then
797 Check_Restriction (No_Streams, N);
798 end if;
799 end if;
801 Set_Etype (N, Acc_Type);
803 if not Is_Library_Level_Entity (Acc_Type) then
804 Check_Restriction (No_Local_Allocators, N);
805 end if;
807 if Serious_Errors_Detected > Sav_Errs then
808 Set_Error_Posted (N);
809 Set_Etype (N, Any_Type);
810 end if;
811 end Analyze_Allocator;
813 ---------------------------
814 -- Analyze_Arithmetic_Op --
815 ---------------------------
817 procedure Analyze_Arithmetic_Op (N : Node_Id) is
818 L : constant Node_Id := Left_Opnd (N);
819 R : constant Node_Id := Right_Opnd (N);
820 Op_Id : Entity_Id;
822 begin
823 Candidate_Type := Empty;
824 Analyze_Expression (L);
825 Analyze_Expression (R);
827 -- If the entity is already set, the node is the instantiation of a
828 -- generic node with a non-local reference, or was manufactured by a
829 -- call to Make_Op_xxx. In either case the entity is known to be valid,
830 -- and we do not need to collect interpretations, instead we just get
831 -- the single possible interpretation.
833 Op_Id := Entity (N);
835 if Present (Op_Id) then
836 if Ekind (Op_Id) = E_Operator then
838 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
839 and then Treat_Fixed_As_Integer (N)
840 then
841 null;
842 else
843 Set_Etype (N, Any_Type);
844 Find_Arithmetic_Types (L, R, Op_Id, N);
845 end if;
847 else
848 Set_Etype (N, Any_Type);
849 Add_One_Interp (N, Op_Id, Etype (Op_Id));
850 end if;
852 -- Entity is not already set, so we do need to collect interpretations
854 else
855 Set_Etype (N, Any_Type);
857 Op_Id := Get_Name_Entity_Id (Chars (N));
858 while Present (Op_Id) loop
859 if Ekind (Op_Id) = E_Operator
860 and then Present (Next_Entity (First_Entity (Op_Id)))
861 then
862 Find_Arithmetic_Types (L, R, Op_Id, N);
864 -- The following may seem superfluous, because an operator cannot
865 -- be generic, but this ignores the cleverness of the author of
866 -- ACVC bc1013a.
868 elsif Is_Overloadable (Op_Id) then
869 Analyze_User_Defined_Binary_Op (N, Op_Id);
870 end if;
872 Op_Id := Homonym (Op_Id);
873 end loop;
874 end if;
876 Operator_Check (N);
877 Check_Function_Writable_Actuals (N);
878 end Analyze_Arithmetic_Op;
880 ------------------
881 -- Analyze_Call --
882 ------------------
884 -- Function, procedure, and entry calls are checked here. The Name in
885 -- the call may be overloaded. The actuals have been analyzed and may
886 -- themselves be overloaded. On exit from this procedure, the node N
887 -- may have zero, one or more interpretations. In the first case an
888 -- error message is produced. In the last case, the node is flagged
889 -- as overloaded and the interpretations are collected in All_Interp.
891 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
892 -- the type-checking is similar to that of other calls.
894 procedure Analyze_Call (N : Node_Id) is
895 Actuals : constant List_Id := Parameter_Associations (N);
896 Nam : Node_Id;
897 X : Interp_Index;
898 It : Interp;
899 Nam_Ent : Entity_Id;
900 Success : Boolean := False;
902 Deref : Boolean := False;
903 -- Flag indicates whether an interpretation of the prefix is a
904 -- parameterless call that returns an access_to_subprogram.
906 procedure Check_Mixed_Parameter_And_Named_Associations;
907 -- Check that parameter and named associations are not mixed. This is
908 -- a restriction in SPARK mode.
910 procedure Check_Writable_Actuals (N : Node_Id);
911 -- If the call has out or in-out parameters then mark its outermost
912 -- enclosing construct as a node on which the writable actuals check
913 -- must be performed.
915 function Name_Denotes_Function return Boolean;
916 -- If the type of the name is an access to subprogram, this may be the
917 -- type of a name, or the return type of the function being called. If
918 -- the name is not an entity then it can denote a protected function.
919 -- Until we distinguish Etype from Return_Type, we must use this routine
920 -- to resolve the meaning of the name in the call.
922 procedure No_Interpretation;
923 -- Output error message when no valid interpretation exists
925 --------------------------------------------------
926 -- Check_Mixed_Parameter_And_Named_Associations --
927 --------------------------------------------------
929 procedure Check_Mixed_Parameter_And_Named_Associations is
930 Actual : Node_Id;
931 Named_Seen : Boolean;
933 begin
934 Named_Seen := False;
936 Actual := First (Actuals);
937 while Present (Actual) loop
938 case Nkind (Actual) is
939 when N_Parameter_Association =>
940 if Named_Seen then
941 Check_SPARK_05_Restriction
942 ("named association cannot follow positional one",
943 Actual);
944 exit;
945 end if;
947 when others =>
948 Named_Seen := True;
949 end case;
951 Next (Actual);
952 end loop;
953 end Check_Mixed_Parameter_And_Named_Associations;
955 ----------------------------
956 -- Check_Writable_Actuals --
957 ----------------------------
959 -- The identification of conflicts in calls to functions with writable
960 -- actuals is performed in the analysis phase of the front end to ensure
961 -- that it reports exactly the same errors compiling with and without
962 -- expansion enabled. It is performed in two stages:
964 -- 1) When a call to a function with out-mode parameters is found,
965 -- we climb to the outermost enclosing construct that can be
966 -- evaluated in arbitrary order and we mark it with the flag
967 -- Check_Actuals.
969 -- 2) When the analysis of the marked node is complete, we traverse
970 -- its decorated subtree searching for conflicts (see function
971 -- Sem_Util.Check_Function_Writable_Actuals).
973 -- The unique exception to this general rule is for aggregates, since
974 -- their analysis is performed by the front end in the resolution
975 -- phase. For aggregates we do not climb to their enclosing construct:
976 -- we restrict the analysis to the subexpressions initializing the
977 -- aggregate components.
979 -- This implies that the analysis of expressions containing aggregates
980 -- is not complete, since there may be conflicts on writable actuals
981 -- involving subexpressions of the enclosing logical or arithmetic
982 -- expressions. However, we cannot wait and perform the analysis when
983 -- the whole subtree is resolved, since the subtrees may be transformed,
984 -- thus adding extra complexity and computation cost to identify and
985 -- report exactly the same errors compiling with and without expansion
986 -- enabled.
988 procedure Check_Writable_Actuals (N : Node_Id) is
989 begin
990 if Comes_From_Source (N)
991 and then Present (Get_Subprogram_Entity (N))
992 and then Has_Out_Or_In_Out_Parameter (Get_Subprogram_Entity (N))
993 then
994 -- For procedures and entries there is no need to climb since
995 -- we only need to check if the actuals of this call invoke
996 -- functions whose out-mode parameters overlap.
998 if Nkind (N) /= N_Function_Call then
999 Set_Check_Actuals (N);
1001 -- For calls to functions we climb to the outermost enclosing
1002 -- construct where the out-mode actuals of this function may
1003 -- introduce conflicts.
1005 else
1006 declare
1007 Outermost : Node_Id;
1008 P : Node_Id := N;
1010 begin
1011 while Present (P) loop
1013 -- For object declarations we can climb to the node from
1014 -- its object definition branch or from its initializing
1015 -- expression. We prefer to mark the child node as the
1016 -- outermost construct to avoid adding further complexity
1017 -- to the routine that will later take care of
1018 -- performing the writable actuals check.
1020 if Has_Arbitrary_Evaluation_Order (Nkind (P))
1021 and then not Nkind_In (P, N_Assignment_Statement,
1022 N_Object_Declaration)
1023 then
1024 Outermost := P;
1025 end if;
1027 -- Avoid climbing more than needed!
1029 exit when Stop_Subtree_Climbing (Nkind (P))
1030 or else (Nkind (P) = N_Range
1031 and then not
1032 Nkind_In (Parent (P), N_In, N_Not_In));
1034 P := Parent (P);
1035 end loop;
1037 Set_Check_Actuals (Outermost);
1038 end;
1039 end if;
1040 end if;
1041 end Check_Writable_Actuals;
1043 ---------------------------
1044 -- Name_Denotes_Function --
1045 ---------------------------
1047 function Name_Denotes_Function return Boolean is
1048 begin
1049 if Is_Entity_Name (Nam) then
1050 return Ekind (Entity (Nam)) = E_Function;
1051 elsif Nkind (Nam) = N_Selected_Component then
1052 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
1053 else
1054 return False;
1055 end if;
1056 end Name_Denotes_Function;
1058 -----------------------
1059 -- No_Interpretation --
1060 -----------------------
1062 procedure No_Interpretation is
1063 L : constant Boolean := Is_List_Member (N);
1064 K : constant Node_Kind := Nkind (Parent (N));
1066 begin
1067 -- If the node is in a list whose parent is not an expression then it
1068 -- must be an attempted procedure call.
1070 if L and then K not in N_Subexpr then
1071 if Ekind (Entity (Nam)) = E_Generic_Procedure then
1072 Error_Msg_NE
1073 ("must instantiate generic procedure& before call",
1074 Nam, Entity (Nam));
1075 else
1076 Error_Msg_N ("procedure or entry name expected", Nam);
1077 end if;
1079 -- Check for tasking cases where only an entry call will do
1081 elsif not L
1082 and then Nkind_In (K, N_Entry_Call_Alternative,
1083 N_Triggering_Alternative)
1084 then
1085 Error_Msg_N ("entry name expected", Nam);
1087 -- Otherwise give general error message
1089 else
1090 Error_Msg_N ("invalid prefix in call", Nam);
1091 end if;
1092 end No_Interpretation;
1094 -- Start of processing for Analyze_Call
1096 begin
1097 if Restriction_Check_Required (SPARK_05) then
1098 Check_Mixed_Parameter_And_Named_Associations;
1099 end if;
1101 -- Initialize the type of the result of the call to the error type,
1102 -- which will be reset if the type is successfully resolved.
1104 Set_Etype (N, Any_Type);
1106 Nam := Name (N);
1108 if not Is_Overloaded (Nam) then
1110 -- Only one interpretation to check
1112 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1113 Nam_Ent := Etype (Nam);
1115 -- If the prefix is an access_to_subprogram, this may be an indirect
1116 -- call. This is the case if the name in the call is not an entity
1117 -- name, or if it is a function name in the context of a procedure
1118 -- call. In this latter case, we have a call to a parameterless
1119 -- function that returns a pointer_to_procedure which is the entity
1120 -- being called. Finally, F (X) may be a call to a parameterless
1121 -- function that returns a pointer to a function with parameters.
1122 -- Note that if F returns an access-to-subprogram whose designated
1123 -- type is an array, F (X) cannot be interpreted as an indirect call
1124 -- through the result of the call to F.
1126 elsif Is_Access_Type (Etype (Nam))
1127 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
1128 and then
1129 (not Name_Denotes_Function
1130 or else Nkind (N) = N_Procedure_Call_Statement
1131 or else
1132 (Nkind (Parent (N)) /= N_Explicit_Dereference
1133 and then Is_Entity_Name (Nam)
1134 and then No (First_Formal (Entity (Nam)))
1135 and then not
1136 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1137 and then Present (Actuals)))
1138 then
1139 Nam_Ent := Designated_Type (Etype (Nam));
1140 Insert_Explicit_Dereference (Nam);
1142 -- Selected component case. Simple entry or protected operation,
1143 -- where the entry name is given by the selector name.
1145 elsif Nkind (Nam) = N_Selected_Component then
1146 Nam_Ent := Entity (Selector_Name (Nam));
1148 if not Ekind_In (Nam_Ent, E_Entry,
1149 E_Entry_Family,
1150 E_Function,
1151 E_Procedure)
1152 then
1153 Error_Msg_N ("name in call is not a callable entity", Nam);
1154 Set_Etype (N, Any_Type);
1155 return;
1156 end if;
1158 -- If the name is an Indexed component, it can be a call to a member
1159 -- of an entry family. The prefix must be a selected component whose
1160 -- selector is the entry. Analyze_Procedure_Call normalizes several
1161 -- kinds of call into this form.
1163 elsif Nkind (Nam) = N_Indexed_Component then
1164 if Nkind (Prefix (Nam)) = N_Selected_Component then
1165 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1166 else
1167 Error_Msg_N ("name in call is not a callable entity", Nam);
1168 Set_Etype (N, Any_Type);
1169 return;
1170 end if;
1172 elsif not Is_Entity_Name (Nam) then
1173 Error_Msg_N ("name in call is not a callable entity", Nam);
1174 Set_Etype (N, Any_Type);
1175 return;
1177 else
1178 Nam_Ent := Entity (Nam);
1180 -- If not overloadable, this may be a generalized indexing
1181 -- operation with named associations. Rewrite again as an
1182 -- indexed component and analyze as container indexing.
1184 if not Is_Overloadable (Nam_Ent) then
1185 if Present
1186 (Find_Value_Of_Aspect
1187 (Etype (Nam_Ent), Aspect_Constant_Indexing))
1188 then
1189 Replace (N,
1190 Make_Indexed_Component (Sloc (N),
1191 Prefix => Nam,
1192 Expressions => Parameter_Associations (N)));
1194 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1195 return;
1196 else
1197 No_Interpretation;
1198 end if;
1200 else
1201 No_Interpretation;
1202 end if;
1204 return;
1205 end if;
1206 end if;
1208 -- Operations generated for RACW stub types are called only through
1209 -- dispatching, and can never be the static interpretation of a call.
1211 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1212 No_Interpretation;
1213 return;
1214 end if;
1216 Analyze_One_Call (N, Nam_Ent, True, Success);
1218 -- If this is an indirect call, the return type of the access_to
1219 -- subprogram may be an incomplete type. At the point of the call,
1220 -- use the full type if available, and at the same time update the
1221 -- return type of the access_to_subprogram.
1223 if Success
1224 and then Nkind (Nam) = N_Explicit_Dereference
1225 and then Ekind (Etype (N)) = E_Incomplete_Type
1226 and then Present (Full_View (Etype (N)))
1227 then
1228 Set_Etype (N, Full_View (Etype (N)));
1229 Set_Etype (Nam_Ent, Etype (N));
1230 end if;
1232 -- Overloaded call
1234 else
1235 -- An overloaded selected component must denote overloaded operations
1236 -- of a concurrent type. The interpretations are attached to the
1237 -- simple name of those operations.
1239 if Nkind (Nam) = N_Selected_Component then
1240 Nam := Selector_Name (Nam);
1241 end if;
1243 Get_First_Interp (Nam, X, It);
1244 while Present (It.Nam) loop
1245 Nam_Ent := It.Nam;
1246 Deref := False;
1248 -- Name may be call that returns an access to subprogram, or more
1249 -- generally an overloaded expression one of whose interpretations
1250 -- yields an access to subprogram. If the name is an entity, we do
1251 -- not dereference, because the node is a call that returns the
1252 -- access type: note difference between f(x), where the call may
1253 -- return an access subprogram type, and f(x)(y), where the type
1254 -- returned by the call to f is implicitly dereferenced to analyze
1255 -- the outer call.
1257 if Is_Access_Type (Nam_Ent) then
1258 Nam_Ent := Designated_Type (Nam_Ent);
1260 elsif Is_Access_Type (Etype (Nam_Ent))
1261 and then
1262 (not Is_Entity_Name (Nam)
1263 or else Nkind (N) = N_Procedure_Call_Statement)
1264 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1265 = E_Subprogram_Type
1266 then
1267 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1269 if Is_Entity_Name (Nam) then
1270 Deref := True;
1271 end if;
1272 end if;
1274 -- If the call has been rewritten from a prefixed call, the first
1275 -- parameter has been analyzed, but may need a subsequent
1276 -- dereference, so skip its analysis now.
1278 if N /= Original_Node (N)
1279 and then Nkind (Original_Node (N)) = Nkind (N)
1280 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1281 and then Present (Parameter_Associations (N))
1282 and then Present (Etype (First (Parameter_Associations (N))))
1283 then
1284 Analyze_One_Call
1285 (N, Nam_Ent, False, Success, Skip_First => True);
1286 else
1287 Analyze_One_Call (N, Nam_Ent, False, Success);
1288 end if;
1290 -- If the interpretation succeeds, mark the proper type of the
1291 -- prefix (any valid candidate will do). If not, remove the
1292 -- candidate interpretation. This only needs to be done for
1293 -- overloaded protected operations, for other entities disambi-
1294 -- guation is done directly in Resolve.
1296 if Success then
1297 if Deref
1298 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1299 then
1300 Set_Entity (Nam, It.Nam);
1301 Insert_Explicit_Dereference (Nam);
1302 Set_Etype (Nam, Nam_Ent);
1304 else
1305 Set_Etype (Nam, It.Typ);
1306 end if;
1308 elsif Nkind_In (Name (N), N_Selected_Component,
1309 N_Function_Call)
1310 then
1311 Remove_Interp (X);
1312 end if;
1314 Get_Next_Interp (X, It);
1315 end loop;
1317 -- If the name is the result of a function call, it can only be a
1318 -- call to a function returning an access to subprogram. Insert
1319 -- explicit dereference.
1321 if Nkind (Nam) = N_Function_Call then
1322 Insert_Explicit_Dereference (Nam);
1323 end if;
1325 if Etype (N) = Any_Type then
1327 -- None of the interpretations is compatible with the actuals
1329 Diagnose_Call (N, Nam);
1331 -- Special checks for uninstantiated put routines
1333 if Nkind (N) = N_Procedure_Call_Statement
1334 and then Is_Entity_Name (Nam)
1335 and then Chars (Nam) = Name_Put
1336 and then List_Length (Actuals) = 1
1337 then
1338 declare
1339 Arg : constant Node_Id := First (Actuals);
1340 Typ : Entity_Id;
1342 begin
1343 if Nkind (Arg) = N_Parameter_Association then
1344 Typ := Etype (Explicit_Actual_Parameter (Arg));
1345 else
1346 Typ := Etype (Arg);
1347 end if;
1349 if Is_Signed_Integer_Type (Typ) then
1350 Error_Msg_N
1351 ("possible missing instantiation of "
1352 & "'Text_'I'O.'Integer_'I'O!", Nam);
1354 elsif Is_Modular_Integer_Type (Typ) then
1355 Error_Msg_N
1356 ("possible missing instantiation of "
1357 & "'Text_'I'O.'Modular_'I'O!", Nam);
1359 elsif Is_Floating_Point_Type (Typ) then
1360 Error_Msg_N
1361 ("possible missing instantiation of "
1362 & "'Text_'I'O.'Float_'I'O!", Nam);
1364 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1365 Error_Msg_N
1366 ("possible missing instantiation of "
1367 & "'Text_'I'O.'Fixed_'I'O!", Nam);
1369 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1370 Error_Msg_N
1371 ("possible missing instantiation of "
1372 & "'Text_'I'O.'Decimal_'I'O!", Nam);
1374 elsif Is_Enumeration_Type (Typ) then
1375 Error_Msg_N
1376 ("possible missing instantiation of "
1377 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
1378 end if;
1379 end;
1380 end if;
1382 elsif not Is_Overloaded (N)
1383 and then Is_Entity_Name (Nam)
1384 then
1385 -- Resolution yields a single interpretation. Verify that the
1386 -- reference has capitalization consistent with the declaration.
1388 Set_Entity_With_Checks (Nam, Entity (Nam));
1389 Generate_Reference (Entity (Nam), Nam);
1391 Set_Etype (Nam, Etype (Entity (Nam)));
1392 else
1393 Remove_Abstract_Operations (N);
1394 end if;
1396 End_Interp_List;
1397 end if;
1399 if Ada_Version >= Ada_2012 then
1401 -- Check if the call contains a function with writable actuals
1403 Check_Writable_Actuals (N);
1405 -- If found and the outermost construct that can be evaluated in
1406 -- an arbitrary order is precisely this call, then check all its
1407 -- actuals.
1409 Check_Function_Writable_Actuals (N);
1410 end if;
1411 end Analyze_Call;
1413 -----------------------------
1414 -- Analyze_Case_Expression --
1415 -----------------------------
1417 procedure Analyze_Case_Expression (N : Node_Id) is
1418 procedure Non_Static_Choice_Error (Choice : Node_Id);
1419 -- Error routine invoked by the generic instantiation below when
1420 -- the case expression has a non static choice.
1422 package Case_Choices_Analysis is new
1423 Generic_Analyze_Choices
1424 (Process_Associated_Node => No_OP);
1425 use Case_Choices_Analysis;
1427 package Case_Choices_Checking is new
1428 Generic_Check_Choices
1429 (Process_Empty_Choice => No_OP,
1430 Process_Non_Static_Choice => Non_Static_Choice_Error,
1431 Process_Associated_Node => No_OP);
1432 use Case_Choices_Checking;
1434 -----------------------------
1435 -- Non_Static_Choice_Error --
1436 -----------------------------
1438 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1439 begin
1440 Flag_Non_Static_Expr
1441 ("choice given in case expression is not static!", Choice);
1442 end Non_Static_Choice_Error;
1444 -- Local variables
1446 Expr : constant Node_Id := Expression (N);
1447 Alt : Node_Id;
1448 Exp_Type : Entity_Id;
1449 Exp_Btype : Entity_Id;
1451 FirstX : Node_Id := Empty;
1452 -- First expression in the case for which there is some type information
1453 -- available, i.e. it is not Any_Type, which can happen because of some
1454 -- error, or from the use of e.g. raise Constraint_Error.
1456 Others_Present : Boolean;
1457 -- Indicates if Others was present
1459 Wrong_Alt : Node_Id;
1460 -- For error reporting
1462 -- Start of processing for Analyze_Case_Expression
1464 begin
1465 if Comes_From_Source (N) then
1466 Check_Compiler_Unit ("case expression", N);
1467 end if;
1469 Analyze_And_Resolve (Expr, Any_Discrete);
1470 Check_Unset_Reference (Expr);
1471 Exp_Type := Etype (Expr);
1472 Exp_Btype := Base_Type (Exp_Type);
1474 Alt := First (Alternatives (N));
1475 while Present (Alt) loop
1476 Analyze (Expression (Alt));
1478 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1479 FirstX := Expression (Alt);
1480 end if;
1482 Next (Alt);
1483 end loop;
1485 -- Get our initial type from the first expression for which we got some
1486 -- useful type information from the expression.
1488 if not Is_Overloaded (FirstX) then
1489 Set_Etype (N, Etype (FirstX));
1491 else
1492 declare
1493 I : Interp_Index;
1494 It : Interp;
1496 begin
1497 Set_Etype (N, Any_Type);
1499 Get_First_Interp (FirstX, I, It);
1500 while Present (It.Nam) loop
1502 -- For each interpretation of the first expression, we only
1503 -- add the interpretation if every other expression in the
1504 -- case expression alternatives has a compatible type.
1506 Alt := Next (First (Alternatives (N)));
1507 while Present (Alt) loop
1508 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1509 Next (Alt);
1510 end loop;
1512 if No (Alt) then
1513 Add_One_Interp (N, It.Typ, It.Typ);
1514 else
1515 Wrong_Alt := Alt;
1516 end if;
1518 Get_Next_Interp (I, It);
1519 end loop;
1520 end;
1521 end if;
1523 Exp_Btype := Base_Type (Exp_Type);
1525 -- The expression must be of a discrete type which must be determinable
1526 -- independently of the context in which the expression occurs, but
1527 -- using the fact that the expression must be of a discrete type.
1528 -- Moreover, the type this expression must not be a character literal
1529 -- (which is always ambiguous).
1531 -- If error already reported by Resolve, nothing more to do
1533 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1534 return;
1536 -- Special casee message for character literal
1538 elsif Exp_Btype = Any_Character then
1539 Error_Msg_N
1540 ("character literal as case expression is ambiguous", Expr);
1541 return;
1542 end if;
1544 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
1545 Error_Msg_N
1546 ("type incompatible with that of previous alternatives",
1547 Expression (Wrong_Alt));
1548 return;
1549 end if;
1551 -- If the case expression is a formal object of mode in out, then
1552 -- treat it as having a nonstatic subtype by forcing use of the base
1553 -- type (which has to get passed to Check_Case_Choices below). Also
1554 -- use base type when the case expression is parenthesized.
1556 if Paren_Count (Expr) > 0
1557 or else (Is_Entity_Name (Expr)
1558 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1559 then
1560 Exp_Type := Exp_Btype;
1561 end if;
1563 -- The case expression alternatives cover the range of a static subtype
1564 -- subject to aspect Static_Predicate. Do not check the choices when the
1565 -- case expression has not been fully analyzed yet because this may lead
1566 -- to bogus errors.
1568 if Is_OK_Static_Subtype (Exp_Type)
1569 and then Has_Static_Predicate_Aspect (Exp_Type)
1570 and then In_Spec_Expression
1571 then
1572 null;
1574 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1576 else
1577 Analyze_Choices (Alternatives (N), Exp_Type);
1578 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1579 end if;
1581 if Exp_Type = Universal_Integer and then not Others_Present then
1582 Error_Msg_N
1583 ("case on universal integer requires OTHERS choice", Expr);
1584 end if;
1585 end Analyze_Case_Expression;
1587 ---------------------------
1588 -- Analyze_Comparison_Op --
1589 ---------------------------
1591 procedure Analyze_Comparison_Op (N : Node_Id) is
1592 L : constant Node_Id := Left_Opnd (N);
1593 R : constant Node_Id := Right_Opnd (N);
1594 Op_Id : Entity_Id := Entity (N);
1596 begin
1597 Set_Etype (N, Any_Type);
1598 Candidate_Type := Empty;
1600 Analyze_Expression (L);
1601 Analyze_Expression (R);
1603 if Present (Op_Id) then
1604 if Ekind (Op_Id) = E_Operator then
1605 Find_Comparison_Types (L, R, Op_Id, N);
1606 else
1607 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1608 end if;
1610 if Is_Overloaded (L) then
1611 Set_Etype (L, Intersect_Types (L, R));
1612 end if;
1614 else
1615 Op_Id := Get_Name_Entity_Id (Chars (N));
1616 while Present (Op_Id) loop
1617 if Ekind (Op_Id) = E_Operator then
1618 Find_Comparison_Types (L, R, Op_Id, N);
1619 else
1620 Analyze_User_Defined_Binary_Op (N, Op_Id);
1621 end if;
1623 Op_Id := Homonym (Op_Id);
1624 end loop;
1625 end if;
1627 Operator_Check (N);
1628 Check_Function_Writable_Actuals (N);
1629 end Analyze_Comparison_Op;
1631 ---------------------------
1632 -- Analyze_Concatenation --
1633 ---------------------------
1635 procedure Analyze_Concatenation (N : Node_Id) is
1637 -- We wish to avoid deep recursion, because concatenations are often
1638 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1639 -- operands nonrecursively until we find something that is not a
1640 -- concatenation (A in this case), or has already been analyzed. We
1641 -- analyze that, and then walk back up the tree following Parent
1642 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1643 -- work at each level. The Parent pointers allow us to avoid recursion,
1644 -- and thus avoid running out of memory.
1646 NN : Node_Id := N;
1647 L : Node_Id;
1649 begin
1650 Candidate_Type := Empty;
1652 -- The following code is equivalent to:
1654 -- Set_Etype (N, Any_Type);
1655 -- Analyze_Expression (Left_Opnd (N));
1656 -- Analyze_Concatenation_Rest (N);
1658 -- where the Analyze_Expression call recurses back here if the left
1659 -- operand is a concatenation.
1661 -- Walk down left operands
1663 loop
1664 Set_Etype (NN, Any_Type);
1665 L := Left_Opnd (NN);
1666 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1667 NN := L;
1668 end loop;
1670 -- Now (given the above example) NN is A&B and L is A
1672 -- First analyze L ...
1674 Analyze_Expression (L);
1676 -- ... then walk NN back up until we reach N (where we started), calling
1677 -- Analyze_Concatenation_Rest along the way.
1679 loop
1680 Analyze_Concatenation_Rest (NN);
1681 exit when NN = N;
1682 NN := Parent (NN);
1683 end loop;
1684 end Analyze_Concatenation;
1686 --------------------------------
1687 -- Analyze_Concatenation_Rest --
1688 --------------------------------
1690 -- If the only one-dimensional array type in scope is String,
1691 -- this is the resulting type of the operation. Otherwise there
1692 -- will be a concatenation operation defined for each user-defined
1693 -- one-dimensional array.
1695 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1696 L : constant Node_Id := Left_Opnd (N);
1697 R : constant Node_Id := Right_Opnd (N);
1698 Op_Id : Entity_Id := Entity (N);
1699 LT : Entity_Id;
1700 RT : Entity_Id;
1702 begin
1703 Analyze_Expression (R);
1705 -- If the entity is present, the node appears in an instance, and
1706 -- denotes a predefined concatenation operation. The resulting type is
1707 -- obtained from the arguments when possible. If the arguments are
1708 -- aggregates, the array type and the concatenation type must be
1709 -- visible.
1711 if Present (Op_Id) then
1712 if Ekind (Op_Id) = E_Operator then
1713 LT := Base_Type (Etype (L));
1714 RT := Base_Type (Etype (R));
1716 if Is_Array_Type (LT)
1717 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1718 then
1719 Add_One_Interp (N, Op_Id, LT);
1721 elsif Is_Array_Type (RT)
1722 and then LT = Base_Type (Component_Type (RT))
1723 then
1724 Add_One_Interp (N, Op_Id, RT);
1726 -- If one operand is a string type or a user-defined array type,
1727 -- and the other is a literal, result is of the specific type.
1729 elsif
1730 (Root_Type (LT) = Standard_String
1731 or else Scope (LT) /= Standard_Standard)
1732 and then Etype (R) = Any_String
1733 then
1734 Add_One_Interp (N, Op_Id, LT);
1736 elsif
1737 (Root_Type (RT) = Standard_String
1738 or else Scope (RT) /= Standard_Standard)
1739 and then Etype (L) = Any_String
1740 then
1741 Add_One_Interp (N, Op_Id, RT);
1743 elsif not Is_Generic_Type (Etype (Op_Id)) then
1744 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1746 else
1747 -- Type and its operations must be visible
1749 Set_Entity (N, Empty);
1750 Analyze_Concatenation (N);
1751 end if;
1753 else
1754 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1755 end if;
1757 else
1758 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1759 while Present (Op_Id) loop
1760 if Ekind (Op_Id) = E_Operator then
1762 -- Do not consider operators declared in dead code, they can
1763 -- not be part of the resolution.
1765 if Is_Eliminated (Op_Id) then
1766 null;
1767 else
1768 Find_Concatenation_Types (L, R, Op_Id, N);
1769 end if;
1771 else
1772 Analyze_User_Defined_Binary_Op (N, Op_Id);
1773 end if;
1775 Op_Id := Homonym (Op_Id);
1776 end loop;
1777 end if;
1779 Operator_Check (N);
1780 end Analyze_Concatenation_Rest;
1782 -------------------------
1783 -- Analyze_Equality_Op --
1784 -------------------------
1786 procedure Analyze_Equality_Op (N : Node_Id) is
1787 Loc : constant Source_Ptr := Sloc (N);
1788 L : constant Node_Id := Left_Opnd (N);
1789 R : constant Node_Id := Right_Opnd (N);
1790 Op_Id : Entity_Id;
1792 begin
1793 Set_Etype (N, Any_Type);
1794 Candidate_Type := Empty;
1796 Analyze_Expression (L);
1797 Analyze_Expression (R);
1799 -- If the entity is set, the node is a generic instance with a non-local
1800 -- reference to the predefined operator or to a user-defined function.
1801 -- It can also be an inequality that is expanded into the negation of a
1802 -- call to a user-defined equality operator.
1804 -- For the predefined case, the result is Boolean, regardless of the
1805 -- type of the operands. The operands may even be limited, if they are
1806 -- generic actuals. If they are overloaded, label the left argument with
1807 -- the common type that must be present, or with the type of the formal
1808 -- of the user-defined function.
1810 if Present (Entity (N)) then
1811 Op_Id := Entity (N);
1813 if Ekind (Op_Id) = E_Operator then
1814 Add_One_Interp (N, Op_Id, Standard_Boolean);
1815 else
1816 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1817 end if;
1819 if Is_Overloaded (L) then
1820 if Ekind (Op_Id) = E_Operator then
1821 Set_Etype (L, Intersect_Types (L, R));
1822 else
1823 Set_Etype (L, Etype (First_Formal (Op_Id)));
1824 end if;
1825 end if;
1827 else
1828 Op_Id := Get_Name_Entity_Id (Chars (N));
1829 while Present (Op_Id) loop
1830 if Ekind (Op_Id) = E_Operator then
1831 Find_Equality_Types (L, R, Op_Id, N);
1832 else
1833 Analyze_User_Defined_Binary_Op (N, Op_Id);
1834 end if;
1836 Op_Id := Homonym (Op_Id);
1837 end loop;
1838 end if;
1840 -- If there was no match, and the operator is inequality, this may be
1841 -- a case where inequality has not been made explicit, as for tagged
1842 -- types. Analyze the node as the negation of an equality operation.
1843 -- This cannot be done earlier, because before analysis we cannot rule
1844 -- out the presence of an explicit inequality.
1846 if Etype (N) = Any_Type
1847 and then Nkind (N) = N_Op_Ne
1848 then
1849 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1850 while Present (Op_Id) loop
1851 if Ekind (Op_Id) = E_Operator then
1852 Find_Equality_Types (L, R, Op_Id, N);
1853 else
1854 Analyze_User_Defined_Binary_Op (N, Op_Id);
1855 end if;
1857 Op_Id := Homonym (Op_Id);
1858 end loop;
1860 if Etype (N) /= Any_Type then
1861 Op_Id := Entity (N);
1863 Rewrite (N,
1864 Make_Op_Not (Loc,
1865 Right_Opnd =>
1866 Make_Op_Eq (Loc,
1867 Left_Opnd => Left_Opnd (N),
1868 Right_Opnd => Right_Opnd (N))));
1870 Set_Entity (Right_Opnd (N), Op_Id);
1871 Analyze (N);
1872 end if;
1873 end if;
1875 Operator_Check (N);
1876 Check_Function_Writable_Actuals (N);
1877 end Analyze_Equality_Op;
1879 ----------------------------------
1880 -- Analyze_Explicit_Dereference --
1881 ----------------------------------
1883 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1884 Loc : constant Source_Ptr := Sloc (N);
1885 P : constant Node_Id := Prefix (N);
1886 T : Entity_Id;
1887 I : Interp_Index;
1888 It : Interp;
1889 New_N : Node_Id;
1891 function Is_Function_Type return Boolean;
1892 -- Check whether node may be interpreted as an implicit function call
1894 ----------------------
1895 -- Is_Function_Type --
1896 ----------------------
1898 function Is_Function_Type return Boolean is
1899 I : Interp_Index;
1900 It : Interp;
1902 begin
1903 if not Is_Overloaded (N) then
1904 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1905 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1907 else
1908 Get_First_Interp (N, I, It);
1909 while Present (It.Nam) loop
1910 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1911 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1912 then
1913 return False;
1914 end if;
1916 Get_Next_Interp (I, It);
1917 end loop;
1919 return True;
1920 end if;
1921 end Is_Function_Type;
1923 -- Start of processing for Analyze_Explicit_Dereference
1925 begin
1926 -- If source node, check SPARK restriction. We guard this with the
1927 -- source node check, because ???
1929 if Comes_From_Source (N) then
1930 Check_SPARK_05_Restriction ("explicit dereference is not allowed", N);
1931 end if;
1933 -- In formal verification mode, keep track of all reads and writes
1934 -- through explicit dereferences.
1936 if GNATprove_Mode then
1937 SPARK_Specific.Generate_Dereference (N);
1938 end if;
1940 Analyze (P);
1941 Set_Etype (N, Any_Type);
1943 -- Test for remote access to subprogram type, and if so return
1944 -- after rewriting the original tree.
1946 if Remote_AST_E_Dereference (P) then
1947 return;
1948 end if;
1950 -- Normal processing for other than remote access to subprogram type
1952 if not Is_Overloaded (P) then
1953 if Is_Access_Type (Etype (P)) then
1955 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1956 -- avoid other problems caused by the Private_Subtype and it is
1957 -- safe to go to the Base_Type because this is the same as
1958 -- converting the access value to its Base_Type.
1960 declare
1961 DT : Entity_Id := Designated_Type (Etype (P));
1963 begin
1964 if Ekind (DT) = E_Private_Subtype
1965 and then Is_For_Access_Subtype (DT)
1966 then
1967 DT := Base_Type (DT);
1968 end if;
1970 -- An explicit dereference is a legal occurrence of an
1971 -- incomplete type imported through a limited_with clause, if
1972 -- the full view is visible, or if we are within an instance
1973 -- body, where the enclosing body has a regular with_clause
1974 -- on the unit.
1976 if From_Limited_With (DT)
1977 and then not From_Limited_With (Scope (DT))
1978 and then
1979 (Is_Immediately_Visible (Scope (DT))
1980 or else
1981 (Is_Child_Unit (Scope (DT))
1982 and then Is_Visible_Lib_Unit (Scope (DT)))
1983 or else In_Instance_Body)
1984 then
1985 Set_Etype (N, Available_View (DT));
1987 else
1988 Set_Etype (N, DT);
1989 end if;
1990 end;
1992 elsif Etype (P) /= Any_Type then
1993 Error_Msg_N ("prefix of dereference must be an access type", N);
1994 return;
1995 end if;
1997 else
1998 Get_First_Interp (P, I, It);
1999 while Present (It.Nam) loop
2000 T := It.Typ;
2002 if Is_Access_Type (T) then
2003 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
2004 end if;
2006 Get_Next_Interp (I, It);
2007 end loop;
2009 -- Error if no interpretation of the prefix has an access type
2011 if Etype (N) = Any_Type then
2012 Error_Msg_N
2013 ("access type required in prefix of explicit dereference", P);
2014 Set_Etype (N, Any_Type);
2015 return;
2016 end if;
2017 end if;
2019 if Is_Function_Type
2020 and then Nkind (Parent (N)) /= N_Indexed_Component
2022 and then (Nkind (Parent (N)) /= N_Function_Call
2023 or else N /= Name (Parent (N)))
2025 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
2026 or else N /= Name (Parent (N)))
2028 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2029 and then (Nkind (Parent (N)) /= N_Attribute_Reference
2030 or else
2031 (Attribute_Name (Parent (N)) /= Name_Address
2032 and then
2033 Attribute_Name (Parent (N)) /= Name_Access))
2034 then
2035 -- Name is a function call with no actuals, in a context that
2036 -- requires deproceduring (including as an actual in an enclosing
2037 -- function or procedure call). There are some pathological cases
2038 -- where the prefix might include functions that return access to
2039 -- subprograms and others that return a regular type. Disambiguation
2040 -- of those has to take place in Resolve.
2042 New_N :=
2043 Make_Function_Call (Loc,
2044 Name => Make_Explicit_Dereference (Loc, P),
2045 Parameter_Associations => New_List);
2047 -- If the prefix is overloaded, remove operations that have formals,
2048 -- we know that this is a parameterless call.
2050 if Is_Overloaded (P) then
2051 Get_First_Interp (P, I, It);
2052 while Present (It.Nam) loop
2053 T := It.Typ;
2055 if No (First_Formal (Base_Type (Designated_Type (T)))) then
2056 Set_Etype (P, T);
2057 else
2058 Remove_Interp (I);
2059 end if;
2061 Get_Next_Interp (I, It);
2062 end loop;
2063 end if;
2065 Rewrite (N, New_N);
2066 Analyze (N);
2068 elsif not Is_Function_Type
2069 and then Is_Overloaded (N)
2070 then
2071 -- The prefix may include access to subprograms and other access
2072 -- types. If the context selects the interpretation that is a
2073 -- function call (not a procedure call) we cannot rewrite the node
2074 -- yet, but we include the result of the call interpretation.
2076 Get_First_Interp (N, I, It);
2077 while Present (It.Nam) loop
2078 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
2079 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
2080 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2081 then
2082 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
2083 end if;
2085 Get_Next_Interp (I, It);
2086 end loop;
2087 end if;
2089 -- A value of remote access-to-class-wide must not be dereferenced
2090 -- (RM E.2.2(16)).
2092 Validate_Remote_Access_To_Class_Wide_Type (N);
2093 end Analyze_Explicit_Dereference;
2095 ------------------------
2096 -- Analyze_Expression --
2097 ------------------------
2099 procedure Analyze_Expression (N : Node_Id) is
2100 begin
2102 -- If the expression is an indexed component that will be rewritten
2103 -- as a container indexing, it has already been analyzed.
2105 if Nkind (N) = N_Indexed_Component
2106 and then Present (Generalized_Indexing (N))
2107 then
2108 null;
2110 else
2111 Analyze (N);
2112 Check_Parameterless_Call (N);
2113 end if;
2114 end Analyze_Expression;
2116 -------------------------------------
2117 -- Analyze_Expression_With_Actions --
2118 -------------------------------------
2120 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2121 A : Node_Id;
2123 begin
2124 A := First (Actions (N));
2125 while Present (A) loop
2126 Analyze (A);
2127 Next (A);
2128 end loop;
2130 Analyze_Expression (Expression (N));
2131 Set_Etype (N, Etype (Expression (N)));
2132 end Analyze_Expression_With_Actions;
2134 ---------------------------
2135 -- Analyze_If_Expression --
2136 ---------------------------
2138 procedure Analyze_If_Expression (N : Node_Id) is
2139 Condition : constant Node_Id := First (Expressions (N));
2140 Then_Expr : constant Node_Id := Next (Condition);
2141 Else_Expr : Node_Id;
2143 begin
2144 -- Defend against error of missing expressions from previous error
2146 if No (Then_Expr) then
2147 Check_Error_Detected;
2148 return;
2149 end if;
2151 if Comes_From_Source (N) then
2152 Check_SPARK_05_Restriction ("if expression is not allowed", N);
2153 end if;
2155 Else_Expr := Next (Then_Expr);
2157 if Comes_From_Source (N) then
2158 Check_Compiler_Unit ("if expression", N);
2159 end if;
2161 -- Analyze and resolve the condition. We need to resolve this now so
2162 -- that it gets folded to True/False if possible, before we analyze
2163 -- the THEN/ELSE branches, because when analyzing these branches, we
2164 -- may call Is_Statically_Unevaluated, which expects the condition of
2165 -- an enclosing IF to have been analyze/resolved/evaluated.
2167 Analyze_Expression (Condition);
2168 Resolve (Condition, Any_Boolean);
2170 -- Analyze THEN expression and (if present) ELSE expression. For those
2171 -- we delay resolution in the normal manner, because of overloading etc.
2173 Analyze_Expression (Then_Expr);
2175 if Present (Else_Expr) then
2176 Analyze_Expression (Else_Expr);
2177 end if;
2179 -- If then expression not overloaded, then that decides the type
2181 if not Is_Overloaded (Then_Expr) then
2182 Set_Etype (N, Etype (Then_Expr));
2184 -- Case where then expression is overloaded
2186 else
2187 declare
2188 I : Interp_Index;
2189 It : Interp;
2191 begin
2192 Set_Etype (N, Any_Type);
2194 -- Loop through intepretations of Then_Expr
2196 Get_First_Interp (Then_Expr, I, It);
2197 while Present (It.Nam) loop
2199 -- Add possible intepretation of Then_Expr if no Else_Expr, or
2200 -- Else_Expr is present and has a compatible type.
2202 if No (Else_Expr)
2203 or else Has_Compatible_Type (Else_Expr, It.Typ)
2204 then
2205 Add_One_Interp (N, It.Typ, It.Typ);
2206 end if;
2208 Get_Next_Interp (I, It);
2209 end loop;
2210 end;
2211 end if;
2212 end Analyze_If_Expression;
2214 ------------------------------------
2215 -- Analyze_Indexed_Component_Form --
2216 ------------------------------------
2218 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
2219 P : constant Node_Id := Prefix (N);
2220 Exprs : constant List_Id := Expressions (N);
2221 Exp : Node_Id;
2222 P_T : Entity_Id;
2223 E : Node_Id;
2224 U_N : Entity_Id;
2226 procedure Process_Function_Call;
2227 -- Prefix in indexed component form is an overloadable entity, so the
2228 -- node is a function call. Reformat it as such.
2230 procedure Process_Indexed_Component;
2231 -- Prefix in indexed component form is actually an indexed component.
2232 -- This routine processes it, knowing that the prefix is already
2233 -- resolved.
2235 procedure Process_Indexed_Component_Or_Slice;
2236 -- An indexed component with a single index may designate a slice if
2237 -- the index is a subtype mark. This routine disambiguates these two
2238 -- cases by resolving the prefix to see if it is a subtype mark.
2240 procedure Process_Overloaded_Indexed_Component;
2241 -- If the prefix of an indexed component is overloaded, the proper
2242 -- interpretation is selected by the index types and the context.
2244 ---------------------------
2245 -- Process_Function_Call --
2246 ---------------------------
2248 procedure Process_Function_Call is
2249 Loc : constant Source_Ptr := Sloc (N);
2250 Actual : Node_Id;
2252 begin
2253 Change_Node (N, N_Function_Call);
2254 Set_Name (N, P);
2255 Set_Parameter_Associations (N, Exprs);
2257 -- Analyze actuals prior to analyzing the call itself
2259 Actual := First (Parameter_Associations (N));
2260 while Present (Actual) loop
2261 Analyze (Actual);
2262 Check_Parameterless_Call (Actual);
2264 -- Move to next actual. Note that we use Next, not Next_Actual
2265 -- here. The reason for this is a bit subtle. If a function call
2266 -- includes named associations, the parser recognizes the node
2267 -- as a call, and it is analyzed as such. If all associations are
2268 -- positional, the parser builds an indexed_component node, and
2269 -- it is only after analysis of the prefix that the construct
2270 -- is recognized as a call, in which case Process_Function_Call
2271 -- rewrites the node and analyzes the actuals. If the list of
2272 -- actuals is malformed, the parser may leave the node as an
2273 -- indexed component (despite the presence of named associations).
2274 -- The iterator Next_Actual is equivalent to Next if the list is
2275 -- positional, but follows the normalized chain of actuals when
2276 -- named associations are present. In this case normalization has
2277 -- not taken place, and actuals remain unanalyzed, which leads to
2278 -- subsequent crashes or loops if there is an attempt to continue
2279 -- analysis of the program.
2281 -- IF there is a single actual and it is a type name, the node
2282 -- can only be interpreted as a slice of a parameterless call.
2283 -- Rebuild the node as such and analyze.
2285 if No (Next (Actual))
2286 and then Is_Entity_Name (Actual)
2287 and then Is_Type (Entity (Actual))
2288 and then Is_Discrete_Type (Entity (Actual))
2289 then
2290 Replace (N,
2291 Make_Slice (Loc,
2292 Prefix => P,
2293 Discrete_Range =>
2294 New_Occurrence_Of (Entity (Actual), Loc)));
2295 Analyze (N);
2296 return;
2298 else
2299 Next (Actual);
2300 end if;
2301 end loop;
2303 Analyze_Call (N);
2304 end Process_Function_Call;
2306 -------------------------------
2307 -- Process_Indexed_Component --
2308 -------------------------------
2310 procedure Process_Indexed_Component is
2311 Exp : Node_Id;
2312 Array_Type : Entity_Id;
2313 Index : Node_Id;
2314 Pent : Entity_Id := Empty;
2316 begin
2317 Exp := First (Exprs);
2319 if Is_Overloaded (P) then
2320 Process_Overloaded_Indexed_Component;
2322 else
2323 Array_Type := Etype (P);
2325 if Is_Entity_Name (P) then
2326 Pent := Entity (P);
2327 elsif Nkind (P) = N_Selected_Component
2328 and then Is_Entity_Name (Selector_Name (P))
2329 then
2330 Pent := Entity (Selector_Name (P));
2331 end if;
2333 -- Prefix must be appropriate for an array type, taking into
2334 -- account a possible implicit dereference.
2336 if Is_Access_Type (Array_Type) then
2337 Error_Msg_NW
2338 (Warn_On_Dereference, "?d?implicit dereference", N);
2339 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
2340 end if;
2342 if Is_Array_Type (Array_Type) then
2343 null;
2345 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2346 Analyze (Exp);
2347 Set_Etype (N, Any_Type);
2349 if not Has_Compatible_Type
2350 (Exp, Entry_Index_Type (Pent))
2351 then
2352 Error_Msg_N ("invalid index type in entry name", N);
2354 elsif Present (Next (Exp)) then
2355 Error_Msg_N ("too many subscripts in entry reference", N);
2357 else
2358 Set_Etype (N, Etype (P));
2359 end if;
2361 return;
2363 elsif Is_Record_Type (Array_Type)
2364 and then Remote_AST_I_Dereference (P)
2365 then
2366 return;
2368 elsif Try_Container_Indexing (N, P, Exprs) then
2369 return;
2371 elsif Array_Type = Any_Type then
2372 Set_Etype (N, Any_Type);
2374 -- In most cases the analysis of the prefix will have emitted
2375 -- an error already, but if the prefix may be interpreted as a
2376 -- call in prefixed notation, the report is left to the caller.
2377 -- To prevent cascaded errors, report only if no previous ones.
2379 if Serious_Errors_Detected = 0 then
2380 Error_Msg_N ("invalid prefix in indexed component", P);
2382 if Nkind (P) = N_Expanded_Name then
2383 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2384 end if;
2385 end if;
2387 return;
2389 -- Here we definitely have a bad indexing
2391 else
2392 if Nkind (Parent (N)) = N_Requeue_Statement
2393 and then Present (Pent) and then Ekind (Pent) = E_Entry
2394 then
2395 Error_Msg_N
2396 ("REQUEUE does not permit parameters", First (Exprs));
2398 elsif Is_Entity_Name (P)
2399 and then Etype (P) = Standard_Void_Type
2400 then
2401 Error_Msg_NE ("incorrect use of &", P, Entity (P));
2403 else
2404 Error_Msg_N ("array type required in indexed component", P);
2405 end if;
2407 Set_Etype (N, Any_Type);
2408 return;
2409 end if;
2411 Index := First_Index (Array_Type);
2412 while Present (Index) and then Present (Exp) loop
2413 if not Has_Compatible_Type (Exp, Etype (Index)) then
2414 Wrong_Type (Exp, Etype (Index));
2415 Set_Etype (N, Any_Type);
2416 return;
2417 end if;
2419 Next_Index (Index);
2420 Next (Exp);
2421 end loop;
2423 Set_Etype (N, Component_Type (Array_Type));
2424 Check_Implicit_Dereference (N, Etype (N));
2426 if Present (Index) then
2427 Error_Msg_N
2428 ("too few subscripts in array reference", First (Exprs));
2430 elsif Present (Exp) then
2431 Error_Msg_N ("too many subscripts in array reference", Exp);
2432 end if;
2433 end if;
2434 end Process_Indexed_Component;
2436 ----------------------------------------
2437 -- Process_Indexed_Component_Or_Slice --
2438 ----------------------------------------
2440 procedure Process_Indexed_Component_Or_Slice is
2441 begin
2442 Exp := First (Exprs);
2443 while Present (Exp) loop
2444 Analyze_Expression (Exp);
2445 Next (Exp);
2446 end loop;
2448 Exp := First (Exprs);
2450 -- If one index is present, and it is a subtype name, then the node
2451 -- denotes a slice (note that the case of an explicit range for a
2452 -- slice was already built as an N_Slice node in the first place,
2453 -- so that case is not handled here).
2455 -- We use a replace rather than a rewrite here because this is one
2456 -- of the cases in which the tree built by the parser is plain wrong.
2458 if No (Next (Exp))
2459 and then Is_Entity_Name (Exp)
2460 and then Is_Type (Entity (Exp))
2461 then
2462 Replace (N,
2463 Make_Slice (Sloc (N),
2464 Prefix => P,
2465 Discrete_Range => New_Copy (Exp)));
2466 Analyze (N);
2468 -- Otherwise (more than one index present, or single index is not
2469 -- a subtype name), then we have the indexed component case.
2471 else
2472 Process_Indexed_Component;
2473 end if;
2474 end Process_Indexed_Component_Or_Slice;
2476 ------------------------------------------
2477 -- Process_Overloaded_Indexed_Component --
2478 ------------------------------------------
2480 procedure Process_Overloaded_Indexed_Component is
2481 Exp : Node_Id;
2482 I : Interp_Index;
2483 It : Interp;
2484 Typ : Entity_Id;
2485 Index : Node_Id;
2486 Found : Boolean;
2488 begin
2489 Set_Etype (N, Any_Type);
2491 Get_First_Interp (P, I, It);
2492 while Present (It.Nam) loop
2493 Typ := It.Typ;
2495 if Is_Access_Type (Typ) then
2496 Typ := Designated_Type (Typ);
2497 Error_Msg_NW
2498 (Warn_On_Dereference, "?d?implicit dereference", N);
2499 end if;
2501 if Is_Array_Type (Typ) then
2503 -- Got a candidate: verify that index types are compatible
2505 Index := First_Index (Typ);
2506 Found := True;
2507 Exp := First (Exprs);
2508 while Present (Index) and then Present (Exp) loop
2509 if Has_Compatible_Type (Exp, Etype (Index)) then
2510 null;
2511 else
2512 Found := False;
2513 Remove_Interp (I);
2514 exit;
2515 end if;
2517 Next_Index (Index);
2518 Next (Exp);
2519 end loop;
2521 if Found and then No (Index) and then No (Exp) then
2522 declare
2523 CT : constant Entity_Id :=
2524 Base_Type (Component_Type (Typ));
2525 begin
2526 Add_One_Interp (N, CT, CT);
2527 Check_Implicit_Dereference (N, CT);
2528 end;
2529 end if;
2531 elsif Try_Container_Indexing (N, P, Exprs) then
2532 return;
2534 end if;
2536 Get_Next_Interp (I, It);
2537 end loop;
2539 if Etype (N) = Any_Type then
2540 Error_Msg_N ("no legal interpretation for indexed component", N);
2541 Set_Is_Overloaded (N, False);
2542 end if;
2544 End_Interp_List;
2545 end Process_Overloaded_Indexed_Component;
2547 -- Start of processing for Analyze_Indexed_Component_Form
2549 begin
2550 -- Get name of array, function or type
2552 Analyze (P);
2554 -- If P is an explicit dereference whose prefix is of a remote access-
2555 -- to-subprogram type, then N has already been rewritten as a subprogram
2556 -- call and analyzed.
2558 if Nkind (N) in N_Subprogram_Call then
2559 return;
2561 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2562 -- the indexed component denotes a loop name, the indexed form is turned
2563 -- into an attribute reference.
2565 elsif Nkind (N) = N_Attribute_Reference
2566 and then Attribute_Name (N) = Name_Loop_Entry
2567 then
2568 return;
2569 end if;
2571 pragma Assert (Nkind (N) = N_Indexed_Component);
2573 P_T := Base_Type (Etype (P));
2575 if Is_Entity_Name (P) and then Present (Entity (P)) then
2576 U_N := Entity (P);
2578 if Is_Type (U_N) then
2580 -- Reformat node as a type conversion
2582 E := Remove_Head (Exprs);
2584 if Present (First (Exprs)) then
2585 Error_Msg_N
2586 ("argument of type conversion must be single expression", N);
2587 end if;
2589 Change_Node (N, N_Type_Conversion);
2590 Set_Subtype_Mark (N, P);
2591 Set_Etype (N, U_N);
2592 Set_Expression (N, E);
2594 -- After changing the node, call for the specific Analysis
2595 -- routine directly, to avoid a double call to the expander.
2597 Analyze_Type_Conversion (N);
2598 return;
2599 end if;
2601 if Is_Overloadable (U_N) then
2602 Process_Function_Call;
2604 elsif Ekind (Etype (P)) = E_Subprogram_Type
2605 or else (Is_Access_Type (Etype (P))
2606 and then
2607 Ekind (Designated_Type (Etype (P))) =
2608 E_Subprogram_Type)
2609 then
2610 -- Call to access_to-subprogram with possible implicit dereference
2612 Process_Function_Call;
2614 elsif Is_Generic_Subprogram (U_N) then
2616 -- A common beginner's (or C++ templates fan) error
2618 Error_Msg_N ("generic subprogram cannot be called", N);
2619 Set_Etype (N, Any_Type);
2620 return;
2622 else
2623 Process_Indexed_Component_Or_Slice;
2624 end if;
2626 -- If not an entity name, prefix is an expression that may denote
2627 -- an array or an access-to-subprogram.
2629 else
2630 if Ekind (P_T) = E_Subprogram_Type
2631 or else (Is_Access_Type (P_T)
2632 and then
2633 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2634 then
2635 Process_Function_Call;
2637 elsif Nkind (P) = N_Selected_Component
2638 and then Present (Entity (Selector_Name (P)))
2639 and then Is_Overloadable (Entity (Selector_Name (P)))
2640 then
2641 Process_Function_Call;
2643 -- In ASIS mode within a generic, a prefixed call is analyzed and
2644 -- partially rewritten but the original indexed component has not
2645 -- yet been rewritten as a call. Perform the replacement now.
2647 elsif Nkind (P) = N_Selected_Component
2648 and then Nkind (Parent (P)) = N_Function_Call
2649 and then ASIS_Mode
2650 then
2651 Rewrite (N, Parent (P));
2652 Analyze (N);
2654 else
2655 -- Indexed component, slice, or a call to a member of a family
2656 -- entry, which will be converted to an entry call later.
2658 Process_Indexed_Component_Or_Slice;
2659 end if;
2660 end if;
2662 Analyze_Dimension (N);
2663 end Analyze_Indexed_Component_Form;
2665 ------------------------
2666 -- Analyze_Logical_Op --
2667 ------------------------
2669 procedure Analyze_Logical_Op (N : Node_Id) is
2670 L : constant Node_Id := Left_Opnd (N);
2671 R : constant Node_Id := Right_Opnd (N);
2672 Op_Id : Entity_Id := Entity (N);
2674 begin
2675 Set_Etype (N, Any_Type);
2676 Candidate_Type := Empty;
2678 Analyze_Expression (L);
2679 Analyze_Expression (R);
2681 if Present (Op_Id) then
2683 if Ekind (Op_Id) = E_Operator then
2684 Find_Boolean_Types (L, R, Op_Id, N);
2685 else
2686 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2687 end if;
2689 else
2690 Op_Id := Get_Name_Entity_Id (Chars (N));
2691 while Present (Op_Id) loop
2692 if Ekind (Op_Id) = E_Operator then
2693 Find_Boolean_Types (L, R, Op_Id, N);
2694 else
2695 Analyze_User_Defined_Binary_Op (N, Op_Id);
2696 end if;
2698 Op_Id := Homonym (Op_Id);
2699 end loop;
2700 end if;
2702 Operator_Check (N);
2703 Check_Function_Writable_Actuals (N);
2704 end Analyze_Logical_Op;
2706 ---------------------------
2707 -- Analyze_Membership_Op --
2708 ---------------------------
2710 procedure Analyze_Membership_Op (N : Node_Id) is
2711 Loc : constant Source_Ptr := Sloc (N);
2712 L : constant Node_Id := Left_Opnd (N);
2713 R : constant Node_Id := Right_Opnd (N);
2715 Index : Interp_Index;
2716 It : Interp;
2717 Found : Boolean := False;
2718 I_F : Interp_Index;
2719 T_F : Entity_Id;
2721 procedure Try_One_Interp (T1 : Entity_Id);
2722 -- Routine to try one proposed interpretation. Note that the context
2723 -- of the operation plays no role in resolving the arguments, so that
2724 -- if there is more than one interpretation of the operands that is
2725 -- compatible with a membership test, the operation is ambiguous.
2727 --------------------
2728 -- Try_One_Interp --
2729 --------------------
2731 procedure Try_One_Interp (T1 : Entity_Id) is
2732 begin
2733 if Has_Compatible_Type (R, T1) then
2734 if Found
2735 and then Base_Type (T1) /= Base_Type (T_F)
2736 then
2737 It := Disambiguate (L, I_F, Index, Any_Type);
2739 if It = No_Interp then
2740 Ambiguous_Operands (N);
2741 Set_Etype (L, Any_Type);
2742 return;
2744 else
2745 T_F := It.Typ;
2746 end if;
2748 else
2749 Found := True;
2750 T_F := T1;
2751 I_F := Index;
2752 end if;
2754 Set_Etype (L, T_F);
2755 end if;
2756 end Try_One_Interp;
2758 procedure Analyze_Set_Membership;
2759 -- If a set of alternatives is present, analyze each and find the
2760 -- common type to which they must all resolve.
2762 ----------------------------
2763 -- Analyze_Set_Membership --
2764 ----------------------------
2766 procedure Analyze_Set_Membership is
2767 Alt : Node_Id;
2768 Index : Interp_Index;
2769 It : Interp;
2770 Candidate_Interps : Node_Id;
2771 Common_Type : Entity_Id := Empty;
2773 begin
2774 if Comes_From_Source (N) then
2775 Check_Compiler_Unit ("set membership", N);
2776 end if;
2778 Analyze (L);
2779 Candidate_Interps := L;
2781 if not Is_Overloaded (L) then
2782 Common_Type := Etype (L);
2784 Alt := First (Alternatives (N));
2785 while Present (Alt) loop
2786 Analyze (Alt);
2788 if not Has_Compatible_Type (Alt, Common_Type) then
2789 Wrong_Type (Alt, Common_Type);
2790 end if;
2792 Next (Alt);
2793 end loop;
2795 else
2796 Alt := First (Alternatives (N));
2797 while Present (Alt) loop
2798 Analyze (Alt);
2799 if not Is_Overloaded (Alt) then
2800 Common_Type := Etype (Alt);
2802 else
2803 Get_First_Interp (Alt, Index, It);
2804 while Present (It.Typ) loop
2805 if not
2806 Has_Compatible_Type (Candidate_Interps, It.Typ)
2807 then
2808 Remove_Interp (Index);
2809 end if;
2811 Get_Next_Interp (Index, It);
2812 end loop;
2814 Get_First_Interp (Alt, Index, It);
2816 if No (It.Typ) then
2817 Error_Msg_N ("alternative has no legal type", Alt);
2818 return;
2819 end if;
2821 -- If alternative is not overloaded, we have a unique type
2822 -- for all of them.
2824 Set_Etype (Alt, It.Typ);
2825 Get_Next_Interp (Index, It);
2827 if No (It.Typ) then
2828 Set_Is_Overloaded (Alt, False);
2829 Common_Type := Etype (Alt);
2830 end if;
2832 Candidate_Interps := Alt;
2833 end if;
2835 Next (Alt);
2836 end loop;
2837 end if;
2839 Set_Etype (N, Standard_Boolean);
2841 if Present (Common_Type) then
2842 Set_Etype (L, Common_Type);
2844 -- The left operand may still be overloaded, to be resolved using
2845 -- the Common_Type.
2847 else
2848 Error_Msg_N ("cannot resolve membership operation", N);
2849 end if;
2850 end Analyze_Set_Membership;
2852 -- Start of processing for Analyze_Membership_Op
2854 begin
2855 Analyze_Expression (L);
2857 if No (R) and then Ada_Version >= Ada_2012 then
2858 Analyze_Set_Membership;
2859 Check_Function_Writable_Actuals (N);
2861 return;
2862 end if;
2864 if Nkind (R) = N_Range
2865 or else (Nkind (R) = N_Attribute_Reference
2866 and then Attribute_Name (R) = Name_Range)
2867 then
2868 Analyze (R);
2870 if not Is_Overloaded (L) then
2871 Try_One_Interp (Etype (L));
2873 else
2874 Get_First_Interp (L, Index, It);
2875 while Present (It.Typ) loop
2876 Try_One_Interp (It.Typ);
2877 Get_Next_Interp (Index, It);
2878 end loop;
2879 end if;
2881 -- If not a range, it can be a subtype mark, or else it is a degenerate
2882 -- membership test with a singleton value, i.e. a test for equality,
2883 -- if the types are compatible.
2885 else
2886 Analyze (R);
2888 if Is_Entity_Name (R)
2889 and then Is_Type (Entity (R))
2890 then
2891 Find_Type (R);
2892 Check_Fully_Declared (Entity (R), R);
2894 elsif Ada_Version >= Ada_2012
2895 and then Has_Compatible_Type (R, Etype (L))
2896 then
2897 if Nkind (N) = N_In then
2898 Rewrite (N,
2899 Make_Op_Eq (Loc,
2900 Left_Opnd => L,
2901 Right_Opnd => R));
2902 else
2903 Rewrite (N,
2904 Make_Op_Ne (Loc,
2905 Left_Opnd => L,
2906 Right_Opnd => R));
2907 end if;
2909 Analyze (N);
2910 return;
2912 else
2913 -- In all versions of the language, if we reach this point there
2914 -- is a previous error that will be diagnosed below.
2916 Find_Type (R);
2917 end if;
2918 end if;
2920 -- Compatibility between expression and subtype mark or range is
2921 -- checked during resolution. The result of the operation is Boolean
2922 -- in any case.
2924 Set_Etype (N, Standard_Boolean);
2926 if Comes_From_Source (N)
2927 and then Present (Right_Opnd (N))
2928 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2929 then
2930 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2931 end if;
2933 Check_Function_Writable_Actuals (N);
2934 end Analyze_Membership_Op;
2936 -----------------
2937 -- Analyze_Mod --
2938 -----------------
2940 procedure Analyze_Mod (N : Node_Id) is
2941 begin
2942 -- A special warning check, if we have an expression of the form:
2943 -- expr mod 2 * literal
2944 -- where literal is 64 or less, then probably what was meant was
2945 -- expr mod 2 ** literal
2946 -- so issue an appropriate warning.
2948 if Warn_On_Suspicious_Modulus_Value
2949 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2950 and then Intval (Right_Opnd (N)) = Uint_2
2951 and then Nkind (Parent (N)) = N_Op_Multiply
2952 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2953 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2954 then
2955 Error_Msg_N
2956 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
2957 end if;
2959 -- Remaining processing is same as for other arithmetic operators
2961 Analyze_Arithmetic_Op (N);
2962 end Analyze_Mod;
2964 ----------------------
2965 -- Analyze_Negation --
2966 ----------------------
2968 procedure Analyze_Negation (N : Node_Id) is
2969 R : constant Node_Id := Right_Opnd (N);
2970 Op_Id : Entity_Id := Entity (N);
2972 begin
2973 Set_Etype (N, Any_Type);
2974 Candidate_Type := Empty;
2976 Analyze_Expression (R);
2978 if Present (Op_Id) then
2979 if Ekind (Op_Id) = E_Operator then
2980 Find_Negation_Types (R, Op_Id, N);
2981 else
2982 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2983 end if;
2985 else
2986 Op_Id := Get_Name_Entity_Id (Chars (N));
2987 while Present (Op_Id) loop
2988 if Ekind (Op_Id) = E_Operator then
2989 Find_Negation_Types (R, Op_Id, N);
2990 else
2991 Analyze_User_Defined_Unary_Op (N, Op_Id);
2992 end if;
2994 Op_Id := Homonym (Op_Id);
2995 end loop;
2996 end if;
2998 Operator_Check (N);
2999 end Analyze_Negation;
3001 ------------------
3002 -- Analyze_Null --
3003 ------------------
3005 procedure Analyze_Null (N : Node_Id) is
3006 begin
3007 Check_SPARK_05_Restriction ("null is not allowed", N);
3009 Set_Etype (N, Any_Access);
3010 end Analyze_Null;
3012 ----------------------
3013 -- Analyze_One_Call --
3014 ----------------------
3016 procedure Analyze_One_Call
3017 (N : Node_Id;
3018 Nam : Entity_Id;
3019 Report : Boolean;
3020 Success : out Boolean;
3021 Skip_First : Boolean := False)
3023 Actuals : constant List_Id := Parameter_Associations (N);
3024 Prev_T : constant Entity_Id := Etype (N);
3026 Must_Skip : constant Boolean := Skip_First
3027 or else Nkind (Original_Node (N)) = N_Selected_Component
3028 or else
3029 (Nkind (Original_Node (N)) = N_Indexed_Component
3030 and then Nkind (Prefix (Original_Node (N)))
3031 = N_Selected_Component);
3032 -- The first formal must be omitted from the match when trying to find
3033 -- a primitive operation that is a possible interpretation, and also
3034 -- after the call has been rewritten, because the corresponding actual
3035 -- is already known to be compatible, and because this may be an
3036 -- indexing of a call with default parameters.
3038 Formal : Entity_Id;
3039 Actual : Node_Id;
3040 Is_Indexed : Boolean := False;
3041 Is_Indirect : Boolean := False;
3042 Subp_Type : constant Entity_Id := Etype (Nam);
3043 Norm_OK : Boolean;
3045 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
3046 -- There may be a user-defined operator that hides the current
3047 -- interpretation. We must check for this independently of the
3048 -- analysis of the call with the user-defined operation, because
3049 -- the parameter names may be wrong and yet the hiding takes place.
3050 -- This fixes a problem with ACATS test B34014O.
3052 -- When the type Address is a visible integer type, and the DEC
3053 -- system extension is visible, the predefined operator may be
3054 -- hidden as well, by one of the address operations in auxdec.
3055 -- Finally, The abstract operations on address do not hide the
3056 -- predefined operator (this is the purpose of making them abstract).
3058 procedure Indicate_Name_And_Type;
3059 -- If candidate interpretation matches, indicate name and type of
3060 -- result on call node.
3062 ----------------------------
3063 -- Indicate_Name_And_Type --
3064 ----------------------------
3066 procedure Indicate_Name_And_Type is
3067 begin
3068 Add_One_Interp (N, Nam, Etype (Nam));
3069 Check_Implicit_Dereference (N, Etype (Nam));
3070 Success := True;
3072 -- If the prefix of the call is a name, indicate the entity
3073 -- being called. If it is not a name, it is an expression that
3074 -- denotes an access to subprogram or else an entry or family. In
3075 -- the latter case, the name is a selected component, and the entity
3076 -- being called is noted on the selector.
3078 if not Is_Type (Nam) then
3079 if Is_Entity_Name (Name (N)) then
3080 Set_Entity (Name (N), Nam);
3082 elsif Nkind (Name (N)) = N_Selected_Component then
3083 Set_Entity (Selector_Name (Name (N)), Nam);
3084 end if;
3085 end if;
3087 if Debug_Flag_E and not Report then
3088 Write_Str (" Overloaded call ");
3089 Write_Int (Int (N));
3090 Write_Str (" compatible with ");
3091 Write_Int (Int (Nam));
3092 Write_Eol;
3093 end if;
3094 end Indicate_Name_And_Type;
3096 ------------------------
3097 -- Operator_Hidden_By --
3098 ------------------------
3100 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3101 Act1 : constant Node_Id := First_Actual (N);
3102 Act2 : constant Node_Id := Next_Actual (Act1);
3103 Form1 : constant Entity_Id := First_Formal (Fun);
3104 Form2 : constant Entity_Id := Next_Formal (Form1);
3106 begin
3107 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
3108 return False;
3110 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3111 return False;
3113 elsif Present (Form2) then
3114 if No (Act2)
3115 or else not Has_Compatible_Type (Act2, Etype (Form2))
3116 then
3117 return False;
3118 end if;
3120 elsif Present (Act2) then
3121 return False;
3122 end if;
3124 -- Now we know that the arity of the operator matches the function,
3125 -- and the function call is a valid interpretation. The function
3126 -- hides the operator if it has the right signature, or if one of
3127 -- its operands is a non-abstract operation on Address when this is
3128 -- a visible integer type.
3130 return Hides_Op (Fun, Nam)
3131 or else Is_Descendent_Of_Address (Etype (Form1))
3132 or else
3133 (Present (Form2)
3134 and then Is_Descendent_Of_Address (Etype (Form2)));
3135 end Operator_Hidden_By;
3137 -- Start of processing for Analyze_One_Call
3139 begin
3140 Success := False;
3142 -- If the subprogram has no formals or if all the formals have defaults,
3143 -- and the return type is an array type, the node may denote an indexing
3144 -- of the result of a parameterless call. In Ada 2005, the subprogram
3145 -- may have one non-defaulted formal, and the call may have been written
3146 -- in prefix notation, so that the rebuilt parameter list has more than
3147 -- one actual.
3149 if not Is_Overloadable (Nam)
3150 and then Ekind (Nam) /= E_Subprogram_Type
3151 and then Ekind (Nam) /= E_Entry_Family
3152 then
3153 return;
3154 end if;
3156 -- An indexing requires at least one actual. The name of the call cannot
3157 -- be an implicit indirect call, so it cannot be a generated explicit
3158 -- dereference.
3160 if not Is_Empty_List (Actuals)
3161 and then
3162 (Needs_No_Actuals (Nam)
3163 or else
3164 (Needs_One_Actual (Nam)
3165 and then Present (Next_Actual (First (Actuals)))))
3166 then
3167 if Is_Array_Type (Subp_Type)
3168 and then
3169 (Nkind (Name (N)) /= N_Explicit_Dereference
3170 or else Comes_From_Source (Name (N)))
3171 then
3172 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
3174 elsif Is_Access_Type (Subp_Type)
3175 and then Is_Array_Type (Designated_Type (Subp_Type))
3176 then
3177 Is_Indexed :=
3178 Try_Indexed_Call
3179 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
3181 -- The prefix can also be a parameterless function that returns an
3182 -- access to subprogram, in which case this is an indirect call.
3183 -- If this succeeds, an explicit dereference is added later on,
3184 -- in Analyze_Call or Resolve_Call.
3186 elsif Is_Access_Type (Subp_Type)
3187 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
3188 then
3189 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
3190 end if;
3192 end if;
3194 -- If the call has been transformed into a slice, it is of the form
3195 -- F (Subtype) where F is parameterless. The node has been rewritten in
3196 -- Try_Indexed_Call and there is nothing else to do.
3198 if Is_Indexed
3199 and then Nkind (N) = N_Slice
3200 then
3201 return;
3202 end if;
3204 Normalize_Actuals
3205 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
3207 if not Norm_OK then
3209 -- If an indirect call is a possible interpretation, indicate
3210 -- success to the caller. This may be an indexing of an explicit
3211 -- dereference of a call that returns an access type (see above).
3213 if Is_Indirect
3214 or else (Is_Indexed
3215 and then Nkind (Name (N)) = N_Explicit_Dereference
3216 and then Comes_From_Source (Name (N)))
3217 then
3218 Success := True;
3219 return;
3221 -- Mismatch in number or names of parameters
3223 elsif Debug_Flag_E then
3224 Write_Str (" normalization fails in call ");
3225 Write_Int (Int (N));
3226 Write_Str (" with subprogram ");
3227 Write_Int (Int (Nam));
3228 Write_Eol;
3229 end if;
3231 -- If the context expects a function call, discard any interpretation
3232 -- that is a procedure. If the node is not overloaded, leave as is for
3233 -- better error reporting when type mismatch is found.
3235 elsif Nkind (N) = N_Function_Call
3236 and then Is_Overloaded (Name (N))
3237 and then Ekind (Nam) = E_Procedure
3238 then
3239 return;
3241 -- Ditto for function calls in a procedure context
3243 elsif Nkind (N) = N_Procedure_Call_Statement
3244 and then Is_Overloaded (Name (N))
3245 and then Etype (Nam) /= Standard_Void_Type
3246 then
3247 return;
3249 elsif No (Actuals) then
3251 -- If Normalize succeeds, then there are default parameters for
3252 -- all formals.
3254 Indicate_Name_And_Type;
3256 elsif Ekind (Nam) = E_Operator then
3257 if Nkind (N) = N_Procedure_Call_Statement then
3258 return;
3259 end if;
3261 -- This can occur when the prefix of the call is an operator
3262 -- name or an expanded name whose selector is an operator name.
3264 Analyze_Operator_Call (N, Nam);
3266 if Etype (N) /= Prev_T then
3268 -- Check that operator is not hidden by a function interpretation
3270 if Is_Overloaded (Name (N)) then
3271 declare
3272 I : Interp_Index;
3273 It : Interp;
3275 begin
3276 Get_First_Interp (Name (N), I, It);
3277 while Present (It.Nam) loop
3278 if Operator_Hidden_By (It.Nam) then
3279 Set_Etype (N, Prev_T);
3280 return;
3281 end if;
3283 Get_Next_Interp (I, It);
3284 end loop;
3285 end;
3286 end if;
3288 -- If operator matches formals, record its name on the call.
3289 -- If the operator is overloaded, Resolve will select the
3290 -- correct one from the list of interpretations. The call
3291 -- node itself carries the first candidate.
3293 Set_Entity (Name (N), Nam);
3294 Success := True;
3296 elsif Report and then Etype (N) = Any_Type then
3297 Error_Msg_N ("incompatible arguments for operator", N);
3298 end if;
3300 else
3301 -- Normalize_Actuals has chained the named associations in the
3302 -- correct order of the formals.
3304 Actual := First_Actual (N);
3305 Formal := First_Formal (Nam);
3307 -- If we are analyzing a call rewritten from object notation, skip
3308 -- first actual, which may be rewritten later as an explicit
3309 -- dereference.
3311 if Must_Skip then
3312 Next_Actual (Actual);
3313 Next_Formal (Formal);
3314 end if;
3316 while Present (Actual) and then Present (Formal) loop
3317 if Nkind (Parent (Actual)) /= N_Parameter_Association
3318 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
3319 then
3320 -- The actual can be compatible with the formal, but we must
3321 -- also check that the context is not an address type that is
3322 -- visibly an integer type. In this case the use of literals is
3323 -- illegal, except in the body of descendents of system, where
3324 -- arithmetic operations on address are of course used.
3326 if Has_Compatible_Type (Actual, Etype (Formal))
3327 and then
3328 (Etype (Actual) /= Universal_Integer
3329 or else not Is_Descendent_Of_Address (Etype (Formal))
3330 or else
3331 Is_Predefined_File_Name
3332 (Unit_File_Name (Get_Source_Unit (N))))
3333 then
3334 Next_Actual (Actual);
3335 Next_Formal (Formal);
3337 -- In Allow_Integer_Address mode, we allow an actual integer to
3338 -- match a formal address type and vice versa. We only do this
3339 -- if we are certain that an error will otherwise be issued
3341 elsif Address_Integer_Convert_OK
3342 (Etype (Actual), Etype (Formal))
3343 and then (Report and not Is_Indexed and not Is_Indirect)
3344 then
3345 -- Handle this case by introducing an unchecked conversion
3347 Rewrite (Actual,
3348 Unchecked_Convert_To (Etype (Formal),
3349 Relocate_Node (Actual)));
3350 Analyze_And_Resolve (Actual, Etype (Formal));
3351 Next_Actual (Actual);
3352 Next_Formal (Formal);
3354 -- For an Ada 2012 predicate or invariant, a call may mention
3355 -- an incomplete type, while resolution of the corresponding
3356 -- predicate function may see the full view, as a consequence
3357 -- of the delayed resolution of the corresponding expressions.
3359 elsif Ekind (Etype (Formal)) = E_Incomplete_Type
3360 and then Full_View (Etype (Formal)) = Etype (Actual)
3361 then
3362 Set_Etype (Formal, Etype (Actual));
3363 Next_Actual (Actual);
3364 Next_Formal (Formal);
3366 else
3367 if Debug_Flag_E then
3368 Write_Str (" type checking fails in call ");
3369 Write_Int (Int (N));
3370 Write_Str (" with formal ");
3371 Write_Int (Int (Formal));
3372 Write_Str (" in subprogram ");
3373 Write_Int (Int (Nam));
3374 Write_Eol;
3375 end if;
3377 -- Comment needed on the following test???
3379 if Report and not Is_Indexed and not Is_Indirect then
3381 -- Ada 2005 (AI-251): Complete the error notification
3382 -- to help new Ada 2005 users.
3384 if Is_Class_Wide_Type (Etype (Formal))
3385 and then Is_Interface (Etype (Etype (Formal)))
3386 and then not Interface_Present_In_Ancestor
3387 (Typ => Etype (Actual),
3388 Iface => Etype (Etype (Formal)))
3389 then
3390 Error_Msg_NE
3391 ("(Ada 2005) does not implement interface }",
3392 Actual, Etype (Etype (Formal)));
3393 end if;
3395 Wrong_Type (Actual, Etype (Formal));
3397 if Nkind (Actual) = N_Op_Eq
3398 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3399 then
3400 Formal := First_Formal (Nam);
3401 while Present (Formal) loop
3402 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
3403 Error_Msg_N -- CODEFIX
3404 ("possible misspelling of `='>`!", Actual);
3405 exit;
3406 end if;
3408 Next_Formal (Formal);
3409 end loop;
3410 end if;
3412 if All_Errors_Mode then
3413 Error_Msg_Sloc := Sloc (Nam);
3415 if Etype (Formal) = Any_Type then
3416 Error_Msg_N
3417 ("there is no legal actual parameter", Actual);
3418 end if;
3420 if Is_Overloadable (Nam)
3421 and then Present (Alias (Nam))
3422 and then not Comes_From_Source (Nam)
3423 then
3424 Error_Msg_NE
3425 ("\\ =='> in call to inherited operation & #!",
3426 Actual, Nam);
3428 elsif Ekind (Nam) = E_Subprogram_Type then
3429 declare
3430 Access_To_Subprogram_Typ :
3431 constant Entity_Id :=
3432 Defining_Identifier
3433 (Associated_Node_For_Itype (Nam));
3434 begin
3435 Error_Msg_NE
3436 ("\\ =='> in call to dereference of &#!",
3437 Actual, Access_To_Subprogram_Typ);
3438 end;
3440 else
3441 Error_Msg_NE
3442 ("\\ =='> in call to &#!", Actual, Nam);
3444 end if;
3445 end if;
3446 end if;
3448 return;
3449 end if;
3451 else
3452 -- Normalize_Actuals has verified that a default value exists
3453 -- for this formal. Current actual names a subsequent formal.
3455 Next_Formal (Formal);
3456 end if;
3457 end loop;
3459 -- On exit, all actuals match
3461 Indicate_Name_And_Type;
3462 end if;
3463 end Analyze_One_Call;
3465 ---------------------------
3466 -- Analyze_Operator_Call --
3467 ---------------------------
3469 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3470 Op_Name : constant Name_Id := Chars (Op_Id);
3471 Act1 : constant Node_Id := First_Actual (N);
3472 Act2 : constant Node_Id := Next_Actual (Act1);
3474 begin
3475 -- Binary operator case
3477 if Present (Act2) then
3479 -- If more than two operands, then not binary operator after all
3481 if Present (Next_Actual (Act2)) then
3482 return;
3483 end if;
3485 -- Otherwise action depends on operator
3487 case Op_Name is
3488 when Name_Op_Add |
3489 Name_Op_Subtract |
3490 Name_Op_Multiply |
3491 Name_Op_Divide |
3492 Name_Op_Mod |
3493 Name_Op_Rem |
3494 Name_Op_Expon =>
3495 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3497 when Name_Op_And |
3498 Name_Op_Or |
3499 Name_Op_Xor =>
3500 Find_Boolean_Types (Act1, Act2, Op_Id, N);
3502 when Name_Op_Lt |
3503 Name_Op_Le |
3504 Name_Op_Gt |
3505 Name_Op_Ge =>
3506 Find_Comparison_Types (Act1, Act2, Op_Id, N);
3508 when Name_Op_Eq |
3509 Name_Op_Ne =>
3510 Find_Equality_Types (Act1, Act2, Op_Id, N);
3512 when Name_Op_Concat =>
3513 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3515 -- Is this when others, or should it be an abort???
3517 when others =>
3518 null;
3519 end case;
3521 -- Unary operator case
3523 else
3524 case Op_Name is
3525 when Name_Op_Subtract |
3526 Name_Op_Add |
3527 Name_Op_Abs =>
3528 Find_Unary_Types (Act1, Op_Id, N);
3530 when Name_Op_Not =>
3531 Find_Negation_Types (Act1, Op_Id, N);
3533 -- Is this when others correct, or should it be an abort???
3535 when others =>
3536 null;
3537 end case;
3538 end if;
3539 end Analyze_Operator_Call;
3541 -------------------------------------------
3542 -- Analyze_Overloaded_Selected_Component --
3543 -------------------------------------------
3545 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
3546 Nam : constant Node_Id := Prefix (N);
3547 Sel : constant Node_Id := Selector_Name (N);
3548 Comp : Entity_Id;
3549 I : Interp_Index;
3550 It : Interp;
3551 T : Entity_Id;
3553 begin
3554 Set_Etype (Sel, Any_Type);
3556 Get_First_Interp (Nam, I, It);
3557 while Present (It.Typ) loop
3558 if Is_Access_Type (It.Typ) then
3559 T := Designated_Type (It.Typ);
3560 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3561 else
3562 T := It.Typ;
3563 end if;
3565 -- Locate the component. For a private prefix the selector can denote
3566 -- a discriminant.
3568 if Is_Record_Type (T) or else Is_Private_Type (T) then
3570 -- If the prefix is a class-wide type, the visible components are
3571 -- those of the base type.
3573 if Is_Class_Wide_Type (T) then
3574 T := Etype (T);
3575 end if;
3577 Comp := First_Entity (T);
3578 while Present (Comp) loop
3579 if Chars (Comp) = Chars (Sel)
3580 and then Is_Visible_Component (Comp)
3581 then
3583 -- AI05-105: if the context is an object renaming with
3584 -- an anonymous access type, the expected type of the
3585 -- object must be anonymous. This is a name resolution rule.
3587 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3588 or else No (Access_Definition (Parent (N)))
3589 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3590 or else
3591 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3592 then
3593 Set_Entity (Sel, Comp);
3594 Set_Etype (Sel, Etype (Comp));
3595 Add_One_Interp (N, Etype (Comp), Etype (Comp));
3596 Check_Implicit_Dereference (N, Etype (Comp));
3598 -- This also specifies a candidate to resolve the name.
3599 -- Further overloading will be resolved from context.
3600 -- The selector name itself does not carry overloading
3601 -- information.
3603 Set_Etype (Nam, It.Typ);
3605 else
3606 -- Named access type in the context of a renaming
3607 -- declaration with an access definition. Remove
3608 -- inapplicable candidate.
3610 Remove_Interp (I);
3611 end if;
3612 end if;
3614 Next_Entity (Comp);
3615 end loop;
3617 elsif Is_Concurrent_Type (T) then
3618 Comp := First_Entity (T);
3619 while Present (Comp)
3620 and then Comp /= First_Private_Entity (T)
3621 loop
3622 if Chars (Comp) = Chars (Sel) then
3623 if Is_Overloadable (Comp) then
3624 Add_One_Interp (Sel, Comp, Etype (Comp));
3625 else
3626 Set_Entity_With_Checks (Sel, Comp);
3627 Generate_Reference (Comp, Sel);
3628 end if;
3630 Set_Etype (Sel, Etype (Comp));
3631 Set_Etype (N, Etype (Comp));
3632 Set_Etype (Nam, It.Typ);
3634 -- For access type case, introduce explicit dereference for
3635 -- more uniform treatment of entry calls. Do this only once
3636 -- if several interpretations yield an access type.
3638 if Is_Access_Type (Etype (Nam))
3639 and then Nkind (Nam) /= N_Explicit_Dereference
3640 then
3641 Insert_Explicit_Dereference (Nam);
3642 Error_Msg_NW
3643 (Warn_On_Dereference, "?d?implicit dereference", N);
3644 end if;
3645 end if;
3647 Next_Entity (Comp);
3648 end loop;
3650 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3651 end if;
3653 Get_Next_Interp (I, It);
3654 end loop;
3656 if Etype (N) = Any_Type
3657 and then not Try_Object_Operation (N)
3658 then
3659 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3660 Set_Entity (Sel, Any_Id);
3661 Set_Etype (Sel, Any_Type);
3662 end if;
3663 end Analyze_Overloaded_Selected_Component;
3665 ----------------------------------
3666 -- Analyze_Qualified_Expression --
3667 ----------------------------------
3669 procedure Analyze_Qualified_Expression (N : Node_Id) is
3670 Mark : constant Entity_Id := Subtype_Mark (N);
3671 Expr : constant Node_Id := Expression (N);
3672 I : Interp_Index;
3673 It : Interp;
3674 T : Entity_Id;
3676 begin
3677 Analyze_Expression (Expr);
3679 Set_Etype (N, Any_Type);
3680 Find_Type (Mark);
3681 T := Entity (Mark);
3682 Set_Etype (N, T);
3684 if T = Any_Type then
3685 return;
3686 end if;
3688 Check_Fully_Declared (T, N);
3690 -- If expected type is class-wide, check for exact match before
3691 -- expansion, because if the expression is a dispatching call it
3692 -- may be rewritten as explicit dereference with class-wide result.
3693 -- If expression is overloaded, retain only interpretations that
3694 -- will yield exact matches.
3696 if Is_Class_Wide_Type (T) then
3697 if not Is_Overloaded (Expr) then
3698 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3699 if Nkind (Expr) = N_Aggregate then
3700 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3701 else
3702 Wrong_Type (Expr, T);
3703 end if;
3704 end if;
3706 else
3707 Get_First_Interp (Expr, I, It);
3709 while Present (It.Nam) loop
3710 if Base_Type (It.Typ) /= Base_Type (T) then
3711 Remove_Interp (I);
3712 end if;
3714 Get_Next_Interp (I, It);
3715 end loop;
3716 end if;
3717 end if;
3719 Set_Etype (N, T);
3720 end Analyze_Qualified_Expression;
3722 -----------------------------------
3723 -- Analyze_Quantified_Expression --
3724 -----------------------------------
3726 procedure Analyze_Quantified_Expression (N : Node_Id) is
3727 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
3728 -- If the iterator is part of a quantified expression, and the range is
3729 -- known to be statically empty, emit a warning and replace expression
3730 -- with its static value. Returns True if the replacement occurs.
3732 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3733 -- Determine whether if expression If_Expr lacks an else part or if it
3734 -- has one, it evaluates to True.
3736 --------------------
3737 -- Is_Empty_Range --
3738 --------------------
3740 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3741 Loc : constant Source_Ptr := Sloc (N);
3743 begin
3744 if Is_Array_Type (Typ)
3745 and then Compile_Time_Known_Bounds (Typ)
3746 and then
3747 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3748 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
3749 then
3750 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3752 if All_Present (N) then
3753 Error_Msg_N
3754 ("??quantified expression with ALL "
3755 & "over a null range has value True", N);
3756 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3758 else
3759 Error_Msg_N
3760 ("??quantified expression with SOME "
3761 & "over a null range has value False", N);
3762 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3763 end if;
3765 Analyze (N);
3766 return True;
3768 else
3769 return False;
3770 end if;
3771 end Is_Empty_Range;
3773 -----------------------------
3774 -- No_Else_Or_Trivial_True --
3775 -----------------------------
3777 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3778 Else_Expr : constant Node_Id :=
3779 Next (Next (First (Expressions (If_Expr))));
3780 begin
3781 return
3782 No (Else_Expr)
3783 or else (Compile_Time_Known_Value (Else_Expr)
3784 and then Is_True (Expr_Value (Else_Expr)));
3785 end No_Else_Or_Trivial_True;
3787 -- Local variables
3789 Cond : constant Node_Id := Condition (N);
3790 Loop_Id : Entity_Id;
3791 QE_Scop : Entity_Id;
3793 -- Start of processing for Analyze_Quantified_Expression
3795 begin
3796 Check_SPARK_05_Restriction ("quantified expression is not allowed", N);
3798 -- Create a scope to emulate the loop-like behavior of the quantified
3799 -- expression. The scope is needed to provide proper visibility of the
3800 -- loop variable.
3802 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3803 Set_Etype (QE_Scop, Standard_Void_Type);
3804 Set_Scope (QE_Scop, Current_Scope);
3805 Set_Parent (QE_Scop, N);
3807 Push_Scope (QE_Scop);
3809 -- All constituents are preanalyzed and resolved to avoid untimely
3810 -- generation of various temporaries and types. Full analysis and
3811 -- expansion is carried out when the quantified expression is
3812 -- transformed into an expression with actions.
3814 if Present (Iterator_Specification (N)) then
3815 Preanalyze (Iterator_Specification (N));
3817 -- Do not proceed with the analysis when the range of iteration is
3818 -- empty. The appropriate error is issued by Is_Empty_Range.
3820 if Is_Entity_Name (Name (Iterator_Specification (N)))
3821 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3822 then
3823 return;
3824 end if;
3826 else pragma Assert (Present (Loop_Parameter_Specification (N)));
3827 declare
3828 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
3830 begin
3831 Preanalyze (Loop_Par);
3833 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
3834 and then Parent (Loop_Par) /= N
3835 then
3836 -- The parser cannot distinguish between a loop specification
3837 -- and an iterator specification. If after pre-analysis the
3838 -- proper form has been recognized, rewrite the expression to
3839 -- reflect the right kind. This is needed for proper ASIS
3840 -- navigation. If expansion is enabled, the transformation is
3841 -- performed when the expression is rewritten as a loop.
3843 Set_Iterator_Specification (N,
3844 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
3846 Set_Defining_Identifier (Iterator_Specification (N),
3847 Relocate_Node (Defining_Identifier (Loop_Par)));
3848 Set_Name (Iterator_Specification (N),
3849 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
3850 Set_Comes_From_Source (Iterator_Specification (N),
3851 Comes_From_Source (Loop_Parameter_Specification (N)));
3852 Set_Loop_Parameter_Specification (N, Empty);
3853 end if;
3854 end;
3855 end if;
3857 Preanalyze_And_Resolve (Cond, Standard_Boolean);
3859 End_Scope;
3860 Set_Etype (N, Standard_Boolean);
3862 -- Verify that the loop variable is used within the condition of the
3863 -- quantified expression.
3865 if Present (Iterator_Specification (N)) then
3866 Loop_Id := Defining_Identifier (Iterator_Specification (N));
3867 else
3868 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
3869 end if;
3871 if Warn_On_Suspicious_Contract
3872 and then not Referenced (Loop_Id, Cond)
3873 then
3874 Error_Msg_N ("?T?unused variable &", Loop_Id);
3875 end if;
3877 -- Diagnose a possible misuse of the SOME existential quantifier. When
3878 -- we have a quantified expression of the form:
3880 -- for some X => (if P then Q [else True])
3882 -- any value for X that makes P False results in the if expression being
3883 -- trivially True, and so also results in the quantified expression
3884 -- being trivially True.
3886 if Warn_On_Suspicious_Contract
3887 and then not All_Present (N)
3888 and then Nkind (Cond) = N_If_Expression
3889 and then No_Else_Or_Trivial_True (Cond)
3890 then
3891 Error_Msg_N ("?T?suspicious expression", N);
3892 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
3893 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
3894 end if;
3895 end Analyze_Quantified_Expression;
3897 -------------------
3898 -- Analyze_Range --
3899 -------------------
3901 procedure Analyze_Range (N : Node_Id) is
3902 L : constant Node_Id := Low_Bound (N);
3903 H : constant Node_Id := High_Bound (N);
3904 I1, I2 : Interp_Index;
3905 It1, It2 : Interp;
3907 procedure Check_Common_Type (T1, T2 : Entity_Id);
3908 -- Verify the compatibility of two types, and choose the
3909 -- non universal one if the other is universal.
3911 procedure Check_High_Bound (T : Entity_Id);
3912 -- Test one interpretation of the low bound against all those
3913 -- of the high bound.
3915 procedure Check_Universal_Expression (N : Node_Id);
3916 -- In Ada 83, reject bounds of a universal range that are not literals
3917 -- or entity names.
3919 -----------------------
3920 -- Check_Common_Type --
3921 -----------------------
3923 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3924 begin
3925 if Covers (T1 => T1, T2 => T2)
3926 or else
3927 Covers (T1 => T2, T2 => T1)
3928 then
3929 if T1 = Universal_Integer
3930 or else T1 = Universal_Real
3931 or else T1 = Any_Character
3932 then
3933 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3935 elsif T1 = T2 then
3936 Add_One_Interp (N, T1, T1);
3938 else
3939 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3940 end if;
3941 end if;
3942 end Check_Common_Type;
3944 ----------------------
3945 -- Check_High_Bound --
3946 ----------------------
3948 procedure Check_High_Bound (T : Entity_Id) is
3949 begin
3950 if not Is_Overloaded (H) then
3951 Check_Common_Type (T, Etype (H));
3952 else
3953 Get_First_Interp (H, I2, It2);
3954 while Present (It2.Typ) loop
3955 Check_Common_Type (T, It2.Typ);
3956 Get_Next_Interp (I2, It2);
3957 end loop;
3958 end if;
3959 end Check_High_Bound;
3961 -----------------------------
3962 -- Is_Universal_Expression --
3963 -----------------------------
3965 procedure Check_Universal_Expression (N : Node_Id) is
3966 begin
3967 if Etype (N) = Universal_Integer
3968 and then Nkind (N) /= N_Integer_Literal
3969 and then not Is_Entity_Name (N)
3970 and then Nkind (N) /= N_Attribute_Reference
3971 then
3972 Error_Msg_N ("illegal bound in discrete range", N);
3973 end if;
3974 end Check_Universal_Expression;
3976 -- Start of processing for Analyze_Range
3978 begin
3979 Set_Etype (N, Any_Type);
3980 Analyze_Expression (L);
3981 Analyze_Expression (H);
3983 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3984 return;
3986 else
3987 if not Is_Overloaded (L) then
3988 Check_High_Bound (Etype (L));
3989 else
3990 Get_First_Interp (L, I1, It1);
3991 while Present (It1.Typ) loop
3992 Check_High_Bound (It1.Typ);
3993 Get_Next_Interp (I1, It1);
3994 end loop;
3995 end if;
3997 -- If result is Any_Type, then we did not find a compatible pair
3999 if Etype (N) = Any_Type then
4000 Error_Msg_N ("incompatible types in range ", N);
4001 end if;
4002 end if;
4004 if Ada_Version = Ada_83
4005 and then
4006 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4007 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
4008 then
4009 Check_Universal_Expression (L);
4010 Check_Universal_Expression (H);
4011 end if;
4013 Check_Function_Writable_Actuals (N);
4014 end Analyze_Range;
4016 -----------------------
4017 -- Analyze_Reference --
4018 -----------------------
4020 procedure Analyze_Reference (N : Node_Id) is
4021 P : constant Node_Id := Prefix (N);
4022 E : Entity_Id;
4023 T : Entity_Id;
4024 Acc_Type : Entity_Id;
4026 begin
4027 Analyze (P);
4029 -- An interesting error check, if we take the 'Ref of an object for
4030 -- which a pragma Atomic or Volatile has been given, and the type of the
4031 -- object is not Atomic or Volatile, then we are in trouble. The problem
4032 -- is that no trace of the atomic/volatile status will remain for the
4033 -- backend to respect when it deals with the resulting pointer, since
4034 -- the pointer type will not be marked atomic (it is a pointer to the
4035 -- base type of the object).
4037 -- It is not clear if that can ever occur, but in case it does, we will
4038 -- generate an error message. Not clear if this message can ever be
4039 -- generated, and pretty clear that it represents a bug if it is, still
4040 -- seems worth checking, except in CodePeer mode where we do not really
4041 -- care and don't want to bother the user.
4043 T := Etype (P);
4045 if Is_Entity_Name (P)
4046 and then Is_Object_Reference (P)
4047 and then not CodePeer_Mode
4048 then
4049 E := Entity (P);
4050 T := Etype (P);
4052 if (Has_Atomic_Components (E)
4053 and then not Has_Atomic_Components (T))
4054 or else
4055 (Has_Volatile_Components (E)
4056 and then not Has_Volatile_Components (T))
4057 or else (Is_Atomic (E) and then not Is_Atomic (T))
4058 or else (Is_Volatile (E) and then not Is_Volatile (T))
4059 then
4060 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
4061 end if;
4062 end if;
4064 -- Carry on with normal processing
4066 Acc_Type := Create_Itype (E_Allocator_Type, N);
4067 Set_Etype (Acc_Type, Acc_Type);
4068 Set_Directly_Designated_Type (Acc_Type, Etype (P));
4069 Set_Etype (N, Acc_Type);
4070 end Analyze_Reference;
4072 --------------------------------
4073 -- Analyze_Selected_Component --
4074 --------------------------------
4076 -- Prefix is a record type or a task or protected type. In the latter case,
4077 -- the selector must denote a visible entry.
4079 procedure Analyze_Selected_Component (N : Node_Id) is
4080 Name : constant Node_Id := Prefix (N);
4081 Sel : constant Node_Id := Selector_Name (N);
4082 Act_Decl : Node_Id;
4083 Comp : Entity_Id;
4084 Has_Candidate : Boolean := False;
4085 In_Scope : Boolean;
4086 Parent_N : Node_Id;
4087 Pent : Entity_Id := Empty;
4088 Prefix_Type : Entity_Id;
4090 Type_To_Use : Entity_Id;
4091 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4092 -- a class-wide type, we use its root type, whose components are
4093 -- present in the class-wide type.
4095 Is_Single_Concurrent_Object : Boolean;
4096 -- Set True if the prefix is a single task or a single protected object
4098 procedure Find_Component_In_Instance (Rec : Entity_Id);
4099 -- In an instance, a component of a private extension may not be visible
4100 -- while it was visible in the generic. Search candidate scope for a
4101 -- component with the proper identifier. This is only done if all other
4102 -- searches have failed. If a match is found, the Etype of both N and
4103 -- Sel are set from this component, and the entity of Sel is set to
4104 -- reference this component. If no match is found, Entity (Sel) remains
4105 -- unset. For a derived type that is an actual of the instance, the
4106 -- desired component may be found in any ancestor.
4108 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
4109 -- It is known that the parent of N denotes a subprogram call. Comp
4110 -- is an overloadable component of the concurrent type of the prefix.
4111 -- Determine whether all formals of the parent of N and Comp are mode
4112 -- conformant. If the parent node is not analyzed yet it may be an
4113 -- indexed component rather than a function call.
4115 --------------------------------
4116 -- Find_Component_In_Instance --
4117 --------------------------------
4119 procedure Find_Component_In_Instance (Rec : Entity_Id) is
4120 Comp : Entity_Id;
4121 Typ : Entity_Id;
4123 begin
4124 Typ := Rec;
4125 while Present (Typ) loop
4126 Comp := First_Component (Typ);
4127 while Present (Comp) loop
4128 if Chars (Comp) = Chars (Sel) then
4129 Set_Entity_With_Checks (Sel, Comp);
4130 Set_Etype (Sel, Etype (Comp));
4131 Set_Etype (N, Etype (Comp));
4132 return;
4133 end if;
4135 Next_Component (Comp);
4136 end loop;
4138 -- If not found, the component may be declared in the parent
4139 -- type or its full view, if any.
4141 if Is_Derived_Type (Typ) then
4142 Typ := Etype (Typ);
4144 if Is_Private_Type (Typ) then
4145 Typ := Full_View (Typ);
4146 end if;
4148 else
4149 return;
4150 end if;
4151 end loop;
4153 -- If we fall through, no match, so no changes made
4155 return;
4156 end Find_Component_In_Instance;
4158 ------------------------------
4159 -- Has_Mode_Conformant_Spec --
4160 ------------------------------
4162 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4163 Comp_Param : Entity_Id;
4164 Param : Node_Id;
4165 Param_Typ : Entity_Id;
4167 begin
4168 Comp_Param := First_Formal (Comp);
4170 if Nkind (Parent (N)) = N_Indexed_Component then
4171 Param := First (Expressions (Parent (N)));
4172 else
4173 Param := First (Parameter_Associations (Parent (N)));
4174 end if;
4176 while Present (Comp_Param)
4177 and then Present (Param)
4178 loop
4179 Param_Typ := Find_Parameter_Type (Param);
4181 if Present (Param_Typ)
4182 and then
4183 not Conforming_Types
4184 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4185 then
4186 return False;
4187 end if;
4189 Next_Formal (Comp_Param);
4190 Next (Param);
4191 end loop;
4193 -- One of the specs has additional formals; there is no match, unless
4194 -- this may be an indexing of a parameterless call.
4196 -- Note that when expansion is disabled, the corresponding record
4197 -- type of synchronized types is not constructed, so that there is
4198 -- no point is attempting an interpretation as a prefixed call, as
4199 -- this is bound to fail because the primitive operations will not
4200 -- be properly located.
4202 if Present (Comp_Param) or else Present (Param) then
4203 if Needs_No_Actuals (Comp)
4204 and then Is_Array_Type (Etype (Comp))
4205 and then not Expander_Active
4206 then
4207 return True;
4208 else
4209 return False;
4210 end if;
4211 end if;
4213 return True;
4214 end Has_Mode_Conformant_Spec;
4216 -- Start of processing for Analyze_Selected_Component
4218 begin
4219 Set_Etype (N, Any_Type);
4221 if Is_Overloaded (Name) then
4222 Analyze_Overloaded_Selected_Component (N);
4223 return;
4225 elsif Etype (Name) = Any_Type then
4226 Set_Entity (Sel, Any_Id);
4227 Set_Etype (Sel, Any_Type);
4228 return;
4230 else
4231 Prefix_Type := Etype (Name);
4232 end if;
4234 if Is_Access_Type (Prefix_Type) then
4236 -- A RACW object can never be used as prefix of a selected component
4237 -- since that means it is dereferenced without being a controlling
4238 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4239 -- reporting an error, we must check whether this is actually a
4240 -- dispatching call in prefix form.
4242 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4243 and then Comes_From_Source (N)
4244 then
4245 if Try_Object_Operation (N) then
4246 return;
4247 else
4248 Error_Msg_N
4249 ("invalid dereference of a remote access-to-class-wide value",
4251 end if;
4253 -- Normal case of selected component applied to access type
4255 else
4256 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4258 if Is_Entity_Name (Name) then
4259 Pent := Entity (Name);
4260 elsif Nkind (Name) = N_Selected_Component
4261 and then Is_Entity_Name (Selector_Name (Name))
4262 then
4263 Pent := Entity (Selector_Name (Name));
4264 end if;
4266 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
4267 end if;
4269 -- If we have an explicit dereference of a remote access-to-class-wide
4270 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4271 -- have to check for the case of a prefix that is a controlling operand
4272 -- of a prefixed dispatching call, as the dereference is legal in that
4273 -- case. Normally this condition is checked in Validate_Remote_Access_
4274 -- To_Class_Wide_Type, but we have to defer the checking for selected
4275 -- component prefixes because of the prefixed dispatching call case.
4276 -- Note that implicit dereferences are checked for this just above.
4278 elsif Nkind (Name) = N_Explicit_Dereference
4279 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4280 and then Comes_From_Source (N)
4281 then
4282 if Try_Object_Operation (N) then
4283 return;
4284 else
4285 Error_Msg_N
4286 ("invalid dereference of a remote access-to-class-wide value",
4288 end if;
4289 end if;
4291 -- (Ada 2005): if the prefix is the limited view of a type, and
4292 -- the context already includes the full view, use the full view
4293 -- in what follows, either to retrieve a component of to find
4294 -- a primitive operation. If the prefix is an explicit dereference,
4295 -- set the type of the prefix to reflect this transformation.
4296 -- If the non-limited view is itself an incomplete type, get the
4297 -- full view if available.
4299 if From_Limited_With (Prefix_Type)
4300 and then Has_Non_Limited_View (Prefix_Type)
4301 then
4302 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
4304 if Nkind (N) = N_Explicit_Dereference then
4305 Set_Etype (Prefix (N), Prefix_Type);
4306 end if;
4307 end if;
4309 if Ekind (Prefix_Type) = E_Private_Subtype then
4310 Prefix_Type := Base_Type (Prefix_Type);
4311 end if;
4313 Type_To_Use := Prefix_Type;
4315 -- For class-wide types, use the entity list of the root type. This
4316 -- indirection is specially important for private extensions because
4317 -- only the root type get switched (not the class-wide type).
4319 if Is_Class_Wide_Type (Prefix_Type) then
4320 Type_To_Use := Root_Type (Prefix_Type);
4321 end if;
4323 -- If the prefix is a single concurrent object, use its name in error
4324 -- messages, rather than that of its anonymous type.
4326 Is_Single_Concurrent_Object :=
4327 Is_Concurrent_Type (Prefix_Type)
4328 and then Is_Internal_Name (Chars (Prefix_Type))
4329 and then not Is_Derived_Type (Prefix_Type)
4330 and then Is_Entity_Name (Name);
4332 Comp := First_Entity (Type_To_Use);
4334 -- If the selector has an original discriminant, the node appears in
4335 -- an instance. Replace the discriminant with the corresponding one
4336 -- in the current discriminated type. For nested generics, this must
4337 -- be done transitively, so note the new original discriminant.
4339 if Nkind (Sel) = N_Identifier
4340 and then In_Instance
4341 and then Present (Original_Discriminant (Sel))
4342 then
4343 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4345 -- Mark entity before rewriting, for completeness and because
4346 -- subsequent semantic checks might examine the original node.
4348 Set_Entity (Sel, Comp);
4349 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
4350 Set_Original_Discriminant (Selector_Name (N), Comp);
4351 Set_Etype (N, Etype (Comp));
4352 Check_Implicit_Dereference (N, Etype (Comp));
4354 if Is_Access_Type (Etype (Name)) then
4355 Insert_Explicit_Dereference (Name);
4356 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4357 end if;
4359 elsif Is_Record_Type (Prefix_Type) then
4361 -- Find component with given name. In an instance, if the node is
4362 -- known as a prefixed call, do not examine components whose
4363 -- visibility may be accidental.
4365 while Present (Comp) and then not Is_Prefixed_Call (N) loop
4366 if Chars (Comp) = Chars (Sel)
4367 and then Is_Visible_Component (Comp, N)
4368 then
4369 Set_Entity_With_Checks (Sel, Comp);
4370 Set_Etype (Sel, Etype (Comp));
4372 if Ekind (Comp) = E_Discriminant then
4373 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
4374 Error_Msg_N
4375 ("cannot reference discriminant of unchecked union",
4376 Sel);
4377 end if;
4379 if Is_Generic_Type (Prefix_Type)
4380 or else
4381 Is_Generic_Type (Root_Type (Prefix_Type))
4382 then
4383 Set_Original_Discriminant (Sel, Comp);
4384 end if;
4385 end if;
4387 -- Resolve the prefix early otherwise it is not possible to
4388 -- build the actual subtype of the component: it may need
4389 -- to duplicate this prefix and duplication is only allowed
4390 -- on fully resolved expressions.
4392 Resolve (Name);
4394 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4395 -- subtypes in a package specification.
4396 -- Example:
4398 -- limited with Pkg;
4399 -- package Pkg is
4400 -- type Acc_Inc is access Pkg.T;
4401 -- X : Acc_Inc;
4402 -- N : Natural := X.all.Comp; -- ERROR, limited view
4403 -- end Pkg; -- Comp is not visible
4405 if Nkind (Name) = N_Explicit_Dereference
4406 and then From_Limited_With (Etype (Prefix (Name)))
4407 and then not Is_Potentially_Use_Visible (Etype (Name))
4408 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4409 N_Package_Specification
4410 then
4411 Error_Msg_NE
4412 ("premature usage of incomplete}", Prefix (Name),
4413 Etype (Prefix (Name)));
4414 end if;
4416 -- We never need an actual subtype for the case of a selection
4417 -- for a indexed component of a non-packed array, since in
4418 -- this case gigi generates all the checks and can find the
4419 -- necessary bounds information.
4421 -- We also do not need an actual subtype for the case of a
4422 -- first, last, length, or range attribute applied to a
4423 -- non-packed array, since gigi can again get the bounds in
4424 -- these cases (gigi cannot handle the packed case, since it
4425 -- has the bounds of the packed array type, not the original
4426 -- bounds of the type). However, if the prefix is itself a
4427 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4428 -- as a dynamic-sized temporary, so we do generate an actual
4429 -- subtype for this case.
4431 Parent_N := Parent (N);
4433 if not Is_Packed (Etype (Comp))
4434 and then
4435 ((Nkind (Parent_N) = N_Indexed_Component
4436 and then Nkind (Name) /= N_Selected_Component)
4437 or else
4438 (Nkind (Parent_N) = N_Attribute_Reference
4439 and then
4440 Nam_In (Attribute_Name (Parent_N), Name_First,
4441 Name_Last,
4442 Name_Length,
4443 Name_Range)))
4444 then
4445 Set_Etype (N, Etype (Comp));
4447 -- If full analysis is not enabled, we do not generate an
4448 -- actual subtype, because in the absence of expansion
4449 -- reference to a formal of a protected type, for example,
4450 -- will not be properly transformed, and will lead to
4451 -- out-of-scope references in gigi.
4453 -- In all other cases, we currently build an actual subtype.
4454 -- It seems likely that many of these cases can be avoided,
4455 -- but right now, the front end makes direct references to the
4456 -- bounds (e.g. in generating a length check), and if we do
4457 -- not make an actual subtype, we end up getting a direct
4458 -- reference to a discriminant, which will not do.
4460 elsif Full_Analysis then
4461 Act_Decl :=
4462 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4463 Insert_Action (N, Act_Decl);
4465 if No (Act_Decl) then
4466 Set_Etype (N, Etype (Comp));
4468 else
4469 -- Component type depends on discriminants. Enter the
4470 -- main attributes of the subtype.
4472 declare
4473 Subt : constant Entity_Id :=
4474 Defining_Identifier (Act_Decl);
4476 begin
4477 Set_Etype (Subt, Base_Type (Etype (Comp)));
4478 Set_Ekind (Subt, Ekind (Etype (Comp)));
4479 Set_Etype (N, Subt);
4480 end;
4481 end if;
4483 -- If Full_Analysis not enabled, just set the Etype
4485 else
4486 Set_Etype (N, Etype (Comp));
4487 end if;
4489 Check_Implicit_Dereference (N, Etype (N));
4490 return;
4491 end if;
4493 -- If the prefix is a private extension, check only the visible
4494 -- components of the partial view. This must include the tag,
4495 -- which can appear in expanded code in a tag check.
4497 if Ekind (Type_To_Use) = E_Record_Type_With_Private
4498 and then Chars (Selector_Name (N)) /= Name_uTag
4499 then
4500 exit when Comp = Last_Entity (Type_To_Use);
4501 end if;
4503 Next_Entity (Comp);
4504 end loop;
4506 -- Ada 2005 (AI-252): The selected component can be interpreted as
4507 -- a prefixed view of a subprogram. Depending on the context, this is
4508 -- either a name that can appear in a renaming declaration, or part
4509 -- of an enclosing call given in prefix form.
4511 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4512 -- selected component should resolve to a name.
4514 if Ada_Version >= Ada_2005
4515 and then Is_Tagged_Type (Prefix_Type)
4516 and then not Is_Concurrent_Type (Prefix_Type)
4517 then
4518 if Nkind (Parent (N)) = N_Generic_Association
4519 or else Nkind (Parent (N)) = N_Requeue_Statement
4520 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4521 then
4522 if Find_Primitive_Operation (N) then
4523 return;
4524 end if;
4526 elsif Try_Object_Operation (N) then
4527 return;
4528 end if;
4530 -- If the transformation fails, it will be necessary to redo the
4531 -- analysis with all errors enabled, to indicate candidate
4532 -- interpretations and reasons for each failure ???
4534 end if;
4536 elsif Is_Private_Type (Prefix_Type) then
4538 -- Allow access only to discriminants of the type. If the type has
4539 -- no full view, gigi uses the parent type for the components, so we
4540 -- do the same here.
4542 if No (Full_View (Prefix_Type)) then
4543 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4544 Comp := First_Entity (Type_To_Use);
4545 end if;
4547 while Present (Comp) loop
4548 if Chars (Comp) = Chars (Sel) then
4549 if Ekind (Comp) = E_Discriminant then
4550 Set_Entity_With_Checks (Sel, Comp);
4551 Generate_Reference (Comp, Sel);
4553 Set_Etype (Sel, Etype (Comp));
4554 Set_Etype (N, Etype (Comp));
4555 Check_Implicit_Dereference (N, Etype (N));
4557 if Is_Generic_Type (Prefix_Type)
4558 or else Is_Generic_Type (Root_Type (Prefix_Type))
4559 then
4560 Set_Original_Discriminant (Sel, Comp);
4561 end if;
4563 -- Before declaring an error, check whether this is tagged
4564 -- private type and a call to a primitive operation.
4566 elsif Ada_Version >= Ada_2005
4567 and then Is_Tagged_Type (Prefix_Type)
4568 and then Try_Object_Operation (N)
4569 then
4570 return;
4572 else
4573 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4574 Error_Msg_NE ("invisible selector& for }", N, Sel);
4575 Set_Entity (Sel, Any_Id);
4576 Set_Etype (N, Any_Type);
4577 end if;
4579 return;
4580 end if;
4582 Next_Entity (Comp);
4583 end loop;
4585 elsif Is_Concurrent_Type (Prefix_Type) then
4587 -- Find visible operation with given name. For a protected type,
4588 -- the possible candidates are discriminants, entries or protected
4589 -- procedures. For a task type, the set can only include entries or
4590 -- discriminants if the task type is not an enclosing scope. If it
4591 -- is an enclosing scope (e.g. in an inner task) then all entities
4592 -- are visible, but the prefix must denote the enclosing scope, i.e.
4593 -- can only be a direct name or an expanded name.
4595 Set_Etype (Sel, Any_Type);
4596 In_Scope := In_Open_Scopes (Prefix_Type);
4598 while Present (Comp) loop
4599 if Chars (Comp) = Chars (Sel) then
4600 if Is_Overloadable (Comp) then
4601 Add_One_Interp (Sel, Comp, Etype (Comp));
4603 -- If the prefix is tagged, the correct interpretation may
4604 -- lie in the primitive or class-wide operations of the
4605 -- type. Perform a simple conformance check to determine
4606 -- whether Try_Object_Operation should be invoked even if
4607 -- a visible entity is found.
4609 if Is_Tagged_Type (Prefix_Type)
4610 and then
4611 Nkind_In (Parent (N), N_Procedure_Call_Statement,
4612 N_Function_Call,
4613 N_Indexed_Component)
4614 and then Has_Mode_Conformant_Spec (Comp)
4615 then
4616 Has_Candidate := True;
4617 end if;
4619 -- Note: a selected component may not denote a component of a
4620 -- protected type (4.1.3(7)).
4622 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
4623 or else (In_Scope
4624 and then not Is_Protected_Type (Prefix_Type)
4625 and then Is_Entity_Name (Name))
4626 then
4627 Set_Entity_With_Checks (Sel, Comp);
4628 Generate_Reference (Comp, Sel);
4630 -- The selector is not overloadable, so we have a candidate
4631 -- interpretation.
4633 Has_Candidate := True;
4635 else
4636 goto Next_Comp;
4637 end if;
4639 Set_Etype (Sel, Etype (Comp));
4640 Set_Etype (N, Etype (Comp));
4642 if Ekind (Comp) = E_Discriminant then
4643 Set_Original_Discriminant (Sel, Comp);
4644 end if;
4646 -- For access type case, introduce explicit dereference for
4647 -- more uniform treatment of entry calls.
4649 if Is_Access_Type (Etype (Name)) then
4650 Insert_Explicit_Dereference (Name);
4651 Error_Msg_NW
4652 (Warn_On_Dereference, "?d?implicit dereference", N);
4653 end if;
4654 end if;
4656 <<Next_Comp>>
4657 Next_Entity (Comp);
4658 exit when not In_Scope
4659 and then
4660 Comp = First_Private_Entity (Base_Type (Prefix_Type));
4661 end loop;
4663 -- If there is no visible entity with the given name or none of the
4664 -- visible entities are plausible interpretations, check whether
4665 -- there is some other primitive operation with that name.
4667 if Ada_Version >= Ada_2005
4668 and then Is_Tagged_Type (Prefix_Type)
4669 then
4670 if (Etype (N) = Any_Type
4671 or else not Has_Candidate)
4672 and then Try_Object_Operation (N)
4673 then
4674 return;
4676 -- If the context is not syntactically a procedure call, it
4677 -- may be a call to a primitive function declared outside of
4678 -- the synchronized type.
4680 -- If the context is a procedure call, there might still be
4681 -- an overloading between an entry and a primitive procedure
4682 -- declared outside of the synchronized type, called in prefix
4683 -- notation. This is harder to disambiguate because in one case
4684 -- the controlling formal is implicit ???
4686 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
4687 and then Nkind (Parent (N)) /= N_Indexed_Component
4688 and then Try_Object_Operation (N)
4689 then
4690 return;
4691 end if;
4693 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4694 -- entry or procedure of a tagged concurrent type we must check
4695 -- if there are class-wide subprograms covering the primitive. If
4696 -- true then Try_Object_Operation reports the error.
4698 if Has_Candidate
4699 and then Is_Concurrent_Type (Prefix_Type)
4700 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4702 -- Duplicate the call. This is required to avoid problems with
4703 -- the tree transformations performed by Try_Object_Operation.
4704 -- Set properly the parent of the copied call, because it is
4705 -- about to be reanalyzed.
4707 then
4708 declare
4709 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4711 begin
4712 Set_Parent (Par, Parent (Parent (N)));
4714 if Try_Object_Operation
4715 (Sinfo.Name (Par), CW_Test_Only => True)
4716 then
4717 return;
4718 end if;
4719 end;
4720 end if;
4721 end if;
4723 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
4725 -- Case of a prefix of a protected type: selector might denote
4726 -- an invisible private component.
4728 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4729 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4730 Next_Entity (Comp);
4731 end loop;
4733 if Present (Comp) then
4734 if Is_Single_Concurrent_Object then
4735 Error_Msg_Node_2 := Entity (Name);
4736 Error_Msg_NE ("invisible selector& for &", N, Sel);
4738 else
4739 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4740 Error_Msg_NE ("invisible selector& for }", N, Sel);
4741 end if;
4742 return;
4743 end if;
4744 end if;
4746 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4748 else
4749 -- Invalid prefix
4751 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4752 end if;
4754 -- If N still has no type, the component is not defined in the prefix
4756 if Etype (N) = Any_Type then
4758 if Is_Single_Concurrent_Object then
4759 Error_Msg_Node_2 := Entity (Name);
4760 Error_Msg_NE ("no selector& for&", N, Sel);
4762 Check_Misspelled_Selector (Type_To_Use, Sel);
4764 -- If this is a derived formal type, the parent may have different
4765 -- visibility at this point. Try for an inherited component before
4766 -- reporting an error.
4768 elsif Is_Generic_Type (Prefix_Type)
4769 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
4770 and then Prefix_Type /= Etype (Prefix_Type)
4771 and then Is_Record_Type (Etype (Prefix_Type))
4772 then
4773 Set_Etype (Prefix (N), Etype (Prefix_Type));
4774 Analyze_Selected_Component (N);
4775 return;
4777 -- Similarly, if this is the actual for a formal derived type, or
4778 -- a derived type thereof, the component inherited from the generic
4779 -- parent may not be visible in the actual, but the selected
4780 -- component is legal. Climb up the derivation chain of the generic
4781 -- parent type until we find the proper ancestor type.
4783 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
4784 declare
4785 Par : Entity_Id := Prefix_Type;
4786 begin
4787 -- Climb up derivation chain to generic actual subtype
4789 while not Is_Generic_Actual_Type (Par) loop
4790 if Ekind (Par) = E_Record_Type then
4791 Par := Parent_Subtype (Par);
4792 exit when No (Par);
4793 else
4794 exit when Par = Etype (Par);
4795 Par := Etype (Par);
4796 end if;
4797 end loop;
4799 if Present (Par) and then Is_Generic_Actual_Type (Par) then
4801 -- Now look for component in ancestor types
4803 Par := Generic_Parent_Type (Declaration_Node (Par));
4804 loop
4805 Find_Component_In_Instance (Par);
4806 exit when Present (Entity (Sel))
4807 or else Par = Etype (Par);
4808 Par := Etype (Par);
4809 end loop;
4811 -- Another special case: the type is an extension of a private
4812 -- type T, is an actual in an instance, and we are in the body
4813 -- of the instance, so the generic body had a full view of the
4814 -- type declaration for T or of some ancestor that defines the
4815 -- component in question.
4817 elsif Is_Derived_Type (Type_To_Use)
4818 and then Used_As_Generic_Actual (Type_To_Use)
4819 and then In_Instance_Body
4820 then
4821 Find_Component_In_Instance (Parent_Subtype (Type_To_Use));
4823 -- In ASIS mode the generic parent type may be absent. Examine
4824 -- the parent type directly for a component that may have been
4825 -- visible in a parent generic unit.
4827 elsif Is_Derived_Type (Prefix_Type) then
4828 Par := Etype (Prefix_Type);
4829 Find_Component_In_Instance (Par);
4830 end if;
4831 end;
4833 -- The search above must have eventually succeeded, since the
4834 -- selected component was legal in the generic.
4836 if No (Entity (Sel)) then
4837 raise Program_Error;
4838 end if;
4840 return;
4842 -- Component not found, specialize error message when appropriate
4844 else
4845 if Ekind (Prefix_Type) = E_Record_Subtype then
4847 -- Check whether this is a component of the base type which
4848 -- is absent from a statically constrained subtype. This will
4849 -- raise constraint error at run time, but is not a compile-
4850 -- time error. When the selector is illegal for base type as
4851 -- well fall through and generate a compilation error anyway.
4853 Comp := First_Component (Base_Type (Prefix_Type));
4854 while Present (Comp) loop
4855 if Chars (Comp) = Chars (Sel)
4856 and then Is_Visible_Component (Comp)
4857 then
4858 Set_Entity_With_Checks (Sel, Comp);
4859 Generate_Reference (Comp, Sel);
4860 Set_Etype (Sel, Etype (Comp));
4861 Set_Etype (N, Etype (Comp));
4863 -- Emit appropriate message. The node will be replaced
4864 -- by an appropriate raise statement.
4866 -- Note that in SPARK mode, as with all calls to apply a
4867 -- compile time constraint error, this will be made into
4868 -- an error to simplify the processing of the formal
4869 -- verification backend.
4871 Apply_Compile_Time_Constraint_Error
4872 (N, "component not present in }??",
4873 CE_Discriminant_Check_Failed,
4874 Ent => Prefix_Type, Rep => False);
4876 Set_Raises_Constraint_Error (N);
4877 return;
4878 end if;
4880 Next_Component (Comp);
4881 end loop;
4883 end if;
4885 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4886 Error_Msg_NE ("no selector& for}", N, Sel);
4888 -- Add information in the case of an incomplete prefix
4890 if Is_Incomplete_Type (Type_To_Use) then
4891 declare
4892 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4894 begin
4895 if From_Limited_With (Scope (Type_To_Use)) then
4896 Error_Msg_NE
4897 ("\limited view of& has no components", N, Inc);
4899 else
4900 Error_Msg_NE
4901 ("\premature usage of incomplete type&", N, Inc);
4903 if Nkind (Parent (Inc)) =
4904 N_Incomplete_Type_Declaration
4905 then
4906 -- Record location of premature use in entity so that
4907 -- a continuation message is generated when the
4908 -- completion is seen.
4910 Set_Premature_Use (Parent (Inc), N);
4911 end if;
4912 end if;
4913 end;
4914 end if;
4916 Check_Misspelled_Selector (Type_To_Use, Sel);
4917 end if;
4919 Set_Entity (Sel, Any_Id);
4920 Set_Etype (Sel, Any_Type);
4921 end if;
4922 end Analyze_Selected_Component;
4924 ---------------------------
4925 -- Analyze_Short_Circuit --
4926 ---------------------------
4928 procedure Analyze_Short_Circuit (N : Node_Id) is
4929 L : constant Node_Id := Left_Opnd (N);
4930 R : constant Node_Id := Right_Opnd (N);
4931 Ind : Interp_Index;
4932 It : Interp;
4934 begin
4935 Analyze_Expression (L);
4936 Analyze_Expression (R);
4937 Set_Etype (N, Any_Type);
4939 if not Is_Overloaded (L) then
4940 if Root_Type (Etype (L)) = Standard_Boolean
4941 and then Has_Compatible_Type (R, Etype (L))
4942 then
4943 Add_One_Interp (N, Etype (L), Etype (L));
4944 end if;
4946 else
4947 Get_First_Interp (L, Ind, It);
4948 while Present (It.Typ) loop
4949 if Root_Type (It.Typ) = Standard_Boolean
4950 and then Has_Compatible_Type (R, It.Typ)
4951 then
4952 Add_One_Interp (N, It.Typ, It.Typ);
4953 end if;
4955 Get_Next_Interp (Ind, It);
4956 end loop;
4957 end if;
4959 -- Here we have failed to find an interpretation. Clearly we know that
4960 -- it is not the case that both operands can have an interpretation of
4961 -- Boolean, but this is by far the most likely intended interpretation.
4962 -- So we simply resolve both operands as Booleans, and at least one of
4963 -- these resolutions will generate an error message, and we do not need
4964 -- to give another error message on the short circuit operation itself.
4966 if Etype (N) = Any_Type then
4967 Resolve (L, Standard_Boolean);
4968 Resolve (R, Standard_Boolean);
4969 Set_Etype (N, Standard_Boolean);
4970 end if;
4971 end Analyze_Short_Circuit;
4973 -------------------
4974 -- Analyze_Slice --
4975 -------------------
4977 procedure Analyze_Slice (N : Node_Id) is
4978 D : constant Node_Id := Discrete_Range (N);
4979 P : constant Node_Id := Prefix (N);
4980 Array_Type : Entity_Id;
4981 Index_Type : Entity_Id;
4983 procedure Analyze_Overloaded_Slice;
4984 -- If the prefix is overloaded, select those interpretations that
4985 -- yield a one-dimensional array type.
4987 ------------------------------
4988 -- Analyze_Overloaded_Slice --
4989 ------------------------------
4991 procedure Analyze_Overloaded_Slice is
4992 I : Interp_Index;
4993 It : Interp;
4994 Typ : Entity_Id;
4996 begin
4997 Set_Etype (N, Any_Type);
4999 Get_First_Interp (P, I, It);
5000 while Present (It.Nam) loop
5001 Typ := It.Typ;
5003 if Is_Access_Type (Typ) then
5004 Typ := Designated_Type (Typ);
5005 Error_Msg_NW
5006 (Warn_On_Dereference, "?d?implicit dereference", N);
5007 end if;
5009 if Is_Array_Type (Typ)
5010 and then Number_Dimensions (Typ) = 1
5011 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
5012 then
5013 Add_One_Interp (N, Typ, Typ);
5014 end if;
5016 Get_Next_Interp (I, It);
5017 end loop;
5019 if Etype (N) = Any_Type then
5020 Error_Msg_N ("expect array type in prefix of slice", N);
5021 end if;
5022 end Analyze_Overloaded_Slice;
5024 -- Start of processing for Analyze_Slice
5026 begin
5027 if Comes_From_Source (N) then
5028 Check_SPARK_05_Restriction ("slice is not allowed", N);
5029 end if;
5031 Analyze (P);
5032 Analyze (D);
5034 if Is_Overloaded (P) then
5035 Analyze_Overloaded_Slice;
5037 else
5038 Array_Type := Etype (P);
5039 Set_Etype (N, Any_Type);
5041 if Is_Access_Type (Array_Type) then
5042 Array_Type := Designated_Type (Array_Type);
5043 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
5044 end if;
5046 if not Is_Array_Type (Array_Type) then
5047 Wrong_Type (P, Any_Array);
5049 elsif Number_Dimensions (Array_Type) > 1 then
5050 Error_Msg_N
5051 ("type is not one-dimensional array in slice prefix", N);
5053 else
5054 if Ekind (Array_Type) = E_String_Literal_Subtype then
5055 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
5056 else
5057 Index_Type := Etype (First_Index (Array_Type));
5058 end if;
5060 if not Has_Compatible_Type (D, Index_Type) then
5061 Wrong_Type (D, Index_Type);
5062 else
5063 Set_Etype (N, Array_Type);
5064 end if;
5065 end if;
5066 end if;
5067 end Analyze_Slice;
5069 -----------------------------
5070 -- Analyze_Type_Conversion --
5071 -----------------------------
5073 procedure Analyze_Type_Conversion (N : Node_Id) is
5074 Expr : constant Node_Id := Expression (N);
5075 Typ : Entity_Id;
5077 begin
5078 -- If Conversion_OK is set, then the Etype is already set, and the only
5079 -- processing required is to analyze the expression. This is used to
5080 -- construct certain "illegal" conversions which are not allowed by Ada
5081 -- semantics, but can be handled by Gigi, see Sinfo for further details.
5083 if Conversion_OK (N) then
5084 Analyze (Expr);
5085 return;
5086 end if;
5088 -- Otherwise full type analysis is required, as well as some semantic
5089 -- checks to make sure the argument of the conversion is appropriate.
5091 Find_Type (Subtype_Mark (N));
5092 Typ := Entity (Subtype_Mark (N));
5093 Set_Etype (N, Typ);
5094 Check_Fully_Declared (Typ, N);
5095 Analyze_Expression (Expr);
5096 Validate_Remote_Type_Type_Conversion (N);
5098 -- Only remaining step is validity checks on the argument. These
5099 -- are skipped if the conversion does not come from the source.
5101 if not Comes_From_Source (N) then
5102 return;
5104 -- If there was an error in a generic unit, no need to replicate the
5105 -- error message. Conversely, constant-folding in the generic may
5106 -- transform the argument of a conversion into a string literal, which
5107 -- is legal. Therefore the following tests are not performed in an
5108 -- instance. The same applies to an inlined body.
5110 elsif In_Instance or In_Inlined_Body then
5111 return;
5113 elsif Nkind (Expr) = N_Null then
5114 Error_Msg_N ("argument of conversion cannot be null", N);
5115 Error_Msg_N ("\use qualified expression instead", N);
5116 Set_Etype (N, Any_Type);
5118 elsif Nkind (Expr) = N_Aggregate then
5119 Error_Msg_N ("argument of conversion cannot be aggregate", N);
5120 Error_Msg_N ("\use qualified expression instead", N);
5122 elsif Nkind (Expr) = N_Allocator then
5123 Error_Msg_N ("argument of conversion cannot be an allocator", N);
5124 Error_Msg_N ("\use qualified expression instead", N);
5126 elsif Nkind (Expr) = N_String_Literal then
5127 Error_Msg_N ("argument of conversion cannot be string literal", N);
5128 Error_Msg_N ("\use qualified expression instead", N);
5130 elsif Nkind (Expr) = N_Character_Literal then
5131 if Ada_Version = Ada_83 then
5132 Resolve (Expr, Typ);
5133 else
5134 Error_Msg_N ("argument of conversion cannot be character literal",
5136 Error_Msg_N ("\use qualified expression instead", N);
5137 end if;
5139 elsif Nkind (Expr) = N_Attribute_Reference
5140 and then Nam_In (Attribute_Name (Expr), Name_Access,
5141 Name_Unchecked_Access,
5142 Name_Unrestricted_Access)
5143 then
5144 Error_Msg_N ("argument of conversion cannot be access", N);
5145 Error_Msg_N ("\use qualified expression instead", N);
5146 end if;
5148 -- A formal parameter of a specific tagged type whose related subprogram
5149 -- is subject to pragma Extensions_Visible with value "False" cannot
5150 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)).
5152 if Is_Class_Wide_Type (Typ) and then Is_EVF_Expression (Expr) then
5153 Error_Msg_N
5154 ("formal parameter with Extensions_Visible False cannot be "
5155 & "converted to class-wide type", Expr);
5156 end if;
5157 end Analyze_Type_Conversion;
5159 ----------------------
5160 -- Analyze_Unary_Op --
5161 ----------------------
5163 procedure Analyze_Unary_Op (N : Node_Id) is
5164 R : constant Node_Id := Right_Opnd (N);
5165 Op_Id : Entity_Id := Entity (N);
5167 begin
5168 Set_Etype (N, Any_Type);
5169 Candidate_Type := Empty;
5171 Analyze_Expression (R);
5173 if Present (Op_Id) then
5174 if Ekind (Op_Id) = E_Operator then
5175 Find_Unary_Types (R, Op_Id, N);
5176 else
5177 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5178 end if;
5180 else
5181 Op_Id := Get_Name_Entity_Id (Chars (N));
5182 while Present (Op_Id) loop
5183 if Ekind (Op_Id) = E_Operator then
5184 if No (Next_Entity (First_Entity (Op_Id))) then
5185 Find_Unary_Types (R, Op_Id, N);
5186 end if;
5188 elsif Is_Overloadable (Op_Id) then
5189 Analyze_User_Defined_Unary_Op (N, Op_Id);
5190 end if;
5192 Op_Id := Homonym (Op_Id);
5193 end loop;
5194 end if;
5196 Operator_Check (N);
5197 end Analyze_Unary_Op;
5199 ----------------------------------
5200 -- Analyze_Unchecked_Expression --
5201 ----------------------------------
5203 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5204 begin
5205 Analyze (Expression (N), Suppress => All_Checks);
5206 Set_Etype (N, Etype (Expression (N)));
5207 Save_Interps (Expression (N), N);
5208 end Analyze_Unchecked_Expression;
5210 ---------------------------------------
5211 -- Analyze_Unchecked_Type_Conversion --
5212 ---------------------------------------
5214 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5215 begin
5216 Find_Type (Subtype_Mark (N));
5217 Analyze_Expression (Expression (N));
5218 Set_Etype (N, Entity (Subtype_Mark (N)));
5219 end Analyze_Unchecked_Type_Conversion;
5221 ------------------------------------
5222 -- Analyze_User_Defined_Binary_Op --
5223 ------------------------------------
5225 procedure Analyze_User_Defined_Binary_Op
5226 (N : Node_Id;
5227 Op_Id : Entity_Id)
5229 begin
5230 -- Only do analysis if the operator Comes_From_Source, since otherwise
5231 -- the operator was generated by the expander, and all such operators
5232 -- always refer to the operators in package Standard.
5234 if Comes_From_Source (N) then
5235 declare
5236 F1 : constant Entity_Id := First_Formal (Op_Id);
5237 F2 : constant Entity_Id := Next_Formal (F1);
5239 begin
5240 -- Verify that Op_Id is a visible binary function. Note that since
5241 -- we know Op_Id is overloaded, potentially use visible means use
5242 -- visible for sure (RM 9.4(11)).
5244 if Ekind (Op_Id) = E_Function
5245 and then Present (F2)
5246 and then (Is_Immediately_Visible (Op_Id)
5247 or else Is_Potentially_Use_Visible (Op_Id))
5248 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5249 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5250 then
5251 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5253 -- If the left operand is overloaded, indicate that the current
5254 -- type is a viable candidate. This is redundant in most cases,
5255 -- but for equality and comparison operators where the context
5256 -- does not impose a type on the operands, setting the proper
5257 -- type is necessary to avoid subsequent ambiguities during
5258 -- resolution, when both user-defined and predefined operators
5259 -- may be candidates.
5261 if Is_Overloaded (Left_Opnd (N)) then
5262 Set_Etype (Left_Opnd (N), Etype (F1));
5263 end if;
5265 if Debug_Flag_E then
5266 Write_Str ("user defined operator ");
5267 Write_Name (Chars (Op_Id));
5268 Write_Str (" on node ");
5269 Write_Int (Int (N));
5270 Write_Eol;
5271 end if;
5272 end if;
5273 end;
5274 end if;
5275 end Analyze_User_Defined_Binary_Op;
5277 -----------------------------------
5278 -- Analyze_User_Defined_Unary_Op --
5279 -----------------------------------
5281 procedure Analyze_User_Defined_Unary_Op
5282 (N : Node_Id;
5283 Op_Id : Entity_Id)
5285 begin
5286 -- Only do analysis if the operator Comes_From_Source, since otherwise
5287 -- the operator was generated by the expander, and all such operators
5288 -- always refer to the operators in package Standard.
5290 if Comes_From_Source (N) then
5291 declare
5292 F : constant Entity_Id := First_Formal (Op_Id);
5294 begin
5295 -- Verify that Op_Id is a visible unary function. Note that since
5296 -- we know Op_Id is overloaded, potentially use visible means use
5297 -- visible for sure (RM 9.4(11)).
5299 if Ekind (Op_Id) = E_Function
5300 and then No (Next_Formal (F))
5301 and then (Is_Immediately_Visible (Op_Id)
5302 or else Is_Potentially_Use_Visible (Op_Id))
5303 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5304 then
5305 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5306 end if;
5307 end;
5308 end if;
5309 end Analyze_User_Defined_Unary_Op;
5311 ---------------------------
5312 -- Check_Arithmetic_Pair --
5313 ---------------------------
5315 procedure Check_Arithmetic_Pair
5316 (T1, T2 : Entity_Id;
5317 Op_Id : Entity_Id;
5318 N : Node_Id)
5320 Op_Name : constant Name_Id := Chars (Op_Id);
5322 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5323 -- Check whether the fixed-point type Typ has a user-defined operator
5324 -- (multiplication or division) that should hide the corresponding
5325 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5326 -- such operators more visible and therefore useful.
5328 -- If the name of the operation is an expanded name with prefix
5329 -- Standard, the predefined universal fixed operator is available,
5330 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5332 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5333 -- Get specific type (i.e. non-universal type if there is one)
5335 ------------------
5336 -- Has_Fixed_Op --
5337 ------------------
5339 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
5340 Bas : constant Entity_Id := Base_Type (Typ);
5341 Ent : Entity_Id;
5342 F1 : Entity_Id;
5343 F2 : Entity_Id;
5345 begin
5346 -- If the universal_fixed operation is given explicitly the rule
5347 -- concerning primitive operations of the type do not apply.
5349 if Nkind (N) = N_Function_Call
5350 and then Nkind (Name (N)) = N_Expanded_Name
5351 and then Entity (Prefix (Name (N))) = Standard_Standard
5352 then
5353 return False;
5354 end if;
5356 -- The operation is treated as primitive if it is declared in the
5357 -- same scope as the type, and therefore on the same entity chain.
5359 Ent := Next_Entity (Typ);
5360 while Present (Ent) loop
5361 if Chars (Ent) = Chars (Op) then
5362 F1 := First_Formal (Ent);
5363 F2 := Next_Formal (F1);
5365 -- The operation counts as primitive if either operand or
5366 -- result are of the given base type, and both operands are
5367 -- fixed point types.
5369 if (Base_Type (Etype (F1)) = Bas
5370 and then Is_Fixed_Point_Type (Etype (F2)))
5372 or else
5373 (Base_Type (Etype (F2)) = Bas
5374 and then Is_Fixed_Point_Type (Etype (F1)))
5376 or else
5377 (Base_Type (Etype (Ent)) = Bas
5378 and then Is_Fixed_Point_Type (Etype (F1))
5379 and then Is_Fixed_Point_Type (Etype (F2)))
5380 then
5381 return True;
5382 end if;
5383 end if;
5385 Next_Entity (Ent);
5386 end loop;
5388 return False;
5389 end Has_Fixed_Op;
5391 -------------------
5392 -- Specific_Type --
5393 -------------------
5395 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5396 begin
5397 if T1 = Universal_Integer or else T1 = Universal_Real then
5398 return Base_Type (T2);
5399 else
5400 return Base_Type (T1);
5401 end if;
5402 end Specific_Type;
5404 -- Start of processing for Check_Arithmetic_Pair
5406 begin
5407 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
5408 if Is_Numeric_Type (T1)
5409 and then Is_Numeric_Type (T2)
5410 and then (Covers (T1 => T1, T2 => T2)
5411 or else
5412 Covers (T1 => T2, T2 => T1))
5413 then
5414 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5415 end if;
5417 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
5418 if Is_Fixed_Point_Type (T1)
5419 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
5420 then
5421 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5422 -- and no further processing is required (this is the case of an
5423 -- operator constructed by Exp_Fixd for a fixed point operation)
5424 -- Otherwise add one interpretation with universal fixed result
5425 -- If the operator is given in functional notation, it comes
5426 -- from source and Fixed_As_Integer cannot apply.
5428 if (Nkind (N) not in N_Op
5429 or else not Treat_Fixed_As_Integer (N))
5430 and then
5431 (not Has_Fixed_Op (T1, Op_Id)
5432 or else Nkind (Parent (N)) = N_Type_Conversion)
5433 then
5434 Add_One_Interp (N, Op_Id, Universal_Fixed);
5435 end if;
5437 elsif Is_Fixed_Point_Type (T2)
5438 and then (Nkind (N) not in N_Op
5439 or else not Treat_Fixed_As_Integer (N))
5440 and then T1 = Universal_Real
5441 and then
5442 (not Has_Fixed_Op (T1, Op_Id)
5443 or else Nkind (Parent (N)) = N_Type_Conversion)
5444 then
5445 Add_One_Interp (N, Op_Id, Universal_Fixed);
5447 elsif Is_Numeric_Type (T1)
5448 and then Is_Numeric_Type (T2)
5449 and then (Covers (T1 => T1, T2 => T2)
5450 or else
5451 Covers (T1 => T2, T2 => T1))
5452 then
5453 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5455 elsif Is_Fixed_Point_Type (T1)
5456 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5457 or else T2 = Universal_Integer)
5458 then
5459 Add_One_Interp (N, Op_Id, T1);
5461 elsif T2 = Universal_Real
5462 and then Base_Type (T1) = Base_Type (Standard_Integer)
5463 and then Op_Name = Name_Op_Multiply
5464 then
5465 Add_One_Interp (N, Op_Id, Any_Fixed);
5467 elsif T1 = Universal_Real
5468 and then Base_Type (T2) = Base_Type (Standard_Integer)
5469 then
5470 Add_One_Interp (N, Op_Id, Any_Fixed);
5472 elsif Is_Fixed_Point_Type (T2)
5473 and then (Base_Type (T1) = Base_Type (Standard_Integer)
5474 or else T1 = Universal_Integer)
5475 and then Op_Name = Name_Op_Multiply
5476 then
5477 Add_One_Interp (N, Op_Id, T2);
5479 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5480 Add_One_Interp (N, Op_Id, T1);
5482 elsif T2 = Universal_Real
5483 and then T1 = Universal_Integer
5484 and then Op_Name = Name_Op_Multiply
5485 then
5486 Add_One_Interp (N, Op_Id, T2);
5487 end if;
5489 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5491 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5492 -- set does not require any special processing, since the Etype is
5493 -- already set (case of operation constructed by Exp_Fixed).
5495 if Is_Integer_Type (T1)
5496 and then (Covers (T1 => T1, T2 => T2)
5497 or else
5498 Covers (T1 => T2, T2 => T1))
5499 then
5500 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5501 end if;
5503 elsif Op_Name = Name_Op_Expon then
5504 if Is_Numeric_Type (T1)
5505 and then not Is_Fixed_Point_Type (T1)
5506 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5507 or else T2 = Universal_Integer)
5508 then
5509 Add_One_Interp (N, Op_Id, Base_Type (T1));
5510 end if;
5512 else pragma Assert (Nkind (N) in N_Op_Shift);
5514 -- If not one of the predefined operators, the node may be one
5515 -- of the intrinsic functions. Its kind is always specific, and
5516 -- we can use it directly, rather than the name of the operation.
5518 if Is_Integer_Type (T1)
5519 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5520 or else T2 = Universal_Integer)
5521 then
5522 Add_One_Interp (N, Op_Id, Base_Type (T1));
5523 end if;
5524 end if;
5525 end Check_Arithmetic_Pair;
5527 -------------------------------
5528 -- Check_Misspelled_Selector --
5529 -------------------------------
5531 procedure Check_Misspelled_Selector
5532 (Prefix : Entity_Id;
5533 Sel : Node_Id)
5535 Max_Suggestions : constant := 2;
5536 Nr_Of_Suggestions : Natural := 0;
5538 Suggestion_1 : Entity_Id := Empty;
5539 Suggestion_2 : Entity_Id := Empty;
5541 Comp : Entity_Id;
5543 begin
5544 -- All the components of the prefix of selector Sel are matched against
5545 -- Sel and a count is maintained of possible misspellings. When at
5546 -- the end of the analysis there are one or two (not more) possible
5547 -- misspellings, these misspellings will be suggested as possible
5548 -- correction.
5550 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5552 -- Concurrent types should be handled as well ???
5554 return;
5555 end if;
5557 Comp := First_Entity (Prefix);
5558 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5559 if Is_Visible_Component (Comp) then
5560 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5561 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5563 case Nr_Of_Suggestions is
5564 when 1 => Suggestion_1 := Comp;
5565 when 2 => Suggestion_2 := Comp;
5566 when others => exit;
5567 end case;
5568 end if;
5569 end if;
5571 Comp := Next_Entity (Comp);
5572 end loop;
5574 -- Report at most two suggestions
5576 if Nr_Of_Suggestions = 1 then
5577 Error_Msg_NE -- CODEFIX
5578 ("\possible misspelling of&", Sel, Suggestion_1);
5580 elsif Nr_Of_Suggestions = 2 then
5581 Error_Msg_Node_2 := Suggestion_2;
5582 Error_Msg_NE -- CODEFIX
5583 ("\possible misspelling of& or&", Sel, Suggestion_1);
5584 end if;
5585 end Check_Misspelled_Selector;
5587 ----------------------
5588 -- Defined_In_Scope --
5589 ----------------------
5591 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5593 S1 : constant Entity_Id := Scope (Base_Type (T));
5594 begin
5595 return S1 = S
5596 or else (S1 = System_Aux_Id and then S = Scope (S1));
5597 end Defined_In_Scope;
5599 -------------------
5600 -- Diagnose_Call --
5601 -------------------
5603 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
5604 Actual : Node_Id;
5605 X : Interp_Index;
5606 It : Interp;
5607 Err_Mode : Boolean;
5608 New_Nam : Node_Id;
5609 Void_Interp_Seen : Boolean := False;
5611 Success : Boolean;
5612 pragma Warnings (Off, Boolean);
5614 begin
5615 if Ada_Version >= Ada_2005 then
5616 Actual := First_Actual (N);
5617 while Present (Actual) loop
5619 -- Ada 2005 (AI-50217): Post an error in case of premature
5620 -- usage of an entity from the limited view.
5622 if not Analyzed (Etype (Actual))
5623 and then From_Limited_With (Etype (Actual))
5624 then
5625 Error_Msg_Qual_Level := 1;
5626 Error_Msg_NE
5627 ("missing with_clause for scope of imported type&",
5628 Actual, Etype (Actual));
5629 Error_Msg_Qual_Level := 0;
5630 end if;
5632 Next_Actual (Actual);
5633 end loop;
5634 end if;
5636 -- Analyze each candidate call again, with full error reporting
5637 -- for each.
5639 Error_Msg_N
5640 ("no candidate interpretations match the actuals:!", Nam);
5641 Err_Mode := All_Errors_Mode;
5642 All_Errors_Mode := True;
5644 -- If this is a call to an operation of a concurrent type,
5645 -- the failed interpretations have been removed from the
5646 -- name. Recover them to provide full diagnostics.
5648 if Nkind (Parent (Nam)) = N_Selected_Component then
5649 Set_Entity (Nam, Empty);
5650 New_Nam := New_Copy_Tree (Parent (Nam));
5651 Set_Is_Overloaded (New_Nam, False);
5652 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5653 Set_Parent (New_Nam, Parent (Parent (Nam)));
5654 Analyze_Selected_Component (New_Nam);
5655 Get_First_Interp (Selector_Name (New_Nam), X, It);
5656 else
5657 Get_First_Interp (Nam, X, It);
5658 end if;
5660 while Present (It.Nam) loop
5661 if Etype (It.Nam) = Standard_Void_Type then
5662 Void_Interp_Seen := True;
5663 end if;
5665 Analyze_One_Call (N, It.Nam, True, Success);
5666 Get_Next_Interp (X, It);
5667 end loop;
5669 if Nkind (N) = N_Function_Call then
5670 Get_First_Interp (Nam, X, It);
5671 while Present (It.Nam) loop
5672 if Ekind_In (It.Nam, E_Function, E_Operator) then
5673 return;
5674 else
5675 Get_Next_Interp (X, It);
5676 end if;
5677 end loop;
5679 -- If all interpretations are procedures, this deserves a
5680 -- more precise message. Ditto if this appears as the prefix
5681 -- of a selected component, which may be a lexical error.
5683 Error_Msg_N
5684 ("\context requires function call, found procedure name", Nam);
5686 if Nkind (Parent (N)) = N_Selected_Component
5687 and then N = Prefix (Parent (N))
5688 then
5689 Error_Msg_N -- CODEFIX
5690 ("\period should probably be semicolon", Parent (N));
5691 end if;
5693 elsif Nkind (N) = N_Procedure_Call_Statement
5694 and then not Void_Interp_Seen
5695 then
5696 Error_Msg_N (
5697 "\function name found in procedure call", Nam);
5698 end if;
5700 All_Errors_Mode := Err_Mode;
5701 end Diagnose_Call;
5703 ---------------------------
5704 -- Find_Arithmetic_Types --
5705 ---------------------------
5707 procedure Find_Arithmetic_Types
5708 (L, R : Node_Id;
5709 Op_Id : Entity_Id;
5710 N : Node_Id)
5712 Index1 : Interp_Index;
5713 Index2 : Interp_Index;
5714 It1 : Interp;
5715 It2 : Interp;
5717 procedure Check_Right_Argument (T : Entity_Id);
5718 -- Check right operand of operator
5720 --------------------------
5721 -- Check_Right_Argument --
5722 --------------------------
5724 procedure Check_Right_Argument (T : Entity_Id) is
5725 begin
5726 if not Is_Overloaded (R) then
5727 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5728 else
5729 Get_First_Interp (R, Index2, It2);
5730 while Present (It2.Typ) loop
5731 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5732 Get_Next_Interp (Index2, It2);
5733 end loop;
5734 end if;
5735 end Check_Right_Argument;
5737 -- Start of processing for Find_Arithmetic_Types
5739 begin
5740 if not Is_Overloaded (L) then
5741 Check_Right_Argument (Etype (L));
5743 else
5744 Get_First_Interp (L, Index1, It1);
5745 while Present (It1.Typ) loop
5746 Check_Right_Argument (It1.Typ);
5747 Get_Next_Interp (Index1, It1);
5748 end loop;
5749 end if;
5751 end Find_Arithmetic_Types;
5753 ------------------------
5754 -- Find_Boolean_Types --
5755 ------------------------
5757 procedure Find_Boolean_Types
5758 (L, R : Node_Id;
5759 Op_Id : Entity_Id;
5760 N : Node_Id)
5762 Index : Interp_Index;
5763 It : Interp;
5765 procedure Check_Numeric_Argument (T : Entity_Id);
5766 -- Special case for logical operations one of whose operands is an
5767 -- integer literal. If both are literal the result is any modular type.
5769 ----------------------------
5770 -- Check_Numeric_Argument --
5771 ----------------------------
5773 procedure Check_Numeric_Argument (T : Entity_Id) is
5774 begin
5775 if T = Universal_Integer then
5776 Add_One_Interp (N, Op_Id, Any_Modular);
5778 elsif Is_Modular_Integer_Type (T) then
5779 Add_One_Interp (N, Op_Id, T);
5780 end if;
5781 end Check_Numeric_Argument;
5783 -- Start of processing for Find_Boolean_Types
5785 begin
5786 if not Is_Overloaded (L) then
5787 if Etype (L) = Universal_Integer
5788 or else Etype (L) = Any_Modular
5789 then
5790 if not Is_Overloaded (R) then
5791 Check_Numeric_Argument (Etype (R));
5793 else
5794 Get_First_Interp (R, Index, It);
5795 while Present (It.Typ) loop
5796 Check_Numeric_Argument (It.Typ);
5797 Get_Next_Interp (Index, It);
5798 end loop;
5799 end if;
5801 -- If operands are aggregates, we must assume that they may be
5802 -- boolean arrays, and leave disambiguation for the second pass.
5803 -- If only one is an aggregate, verify that the other one has an
5804 -- interpretation as a boolean array
5806 elsif Nkind (L) = N_Aggregate then
5807 if Nkind (R) = N_Aggregate then
5808 Add_One_Interp (N, Op_Id, Etype (L));
5810 elsif not Is_Overloaded (R) then
5811 if Valid_Boolean_Arg (Etype (R)) then
5812 Add_One_Interp (N, Op_Id, Etype (R));
5813 end if;
5815 else
5816 Get_First_Interp (R, Index, It);
5817 while Present (It.Typ) loop
5818 if Valid_Boolean_Arg (It.Typ) then
5819 Add_One_Interp (N, Op_Id, It.Typ);
5820 end if;
5822 Get_Next_Interp (Index, It);
5823 end loop;
5824 end if;
5826 elsif Valid_Boolean_Arg (Etype (L))
5827 and then Has_Compatible_Type (R, Etype (L))
5828 then
5829 Add_One_Interp (N, Op_Id, Etype (L));
5830 end if;
5832 else
5833 Get_First_Interp (L, Index, It);
5834 while Present (It.Typ) loop
5835 if Valid_Boolean_Arg (It.Typ)
5836 and then Has_Compatible_Type (R, It.Typ)
5837 then
5838 Add_One_Interp (N, Op_Id, It.Typ);
5839 end if;
5841 Get_Next_Interp (Index, It);
5842 end loop;
5843 end if;
5844 end Find_Boolean_Types;
5846 ---------------------------
5847 -- Find_Comparison_Types --
5848 ---------------------------
5850 procedure Find_Comparison_Types
5851 (L, R : Node_Id;
5852 Op_Id : Entity_Id;
5853 N : Node_Id)
5855 Index : Interp_Index;
5856 It : Interp;
5857 Found : Boolean := False;
5858 I_F : Interp_Index;
5859 T_F : Entity_Id;
5860 Scop : Entity_Id := Empty;
5862 procedure Try_One_Interp (T1 : Entity_Id);
5863 -- Routine to try one proposed interpretation. Note that the context
5864 -- of the operator plays no role in resolving the arguments, so that
5865 -- if there is more than one interpretation of the operands that is
5866 -- compatible with comparison, the operation is ambiguous.
5868 --------------------
5869 -- Try_One_Interp --
5870 --------------------
5872 procedure Try_One_Interp (T1 : Entity_Id) is
5873 begin
5875 -- If the operator is an expanded name, then the type of the operand
5876 -- must be defined in the corresponding scope. If the type is
5877 -- universal, the context will impose the correct type.
5879 if Present (Scop)
5880 and then not Defined_In_Scope (T1, Scop)
5881 and then T1 /= Universal_Integer
5882 and then T1 /= Universal_Real
5883 and then T1 /= Any_String
5884 and then T1 /= Any_Composite
5885 then
5886 return;
5887 end if;
5889 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
5890 if Found and then Base_Type (T1) /= Base_Type (T_F) then
5891 It := Disambiguate (L, I_F, Index, Any_Type);
5893 if It = No_Interp then
5894 Ambiguous_Operands (N);
5895 Set_Etype (L, Any_Type);
5896 return;
5898 else
5899 T_F := It.Typ;
5900 end if;
5902 else
5903 Found := True;
5904 T_F := T1;
5905 I_F := Index;
5906 end if;
5908 Set_Etype (L, T_F);
5909 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5911 end if;
5912 end Try_One_Interp;
5914 -- Start of processing for Find_Comparison_Types
5916 begin
5917 -- If left operand is aggregate, the right operand has to
5918 -- provide a usable type for it.
5920 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
5921 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5922 return;
5923 end if;
5925 if Nkind (N) = N_Function_Call
5926 and then Nkind (Name (N)) = N_Expanded_Name
5927 then
5928 Scop := Entity (Prefix (Name (N)));
5930 -- The prefix may be a package renaming, and the subsequent test
5931 -- requires the original package.
5933 if Ekind (Scop) = E_Package
5934 and then Present (Renamed_Entity (Scop))
5935 then
5936 Scop := Renamed_Entity (Scop);
5937 Set_Entity (Prefix (Name (N)), Scop);
5938 end if;
5939 end if;
5941 if not Is_Overloaded (L) then
5942 Try_One_Interp (Etype (L));
5944 else
5945 Get_First_Interp (L, Index, It);
5946 while Present (It.Typ) loop
5947 Try_One_Interp (It.Typ);
5948 Get_Next_Interp (Index, It);
5949 end loop;
5950 end if;
5951 end Find_Comparison_Types;
5953 ----------------------------------------
5954 -- Find_Non_Universal_Interpretations --
5955 ----------------------------------------
5957 procedure Find_Non_Universal_Interpretations
5958 (N : Node_Id;
5959 R : Node_Id;
5960 Op_Id : Entity_Id;
5961 T1 : Entity_Id)
5963 Index : Interp_Index;
5964 It : Interp;
5966 begin
5967 if T1 = Universal_Integer or else T1 = Universal_Real
5969 -- If the left operand of an equality operator is null, the visibility
5970 -- of the operator must be determined from the interpretation of the
5971 -- right operand. This processing must be done for Any_Access, which
5972 -- is the internal representation of the type of the literal null.
5974 or else T1 = Any_Access
5975 then
5976 if not Is_Overloaded (R) then
5977 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5978 else
5979 Get_First_Interp (R, Index, It);
5980 while Present (It.Typ) loop
5981 if Covers (It.Typ, T1) then
5982 Add_One_Interp
5983 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5984 end if;
5986 Get_Next_Interp (Index, It);
5987 end loop;
5988 end if;
5989 else
5990 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5991 end if;
5992 end Find_Non_Universal_Interpretations;
5994 ------------------------------
5995 -- Find_Concatenation_Types --
5996 ------------------------------
5998 procedure Find_Concatenation_Types
5999 (L, R : Node_Id;
6000 Op_Id : Entity_Id;
6001 N : Node_Id)
6003 Op_Type : constant Entity_Id := Etype (Op_Id);
6005 begin
6006 if Is_Array_Type (Op_Type)
6007 and then not Is_Limited_Type (Op_Type)
6009 and then (Has_Compatible_Type (L, Op_Type)
6010 or else
6011 Has_Compatible_Type (L, Component_Type (Op_Type)))
6013 and then (Has_Compatible_Type (R, Op_Type)
6014 or else
6015 Has_Compatible_Type (R, Component_Type (Op_Type)))
6016 then
6017 Add_One_Interp (N, Op_Id, Op_Type);
6018 end if;
6019 end Find_Concatenation_Types;
6021 -------------------------
6022 -- Find_Equality_Types --
6023 -------------------------
6025 procedure Find_Equality_Types
6026 (L, R : Node_Id;
6027 Op_Id : Entity_Id;
6028 N : Node_Id)
6030 Index : Interp_Index;
6031 It : Interp;
6032 Found : Boolean := False;
6033 I_F : Interp_Index;
6034 T_F : Entity_Id;
6035 Scop : Entity_Id := Empty;
6037 procedure Try_One_Interp (T1 : Entity_Id);
6038 -- The context of the equality operator plays no role in resolving the
6039 -- arguments, so that if there is more than one interpretation of the
6040 -- operands that is compatible with equality, the construct is ambiguous
6041 -- and an error can be emitted now, after trying to disambiguate, i.e.
6042 -- applying preference rules.
6044 --------------------
6045 -- Try_One_Interp --
6046 --------------------
6048 procedure Try_One_Interp (T1 : Entity_Id) is
6049 Bas : constant Entity_Id := Base_Type (T1);
6051 begin
6052 -- If the operator is an expanded name, then the type of the operand
6053 -- must be defined in the corresponding scope. If the type is
6054 -- universal, the context will impose the correct type. An anonymous
6055 -- type for a 'Access reference is also universal in this sense, as
6056 -- the actual type is obtained from context.
6058 -- In Ada 2005, the equality operator for anonymous access types
6059 -- is declared in Standard, and preference rules apply to it.
6061 if Present (Scop) then
6062 if Defined_In_Scope (T1, Scop)
6063 or else T1 = Universal_Integer
6064 or else T1 = Universal_Real
6065 or else T1 = Any_Access
6066 or else T1 = Any_String
6067 or else T1 = Any_Composite
6068 or else (Ekind (T1) = E_Access_Subprogram_Type
6069 and then not Comes_From_Source (T1))
6070 then
6071 null;
6073 elsif Ekind (T1) = E_Anonymous_Access_Type
6074 and then Scop = Standard_Standard
6075 then
6076 null;
6078 else
6079 -- The scope does not contain an operator for the type
6081 return;
6082 end if;
6084 -- If we have infix notation, the operator must be usable. Within
6085 -- an instance, if the type is already established we know it is
6086 -- correct. If an operand is universal it is compatible with any
6087 -- numeric type.
6089 elsif In_Open_Scopes (Scope (Bas))
6090 or else Is_Potentially_Use_Visible (Bas)
6091 or else In_Use (Bas)
6092 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
6094 -- In an instance, the type may have been immediately visible.
6095 -- Either the types are compatible, or one operand is universal
6096 -- (numeric or null).
6098 or else (In_Instance
6099 and then
6100 (First_Subtype (T1) = First_Subtype (Etype (R))
6101 or else Nkind (R) = N_Null
6102 or else
6103 (Is_Numeric_Type (T1)
6104 and then Is_Universal_Numeric_Type (Etype (R)))))
6106 -- In Ada 2005, the equality on anonymous access types is declared
6107 -- in Standard, and is always visible.
6109 or else Ekind (T1) = E_Anonymous_Access_Type
6110 then
6111 null;
6113 else
6114 -- Save candidate type for subsequent error message, if any
6116 if not Is_Limited_Type (T1) then
6117 Candidate_Type := T1;
6118 end if;
6120 return;
6121 end if;
6123 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
6124 -- Do not allow anonymous access types in equality operators.
6126 if Ada_Version < Ada_2005
6127 and then Ekind (T1) = E_Anonymous_Access_Type
6128 then
6129 return;
6130 end if;
6132 -- If the right operand has a type compatible with T1, check for an
6133 -- acceptable interpretation, unless T1 is limited (no predefined
6134 -- equality available), or this is use of a "/=" for a tagged type.
6135 -- In the latter case, possible interpretations of equality need
6136 -- to be considered, we don't want the default inequality declared
6137 -- in Standard to be chosen, and the "/=" will be rewritten as a
6138 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
6139 -- that rewriting happens during analysis rather than being
6140 -- delayed until expansion (this is needed for ASIS, which only sees
6141 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
6142 -- is Name_Op_Eq then we still proceed with the interpretation,
6143 -- because that indicates the potential rewriting case where the
6144 -- interpretation to consider is actually "=" and the node may be
6145 -- about to be rewritten by Analyze_Equality_Op.
6147 if T1 /= Standard_Void_Type
6148 and then Has_Compatible_Type (R, T1)
6150 and then
6151 ((not Is_Limited_Type (T1)
6152 and then not Is_Limited_Composite (T1))
6154 or else
6155 (Is_Array_Type (T1)
6156 and then not Is_Limited_Type (Component_Type (T1))
6157 and then Available_Full_View_Of_Component (T1)))
6159 and then
6160 (Nkind (N) /= N_Op_Ne
6161 or else not Is_Tagged_Type (T1)
6162 or else Chars (Op_Id) = Name_Op_Eq)
6163 then
6164 if Found
6165 and then Base_Type (T1) /= Base_Type (T_F)
6166 then
6167 It := Disambiguate (L, I_F, Index, Any_Type);
6169 if It = No_Interp then
6170 Ambiguous_Operands (N);
6171 Set_Etype (L, Any_Type);
6172 return;
6174 else
6175 T_F := It.Typ;
6176 end if;
6178 else
6179 Found := True;
6180 T_F := T1;
6181 I_F := Index;
6182 end if;
6184 if not Analyzed (L) then
6185 Set_Etype (L, T_F);
6186 end if;
6188 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6190 -- Case of operator was not visible, Etype still set to Any_Type
6192 if Etype (N) = Any_Type then
6193 Found := False;
6194 end if;
6196 elsif Scop = Standard_Standard
6197 and then Ekind (T1) = E_Anonymous_Access_Type
6198 then
6199 Found := True;
6200 end if;
6201 end Try_One_Interp;
6203 -- Start of processing for Find_Equality_Types
6205 begin
6206 -- If left operand is aggregate, the right operand has to
6207 -- provide a usable type for it.
6209 if Nkind (L) = N_Aggregate
6210 and then Nkind (R) /= N_Aggregate
6211 then
6212 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
6213 return;
6214 end if;
6216 if Nkind (N) = N_Function_Call
6217 and then Nkind (Name (N)) = N_Expanded_Name
6218 then
6219 Scop := Entity (Prefix (Name (N)));
6221 -- The prefix may be a package renaming, and the subsequent test
6222 -- requires the original package.
6224 if Ekind (Scop) = E_Package
6225 and then Present (Renamed_Entity (Scop))
6226 then
6227 Scop := Renamed_Entity (Scop);
6228 Set_Entity (Prefix (Name (N)), Scop);
6229 end if;
6230 end if;
6232 if not Is_Overloaded (L) then
6233 Try_One_Interp (Etype (L));
6235 else
6236 Get_First_Interp (L, Index, It);
6237 while Present (It.Typ) loop
6238 Try_One_Interp (It.Typ);
6239 Get_Next_Interp (Index, It);
6240 end loop;
6241 end if;
6242 end Find_Equality_Types;
6244 -------------------------
6245 -- Find_Negation_Types --
6246 -------------------------
6248 procedure Find_Negation_Types
6249 (R : Node_Id;
6250 Op_Id : Entity_Id;
6251 N : Node_Id)
6253 Index : Interp_Index;
6254 It : Interp;
6256 begin
6257 if not Is_Overloaded (R) then
6258 if Etype (R) = Universal_Integer then
6259 Add_One_Interp (N, Op_Id, Any_Modular);
6260 elsif Valid_Boolean_Arg (Etype (R)) then
6261 Add_One_Interp (N, Op_Id, Etype (R));
6262 end if;
6264 else
6265 Get_First_Interp (R, Index, It);
6266 while Present (It.Typ) loop
6267 if Valid_Boolean_Arg (It.Typ) then
6268 Add_One_Interp (N, Op_Id, It.Typ);
6269 end if;
6271 Get_Next_Interp (Index, It);
6272 end loop;
6273 end if;
6274 end Find_Negation_Types;
6276 ------------------------------
6277 -- Find_Primitive_Operation --
6278 ------------------------------
6280 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6281 Obj : constant Node_Id := Prefix (N);
6282 Op : constant Node_Id := Selector_Name (N);
6284 Prim : Elmt_Id;
6285 Prims : Elist_Id;
6286 Typ : Entity_Id;
6288 begin
6289 Set_Etype (Op, Any_Type);
6291 if Is_Access_Type (Etype (Obj)) then
6292 Typ := Designated_Type (Etype (Obj));
6293 else
6294 Typ := Etype (Obj);
6295 end if;
6297 if Is_Class_Wide_Type (Typ) then
6298 Typ := Root_Type (Typ);
6299 end if;
6301 Prims := Primitive_Operations (Typ);
6303 Prim := First_Elmt (Prims);
6304 while Present (Prim) loop
6305 if Chars (Node (Prim)) = Chars (Op) then
6306 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6307 Set_Etype (N, Etype (Node (Prim)));
6308 end if;
6310 Next_Elmt (Prim);
6311 end loop;
6313 -- Now look for class-wide operations of the type or any of its
6314 -- ancestors by iterating over the homonyms of the selector.
6316 declare
6317 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6318 Hom : Entity_Id;
6320 begin
6321 Hom := Current_Entity (Op);
6322 while Present (Hom) loop
6323 if (Ekind (Hom) = E_Procedure
6324 or else
6325 Ekind (Hom) = E_Function)
6326 and then Scope (Hom) = Scope (Typ)
6327 and then Present (First_Formal (Hom))
6328 and then
6329 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6330 or else
6331 (Is_Access_Type (Etype (First_Formal (Hom)))
6332 and then
6333 Ekind (Etype (First_Formal (Hom))) =
6334 E_Anonymous_Access_Type
6335 and then
6336 Base_Type
6337 (Designated_Type (Etype (First_Formal (Hom)))) =
6338 Cls_Type))
6339 then
6340 Add_One_Interp (Op, Hom, Etype (Hom));
6341 Set_Etype (N, Etype (Hom));
6342 end if;
6344 Hom := Homonym (Hom);
6345 end loop;
6346 end;
6348 return Etype (Op) /= Any_Type;
6349 end Find_Primitive_Operation;
6351 ----------------------
6352 -- Find_Unary_Types --
6353 ----------------------
6355 procedure Find_Unary_Types
6356 (R : Node_Id;
6357 Op_Id : Entity_Id;
6358 N : Node_Id)
6360 Index : Interp_Index;
6361 It : Interp;
6363 begin
6364 if not Is_Overloaded (R) then
6365 if Is_Numeric_Type (Etype (R)) then
6367 -- In an instance a generic actual may be a numeric type even if
6368 -- the formal in the generic unit was not. In that case, the
6369 -- predefined operator was not a possible interpretation in the
6370 -- generic, and cannot be one in the instance, unless the operator
6371 -- is an actual of an instance.
6373 if In_Instance
6374 and then
6375 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6376 then
6377 null;
6378 else
6379 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6380 end if;
6381 end if;
6383 else
6384 Get_First_Interp (R, Index, It);
6385 while Present (It.Typ) loop
6386 if Is_Numeric_Type (It.Typ) then
6387 if In_Instance
6388 and then
6389 not Is_Numeric_Type
6390 (Corresponding_Generic_Type (Etype (It.Typ)))
6391 then
6392 null;
6394 else
6395 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6396 end if;
6397 end if;
6399 Get_Next_Interp (Index, It);
6400 end loop;
6401 end if;
6402 end Find_Unary_Types;
6404 ------------------
6405 -- Junk_Operand --
6406 ------------------
6408 function Junk_Operand (N : Node_Id) return Boolean is
6409 Enode : Node_Id;
6411 begin
6412 if Error_Posted (N) then
6413 return False;
6414 end if;
6416 -- Get entity to be tested
6418 if Is_Entity_Name (N)
6419 and then Present (Entity (N))
6420 then
6421 Enode := N;
6423 -- An odd case, a procedure name gets converted to a very peculiar
6424 -- function call, and here is where we detect this happening.
6426 elsif Nkind (N) = N_Function_Call
6427 and then Is_Entity_Name (Name (N))
6428 and then Present (Entity (Name (N)))
6429 then
6430 Enode := Name (N);
6432 -- Another odd case, there are at least some cases of selected
6433 -- components where the selected component is not marked as having
6434 -- an entity, even though the selector does have an entity
6436 elsif Nkind (N) = N_Selected_Component
6437 and then Present (Entity (Selector_Name (N)))
6438 then
6439 Enode := Selector_Name (N);
6441 else
6442 return False;
6443 end if;
6445 -- Now test the entity we got to see if it is a bad case
6447 case Ekind (Entity (Enode)) is
6449 when E_Package =>
6450 Error_Msg_N
6451 ("package name cannot be used as operand", Enode);
6453 when Generic_Unit_Kind =>
6454 Error_Msg_N
6455 ("generic unit name cannot be used as operand", Enode);
6457 when Type_Kind =>
6458 Error_Msg_N
6459 ("subtype name cannot be used as operand", Enode);
6461 when Entry_Kind =>
6462 Error_Msg_N
6463 ("entry name cannot be used as operand", Enode);
6465 when E_Procedure =>
6466 Error_Msg_N
6467 ("procedure name cannot be used as operand", Enode);
6469 when E_Exception =>
6470 Error_Msg_N
6471 ("exception name cannot be used as operand", Enode);
6473 when E_Block | E_Label | E_Loop =>
6474 Error_Msg_N
6475 ("label name cannot be used as operand", Enode);
6477 when others =>
6478 return False;
6480 end case;
6482 return True;
6483 end Junk_Operand;
6485 --------------------
6486 -- Operator_Check --
6487 --------------------
6489 procedure Operator_Check (N : Node_Id) is
6490 begin
6491 Remove_Abstract_Operations (N);
6493 -- Test for case of no interpretation found for operator
6495 if Etype (N) = Any_Type then
6496 declare
6497 L : Node_Id;
6498 R : Node_Id;
6499 Op_Id : Entity_Id := Empty;
6501 begin
6502 R := Right_Opnd (N);
6504 if Nkind (N) in N_Binary_Op then
6505 L := Left_Opnd (N);
6506 else
6507 L := Empty;
6508 end if;
6510 -- If either operand has no type, then don't complain further,
6511 -- since this simply means that we have a propagated error.
6513 if R = Error
6514 or else Etype (R) = Any_Type
6515 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6516 then
6517 -- For the rather unusual case where one of the operands is
6518 -- a Raise_Expression, whose initial type is Any_Type, use
6519 -- the type of the other operand.
6521 if Nkind (L) = N_Raise_Expression then
6522 Set_Etype (L, Etype (R));
6523 Set_Etype (N, Etype (R));
6525 elsif Nkind (R) = N_Raise_Expression then
6526 Set_Etype (R, Etype (L));
6527 Set_Etype (N, Etype (L));
6528 end if;
6530 return;
6532 -- We explicitly check for the case of concatenation of component
6533 -- with component to avoid reporting spurious matching array types
6534 -- that might happen to be lurking in distant packages (such as
6535 -- run-time packages). This also prevents inconsistencies in the
6536 -- messages for certain ACVC B tests, which can vary depending on
6537 -- types declared in run-time interfaces. Another improvement when
6538 -- aggregates are present is to look for a well-typed operand.
6540 elsif Present (Candidate_Type)
6541 and then (Nkind (N) /= N_Op_Concat
6542 or else Is_Array_Type (Etype (L))
6543 or else Is_Array_Type (Etype (R)))
6544 then
6545 if Nkind (N) = N_Op_Concat then
6546 if Etype (L) /= Any_Composite
6547 and then Is_Array_Type (Etype (L))
6548 then
6549 Candidate_Type := Etype (L);
6551 elsif Etype (R) /= Any_Composite
6552 and then Is_Array_Type (Etype (R))
6553 then
6554 Candidate_Type := Etype (R);
6555 end if;
6556 end if;
6558 Error_Msg_NE -- CODEFIX
6559 ("operator for} is not directly visible!",
6560 N, First_Subtype (Candidate_Type));
6562 declare
6563 U : constant Node_Id :=
6564 Cunit (Get_Source_Unit (Candidate_Type));
6565 begin
6566 if Unit_Is_Visible (U) then
6567 Error_Msg_N -- CODEFIX
6568 ("use clause would make operation legal!", N);
6569 else
6570 Error_Msg_NE -- CODEFIX
6571 ("add with_clause and use_clause for&!",
6572 N, Defining_Entity (Unit (U)));
6573 end if;
6574 end;
6575 return;
6577 -- If either operand is a junk operand (e.g. package name), then
6578 -- post appropriate error messages, but do not complain further.
6580 -- Note that the use of OR in this test instead of OR ELSE is
6581 -- quite deliberate, we may as well check both operands in the
6582 -- binary operator case.
6584 elsif Junk_Operand (R)
6585 or -- really mean OR here and not OR ELSE, see above
6586 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
6587 then
6588 return;
6590 -- If we have a logical operator, one of whose operands is
6591 -- Boolean, then we know that the other operand cannot resolve to
6592 -- Boolean (since we got no interpretations), but in that case we
6593 -- pretty much know that the other operand should be Boolean, so
6594 -- resolve it that way (generating an error)
6596 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
6597 if Etype (L) = Standard_Boolean then
6598 Resolve (R, Standard_Boolean);
6599 return;
6600 elsif Etype (R) = Standard_Boolean then
6601 Resolve (L, Standard_Boolean);
6602 return;
6603 end if;
6605 -- For an arithmetic operator or comparison operator, if one
6606 -- of the operands is numeric, then we know the other operand
6607 -- is not the same numeric type. If it is a non-numeric type,
6608 -- then probably it is intended to match the other operand.
6610 elsif Nkind_In (N, N_Op_Add,
6611 N_Op_Divide,
6612 N_Op_Ge,
6613 N_Op_Gt,
6614 N_Op_Le)
6615 or else
6616 Nkind_In (N, N_Op_Lt,
6617 N_Op_Mod,
6618 N_Op_Multiply,
6619 N_Op_Rem,
6620 N_Op_Subtract)
6621 then
6622 -- If Allow_Integer_Address is active, check whether the
6623 -- operation becomes legal after converting an operand.
6625 if Is_Numeric_Type (Etype (L))
6626 and then not Is_Numeric_Type (Etype (R))
6627 then
6628 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6629 Rewrite (R,
6630 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6632 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6633 Analyze_Comparison_Op (N);
6634 else
6635 Analyze_Arithmetic_Op (N);
6636 end if;
6637 else
6638 Resolve (R, Etype (L));
6639 end if;
6641 return;
6643 elsif Is_Numeric_Type (Etype (R))
6644 and then not Is_Numeric_Type (Etype (L))
6645 then
6646 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
6647 Rewrite (L,
6648 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
6650 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6651 Analyze_Comparison_Op (N);
6652 else
6653 Analyze_Arithmetic_Op (N);
6654 end if;
6656 return;
6658 else
6659 Resolve (L, Etype (R));
6660 end if;
6662 return;
6664 elsif Allow_Integer_Address
6665 and then Is_Descendent_Of_Address (Etype (L))
6666 and then Is_Descendent_Of_Address (Etype (R))
6667 and then not Error_Posted (N)
6668 then
6669 declare
6670 Addr_Type : constant Entity_Id := Etype (L);
6672 begin
6673 Rewrite (L,
6674 Unchecked_Convert_To (
6675 Standard_Integer, Relocate_Node (L)));
6676 Rewrite (R,
6677 Unchecked_Convert_To (
6678 Standard_Integer, Relocate_Node (R)));
6680 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6681 Analyze_Comparison_Op (N);
6682 else
6683 Analyze_Arithmetic_Op (N);
6684 end if;
6686 -- If this is an operand in an enclosing arithmetic
6687 -- operation, Convert the result as an address so that
6688 -- arithmetic folding of address can continue.
6690 if Nkind (Parent (N)) in N_Op then
6691 Rewrite (N,
6692 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
6693 end if;
6695 return;
6696 end;
6697 end if;
6699 -- Comparisons on A'Access are common enough to deserve a
6700 -- special message.
6702 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
6703 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6704 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6705 then
6706 Error_Msg_N
6707 ("two access attributes cannot be compared directly", N);
6708 Error_Msg_N
6709 ("\use qualified expression for one of the operands",
6711 return;
6713 -- Another one for C programmers
6715 elsif Nkind (N) = N_Op_Concat
6716 and then Valid_Boolean_Arg (Etype (L))
6717 and then Valid_Boolean_Arg (Etype (R))
6718 then
6719 Error_Msg_N ("invalid operands for concatenation", N);
6720 Error_Msg_N -- CODEFIX
6721 ("\maybe AND was meant", N);
6722 return;
6724 -- A special case for comparison of access parameter with null
6726 elsif Nkind (N) = N_Op_Eq
6727 and then Is_Entity_Name (L)
6728 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6729 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6730 N_Access_Definition
6731 and then Nkind (R) = N_Null
6732 then
6733 Error_Msg_N ("access parameter is not allowed to be null", L);
6734 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6735 return;
6737 -- Another special case for exponentiation, where the right
6738 -- operand must be Natural, independently of the base.
6740 elsif Nkind (N) = N_Op_Expon
6741 and then Is_Numeric_Type (Etype (L))
6742 and then not Is_Overloaded (R)
6743 and then
6744 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6745 and then Base_Type (Etype (R)) /= Universal_Integer
6746 then
6747 if Ada_Version >= Ada_2012
6748 and then Has_Dimension_System (Etype (L))
6749 then
6750 Error_Msg_NE
6751 ("exponent for dimensioned type must be a rational" &
6752 ", found}", R, Etype (R));
6753 else
6754 Error_Msg_NE
6755 ("exponent must be of type Natural, found}", R, Etype (R));
6756 end if;
6758 return;
6760 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
6761 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6762 Rewrite (R,
6763 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6764 Analyze_Equality_Op (N);
6765 return;
6766 end if;
6767 end if;
6769 -- If we fall through then just give general message. Note that in
6770 -- the following messages, if the operand is overloaded we choose
6771 -- an arbitrary type to complain about, but that is probably more
6772 -- useful than not giving a type at all.
6774 if Nkind (N) in N_Unary_Op then
6775 Error_Msg_Node_2 := Etype (R);
6776 Error_Msg_N ("operator& not defined for}", N);
6777 return;
6779 else
6780 if Nkind (N) in N_Binary_Op then
6781 if not Is_Overloaded (L)
6782 and then not Is_Overloaded (R)
6783 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6784 then
6785 Error_Msg_Node_2 := First_Subtype (Etype (R));
6786 Error_Msg_N ("there is no applicable operator& for}", N);
6788 else
6789 -- Another attempt to find a fix: one of the candidate
6790 -- interpretations may not be use-visible. This has
6791 -- already been checked for predefined operators, so
6792 -- we examine only user-defined functions.
6794 Op_Id := Get_Name_Entity_Id (Chars (N));
6796 while Present (Op_Id) loop
6797 if Ekind (Op_Id) /= E_Operator
6798 and then Is_Overloadable (Op_Id)
6799 then
6800 if not Is_Immediately_Visible (Op_Id)
6801 and then not In_Use (Scope (Op_Id))
6802 and then not Is_Abstract_Subprogram (Op_Id)
6803 and then not Is_Hidden (Op_Id)
6804 and then Ekind (Scope (Op_Id)) = E_Package
6805 and then
6806 Has_Compatible_Type
6807 (L, Etype (First_Formal (Op_Id)))
6808 and then Present
6809 (Next_Formal (First_Formal (Op_Id)))
6810 and then
6811 Has_Compatible_Type
6813 Etype (Next_Formal (First_Formal (Op_Id))))
6814 then
6815 Error_Msg_N
6816 ("No legal interpretation for operator&", N);
6817 Error_Msg_NE
6818 ("\use clause on& would make operation legal",
6819 N, Scope (Op_Id));
6820 exit;
6821 end if;
6822 end if;
6824 Op_Id := Homonym (Op_Id);
6825 end loop;
6827 if No (Op_Id) then
6828 Error_Msg_N ("invalid operand types for operator&", N);
6830 if Nkind (N) /= N_Op_Concat then
6831 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6832 Error_Msg_NE ("\right operand has}!", N, Etype (R));
6834 -- For concatenation operators it is more difficult to
6835 -- determine which is the wrong operand. It is worth
6836 -- flagging explicitly an access type, for those who
6837 -- might think that a dereference happens here.
6839 elsif Is_Access_Type (Etype (L)) then
6840 Error_Msg_N ("\left operand is access type", N);
6842 elsif Is_Access_Type (Etype (R)) then
6843 Error_Msg_N ("\right operand is access type", N);
6844 end if;
6845 end if;
6846 end if;
6847 end if;
6848 end if;
6849 end;
6850 end if;
6851 end Operator_Check;
6853 -----------------------------------------
6854 -- Process_Implicit_Dereference_Prefix --
6855 -----------------------------------------
6857 function Process_Implicit_Dereference_Prefix
6858 (E : Entity_Id;
6859 P : Entity_Id) return Entity_Id
6861 Ref : Node_Id;
6862 Typ : constant Entity_Id := Designated_Type (Etype (P));
6864 begin
6865 if Present (E)
6866 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6867 then
6868 -- We create a dummy reference to E to ensure that the reference is
6869 -- not considered as part of an assignment (an implicit dereference
6870 -- can never assign to its prefix). The Comes_From_Source attribute
6871 -- needs to be propagated for accurate warnings.
6873 Ref := New_Occurrence_Of (E, Sloc (P));
6874 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6875 Generate_Reference (E, Ref);
6876 end if;
6878 -- An implicit dereference is a legal occurrence of an incomplete type
6879 -- imported through a limited_with clause, if the full view is visible.
6881 if From_Limited_With (Typ)
6882 and then not From_Limited_With (Scope (Typ))
6883 and then
6884 (Is_Immediately_Visible (Scope (Typ))
6885 or else
6886 (Is_Child_Unit (Scope (Typ))
6887 and then Is_Visible_Lib_Unit (Scope (Typ))))
6888 then
6889 return Available_View (Typ);
6890 else
6891 return Typ;
6892 end if;
6893 end Process_Implicit_Dereference_Prefix;
6895 --------------------------------
6896 -- Remove_Abstract_Operations --
6897 --------------------------------
6899 procedure Remove_Abstract_Operations (N : Node_Id) is
6900 Abstract_Op : Entity_Id := Empty;
6901 Address_Descendent : Boolean := False;
6902 I : Interp_Index;
6903 It : Interp;
6905 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6906 -- activate this if either extensions are enabled, or if the abstract
6907 -- operation in question comes from a predefined file. This latter test
6908 -- allows us to use abstract to make operations invisible to users. In
6909 -- particular, if type Address is non-private and abstract subprograms
6910 -- are used to hide its operators, they will be truly hidden.
6912 type Operand_Position is (First_Op, Second_Op);
6913 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
6915 procedure Remove_Address_Interpretations (Op : Operand_Position);
6916 -- Ambiguities may arise when the operands are literal and the address
6917 -- operations in s-auxdec are visible. In that case, remove the
6918 -- interpretation of a literal as Address, to retain the semantics
6919 -- of Address as a private type.
6921 ------------------------------------
6922 -- Remove_Address_Interpretations --
6923 ------------------------------------
6925 procedure Remove_Address_Interpretations (Op : Operand_Position) is
6926 Formal : Entity_Id;
6928 begin
6929 if Is_Overloaded (N) then
6930 Get_First_Interp (N, I, It);
6931 while Present (It.Nam) loop
6932 Formal := First_Entity (It.Nam);
6934 if Op = Second_Op then
6935 Formal := Next_Entity (Formal);
6936 end if;
6938 if Is_Descendent_Of_Address (Etype (Formal)) then
6939 Address_Descendent := True;
6940 Remove_Interp (I);
6941 end if;
6943 Get_Next_Interp (I, It);
6944 end loop;
6945 end if;
6946 end Remove_Address_Interpretations;
6948 -- Start of processing for Remove_Abstract_Operations
6950 begin
6951 if Is_Overloaded (N) then
6952 if Debug_Flag_V then
6953 Write_Str ("Remove_Abstract_Operations: ");
6954 Write_Overloads (N);
6955 end if;
6957 Get_First_Interp (N, I, It);
6959 while Present (It.Nam) loop
6960 if Is_Overloadable (It.Nam)
6961 and then Is_Abstract_Subprogram (It.Nam)
6962 and then not Is_Dispatching_Operation (It.Nam)
6963 then
6964 Abstract_Op := It.Nam;
6966 if Is_Descendent_Of_Address (It.Typ) then
6967 Address_Descendent := True;
6968 Remove_Interp (I);
6969 exit;
6971 -- In Ada 2005, this operation does not participate in overload
6972 -- resolution. If the operation is defined in a predefined
6973 -- unit, it is one of the operations declared abstract in some
6974 -- variants of System, and it must be removed as well.
6976 elsif Ada_Version >= Ada_2005
6977 or else Is_Predefined_File_Name
6978 (Unit_File_Name (Get_Source_Unit (It.Nam)))
6979 then
6980 Remove_Interp (I);
6981 exit;
6982 end if;
6983 end if;
6985 Get_Next_Interp (I, It);
6986 end loop;
6988 if No (Abstract_Op) then
6990 -- If some interpretation yields an integer type, it is still
6991 -- possible that there are address interpretations. Remove them
6992 -- if one operand is a literal, to avoid spurious ambiguities
6993 -- on systems where Address is a visible integer type.
6995 if Is_Overloaded (N)
6996 and then Nkind (N) in N_Op
6997 and then Is_Integer_Type (Etype (N))
6998 then
6999 if Nkind (N) in N_Binary_Op then
7000 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
7001 Remove_Address_Interpretations (Second_Op);
7003 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
7004 Remove_Address_Interpretations (First_Op);
7005 end if;
7006 end if;
7007 end if;
7009 elsif Nkind (N) in N_Op then
7011 -- Remove interpretations that treat literals as addresses. This
7012 -- is never appropriate, even when Address is defined as a visible
7013 -- Integer type. The reason is that we would really prefer Address
7014 -- to behave as a private type, even in this case. If Address is a
7015 -- visible integer type, we get lots of overload ambiguities.
7017 if Nkind (N) in N_Binary_Op then
7018 declare
7019 U1 : constant Boolean :=
7020 Present (Universal_Interpretation (Right_Opnd (N)));
7021 U2 : constant Boolean :=
7022 Present (Universal_Interpretation (Left_Opnd (N)));
7024 begin
7025 if U1 then
7026 Remove_Address_Interpretations (Second_Op);
7027 end if;
7029 if U2 then
7030 Remove_Address_Interpretations (First_Op);
7031 end if;
7033 if not (U1 and U2) then
7035 -- Remove corresponding predefined operator, which is
7036 -- always added to the overload set.
7038 Get_First_Interp (N, I, It);
7039 while Present (It.Nam) loop
7040 if Scope (It.Nam) = Standard_Standard
7041 and then Base_Type (It.Typ) =
7042 Base_Type (Etype (Abstract_Op))
7043 then
7044 Remove_Interp (I);
7045 end if;
7047 Get_Next_Interp (I, It);
7048 end loop;
7050 elsif Is_Overloaded (N)
7051 and then Present (Univ_Type)
7052 then
7053 -- If both operands have a universal interpretation,
7054 -- it is still necessary to remove interpretations that
7055 -- yield Address. Any remaining ambiguities will be
7056 -- removed in Disambiguate.
7058 Get_First_Interp (N, I, It);
7059 while Present (It.Nam) loop
7060 if Is_Descendent_Of_Address (It.Typ) then
7061 Remove_Interp (I);
7063 elsif not Is_Type (It.Nam) then
7064 Set_Entity (N, It.Nam);
7065 end if;
7067 Get_Next_Interp (I, It);
7068 end loop;
7069 end if;
7070 end;
7071 end if;
7073 elsif Nkind (N) = N_Function_Call
7074 and then
7075 (Nkind (Name (N)) = N_Operator_Symbol
7076 or else
7077 (Nkind (Name (N)) = N_Expanded_Name
7078 and then
7079 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
7080 then
7082 declare
7083 Arg1 : constant Node_Id := First (Parameter_Associations (N));
7084 U1 : constant Boolean :=
7085 Present (Universal_Interpretation (Arg1));
7086 U2 : constant Boolean :=
7087 Present (Next (Arg1)) and then
7088 Present (Universal_Interpretation (Next (Arg1)));
7090 begin
7091 if U1 then
7092 Remove_Address_Interpretations (First_Op);
7093 end if;
7095 if U2 then
7096 Remove_Address_Interpretations (Second_Op);
7097 end if;
7099 if not (U1 and U2) then
7100 Get_First_Interp (N, I, It);
7101 while Present (It.Nam) loop
7102 if Scope (It.Nam) = Standard_Standard
7103 and then It.Typ = Base_Type (Etype (Abstract_Op))
7104 then
7105 Remove_Interp (I);
7106 end if;
7108 Get_Next_Interp (I, It);
7109 end loop;
7110 end if;
7111 end;
7112 end if;
7114 -- If the removal has left no valid interpretations, emit an error
7115 -- message now and label node as illegal.
7117 if Present (Abstract_Op) then
7118 Get_First_Interp (N, I, It);
7120 if No (It.Nam) then
7122 -- Removal of abstract operation left no viable candidate
7124 Set_Etype (N, Any_Type);
7125 Error_Msg_Sloc := Sloc (Abstract_Op);
7126 Error_Msg_NE
7127 ("cannot call abstract operation& declared#", N, Abstract_Op);
7129 -- In Ada 2005, an abstract operation may disable predefined
7130 -- operators. Since the context is not yet known, we mark the
7131 -- predefined operators as potentially hidden. Do not include
7132 -- predefined operators when addresses are involved since this
7133 -- case is handled separately.
7135 elsif Ada_Version >= Ada_2005 and then not Address_Descendent then
7136 while Present (It.Nam) loop
7137 if Is_Numeric_Type (It.Typ)
7138 and then Scope (It.Typ) = Standard_Standard
7139 then
7140 Set_Abstract_Op (I, Abstract_Op);
7141 end if;
7143 Get_Next_Interp (I, It);
7144 end loop;
7145 end if;
7146 end if;
7148 if Debug_Flag_V then
7149 Write_Str ("Remove_Abstract_Operations done: ");
7150 Write_Overloads (N);
7151 end if;
7152 end if;
7153 end Remove_Abstract_Operations;
7155 ----------------------------
7156 -- Try_Container_Indexing --
7157 ----------------------------
7159 function Try_Container_Indexing
7160 (N : Node_Id;
7161 Prefix : Node_Id;
7162 Exprs : List_Id) return Boolean
7164 Loc : constant Source_Ptr := Sloc (N);
7165 C_Type : Entity_Id;
7166 Assoc : List_Id;
7167 Func : Entity_Id;
7168 Func_Name : Node_Id;
7169 Indexing : Node_Id;
7171 begin
7172 C_Type := Etype (Prefix);
7174 -- If indexing a class-wide container, obtain indexing primitive
7175 -- from specific type.
7177 if Is_Class_Wide_Type (C_Type) then
7178 C_Type := Etype (Base_Type (C_Type));
7179 end if;
7181 -- Check whether type has a specified indexing aspect
7183 Func_Name := Empty;
7185 if Is_Variable (Prefix) then
7186 Func_Name :=
7187 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
7188 end if;
7190 if No (Func_Name) then
7191 Func_Name :=
7192 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
7193 end if;
7195 -- If aspect does not exist the expression is illegal. Error is
7196 -- diagnosed in caller.
7198 if No (Func_Name) then
7200 -- The prefix itself may be an indexing of a container: rewrite
7201 -- as such and re-analyze.
7203 if Has_Implicit_Dereference (Etype (Prefix)) then
7204 Build_Explicit_Dereference
7205 (Prefix, First_Discriminant (Etype (Prefix)));
7206 return Try_Container_Indexing (N, Prefix, Exprs);
7208 else
7209 return False;
7210 end if;
7212 -- If the container type is derived from another container type, the
7213 -- value of the inherited aspect is the Reference operation declared
7214 -- for the parent type.
7216 -- However, Reference is also a primitive operation of the type, and
7217 -- the inherited operation has a different signature. We retrieve the
7218 -- right one from the list of primitive operations of the derived type.
7220 -- Note that predefined containers are typically all derived from one
7221 -- of the Controlled types. The code below is motivated by containers
7222 -- that are derived from other types with a Reference aspect.
7224 -- Additional machinery may be needed for types that have several user-
7225 -- defined Reference operations with different signatures ???
7227 elsif Is_Derived_Type (C_Type)
7228 and then Etype (First_Formal (Entity (Func_Name))) /= Etype (Prefix)
7229 then
7230 Func := Find_Prim_Op (C_Type, Chars (Func_Name));
7231 Func_Name := New_Occurrence_Of (Func, Loc);
7232 end if;
7234 Assoc := New_List (Relocate_Node (Prefix));
7236 -- A generalized indexing may have nore than one index expression, so
7237 -- transfer all of them to the argument list to be used in the call.
7238 -- Note that there may be named associations, in which case the node
7239 -- was rewritten earlier as a call, and has been transformed back into
7240 -- an indexed expression to share the following processing.
7242 -- The generalized indexing node is the one on which analysis and
7243 -- resolution take place. Before expansion the original node is replaced
7244 -- with the generalized indexing node, which is a call, possibly with
7245 -- a dereference operation.
7247 if Comes_From_Source (N) then
7248 Check_Compiler_Unit ("generalized indexing", N);
7249 end if;
7251 declare
7252 Arg : Node_Id;
7253 begin
7254 Arg := First (Exprs);
7255 while Present (Arg) loop
7256 Append (Relocate_Node (Arg), Assoc);
7257 Next (Arg);
7258 end loop;
7259 end;
7261 if not Is_Overloaded (Func_Name) then
7262 Func := Entity (Func_Name);
7263 Indexing :=
7264 Make_Function_Call (Loc,
7265 Name => New_Occurrence_Of (Func, Loc),
7266 Parameter_Associations => Assoc);
7267 Set_Parent (Indexing, Parent (N));
7268 Set_Generalized_Indexing (N, Indexing);
7269 Analyze (Indexing);
7270 Set_Etype (N, Etype (Indexing));
7272 -- If the return type of the indexing function is a reference type,
7273 -- add the dereference as a possible interpretation. Note that the
7274 -- indexing aspect may be a function that returns the element type
7275 -- with no intervening implicit dereference, and that the reference
7276 -- discriminant is not the first discriminant.
7278 if Has_Discriminants (Etype (Func)) then
7279 Check_Implicit_Dereference (N, Etype (Func));
7280 end if;
7282 else
7283 Indexing :=
7284 Make_Function_Call (Loc,
7285 Name => Make_Identifier (Loc, Chars (Func_Name)),
7286 Parameter_Associations => Assoc);
7288 Set_Parent (Indexing, Parent (N));
7289 Set_Generalized_Indexing (N, Indexing);
7291 declare
7292 I : Interp_Index;
7293 It : Interp;
7294 Success : Boolean;
7296 begin
7297 Get_First_Interp (Func_Name, I, It);
7298 Set_Etype (Indexing, Any_Type);
7299 while Present (It.Nam) loop
7300 Analyze_One_Call (Indexing, It.Nam, False, Success);
7302 if Success then
7303 Set_Etype (Name (Indexing), It.Typ);
7304 Set_Entity (Name (Indexing), It.Nam);
7305 Set_Etype (N, Etype (Indexing));
7307 -- Add implicit dereference interpretation
7309 if Has_Discriminants (Etype (It.Nam)) then
7310 Check_Implicit_Dereference (N, Etype (It.Nam));
7311 end if;
7313 exit;
7314 end if;
7316 Get_Next_Interp (I, It);
7317 end loop;
7318 end;
7319 end if;
7321 if Etype (Indexing) = Any_Type then
7322 Error_Msg_NE
7323 ("container cannot be indexed with&", N, Etype (First (Exprs)));
7324 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
7325 end if;
7327 return True;
7328 end Try_Container_Indexing;
7330 -----------------------
7331 -- Try_Indirect_Call --
7332 -----------------------
7334 function Try_Indirect_Call
7335 (N : Node_Id;
7336 Nam : Entity_Id;
7337 Typ : Entity_Id) return Boolean
7339 Actual : Node_Id;
7340 Formal : Entity_Id;
7342 Call_OK : Boolean;
7343 pragma Warnings (Off, Call_OK);
7345 begin
7346 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
7348 Actual := First_Actual (N);
7349 Formal := First_Formal (Designated_Type (Typ));
7350 while Present (Actual) and then Present (Formal) loop
7351 if not Has_Compatible_Type (Actual, Etype (Formal)) then
7352 return False;
7353 end if;
7355 Next (Actual);
7356 Next_Formal (Formal);
7357 end loop;
7359 if No (Actual) and then No (Formal) then
7360 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
7362 -- Nam is a candidate interpretation for the name in the call,
7363 -- if it is not an indirect call.
7365 if not Is_Type (Nam)
7366 and then Is_Entity_Name (Name (N))
7367 then
7368 Set_Entity (Name (N), Nam);
7369 end if;
7371 return True;
7373 else
7374 return False;
7375 end if;
7376 end Try_Indirect_Call;
7378 ----------------------
7379 -- Try_Indexed_Call --
7380 ----------------------
7382 function Try_Indexed_Call
7383 (N : Node_Id;
7384 Nam : Entity_Id;
7385 Typ : Entity_Id;
7386 Skip_First : Boolean) return Boolean
7388 Loc : constant Source_Ptr := Sloc (N);
7389 Actuals : constant List_Id := Parameter_Associations (N);
7390 Actual : Node_Id;
7391 Index : Entity_Id;
7393 begin
7394 Actual := First (Actuals);
7396 -- If the call was originally written in prefix form, skip the first
7397 -- actual, which is obviously not defaulted.
7399 if Skip_First then
7400 Next (Actual);
7401 end if;
7403 Index := First_Index (Typ);
7404 while Present (Actual) and then Present (Index) loop
7406 -- If the parameter list has a named association, the expression
7407 -- is definitely a call and not an indexed component.
7409 if Nkind (Actual) = N_Parameter_Association then
7410 return False;
7411 end if;
7413 if Is_Entity_Name (Actual)
7414 and then Is_Type (Entity (Actual))
7415 and then No (Next (Actual))
7416 then
7417 -- A single actual that is a type name indicates a slice if the
7418 -- type is discrete, and an error otherwise.
7420 if Is_Discrete_Type (Entity (Actual)) then
7421 Rewrite (N,
7422 Make_Slice (Loc,
7423 Prefix =>
7424 Make_Function_Call (Loc,
7425 Name => Relocate_Node (Name (N))),
7426 Discrete_Range =>
7427 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
7429 Analyze (N);
7431 else
7432 Error_Msg_N ("invalid use of type in expression", Actual);
7433 Set_Etype (N, Any_Type);
7434 end if;
7436 return True;
7438 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
7439 return False;
7440 end if;
7442 Next (Actual);
7443 Next_Index (Index);
7444 end loop;
7446 if No (Actual) and then No (Index) then
7447 Add_One_Interp (N, Nam, Component_Type (Typ));
7449 -- Nam is a candidate interpretation for the name in the call,
7450 -- if it is not an indirect call.
7452 if not Is_Type (Nam)
7453 and then Is_Entity_Name (Name (N))
7454 then
7455 Set_Entity (Name (N), Nam);
7456 end if;
7458 return True;
7459 else
7460 return False;
7461 end if;
7462 end Try_Indexed_Call;
7464 --------------------------
7465 -- Try_Object_Operation --
7466 --------------------------
7468 function Try_Object_Operation
7469 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
7471 K : constant Node_Kind := Nkind (Parent (N));
7472 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
7473 Loc : constant Source_Ptr := Sloc (N);
7474 Obj : constant Node_Id := Prefix (N);
7476 Subprog : constant Node_Id :=
7477 Make_Identifier (Sloc (Selector_Name (N)),
7478 Chars => Chars (Selector_Name (N)));
7479 -- Identifier on which possible interpretations will be collected
7481 Report_Error : Boolean := False;
7482 -- If no candidate interpretation matches the context, redo analysis
7483 -- with Report_Error True to provide additional information.
7485 Actual : Node_Id;
7486 Candidate : Entity_Id := Empty;
7487 New_Call_Node : Node_Id := Empty;
7488 Node_To_Replace : Node_Id;
7489 Obj_Type : Entity_Id := Etype (Obj);
7490 Success : Boolean := False;
7492 function Valid_Candidate
7493 (Success : Boolean;
7494 Call : Node_Id;
7495 Subp : Entity_Id) return Entity_Id;
7496 -- If the subprogram is a valid interpretation, record it, and add
7497 -- to the list of interpretations of Subprog. Otherwise return Empty.
7499 procedure Complete_Object_Operation
7500 (Call_Node : Node_Id;
7501 Node_To_Replace : Node_Id);
7502 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
7503 -- Call_Node, insert the object (or its dereference) as the first actual
7504 -- in the call, and complete the analysis of the call.
7506 procedure Report_Ambiguity (Op : Entity_Id);
7507 -- If a prefixed procedure call is ambiguous, indicate whether the
7508 -- call includes an implicit dereference or an implicit 'Access.
7510 procedure Transform_Object_Operation
7511 (Call_Node : out Node_Id;
7512 Node_To_Replace : out Node_Id);
7513 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
7514 -- Call_Node is the resulting subprogram call, Node_To_Replace is
7515 -- either N or the parent of N, and Subprog is a reference to the
7516 -- subprogram we are trying to match.
7518 function Try_Class_Wide_Operation
7519 (Call_Node : Node_Id;
7520 Node_To_Replace : Node_Id) return Boolean;
7521 -- Traverse all ancestor types looking for a class-wide subprogram
7522 -- for which the current operation is a valid non-dispatching call.
7524 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
7525 -- If prefix is overloaded, its interpretation may include different
7526 -- tagged types, and we must examine the primitive operations and
7527 -- the class-wide operations of each in order to find candidate
7528 -- interpretations for the call as a whole.
7530 function Try_Primitive_Operation
7531 (Call_Node : Node_Id;
7532 Node_To_Replace : Node_Id) return Boolean;
7533 -- Traverse the list of primitive subprograms looking for a dispatching
7534 -- operation for which the current node is a valid call .
7536 ---------------------
7537 -- Valid_Candidate --
7538 ---------------------
7540 function Valid_Candidate
7541 (Success : Boolean;
7542 Call : Node_Id;
7543 Subp : Entity_Id) return Entity_Id
7545 Arr_Type : Entity_Id;
7546 Comp_Type : Entity_Id;
7548 begin
7549 -- If the subprogram is a valid interpretation, record it in global
7550 -- variable Subprog, to collect all possible overloadings.
7552 if Success then
7553 if Subp /= Entity (Subprog) then
7554 Add_One_Interp (Subprog, Subp, Etype (Subp));
7555 end if;
7556 end if;
7558 -- If the call may be an indexed call, retrieve component type of
7559 -- resulting expression, and add possible interpretation.
7561 Arr_Type := Empty;
7562 Comp_Type := Empty;
7564 if Nkind (Call) = N_Function_Call
7565 and then Nkind (Parent (N)) = N_Indexed_Component
7566 and then Needs_One_Actual (Subp)
7567 then
7568 if Is_Array_Type (Etype (Subp)) then
7569 Arr_Type := Etype (Subp);
7571 elsif Is_Access_Type (Etype (Subp))
7572 and then Is_Array_Type (Designated_Type (Etype (Subp)))
7573 then
7574 Arr_Type := Designated_Type (Etype (Subp));
7575 end if;
7576 end if;
7578 if Present (Arr_Type) then
7580 -- Verify that the actuals (excluding the object) match the types
7581 -- of the indexes.
7583 declare
7584 Actual : Node_Id;
7585 Index : Node_Id;
7587 begin
7588 Actual := Next (First_Actual (Call));
7589 Index := First_Index (Arr_Type);
7590 while Present (Actual) and then Present (Index) loop
7591 if not Has_Compatible_Type (Actual, Etype (Index)) then
7592 Arr_Type := Empty;
7593 exit;
7594 end if;
7596 Next_Actual (Actual);
7597 Next_Index (Index);
7598 end loop;
7600 if No (Actual)
7601 and then No (Index)
7602 and then Present (Arr_Type)
7603 then
7604 Comp_Type := Component_Type (Arr_Type);
7605 end if;
7606 end;
7608 if Present (Comp_Type)
7609 and then Etype (Subprog) /= Comp_Type
7610 then
7611 Add_One_Interp (Subprog, Subp, Comp_Type);
7612 end if;
7613 end if;
7615 if Etype (Call) /= Any_Type then
7616 return Subp;
7617 else
7618 return Empty;
7619 end if;
7620 end Valid_Candidate;
7622 -------------------------------
7623 -- Complete_Object_Operation --
7624 -------------------------------
7626 procedure Complete_Object_Operation
7627 (Call_Node : Node_Id;
7628 Node_To_Replace : Node_Id)
7630 Control : constant Entity_Id := First_Formal (Entity (Subprog));
7631 Formal_Type : constant Entity_Id := Etype (Control);
7632 First_Actual : Node_Id;
7634 begin
7635 -- Place the name of the operation, with its interpretations,
7636 -- on the rewritten call.
7638 Set_Name (Call_Node, Subprog);
7640 First_Actual := First (Parameter_Associations (Call_Node));
7642 -- For cross-reference purposes, treat the new node as being in the
7643 -- source if the original one is. Set entity and type, even though
7644 -- they may be overwritten during resolution if overloaded.
7646 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
7647 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
7649 if Nkind (N) = N_Selected_Component
7650 and then not Inside_A_Generic
7651 then
7652 Set_Entity (Selector_Name (N), Entity (Subprog));
7653 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
7654 end if;
7656 -- If need be, rewrite first actual as an explicit dereference. If
7657 -- the call is overloaded, the rewriting can only be done once the
7658 -- primitive operation is identified.
7660 if Is_Overloaded (Subprog) then
7662 -- The prefix itself may be overloaded, and its interpretations
7663 -- must be propagated to the new actual in the call.
7665 if Is_Overloaded (Obj) then
7666 Save_Interps (Obj, First_Actual);
7667 end if;
7669 Rewrite (First_Actual, Obj);
7671 elsif not Is_Access_Type (Formal_Type)
7672 and then Is_Access_Type (Etype (Obj))
7673 then
7674 Rewrite (First_Actual,
7675 Make_Explicit_Dereference (Sloc (Obj), Obj));
7676 Analyze (First_Actual);
7678 -- If we need to introduce an explicit dereference, verify that
7679 -- the resulting actual is compatible with the mode of the formal.
7681 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7682 and then Is_Access_Constant (Etype (Obj))
7683 then
7684 Error_Msg_NE
7685 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7686 end if;
7688 -- Conversely, if the formal is an access parameter and the object
7689 -- is not, replace the actual with a 'Access reference. Its analysis
7690 -- will check that the object is aliased.
7692 elsif Is_Access_Type (Formal_Type)
7693 and then not Is_Access_Type (Etype (Obj))
7694 then
7695 -- A special case: A.all'access is illegal if A is an access to a
7696 -- constant and the context requires an access to a variable.
7698 if not Is_Access_Constant (Formal_Type) then
7699 if (Nkind (Obj) = N_Explicit_Dereference
7700 and then Is_Access_Constant (Etype (Prefix (Obj))))
7701 or else not Is_Variable (Obj)
7702 then
7703 Error_Msg_NE
7704 ("actual for & must be a variable", Obj, Control);
7705 end if;
7706 end if;
7708 Rewrite (First_Actual,
7709 Make_Attribute_Reference (Loc,
7710 Attribute_Name => Name_Access,
7711 Prefix => Relocate_Node (Obj)));
7713 if not Is_Aliased_View (Obj) then
7714 Error_Msg_NE
7715 ("object in prefixed call to & must be aliased "
7716 & "(RM 4.1.3 (13 1/2))", Prefix (First_Actual), Subprog);
7717 end if;
7719 Analyze (First_Actual);
7721 else
7722 if Is_Overloaded (Obj) then
7723 Save_Interps (Obj, First_Actual);
7724 end if;
7726 Rewrite (First_Actual, Obj);
7727 end if;
7729 -- The operation is obtained from the dispatch table and not by
7730 -- visibility, and may be declared in a unit that is not explicitly
7731 -- referenced in the source, but is nevertheless required in the
7732 -- context of the current unit. Indicate that operation and its scope
7733 -- are referenced, to prevent spurious and misleading warnings. If
7734 -- the operation is overloaded, all primitives are in the same scope
7735 -- and we can use any of them.
7737 Set_Referenced (Entity (Subprog), True);
7738 Set_Referenced (Scope (Entity (Subprog)), True);
7740 Rewrite (Node_To_Replace, Call_Node);
7742 -- Propagate the interpretations collected in subprog to the new
7743 -- function call node, to be resolved from context.
7745 if Is_Overloaded (Subprog) then
7746 Save_Interps (Subprog, Node_To_Replace);
7748 else
7749 -- The type of the subprogram may be a limited view obtained
7750 -- transitively from another unit. If full view is available,
7751 -- use it to analyze call.
7753 declare
7754 T : constant Entity_Id := Etype (Subprog);
7755 begin
7756 if From_Limited_With (T) then
7757 Set_Etype (Entity (Subprog), Available_View (T));
7758 end if;
7759 end;
7761 Analyze (Node_To_Replace);
7763 -- If the operation has been rewritten into a call, which may get
7764 -- subsequently an explicit dereference, preserve the type on the
7765 -- original node (selected component or indexed component) for
7766 -- subsequent legality tests, e.g. Is_Variable. which examines
7767 -- the original node.
7769 if Nkind (Node_To_Replace) = N_Function_Call then
7770 Set_Etype
7771 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7772 end if;
7773 end if;
7774 end Complete_Object_Operation;
7776 ----------------------
7777 -- Report_Ambiguity --
7778 ----------------------
7780 procedure Report_Ambiguity (Op : Entity_Id) is
7781 Access_Actual : constant Boolean :=
7782 Is_Access_Type (Etype (Prefix (N)));
7783 Access_Formal : Boolean := False;
7785 begin
7786 Error_Msg_Sloc := Sloc (Op);
7788 if Present (First_Formal (Op)) then
7789 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7790 end if;
7792 if Access_Formal and then not Access_Actual then
7793 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7794 Error_Msg_N
7795 ("\possible interpretation "
7796 & "(inherited, with implicit 'Access) #", N);
7797 else
7798 Error_Msg_N
7799 ("\possible interpretation (with implicit 'Access) #", N);
7800 end if;
7802 elsif not Access_Formal and then Access_Actual then
7803 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7804 Error_Msg_N
7805 ("\possible interpretation "
7806 & "(inherited, with implicit dereference) #", N);
7807 else
7808 Error_Msg_N
7809 ("\possible interpretation (with implicit dereference) #", N);
7810 end if;
7812 else
7813 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7814 Error_Msg_N ("\possible interpretation (inherited)#", N);
7815 else
7816 Error_Msg_N -- CODEFIX
7817 ("\possible interpretation#", N);
7818 end if;
7819 end if;
7820 end Report_Ambiguity;
7822 --------------------------------
7823 -- Transform_Object_Operation --
7824 --------------------------------
7826 procedure Transform_Object_Operation
7827 (Call_Node : out Node_Id;
7828 Node_To_Replace : out Node_Id)
7830 Dummy : constant Node_Id := New_Copy (Obj);
7831 -- Placeholder used as a first parameter in the call, replaced
7832 -- eventually by the proper object.
7834 Parent_Node : constant Node_Id := Parent (N);
7836 Actual : Node_Id;
7837 Actuals : List_Id;
7839 begin
7840 -- Common case covering 1) Call to a procedure and 2) Call to a
7841 -- function that has some additional actuals.
7843 if Nkind (Parent_Node) in N_Subprogram_Call
7845 -- N is a selected component node containing the name of the
7846 -- subprogram. If N is not the name of the parent node we must
7847 -- not replace the parent node by the new construct. This case
7848 -- occurs when N is a parameterless call to a subprogram that
7849 -- is an actual parameter of a call to another subprogram. For
7850 -- example:
7851 -- Some_Subprogram (..., Obj.Operation, ...)
7853 and then Name (Parent_Node) = N
7854 then
7855 Node_To_Replace := Parent_Node;
7857 Actuals := Parameter_Associations (Parent_Node);
7859 if Present (Actuals) then
7860 Prepend (Dummy, Actuals);
7861 else
7862 Actuals := New_List (Dummy);
7863 end if;
7865 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
7866 Call_Node :=
7867 Make_Procedure_Call_Statement (Loc,
7868 Name => New_Copy (Subprog),
7869 Parameter_Associations => Actuals);
7871 else
7872 Call_Node :=
7873 Make_Function_Call (Loc,
7874 Name => New_Copy (Subprog),
7875 Parameter_Associations => Actuals);
7876 end if;
7878 -- Before analysis, a function call appears as an indexed component
7879 -- if there are no named associations.
7881 elsif Nkind (Parent_Node) = N_Indexed_Component
7882 and then N = Prefix (Parent_Node)
7883 then
7884 Node_To_Replace := Parent_Node;
7885 Actuals := Expressions (Parent_Node);
7887 Actual := First (Actuals);
7888 while Present (Actual) loop
7889 Analyze (Actual);
7890 Next (Actual);
7891 end loop;
7893 Prepend (Dummy, Actuals);
7895 Call_Node :=
7896 Make_Function_Call (Loc,
7897 Name => New_Copy (Subprog),
7898 Parameter_Associations => Actuals);
7900 -- Parameterless call: Obj.F is rewritten as F (Obj)
7902 else
7903 Node_To_Replace := N;
7905 Call_Node :=
7906 Make_Function_Call (Loc,
7907 Name => New_Copy (Subprog),
7908 Parameter_Associations => New_List (Dummy));
7909 end if;
7910 end Transform_Object_Operation;
7912 ------------------------------
7913 -- Try_Class_Wide_Operation --
7914 ------------------------------
7916 function Try_Class_Wide_Operation
7917 (Call_Node : Node_Id;
7918 Node_To_Replace : Node_Id) return Boolean
7920 Anc_Type : Entity_Id;
7921 Matching_Op : Entity_Id := Empty;
7922 Error : Boolean;
7924 procedure Traverse_Homonyms
7925 (Anc_Type : Entity_Id;
7926 Error : out Boolean);
7927 -- Traverse the homonym chain of the subprogram searching for those
7928 -- homonyms whose first formal has the Anc_Type's class-wide type,
7929 -- or an anonymous access type designating the class-wide type. If
7930 -- an ambiguity is detected, then Error is set to True.
7932 procedure Traverse_Interfaces
7933 (Anc_Type : Entity_Id;
7934 Error : out Boolean);
7935 -- Traverse the list of interfaces, if any, associated with Anc_Type
7936 -- and search for acceptable class-wide homonyms associated with each
7937 -- interface. If an ambiguity is detected, then Error is set to True.
7939 -----------------------
7940 -- Traverse_Homonyms --
7941 -----------------------
7943 procedure Traverse_Homonyms
7944 (Anc_Type : Entity_Id;
7945 Error : out Boolean)
7947 Cls_Type : Entity_Id;
7948 Hom : Entity_Id;
7949 Hom_Ref : Node_Id;
7950 Success : Boolean;
7952 begin
7953 Error := False;
7955 Cls_Type := Class_Wide_Type (Anc_Type);
7957 Hom := Current_Entity (Subprog);
7959 -- Find a non-hidden operation whose first parameter is of the
7960 -- class-wide type, a subtype thereof, or an anonymous access
7961 -- to same. If in an instance, the operation can be considered
7962 -- even if hidden (it may be hidden because the instantiation
7963 -- is expanded after the containing package has been analyzed).
7965 while Present (Hom) loop
7966 if Ekind_In (Hom, E_Procedure, E_Function)
7967 and then (not Is_Hidden (Hom) or else In_Instance)
7968 and then Scope (Hom) = Scope (Anc_Type)
7969 and then Present (First_Formal (Hom))
7970 and then
7971 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
7972 or else
7973 (Is_Access_Type (Etype (First_Formal (Hom)))
7974 and then
7975 Ekind (Etype (First_Formal (Hom))) =
7976 E_Anonymous_Access_Type
7977 and then
7978 Base_Type
7979 (Designated_Type (Etype (First_Formal (Hom)))) =
7980 Cls_Type))
7981 then
7982 -- If the context is a procedure call, ignore functions
7983 -- in the name of the call.
7985 if Ekind (Hom) = E_Function
7986 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7987 and then N = Name (Parent (N))
7988 then
7989 goto Next_Hom;
7991 -- If the context is a function call, ignore procedures
7992 -- in the name of the call.
7994 elsif Ekind (Hom) = E_Procedure
7995 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
7996 then
7997 goto Next_Hom;
7998 end if;
8000 Set_Etype (Call_Node, Any_Type);
8001 Set_Is_Overloaded (Call_Node, False);
8002 Success := False;
8004 if No (Matching_Op) then
8005 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
8006 Set_Etype (Call_Node, Any_Type);
8007 Set_Parent (Call_Node, Parent (Node_To_Replace));
8009 Set_Name (Call_Node, Hom_Ref);
8011 Analyze_One_Call
8012 (N => Call_Node,
8013 Nam => Hom,
8014 Report => Report_Error,
8015 Success => Success,
8016 Skip_First => True);
8018 Matching_Op :=
8019 Valid_Candidate (Success, Call_Node, Hom);
8021 else
8022 Analyze_One_Call
8023 (N => Call_Node,
8024 Nam => Hom,
8025 Report => Report_Error,
8026 Success => Success,
8027 Skip_First => True);
8029 if Present (Valid_Candidate (Success, Call_Node, Hom))
8030 and then Nkind (Call_Node) /= N_Function_Call
8031 then
8032 Error_Msg_NE ("ambiguous call to&", N, Hom);
8033 Report_Ambiguity (Matching_Op);
8034 Report_Ambiguity (Hom);
8035 Error := True;
8036 return;
8037 end if;
8038 end if;
8039 end if;
8041 <<Next_Hom>>
8042 Hom := Homonym (Hom);
8043 end loop;
8044 end Traverse_Homonyms;
8046 -------------------------
8047 -- Traverse_Interfaces --
8048 -------------------------
8050 procedure Traverse_Interfaces
8051 (Anc_Type : Entity_Id;
8052 Error : out Boolean)
8054 Intface_List : constant List_Id :=
8055 Abstract_Interface_List (Anc_Type);
8056 Intface : Node_Id;
8058 begin
8059 Error := False;
8061 if Is_Non_Empty_List (Intface_List) then
8062 Intface := First (Intface_List);
8063 while Present (Intface) loop
8065 -- Look for acceptable class-wide homonyms associated with
8066 -- the interface.
8068 Traverse_Homonyms (Etype (Intface), Error);
8070 if Error then
8071 return;
8072 end if;
8074 -- Continue the search by looking at each of the interface's
8075 -- associated interface ancestors.
8077 Traverse_Interfaces (Etype (Intface), Error);
8079 if Error then
8080 return;
8081 end if;
8083 Next (Intface);
8084 end loop;
8085 end if;
8086 end Traverse_Interfaces;
8088 -- Start of processing for Try_Class_Wide_Operation
8090 begin
8091 -- If we are searching only for conflicting class-wide subprograms
8092 -- then initialize directly Matching_Op with the target entity.
8094 if CW_Test_Only then
8095 Matching_Op := Entity (Selector_Name (N));
8096 end if;
8098 -- Loop through ancestor types (including interfaces), traversing
8099 -- the homonym chain of the subprogram, trying out those homonyms
8100 -- whose first formal has the class-wide type of the ancestor, or
8101 -- an anonymous access type designating the class-wide type.
8103 Anc_Type := Obj_Type;
8104 loop
8105 -- Look for a match among homonyms associated with the ancestor
8107 Traverse_Homonyms (Anc_Type, Error);
8109 if Error then
8110 return True;
8111 end if;
8113 -- Continue the search for matches among homonyms associated with
8114 -- any interfaces implemented by the ancestor.
8116 Traverse_Interfaces (Anc_Type, Error);
8118 if Error then
8119 return True;
8120 end if;
8122 exit when Etype (Anc_Type) = Anc_Type;
8123 Anc_Type := Etype (Anc_Type);
8124 end loop;
8126 if Present (Matching_Op) then
8127 Set_Etype (Call_Node, Etype (Matching_Op));
8128 end if;
8130 return Present (Matching_Op);
8131 end Try_Class_Wide_Operation;
8133 -----------------------------------
8134 -- Try_One_Prefix_Interpretation --
8135 -----------------------------------
8137 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
8138 begin
8139 Obj_Type := T;
8141 if Is_Access_Type (Obj_Type) then
8142 Obj_Type := Designated_Type (Obj_Type);
8143 end if;
8145 if Ekind (Obj_Type) = E_Private_Subtype then
8146 Obj_Type := Base_Type (Obj_Type);
8147 end if;
8149 if Is_Class_Wide_Type (Obj_Type) then
8150 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
8151 end if;
8153 -- The type may have be obtained through a limited_with clause,
8154 -- in which case the primitive operations are available on its
8155 -- non-limited view. If still incomplete, retrieve full view.
8157 if Ekind (Obj_Type) = E_Incomplete_Type
8158 and then From_Limited_With (Obj_Type)
8159 and then Has_Non_Limited_View (Obj_Type)
8160 then
8161 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
8162 end if;
8164 -- If the object is not tagged, or the type is still an incomplete
8165 -- type, this is not a prefixed call.
8167 if not Is_Tagged_Type (Obj_Type)
8168 or else Is_Incomplete_Type (Obj_Type)
8169 then
8170 return;
8171 end if;
8173 declare
8174 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
8175 CW_Result : Boolean;
8176 Prim_Result : Boolean;
8177 pragma Unreferenced (CW_Result);
8179 begin
8180 if not CW_Test_Only then
8181 Prim_Result :=
8182 Try_Primitive_Operation
8183 (Call_Node => New_Call_Node,
8184 Node_To_Replace => Node_To_Replace);
8185 end if;
8187 -- Check if there is a class-wide subprogram covering the
8188 -- primitive. This check must be done even if a candidate
8189 -- was found in order to report ambiguous calls.
8191 if not (Prim_Result) then
8192 CW_Result :=
8193 Try_Class_Wide_Operation
8194 (Call_Node => New_Call_Node,
8195 Node_To_Replace => Node_To_Replace);
8197 -- If we found a primitive we search for class-wide subprograms
8198 -- using a duplicate of the call node (done to avoid missing its
8199 -- decoration if there is no ambiguity).
8201 else
8202 CW_Result :=
8203 Try_Class_Wide_Operation
8204 (Call_Node => Dup_Call_Node,
8205 Node_To_Replace => Node_To_Replace);
8206 end if;
8207 end;
8208 end Try_One_Prefix_Interpretation;
8210 -----------------------------
8211 -- Try_Primitive_Operation --
8212 -----------------------------
8214 function Try_Primitive_Operation
8215 (Call_Node : Node_Id;
8216 Node_To_Replace : Node_Id) return Boolean
8218 Elmt : Elmt_Id;
8219 Prim_Op : Entity_Id;
8220 Matching_Op : Entity_Id := Empty;
8221 Prim_Op_Ref : Node_Id := Empty;
8223 Corr_Type : Entity_Id := Empty;
8224 -- If the prefix is a synchronized type, the controlling type of
8225 -- the primitive operation is the corresponding record type, else
8226 -- this is the object type itself.
8228 Success : Boolean := False;
8230 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
8231 -- For tagged types the candidate interpretations are found in
8232 -- the list of primitive operations of the type and its ancestors.
8233 -- For formal tagged types we have to find the operations declared
8234 -- in the same scope as the type (including in the generic formal
8235 -- part) because the type itself carries no primitive operations,
8236 -- except for formal derived types that inherit the operations of
8237 -- the parent and progenitors.
8239 -- If the context is a generic subprogram body, the generic formals
8240 -- are visible by name, but are not in the entity list of the
8241 -- subprogram because that list starts with the subprogram formals.
8242 -- We retrieve the candidate operations from the generic declaration.
8244 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id;
8245 -- Prefix notation can also be used on operations that are not
8246 -- primitives of the type, but are declared in the same immediate
8247 -- declarative part, which can only mean the corresponding package
8248 -- body (See RM 4.1.3 (9.2/3)). If we are in that body we extend the
8249 -- list of primitives with body operations with the same name that
8250 -- may be candidates, so that Try_Primitive_Operations can examine
8251 -- them if no real primitive is found.
8253 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
8254 -- An operation that overrides an inherited operation in the private
8255 -- part of its package may be hidden, but if the inherited operation
8256 -- is visible a direct call to it will dispatch to the private one,
8257 -- which is therefore a valid candidate.
8259 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
8260 -- Verify that the prefix, dereferenced if need be, is a valid
8261 -- controlling argument in a call to Op. The remaining actuals
8262 -- are checked in the subsequent call to Analyze_One_Call.
8264 ------------------------------
8265 -- Collect_Generic_Type_Ops --
8266 ------------------------------
8268 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
8269 Bas : constant Entity_Id := Base_Type (T);
8270 Candidates : constant Elist_Id := New_Elmt_List;
8271 Subp : Entity_Id;
8272 Formal : Entity_Id;
8274 procedure Check_Candidate;
8275 -- The operation is a candidate if its first parameter is a
8276 -- controlling operand of the desired type.
8278 -----------------------
8279 -- Check_Candidate; --
8280 -----------------------
8282 procedure Check_Candidate is
8283 begin
8284 Formal := First_Formal (Subp);
8286 if Present (Formal)
8287 and then Is_Controlling_Formal (Formal)
8288 and then
8289 (Base_Type (Etype (Formal)) = Bas
8290 or else
8291 (Is_Access_Type (Etype (Formal))
8292 and then Designated_Type (Etype (Formal)) = Bas))
8293 then
8294 Append_Elmt (Subp, Candidates);
8295 end if;
8296 end Check_Candidate;
8298 -- Start of processing for Collect_Generic_Type_Ops
8300 begin
8301 if Is_Derived_Type (T) then
8302 return Primitive_Operations (T);
8304 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
8306 -- Scan the list of generic formals to find subprograms
8307 -- that may have a first controlling formal of the type.
8309 if Nkind (Unit_Declaration_Node (Scope (T))) =
8310 N_Generic_Subprogram_Declaration
8311 then
8312 declare
8313 Decl : Node_Id;
8315 begin
8316 Decl :=
8317 First (Generic_Formal_Declarations
8318 (Unit_Declaration_Node (Scope (T))));
8319 while Present (Decl) loop
8320 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
8321 Subp := Defining_Entity (Decl);
8322 Check_Candidate;
8323 end if;
8325 Next (Decl);
8326 end loop;
8327 end;
8328 end if;
8329 return Candidates;
8331 else
8332 -- Scan the list of entities declared in the same scope as
8333 -- the type. In general this will be an open scope, given that
8334 -- the call we are analyzing can only appear within a generic
8335 -- declaration or body (either the one that declares T, or a
8336 -- child unit).
8338 -- For a subtype representing a generic actual type, go to the
8339 -- base type.
8341 if Is_Generic_Actual_Type (T) then
8342 Subp := First_Entity (Scope (Base_Type (T)));
8343 else
8344 Subp := First_Entity (Scope (T));
8345 end if;
8347 while Present (Subp) loop
8348 if Is_Overloadable (Subp) then
8349 Check_Candidate;
8350 end if;
8352 Next_Entity (Subp);
8353 end loop;
8355 return Candidates;
8356 end if;
8357 end Collect_Generic_Type_Ops;
8359 ----------------------------
8360 -- Extended_Primitive_Ops --
8361 ----------------------------
8363 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id is
8364 Type_Scope : constant Entity_Id := Scope (T);
8366 Body_Decls : List_Id;
8367 Op_Found : Boolean;
8368 Op : Entity_Id;
8369 Op_List : Elist_Id;
8371 begin
8372 Op_List := Primitive_Operations (T);
8374 if Ekind (Type_Scope) = E_Package
8375 and then In_Package_Body (Type_Scope)
8376 and then In_Open_Scopes (Type_Scope)
8377 then
8378 -- Retrieve list of declarations of package body.
8380 Body_Decls :=
8381 Declarations
8382 (Unit_Declaration_Node
8383 (Corresponding_Body
8384 (Unit_Declaration_Node (Type_Scope))));
8386 Op := Current_Entity (Subprog);
8387 Op_Found := False;
8388 while Present (Op) loop
8389 if Comes_From_Source (Op)
8390 and then Is_Overloadable (Op)
8392 -- Exclude overriding primitive operations of a type
8393 -- extension declared in the package body, to prevent
8394 -- duplicates in extended list.
8396 and then not Is_Primitive (Op)
8397 and then Is_List_Member (Unit_Declaration_Node (Op))
8398 and then List_Containing (Unit_Declaration_Node (Op)) =
8399 Body_Decls
8400 then
8401 if not Op_Found then
8403 -- Copy list of primitives so it is not affected for
8404 -- other uses.
8406 Op_List := New_Copy_Elist (Op_List);
8407 Op_Found := True;
8408 end if;
8410 Append_Elmt (Op, Op_List);
8411 end if;
8413 Op := Homonym (Op);
8414 end loop;
8415 end if;
8417 return Op_List;
8418 end Extended_Primitive_Ops;
8420 ---------------------------
8421 -- Is_Private_Overriding --
8422 ---------------------------
8424 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
8425 Visible_Op : constant Entity_Id := Homonym (Op);
8427 begin
8428 return Present (Visible_Op)
8429 and then Scope (Op) = Scope (Visible_Op)
8430 and then not Comes_From_Source (Visible_Op)
8431 and then Alias (Visible_Op) = Op
8432 and then not Is_Hidden (Visible_Op);
8433 end Is_Private_Overriding;
8435 -----------------------------
8436 -- Valid_First_Argument_Of --
8437 -----------------------------
8439 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
8440 Typ : Entity_Id := Etype (First_Formal (Op));
8442 begin
8443 if Is_Concurrent_Type (Typ)
8444 and then Present (Corresponding_Record_Type (Typ))
8445 then
8446 Typ := Corresponding_Record_Type (Typ);
8447 end if;
8449 -- Simple case. Object may be a subtype of the tagged type or
8450 -- may be the corresponding record of a synchronized type.
8452 return Obj_Type = Typ
8453 or else Base_Type (Obj_Type) = Typ
8454 or else Corr_Type = Typ
8456 -- Prefix can be dereferenced
8458 or else
8459 (Is_Access_Type (Corr_Type)
8460 and then Designated_Type (Corr_Type) = Typ)
8462 -- Formal is an access parameter, for which the object
8463 -- can provide an access.
8465 or else
8466 (Ekind (Typ) = E_Anonymous_Access_Type
8467 and then
8468 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
8469 end Valid_First_Argument_Of;
8471 -- Start of processing for Try_Primitive_Operation
8473 begin
8474 -- Look for subprograms in the list of primitive operations. The name
8475 -- must be identical, and the kind of call indicates the expected
8476 -- kind of operation (function or procedure). If the type is a
8477 -- (tagged) synchronized type, the primitive ops are attached to the
8478 -- corresponding record (base) type.
8480 if Is_Concurrent_Type (Obj_Type) then
8481 if Present (Corresponding_Record_Type (Obj_Type)) then
8482 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
8483 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
8484 else
8485 Corr_Type := Obj_Type;
8486 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
8487 end if;
8489 elsif not Is_Generic_Type (Obj_Type) then
8490 Corr_Type := Obj_Type;
8491 Elmt := First_Elmt (Extended_Primitive_Ops (Obj_Type));
8493 else
8494 Corr_Type := Obj_Type;
8495 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
8496 end if;
8498 while Present (Elmt) loop
8499 Prim_Op := Node (Elmt);
8501 if Chars (Prim_Op) = Chars (Subprog)
8502 and then Present (First_Formal (Prim_Op))
8503 and then Valid_First_Argument_Of (Prim_Op)
8504 and then
8505 (Nkind (Call_Node) = N_Function_Call)
8507 (Ekind (Prim_Op) = E_Function)
8508 then
8509 -- Ada 2005 (AI-251): If this primitive operation corresponds
8510 -- to an immediate ancestor interface there is no need to add
8511 -- it to the list of interpretations; the corresponding aliased
8512 -- primitive is also in this list of primitive operations and
8513 -- will be used instead.
8515 if (Present (Interface_Alias (Prim_Op))
8516 and then Is_Ancestor (Find_Dispatching_Type
8517 (Alias (Prim_Op)), Corr_Type))
8519 -- Do not consider hidden primitives unless the type is in an
8520 -- open scope or we are within an instance, where visibility
8521 -- is known to be correct, or else if this is an overriding
8522 -- operation in the private part for an inherited operation.
8524 or else (Is_Hidden (Prim_Op)
8525 and then not Is_Immediately_Visible (Obj_Type)
8526 and then not In_Instance
8527 and then not Is_Private_Overriding (Prim_Op))
8528 then
8529 goto Continue;
8530 end if;
8532 Set_Etype (Call_Node, Any_Type);
8533 Set_Is_Overloaded (Call_Node, False);
8535 if No (Matching_Op) then
8536 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
8537 Candidate := Prim_Op;
8539 Set_Parent (Call_Node, Parent (Node_To_Replace));
8541 Set_Name (Call_Node, Prim_Op_Ref);
8542 Success := False;
8544 Analyze_One_Call
8545 (N => Call_Node,
8546 Nam => Prim_Op,
8547 Report => Report_Error,
8548 Success => Success,
8549 Skip_First => True);
8551 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
8553 -- More than one interpretation, collect for subsequent
8554 -- disambiguation. If this is a procedure call and there
8555 -- is another match, report ambiguity now.
8557 else
8558 Analyze_One_Call
8559 (N => Call_Node,
8560 Nam => Prim_Op,
8561 Report => Report_Error,
8562 Success => Success,
8563 Skip_First => True);
8565 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
8566 and then Nkind (Call_Node) /= N_Function_Call
8567 then
8568 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
8569 Report_Ambiguity (Matching_Op);
8570 Report_Ambiguity (Prim_Op);
8571 return True;
8572 end if;
8573 end if;
8574 end if;
8576 <<Continue>>
8577 Next_Elmt (Elmt);
8578 end loop;
8580 if Present (Matching_Op) then
8581 Set_Etype (Call_Node, Etype (Matching_Op));
8582 end if;
8584 return Present (Matching_Op);
8585 end Try_Primitive_Operation;
8587 -- Start of processing for Try_Object_Operation
8589 begin
8590 Analyze_Expression (Obj);
8592 -- Analyze the actuals if node is known to be a subprogram call
8594 if Is_Subprg_Call and then N = Name (Parent (N)) then
8595 Actual := First (Parameter_Associations (Parent (N)));
8596 while Present (Actual) loop
8597 Analyze_Expression (Actual);
8598 Next (Actual);
8599 end loop;
8600 end if;
8602 -- Build a subprogram call node, using a copy of Obj as its first
8603 -- actual. This is a placeholder, to be replaced by an explicit
8604 -- dereference when needed.
8606 Transform_Object_Operation
8607 (Call_Node => New_Call_Node,
8608 Node_To_Replace => Node_To_Replace);
8610 Set_Etype (New_Call_Node, Any_Type);
8611 Set_Etype (Subprog, Any_Type);
8612 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
8614 if not Is_Overloaded (Obj) then
8615 Try_One_Prefix_Interpretation (Obj_Type);
8617 else
8618 declare
8619 I : Interp_Index;
8620 It : Interp;
8621 begin
8622 Get_First_Interp (Obj, I, It);
8623 while Present (It.Nam) loop
8624 Try_One_Prefix_Interpretation (It.Typ);
8625 Get_Next_Interp (I, It);
8626 end loop;
8627 end;
8628 end if;
8630 if Etype (New_Call_Node) /= Any_Type then
8632 -- No need to complete the tree transformations if we are only
8633 -- searching for conflicting class-wide subprograms
8635 if CW_Test_Only then
8636 return False;
8637 else
8638 Complete_Object_Operation
8639 (Call_Node => New_Call_Node,
8640 Node_To_Replace => Node_To_Replace);
8641 return True;
8642 end if;
8644 elsif Present (Candidate) then
8646 -- The argument list is not type correct. Re-analyze with error
8647 -- reporting enabled, and use one of the possible candidates.
8648 -- In All_Errors_Mode, re-analyze all failed interpretations.
8650 if All_Errors_Mode then
8651 Report_Error := True;
8652 if Try_Primitive_Operation
8653 (Call_Node => New_Call_Node,
8654 Node_To_Replace => Node_To_Replace)
8656 or else
8657 Try_Class_Wide_Operation
8658 (Call_Node => New_Call_Node,
8659 Node_To_Replace => Node_To_Replace)
8660 then
8661 null;
8662 end if;
8664 else
8665 Analyze_One_Call
8666 (N => New_Call_Node,
8667 Nam => Candidate,
8668 Report => True,
8669 Success => Success,
8670 Skip_First => True);
8671 end if;
8673 -- No need for further errors
8675 return True;
8677 else
8678 -- There was no candidate operation, so report it as an error
8679 -- in the caller: Analyze_Selected_Component.
8681 return False;
8682 end if;
8683 end Try_Object_Operation;
8685 ---------
8686 -- wpo --
8687 ---------
8689 procedure wpo (T : Entity_Id) is
8690 Op : Entity_Id;
8691 E : Elmt_Id;
8693 begin
8694 if not Is_Tagged_Type (T) then
8695 return;
8696 end if;
8698 E := First_Elmt (Primitive_Operations (Base_Type (T)));
8699 while Present (E) loop
8700 Op := Node (E);
8701 Write_Int (Int (Op));
8702 Write_Str (" === ");
8703 Write_Name (Chars (Op));
8704 Write_Str (" in ");
8705 Write_Name (Chars (Scope (Op)));
8706 Next_Elmt (E);
8707 Write_Eol;
8708 end loop;
8709 end wpo;
8711 end Sem_Ch4;