2015-09-28 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / ada / sem_attr.ads
blobc1e592844fabf02f127616b0706235e95ab6b51f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A T T R --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- You should have received a copy of the GNU General Public License along --
19 -- with this program; see file COPYING3. If not see --
20 -- <http://www.gnu.org/licenses/>. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 -- Attribute handling is isolated in a separate package to ease the addition
28 -- of implementation defined attributes. Logically this processing belongs
29 -- in chapter 4. See Sem_Ch4 for a description of the relation of the
30 -- Analyze and Resolve routines for expression components.
32 -- This spec also documents all GNAT implementation defined pragmas
34 with Exp_Tss; use Exp_Tss;
35 with Namet; use Namet;
36 with Snames; use Snames;
37 with Types; use Types;
39 package Sem_Attr is
41 -----------------------------------------
42 -- Implementation Dependent Attributes --
43 -----------------------------------------
45 -- This section describes the implementation dependent attributes provided
46 -- in GNAT, as well as constructing an array of flags indicating which
47 -- attributes these are.
49 Attribute_Impl_Def : Attribute_Class_Array := Attribute_Class_Array'(
51 ------------------
52 -- Abort_Signal --
53 ------------------
55 Attribute_Abort_Signal => True,
56 -- Standard'Abort_Signal (Standard is the only allowed prefix) provides
57 -- the entity for the special exception used to signal task abort or
58 -- asynchronous transfer of control. Normally this attribute should only
59 -- be used in the tasking runtime (it is highly peculiar, and completely
60 -- outside the normal semantics of Ada, for a user program to intercept
61 -- the abort exception).
63 ------------------
64 -- Address_Size --
65 ------------------
67 Attribute_Address_Size => True,
68 -- Standard'Address_Size (Standard is the only allowed prefix) is
69 -- a static constant giving the number of bits in an Address. It
70 -- is used primarily for constructing the definition of Memory_Size
71 -- in package Standard, but may be freely used in user programs.
72 -- This is a static attribute.
74 ---------------
75 -- Asm_Input --
76 ---------------
78 Attribute_Asm_Input => True,
79 -- Used only in conjunction with the Asm subprograms in package
80 -- Machine_Code to construct machine instructions. See documentation
81 -- in package Machine_Code in file s-maccod.ads.
83 ----------------
84 -- Asm_Output --
85 ----------------
87 Attribute_Asm_Output => True,
88 -- Used only in conjunction with the Asm subprograms in package
89 -- Machine_Code to construct machine instructions. See documentation
90 -- in package Machine_Code in file s-maccod.ads.
92 ---------
93 -- Bit --
94 ---------
96 Attribute_Bit => True,
97 -- Obj'Bit, where Obj is any object, yields the bit offset within the
98 -- storage unit (byte) that contains the first bit of storage allocated
99 -- for the object. The attribute value is of type Universal_Integer,
100 -- and is always a non-negative number not exceeding the value of
101 -- System.Storage_Unit.
103 -- For an object that is a variable or a constant allocated in a
104 -- register, the value is zero. (The use of this attribute does not
105 -- force the allocation of a variable to memory).
107 -- For an object that is a formal parameter, this attribute applies to
108 -- either the matching actual parameter or to a copy of the matching
109 -- actual parameter.
111 -- For an access object the value is zero. Note that Obj.all'Bit is
112 -- subject to an Access_Check for the designated object. Similarly
113 -- for a record component X.C'Bit is subject to a discriminant check
114 -- and X(I).Bit and X(I1..I2)'Bit are subject to index checks.
116 -- This attribute is designed to be compatible with the DEC Ada
117 -- definition and implementation of the Bit attribute.
119 ------------------
120 -- Code_Address --
121 ------------------
123 Attribute_Code_Address => True,
124 -- The reference subp'Code_Address, where subp is a subprogram entity,
125 -- gives the address of the first generated instruction for the sub-
126 -- program. This is often, but not always the same as the 'Address
127 -- value, which is the address to be used in a call. The differences
128 -- occur in the case of a nested procedure (where Address yields the
129 -- address of the trampoline code used to load the static link), and on
130 -- some systems which use procedure descriptors (in which case Address
131 -- yields the address of the descriptor).
133 -----------------------
134 -- Default_Bit_Order --
135 -----------------------
137 Attribute_Default_Bit_Order => True,
138 -- Standard'Default_Bit_Order (Standard is the only permissible prefix)
139 -- provides the value System.Default_Bit_Order as a Pos value (0 for
140 -- High_Order_First, 1 for Low_Order_First). This is used to construct
141 -- the definition of Default_Bit_Order in package System. This is a
142 -- static attribute.
144 ----------------------------------
145 -- Default_Scalar_Storage_Order --
146 ----------------------------------
148 Attribute_Default_Scalar_Storage_Order => True,
149 -- Standard'Default_Scalar_Storage_Order (Standard is the
150 -- only permissible prefix) provides the current value of the
151 -- default scalar storage order (as specified using pragma
152 -- Default_Scalar_Storage_Order, or equal to Default_Bit_Order if
153 -- unspecified) as a System.Bit_Order value. This is a static attribute.
155 -----------
156 -- Deref --
157 -----------
159 Attribute_Deref => True,
160 -- typ'Deref (expr) is valid only if expr is of type System'Address.
161 -- The result is an object of type typ that is obtained by treating the
162 -- address as an access-to-typ value that points to the result. It is
163 -- basically equivalent to (atyp!expr).all where atyp is an access type
164 -- for the type.
166 ---------------
167 -- Elab_Body --
168 ---------------
170 Attribute_Elab_Body => True,
171 -- This attribute can only be applied to a program unit name. It
172 -- returns the entity for the corresponding elaboration procedure for
173 -- elaborating the body of the referenced unit. This is used in the main
174 -- generated elaboration procedure by the binder, and is not normally
175 -- used in any other context, but there may be specialized situations in
176 -- which it is useful to be able to call this elaboration procedure from
177 -- Ada code, e.g. if it is necessary to do selective reelaboration to
178 -- fix some error.
180 --------------------
181 -- Elab_Subp_Body --
182 --------------------
184 Attribute_Elab_Subp_Body => True,
185 -- This attribute can only be applied to a library level subprogram
186 -- name and is only relevant in CodePeer mode. It returns the entity
187 -- for the corresponding elaboration procedure for elaborating the body
188 -- of the referenced subprogram unit. This is used in the main generated
189 -- elaboration procedure by the binder in CodePeer mode only.
191 ---------------
192 -- Elab_Spec --
193 ---------------
195 Attribute_Elab_Spec => True,
196 -- This attribute can only be applied to a program unit name. It
197 -- returns the entity for the corresponding elaboration procedure for
198 -- elaborating the spec of the referenced unit. This is used in the main
199 -- generated elaboration procedure by the binder, and is not normally
200 -- used in any other context, but there may be specialized situations in
201 -- which it is useful to be able to call this elaboration procedure from
202 -- Ada code, e.g. if it is necessary to do selective reelaboration to
203 -- fix some error.
205 ----------------
206 -- Elaborated --
207 ----------------
209 Attribute_Elaborated => True,
210 -- Lunit'Elaborated, where Lunit is a library unit, yields a boolean
211 -- value indicating whether or not the body of the designated library
212 -- unit has been elaborated yet.
214 --------------
215 -- Enum_Rep --
216 --------------
218 Attribute_Enum_Rep => True,
219 -- For every enumeration subtype S, S'Enum_Rep denotes a function
220 -- with the following specification:
222 -- function S'Enum_Rep (Arg : S'Base) return universal_integer;
224 -- The function returns the representation value for the given
225 -- enumeration value. This will be equal to the 'Pos value in the
226 -- absence of an enumeration representation clause. This is a static
227 -- attribute (i.e. the result is static if the argument is static).
229 --------------
230 -- Enum_Val --
231 --------------
233 Attribute_Enum_Val => True,
234 -- For every enumeration subtype S, S'Enum_Val denotes a function with
235 -- the following specification:
237 -- function S'Enum_Val (Arg : universal_integer) return S'Base;
239 -- This function performs the inverse transformation to Enum_Rep. Given
240 -- a representation value for the type, it returns the corresponding
241 -- enumeration value. Constraint_Error is raised if no value of the
242 -- enumeration type corresponds to the given integer value.
244 -----------------
245 -- Fixed_Value --
246 -----------------
248 Attribute_Fixed_Value => True,
249 -- For every fixed-point type S, S'Fixed_Value denotes a function
250 -- with the following specification:
252 -- function S'Fixed_Value (Arg : universal_integer) return S;
254 -- The value returned is the fixed-point value V such that
256 -- V = Arg * S'Small
258 -- The effect is thus equivalent to first converting the argument to
259 -- the integer type used to represent S, and then doing an unchecked
260 -- conversion to the fixed-point type. This attribute is primarily
261 -- intended for use in implementation of the input-output functions
262 -- for fixed-point values.
264 -----------------------
265 -- Has_Discriminants --
266 -----------------------
268 Attribute_Has_Discriminants => True,
269 -- Gtyp'Has_Discriminants, where Gtyp is a generic formal type, yields
270 -- a Boolean value indicating whether or not the actual instantiation
271 -- type has discriminants.
273 ---------
274 -- Img --
275 ---------
277 Attribute_Img => True,
278 -- The 'Img function is defined for any prefix, P, that denotes an
279 -- object of scalar type T. P'Img is equivalent to T'Image (P). This
280 -- is convenient for debugging. For example:
282 -- Put_Line ("X = " & X'Img);
284 -- has the same meaning as the more verbose:
286 -- Put_Line ("X = " & Temperature_Type'Image (X));
288 -- where Temperature_Type is the subtype of the object X.
290 -------------------
291 -- Integer_Value --
292 -------------------
294 Attribute_Integer_Value => True,
295 -- For every integer type S, S'Integer_Value denotes a function
296 -- with the following specification:
298 -- function S'Integer_Value (Arg : universal_fixed) return S;
300 -- The value returned is the integer value V, such that
302 -- Arg = V * fixed-type'Small
304 -- The effect is thus equivalent to first doing an unchecked convert
305 -- from the fixed-point type to its corresponding implementation type,
306 -- and then converting the result to the target integer type. This
307 -- attribute is primarily intended for use in implementation of the
308 -- standard input-output functions for fixed-point values.
310 Attribute_Invalid_Value => True,
311 -- For every scalar type, S'Invalid_Value designates an undefined value
312 -- of the type. If possible this value is an invalid value, and in fact
313 -- is identical to the value that would be set if Initialize_Scalars
314 -- mode were in effect (including the behavior of its value on
315 -- environment variables or binder switches). The intended use is to
316 -- set a value where initialization is required (e.g. as a result of the
317 -- coding standards in use), but logically no initialization is needed,
318 -- and the value should never be accessed.
320 Attribute_Loop_Entry => True,
321 -- For every object of a non-limited type, S'Loop_Entry [(Loop_Name)]
322 -- denotes the constant value of prefix S at the point of entry into the
323 -- related loop. The type of the attribute is the type of the prefix.
325 ------------------
326 -- Machine_Size --
327 ------------------
329 Attribute_Machine_Size => True,
330 -- This attribute is identical to the Object_Size attribute. It is
331 -- provided for compatibility with the DEC attribute of this name.
333 -----------------------
334 -- Maximum_Alignment --
335 -----------------------
337 Attribute_Maximum_Alignment => True,
338 -- Standard'Maximum_Alignment (Standard is the only permissible prefix)
339 -- provides the maximum useful alignment value for the target. This is a
340 -- static value that can be used to specify the alignment for an object,
341 -- guaranteeing that it is properly aligned in all cases. The time this
342 -- is useful is when an external object is imported and its alignment
343 -- requirements are unknown. This is a static attribute.
345 --------------------
346 -- Mechanism_Code --
347 --------------------
349 Attribute_Mechanism_Code => True,
350 -- function'Mechanism_Code yields an integer code for the mechanism
351 -- used for the result of function, and subprogram'Mechanism_Code (n)
352 -- yields the mechanism used for formal parameter number n (a static
353 -- integer value, 1 = first parameter). The code returned is:
355 -- 1 = by copy (value)
356 -- 2 = by reference
357 -- 3 = by descriptor (default descriptor type)
358 -- 4 = by descriptor (UBS unaligned bit string)
359 -- 5 = by descriptor (UBSB aligned bit string with arbitrary bounds)
360 -- 6 = by descriptor (UBA unaligned bit array)
361 -- 7 = by descriptor (S string, also scalar access type parameter)
362 -- 8 = by descriptor (SB string with arbitrary bounds)
363 -- 9 = by descriptor (A contiguous array)
364 -- 10 = by descriptor (NCA non-contiguous array)
366 --------------------
367 -- Null_Parameter --
368 --------------------
370 Attribute_Null_Parameter => True,
371 -- A reference T'Null_Parameter denotes an (imaginary) object of type
372 -- or subtype T allocated at (machine) address zero. The attribute is
373 -- allowed only as the default expression of a formal parameter, or
374 -- as an actual expression of a subprogram call. In either case, the
375 -- subprogram must be imported.
377 -- The identity of the object is represented by the address zero in
378 -- the argument list, independent of the passing mechanism (explicit
379 -- or default).
381 -- The reason that this capability is needed is that for a record or
382 -- other composite object passed by reference, there is no other way
383 -- of specifying that a zero address should be passed.
385 -----------------
386 -- Object_Size --
387 -----------------
389 Attribute_Object_Size => True,
390 -- Type'Object_Size is the same as Type'Size for all types except
391 -- fixed-point types and discrete types. For fixed-point types and
392 -- discrete types, this attribute gives the size used for default
393 -- allocation of objects and components of the size. See section in
394 -- Einfo ("Handling of type'Size values") for further details.
396 -------------------------
397 -- Passed_By_Reference --
398 -------------------------
400 Attribute_Passed_By_Reference => True,
401 -- T'Passed_By_Reference for any subtype T returns a boolean value that
402 -- is true if the type is normally passed by reference and false if the
403 -- type is normally passed by copy in calls. For scalar types, the
404 -- result is always False and is static. For non-scalar types, the
405 -- result is non-static (since it is computed by Gigi).
407 ------------------
408 -- Range_Length --
409 ------------------
411 Attribute_Range_Length => True,
412 -- T'Range_Length for any discrete type T yields the number of values
413 -- represented by the subtype (zero for a null range). The result is
414 -- static for static subtypes. Note that Range_Length applied to the
415 -- index subtype of a one dimensional array always gives the same result
416 -- as Range applied to the array itself. The result is of type universal
417 -- integer.
419 ---------
420 -- Ref --
421 ---------
423 Attribute_Ref => True,
424 -- System.Address'Ref (Address is the only permissible prefix) is
425 -- equivalent to System'To_Address, provided for compatibility with
426 -- other compilers.
428 ------------------
429 -- Storage_Unit --
430 ------------------
432 Attribute_Storage_Unit => True,
433 -- Standard'Storage_Unit (Standard is the only permissible prefix)
434 -- provides the value System.Storage_Unit, and is intended primarily
435 -- for constructing this definition in package System (see note above
436 -- in Default_Bit_Order description). The is a static attribute.
438 ---------------
439 -- Stub_Type --
440 ---------------
442 Attribute_Stub_Type => True,
443 -- The GNAT implementation of remote access-to-classwide types is
444 -- organised as described in AARM E.4(20.t): a value of an RACW type
445 -- (designating a remote object) is represented as a normal access
446 -- value, pointing to a "stub" object which in turn contains the
447 -- necessary information to contact the designated remote object. A
448 -- call on any dispatching operation of such a stub object does the
449 -- remote call, if necessary, using the information in the stub object
450 -- to locate the target partition, etc.
452 -- For a prefix T that denotes a remote access-to-classwide type,
453 -- T'Stub_Type denotes the type of the corresponding stub objects.
455 -- By construction, the layout of T'Stub_Type is identical to that of
456 -- System.Partition_Interface.RACW_Stub_Type (see implementation notes
457 -- in body of Exp_Dist).
459 -----------------
460 -- Target_Name --
461 -----------------
463 Attribute_Target_Name => True,
464 -- Standard'Target_Name yields the string identifying the target for the
465 -- compilation, taken from Sdefault.Target_Name.
467 ----------------
468 -- To_Address --
469 ----------------
471 Attribute_To_Address => True,
472 -- System'To_Address (System is the only permissible prefix) is a
473 -- function that takes any integer value, and converts it into an
474 -- address value. The semantics is to first convert the integer value to
475 -- type Integer_Address according to normal conversion rules, and then
476 -- to convert this to an address using the same semantics as the
477 -- System.Storage_Elements.To_Address function. The important difference
478 -- is that this is a static attribute so it can be used in
479 -- initializations in preelaborate packages.
481 ----------------
482 -- Type_Class --
483 ----------------
485 Attribute_Type_Class => True,
486 -- T'Type_Class for any type or subtype T yields the value of the type
487 -- class for the full type of T. If T is a generic formal type, then the
488 -- value is the value for the corresponding actual subtype. The value of
489 -- this attribute is of type System.Aux_DEC.Type_Class, which has the
490 -- following definition:
492 -- type Type_Class is
493 -- (Type_Class_Enumeration,
494 -- Type_Class_Integer,
495 -- Type_Class_Fixed_Point,
496 -- Type_Class_Floating_Point,
497 -- Type_Class_Array,
498 -- Type_Class_Record,
499 -- Type_Class_Access,
500 -- Type_Class_Task,
501 -- Type_Class_Address);
503 -- Protected types yield the value Type_Class_Task, which thus applies
504 -- to all concurrent types. This attribute is designed to be compatible
505 -- with the DEC Ada attribute of the same name.
507 -- Note: if pragma Extend_System is used to merge the definitions of
508 -- Aux_DEC into System, then the type Type_Class can be referenced
509 -- as an entity within System, as can its enumeration literals.
511 -----------------
512 -- UET_Address --
513 -----------------
515 Attribute_UET_Address => True,
516 -- Unit'UET_Address, where Unit is a program unit, yields the address
517 -- of the unit exception table for the specified unit. This is only
518 -- used in the internal implementation of exception handling. See the
519 -- implementation of unit Ada.Exceptions for details on its use.
521 ------------------------------
522 -- Universal_Literal_String --
523 ------------------------------
525 Attribute_Universal_Literal_String => True,
526 -- The prefix of 'Universal_Literal_String must be a named number.
527 -- The static result is the string consisting of the characters of
528 -- the number as defined in the original source. This allows the
529 -- user program to access the actual text of named numbers without
530 -- intermediate conversions and without the need to enclose the
531 -- strings in quotes (which would preclude their use as numbers).
533 -------------------------
534 -- Unrestricted_Access --
535 -------------------------
537 Attribute_Unrestricted_Access => True,
538 -- The Unrestricted_Access attribute is similar to Access except that
539 -- all accessibility and aliased view checks are omitted. This is very
540 -- much a user-beware attribute. Basically its status is very similar
541 -- to Address, for which it is a desirable replacement where the value
542 -- desired is an access type. In other words, its effect is identical
543 -- to first taking 'Address and then doing an unchecked conversion to
544 -- a desired access type. Note that in GNAT, but not necessarily in
545 -- other implementations, the use of static chains for inner level
546 -- subprograms means that Unrestricted_Access applied to a subprogram
547 -- yields a value that can be called as long as the subprogram is in
548 -- scope (normal Ada 95 accessibility rules restrict this usage).
550 ---------------
551 -- VADS_Size --
552 ---------------
554 Attribute_VADS_Size => True,
555 -- Typ'VADS_Size yields the Size value typically yielded by some Ada 83
556 -- compilers. The differences between VADS_Size and Size is that for
557 -- scalar types for which no Size has been specified, VADS_Size yields
558 -- the Object_Size rather than the Value_Size. For example, while
559 -- Natural'Size is typically 31, the value of Natural'VADS_Size is 32.
560 -- For all other types, Size and VADS_Size yield the same value.
562 -------------------
563 -- Valid_Scalars --
564 -------------------
566 Attribute_Valid_Scalars => True,
567 -- Obj'Valid_Scalars can be applied to any object. The result depends
568 -- on the type of the object:
570 -- For a scalar type, the result is the same as obj'Valid
572 -- For an array object, the result is True if the result of applying
573 -- Valid_Scalars to every component is True. For an empty array the
574 -- result is True.
576 -- For a record object, the result is True if the result of applying
577 -- Valid_Scalars to every component is True. For class-wide types,
578 -- only the components of the base type are checked. For variant
579 -- records, only the components actually present are checked. The
580 -- discriminants, if any, are also checked. If there are no components
581 -- or discriminants, the result is True.
583 -- For any other type that has discriminants, the result is True if
584 -- the result of applying Valid_Scalars to each discriminant is True.
586 -- For all other types, the result is always True
588 -- A warning is given for a trivially True result, when the attribute
589 -- is applied to an object that is not of scalar, array, or record
590 -- type, or in the composite case if no scalar subcomponents exist. For
591 -- a variant record, the warning is given only if none of the variants
592 -- have scalar subcomponents. In addition, the warning is suppressed
593 -- for private types, or generic formal types in an instance.
595 ----------------
596 -- Value_Size --
597 ----------------
599 Attribute_Value_Size => True,
600 -- Type'Value_Size is the number of bits required to represent value of
601 -- the given subtype. It is the same as Type'Size, but, unlike Size, may
602 -- be set for non-first subtypes. See section in Einfo ("Handling of
603 -- type'Size values") for further details.
605 ---------------
606 -- Word_Size --
607 ---------------
609 Attribute_Word_Size => True,
610 -- Standard'Word_Size (Standard is the only permissible prefix)
611 -- provides the value System.Word_Size, and is intended primarily
612 -- for constructing this definition in package System (see note above
613 -- in Default_Bit_Order description). This is a static attribute.
615 others => False);
617 -----------------
618 -- Subprograms --
619 -----------------
621 procedure Analyze_Attribute (N : Node_Id);
622 -- Performs bottom up semantic analysis of an attribute. Note that the
623 -- parser has already checked that type returning attributes appear only
624 -- in appropriate contexts (i.e. in subtype marks, or as prefixes for
625 -- other attributes).
627 function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean;
628 -- Determine whether the name of an attribute reference categorizes its
629 -- prefix as an lvalue. The following attributes fall under this bracket
630 -- by directly or indirectly modifying their prefixes.
631 -- Access
632 -- Address
633 -- Input
634 -- Read
635 -- Unchecked_Access
636 -- Unrestricted_Access
638 procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id);
639 -- Performs type resolution of attribute. If the attribute yields a
640 -- universal value, mark its type as that of the context. On the other
641 -- hand, if the context itself is universal (as in T'Val (T'Pos (X)), mark
642 -- the type as being the largest type of that class that can be used at
643 -- run-time. This is correct since either the value gets folded (in which
644 -- case it doesn't matter what type of the class we give if, since the
645 -- folding uses universal arithmetic anyway) or it doesn't get folded (in
646 -- which case it is going to be dealt with at runtime, and the largest type
647 -- is right).
649 function Stream_Attribute_Available
650 (Typ : Entity_Id;
651 Nam : TSS_Name_Type;
652 Partial_View : Entity_Id := Empty) return Boolean;
653 -- For a limited type Typ, return True if and only if the given attribute
654 -- is available. For Ada 2005, availability is defined by 13.13.2(36/1).
655 -- For Ada 95, an attribute is considered to be available if it has been
656 -- specified using an attribute definition clause for the type, or for its
657 -- full view, or for an ancestor of either. Parameter Partial_View is used
658 -- only internally, when checking for an attribute definition clause that
659 -- is not visible (Ada 95 only).
661 end Sem_Attr;