2005-06-30 J. D. Johnston <jjohnst@us.ibm.com>
[official-gcc.git] / gcc / tree-ssa-copy.c
blob7111960823732c0df42a7dfd2a9a4894d4ca5952
1 /* Copy propagation and SSA_NAME replacement support routines.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "tree-pass.h"
39 #include "tree-ssa-propagate.h"
40 #include "langhooks.h"
42 /* This file implements the copy propagation pass and provides a
43 handful of interfaces for performing const/copy propagation and
44 simple expression replacement which keep variable annotations
45 up-to-date.
47 We require that for any copy operation where the RHS and LHS have
48 a non-null memory tag the memory tag be the same. It is OK
49 for one or both of the memory tags to be NULL.
51 We also require tracking if a variable is dereferenced in a load or
52 store operation.
54 We enforce these requirements by having all copy propagation and
55 replacements of one SSA_NAME with a different SSA_NAME to use the
56 APIs defined in this file. */
58 /* Return true if we may propagate ORIG into DEST, false otherwise. */
60 bool
61 may_propagate_copy (tree dest, tree orig)
63 tree type_d = TREE_TYPE (dest);
64 tree type_o = TREE_TYPE (orig);
66 /* Do not copy between types for which we *do* need a conversion. */
67 if (!tree_ssa_useless_type_conversion_1 (type_d, type_o))
68 return false;
70 /* FIXME. GIMPLE is allowing pointer assignments and comparisons of
71 pointers that have different alias sets. This means that these
72 pointers will have different memory tags associated to them.
74 If we allow copy propagation in these cases, statements de-referencing
75 the new pointer will now have a reference to a different memory tag
76 with potentially incorrect SSA information.
78 This was showing up in libjava/java/util/zip/ZipFile.java with code
79 like:
81 struct java.io.BufferedInputStream *T.660;
82 struct java.io.BufferedInputStream *T.647;
83 struct java.io.InputStream *is;
84 struct java.io.InputStream *is.662;
85 [ ... ]
86 T.660 = T.647;
87 is = T.660; <-- This ought to be type-casted
88 is.662 = is;
90 Also, f/name.c exposed a similar problem with a COND_EXPR predicate
91 that was causing DOM to generate and equivalence with two pointers of
92 alias-incompatible types:
94 struct _ffename_space *n;
95 struct _ffename *ns;
96 [ ... ]
97 if (n == ns)
98 goto lab;
99 ...
100 lab:
101 return n;
103 I think that GIMPLE should emit the appropriate type-casts. For the
104 time being, blocking copy-propagation in these cases is the safe thing
105 to do. */
106 if (TREE_CODE (dest) == SSA_NAME
107 && TREE_CODE (orig) == SSA_NAME
108 && POINTER_TYPE_P (type_d)
109 && POINTER_TYPE_P (type_o))
111 tree mt_dest = var_ann (SSA_NAME_VAR (dest))->type_mem_tag;
112 tree mt_orig = var_ann (SSA_NAME_VAR (orig))->type_mem_tag;
113 if (mt_dest && mt_orig && mt_dest != mt_orig)
114 return false;
115 else if (!lang_hooks.types_compatible_p (type_d, type_o))
116 return false;
117 else if (get_alias_set (TREE_TYPE (type_d)) !=
118 get_alias_set (TREE_TYPE (type_o)))
119 return false;
122 /* If the destination is a SSA_NAME for a virtual operand, then we have
123 some special cases to handle. */
124 if (TREE_CODE (dest) == SSA_NAME && !is_gimple_reg (dest))
126 /* If both operands are SSA_NAMEs referring to virtual operands, then
127 we can always propagate. */
128 if (TREE_CODE (orig) == SSA_NAME
129 && !is_gimple_reg (orig))
130 return true;
132 /* We have a "copy" from something like a constant into a virtual
133 operand. Reject these. */
134 return false;
137 /* If ORIG flows in from an abnormal edge, it cannot be propagated. */
138 if (TREE_CODE (orig) == SSA_NAME
139 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
140 return false;
142 /* If DEST is an SSA_NAME that flows from an abnormal edge, then it
143 cannot be replaced. */
144 if (TREE_CODE (dest) == SSA_NAME
145 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
146 return false;
148 /* Anything else is OK. */
149 return true;
152 /* Similarly, but we know that we're propagating into an ASM_EXPR. */
154 bool
155 may_propagate_copy_into_asm (tree dest)
157 /* Hard register operands of asms are special. Do not bypass. */
158 return !(TREE_CODE (dest) == SSA_NAME
159 && TREE_CODE (SSA_NAME_VAR (dest)) == VAR_DECL
160 && DECL_HARD_REGISTER (SSA_NAME_VAR (dest)));
164 /* Given two SSA_NAMEs pointers ORIG and NEW such that we are copy
165 propagating NEW into ORIG, consolidate aliasing information so that
166 they both share the same memory tags. */
168 static void
169 merge_alias_info (tree orig, tree new)
171 tree new_sym = SSA_NAME_VAR (new);
172 tree orig_sym = SSA_NAME_VAR (orig);
173 var_ann_t new_ann = var_ann (new_sym);
174 var_ann_t orig_ann = var_ann (orig_sym);
176 gcc_assert (POINTER_TYPE_P (TREE_TYPE (orig)));
177 gcc_assert (POINTER_TYPE_P (TREE_TYPE (new)));
179 #if defined ENABLE_CHECKING
180 gcc_assert (lang_hooks.types_compatible_p (TREE_TYPE (orig),
181 TREE_TYPE (new)));
183 /* If the pointed-to alias sets are different, these two pointers
184 would never have the same memory tag. In this case, NEW should
185 not have been propagated into ORIG. */
186 gcc_assert (get_alias_set (TREE_TYPE (TREE_TYPE (new_sym)))
187 == get_alias_set (TREE_TYPE (TREE_TYPE (orig_sym))));
188 #endif
190 /* Synchronize the type tags. If both pointers had a tag and they
191 are different, then something has gone wrong. */
192 if (new_ann->type_mem_tag == NULL_TREE)
193 new_ann->type_mem_tag = orig_ann->type_mem_tag;
194 else if (orig_ann->type_mem_tag == NULL_TREE)
195 orig_ann->type_mem_tag = new_ann->type_mem_tag;
196 else
197 gcc_assert (new_ann->type_mem_tag == orig_ann->type_mem_tag);
199 /* Synchronize the name tags. If NEW did not have a name tag, get
200 it from ORIG. This happens when NEW is a compiler generated
201 temporary which still hasn't had its points-to information filled
202 in. */
203 if (SSA_NAME_PTR_INFO (orig))
205 struct ptr_info_def *orig_ptr_info = SSA_NAME_PTR_INFO (orig);
206 struct ptr_info_def *new_ptr_info = SSA_NAME_PTR_INFO (new);
208 if (new_ptr_info == NULL)
209 duplicate_ssa_name_ptr_info (new, orig_ptr_info);
210 else if (orig_ptr_info->name_mem_tag
211 && new_ptr_info->name_mem_tag
212 && orig_ptr_info->pt_vars
213 && new_ptr_info->pt_vars)
215 /* Note that pointer NEW may actually have a different set
216 of pointed-to variables. However, since NEW is being
217 copy-propagated into ORIG, it must always be true that
218 the pointed-to set for pointer NEW is the same, or a
219 subset, of the pointed-to set for pointer ORIG. If this
220 isn't the case, we shouldn't have been able to do the
221 propagation of NEW into ORIG. */
222 gcc_assert (bitmap_intersect_p (new_ptr_info->pt_vars,
223 orig_ptr_info->pt_vars));
229 /* Common code for propagate_value and replace_exp.
231 Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the
232 replacement is done to propagate a value or not. */
234 static void
235 replace_exp_1 (use_operand_p op_p, tree val,
236 bool for_propagation ATTRIBUTE_UNUSED)
238 tree op = USE_FROM_PTR (op_p);
240 #if defined ENABLE_CHECKING
241 gcc_assert (!(for_propagation
242 && TREE_CODE (op) == SSA_NAME
243 && TREE_CODE (val) == SSA_NAME
244 && !may_propagate_copy (op, val)));
245 #endif
247 if (TREE_CODE (val) == SSA_NAME)
249 if (TREE_CODE (op) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (op)))
250 merge_alias_info (op, val);
251 SET_USE (op_p, val);
253 else
254 SET_USE (op_p, unsave_expr_now (val));
258 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
259 into the operand pointed by OP_P.
261 Use this version for const/copy propagation as it will perform additional
262 checks to ensure validity of the const/copy propagation. */
264 void
265 propagate_value (use_operand_p op_p, tree val)
267 replace_exp_1 (op_p, val, true);
271 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
272 into the tree pointed by OP_P.
274 Use this version for const/copy propagation when SSA operands are not
275 available. It will perform the additional checks to ensure validity of
276 the const/copy propagation, but will not update any operand information.
277 Be sure to mark the stmt as modified. */
279 void
280 propagate_tree_value (tree *op_p, tree val)
282 #if defined ENABLE_CHECKING
283 gcc_assert (!(TREE_CODE (val) == SSA_NAME
284 && TREE_CODE (*op_p) == SSA_NAME
285 && !may_propagate_copy (*op_p, val)));
286 #endif
288 if (TREE_CODE (val) == SSA_NAME)
290 if (TREE_CODE (*op_p) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (*op_p)))
291 merge_alias_info (*op_p, val);
292 *op_p = val;
294 else
295 *op_p = unsave_expr_now (val);
299 /* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
301 Use this version when not const/copy propagating values. For example,
302 PRE uses this version when building expressions as they would appear
303 in specific blocks taking into account actions of PHI nodes. */
305 void
306 replace_exp (use_operand_p op_p, tree val)
308 replace_exp_1 (op_p, val, false);
312 /*---------------------------------------------------------------------------
313 Copy propagation
314 ---------------------------------------------------------------------------*/
315 /* During propagation, we keep chains of variables that are copies of
316 one another. If variable X_i is a copy of X_j and X_j is a copy of
317 X_k, COPY_OF will contain:
319 COPY_OF[i].VALUE = X_j
320 COPY_OF[j].VALUE = X_k
321 COPY_OF[k].VALUE = X_k
323 After propagation, the copy-of value for each variable X_i is
324 converted into the final value by walking the copy-of chains and
325 updating COPY_OF[i].VALUE to be the last element of the chain. */
326 static prop_value_t *copy_of;
328 /* Used in set_copy_of_val to determine if the last link of a copy-of
329 chain has changed. */
330 static tree *cached_last_copy_of;
332 /* True if we are doing copy propagation on loads and stores. */
333 static bool do_store_copy_prop;
336 /* Return true if this statement may generate a useful copy. */
338 static bool
339 stmt_may_generate_copy (tree stmt)
341 tree lhs, rhs;
342 stmt_ann_t ann;
344 if (TREE_CODE (stmt) == PHI_NODE)
345 return !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (stmt));
347 if (TREE_CODE (stmt) != MODIFY_EXPR)
348 return false;
350 lhs = TREE_OPERAND (stmt, 0);
351 rhs = TREE_OPERAND (stmt, 1);
352 ann = stmt_ann (stmt);
354 /* If the statement has volatile operands, it won't generate a
355 useful copy. */
356 if (ann->has_volatile_ops)
357 return false;
359 /* If we are not doing store copy-prop, statements with loads and/or
360 stores will never generate a useful copy. */
361 if (!do_store_copy_prop
362 && !ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
363 return false;
365 /* Otherwise, the only statements that generate useful copies are
366 assignments whose RHS is just an SSA name that doesn't flow
367 through abnormal edges. */
368 return TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs);
372 /* Return the copy-of value for VAR. */
374 static inline prop_value_t *
375 get_copy_of_val (tree var)
377 prop_value_t *val = &copy_of[SSA_NAME_VERSION (var)];
379 if (val->value == NULL_TREE
380 && !stmt_may_generate_copy (SSA_NAME_DEF_STMT (var)))
382 /* If the variable will never generate a useful copy relation,
383 make it its own copy. */
384 val->value = var;
385 val->mem_ref = NULL_TREE;
388 return val;
392 /* Return last link in the copy-of chain for VAR. */
394 static tree
395 get_last_copy_of (tree var)
397 tree last;
398 int i;
400 /* Traverse COPY_OF starting at VAR until we get to the last
401 link in the chain. Since it is possible to have cycles in PHI
402 nodes, the copy-of chain may also contain cycles.
404 To avoid infinite loops and to avoid traversing lengthy copy-of
405 chains, we artificially limit the maximum number of chains we are
406 willing to traverse.
408 The value 5 was taken from a compiler and runtime library
409 bootstrap and a mixture of C and C++ code from various sources.
410 More than 82% of all copy-of chains were shorter than 5 links. */
411 #define LIMIT 5
413 last = var;
414 for (i = 0; i < LIMIT; i++)
416 tree copy = copy_of[SSA_NAME_VERSION (last)].value;
417 if (copy == NULL_TREE || copy == last)
418 break;
419 last = copy;
422 /* If we have reached the limit, then we are either in a copy-of
423 cycle or the copy-of chain is too long. In this case, just
424 return VAR so that it is not considered a copy of anything. */
425 return (i < LIMIT ? last : var);
429 /* Set FIRST to be the first variable in the copy-of chain for DEST.
430 If DEST's copy-of value or its copy-of chain has changed, return
431 true.
433 MEM_REF is the memory reference where FIRST is stored. This is
434 used when DEST is a non-register and we are copy propagating loads
435 and stores. */
437 static inline bool
438 set_copy_of_val (tree dest, tree first, tree mem_ref)
440 unsigned int dest_ver = SSA_NAME_VERSION (dest);
441 tree old_first, old_last, new_last;
443 /* Set FIRST to be the first link in COPY_OF[DEST]. If that
444 changed, return true. */
445 old_first = copy_of[dest_ver].value;
446 copy_of[dest_ver].value = first;
447 copy_of[dest_ver].mem_ref = mem_ref;
449 if (old_first != first)
450 return true;
452 /* If FIRST and OLD_FIRST are the same, we need to check whether the
453 copy-of chain starting at FIRST ends in a different variable. If
454 the copy-of chain starting at FIRST ends up in a different
455 variable than the last cached value we had for DEST, then return
456 true because DEST is now a copy of a different variable.
458 This test is necessary because even though the first link in the
459 copy-of chain may not have changed, if any of the variables in
460 the copy-of chain changed its final value, DEST will now be the
461 copy of a different variable, so we have to do another round of
462 propagation for everything that depends on DEST. */
463 old_last = cached_last_copy_of[dest_ver];
464 new_last = get_last_copy_of (dest);
465 cached_last_copy_of[dest_ver] = new_last;
467 return (old_last != new_last);
471 /* Dump the copy-of value for variable VAR to DUMP_FILE. */
473 static void
474 dump_copy_of (FILE *dump_file, tree var)
476 tree val;
477 sbitmap visited;
479 print_generic_expr (dump_file, var, dump_flags);
481 if (TREE_CODE (var) != SSA_NAME)
482 return;
484 visited = sbitmap_alloc (num_ssa_names);
485 sbitmap_zero (visited);
486 SET_BIT (visited, SSA_NAME_VERSION (var));
488 fprintf (dump_file, " copy-of chain: ");
490 val = var;
491 print_generic_expr (dump_file, val, 0);
492 fprintf (dump_file, " ");
493 while (copy_of[SSA_NAME_VERSION (val)].value)
495 fprintf (dump_file, "-> ");
496 val = copy_of[SSA_NAME_VERSION (val)].value;
497 print_generic_expr (dump_file, val, 0);
498 fprintf (dump_file, " ");
499 if (TEST_BIT (visited, SSA_NAME_VERSION (val)))
500 break;
501 SET_BIT (visited, SSA_NAME_VERSION (val));
504 val = get_copy_of_val (var)->value;
505 if (val == NULL_TREE)
506 fprintf (dump_file, "[UNDEFINED]");
507 else if (val != var)
508 fprintf (dump_file, "[COPY]");
509 else
510 fprintf (dump_file, "[NOT A COPY]");
512 sbitmap_free (visited);
516 /* Evaluate the RHS of STMT. If it produces a valid copy, set the LHS
517 value and store the LHS into *RESULT_P. If STMT generates more
518 than one name (i.e., STMT is an aliased store), it is enough to
519 store the first name in the V_MAY_DEF list into *RESULT_P. After
520 all, the names generated will be VUSEd in the same statements. */
522 static enum ssa_prop_result
523 copy_prop_visit_assignment (tree stmt, tree *result_p)
525 tree lhs, rhs;
526 prop_value_t *rhs_val;
528 lhs = TREE_OPERAND (stmt, 0);
529 rhs = TREE_OPERAND (stmt, 1);
531 gcc_assert (TREE_CODE (rhs) == SSA_NAME);
533 rhs_val = get_copy_of_val (rhs);
535 if (TREE_CODE (lhs) == SSA_NAME)
537 /* Straight copy between two SSA names. First, make sure that
538 we can propagate the RHS into uses of LHS. */
539 if (!may_propagate_copy (lhs, rhs))
540 return SSA_PROP_VARYING;
542 /* Avoid copy propagation from an inner into an outer loop.
543 Otherwise, this may move loop variant variables outside of
544 their loops and prevent coalescing opportunities. If the
545 value was loop invariant, it will be hoisted by LICM and
546 exposed for copy propagation. */
547 if (loop_depth_of_name (rhs) > loop_depth_of_name (lhs))
548 return SSA_PROP_VARYING;
550 /* Notice that in the case of assignments, we make the LHS be a
551 copy of RHS's value, not of RHS itself. This avoids keeping
552 unnecessary copy-of chains (assignments cannot be in a cycle
553 like PHI nodes), speeding up the propagation process.
554 This is different from what we do in copy_prop_visit_phi_node.
555 In those cases, we are interested in the copy-of chains. */
556 *result_p = lhs;
557 if (set_copy_of_val (*result_p, rhs_val->value, rhs_val->mem_ref))
558 return SSA_PROP_INTERESTING;
559 else
560 return SSA_PROP_NOT_INTERESTING;
562 else if (stmt_makes_single_store (stmt))
564 /* Otherwise, set the names in V_MAY_DEF/V_MUST_DEF operands
565 to be a copy of RHS. */
566 ssa_op_iter i;
567 tree vdef;
568 bool changed;
570 /* This should only be executed when doing store copy-prop. */
571 gcc_assert (do_store_copy_prop);
573 /* Set the value of every VDEF to RHS_VAL. */
574 changed = false;
575 FOR_EACH_SSA_TREE_OPERAND (vdef, stmt, i, SSA_OP_VIRTUAL_DEFS)
576 changed |= set_copy_of_val (vdef, rhs_val->value, lhs);
578 /* Note that for propagation purposes, we are only interested in
579 visiting statements that load the exact same memory reference
580 stored here. Those statements will have the exact same list
581 of virtual uses, so it is enough to set the output of this
582 statement to be its first virtual definition. */
583 *result_p = first_vdef (stmt);
585 if (changed)
586 return SSA_PROP_INTERESTING;
587 else
588 return SSA_PROP_NOT_INTERESTING;
592 return SSA_PROP_VARYING;
596 /* Visit the COND_EXPR STMT. Return SSA_PROP_INTERESTING
597 if it can determine which edge will be taken. Otherwise, return
598 SSA_PROP_VARYING. */
600 static enum ssa_prop_result
601 copy_prop_visit_cond_stmt (tree stmt, edge *taken_edge_p)
603 enum ssa_prop_result retval;
604 tree cond;
606 cond = COND_EXPR_COND (stmt);
607 retval = SSA_PROP_VARYING;
609 /* The only conditionals that we may be able to compute statically
610 are predicates involving two SSA_NAMEs. */
611 if (COMPARISON_CLASS_P (cond)
612 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
613 && TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME)
615 tree op0 = get_last_copy_of (TREE_OPERAND (cond, 0));
616 tree op1 = get_last_copy_of (TREE_OPERAND (cond, 1));
618 /* See if we can determine the predicate's value. */
619 if (dump_file && (dump_flags & TDF_DETAILS))
621 fprintf (dump_file, "Trying to determine truth value of ");
622 fprintf (dump_file, "predicate ");
623 print_generic_stmt (dump_file, cond, 0);
626 /* We can fold COND and get a useful result only when we have
627 the same SSA_NAME on both sides of a comparison operator. */
628 if (op0 == op1)
630 tree folded_cond = fold_binary (TREE_CODE (cond), boolean_type_node,
631 op0, op1);
632 if (folded_cond)
634 basic_block bb = bb_for_stmt (stmt);
635 *taken_edge_p = find_taken_edge (bb, folded_cond);
636 if (*taken_edge_p)
637 retval = SSA_PROP_INTERESTING;
642 if (dump_file && (dump_flags & TDF_DETAILS) && *taken_edge_p)
643 fprintf (dump_file, "\nConditional will always take edge %d->%d\n",
644 (*taken_edge_p)->src->index, (*taken_edge_p)->dest->index);
646 return retval;
650 /* Evaluate statement STMT. If the statement produces a new output
651 value, return SSA_PROP_INTERESTING and store the SSA_NAME holding
652 the new value in *RESULT_P.
654 If STMT is a conditional branch and we can determine its truth
655 value, set *TAKEN_EDGE_P accordingly.
657 If the new value produced by STMT is varying, return
658 SSA_PROP_VARYING. */
660 static enum ssa_prop_result
661 copy_prop_visit_stmt (tree stmt, edge *taken_edge_p, tree *result_p)
663 stmt_ann_t ann;
664 enum ssa_prop_result retval;
666 if (dump_file && (dump_flags & TDF_DETAILS))
668 fprintf (dump_file, "\nVisiting statement:\n");
669 print_generic_stmt (dump_file, stmt, dump_flags);
670 fprintf (dump_file, "\n");
673 ann = stmt_ann (stmt);
675 if (TREE_CODE (stmt) == MODIFY_EXPR
676 && TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME
677 && (do_store_copy_prop
678 || TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME))
680 /* If the statement is a copy assignment, evaluate its RHS to
681 see if the lattice value of its output has changed. */
682 retval = copy_prop_visit_assignment (stmt, result_p);
684 else if (TREE_CODE (stmt) == COND_EXPR)
686 /* See if we can determine which edge goes out of a conditional
687 jump. */
688 retval = copy_prop_visit_cond_stmt (stmt, taken_edge_p);
690 else
691 retval = SSA_PROP_VARYING;
693 if (retval == SSA_PROP_VARYING)
695 tree def;
696 ssa_op_iter i;
698 /* Any other kind of statement is not interesting for constant
699 propagation and, therefore, not worth simulating. */
700 if (dump_file && (dump_flags & TDF_DETAILS))
701 fprintf (dump_file, "No interesting values produced.\n");
703 /* The assignment is not a copy operation. Don't visit this
704 statement again and mark all the definitions in the statement
705 to be copies of nothing. */
706 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_ALL_DEFS)
707 set_copy_of_val (def, def, NULL_TREE);
710 return retval;
714 /* Visit PHI node PHI. If all the arguments produce the same value,
715 set it to be the value of the LHS of PHI. */
717 static enum ssa_prop_result
718 copy_prop_visit_phi_node (tree phi)
720 enum ssa_prop_result retval;
721 int i;
722 tree lhs;
723 prop_value_t phi_val = { 0, NULL_TREE, NULL_TREE };
725 lhs = PHI_RESULT (phi);
727 if (dump_file && (dump_flags & TDF_DETAILS))
729 fprintf (dump_file, "\nVisiting PHI node: ");
730 print_generic_expr (dump_file, phi, dump_flags);
731 fprintf (dump_file, "\n\n");
734 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
736 prop_value_t *arg_val;
737 tree arg = PHI_ARG_DEF (phi, i);
738 edge e = PHI_ARG_EDGE (phi, i);
740 /* We don't care about values flowing through non-executable
741 edges. */
742 if (!(e->flags & EDGE_EXECUTABLE))
743 continue;
745 /* Constants in the argument list never generate a useful copy.
746 Similarly, names that flow through abnormal edges cannot be
747 used to derive copies. */
748 if (TREE_CODE (arg) != SSA_NAME || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (arg))
750 phi_val.value = lhs;
751 break;
754 /* Avoid copy propagation from an inner into an outer loop.
755 Otherwise, this may move loop variant variables outside of
756 their loops and prevent coalescing opportunities. If the
757 value was loop invariant, it will be hoisted by LICM and
758 exposed for copy propagation. */
759 if (loop_depth_of_name (arg) > loop_depth_of_name (lhs))
761 phi_val.value = lhs;
762 break;
765 /* If the LHS appears in the argument list, ignore it. It is
766 irrelevant as a copy. */
767 if (arg == lhs || get_last_copy_of (arg) == lhs)
768 continue;
770 if (dump_file && (dump_flags & TDF_DETAILS))
772 fprintf (dump_file, "\tArgument #%d: ", i);
773 dump_copy_of (dump_file, arg);
774 fprintf (dump_file, "\n");
777 arg_val = get_copy_of_val (arg);
779 /* If the LHS didn't have a value yet, make it a copy of the
780 first argument we find. Notice that while we make the LHS be
781 a copy of the argument itself, we take the memory reference
782 from the argument's value so that we can compare it to the
783 memory reference of all the other arguments. */
784 if (phi_val.value == NULL_TREE)
786 phi_val.value = arg;
787 phi_val.mem_ref = arg_val->mem_ref;
788 continue;
791 /* If PHI_VAL and ARG don't have a common copy-of chain, then
792 this PHI node cannot be a copy operation. Also, if we are
793 copy propagating stores and these two arguments came from
794 different memory references, they cannot be considered
795 copies. */
796 if (get_last_copy_of (phi_val.value) != get_last_copy_of (arg)
797 || (do_store_copy_prop
798 && phi_val.mem_ref
799 && arg_val->mem_ref
800 && simple_cst_equal (phi_val.mem_ref, arg_val->mem_ref) != 1))
802 phi_val.value = lhs;
803 break;
807 if (phi_val.value && set_copy_of_val (lhs, phi_val.value, phi_val.mem_ref))
808 retval = (phi_val.value != lhs) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
809 else
810 retval = SSA_PROP_NOT_INTERESTING;
812 if (dump_file && (dump_flags & TDF_DETAILS))
814 fprintf (dump_file, "\nPHI node ");
815 dump_copy_of (dump_file, lhs);
816 fprintf (dump_file, "\nTelling the propagator to ");
817 if (retval == SSA_PROP_INTERESTING)
818 fprintf (dump_file, "add SSA edges out of this PHI and continue.");
819 else if (retval == SSA_PROP_VARYING)
820 fprintf (dump_file, "add SSA edges out of this PHI and never visit again.");
821 else
822 fprintf (dump_file, "do nothing with SSA edges and keep iterating.");
823 fprintf (dump_file, "\n\n");
826 return retval;
830 /* Initialize structures used for copy propagation. */
832 static void
833 init_copy_prop (void)
835 basic_block bb;
837 copy_of = xmalloc (num_ssa_names * sizeof (*copy_of));
838 memset (copy_of, 0, num_ssa_names * sizeof (*copy_of));
840 cached_last_copy_of = xmalloc (num_ssa_names * sizeof (*cached_last_copy_of));
841 memset (cached_last_copy_of, 0, num_ssa_names * sizeof (*cached_last_copy_of));
843 FOR_EACH_BB (bb)
845 block_stmt_iterator si;
846 tree phi;
848 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
850 tree stmt = bsi_stmt (si);
852 /* The only statements that we care about are those that may
853 generate useful copies. We also need to mark conditional
854 jumps so that their outgoing edges are added to the work
855 lists of the propagator. */
856 if (stmt_ends_bb_p (stmt))
857 DONT_SIMULATE_AGAIN (stmt) = false;
858 else if (stmt_may_generate_copy (stmt))
859 DONT_SIMULATE_AGAIN (stmt) = false;
860 else
862 tree def;
863 ssa_op_iter iter;
865 /* No need to simulate this statement anymore. */
866 DONT_SIMULATE_AGAIN (stmt) = true;
868 /* Mark all the outputs of this statement as not being
869 the copy of anything. */
870 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
871 set_copy_of_val (def, def, NULL_TREE);
875 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
876 DONT_SIMULATE_AGAIN (phi) = false;
881 /* Deallocate memory used in copy propagation and do final
882 substitution. */
884 static void
885 fini_copy_prop (void)
887 size_t i;
888 prop_value_t *tmp;
890 /* Set the final copy-of value for each variable by traversing the
891 copy-of chains. */
892 tmp = xmalloc (num_ssa_names * sizeof (*tmp));
893 memset (tmp, 0, num_ssa_names * sizeof (*tmp));
894 for (i = 1; i < num_ssa_names; i++)
896 tree var = ssa_name (i);
897 if (var && copy_of[i].value && copy_of[i].value != var)
898 tmp[i].value = get_last_copy_of (var);
901 substitute_and_fold (tmp, false);
903 free (cached_last_copy_of);
904 free (copy_of);
905 free (tmp);
909 /* Main entry point to the copy propagator. The algorithm propagates
910 the value COPY-OF using ssa_propagate. For every variable X_i,
911 COPY-OF(X_i) indicates which variable is X_i created from. The
912 following example shows how the algorithm proceeds at a high level:
914 1 a_24 = x_1
915 2 a_2 = PHI <a_24, x_1>
916 3 a_5 = PHI <a_2>
917 4 x_1 = PHI <x_298, a_5, a_2>
919 The end result should be that a_2, a_5, a_24 and x_1 are a copy of
920 x_298. Propagation proceeds as follows.
922 Visit #1: a_24 is copy-of x_1. Value changed.
923 Visit #2: a_2 is copy-of x_1. Value changed.
924 Visit #3: a_5 is copy-of x_1. Value changed.
925 Visit #4: x_1 is copy-of x_298. Value changed.
926 Visit #1: a_24 is copy-of x_298. Value changed.
927 Visit #2: a_2 is copy-of x_298. Value changed.
928 Visit #3: a_5 is copy-of x_298. Value changed.
929 Visit #4: x_1 is copy-of x_298. Stable state reached.
931 When visiting PHI nodes, we only consider arguments that flow
932 through edges marked executable by the propagation engine. So,
933 when visiting statement #2 for the first time, we will only look at
934 the first argument (a_24) and optimistically assume that its value
935 is the copy of a_24 (x_1).
937 The problem with this approach is that it may fail to discover copy
938 relations in PHI cycles. Instead of propagating copy-of
939 values, we actually propagate copy-of chains. For instance:
941 A_3 = B_1;
942 C_9 = A_3;
943 D_4 = C_9;
944 X_i = D_4;
946 In this code fragment, COPY-OF (X_i) = { D_4, C_9, A_3, B_1 }.
947 Obviously, we are only really interested in the last value of the
948 chain, however the propagator needs to access the copy-of chain
949 when visiting PHI nodes.
951 To represent the copy-of chain, we use the array COPY_CHAINS, which
952 holds the first link in the copy-of chain for every variable.
953 If variable X_i is a copy of X_j, which in turn is a copy of X_k,
954 the array will contain:
956 COPY_CHAINS[i] = X_j
957 COPY_CHAINS[j] = X_k
958 COPY_CHAINS[k] = X_k
960 Keeping copy-of chains instead of copy-of values directly becomes
961 important when visiting PHI nodes. Suppose that we had the
962 following PHI cycle, such that x_52 is already considered a copy of
963 x_53:
965 1 x_54 = PHI <x_53, x_52>
966 2 x_53 = PHI <x_898, x_54>
968 Visit #1: x_54 is copy-of x_53 (because x_52 is copy-of x_53)
969 Visit #2: x_53 is copy-of x_898 (because x_54 is a copy of x_53,
970 so it is considered irrelevant
971 as a copy).
972 Visit #1: x_54 is copy-of nothing (x_53 is a copy-of x_898 and
973 x_52 is a copy of x_53, so
974 they don't match)
975 Visit #2: x_53 is copy-of nothing
977 This problem is avoided by keeping a chain of copies, instead of
978 the final copy-of value. Propagation will now only keep the first
979 element of a variable's copy-of chain. When visiting PHI nodes,
980 arguments are considered equal if their copy-of chains end in the
981 same variable. So, as long as their copy-of chains overlap, we
982 know that they will be a copy of the same variable, regardless of
983 which variable that may be).
985 Propagation would then proceed as follows (the notation a -> b
986 means that a is a copy-of b):
988 Visit #1: x_54 = PHI <x_53, x_52>
989 x_53 -> x_53
990 x_52 -> x_53
991 Result: x_54 -> x_53. Value changed. Add SSA edges.
993 Visit #1: x_53 = PHI <x_898, x_54>
994 x_898 -> x_898
995 x_54 -> x_53
996 Result: x_53 -> x_898. Value changed. Add SSA edges.
998 Visit #2: x_54 = PHI <x_53, x_52>
999 x_53 -> x_898
1000 x_52 -> x_53 -> x_898
1001 Result: x_54 -> x_898. Value changed. Add SSA edges.
1003 Visit #2: x_53 = PHI <x_898, x_54>
1004 x_898 -> x_898
1005 x_54 -> x_898
1006 Result: x_53 -> x_898. Value didn't change. Stable state
1008 Once the propagator stabilizes, we end up with the desired result
1009 x_53 and x_54 are both copies of x_898. */
1011 static void
1012 execute_copy_prop (bool store_copy_prop)
1014 do_store_copy_prop = store_copy_prop;
1015 init_copy_prop ();
1016 ssa_propagate (copy_prop_visit_stmt, copy_prop_visit_phi_node);
1017 fini_copy_prop ();
1021 static bool
1022 gate_copy_prop (void)
1024 return flag_tree_copy_prop != 0;
1027 static void
1028 do_copy_prop (void)
1030 execute_copy_prop (false);
1033 struct tree_opt_pass pass_copy_prop =
1035 "copyprop", /* name */
1036 gate_copy_prop, /* gate */
1037 do_copy_prop, /* execute */
1038 NULL, /* sub */
1039 NULL, /* next */
1040 0, /* static_pass_number */
1041 TV_TREE_COPY_PROP, /* tv_id */
1042 PROP_ssa | PROP_alias | PROP_cfg, /* properties_required */
1043 0, /* properties_provided */
1044 0, /* properties_destroyed */
1045 0, /* todo_flags_start */
1046 TODO_cleanup_cfg
1047 | TODO_dump_func
1048 | TODO_ggc_collect
1049 | TODO_verify_ssa
1050 | TODO_update_ssa, /* todo_flags_finish */
1051 0 /* letter */
1055 static bool
1056 gate_store_copy_prop (void)
1058 /* STORE-COPY-PROP is enabled only with -ftree-store-copy-prop, but
1059 when -fno-tree-store-copy-prop is specified, we should run
1060 regular COPY-PROP. That's why the pass is enabled with either
1061 flag. */
1062 return flag_tree_store_copy_prop != 0 || flag_tree_copy_prop != 0;
1065 static void
1066 store_copy_prop (void)
1068 /* If STORE-COPY-PROP is not enabled, we just run regular COPY-PROP. */
1069 execute_copy_prop (flag_tree_store_copy_prop != 0);
1072 struct tree_opt_pass pass_store_copy_prop =
1074 "store_copyprop", /* name */
1075 gate_store_copy_prop, /* gate */
1076 store_copy_prop, /* execute */
1077 NULL, /* sub */
1078 NULL, /* next */
1079 0, /* static_pass_number */
1080 TV_TREE_STORE_COPY_PROP, /* tv_id */
1081 PROP_ssa | PROP_alias | PROP_cfg, /* properties_required */
1082 0, /* properties_provided */
1083 0, /* properties_destroyed */
1084 0, /* todo_flags_start */
1085 TODO_dump_func
1086 | TODO_cleanup_cfg
1087 | TODO_ggc_collect
1088 | TODO_verify_ssa
1089 | TODO_update_ssa, /* todo_flags_finish */
1090 0 /* letter */