2005-06-30 J. D. Johnston <jjohnst@us.ibm.com>
[official-gcc.git] / gcc / function.c
blob9727e6d754d38f4cf8e7297ae486550ec875e354
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "predict.h"
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 life_analysis has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 DEF_VEC_I(int);
127 DEF_VEC_ALLOC_I(int,heap);
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap) *prologue;
131 static VEC(int,heap) *epilogue;
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134 in this function. */
135 static VEC(int,heap) *sibcall_epilogue;
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
155 struct temp_slot GTY(())
157 /* Points to next temporary slot. */
158 struct temp_slot *next;
159 /* Points to previous temporary slot. */
160 struct temp_slot *prev;
162 /* The rtx to used to reference the slot. */
163 rtx slot;
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
166 rtx address;
167 /* The alignment (in bits) of the slot. */
168 unsigned int align;
169 /* The size, in units, of the slot. */
170 HOST_WIDE_INT size;
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
175 tree type;
176 /* Nonzero if this temporary is currently in use. */
177 char in_use;
178 /* Nonzero if this temporary has its address taken. */
179 char addr_taken;
180 /* Nesting level at which this slot is being used. */
181 int level;
182 /* Nonzero if this should survive a call to free_temp_slots. */
183 int keep;
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size;
192 /* Forward declarations. */
194 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195 struct function *);
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
207 static int contains (rtx, VEC(int,heap) **);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
225 struct function *
226 find_function_data (tree decl)
228 struct function *p;
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
234 gcc_unreachable ();
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
243 void
244 push_function_context_to (tree context ATTRIBUTE_UNUSED)
246 struct function *p;
248 if (cfun == 0)
249 init_dummy_function_start ();
250 p = cfun;
252 p->outer = outer_function_chain;
253 outer_function_chain = p;
255 lang_hooks.function.enter_nested (p);
257 cfun = 0;
260 void
261 push_function_context (void)
263 push_function_context_to (current_function_decl);
266 /* Restore the last saved context, at the end of a nested function.
267 This function is called from language-specific code. */
269 void
270 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
272 struct function *p = outer_function_chain;
274 cfun = p;
275 outer_function_chain = p->outer;
277 current_function_decl = p->decl;
279 lang_hooks.function.leave_nested (p);
281 /* Reset variables that have known state during rtx generation. */
282 virtuals_instantiated = 0;
283 generating_concat_p = 1;
286 void
287 pop_function_context (void)
289 pop_function_context_from (current_function_decl);
292 /* Clear out all parts of the state in F that can safely be discarded
293 after the function has been parsed, but not compiled, to let
294 garbage collection reclaim the memory. */
296 void
297 free_after_parsing (struct function *f)
299 /* f->expr->forced_labels is used by code generation. */
300 /* f->emit->regno_reg_rtx is used by code generation. */
301 /* f->varasm is used by code generation. */
302 /* f->eh->eh_return_stub_label is used by code generation. */
304 lang_hooks.function.final (f);
307 /* Clear out all parts of the state in F that can safely be discarded
308 after the function has been compiled, to let garbage collection
309 reclaim the memory. */
311 void
312 free_after_compilation (struct function *f)
314 VEC_free (int, heap, prologue);
315 VEC_free (int, heap, epilogue);
316 VEC_free (int, heap, sibcall_epilogue);
318 f->eh = NULL;
319 f->expr = NULL;
320 f->emit = NULL;
321 f->varasm = NULL;
322 f->machine = NULL;
323 f->cfg = NULL;
325 f->x_avail_temp_slots = NULL;
326 f->x_used_temp_slots = NULL;
327 f->arg_offset_rtx = NULL;
328 f->return_rtx = NULL;
329 f->internal_arg_pointer = NULL;
330 f->x_nonlocal_goto_handler_labels = NULL;
331 f->x_return_label = NULL;
332 f->x_naked_return_label = NULL;
333 f->x_stack_slot_list = NULL;
334 f->x_tail_recursion_reentry = NULL;
335 f->x_arg_pointer_save_area = NULL;
336 f->x_parm_birth_insn = NULL;
337 f->original_arg_vector = NULL;
338 f->original_decl_initial = NULL;
339 f->epilogue_delay_list = NULL;
342 /* Allocate fixed slots in the stack frame of the current function. */
344 /* Return size needed for stack frame based on slots so far allocated in
345 function F.
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
349 static HOST_WIDE_INT
350 get_func_frame_size (struct function *f)
352 if (FRAME_GROWS_DOWNWARD)
353 return -f->x_frame_offset;
354 else
355 return f->x_frame_offset;
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
361 HOST_WIDE_INT
362 get_frame_size (void)
364 return get_func_frame_size (cfun);
367 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
368 with machine mode MODE.
370 ALIGN controls the amount of alignment for the address of the slot:
371 0 means according to MODE,
372 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
373 -2 means use BITS_PER_UNIT,
374 positive specifies alignment boundary in bits.
376 We do not round to stack_boundary here.
378 FUNCTION specifies the function to allocate in. */
380 static rtx
381 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
382 struct function *function)
384 rtx x, addr;
385 int bigend_correction = 0;
386 unsigned int alignment;
387 int frame_off, frame_alignment, frame_phase;
389 if (align == 0)
391 tree type;
393 if (mode == BLKmode)
394 alignment = BIGGEST_ALIGNMENT;
395 else
396 alignment = GET_MODE_ALIGNMENT (mode);
398 /* Allow the target to (possibly) increase the alignment of this
399 stack slot. */
400 type = lang_hooks.types.type_for_mode (mode, 0);
401 if (type)
402 alignment = LOCAL_ALIGNMENT (type, alignment);
404 alignment /= BITS_PER_UNIT;
406 else if (align == -1)
408 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
409 size = CEIL_ROUND (size, alignment);
411 else if (align == -2)
412 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
413 else
414 alignment = align / BITS_PER_UNIT;
416 if (FRAME_GROWS_DOWNWARD)
417 function->x_frame_offset -= size;
419 /* Ignore alignment we can't do with expected alignment of the boundary. */
420 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
421 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
423 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
424 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
426 /* Calculate how many bytes the start of local variables is off from
427 stack alignment. */
428 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
429 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
430 frame_phase = frame_off ? frame_alignment - frame_off : 0;
432 /* Round the frame offset to the specified alignment. The default is
433 to always honor requests to align the stack but a port may choose to
434 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
435 if (STACK_ALIGNMENT_NEEDED
436 || mode != BLKmode
437 || size != 0)
439 /* We must be careful here, since FRAME_OFFSET might be negative and
440 division with a negative dividend isn't as well defined as we might
441 like. So we instead assume that ALIGNMENT is a power of two and
442 use logical operations which are unambiguous. */
443 if (FRAME_GROWS_DOWNWARD)
444 function->x_frame_offset
445 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
446 (unsigned HOST_WIDE_INT) alignment)
447 + frame_phase);
448 else
449 function->x_frame_offset
450 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
451 (unsigned HOST_WIDE_INT) alignment)
452 + frame_phase);
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN && mode != BLKmode)
458 bigend_correction = size - GET_MODE_SIZE (mode);
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function == cfun && virtuals_instantiated)
463 addr = plus_constant (frame_pointer_rtx,
464 trunc_int_for_mode
465 (frame_offset + bigend_correction
466 + STARTING_FRAME_OFFSET, Pmode));
467 else
468 addr = plus_constant (virtual_stack_vars_rtx,
469 trunc_int_for_mode
470 (function->x_frame_offset + bigend_correction,
471 Pmode));
473 if (!FRAME_GROWS_DOWNWARD)
474 function->x_frame_offset += size;
476 x = gen_rtx_MEM (mode, addr);
478 function->x_stack_slot_list
479 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
481 return x;
484 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
485 current function. */
488 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
490 return assign_stack_local_1 (mode, size, align, cfun);
494 /* Removes temporary slot TEMP from LIST. */
496 static void
497 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
499 if (temp->next)
500 temp->next->prev = temp->prev;
501 if (temp->prev)
502 temp->prev->next = temp->next;
503 else
504 *list = temp->next;
506 temp->prev = temp->next = NULL;
509 /* Inserts temporary slot TEMP to LIST. */
511 static void
512 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
514 temp->next = *list;
515 if (*list)
516 (*list)->prev = temp;
517 temp->prev = NULL;
518 *list = temp;
521 /* Returns the list of used temp slots at LEVEL. */
523 static struct temp_slot **
524 temp_slots_at_level (int level)
527 if (!used_temp_slots)
528 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
530 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
531 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
533 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
536 /* Returns the maximal temporary slot level. */
538 static int
539 max_slot_level (void)
541 if (!used_temp_slots)
542 return -1;
544 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
547 /* Moves temporary slot TEMP to LEVEL. */
549 static void
550 move_slot_to_level (struct temp_slot *temp, int level)
552 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
553 insert_slot_to_list (temp, temp_slots_at_level (level));
554 temp->level = level;
557 /* Make temporary slot TEMP available. */
559 static void
560 make_slot_available (struct temp_slot *temp)
562 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
563 insert_slot_to_list (temp, &avail_temp_slots);
564 temp->in_use = 0;
565 temp->level = -1;
568 /* Allocate a temporary stack slot and record it for possible later
569 reuse.
571 MODE is the machine mode to be given to the returned rtx.
573 SIZE is the size in units of the space required. We do no rounding here
574 since assign_stack_local will do any required rounding.
576 KEEP is 1 if this slot is to be retained after a call to
577 free_temp_slots. Automatic variables for a block are allocated
578 with this flag. KEEP values of 2 or 3 were needed respectively
579 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
580 or for SAVE_EXPRs, but they are now unused.
582 TYPE is the type that will be used for the stack slot. */
585 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
586 int keep, tree type)
588 unsigned int align;
589 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
590 rtx slot;
592 /* If SIZE is -1 it means that somebody tried to allocate a temporary
593 of a variable size. */
594 gcc_assert (size != -1);
596 /* These are now unused. */
597 gcc_assert (keep <= 1);
599 if (mode == BLKmode)
600 align = BIGGEST_ALIGNMENT;
601 else
602 align = GET_MODE_ALIGNMENT (mode);
604 if (! type)
605 type = lang_hooks.types.type_for_mode (mode, 0);
607 if (type)
608 align = LOCAL_ALIGNMENT (type, align);
610 /* Try to find an available, already-allocated temporary of the proper
611 mode which meets the size and alignment requirements. Choose the
612 smallest one with the closest alignment. */
613 for (p = avail_temp_slots; p; p = p->next)
615 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
616 && objects_must_conflict_p (p->type, type)
617 && (best_p == 0 || best_p->size > p->size
618 || (best_p->size == p->size && best_p->align > p->align)))
620 if (p->align == align && p->size == size)
622 selected = p;
623 cut_slot_from_list (selected, &avail_temp_slots);
624 best_p = 0;
625 break;
627 best_p = p;
631 /* Make our best, if any, the one to use. */
632 if (best_p)
634 selected = best_p;
635 cut_slot_from_list (selected, &avail_temp_slots);
637 /* If there are enough aligned bytes left over, make them into a new
638 temp_slot so that the extra bytes don't get wasted. Do this only
639 for BLKmode slots, so that we can be sure of the alignment. */
640 if (GET_MODE (best_p->slot) == BLKmode)
642 int alignment = best_p->align / BITS_PER_UNIT;
643 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
645 if (best_p->size - rounded_size >= alignment)
647 p = ggc_alloc (sizeof (struct temp_slot));
648 p->in_use = p->addr_taken = 0;
649 p->size = best_p->size - rounded_size;
650 p->base_offset = best_p->base_offset + rounded_size;
651 p->full_size = best_p->full_size - rounded_size;
652 p->slot = gen_rtx_MEM (BLKmode,
653 plus_constant (XEXP (best_p->slot, 0),
654 rounded_size));
655 p->align = best_p->align;
656 p->address = 0;
657 p->type = best_p->type;
658 insert_slot_to_list (p, &avail_temp_slots);
660 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
661 stack_slot_list);
663 best_p->size = rounded_size;
664 best_p->full_size = rounded_size;
669 /* If we still didn't find one, make a new temporary. */
670 if (selected == 0)
672 HOST_WIDE_INT frame_offset_old = frame_offset;
674 p = ggc_alloc (sizeof (struct temp_slot));
676 /* We are passing an explicit alignment request to assign_stack_local.
677 One side effect of that is assign_stack_local will not round SIZE
678 to ensure the frame offset remains suitably aligned.
680 So for requests which depended on the rounding of SIZE, we go ahead
681 and round it now. We also make sure ALIGNMENT is at least
682 BIGGEST_ALIGNMENT. */
683 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
684 p->slot = assign_stack_local (mode,
685 (mode == BLKmode
686 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
687 : size),
688 align);
690 p->align = align;
692 /* The following slot size computation is necessary because we don't
693 know the actual size of the temporary slot until assign_stack_local
694 has performed all the frame alignment and size rounding for the
695 requested temporary. Note that extra space added for alignment
696 can be either above or below this stack slot depending on which
697 way the frame grows. We include the extra space if and only if it
698 is above this slot. */
699 if (FRAME_GROWS_DOWNWARD)
700 p->size = frame_offset_old - frame_offset;
701 else
702 p->size = size;
704 /* Now define the fields used by combine_temp_slots. */
705 if (FRAME_GROWS_DOWNWARD)
707 p->base_offset = frame_offset;
708 p->full_size = frame_offset_old - frame_offset;
710 else
712 p->base_offset = frame_offset_old;
713 p->full_size = frame_offset - frame_offset_old;
715 p->address = 0;
717 selected = p;
720 p = selected;
721 p->in_use = 1;
722 p->addr_taken = 0;
723 p->type = type;
724 p->level = temp_slot_level;
725 p->keep = keep;
727 pp = temp_slots_at_level (p->level);
728 insert_slot_to_list (p, pp);
730 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
731 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
732 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
734 /* If we know the alias set for the memory that will be used, use
735 it. If there's no TYPE, then we don't know anything about the
736 alias set for the memory. */
737 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
738 set_mem_align (slot, align);
740 /* If a type is specified, set the relevant flags. */
741 if (type != 0)
743 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
744 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
747 return slot;
750 /* Allocate a temporary stack slot and record it for possible later
751 reuse. First three arguments are same as in preceding function. */
754 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
756 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
759 /* Assign a temporary.
760 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
761 and so that should be used in error messages. In either case, we
762 allocate of the given type.
763 KEEP is as for assign_stack_temp.
764 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
765 it is 0 if a register is OK.
766 DONT_PROMOTE is 1 if we should not promote values in register
767 to wider modes. */
770 assign_temp (tree type_or_decl, int keep, int memory_required,
771 int dont_promote ATTRIBUTE_UNUSED)
773 tree type, decl;
774 enum machine_mode mode;
775 #ifdef PROMOTE_MODE
776 int unsignedp;
777 #endif
779 if (DECL_P (type_or_decl))
780 decl = type_or_decl, type = TREE_TYPE (decl);
781 else
782 decl = NULL, type = type_or_decl;
784 mode = TYPE_MODE (type);
785 #ifdef PROMOTE_MODE
786 unsignedp = TYPE_UNSIGNED (type);
787 #endif
789 if (mode == BLKmode || memory_required)
791 HOST_WIDE_INT size = int_size_in_bytes (type);
792 tree size_tree;
793 rtx tmp;
795 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
796 problems with allocating the stack space. */
797 if (size == 0)
798 size = 1;
800 /* Unfortunately, we don't yet know how to allocate variable-sized
801 temporaries. However, sometimes we have a fixed upper limit on
802 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
803 instead. This is the case for Chill variable-sized strings. */
804 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
805 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
806 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
807 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
809 /* If we still haven't been able to get a size, see if the language
810 can compute a maximum size. */
811 if (size == -1
812 && (size_tree = lang_hooks.types.max_size (type)) != 0
813 && host_integerp (size_tree, 1))
814 size = tree_low_cst (size_tree, 1);
816 /* The size of the temporary may be too large to fit into an integer. */
817 /* ??? Not sure this should happen except for user silliness, so limit
818 this to things that aren't compiler-generated temporaries. The
819 rest of the time we'll die in assign_stack_temp_for_type. */
820 if (decl && size == -1
821 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
823 error ("%Jsize of variable %qD is too large", decl, decl);
824 size = 1;
827 tmp = assign_stack_temp_for_type (mode, size, keep, type);
828 return tmp;
831 #ifdef PROMOTE_MODE
832 if (! dont_promote)
833 mode = promote_mode (type, mode, &unsignedp, 0);
834 #endif
836 return gen_reg_rtx (mode);
839 /* Combine temporary stack slots which are adjacent on the stack.
841 This allows for better use of already allocated stack space. This is only
842 done for BLKmode slots because we can be sure that we won't have alignment
843 problems in this case. */
845 static void
846 combine_temp_slots (void)
848 struct temp_slot *p, *q, *next, *next_q;
849 int num_slots;
851 /* We can't combine slots, because the information about which slot
852 is in which alias set will be lost. */
853 if (flag_strict_aliasing)
854 return;
856 /* If there are a lot of temp slots, don't do anything unless
857 high levels of optimization. */
858 if (! flag_expensive_optimizations)
859 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
860 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
861 return;
863 for (p = avail_temp_slots; p; p = next)
865 int delete_p = 0;
867 next = p->next;
869 if (GET_MODE (p->slot) != BLKmode)
870 continue;
872 for (q = p->next; q; q = next_q)
874 int delete_q = 0;
876 next_q = q->next;
878 if (GET_MODE (q->slot) != BLKmode)
879 continue;
881 if (p->base_offset + p->full_size == q->base_offset)
883 /* Q comes after P; combine Q into P. */
884 p->size += q->size;
885 p->full_size += q->full_size;
886 delete_q = 1;
888 else if (q->base_offset + q->full_size == p->base_offset)
890 /* P comes after Q; combine P into Q. */
891 q->size += p->size;
892 q->full_size += p->full_size;
893 delete_p = 1;
894 break;
896 if (delete_q)
897 cut_slot_from_list (q, &avail_temp_slots);
900 /* Either delete P or advance past it. */
901 if (delete_p)
902 cut_slot_from_list (p, &avail_temp_slots);
906 /* Find the temp slot corresponding to the object at address X. */
908 static struct temp_slot *
909 find_temp_slot_from_address (rtx x)
911 struct temp_slot *p;
912 rtx next;
913 int i;
915 for (i = max_slot_level (); i >= 0; i--)
916 for (p = *temp_slots_at_level (i); p; p = p->next)
918 if (XEXP (p->slot, 0) == x
919 || p->address == x
920 || (GET_CODE (x) == PLUS
921 && XEXP (x, 0) == virtual_stack_vars_rtx
922 && GET_CODE (XEXP (x, 1)) == CONST_INT
923 && INTVAL (XEXP (x, 1)) >= p->base_offset
924 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
925 return p;
927 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
928 for (next = p->address; next; next = XEXP (next, 1))
929 if (XEXP (next, 0) == x)
930 return p;
933 /* If we have a sum involving a register, see if it points to a temp
934 slot. */
935 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
936 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
937 return p;
938 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
939 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
940 return p;
942 return 0;
945 /* Indicate that NEW is an alternate way of referring to the temp slot
946 that previously was known by OLD. */
948 void
949 update_temp_slot_address (rtx old, rtx new)
951 struct temp_slot *p;
953 if (rtx_equal_p (old, new))
954 return;
956 p = find_temp_slot_from_address (old);
958 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
959 is a register, see if one operand of the PLUS is a temporary
960 location. If so, NEW points into it. Otherwise, if both OLD and
961 NEW are a PLUS and if there is a register in common between them.
962 If so, try a recursive call on those values. */
963 if (p == 0)
965 if (GET_CODE (old) != PLUS)
966 return;
968 if (REG_P (new))
970 update_temp_slot_address (XEXP (old, 0), new);
971 update_temp_slot_address (XEXP (old, 1), new);
972 return;
974 else if (GET_CODE (new) != PLUS)
975 return;
977 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
978 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
979 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
980 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
981 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
982 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
983 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
984 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
986 return;
989 /* Otherwise add an alias for the temp's address. */
990 else if (p->address == 0)
991 p->address = new;
992 else
994 if (GET_CODE (p->address) != EXPR_LIST)
995 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
997 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1001 /* If X could be a reference to a temporary slot, mark the fact that its
1002 address was taken. */
1004 void
1005 mark_temp_addr_taken (rtx x)
1007 struct temp_slot *p;
1009 if (x == 0)
1010 return;
1012 /* If X is not in memory or is at a constant address, it cannot be in
1013 a temporary slot. */
1014 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1015 return;
1017 p = find_temp_slot_from_address (XEXP (x, 0));
1018 if (p != 0)
1019 p->addr_taken = 1;
1022 /* If X could be a reference to a temporary slot, mark that slot as
1023 belonging to the to one level higher than the current level. If X
1024 matched one of our slots, just mark that one. Otherwise, we can't
1025 easily predict which it is, so upgrade all of them. Kept slots
1026 need not be touched.
1028 This is called when an ({...}) construct occurs and a statement
1029 returns a value in memory. */
1031 void
1032 preserve_temp_slots (rtx x)
1034 struct temp_slot *p = 0, *next;
1036 /* If there is no result, we still might have some objects whose address
1037 were taken, so we need to make sure they stay around. */
1038 if (x == 0)
1040 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1042 next = p->next;
1044 if (p->addr_taken)
1045 move_slot_to_level (p, temp_slot_level - 1);
1048 return;
1051 /* If X is a register that is being used as a pointer, see if we have
1052 a temporary slot we know it points to. To be consistent with
1053 the code below, we really should preserve all non-kept slots
1054 if we can't find a match, but that seems to be much too costly. */
1055 if (REG_P (x) && REG_POINTER (x))
1056 p = find_temp_slot_from_address (x);
1058 /* If X is not in memory or is at a constant address, it cannot be in
1059 a temporary slot, but it can contain something whose address was
1060 taken. */
1061 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1063 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1065 next = p->next;
1067 if (p->addr_taken)
1068 move_slot_to_level (p, temp_slot_level - 1);
1071 return;
1074 /* First see if we can find a match. */
1075 if (p == 0)
1076 p = find_temp_slot_from_address (XEXP (x, 0));
1078 if (p != 0)
1080 /* Move everything at our level whose address was taken to our new
1081 level in case we used its address. */
1082 struct temp_slot *q;
1084 if (p->level == temp_slot_level)
1086 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1088 next = q->next;
1090 if (p != q && q->addr_taken)
1091 move_slot_to_level (q, temp_slot_level - 1);
1094 move_slot_to_level (p, temp_slot_level - 1);
1095 p->addr_taken = 0;
1097 return;
1100 /* Otherwise, preserve all non-kept slots at this level. */
1101 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1103 next = p->next;
1105 if (!p->keep)
1106 move_slot_to_level (p, temp_slot_level - 1);
1110 /* Free all temporaries used so far. This is normally called at the
1111 end of generating code for a statement. */
1113 void
1114 free_temp_slots (void)
1116 struct temp_slot *p, *next;
1118 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1120 next = p->next;
1122 if (!p->keep)
1123 make_slot_available (p);
1126 combine_temp_slots ();
1129 /* Push deeper into the nesting level for stack temporaries. */
1131 void
1132 push_temp_slots (void)
1134 temp_slot_level++;
1137 /* Pop a temporary nesting level. All slots in use in the current level
1138 are freed. */
1140 void
1141 pop_temp_slots (void)
1143 struct temp_slot *p, *next;
1145 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1147 next = p->next;
1148 make_slot_available (p);
1151 combine_temp_slots ();
1153 temp_slot_level--;
1156 /* Initialize temporary slots. */
1158 void
1159 init_temp_slots (void)
1161 /* We have not allocated any temporaries yet. */
1162 avail_temp_slots = 0;
1163 used_temp_slots = 0;
1164 temp_slot_level = 0;
1167 /* These routines are responsible for converting virtual register references
1168 to the actual hard register references once RTL generation is complete.
1170 The following four variables are used for communication between the
1171 routines. They contain the offsets of the virtual registers from their
1172 respective hard registers. */
1174 static int in_arg_offset;
1175 static int var_offset;
1176 static int dynamic_offset;
1177 static int out_arg_offset;
1178 static int cfa_offset;
1180 /* In most machines, the stack pointer register is equivalent to the bottom
1181 of the stack. */
1183 #ifndef STACK_POINTER_OFFSET
1184 #define STACK_POINTER_OFFSET 0
1185 #endif
1187 /* If not defined, pick an appropriate default for the offset of dynamically
1188 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1189 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1191 #ifndef STACK_DYNAMIC_OFFSET
1193 /* The bottom of the stack points to the actual arguments. If
1194 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1195 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1196 stack space for register parameters is not pushed by the caller, but
1197 rather part of the fixed stack areas and hence not included in
1198 `current_function_outgoing_args_size'. Nevertheless, we must allow
1199 for it when allocating stack dynamic objects. */
1201 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1202 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1203 ((ACCUMULATE_OUTGOING_ARGS \
1204 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1205 + (STACK_POINTER_OFFSET)) \
1207 #else
1208 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1209 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1210 + (STACK_POINTER_OFFSET))
1211 #endif
1212 #endif
1214 /* On most machines, the CFA coincides with the first incoming parm. */
1216 #ifndef ARG_POINTER_CFA_OFFSET
1217 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1218 #endif
1221 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1222 is a virtual register, return the equivalent hard register and set the
1223 offset indirectly through the pointer. Otherwise, return 0. */
1225 static rtx
1226 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1228 rtx new;
1229 HOST_WIDE_INT offset;
1231 if (x == virtual_incoming_args_rtx)
1232 new = arg_pointer_rtx, offset = in_arg_offset;
1233 else if (x == virtual_stack_vars_rtx)
1234 new = frame_pointer_rtx, offset = var_offset;
1235 else if (x == virtual_stack_dynamic_rtx)
1236 new = stack_pointer_rtx, offset = dynamic_offset;
1237 else if (x == virtual_outgoing_args_rtx)
1238 new = stack_pointer_rtx, offset = out_arg_offset;
1239 else if (x == virtual_cfa_rtx)
1240 new = arg_pointer_rtx, offset = cfa_offset;
1241 else
1242 return NULL_RTX;
1244 *poffset = offset;
1245 return new;
1248 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1249 Instantiate any virtual registers present inside of *LOC. The expression
1250 is simplified, as much as possible, but is not to be considered "valid"
1251 in any sense implied by the target. If any change is made, set CHANGED
1252 to true. */
1254 static int
1255 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1257 HOST_WIDE_INT offset;
1258 bool *changed = (bool *) data;
1259 rtx x, new;
1261 x = *loc;
1262 if (x == 0)
1263 return 0;
1265 switch (GET_CODE (x))
1267 case REG:
1268 new = instantiate_new_reg (x, &offset);
1269 if (new)
1271 *loc = plus_constant (new, offset);
1272 if (changed)
1273 *changed = true;
1275 return -1;
1277 case PLUS:
1278 new = instantiate_new_reg (XEXP (x, 0), &offset);
1279 if (new)
1281 new = plus_constant (new, offset);
1282 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1283 if (changed)
1284 *changed = true;
1285 return -1;
1288 /* FIXME -- from old code */
1289 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1290 we can commute the PLUS and SUBREG because pointers into the
1291 frame are well-behaved. */
1292 break;
1294 default:
1295 break;
1298 return 0;
1301 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1302 matches the predicate for insn CODE operand OPERAND. */
1304 static int
1305 safe_insn_predicate (int code, int operand, rtx x)
1307 const struct insn_operand_data *op_data;
1309 if (code < 0)
1310 return true;
1312 op_data = &insn_data[code].operand[operand];
1313 if (op_data->predicate == NULL)
1314 return true;
1316 return op_data->predicate (x, op_data->mode);
1319 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1320 registers present inside of insn. The result will be a valid insn. */
1322 static void
1323 instantiate_virtual_regs_in_insn (rtx insn)
1325 HOST_WIDE_INT offset;
1326 int insn_code, i;
1327 bool any_change = false;
1328 rtx set, new, x, seq;
1330 /* There are some special cases to be handled first. */
1331 set = single_set (insn);
1332 if (set)
1334 /* We're allowed to assign to a virtual register. This is interpreted
1335 to mean that the underlying register gets assigned the inverse
1336 transformation. This is used, for example, in the handling of
1337 non-local gotos. */
1338 new = instantiate_new_reg (SET_DEST (set), &offset);
1339 if (new)
1341 start_sequence ();
1343 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1344 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1345 GEN_INT (-offset));
1346 x = force_operand (x, new);
1347 if (x != new)
1348 emit_move_insn (new, x);
1350 seq = get_insns ();
1351 end_sequence ();
1353 emit_insn_before (seq, insn);
1354 delete_insn (insn);
1355 return;
1358 /* Handle a straight copy from a virtual register by generating a
1359 new add insn. The difference between this and falling through
1360 to the generic case is avoiding a new pseudo and eliminating a
1361 move insn in the initial rtl stream. */
1362 new = instantiate_new_reg (SET_SRC (set), &offset);
1363 if (new && offset != 0
1364 && REG_P (SET_DEST (set))
1365 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1367 start_sequence ();
1369 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1370 new, GEN_INT (offset), SET_DEST (set),
1371 1, OPTAB_LIB_WIDEN);
1372 if (x != SET_DEST (set))
1373 emit_move_insn (SET_DEST (set), x);
1375 seq = get_insns ();
1376 end_sequence ();
1378 emit_insn_before (seq, insn);
1379 delete_insn (insn);
1380 return;
1383 extract_insn (insn);
1384 insn_code = INSN_CODE (insn);
1386 /* Handle a plus involving a virtual register by determining if the
1387 operands remain valid if they're modified in place. */
1388 if (GET_CODE (SET_SRC (set)) == PLUS
1389 && recog_data.n_operands >= 3
1390 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1391 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1392 && GET_CODE (recog_data.operand[2]) == CONST_INT
1393 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1395 offset += INTVAL (recog_data.operand[2]);
1397 /* If the sum is zero, then replace with a plain move. */
1398 if (offset == 0
1399 && REG_P (SET_DEST (set))
1400 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1402 start_sequence ();
1403 emit_move_insn (SET_DEST (set), new);
1404 seq = get_insns ();
1405 end_sequence ();
1407 emit_insn_before (seq, insn);
1408 delete_insn (insn);
1409 return;
1412 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1414 /* Using validate_change and apply_change_group here leaves
1415 recog_data in an invalid state. Since we know exactly what
1416 we want to check, do those two by hand. */
1417 if (safe_insn_predicate (insn_code, 1, new)
1418 && safe_insn_predicate (insn_code, 2, x))
1420 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1421 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1422 any_change = true;
1424 /* Fall through into the regular operand fixup loop in
1425 order to take care of operands other than 1 and 2. */
1429 else
1431 extract_insn (insn);
1432 insn_code = INSN_CODE (insn);
1435 /* In the general case, we expect virtual registers to appear only in
1436 operands, and then only as either bare registers or inside memories. */
1437 for (i = 0; i < recog_data.n_operands; ++i)
1439 x = recog_data.operand[i];
1440 switch (GET_CODE (x))
1442 case MEM:
1444 rtx addr = XEXP (x, 0);
1445 bool changed = false;
1447 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1448 if (!changed)
1449 continue;
1451 start_sequence ();
1452 x = replace_equiv_address (x, addr);
1453 seq = get_insns ();
1454 end_sequence ();
1455 if (seq)
1456 emit_insn_before (seq, insn);
1458 break;
1460 case REG:
1461 new = instantiate_new_reg (x, &offset);
1462 if (new == NULL)
1463 continue;
1464 if (offset == 0)
1465 x = new;
1466 else
1468 start_sequence ();
1470 /* Careful, special mode predicates may have stuff in
1471 insn_data[insn_code].operand[i].mode that isn't useful
1472 to us for computing a new value. */
1473 /* ??? Recognize address_operand and/or "p" constraints
1474 to see if (plus new offset) is a valid before we put
1475 this through expand_simple_binop. */
1476 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1477 GEN_INT (offset), NULL_RTX,
1478 1, OPTAB_LIB_WIDEN);
1479 seq = get_insns ();
1480 end_sequence ();
1481 emit_insn_before (seq, insn);
1483 break;
1485 case SUBREG:
1486 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1487 if (new == NULL)
1488 continue;
1489 if (offset != 0)
1491 start_sequence ();
1492 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1493 GEN_INT (offset), NULL_RTX,
1494 1, OPTAB_LIB_WIDEN);
1495 seq = get_insns ();
1496 end_sequence ();
1497 emit_insn_before (seq, insn);
1499 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1500 GET_MODE (new), SUBREG_BYTE (x));
1501 break;
1503 default:
1504 continue;
1507 /* At this point, X contains the new value for the operand.
1508 Validate the new value vs the insn predicate. Note that
1509 asm insns will have insn_code -1 here. */
1510 if (!safe_insn_predicate (insn_code, i, x))
1511 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1513 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1514 any_change = true;
1517 if (any_change)
1519 /* Propagate operand changes into the duplicates. */
1520 for (i = 0; i < recog_data.n_dups; ++i)
1521 *recog_data.dup_loc[i]
1522 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1524 /* Force re-recognition of the instruction for validation. */
1525 INSN_CODE (insn) = -1;
1528 if (asm_noperands (PATTERN (insn)) >= 0)
1530 if (!check_asm_operands (PATTERN (insn)))
1532 error_for_asm (insn, "impossible constraint in %<asm%>");
1533 delete_insn (insn);
1536 else
1538 if (recog_memoized (insn) < 0)
1539 fatal_insn_not_found (insn);
1543 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1544 do any instantiation required. */
1546 static void
1547 instantiate_decl (rtx x)
1549 rtx addr;
1551 if (x == 0)
1552 return;
1554 /* If this is a CONCAT, recurse for the pieces. */
1555 if (GET_CODE (x) == CONCAT)
1557 instantiate_decl (XEXP (x, 0));
1558 instantiate_decl (XEXP (x, 1));
1559 return;
1562 /* If this is not a MEM, no need to do anything. Similarly if the
1563 address is a constant or a register that is not a virtual register. */
1564 if (!MEM_P (x))
1565 return;
1567 addr = XEXP (x, 0);
1568 if (CONSTANT_P (addr)
1569 || (REG_P (addr)
1570 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1571 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1572 return;
1574 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1577 /* Subroutine of instantiate_decls: Process all decls in the given
1578 BLOCK node and all its subblocks. */
1580 static void
1581 instantiate_decls_1 (tree let)
1583 tree t;
1585 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1586 if (DECL_RTL_SET_P (t))
1587 instantiate_decl (DECL_RTL (t));
1589 /* Process all subblocks. */
1590 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1591 instantiate_decls_1 (t);
1594 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1595 all virtual registers in their DECL_RTL's. */
1597 static void
1598 instantiate_decls (tree fndecl)
1600 tree decl;
1602 /* Process all parameters of the function. */
1603 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1605 instantiate_decl (DECL_RTL (decl));
1606 instantiate_decl (DECL_INCOMING_RTL (decl));
1609 /* Now process all variables defined in the function or its subblocks. */
1610 instantiate_decls_1 (DECL_INITIAL (fndecl));
1613 /* Pass through the INSNS of function FNDECL and convert virtual register
1614 references to hard register references. */
1616 void
1617 instantiate_virtual_regs (void)
1619 rtx insn;
1621 /* Compute the offsets to use for this function. */
1622 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1623 var_offset = STARTING_FRAME_OFFSET;
1624 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1625 out_arg_offset = STACK_POINTER_OFFSET;
1626 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1628 /* Initialize recognition, indicating that volatile is OK. */
1629 init_recog ();
1631 /* Scan through all the insns, instantiating every virtual register still
1632 present. */
1633 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1634 if (INSN_P (insn))
1636 /* These patterns in the instruction stream can never be recognized.
1637 Fortunately, they shouldn't contain virtual registers either. */
1638 if (GET_CODE (PATTERN (insn)) == USE
1639 || GET_CODE (PATTERN (insn)) == CLOBBER
1640 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1641 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1642 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1643 continue;
1645 instantiate_virtual_regs_in_insn (insn);
1647 if (INSN_DELETED_P (insn))
1648 continue;
1650 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1652 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1653 if (GET_CODE (insn) == CALL_INSN)
1654 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1655 instantiate_virtual_regs_in_rtx, NULL);
1658 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1659 instantiate_decls (current_function_decl);
1661 /* Indicate that, from now on, assign_stack_local should use
1662 frame_pointer_rtx. */
1663 virtuals_instantiated = 1;
1666 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1667 This means a type for which function calls must pass an address to the
1668 function or get an address back from the function.
1669 EXP may be a type node or an expression (whose type is tested). */
1672 aggregate_value_p (tree exp, tree fntype)
1674 int i, regno, nregs;
1675 rtx reg;
1677 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1679 if (fntype)
1680 switch (TREE_CODE (fntype))
1682 case CALL_EXPR:
1683 fntype = get_callee_fndecl (fntype);
1684 fntype = fntype ? TREE_TYPE (fntype) : 0;
1685 break;
1686 case FUNCTION_DECL:
1687 fntype = TREE_TYPE (fntype);
1688 break;
1689 case FUNCTION_TYPE:
1690 case METHOD_TYPE:
1691 break;
1692 case IDENTIFIER_NODE:
1693 fntype = 0;
1694 break;
1695 default:
1696 /* We don't expect other rtl types here. */
1697 gcc_unreachable ();
1700 if (TREE_CODE (type) == VOID_TYPE)
1701 return 0;
1702 /* If the front end has decided that this needs to be passed by
1703 reference, do so. */
1704 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1705 && DECL_BY_REFERENCE (exp))
1706 return 1;
1707 if (targetm.calls.return_in_memory (type, fntype))
1708 return 1;
1709 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1710 and thus can't be returned in registers. */
1711 if (TREE_ADDRESSABLE (type))
1712 return 1;
1713 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1714 return 1;
1715 /* Make sure we have suitable call-clobbered regs to return
1716 the value in; if not, we must return it in memory. */
1717 reg = hard_function_value (type, 0, 0);
1719 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1720 it is OK. */
1721 if (!REG_P (reg))
1722 return 0;
1724 regno = REGNO (reg);
1725 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1726 for (i = 0; i < nregs; i++)
1727 if (! call_used_regs[regno + i])
1728 return 1;
1729 return 0;
1732 /* Return true if we should assign DECL a pseudo register; false if it
1733 should live on the local stack. */
1735 bool
1736 use_register_for_decl (tree decl)
1738 /* Honor volatile. */
1739 if (TREE_SIDE_EFFECTS (decl))
1740 return false;
1742 /* Honor addressability. */
1743 if (TREE_ADDRESSABLE (decl))
1744 return false;
1746 /* Only register-like things go in registers. */
1747 if (DECL_MODE (decl) == BLKmode)
1748 return false;
1750 /* If -ffloat-store specified, don't put explicit float variables
1751 into registers. */
1752 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1753 propagates values across these stores, and it probably shouldn't. */
1754 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1755 return false;
1757 /* If we're not interested in tracking debugging information for
1758 this decl, then we can certainly put it in a register. */
1759 if (DECL_IGNORED_P (decl))
1760 return true;
1762 return (optimize || DECL_REGISTER (decl));
1765 /* Return true if TYPE should be passed by invisible reference. */
1767 bool
1768 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1769 tree type, bool named_arg)
1771 if (type)
1773 /* If this type contains non-trivial constructors, then it is
1774 forbidden for the middle-end to create any new copies. */
1775 if (TREE_ADDRESSABLE (type))
1776 return true;
1778 /* GCC post 3.4 passes *all* variable sized types by reference. */
1779 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1780 return true;
1783 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1786 /* Return true if TYPE, which is passed by reference, should be callee
1787 copied instead of caller copied. */
1789 bool
1790 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1791 tree type, bool named_arg)
1793 if (type && TREE_ADDRESSABLE (type))
1794 return false;
1795 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1798 /* Structures to communicate between the subroutines of assign_parms.
1799 The first holds data persistent across all parameters, the second
1800 is cleared out for each parameter. */
1802 struct assign_parm_data_all
1804 CUMULATIVE_ARGS args_so_far;
1805 struct args_size stack_args_size;
1806 tree function_result_decl;
1807 tree orig_fnargs;
1808 rtx conversion_insns;
1809 HOST_WIDE_INT pretend_args_size;
1810 HOST_WIDE_INT extra_pretend_bytes;
1811 int reg_parm_stack_space;
1814 struct assign_parm_data_one
1816 tree nominal_type;
1817 tree passed_type;
1818 rtx entry_parm;
1819 rtx stack_parm;
1820 enum machine_mode nominal_mode;
1821 enum machine_mode passed_mode;
1822 enum machine_mode promoted_mode;
1823 struct locate_and_pad_arg_data locate;
1824 int partial;
1825 BOOL_BITFIELD named_arg : 1;
1826 BOOL_BITFIELD passed_pointer : 1;
1827 BOOL_BITFIELD on_stack : 1;
1828 BOOL_BITFIELD loaded_in_reg : 1;
1831 /* A subroutine of assign_parms. Initialize ALL. */
1833 static void
1834 assign_parms_initialize_all (struct assign_parm_data_all *all)
1836 tree fntype;
1838 memset (all, 0, sizeof (*all));
1840 fntype = TREE_TYPE (current_function_decl);
1842 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1843 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1844 #else
1845 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1846 current_function_decl, -1);
1847 #endif
1849 #ifdef REG_PARM_STACK_SPACE
1850 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1851 #endif
1854 /* If ARGS contains entries with complex types, split the entry into two
1855 entries of the component type. Return a new list of substitutions are
1856 needed, else the old list. */
1858 static tree
1859 split_complex_args (tree args)
1861 tree p;
1863 /* Before allocating memory, check for the common case of no complex. */
1864 for (p = args; p; p = TREE_CHAIN (p))
1866 tree type = TREE_TYPE (p);
1867 if (TREE_CODE (type) == COMPLEX_TYPE
1868 && targetm.calls.split_complex_arg (type))
1869 goto found;
1871 return args;
1873 found:
1874 args = copy_list (args);
1876 for (p = args; p; p = TREE_CHAIN (p))
1878 tree type = TREE_TYPE (p);
1879 if (TREE_CODE (type) == COMPLEX_TYPE
1880 && targetm.calls.split_complex_arg (type))
1882 tree decl;
1883 tree subtype = TREE_TYPE (type);
1884 bool addressable = TREE_ADDRESSABLE (p);
1886 /* Rewrite the PARM_DECL's type with its component. */
1887 TREE_TYPE (p) = subtype;
1888 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1889 DECL_MODE (p) = VOIDmode;
1890 DECL_SIZE (p) = NULL;
1891 DECL_SIZE_UNIT (p) = NULL;
1892 /* If this arg must go in memory, put it in a pseudo here.
1893 We can't allow it to go in memory as per normal parms,
1894 because the usual place might not have the imag part
1895 adjacent to the real part. */
1896 DECL_ARTIFICIAL (p) = addressable;
1897 DECL_IGNORED_P (p) = addressable;
1898 TREE_ADDRESSABLE (p) = 0;
1899 layout_decl (p, 0);
1901 /* Build a second synthetic decl. */
1902 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1903 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1904 DECL_ARTIFICIAL (decl) = addressable;
1905 DECL_IGNORED_P (decl) = addressable;
1906 layout_decl (decl, 0);
1908 /* Splice it in; skip the new decl. */
1909 TREE_CHAIN (decl) = TREE_CHAIN (p);
1910 TREE_CHAIN (p) = decl;
1911 p = decl;
1915 return args;
1918 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1919 the hidden struct return argument, and (abi willing) complex args.
1920 Return the new parameter list. */
1922 static tree
1923 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1925 tree fndecl = current_function_decl;
1926 tree fntype = TREE_TYPE (fndecl);
1927 tree fnargs = DECL_ARGUMENTS (fndecl);
1929 /* If struct value address is treated as the first argument, make it so. */
1930 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1931 && ! current_function_returns_pcc_struct
1932 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1934 tree type = build_pointer_type (TREE_TYPE (fntype));
1935 tree decl;
1937 decl = build_decl (PARM_DECL, NULL_TREE, type);
1938 DECL_ARG_TYPE (decl) = type;
1939 DECL_ARTIFICIAL (decl) = 1;
1940 DECL_IGNORED_P (decl) = 1;
1942 TREE_CHAIN (decl) = fnargs;
1943 fnargs = decl;
1944 all->function_result_decl = decl;
1947 all->orig_fnargs = fnargs;
1949 /* If the target wants to split complex arguments into scalars, do so. */
1950 if (targetm.calls.split_complex_arg)
1951 fnargs = split_complex_args (fnargs);
1953 return fnargs;
1956 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
1957 data for the parameter. Incorporate ABI specifics such as pass-by-
1958 reference and type promotion. */
1960 static void
1961 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
1962 struct assign_parm_data_one *data)
1964 tree nominal_type, passed_type;
1965 enum machine_mode nominal_mode, passed_mode, promoted_mode;
1967 memset (data, 0, sizeof (*data));
1969 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
1970 if (!current_function_stdarg)
1971 data->named_arg = 1; /* No varadic parms. */
1972 else if (TREE_CHAIN (parm))
1973 data->named_arg = 1; /* Not the last non-varadic parm. */
1974 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
1975 data->named_arg = 1; /* Only varadic ones are unnamed. */
1976 else
1977 data->named_arg = 0; /* Treat as varadic. */
1979 nominal_type = TREE_TYPE (parm);
1980 passed_type = DECL_ARG_TYPE (parm);
1982 /* Look out for errors propagating this far. Also, if the parameter's
1983 type is void then its value doesn't matter. */
1984 if (TREE_TYPE (parm) == error_mark_node
1985 /* This can happen after weird syntax errors
1986 or if an enum type is defined among the parms. */
1987 || TREE_CODE (parm) != PARM_DECL
1988 || passed_type == NULL
1989 || VOID_TYPE_P (nominal_type))
1991 nominal_type = passed_type = void_type_node;
1992 nominal_mode = passed_mode = promoted_mode = VOIDmode;
1993 goto egress;
1996 /* Find mode of arg as it is passed, and mode of arg as it should be
1997 during execution of this function. */
1998 passed_mode = TYPE_MODE (passed_type);
1999 nominal_mode = TYPE_MODE (nominal_type);
2001 /* If the parm is to be passed as a transparent union, use the type of
2002 the first field for the tests below. We have already verified that
2003 the modes are the same. */
2004 if (DECL_TRANSPARENT_UNION (parm)
2005 || (TREE_CODE (passed_type) == UNION_TYPE
2006 && TYPE_TRANSPARENT_UNION (passed_type)))
2007 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2009 /* See if this arg was passed by invisible reference. */
2010 if (pass_by_reference (&all->args_so_far, passed_mode,
2011 passed_type, data->named_arg))
2013 passed_type = nominal_type = build_pointer_type (passed_type);
2014 data->passed_pointer = true;
2015 passed_mode = nominal_mode = Pmode;
2018 /* Find mode as it is passed by the ABI. */
2019 promoted_mode = passed_mode;
2020 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2022 int unsignedp = TYPE_UNSIGNED (passed_type);
2023 promoted_mode = promote_mode (passed_type, promoted_mode,
2024 &unsignedp, 1);
2027 egress:
2028 data->nominal_type = nominal_type;
2029 data->passed_type = passed_type;
2030 data->nominal_mode = nominal_mode;
2031 data->passed_mode = passed_mode;
2032 data->promoted_mode = promoted_mode;
2035 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2037 static void
2038 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2039 struct assign_parm_data_one *data, bool no_rtl)
2041 int varargs_pretend_bytes = 0;
2043 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2044 data->promoted_mode,
2045 data->passed_type,
2046 &varargs_pretend_bytes, no_rtl);
2048 /* If the back-end has requested extra stack space, record how much is
2049 needed. Do not change pretend_args_size otherwise since it may be
2050 nonzero from an earlier partial argument. */
2051 if (varargs_pretend_bytes > 0)
2052 all->pretend_args_size = varargs_pretend_bytes;
2055 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2056 the incoming location of the current parameter. */
2058 static void
2059 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2060 struct assign_parm_data_one *data)
2062 HOST_WIDE_INT pretend_bytes = 0;
2063 rtx entry_parm;
2064 bool in_regs;
2066 if (data->promoted_mode == VOIDmode)
2068 data->entry_parm = data->stack_parm = const0_rtx;
2069 return;
2072 #ifdef FUNCTION_INCOMING_ARG
2073 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2074 data->passed_type, data->named_arg);
2075 #else
2076 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2077 data->passed_type, data->named_arg);
2078 #endif
2080 if (entry_parm == 0)
2081 data->promoted_mode = data->passed_mode;
2083 /* Determine parm's home in the stack, in case it arrives in the stack
2084 or we should pretend it did. Compute the stack position and rtx where
2085 the argument arrives and its size.
2087 There is one complexity here: If this was a parameter that would
2088 have been passed in registers, but wasn't only because it is
2089 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2090 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2091 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2092 as it was the previous time. */
2093 in_regs = entry_parm != 0;
2094 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2095 in_regs = true;
2096 #endif
2097 if (!in_regs && !data->named_arg)
2099 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2101 rtx tem;
2102 #ifdef FUNCTION_INCOMING_ARG
2103 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2104 data->passed_type, true);
2105 #else
2106 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2107 data->passed_type, true);
2108 #endif
2109 in_regs = tem != NULL;
2113 /* If this parameter was passed both in registers and in the stack, use
2114 the copy on the stack. */
2115 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2116 data->passed_type))
2117 entry_parm = 0;
2119 if (entry_parm)
2121 int partial;
2123 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2124 data->promoted_mode,
2125 data->passed_type,
2126 data->named_arg);
2127 data->partial = partial;
2129 /* The caller might already have allocated stack space for the
2130 register parameters. */
2131 if (partial != 0 && all->reg_parm_stack_space == 0)
2133 /* Part of this argument is passed in registers and part
2134 is passed on the stack. Ask the prologue code to extend
2135 the stack part so that we can recreate the full value.
2137 PRETEND_BYTES is the size of the registers we need to store.
2138 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2139 stack space that the prologue should allocate.
2141 Internally, gcc assumes that the argument pointer is aligned
2142 to STACK_BOUNDARY bits. This is used both for alignment
2143 optimizations (see init_emit) and to locate arguments that are
2144 aligned to more than PARM_BOUNDARY bits. We must preserve this
2145 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2146 a stack boundary. */
2148 /* We assume at most one partial arg, and it must be the first
2149 argument on the stack. */
2150 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2152 pretend_bytes = partial;
2153 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2155 /* We want to align relative to the actual stack pointer, so
2156 don't include this in the stack size until later. */
2157 all->extra_pretend_bytes = all->pretend_args_size;
2161 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2162 entry_parm ? data->partial : 0, current_function_decl,
2163 &all->stack_args_size, &data->locate);
2165 /* Adjust offsets to include the pretend args. */
2166 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2167 data->locate.slot_offset.constant += pretend_bytes;
2168 data->locate.offset.constant += pretend_bytes;
2170 data->entry_parm = entry_parm;
2173 /* A subroutine of assign_parms. If there is actually space on the stack
2174 for this parm, count it in stack_args_size and return true. */
2176 static bool
2177 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2178 struct assign_parm_data_one *data)
2180 /* Trivially true if we've no incoming register. */
2181 if (data->entry_parm == NULL)
2183 /* Also true if we're partially in registers and partially not,
2184 since we've arranged to drop the entire argument on the stack. */
2185 else if (data->partial != 0)
2187 /* Also true if the target says that it's passed in both registers
2188 and on the stack. */
2189 else if (GET_CODE (data->entry_parm) == PARALLEL
2190 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2192 /* Also true if the target says that there's stack allocated for
2193 all register parameters. */
2194 else if (all->reg_parm_stack_space > 0)
2196 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2197 else
2198 return false;
2200 all->stack_args_size.constant += data->locate.size.constant;
2201 if (data->locate.size.var)
2202 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2204 return true;
2207 /* A subroutine of assign_parms. Given that this parameter is allocated
2208 stack space by the ABI, find it. */
2210 static void
2211 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2213 rtx offset_rtx, stack_parm;
2214 unsigned int align, boundary;
2216 /* If we're passing this arg using a reg, make its stack home the
2217 aligned stack slot. */
2218 if (data->entry_parm)
2219 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2220 else
2221 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2223 stack_parm = current_function_internal_arg_pointer;
2224 if (offset_rtx != const0_rtx)
2225 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2226 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2228 set_mem_attributes (stack_parm, parm, 1);
2230 boundary = data->locate.boundary;
2231 align = BITS_PER_UNIT;
2233 /* If we're padding upward, we know that the alignment of the slot
2234 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2235 intentionally forcing upward padding. Otherwise we have to come
2236 up with a guess at the alignment based on OFFSET_RTX. */
2237 if (data->locate.where_pad != downward || data->entry_parm)
2238 align = boundary;
2239 else if (GET_CODE (offset_rtx) == CONST_INT)
2241 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2242 align = align & -align;
2244 set_mem_align (stack_parm, align);
2246 if (data->entry_parm)
2247 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2249 data->stack_parm = stack_parm;
2252 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2253 always valid and contiguous. */
2255 static void
2256 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2258 rtx entry_parm = data->entry_parm;
2259 rtx stack_parm = data->stack_parm;
2261 /* If this parm was passed part in regs and part in memory, pretend it
2262 arrived entirely in memory by pushing the register-part onto the stack.
2263 In the special case of a DImode or DFmode that is split, we could put
2264 it together in a pseudoreg directly, but for now that's not worth
2265 bothering with. */
2266 if (data->partial != 0)
2268 /* Handle calls that pass values in multiple non-contiguous
2269 locations. The Irix 6 ABI has examples of this. */
2270 if (GET_CODE (entry_parm) == PARALLEL)
2271 emit_group_store (validize_mem (stack_parm), entry_parm,
2272 data->passed_type,
2273 int_size_in_bytes (data->passed_type));
2274 else
2276 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2277 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2278 data->partial / UNITS_PER_WORD);
2281 entry_parm = stack_parm;
2284 /* If we didn't decide this parm came in a register, by default it came
2285 on the stack. */
2286 else if (entry_parm == NULL)
2287 entry_parm = stack_parm;
2289 /* When an argument is passed in multiple locations, we can't make use
2290 of this information, but we can save some copying if the whole argument
2291 is passed in a single register. */
2292 else if (GET_CODE (entry_parm) == PARALLEL
2293 && data->nominal_mode != BLKmode
2294 && data->passed_mode != BLKmode)
2296 size_t i, len = XVECLEN (entry_parm, 0);
2298 for (i = 0; i < len; i++)
2299 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2300 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2301 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2302 == data->passed_mode)
2303 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2305 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2306 break;
2310 data->entry_parm = entry_parm;
2313 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2314 always valid and properly aligned. */
2316 static void
2317 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2319 rtx stack_parm = data->stack_parm;
2321 /* If we can't trust the parm stack slot to be aligned enough for its
2322 ultimate type, don't use that slot after entry. We'll make another
2323 stack slot, if we need one. */
2324 if (stack_parm
2325 && ((STRICT_ALIGNMENT
2326 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2327 || (data->nominal_type
2328 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2329 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2330 stack_parm = NULL;
2332 /* If parm was passed in memory, and we need to convert it on entry,
2333 don't store it back in that same slot. */
2334 else if (data->entry_parm == stack_parm
2335 && data->nominal_mode != BLKmode
2336 && data->nominal_mode != data->passed_mode)
2337 stack_parm = NULL;
2339 /* If stack protection is in effect for this function, don't leave any
2340 pointers in their passed stack slots. */
2341 else if (cfun->stack_protect_guard
2342 && (flag_stack_protect == 2
2343 || data->passed_pointer
2344 || POINTER_TYPE_P (data->nominal_type)))
2345 stack_parm = NULL;
2347 data->stack_parm = stack_parm;
2350 /* A subroutine of assign_parms. Return true if the current parameter
2351 should be stored as a BLKmode in the current frame. */
2353 static bool
2354 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2356 if (data->nominal_mode == BLKmode)
2357 return true;
2358 if (GET_CODE (data->entry_parm) == PARALLEL)
2359 return true;
2361 #ifdef BLOCK_REG_PADDING
2362 /* Only assign_parm_setup_block knows how to deal with register arguments
2363 that are padded at the least significant end. */
2364 if (REG_P (data->entry_parm)
2365 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2366 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2367 == (BYTES_BIG_ENDIAN ? upward : downward)))
2368 return true;
2369 #endif
2371 return false;
2374 /* A subroutine of assign_parms. Arrange for the parameter to be
2375 present and valid in DATA->STACK_RTL. */
2377 static void
2378 assign_parm_setup_block (struct assign_parm_data_all *all,
2379 tree parm, struct assign_parm_data_one *data)
2381 rtx entry_parm = data->entry_parm;
2382 rtx stack_parm = data->stack_parm;
2383 HOST_WIDE_INT size;
2384 HOST_WIDE_INT size_stored;
2385 rtx orig_entry_parm = entry_parm;
2387 if (GET_CODE (entry_parm) == PARALLEL)
2388 entry_parm = emit_group_move_into_temps (entry_parm);
2390 /* If we've a non-block object that's nevertheless passed in parts,
2391 reconstitute it in register operations rather than on the stack. */
2392 if (GET_CODE (entry_parm) == PARALLEL
2393 && data->nominal_mode != BLKmode)
2395 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2397 if ((XVECLEN (entry_parm, 0) > 1
2398 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2399 && use_register_for_decl (parm))
2401 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2403 push_to_sequence (all->conversion_insns);
2405 /* For values returned in multiple registers, handle possible
2406 incompatible calls to emit_group_store.
2408 For example, the following would be invalid, and would have to
2409 be fixed by the conditional below:
2411 emit_group_store ((reg:SF), (parallel:DF))
2412 emit_group_store ((reg:SI), (parallel:DI))
2414 An example of this are doubles in e500 v2:
2415 (parallel:DF (expr_list (reg:SI) (const_int 0))
2416 (expr_list (reg:SI) (const_int 4))). */
2417 if (data->nominal_mode != data->passed_mode)
2419 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2420 emit_group_store (t, entry_parm, NULL_TREE,
2421 GET_MODE_SIZE (GET_MODE (entry_parm)));
2422 convert_move (parmreg, t, 0);
2424 else
2425 emit_group_store (parmreg, entry_parm, data->nominal_type,
2426 int_size_in_bytes (data->nominal_type));
2428 all->conversion_insns = get_insns ();
2429 end_sequence ();
2431 SET_DECL_RTL (parm, parmreg);
2432 return;
2436 size = int_size_in_bytes (data->passed_type);
2437 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2438 if (stack_parm == 0)
2440 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2441 stack_parm = assign_stack_local (BLKmode, size_stored,
2442 DECL_ALIGN (parm));
2443 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2444 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2445 set_mem_attributes (stack_parm, parm, 1);
2448 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2449 calls that pass values in multiple non-contiguous locations. */
2450 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2452 rtx mem;
2454 /* Note that we will be storing an integral number of words.
2455 So we have to be careful to ensure that we allocate an
2456 integral number of words. We do this above when we call
2457 assign_stack_local if space was not allocated in the argument
2458 list. If it was, this will not work if PARM_BOUNDARY is not
2459 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2460 if it becomes a problem. Exception is when BLKmode arrives
2461 with arguments not conforming to word_mode. */
2463 if (data->stack_parm == 0)
2465 else if (GET_CODE (entry_parm) == PARALLEL)
2467 else
2468 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2470 mem = validize_mem (stack_parm);
2472 /* Handle values in multiple non-contiguous locations. */
2473 if (GET_CODE (entry_parm) == PARALLEL)
2475 push_to_sequence (all->conversion_insns);
2476 emit_group_store (mem, entry_parm, data->passed_type, size);
2477 all->conversion_insns = get_insns ();
2478 end_sequence ();
2481 else if (size == 0)
2484 /* If SIZE is that of a mode no bigger than a word, just use
2485 that mode's store operation. */
2486 else if (size <= UNITS_PER_WORD)
2488 enum machine_mode mode
2489 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2491 if (mode != BLKmode
2492 #ifdef BLOCK_REG_PADDING
2493 && (size == UNITS_PER_WORD
2494 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2495 != (BYTES_BIG_ENDIAN ? upward : downward)))
2496 #endif
2499 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2500 emit_move_insn (change_address (mem, mode, 0), reg);
2503 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2504 machine must be aligned to the left before storing
2505 to memory. Note that the previous test doesn't
2506 handle all cases (e.g. SIZE == 3). */
2507 else if (size != UNITS_PER_WORD
2508 #ifdef BLOCK_REG_PADDING
2509 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2510 == downward)
2511 #else
2512 && BYTES_BIG_ENDIAN
2513 #endif
2516 rtx tem, x;
2517 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2518 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2520 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2521 build_int_cst (NULL_TREE, by),
2522 NULL_RTX, 1);
2523 tem = change_address (mem, word_mode, 0);
2524 emit_move_insn (tem, x);
2526 else
2527 move_block_from_reg (REGNO (entry_parm), mem,
2528 size_stored / UNITS_PER_WORD);
2530 else
2531 move_block_from_reg (REGNO (entry_parm), mem,
2532 size_stored / UNITS_PER_WORD);
2534 else if (data->stack_parm == 0)
2536 push_to_sequence (all->conversion_insns);
2537 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2538 BLOCK_OP_NORMAL);
2539 all->conversion_insns = get_insns ();
2540 end_sequence ();
2543 data->stack_parm = stack_parm;
2544 SET_DECL_RTL (parm, stack_parm);
2547 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2548 parameter. Get it there. Perform all ABI specified conversions. */
2550 static void
2551 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2552 struct assign_parm_data_one *data)
2554 rtx parmreg;
2555 enum machine_mode promoted_nominal_mode;
2556 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2557 bool did_conversion = false;
2559 /* Store the parm in a pseudoregister during the function, but we may
2560 need to do it in a wider mode. */
2562 promoted_nominal_mode
2563 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2565 parmreg = gen_reg_rtx (promoted_nominal_mode);
2567 if (!DECL_ARTIFICIAL (parm))
2568 mark_user_reg (parmreg);
2570 /* If this was an item that we received a pointer to,
2571 set DECL_RTL appropriately. */
2572 if (data->passed_pointer)
2574 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2575 set_mem_attributes (x, parm, 1);
2576 SET_DECL_RTL (parm, x);
2578 else
2579 SET_DECL_RTL (parm, parmreg);
2581 /* Copy the value into the register. */
2582 if (data->nominal_mode != data->passed_mode
2583 || promoted_nominal_mode != data->promoted_mode)
2585 int save_tree_used;
2587 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2588 mode, by the caller. We now have to convert it to
2589 NOMINAL_MODE, if different. However, PARMREG may be in
2590 a different mode than NOMINAL_MODE if it is being stored
2591 promoted.
2593 If ENTRY_PARM is a hard register, it might be in a register
2594 not valid for operating in its mode (e.g., an odd-numbered
2595 register for a DFmode). In that case, moves are the only
2596 thing valid, so we can't do a convert from there. This
2597 occurs when the calling sequence allow such misaligned
2598 usages.
2600 In addition, the conversion may involve a call, which could
2601 clobber parameters which haven't been copied to pseudo
2602 registers yet. Therefore, we must first copy the parm to
2603 a pseudo reg here, and save the conversion until after all
2604 parameters have been moved. */
2606 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2608 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2610 push_to_sequence (all->conversion_insns);
2611 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2613 if (GET_CODE (tempreg) == SUBREG
2614 && GET_MODE (tempreg) == data->nominal_mode
2615 && REG_P (SUBREG_REG (tempreg))
2616 && data->nominal_mode == data->passed_mode
2617 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2618 && GET_MODE_SIZE (GET_MODE (tempreg))
2619 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2621 /* The argument is already sign/zero extended, so note it
2622 into the subreg. */
2623 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2624 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2627 /* TREE_USED gets set erroneously during expand_assignment. */
2628 save_tree_used = TREE_USED (parm);
2629 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2630 TREE_USED (parm) = save_tree_used;
2631 all->conversion_insns = get_insns ();
2632 end_sequence ();
2634 did_conversion = true;
2636 else
2637 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2639 /* If we were passed a pointer but the actual value can safely live
2640 in a register, put it in one. */
2641 if (data->passed_pointer
2642 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2643 /* If by-reference argument was promoted, demote it. */
2644 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2645 || use_register_for_decl (parm)))
2647 /* We can't use nominal_mode, because it will have been set to
2648 Pmode above. We must use the actual mode of the parm. */
2649 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2650 mark_user_reg (parmreg);
2652 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2654 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2655 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2657 push_to_sequence (all->conversion_insns);
2658 emit_move_insn (tempreg, DECL_RTL (parm));
2659 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2660 emit_move_insn (parmreg, tempreg);
2661 all->conversion_insns = get_insns ();
2662 end_sequence ();
2664 did_conversion = true;
2666 else
2667 emit_move_insn (parmreg, DECL_RTL (parm));
2669 SET_DECL_RTL (parm, parmreg);
2671 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2672 now the parm. */
2673 data->stack_parm = NULL;
2676 /* Mark the register as eliminable if we did no conversion and it was
2677 copied from memory at a fixed offset, and the arg pointer was not
2678 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2679 offset formed an invalid address, such memory-equivalences as we
2680 make here would screw up life analysis for it. */
2681 if (data->nominal_mode == data->passed_mode
2682 && !did_conversion
2683 && data->stack_parm != 0
2684 && MEM_P (data->stack_parm)
2685 && data->locate.offset.var == 0
2686 && reg_mentioned_p (virtual_incoming_args_rtx,
2687 XEXP (data->stack_parm, 0)))
2689 rtx linsn = get_last_insn ();
2690 rtx sinsn, set;
2692 /* Mark complex types separately. */
2693 if (GET_CODE (parmreg) == CONCAT)
2695 enum machine_mode submode
2696 = GET_MODE_INNER (GET_MODE (parmreg));
2697 int regnor = REGNO (XEXP (parmreg, 0));
2698 int regnoi = REGNO (XEXP (parmreg, 1));
2699 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2700 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2701 GET_MODE_SIZE (submode));
2703 /* Scan backwards for the set of the real and
2704 imaginary parts. */
2705 for (sinsn = linsn; sinsn != 0;
2706 sinsn = prev_nonnote_insn (sinsn))
2708 set = single_set (sinsn);
2709 if (set == 0)
2710 continue;
2712 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2713 REG_NOTES (sinsn)
2714 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2715 REG_NOTES (sinsn));
2716 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2717 REG_NOTES (sinsn)
2718 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2719 REG_NOTES (sinsn));
2722 else if ((set = single_set (linsn)) != 0
2723 && SET_DEST (set) == parmreg)
2724 REG_NOTES (linsn)
2725 = gen_rtx_EXPR_LIST (REG_EQUIV,
2726 data->stack_parm, REG_NOTES (linsn));
2729 /* For pointer data type, suggest pointer register. */
2730 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2731 mark_reg_pointer (parmreg,
2732 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2735 /* A subroutine of assign_parms. Allocate stack space to hold the current
2736 parameter. Get it there. Perform all ABI specified conversions. */
2738 static void
2739 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2740 struct assign_parm_data_one *data)
2742 /* Value must be stored in the stack slot STACK_PARM during function
2743 execution. */
2744 bool to_conversion = false;
2746 if (data->promoted_mode != data->nominal_mode)
2748 /* Conversion is required. */
2749 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2751 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2753 push_to_sequence (all->conversion_insns);
2754 to_conversion = true;
2756 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2757 TYPE_UNSIGNED (TREE_TYPE (parm)));
2759 if (data->stack_parm)
2760 /* ??? This may need a big-endian conversion on sparc64. */
2761 data->stack_parm
2762 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2765 if (data->entry_parm != data->stack_parm)
2767 rtx src, dest;
2769 if (data->stack_parm == 0)
2771 data->stack_parm
2772 = assign_stack_local (GET_MODE (data->entry_parm),
2773 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2774 TYPE_ALIGN (data->passed_type));
2775 set_mem_attributes (data->stack_parm, parm, 1);
2778 dest = validize_mem (data->stack_parm);
2779 src = validize_mem (data->entry_parm);
2781 if (MEM_P (src))
2783 /* Use a block move to handle potentially misaligned entry_parm. */
2784 if (!to_conversion)
2785 push_to_sequence (all->conversion_insns);
2786 to_conversion = true;
2788 emit_block_move (dest, src,
2789 GEN_INT (int_size_in_bytes (data->passed_type)),
2790 BLOCK_OP_NORMAL);
2792 else
2793 emit_move_insn (dest, src);
2796 if (to_conversion)
2798 all->conversion_insns = get_insns ();
2799 end_sequence ();
2802 SET_DECL_RTL (parm, data->stack_parm);
2805 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2806 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2808 static void
2809 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2811 tree parm;
2812 tree orig_fnargs = all->orig_fnargs;
2814 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2816 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2817 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2819 rtx tmp, real, imag;
2820 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2822 real = DECL_RTL (fnargs);
2823 imag = DECL_RTL (TREE_CHAIN (fnargs));
2824 if (inner != GET_MODE (real))
2826 real = gen_lowpart_SUBREG (inner, real);
2827 imag = gen_lowpart_SUBREG (inner, imag);
2830 if (TREE_ADDRESSABLE (parm))
2832 rtx rmem, imem;
2833 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2835 /* split_complex_arg put the real and imag parts in
2836 pseudos. Move them to memory. */
2837 tmp = assign_stack_local (DECL_MODE (parm), size,
2838 TYPE_ALIGN (TREE_TYPE (parm)));
2839 set_mem_attributes (tmp, parm, 1);
2840 rmem = adjust_address_nv (tmp, inner, 0);
2841 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2842 push_to_sequence (all->conversion_insns);
2843 emit_move_insn (rmem, real);
2844 emit_move_insn (imem, imag);
2845 all->conversion_insns = get_insns ();
2846 end_sequence ();
2848 else
2849 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2850 SET_DECL_RTL (parm, tmp);
2852 real = DECL_INCOMING_RTL (fnargs);
2853 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2854 if (inner != GET_MODE (real))
2856 real = gen_lowpart_SUBREG (inner, real);
2857 imag = gen_lowpart_SUBREG (inner, imag);
2859 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2860 set_decl_incoming_rtl (parm, tmp);
2861 fnargs = TREE_CHAIN (fnargs);
2863 else
2865 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2866 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2868 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2869 instead of the copy of decl, i.e. FNARGS. */
2870 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2871 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2874 fnargs = TREE_CHAIN (fnargs);
2878 /* Assign RTL expressions to the function's parameters. This may involve
2879 copying them into registers and using those registers as the DECL_RTL. */
2881 static void
2882 assign_parms (tree fndecl)
2884 struct assign_parm_data_all all;
2885 tree fnargs, parm;
2886 rtx internal_arg_pointer;
2888 /* If the reg that the virtual arg pointer will be translated into is
2889 not a fixed reg or is the stack pointer, make a copy of the virtual
2890 arg pointer, and address parms via the copy. The frame pointer is
2891 considered fixed even though it is not marked as such.
2893 The second time through, simply use ap to avoid generating rtx. */
2895 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
2896 || ! (fixed_regs[ARG_POINTER_REGNUM]
2897 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
2898 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
2899 else
2900 internal_arg_pointer = virtual_incoming_args_rtx;
2901 current_function_internal_arg_pointer = internal_arg_pointer;
2903 assign_parms_initialize_all (&all);
2904 fnargs = assign_parms_augmented_arg_list (&all);
2906 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2908 struct assign_parm_data_one data;
2910 /* Extract the type of PARM; adjust it according to ABI. */
2911 assign_parm_find_data_types (&all, parm, &data);
2913 /* Early out for errors and void parameters. */
2914 if (data.passed_mode == VOIDmode)
2916 SET_DECL_RTL (parm, const0_rtx);
2917 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2918 continue;
2921 if (current_function_stdarg && !TREE_CHAIN (parm))
2922 assign_parms_setup_varargs (&all, &data, false);
2924 /* Find out where the parameter arrives in this function. */
2925 assign_parm_find_entry_rtl (&all, &data);
2927 /* Find out where stack space for this parameter might be. */
2928 if (assign_parm_is_stack_parm (&all, &data))
2930 assign_parm_find_stack_rtl (parm, &data);
2931 assign_parm_adjust_entry_rtl (&data);
2934 /* Record permanently how this parm was passed. */
2935 set_decl_incoming_rtl (parm, data.entry_parm);
2937 /* Update info on where next arg arrives in registers. */
2938 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2939 data.passed_type, data.named_arg);
2941 assign_parm_adjust_stack_rtl (&data);
2943 if (assign_parm_setup_block_p (&data))
2944 assign_parm_setup_block (&all, parm, &data);
2945 else if (data.passed_pointer || use_register_for_decl (parm))
2946 assign_parm_setup_reg (&all, parm, &data);
2947 else
2948 assign_parm_setup_stack (&all, parm, &data);
2951 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
2952 assign_parms_unsplit_complex (&all, fnargs);
2954 /* Output all parameter conversion instructions (possibly including calls)
2955 now that all parameters have been copied out of hard registers. */
2956 emit_insn (all.conversion_insns);
2958 /* If we are receiving a struct value address as the first argument, set up
2959 the RTL for the function result. As this might require code to convert
2960 the transmitted address to Pmode, we do this here to ensure that possible
2961 preliminary conversions of the address have been emitted already. */
2962 if (all.function_result_decl)
2964 tree result = DECL_RESULT (current_function_decl);
2965 rtx addr = DECL_RTL (all.function_result_decl);
2966 rtx x;
2968 if (DECL_BY_REFERENCE (result))
2969 x = addr;
2970 else
2972 addr = convert_memory_address (Pmode, addr);
2973 x = gen_rtx_MEM (DECL_MODE (result), addr);
2974 set_mem_attributes (x, result, 1);
2976 SET_DECL_RTL (result, x);
2979 /* We have aligned all the args, so add space for the pretend args. */
2980 current_function_pretend_args_size = all.pretend_args_size;
2981 all.stack_args_size.constant += all.extra_pretend_bytes;
2982 current_function_args_size = all.stack_args_size.constant;
2984 /* Adjust function incoming argument size for alignment and
2985 minimum length. */
2987 #ifdef REG_PARM_STACK_SPACE
2988 current_function_args_size = MAX (current_function_args_size,
2989 REG_PARM_STACK_SPACE (fndecl));
2990 #endif
2992 current_function_args_size
2993 = ((current_function_args_size + STACK_BYTES - 1)
2994 / STACK_BYTES) * STACK_BYTES;
2996 #ifdef ARGS_GROW_DOWNWARD
2997 current_function_arg_offset_rtx
2998 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
2999 : expand_expr (size_diffop (all.stack_args_size.var,
3000 size_int (-all.stack_args_size.constant)),
3001 NULL_RTX, VOIDmode, 0));
3002 #else
3003 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3004 #endif
3006 /* See how many bytes, if any, of its args a function should try to pop
3007 on return. */
3009 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3010 current_function_args_size);
3012 /* For stdarg.h function, save info about
3013 regs and stack space used by the named args. */
3015 current_function_args_info = all.args_so_far;
3017 /* Set the rtx used for the function return value. Put this in its
3018 own variable so any optimizers that need this information don't have
3019 to include tree.h. Do this here so it gets done when an inlined
3020 function gets output. */
3022 current_function_return_rtx
3023 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3024 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3026 /* If scalar return value was computed in a pseudo-reg, or was a named
3027 return value that got dumped to the stack, copy that to the hard
3028 return register. */
3029 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3031 tree decl_result = DECL_RESULT (fndecl);
3032 rtx decl_rtl = DECL_RTL (decl_result);
3034 if (REG_P (decl_rtl)
3035 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3036 : DECL_REGISTER (decl_result))
3038 rtx real_decl_rtl;
3040 #ifdef FUNCTION_OUTGOING_VALUE
3041 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3042 fndecl);
3043 #else
3044 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3045 fndecl);
3046 #endif
3047 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3048 /* The delay slot scheduler assumes that current_function_return_rtx
3049 holds the hard register containing the return value, not a
3050 temporary pseudo. */
3051 current_function_return_rtx = real_decl_rtl;
3056 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3057 For all seen types, gimplify their sizes. */
3059 static tree
3060 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3062 tree t = *tp;
3064 *walk_subtrees = 0;
3065 if (TYPE_P (t))
3067 if (POINTER_TYPE_P (t))
3068 *walk_subtrees = 1;
3069 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3070 && !TYPE_SIZES_GIMPLIFIED (t))
3072 gimplify_type_sizes (t, (tree *) data);
3073 *walk_subtrees = 1;
3077 return NULL;
3080 /* Gimplify the parameter list for current_function_decl. This involves
3081 evaluating SAVE_EXPRs of variable sized parameters and generating code
3082 to implement callee-copies reference parameters. Returns a list of
3083 statements to add to the beginning of the function, or NULL if nothing
3084 to do. */
3086 tree
3087 gimplify_parameters (void)
3089 struct assign_parm_data_all all;
3090 tree fnargs, parm, stmts = NULL;
3092 assign_parms_initialize_all (&all);
3093 fnargs = assign_parms_augmented_arg_list (&all);
3095 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3097 struct assign_parm_data_one data;
3099 /* Extract the type of PARM; adjust it according to ABI. */
3100 assign_parm_find_data_types (&all, parm, &data);
3102 /* Early out for errors and void parameters. */
3103 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3104 continue;
3106 /* Update info on where next arg arrives in registers. */
3107 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3108 data.passed_type, data.named_arg);
3110 /* ??? Once upon a time variable_size stuffed parameter list
3111 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3112 turned out to be less than manageable in the gimple world.
3113 Now we have to hunt them down ourselves. */
3114 walk_tree_without_duplicates (&data.passed_type,
3115 gimplify_parm_type, &stmts);
3117 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3119 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3120 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3123 if (data.passed_pointer)
3125 tree type = TREE_TYPE (data.passed_type);
3126 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3127 type, data.named_arg))
3129 tree local, t;
3131 /* For constant sized objects, this is trivial; for
3132 variable-sized objects, we have to play games. */
3133 if (TREE_CONSTANT (DECL_SIZE (parm)))
3135 local = create_tmp_var (type, get_name (parm));
3136 DECL_IGNORED_P (local) = 0;
3138 else
3140 tree ptr_type, addr, args;
3142 ptr_type = build_pointer_type (type);
3143 addr = create_tmp_var (ptr_type, get_name (parm));
3144 DECL_IGNORED_P (addr) = 0;
3145 local = build_fold_indirect_ref (addr);
3147 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3148 t = built_in_decls[BUILT_IN_ALLOCA];
3149 t = build_function_call_expr (t, args);
3150 t = fold_convert (ptr_type, t);
3151 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3152 gimplify_and_add (t, &stmts);
3155 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3156 gimplify_and_add (t, &stmts);
3158 SET_DECL_VALUE_EXPR (parm, local);
3159 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3164 return stmts;
3167 /* Indicate whether REGNO is an incoming argument to the current function
3168 that was promoted to a wider mode. If so, return the RTX for the
3169 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3170 that REGNO is promoted from and whether the promotion was signed or
3171 unsigned. */
3174 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3176 tree arg;
3178 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3179 arg = TREE_CHAIN (arg))
3180 if (REG_P (DECL_INCOMING_RTL (arg))
3181 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3182 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3184 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3185 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3187 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3188 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3189 && mode != DECL_MODE (arg))
3191 *pmode = DECL_MODE (arg);
3192 *punsignedp = unsignedp;
3193 return DECL_INCOMING_RTL (arg);
3197 return 0;
3201 /* Compute the size and offset from the start of the stacked arguments for a
3202 parm passed in mode PASSED_MODE and with type TYPE.
3204 INITIAL_OFFSET_PTR points to the current offset into the stacked
3205 arguments.
3207 The starting offset and size for this parm are returned in
3208 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3209 nonzero, the offset is that of stack slot, which is returned in
3210 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3211 padding required from the initial offset ptr to the stack slot.
3213 IN_REGS is nonzero if the argument will be passed in registers. It will
3214 never be set if REG_PARM_STACK_SPACE is not defined.
3216 FNDECL is the function in which the argument was defined.
3218 There are two types of rounding that are done. The first, controlled by
3219 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3220 list to be aligned to the specific boundary (in bits). This rounding
3221 affects the initial and starting offsets, but not the argument size.
3223 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3224 optionally rounds the size of the parm to PARM_BOUNDARY. The
3225 initial offset is not affected by this rounding, while the size always
3226 is and the starting offset may be. */
3228 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3229 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3230 callers pass in the total size of args so far as
3231 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3233 void
3234 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3235 int partial, tree fndecl ATTRIBUTE_UNUSED,
3236 struct args_size *initial_offset_ptr,
3237 struct locate_and_pad_arg_data *locate)
3239 tree sizetree;
3240 enum direction where_pad;
3241 int boundary;
3242 int reg_parm_stack_space = 0;
3243 int part_size_in_regs;
3245 #ifdef REG_PARM_STACK_SPACE
3246 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3248 /* If we have found a stack parm before we reach the end of the
3249 area reserved for registers, skip that area. */
3250 if (! in_regs)
3252 if (reg_parm_stack_space > 0)
3254 if (initial_offset_ptr->var)
3256 initial_offset_ptr->var
3257 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3258 ssize_int (reg_parm_stack_space));
3259 initial_offset_ptr->constant = 0;
3261 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3262 initial_offset_ptr->constant = reg_parm_stack_space;
3265 #endif /* REG_PARM_STACK_SPACE */
3267 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3269 sizetree
3270 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3271 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3272 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3273 locate->where_pad = where_pad;
3274 locate->boundary = boundary;
3276 #ifdef ARGS_GROW_DOWNWARD
3277 locate->slot_offset.constant = -initial_offset_ptr->constant;
3278 if (initial_offset_ptr->var)
3279 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3280 initial_offset_ptr->var);
3283 tree s2 = sizetree;
3284 if (where_pad != none
3285 && (!host_integerp (sizetree, 1)
3286 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3287 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3288 SUB_PARM_SIZE (locate->slot_offset, s2);
3291 locate->slot_offset.constant += part_size_in_regs;
3293 if (!in_regs
3294 #ifdef REG_PARM_STACK_SPACE
3295 || REG_PARM_STACK_SPACE (fndecl) > 0
3296 #endif
3298 pad_to_arg_alignment (&locate->slot_offset, boundary,
3299 &locate->alignment_pad);
3301 locate->size.constant = (-initial_offset_ptr->constant
3302 - locate->slot_offset.constant);
3303 if (initial_offset_ptr->var)
3304 locate->size.var = size_binop (MINUS_EXPR,
3305 size_binop (MINUS_EXPR,
3306 ssize_int (0),
3307 initial_offset_ptr->var),
3308 locate->slot_offset.var);
3310 /* Pad_below needs the pre-rounded size to know how much to pad
3311 below. */
3312 locate->offset = locate->slot_offset;
3313 if (where_pad == downward)
3314 pad_below (&locate->offset, passed_mode, sizetree);
3316 #else /* !ARGS_GROW_DOWNWARD */
3317 if (!in_regs
3318 #ifdef REG_PARM_STACK_SPACE
3319 || REG_PARM_STACK_SPACE (fndecl) > 0
3320 #endif
3322 pad_to_arg_alignment (initial_offset_ptr, boundary,
3323 &locate->alignment_pad);
3324 locate->slot_offset = *initial_offset_ptr;
3326 #ifdef PUSH_ROUNDING
3327 if (passed_mode != BLKmode)
3328 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3329 #endif
3331 /* Pad_below needs the pre-rounded size to know how much to pad below
3332 so this must be done before rounding up. */
3333 locate->offset = locate->slot_offset;
3334 if (where_pad == downward)
3335 pad_below (&locate->offset, passed_mode, sizetree);
3337 if (where_pad != none
3338 && (!host_integerp (sizetree, 1)
3339 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3340 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3342 ADD_PARM_SIZE (locate->size, sizetree);
3344 locate->size.constant -= part_size_in_regs;
3345 #endif /* ARGS_GROW_DOWNWARD */
3348 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3349 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3351 static void
3352 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3353 struct args_size *alignment_pad)
3355 tree save_var = NULL_TREE;
3356 HOST_WIDE_INT save_constant = 0;
3357 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3358 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3360 #ifdef SPARC_STACK_BOUNDARY_HACK
3361 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3362 higher than the real alignment of %sp. However, when it does this,
3363 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3364 This is a temporary hack while the sparc port is fixed. */
3365 if (SPARC_STACK_BOUNDARY_HACK)
3366 sp_offset = 0;
3367 #endif
3369 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3371 save_var = offset_ptr->var;
3372 save_constant = offset_ptr->constant;
3375 alignment_pad->var = NULL_TREE;
3376 alignment_pad->constant = 0;
3378 if (boundary > BITS_PER_UNIT)
3380 if (offset_ptr->var)
3382 tree sp_offset_tree = ssize_int (sp_offset);
3383 tree offset = size_binop (PLUS_EXPR,
3384 ARGS_SIZE_TREE (*offset_ptr),
3385 sp_offset_tree);
3386 #ifdef ARGS_GROW_DOWNWARD
3387 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3388 #else
3389 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3390 #endif
3392 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3393 /* ARGS_SIZE_TREE includes constant term. */
3394 offset_ptr->constant = 0;
3395 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3396 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3397 save_var);
3399 else
3401 offset_ptr->constant = -sp_offset +
3402 #ifdef ARGS_GROW_DOWNWARD
3403 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3404 #else
3405 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3406 #endif
3407 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3408 alignment_pad->constant = offset_ptr->constant - save_constant;
3413 static void
3414 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3416 if (passed_mode != BLKmode)
3418 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3419 offset_ptr->constant
3420 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3421 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3422 - GET_MODE_SIZE (passed_mode));
3424 else
3426 if (TREE_CODE (sizetree) != INTEGER_CST
3427 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3429 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3430 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3431 /* Add it in. */
3432 ADD_PARM_SIZE (*offset_ptr, s2);
3433 SUB_PARM_SIZE (*offset_ptr, sizetree);
3438 /* Walk the tree of blocks describing the binding levels within a function
3439 and warn about variables the might be killed by setjmp or vfork.
3440 This is done after calling flow_analysis and before global_alloc
3441 clobbers the pseudo-regs to hard regs. */
3443 void
3444 setjmp_vars_warning (tree block)
3446 tree decl, sub;
3448 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3450 if (TREE_CODE (decl) == VAR_DECL
3451 && DECL_RTL_SET_P (decl)
3452 && REG_P (DECL_RTL (decl))
3453 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3454 warning (0, "%Jvariable %qD might be clobbered by %<longjmp%>"
3455 " or %<vfork%>",
3456 decl, decl);
3459 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3460 setjmp_vars_warning (sub);
3463 /* Do the appropriate part of setjmp_vars_warning
3464 but for arguments instead of local variables. */
3466 void
3467 setjmp_args_warning (void)
3469 tree decl;
3470 for (decl = DECL_ARGUMENTS (current_function_decl);
3471 decl; decl = TREE_CHAIN (decl))
3472 if (DECL_RTL (decl) != 0
3473 && REG_P (DECL_RTL (decl))
3474 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3475 warning (0, "%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
3476 decl, decl);
3480 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3481 and create duplicate blocks. */
3482 /* ??? Need an option to either create block fragments or to create
3483 abstract origin duplicates of a source block. It really depends
3484 on what optimization has been performed. */
3486 void
3487 reorder_blocks (void)
3489 tree block = DECL_INITIAL (current_function_decl);
3490 VEC(tree,heap) *block_stack;
3492 if (block == NULL_TREE)
3493 return;
3495 block_stack = VEC_alloc (tree, heap, 10);
3497 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3498 clear_block_marks (block);
3500 /* Prune the old trees away, so that they don't get in the way. */
3501 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3502 BLOCK_CHAIN (block) = NULL_TREE;
3504 /* Recreate the block tree from the note nesting. */
3505 reorder_blocks_1 (get_insns (), block, &block_stack);
3506 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3508 /* Remove deleted blocks from the block fragment chains. */
3509 reorder_fix_fragments (block);
3511 VEC_free (tree, heap, block_stack);
3514 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3516 void
3517 clear_block_marks (tree block)
3519 while (block)
3521 TREE_ASM_WRITTEN (block) = 0;
3522 clear_block_marks (BLOCK_SUBBLOCKS (block));
3523 block = BLOCK_CHAIN (block);
3527 static void
3528 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3530 rtx insn;
3532 for (insn = insns; insn; insn = NEXT_INSN (insn))
3534 if (NOTE_P (insn))
3536 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3538 tree block = NOTE_BLOCK (insn);
3540 /* If we have seen this block before, that means it now
3541 spans multiple address regions. Create a new fragment. */
3542 if (TREE_ASM_WRITTEN (block))
3544 tree new_block = copy_node (block);
3545 tree origin;
3547 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3548 ? BLOCK_FRAGMENT_ORIGIN (block)
3549 : block);
3550 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3551 BLOCK_FRAGMENT_CHAIN (new_block)
3552 = BLOCK_FRAGMENT_CHAIN (origin);
3553 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3555 NOTE_BLOCK (insn) = new_block;
3556 block = new_block;
3559 BLOCK_SUBBLOCKS (block) = 0;
3560 TREE_ASM_WRITTEN (block) = 1;
3561 /* When there's only one block for the entire function,
3562 current_block == block and we mustn't do this, it
3563 will cause infinite recursion. */
3564 if (block != current_block)
3566 BLOCK_SUPERCONTEXT (block) = current_block;
3567 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3568 BLOCK_SUBBLOCKS (current_block) = block;
3569 current_block = block;
3571 VEC_safe_push (tree, heap, *p_block_stack, block);
3573 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3575 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3576 BLOCK_SUBBLOCKS (current_block)
3577 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3578 current_block = BLOCK_SUPERCONTEXT (current_block);
3584 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3585 appears in the block tree, select one of the fragments to become
3586 the new origin block. */
3588 static void
3589 reorder_fix_fragments (tree block)
3591 while (block)
3593 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3594 tree new_origin = NULL_TREE;
3596 if (dup_origin)
3598 if (! TREE_ASM_WRITTEN (dup_origin))
3600 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3602 /* Find the first of the remaining fragments. There must
3603 be at least one -- the current block. */
3604 while (! TREE_ASM_WRITTEN (new_origin))
3605 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3606 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3609 else if (! dup_origin)
3610 new_origin = block;
3612 /* Re-root the rest of the fragments to the new origin. In the
3613 case that DUP_ORIGIN was null, that means BLOCK was the origin
3614 of a chain of fragments and we want to remove those fragments
3615 that didn't make it to the output. */
3616 if (new_origin)
3618 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3619 tree chain = *pp;
3621 while (chain)
3623 if (TREE_ASM_WRITTEN (chain))
3625 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3626 *pp = chain;
3627 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3629 chain = BLOCK_FRAGMENT_CHAIN (chain);
3631 *pp = NULL_TREE;
3634 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3635 block = BLOCK_CHAIN (block);
3639 /* Reverse the order of elements in the chain T of blocks,
3640 and return the new head of the chain (old last element). */
3642 tree
3643 blocks_nreverse (tree t)
3645 tree prev = 0, decl, next;
3646 for (decl = t; decl; decl = next)
3648 next = BLOCK_CHAIN (decl);
3649 BLOCK_CHAIN (decl) = prev;
3650 prev = decl;
3652 return prev;
3655 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3656 non-NULL, list them all into VECTOR, in a depth-first preorder
3657 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3658 blocks. */
3660 static int
3661 all_blocks (tree block, tree *vector)
3663 int n_blocks = 0;
3665 while (block)
3667 TREE_ASM_WRITTEN (block) = 0;
3669 /* Record this block. */
3670 if (vector)
3671 vector[n_blocks] = block;
3673 ++n_blocks;
3675 /* Record the subblocks, and their subblocks... */
3676 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3677 vector ? vector + n_blocks : 0);
3678 block = BLOCK_CHAIN (block);
3681 return n_blocks;
3684 /* Return a vector containing all the blocks rooted at BLOCK. The
3685 number of elements in the vector is stored in N_BLOCKS_P. The
3686 vector is dynamically allocated; it is the caller's responsibility
3687 to call `free' on the pointer returned. */
3689 static tree *
3690 get_block_vector (tree block, int *n_blocks_p)
3692 tree *block_vector;
3694 *n_blocks_p = all_blocks (block, NULL);
3695 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3696 all_blocks (block, block_vector);
3698 return block_vector;
3701 static GTY(()) int next_block_index = 2;
3703 /* Set BLOCK_NUMBER for all the blocks in FN. */
3705 void
3706 number_blocks (tree fn)
3708 int i;
3709 int n_blocks;
3710 tree *block_vector;
3712 /* For SDB and XCOFF debugging output, we start numbering the blocks
3713 from 1 within each function, rather than keeping a running
3714 count. */
3715 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3716 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3717 next_block_index = 1;
3718 #endif
3720 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3722 /* The top-level BLOCK isn't numbered at all. */
3723 for (i = 1; i < n_blocks; ++i)
3724 /* We number the blocks from two. */
3725 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3727 free (block_vector);
3729 return;
3732 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3734 tree
3735 debug_find_var_in_block_tree (tree var, tree block)
3737 tree t;
3739 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3740 if (t == var)
3741 return block;
3743 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3745 tree ret = debug_find_var_in_block_tree (var, t);
3746 if (ret)
3747 return ret;
3750 return NULL_TREE;
3753 /* Allocate a function structure for FNDECL and set its contents
3754 to the defaults. */
3756 void
3757 allocate_struct_function (tree fndecl)
3759 tree result;
3760 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3762 cfun = ggc_alloc_cleared (sizeof (struct function));
3764 cfun->stack_alignment_needed = STACK_BOUNDARY;
3765 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3767 current_function_funcdef_no = funcdef_no++;
3769 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3771 init_eh_for_function ();
3773 lang_hooks.function.init (cfun);
3774 if (init_machine_status)
3775 cfun->machine = (*init_machine_status) ();
3777 if (fndecl == NULL)
3778 return;
3780 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3781 cfun->decl = fndecl;
3783 result = DECL_RESULT (fndecl);
3784 if (aggregate_value_p (result, fndecl))
3786 #ifdef PCC_STATIC_STRUCT_RETURN
3787 current_function_returns_pcc_struct = 1;
3788 #endif
3789 current_function_returns_struct = 1;
3792 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3794 current_function_stdarg
3795 = (fntype
3796 && TYPE_ARG_TYPES (fntype) != 0
3797 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3798 != void_type_node));
3800 /* Assume all registers in stdarg functions need to be saved. */
3801 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3802 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3805 /* Reset cfun, and other non-struct-function variables to defaults as
3806 appropriate for emitting rtl at the start of a function. */
3808 static void
3809 prepare_function_start (tree fndecl)
3811 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3812 cfun = DECL_STRUCT_FUNCTION (fndecl);
3813 else
3814 allocate_struct_function (fndecl);
3815 init_emit ();
3816 init_varasm_status (cfun);
3817 init_expr ();
3819 cse_not_expected = ! optimize;
3821 /* Caller save not needed yet. */
3822 caller_save_needed = 0;
3824 /* We haven't done register allocation yet. */
3825 reg_renumber = 0;
3827 /* Indicate that we have not instantiated virtual registers yet. */
3828 virtuals_instantiated = 0;
3830 /* Indicate that we want CONCATs now. */
3831 generating_concat_p = 1;
3833 /* Indicate we have no need of a frame pointer yet. */
3834 frame_pointer_needed = 0;
3837 /* Initialize the rtl expansion mechanism so that we can do simple things
3838 like generate sequences. This is used to provide a context during global
3839 initialization of some passes. */
3840 void
3841 init_dummy_function_start (void)
3843 prepare_function_start (NULL);
3846 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3847 and initialize static variables for generating RTL for the statements
3848 of the function. */
3850 void
3851 init_function_start (tree subr)
3853 prepare_function_start (subr);
3855 /* Prevent ever trying to delete the first instruction of a
3856 function. Also tell final how to output a linenum before the
3857 function prologue. Note linenums could be missing, e.g. when
3858 compiling a Java .class file. */
3859 if (! DECL_IS_BUILTIN (subr))
3860 emit_line_note (DECL_SOURCE_LOCATION (subr));
3862 /* Make sure first insn is a note even if we don't want linenums.
3863 This makes sure the first insn will never be deleted.
3864 Also, final expects a note to appear there. */
3865 emit_note (NOTE_INSN_DELETED);
3867 /* Warn if this value is an aggregate type,
3868 regardless of which calling convention we are using for it. */
3869 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3870 warning (OPT_Waggregate_return, "function returns an aggregate");
3873 /* Make sure all values used by the optimization passes have sane
3874 defaults. */
3875 void
3876 init_function_for_compilation (void)
3878 reg_renumber = 0;
3880 /* No prologue/epilogue insns yet. Make sure that these vectors are
3881 empty. */
3882 gcc_assert (VEC_length (int, prologue) == 0);
3883 gcc_assert (VEC_length (int, epilogue) == 0);
3884 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3887 void
3888 expand_main_function (void)
3890 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3891 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3893 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3894 rtx tmp, seq;
3896 start_sequence ();
3897 /* Forcibly align the stack. */
3898 #ifdef STACK_GROWS_DOWNWARD
3899 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3900 stack_pointer_rtx, 1, OPTAB_WIDEN);
3901 #else
3902 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3903 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3904 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3905 stack_pointer_rtx, 1, OPTAB_WIDEN);
3906 #endif
3907 if (tmp != stack_pointer_rtx)
3908 emit_move_insn (stack_pointer_rtx, tmp);
3910 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3911 tmp = force_reg (Pmode, const0_rtx);
3912 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3913 seq = get_insns ();
3914 end_sequence ();
3916 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3917 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3918 break;
3919 if (tmp)
3920 emit_insn_before (seq, tmp);
3921 else
3922 emit_insn (seq);
3924 #endif
3926 #if (defined(INVOKE__main) \
3927 || (!defined(HAS_INIT_SECTION) \
3928 && !defined(INIT_SECTION_ASM_OP) \
3929 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3930 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3931 #endif
3934 /* Expand code to initialize the stack_protect_guard. This is invoked at
3935 the beginning of a function to be protected. */
3937 #ifndef HAVE_stack_protect_set
3938 # define HAVE_stack_protect_set 0
3939 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3940 #endif
3942 void
3943 stack_protect_prologue (void)
3945 tree guard_decl = targetm.stack_protect_guard ();
3946 rtx x, y;
3948 /* Avoid expand_expr here, because we don't want guard_decl pulled
3949 into registers unless absolutely necessary. And we know that
3950 cfun->stack_protect_guard is a local stack slot, so this skips
3951 all the fluff. */
3952 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3953 y = validize_mem (DECL_RTL (guard_decl));
3955 /* Allow the target to copy from Y to X without leaking Y into a
3956 register. */
3957 if (HAVE_stack_protect_set)
3959 rtx insn = gen_stack_protect_set (x, y);
3960 if (insn)
3962 emit_insn (insn);
3963 return;
3967 /* Otherwise do a straight move. */
3968 emit_move_insn (x, y);
3971 /* Expand code to verify the stack_protect_guard. This is invoked at
3972 the end of a function to be protected. */
3974 #ifndef HAVE_stack_protect_test
3975 # define HAVE_stack_protect_test 0
3976 # define gen_stack_protect_test(x, y) (gcc_unreachable (), NULL_RTX)
3977 #endif
3979 static void
3980 stack_protect_epilogue (void)
3982 tree guard_decl = targetm.stack_protect_guard ();
3983 rtx label = gen_label_rtx ();
3984 rtx x, y, tmp;
3986 /* Avoid expand_expr here, because we don't want guard_decl pulled
3987 into registers unless absolutely necessary. And we know that
3988 cfun->stack_protect_guard is a local stack slot, so this skips
3989 all the fluff. */
3990 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3991 y = validize_mem (DECL_RTL (guard_decl));
3993 /* Allow the target to compare Y with X without leaking either into
3994 a register. */
3995 switch (HAVE_stack_protect_test != 0)
3997 case 1:
3998 tmp = gen_stack_protect_test (x, y, label);
3999 if (tmp)
4001 emit_insn (tmp);
4002 break;
4004 /* FALLTHRU */
4006 default:
4007 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4008 break;
4011 /* The noreturn predictor has been moved to the tree level. The rtl-level
4012 predictors estimate this branch about 20%, which isn't enough to get
4013 things moved out of line. Since this is the only extant case of adding
4014 a noreturn function at the rtl level, it doesn't seem worth doing ought
4015 except adding the prediction by hand. */
4016 tmp = get_last_insn ();
4017 if (JUMP_P (tmp))
4018 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4020 expand_expr_stmt (targetm.stack_protect_fail ());
4021 emit_label (label);
4024 /* Start the RTL for a new function, and set variables used for
4025 emitting RTL.
4026 SUBR is the FUNCTION_DECL node.
4027 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4028 the function's parameters, which must be run at any return statement. */
4030 void
4031 expand_function_start (tree subr)
4033 /* Make sure volatile mem refs aren't considered
4034 valid operands of arithmetic insns. */
4035 init_recog_no_volatile ();
4037 current_function_profile
4038 = (profile_flag
4039 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4041 current_function_limit_stack
4042 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4044 /* Make the label for return statements to jump to. Do not special
4045 case machines with special return instructions -- they will be
4046 handled later during jump, ifcvt, or epilogue creation. */
4047 return_label = gen_label_rtx ();
4049 /* Initialize rtx used to return the value. */
4050 /* Do this before assign_parms so that we copy the struct value address
4051 before any library calls that assign parms might generate. */
4053 /* Decide whether to return the value in memory or in a register. */
4054 if (aggregate_value_p (DECL_RESULT (subr), subr))
4056 /* Returning something that won't go in a register. */
4057 rtx value_address = 0;
4059 #ifdef PCC_STATIC_STRUCT_RETURN
4060 if (current_function_returns_pcc_struct)
4062 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4063 value_address = assemble_static_space (size);
4065 else
4066 #endif
4068 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4069 /* Expect to be passed the address of a place to store the value.
4070 If it is passed as an argument, assign_parms will take care of
4071 it. */
4072 if (sv)
4074 value_address = gen_reg_rtx (Pmode);
4075 emit_move_insn (value_address, sv);
4078 if (value_address)
4080 rtx x = value_address;
4081 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4083 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4084 set_mem_attributes (x, DECL_RESULT (subr), 1);
4086 SET_DECL_RTL (DECL_RESULT (subr), x);
4089 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4090 /* If return mode is void, this decl rtl should not be used. */
4091 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4092 else
4094 /* Compute the return values into a pseudo reg, which we will copy
4095 into the true return register after the cleanups are done. */
4096 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4097 if (TYPE_MODE (return_type) != BLKmode
4098 && targetm.calls.return_in_msb (return_type))
4099 /* expand_function_end will insert the appropriate padding in
4100 this case. Use the return value's natural (unpadded) mode
4101 within the function proper. */
4102 SET_DECL_RTL (DECL_RESULT (subr),
4103 gen_reg_rtx (TYPE_MODE (return_type)));
4104 else
4106 /* In order to figure out what mode to use for the pseudo, we
4107 figure out what the mode of the eventual return register will
4108 actually be, and use that. */
4109 rtx hard_reg = hard_function_value (return_type, subr, 1);
4111 /* Structures that are returned in registers are not
4112 aggregate_value_p, so we may see a PARALLEL or a REG. */
4113 if (REG_P (hard_reg))
4114 SET_DECL_RTL (DECL_RESULT (subr),
4115 gen_reg_rtx (GET_MODE (hard_reg)));
4116 else
4118 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4119 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4123 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4124 result to the real return register(s). */
4125 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4128 /* Initialize rtx for parameters and local variables.
4129 In some cases this requires emitting insns. */
4130 assign_parms (subr);
4132 /* If function gets a static chain arg, store it. */
4133 if (cfun->static_chain_decl)
4135 tree parm = cfun->static_chain_decl;
4136 rtx local = gen_reg_rtx (Pmode);
4138 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4139 SET_DECL_RTL (parm, local);
4140 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4142 emit_move_insn (local, static_chain_incoming_rtx);
4145 /* If the function receives a non-local goto, then store the
4146 bits we need to restore the frame pointer. */
4147 if (cfun->nonlocal_goto_save_area)
4149 tree t_save;
4150 rtx r_save;
4152 /* ??? We need to do this save early. Unfortunately here is
4153 before the frame variable gets declared. Help out... */
4154 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4156 t_save = build4 (ARRAY_REF, ptr_type_node,
4157 cfun->nonlocal_goto_save_area,
4158 integer_zero_node, NULL_TREE, NULL_TREE);
4159 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4160 r_save = convert_memory_address (Pmode, r_save);
4162 emit_move_insn (r_save, virtual_stack_vars_rtx);
4163 update_nonlocal_goto_save_area ();
4166 /* The following was moved from init_function_start.
4167 The move is supposed to make sdb output more accurate. */
4168 /* Indicate the beginning of the function body,
4169 as opposed to parm setup. */
4170 emit_note (NOTE_INSN_FUNCTION_BEG);
4172 if (!NOTE_P (get_last_insn ()))
4173 emit_note (NOTE_INSN_DELETED);
4174 parm_birth_insn = get_last_insn ();
4176 if (current_function_profile)
4178 #ifdef PROFILE_HOOK
4179 PROFILE_HOOK (current_function_funcdef_no);
4180 #endif
4183 /* After the display initializations is where the tail-recursion label
4184 should go, if we end up needing one. Ensure we have a NOTE here
4185 since some things (like trampolines) get placed before this. */
4186 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4188 /* Make sure there is a line number after the function entry setup code. */
4189 force_next_line_note ();
4192 /* Undo the effects of init_dummy_function_start. */
4193 void
4194 expand_dummy_function_end (void)
4196 /* End any sequences that failed to be closed due to syntax errors. */
4197 while (in_sequence_p ())
4198 end_sequence ();
4200 /* Outside function body, can't compute type's actual size
4201 until next function's body starts. */
4203 free_after_parsing (cfun);
4204 free_after_compilation (cfun);
4205 cfun = 0;
4208 /* Call DOIT for each hard register used as a return value from
4209 the current function. */
4211 void
4212 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4214 rtx outgoing = current_function_return_rtx;
4216 if (! outgoing)
4217 return;
4219 if (REG_P (outgoing))
4220 (*doit) (outgoing, arg);
4221 else if (GET_CODE (outgoing) == PARALLEL)
4223 int i;
4225 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4227 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4229 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4230 (*doit) (x, arg);
4235 static void
4236 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4238 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4241 void
4242 clobber_return_register (void)
4244 diddle_return_value (do_clobber_return_reg, NULL);
4246 /* In case we do use pseudo to return value, clobber it too. */
4247 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4249 tree decl_result = DECL_RESULT (current_function_decl);
4250 rtx decl_rtl = DECL_RTL (decl_result);
4251 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4253 do_clobber_return_reg (decl_rtl, NULL);
4258 static void
4259 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4261 emit_insn (gen_rtx_USE (VOIDmode, reg));
4264 void
4265 use_return_register (void)
4267 diddle_return_value (do_use_return_reg, NULL);
4270 /* Possibly warn about unused parameters. */
4271 void
4272 do_warn_unused_parameter (tree fn)
4274 tree decl;
4276 for (decl = DECL_ARGUMENTS (fn);
4277 decl; decl = TREE_CHAIN (decl))
4278 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4279 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4280 warning (0, "%Junused parameter %qD", decl, decl);
4283 static GTY(()) rtx initial_trampoline;
4285 /* Generate RTL for the end of the current function. */
4287 void
4288 expand_function_end (void)
4290 rtx clobber_after;
4292 /* If arg_pointer_save_area was referenced only from a nested
4293 function, we will not have initialized it yet. Do that now. */
4294 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4295 get_arg_pointer_save_area (cfun);
4297 /* If we are doing stack checking and this function makes calls,
4298 do a stack probe at the start of the function to ensure we have enough
4299 space for another stack frame. */
4300 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4302 rtx insn, seq;
4304 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4305 if (CALL_P (insn))
4307 start_sequence ();
4308 probe_stack_range (STACK_CHECK_PROTECT,
4309 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4310 seq = get_insns ();
4311 end_sequence ();
4312 emit_insn_before (seq, tail_recursion_reentry);
4313 break;
4317 /* Possibly warn about unused parameters.
4318 When frontend does unit-at-a-time, the warning is already
4319 issued at finalization time. */
4320 if (warn_unused_parameter
4321 && !lang_hooks.callgraph.expand_function)
4322 do_warn_unused_parameter (current_function_decl);
4324 /* End any sequences that failed to be closed due to syntax errors. */
4325 while (in_sequence_p ())
4326 end_sequence ();
4328 clear_pending_stack_adjust ();
4329 do_pending_stack_adjust ();
4331 /* @@@ This is a kludge. We want to ensure that instructions that
4332 may trap are not moved into the epilogue by scheduling, because
4333 we don't always emit unwind information for the epilogue.
4334 However, not all machine descriptions define a blockage insn, so
4335 emit an ASM_INPUT to act as one. */
4336 if (flag_non_call_exceptions)
4337 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4339 /* Mark the end of the function body.
4340 If control reaches this insn, the function can drop through
4341 without returning a value. */
4342 emit_note (NOTE_INSN_FUNCTION_END);
4344 /* Must mark the last line number note in the function, so that the test
4345 coverage code can avoid counting the last line twice. This just tells
4346 the code to ignore the immediately following line note, since there
4347 already exists a copy of this note somewhere above. This line number
4348 note is still needed for debugging though, so we can't delete it. */
4349 if (flag_test_coverage)
4350 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4352 /* Output a linenumber for the end of the function.
4353 SDB depends on this. */
4354 force_next_line_note ();
4355 emit_line_note (input_location);
4357 /* Before the return label (if any), clobber the return
4358 registers so that they are not propagated live to the rest of
4359 the function. This can only happen with functions that drop
4360 through; if there had been a return statement, there would
4361 have either been a return rtx, or a jump to the return label.
4363 We delay actual code generation after the current_function_value_rtx
4364 is computed. */
4365 clobber_after = get_last_insn ();
4367 /* Output the label for the actual return from the function. */
4368 emit_label (return_label);
4370 /* If scalar return value was computed in a pseudo-reg, or was a named
4371 return value that got dumped to the stack, copy that to the hard
4372 return register. */
4373 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4375 tree decl_result = DECL_RESULT (current_function_decl);
4376 rtx decl_rtl = DECL_RTL (decl_result);
4378 if (REG_P (decl_rtl)
4379 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4380 : DECL_REGISTER (decl_result))
4382 rtx real_decl_rtl = current_function_return_rtx;
4384 /* This should be set in assign_parms. */
4385 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4387 /* If this is a BLKmode structure being returned in registers,
4388 then use the mode computed in expand_return. Note that if
4389 decl_rtl is memory, then its mode may have been changed,
4390 but that current_function_return_rtx has not. */
4391 if (GET_MODE (real_decl_rtl) == BLKmode)
4392 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4394 /* If a non-BLKmode return value should be padded at the least
4395 significant end of the register, shift it left by the appropriate
4396 amount. BLKmode results are handled using the group load/store
4397 machinery. */
4398 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4399 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4401 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4402 REGNO (real_decl_rtl)),
4403 decl_rtl);
4404 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4406 /* If a named return value dumped decl_return to memory, then
4407 we may need to re-do the PROMOTE_MODE signed/unsigned
4408 extension. */
4409 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4411 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4413 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4414 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4415 &unsignedp, 1);
4417 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4419 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4421 /* If expand_function_start has created a PARALLEL for decl_rtl,
4422 move the result to the real return registers. Otherwise, do
4423 a group load from decl_rtl for a named return. */
4424 if (GET_CODE (decl_rtl) == PARALLEL)
4425 emit_group_move (real_decl_rtl, decl_rtl);
4426 else
4427 emit_group_load (real_decl_rtl, decl_rtl,
4428 TREE_TYPE (decl_result),
4429 int_size_in_bytes (TREE_TYPE (decl_result)));
4431 else
4432 emit_move_insn (real_decl_rtl, decl_rtl);
4436 /* If returning a structure, arrange to return the address of the value
4437 in a place where debuggers expect to find it.
4439 If returning a structure PCC style,
4440 the caller also depends on this value.
4441 And current_function_returns_pcc_struct is not necessarily set. */
4442 if (current_function_returns_struct
4443 || current_function_returns_pcc_struct)
4445 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4446 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4447 rtx outgoing;
4449 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4450 type = TREE_TYPE (type);
4451 else
4452 value_address = XEXP (value_address, 0);
4454 #ifdef FUNCTION_OUTGOING_VALUE
4455 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4456 current_function_decl);
4457 #else
4458 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4459 current_function_decl);
4460 #endif
4462 /* Mark this as a function return value so integrate will delete the
4463 assignment and USE below when inlining this function. */
4464 REG_FUNCTION_VALUE_P (outgoing) = 1;
4466 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4467 value_address = convert_memory_address (GET_MODE (outgoing),
4468 value_address);
4470 emit_move_insn (outgoing, value_address);
4472 /* Show return register used to hold result (in this case the address
4473 of the result. */
4474 current_function_return_rtx = outgoing;
4477 /* If this is an implementation of throw, do what's necessary to
4478 communicate between __builtin_eh_return and the epilogue. */
4479 expand_eh_return ();
4481 /* Emit the actual code to clobber return register. */
4483 rtx seq;
4485 start_sequence ();
4486 clobber_return_register ();
4487 expand_naked_return ();
4488 seq = get_insns ();
4489 end_sequence ();
4491 emit_insn_after (seq, clobber_after);
4494 /* Output the label for the naked return from the function. */
4495 emit_label (naked_return_label);
4497 /* Let except.c know where it should emit the call to unregister
4498 the function context for sjlj exceptions. */
4499 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4500 sjlj_emit_function_exit_after (get_last_insn ());
4502 /* If stack protection is enabled for this function, check the guard. */
4503 if (cfun->stack_protect_guard)
4504 stack_protect_epilogue ();
4506 /* If we had calls to alloca, and this machine needs
4507 an accurate stack pointer to exit the function,
4508 insert some code to save and restore the stack pointer. */
4509 if (! EXIT_IGNORE_STACK
4510 && current_function_calls_alloca)
4512 rtx tem = 0;
4514 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4515 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4518 /* ??? This should no longer be necessary since stupid is no longer with
4519 us, but there are some parts of the compiler (eg reload_combine, and
4520 sh mach_dep_reorg) that still try and compute their own lifetime info
4521 instead of using the general framework. */
4522 use_return_register ();
4526 get_arg_pointer_save_area (struct function *f)
4528 rtx ret = f->x_arg_pointer_save_area;
4530 if (! ret)
4532 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4533 f->x_arg_pointer_save_area = ret;
4536 if (f == cfun && ! f->arg_pointer_save_area_init)
4538 rtx seq;
4540 /* Save the arg pointer at the beginning of the function. The
4541 generated stack slot may not be a valid memory address, so we
4542 have to check it and fix it if necessary. */
4543 start_sequence ();
4544 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4545 seq = get_insns ();
4546 end_sequence ();
4548 push_topmost_sequence ();
4549 emit_insn_after (seq, entry_of_function ());
4550 pop_topmost_sequence ();
4553 return ret;
4556 /* Extend a vector that records the INSN_UIDs of INSNS
4557 (a list of one or more insns). */
4559 static void
4560 record_insns (rtx insns, VEC(int,heap) **vecp)
4562 rtx tmp;
4564 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4565 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4568 /* Set the locator of the insn chain starting at INSN to LOC. */
4569 static void
4570 set_insn_locators (rtx insn, int loc)
4572 while (insn != NULL_RTX)
4574 if (INSN_P (insn))
4575 INSN_LOCATOR (insn) = loc;
4576 insn = NEXT_INSN (insn);
4580 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4581 be running after reorg, SEQUENCE rtl is possible. */
4583 static int
4584 contains (rtx insn, VEC(int,heap) **vec)
4586 int i, j;
4588 if (NONJUMP_INSN_P (insn)
4589 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4591 int count = 0;
4592 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4593 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4594 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4595 == VEC_index (int, *vec, j))
4596 count++;
4597 return count;
4599 else
4601 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4602 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4603 return 1;
4605 return 0;
4609 prologue_epilogue_contains (rtx insn)
4611 if (contains (insn, &prologue))
4612 return 1;
4613 if (contains (insn, &epilogue))
4614 return 1;
4615 return 0;
4619 sibcall_epilogue_contains (rtx insn)
4621 if (sibcall_epilogue)
4622 return contains (insn, &sibcall_epilogue);
4623 return 0;
4626 #ifdef HAVE_return
4627 /* Insert gen_return at the end of block BB. This also means updating
4628 block_for_insn appropriately. */
4630 static void
4631 emit_return_into_block (basic_block bb, rtx line_note)
4633 emit_jump_insn_after (gen_return (), BB_END (bb));
4634 if (line_note)
4635 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4637 #endif /* HAVE_return */
4639 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4641 /* These functions convert the epilogue into a variant that does not
4642 modify the stack pointer. This is used in cases where a function
4643 returns an object whose size is not known until it is computed.
4644 The called function leaves the object on the stack, leaves the
4645 stack depressed, and returns a pointer to the object.
4647 What we need to do is track all modifications and references to the
4648 stack pointer, deleting the modifications and changing the
4649 references to point to the location the stack pointer would have
4650 pointed to had the modifications taken place.
4652 These functions need to be portable so we need to make as few
4653 assumptions about the epilogue as we can. However, the epilogue
4654 basically contains three things: instructions to reset the stack
4655 pointer, instructions to reload registers, possibly including the
4656 frame pointer, and an instruction to return to the caller.
4658 We must be sure of what a relevant epilogue insn is doing. We also
4659 make no attempt to validate the insns we make since if they are
4660 invalid, we probably can't do anything valid. The intent is that
4661 these routines get "smarter" as more and more machines start to use
4662 them and they try operating on different epilogues.
4664 We use the following structure to track what the part of the
4665 epilogue that we've already processed has done. We keep two copies
4666 of the SP equivalence, one for use during the insn we are
4667 processing and one for use in the next insn. The difference is
4668 because one part of a PARALLEL may adjust SP and the other may use
4669 it. */
4671 struct epi_info
4673 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4674 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4675 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4676 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4677 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4678 should be set to once we no longer need
4679 its value. */
4680 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4681 for registers. */
4684 static void handle_epilogue_set (rtx, struct epi_info *);
4685 static void update_epilogue_consts (rtx, rtx, void *);
4686 static void emit_equiv_load (struct epi_info *);
4688 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4689 no modifications to the stack pointer. Return the new list of insns. */
4691 static rtx
4692 keep_stack_depressed (rtx insns)
4694 int j;
4695 struct epi_info info;
4696 rtx insn, next;
4698 /* If the epilogue is just a single instruction, it must be OK as is. */
4699 if (NEXT_INSN (insns) == NULL_RTX)
4700 return insns;
4702 /* Otherwise, start a sequence, initialize the information we have, and
4703 process all the insns we were given. */
4704 start_sequence ();
4706 info.sp_equiv_reg = stack_pointer_rtx;
4707 info.sp_offset = 0;
4708 info.equiv_reg_src = 0;
4710 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4711 info.const_equiv[j] = 0;
4713 insn = insns;
4714 next = NULL_RTX;
4715 while (insn != NULL_RTX)
4717 next = NEXT_INSN (insn);
4719 if (!INSN_P (insn))
4721 add_insn (insn);
4722 insn = next;
4723 continue;
4726 /* If this insn references the register that SP is equivalent to and
4727 we have a pending load to that register, we must force out the load
4728 first and then indicate we no longer know what SP's equivalent is. */
4729 if (info.equiv_reg_src != 0
4730 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4732 emit_equiv_load (&info);
4733 info.sp_equiv_reg = 0;
4736 info.new_sp_equiv_reg = info.sp_equiv_reg;
4737 info.new_sp_offset = info.sp_offset;
4739 /* If this is a (RETURN) and the return address is on the stack,
4740 update the address and change to an indirect jump. */
4741 if (GET_CODE (PATTERN (insn)) == RETURN
4742 || (GET_CODE (PATTERN (insn)) == PARALLEL
4743 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4745 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4746 rtx base = 0;
4747 HOST_WIDE_INT offset = 0;
4748 rtx jump_insn, jump_set;
4750 /* If the return address is in a register, we can emit the insn
4751 unchanged. Otherwise, it must be a MEM and we see what the
4752 base register and offset are. In any case, we have to emit any
4753 pending load to the equivalent reg of SP, if any. */
4754 if (REG_P (retaddr))
4756 emit_equiv_load (&info);
4757 add_insn (insn);
4758 insn = next;
4759 continue;
4761 else
4763 rtx ret_ptr;
4764 gcc_assert (MEM_P (retaddr));
4766 ret_ptr = XEXP (retaddr, 0);
4768 if (REG_P (ret_ptr))
4770 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4771 offset = 0;
4773 else
4775 gcc_assert (GET_CODE (ret_ptr) == PLUS
4776 && REG_P (XEXP (ret_ptr, 0))
4777 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4778 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4779 offset = INTVAL (XEXP (ret_ptr, 1));
4783 /* If the base of the location containing the return pointer
4784 is SP, we must update it with the replacement address. Otherwise,
4785 just build the necessary MEM. */
4786 retaddr = plus_constant (base, offset);
4787 if (base == stack_pointer_rtx)
4788 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4789 plus_constant (info.sp_equiv_reg,
4790 info.sp_offset));
4792 retaddr = gen_rtx_MEM (Pmode, retaddr);
4794 /* If there is a pending load to the equivalent register for SP
4795 and we reference that register, we must load our address into
4796 a scratch register and then do that load. */
4797 if (info.equiv_reg_src
4798 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4800 unsigned int regno;
4801 rtx reg;
4803 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4804 if (HARD_REGNO_MODE_OK (regno, Pmode)
4805 && !fixed_regs[regno]
4806 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4807 && !REGNO_REG_SET_P
4808 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4809 && !refers_to_regno_p (regno,
4810 regno + hard_regno_nregs[regno]
4811 [Pmode],
4812 info.equiv_reg_src, NULL)
4813 && info.const_equiv[regno] == 0)
4814 break;
4816 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4818 reg = gen_rtx_REG (Pmode, regno);
4819 emit_move_insn (reg, retaddr);
4820 retaddr = reg;
4823 emit_equiv_load (&info);
4824 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4826 /* Show the SET in the above insn is a RETURN. */
4827 jump_set = single_set (jump_insn);
4828 gcc_assert (jump_set);
4829 SET_IS_RETURN_P (jump_set) = 1;
4832 /* If SP is not mentioned in the pattern and its equivalent register, if
4833 any, is not modified, just emit it. Otherwise, if neither is set,
4834 replace the reference to SP and emit the insn. If none of those are
4835 true, handle each SET individually. */
4836 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4837 && (info.sp_equiv_reg == stack_pointer_rtx
4838 || !reg_set_p (info.sp_equiv_reg, insn)))
4839 add_insn (insn);
4840 else if (! reg_set_p (stack_pointer_rtx, insn)
4841 && (info.sp_equiv_reg == stack_pointer_rtx
4842 || !reg_set_p (info.sp_equiv_reg, insn)))
4844 int changed;
4846 changed = validate_replace_rtx (stack_pointer_rtx,
4847 plus_constant (info.sp_equiv_reg,
4848 info.sp_offset),
4849 insn);
4850 gcc_assert (changed);
4852 add_insn (insn);
4854 else if (GET_CODE (PATTERN (insn)) == SET)
4855 handle_epilogue_set (PATTERN (insn), &info);
4856 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4858 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4859 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4860 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4862 else
4863 add_insn (insn);
4865 info.sp_equiv_reg = info.new_sp_equiv_reg;
4866 info.sp_offset = info.new_sp_offset;
4868 /* Now update any constants this insn sets. */
4869 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4870 insn = next;
4873 insns = get_insns ();
4874 end_sequence ();
4875 return insns;
4878 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4879 structure that contains information about what we've seen so far. We
4880 process this SET by either updating that data or by emitting one or
4881 more insns. */
4883 static void
4884 handle_epilogue_set (rtx set, struct epi_info *p)
4886 /* First handle the case where we are setting SP. Record what it is being
4887 set from, which we must be able to determine */
4888 if (reg_set_p (stack_pointer_rtx, set))
4890 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4892 if (GET_CODE (SET_SRC (set)) == PLUS)
4894 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4895 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4896 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4897 else
4899 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4900 && (REGNO (XEXP (SET_SRC (set), 1))
4901 < FIRST_PSEUDO_REGISTER)
4902 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4903 p->new_sp_offset
4904 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4907 else
4908 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4910 /* If we are adjusting SP, we adjust from the old data. */
4911 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4913 p->new_sp_equiv_reg = p->sp_equiv_reg;
4914 p->new_sp_offset += p->sp_offset;
4917 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4919 return;
4922 /* Next handle the case where we are setting SP's equivalent
4923 register. We must not already have a value to set it to. We
4924 could update, but there seems little point in handling that case.
4925 Note that we have to allow for the case where we are setting the
4926 register set in the previous part of a PARALLEL inside a single
4927 insn. But use the old offset for any updates within this insn.
4928 We must allow for the case where the register is being set in a
4929 different (usually wider) mode than Pmode). */
4930 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4932 gcc_assert (!p->equiv_reg_src
4933 && REG_P (p->new_sp_equiv_reg)
4934 && REG_P (SET_DEST (set))
4935 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4936 <= BITS_PER_WORD)
4937 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4938 p->equiv_reg_src
4939 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4940 plus_constant (p->sp_equiv_reg,
4941 p->sp_offset));
4944 /* Otherwise, replace any references to SP in the insn to its new value
4945 and emit the insn. */
4946 else
4948 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4949 plus_constant (p->sp_equiv_reg,
4950 p->sp_offset));
4951 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4952 plus_constant (p->sp_equiv_reg,
4953 p->sp_offset));
4954 emit_insn (set);
4958 /* Update the tracking information for registers set to constants. */
4960 static void
4961 update_epilogue_consts (rtx dest, rtx x, void *data)
4963 struct epi_info *p = (struct epi_info *) data;
4964 rtx new;
4966 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4967 return;
4969 /* If we are either clobbering a register or doing a partial set,
4970 show we don't know the value. */
4971 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4972 p->const_equiv[REGNO (dest)] = 0;
4974 /* If we are setting it to a constant, record that constant. */
4975 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4976 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4978 /* If this is a binary operation between a register we have been tracking
4979 and a constant, see if we can compute a new constant value. */
4980 else if (ARITHMETIC_P (SET_SRC (x))
4981 && REG_P (XEXP (SET_SRC (x), 0))
4982 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4983 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4984 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4985 && 0 != (new = simplify_binary_operation
4986 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4987 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4988 XEXP (SET_SRC (x), 1)))
4989 && GET_CODE (new) == CONST_INT)
4990 p->const_equiv[REGNO (dest)] = new;
4992 /* Otherwise, we can't do anything with this value. */
4993 else
4994 p->const_equiv[REGNO (dest)] = 0;
4997 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4999 static void
5000 emit_equiv_load (struct epi_info *p)
5002 if (p->equiv_reg_src != 0)
5004 rtx dest = p->sp_equiv_reg;
5006 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5007 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5008 REGNO (p->sp_equiv_reg));
5010 emit_move_insn (dest, p->equiv_reg_src);
5011 p->equiv_reg_src = 0;
5014 #endif
5016 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5017 this into place with notes indicating where the prologue ends and where
5018 the epilogue begins. Update the basic block information when possible. */
5020 void
5021 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5023 int inserted = 0;
5024 edge e;
5025 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5026 rtx seq;
5027 #endif
5028 #ifdef HAVE_prologue
5029 rtx prologue_end = NULL_RTX;
5030 #endif
5031 #if defined (HAVE_epilogue) || defined(HAVE_return)
5032 rtx epilogue_end = NULL_RTX;
5033 #endif
5034 edge_iterator ei;
5036 #ifdef HAVE_prologue
5037 if (HAVE_prologue)
5039 start_sequence ();
5040 seq = gen_prologue ();
5041 emit_insn (seq);
5043 /* Retain a map of the prologue insns. */
5044 record_insns (seq, &prologue);
5045 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5047 seq = get_insns ();
5048 end_sequence ();
5049 set_insn_locators (seq, prologue_locator);
5051 /* Can't deal with multiple successors of the entry block
5052 at the moment. Function should always have at least one
5053 entry point. */
5054 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5056 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5057 inserted = 1;
5059 #endif
5061 /* If the exit block has no non-fake predecessors, we don't need
5062 an epilogue. */
5063 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5064 if ((e->flags & EDGE_FAKE) == 0)
5065 break;
5066 if (e == NULL)
5067 goto epilogue_done;
5069 #ifdef HAVE_return
5070 if (optimize && HAVE_return)
5072 /* If we're allowed to generate a simple return instruction,
5073 then by definition we don't need a full epilogue. Examine
5074 the block that falls through to EXIT. If it does not
5075 contain any code, examine its predecessors and try to
5076 emit (conditional) return instructions. */
5078 basic_block last;
5079 rtx label;
5081 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5082 if (e->flags & EDGE_FALLTHRU)
5083 break;
5084 if (e == NULL)
5085 goto epilogue_done;
5086 last = e->src;
5088 /* Verify that there are no active instructions in the last block. */
5089 label = BB_END (last);
5090 while (label && !LABEL_P (label))
5092 if (active_insn_p (label))
5093 break;
5094 label = PREV_INSN (label);
5097 if (BB_HEAD (last) == label && LABEL_P (label))
5099 edge_iterator ei2;
5100 rtx epilogue_line_note = NULL_RTX;
5102 /* Locate the line number associated with the closing brace,
5103 if we can find one. */
5104 for (seq = get_last_insn ();
5105 seq && ! active_insn_p (seq);
5106 seq = PREV_INSN (seq))
5107 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5109 epilogue_line_note = seq;
5110 break;
5113 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5115 basic_block bb = e->src;
5116 rtx jump;
5118 if (bb == ENTRY_BLOCK_PTR)
5120 ei_next (&ei2);
5121 continue;
5124 jump = BB_END (bb);
5125 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5127 ei_next (&ei2);
5128 continue;
5131 /* If we have an unconditional jump, we can replace that
5132 with a simple return instruction. */
5133 if (simplejump_p (jump))
5135 emit_return_into_block (bb, epilogue_line_note);
5136 delete_insn (jump);
5139 /* If we have a conditional jump, we can try to replace
5140 that with a conditional return instruction. */
5141 else if (condjump_p (jump))
5143 if (! redirect_jump (jump, 0, 0))
5145 ei_next (&ei2);
5146 continue;
5149 /* If this block has only one successor, it both jumps
5150 and falls through to the fallthru block, so we can't
5151 delete the edge. */
5152 if (single_succ_p (bb))
5154 ei_next (&ei2);
5155 continue;
5158 else
5160 ei_next (&ei2);
5161 continue;
5164 /* Fix up the CFG for the successful change we just made. */
5165 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5168 /* Emit a return insn for the exit fallthru block. Whether
5169 this is still reachable will be determined later. */
5171 emit_barrier_after (BB_END (last));
5172 emit_return_into_block (last, epilogue_line_note);
5173 epilogue_end = BB_END (last);
5174 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5175 goto epilogue_done;
5178 #endif
5179 /* Find the edge that falls through to EXIT. Other edges may exist
5180 due to RETURN instructions, but those don't need epilogues.
5181 There really shouldn't be a mixture -- either all should have
5182 been converted or none, however... */
5184 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5185 if (e->flags & EDGE_FALLTHRU)
5186 break;
5187 if (e == NULL)
5188 goto epilogue_done;
5190 #ifdef HAVE_epilogue
5191 if (HAVE_epilogue)
5193 start_sequence ();
5194 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5196 seq = gen_epilogue ();
5198 #ifdef INCOMING_RETURN_ADDR_RTX
5199 /* If this function returns with the stack depressed and we can support
5200 it, massage the epilogue to actually do that. */
5201 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5202 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5203 seq = keep_stack_depressed (seq);
5204 #endif
5206 emit_jump_insn (seq);
5208 /* Retain a map of the epilogue insns. */
5209 record_insns (seq, &epilogue);
5210 set_insn_locators (seq, epilogue_locator);
5212 seq = get_insns ();
5213 end_sequence ();
5215 insert_insn_on_edge (seq, e);
5216 inserted = 1;
5218 else
5219 #endif
5221 basic_block cur_bb;
5223 if (! next_active_insn (BB_END (e->src)))
5224 goto epilogue_done;
5225 /* We have a fall-through edge to the exit block, the source is not
5226 at the end of the function, and there will be an assembler epilogue
5227 at the end of the function.
5228 We can't use force_nonfallthru here, because that would try to
5229 use return. Inserting a jump 'by hand' is extremely messy, so
5230 we take advantage of cfg_layout_finalize using
5231 fixup_fallthru_exit_predecessor. */
5232 cfg_layout_initialize (0);
5233 FOR_EACH_BB (cur_bb)
5234 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5235 cur_bb->aux = cur_bb->next_bb;
5236 cfg_layout_finalize ();
5238 epilogue_done:
5240 if (inserted)
5241 commit_edge_insertions ();
5243 #ifdef HAVE_sibcall_epilogue
5244 /* Emit sibling epilogues before any sibling call sites. */
5245 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5247 basic_block bb = e->src;
5248 rtx insn = BB_END (bb);
5250 if (!CALL_P (insn)
5251 || ! SIBLING_CALL_P (insn))
5253 ei_next (&ei);
5254 continue;
5257 start_sequence ();
5258 emit_insn (gen_sibcall_epilogue ());
5259 seq = get_insns ();
5260 end_sequence ();
5262 /* Retain a map of the epilogue insns. Used in life analysis to
5263 avoid getting rid of sibcall epilogue insns. Do this before we
5264 actually emit the sequence. */
5265 record_insns (seq, &sibcall_epilogue);
5266 set_insn_locators (seq, epilogue_locator);
5268 emit_insn_before (seq, insn);
5269 ei_next (&ei);
5271 #endif
5273 #ifdef HAVE_prologue
5274 /* This is probably all useless now that we use locators. */
5275 if (prologue_end)
5277 rtx insn, prev;
5279 /* GDB handles `break f' by setting a breakpoint on the first
5280 line note after the prologue. Which means (1) that if
5281 there are line number notes before where we inserted the
5282 prologue we should move them, and (2) we should generate a
5283 note before the end of the first basic block, if there isn't
5284 one already there.
5286 ??? This behavior is completely broken when dealing with
5287 multiple entry functions. We simply place the note always
5288 into first basic block and let alternate entry points
5289 to be missed.
5292 for (insn = prologue_end; insn; insn = prev)
5294 prev = PREV_INSN (insn);
5295 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5297 /* Note that we cannot reorder the first insn in the
5298 chain, since rest_of_compilation relies on that
5299 remaining constant. */
5300 if (prev == NULL)
5301 break;
5302 reorder_insns (insn, insn, prologue_end);
5306 /* Find the last line number note in the first block. */
5307 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5308 insn != prologue_end && insn;
5309 insn = PREV_INSN (insn))
5310 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5311 break;
5313 /* If we didn't find one, make a copy of the first line number
5314 we run across. */
5315 if (! insn)
5317 for (insn = next_active_insn (prologue_end);
5318 insn;
5319 insn = PREV_INSN (insn))
5320 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5322 emit_note_copy_after (insn, prologue_end);
5323 break;
5327 #endif
5328 #ifdef HAVE_epilogue
5329 if (epilogue_end)
5331 rtx insn, next;
5333 /* Similarly, move any line notes that appear after the epilogue.
5334 There is no need, however, to be quite so anal about the existence
5335 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5336 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5337 info generation. */
5338 for (insn = epilogue_end; insn; insn = next)
5340 next = NEXT_INSN (insn);
5341 if (NOTE_P (insn)
5342 && (NOTE_LINE_NUMBER (insn) > 0
5343 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5344 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5345 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5348 #endif
5351 /* Reposition the prologue-end and epilogue-begin notes after instruction
5352 scheduling and delayed branch scheduling. */
5354 void
5355 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5357 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5358 rtx insn, last, note;
5359 int len;
5361 if ((len = VEC_length (int, prologue)) > 0)
5363 last = 0, note = 0;
5365 /* Scan from the beginning until we reach the last prologue insn.
5366 We apparently can't depend on basic_block_{head,end} after
5367 reorg has run. */
5368 for (insn = f; insn; insn = NEXT_INSN (insn))
5370 if (NOTE_P (insn))
5372 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5373 note = insn;
5375 else if (contains (insn, &prologue))
5377 last = insn;
5378 if (--len == 0)
5379 break;
5383 if (last)
5385 /* Find the prologue-end note if we haven't already, and
5386 move it to just after the last prologue insn. */
5387 if (note == 0)
5389 for (note = last; (note = NEXT_INSN (note));)
5390 if (NOTE_P (note)
5391 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5392 break;
5395 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5396 if (LABEL_P (last))
5397 last = NEXT_INSN (last);
5398 reorder_insns (note, note, last);
5402 if ((len = VEC_length (int, epilogue)) > 0)
5404 last = 0, note = 0;
5406 /* Scan from the end until we reach the first epilogue insn.
5407 We apparently can't depend on basic_block_{head,end} after
5408 reorg has run. */
5409 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5411 if (NOTE_P (insn))
5413 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5414 note = insn;
5416 else if (contains (insn, &epilogue))
5418 last = insn;
5419 if (--len == 0)
5420 break;
5424 if (last)
5426 /* Find the epilogue-begin note if we haven't already, and
5427 move it to just before the first epilogue insn. */
5428 if (note == 0)
5430 for (note = insn; (note = PREV_INSN (note));)
5431 if (NOTE_P (note)
5432 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5433 break;
5436 if (PREV_INSN (last) != note)
5437 reorder_insns (note, note, PREV_INSN (last));
5440 #endif /* HAVE_prologue or HAVE_epilogue */
5443 /* Resets insn_block_boundaries array. */
5445 void
5446 reset_block_changes (void)
5448 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5449 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5452 /* Record the boundary for BLOCK. */
5453 void
5454 record_block_change (tree block)
5456 int i, n;
5457 tree last_block;
5459 if (!block)
5460 return;
5462 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5463 VARRAY_POP (cfun->ib_boundaries_block);
5464 n = get_max_uid ();
5465 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5466 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5468 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5471 /* Finishes record of boundaries. */
5472 void finalize_block_changes (void)
5474 record_block_change (DECL_INITIAL (current_function_decl));
5477 /* For INSN return the BLOCK it belongs to. */
5478 void
5479 check_block_change (rtx insn, tree *block)
5481 unsigned uid = INSN_UID (insn);
5483 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5484 return;
5486 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5489 /* Releases the ib_boundaries_block records. */
5490 void
5491 free_block_changes (void)
5493 cfun->ib_boundaries_block = NULL;
5496 /* Returns the name of the current function. */
5497 const char *
5498 current_function_name (void)
5500 return lang_hooks.decl_printable_name (cfun->decl, 2);
5503 #include "gt-function.h"