Skip analyzer strndup test on hppa*-*-hpux*
[official-gcc.git] / gcc / tree-ssa-loop-split.cc
blob2e2adb67260aa9436ec220d2ce57d44b294561e9
1 /* Loop splitting.
2 Copyright (C) 2015-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "tree-pass.h"
27 #include "ssa.h"
28 #include "fold-const.h"
29 #include "tree-cfg.h"
30 #include "tree-ssa.h"
31 #include "tree-ssa-loop-niter.h"
32 #include "tree-ssa-loop.h"
33 #include "tree-ssa-loop-manip.h"
34 #include "tree-into-ssa.h"
35 #include "tree-inline.h"
36 #include "tree-cfgcleanup.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "gimple-iterator.h"
40 #include "gimple-pretty-print.h"
41 #include "cfghooks.h"
42 #include "gimple-fold.h"
43 #include "gimplify-me.h"
44 #include "print-tree.h"
45 #include "value-query.h"
46 #include "sreal.h"
48 /* This file implements two kinds of loop splitting.
50 One transformation of loops like:
52 for (i = 0; i < 100; i++)
54 if (i < 50)
56 else
60 into:
62 for (i = 0; i < 50; i++)
66 for (; i < 100; i++)
73 /* Return true when BB inside LOOP is a potential iteration space
74 split point, i.e. ends with a condition like "IV < comp", which
75 is true on one side of the iteration space and false on the other,
76 and the split point can be computed. If so, also return the border
77 point in *BORDER and the comparison induction variable in IV. */
79 static tree
80 split_at_bb_p (class loop *loop, basic_block bb, tree *border, affine_iv *iv,
81 enum tree_code *guard_code)
83 gcond *stmt;
84 affine_iv iv2;
86 /* BB must end in a simple conditional jump. */
87 stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (bb));
88 if (!stmt)
89 return NULL_TREE;
91 enum tree_code code = gimple_cond_code (stmt);
93 if (loop_exits_from_bb_p (loop, bb))
94 return NULL_TREE;
96 tree op0 = gimple_cond_lhs (stmt);
97 tree op1 = gimple_cond_rhs (stmt);
98 class loop *useloop = loop_containing_stmt (stmt);
100 if (!simple_iv (loop, useloop, op0, iv, false))
101 return NULL_TREE;
102 if (!simple_iv (loop, useloop, op1, &iv2, false))
103 return NULL_TREE;
105 /* Make it so that the first argument of the condition is
106 the looping one. */
107 if (!integer_zerop (iv2.step))
109 std::swap (op0, op1);
110 std::swap (*iv, iv2);
111 code = swap_tree_comparison (code);
112 gimple_cond_set_condition (stmt, code, op0, op1);
113 update_stmt (stmt);
115 else if (integer_zerop (iv->step))
116 return NULL_TREE;
117 if (!integer_zerop (iv2.step))
118 return NULL_TREE;
119 if (!iv->no_overflow)
120 return NULL_TREE;
122 /* Only handle relational comparisons, for equality and non-equality
123 we'd have to split the loop into two loops and a middle statement. */
124 switch (code)
126 case LT_EXPR:
127 case LE_EXPR:
128 case GT_EXPR:
129 case GE_EXPR:
130 break;
131 case NE_EXPR:
132 case EQ_EXPR:
133 /* If the test check for first iteration, we can handle NE/EQ
134 with only one split loop. */
135 if (operand_equal_p (iv->base, iv2.base, 0))
137 if (code == EQ_EXPR)
138 code = !tree_int_cst_sign_bit (iv->step) ? LE_EXPR : GE_EXPR;
139 else
140 code = !tree_int_cst_sign_bit (iv->step) ? GT_EXPR : LT_EXPR;
141 break;
143 /* Similarly when the test checks for minimal or maximal
144 value range. */
145 else
147 int_range<2> r;
148 get_global_range_query ()->range_of_expr (r, op0, stmt);
149 if (!r.varying_p () && !r.undefined_p ()
150 && TREE_CODE (op1) == INTEGER_CST)
152 wide_int val = wi::to_wide (op1);
153 if (known_eq (val, r.lower_bound ()))
155 code = (code == EQ_EXPR) ? LE_EXPR : GT_EXPR;
156 break;
158 else if (known_eq (val, r.upper_bound ()))
160 code = (code == EQ_EXPR) ? GE_EXPR : LT_EXPR;
161 break;
165 /* TODO: We can compare with exit condition; it seems that testing for
166 last iteration is common case. */
167 return NULL_TREE;
168 default:
169 return NULL_TREE;
172 if (dump_file && (dump_flags & TDF_DETAILS))
174 fprintf (dump_file, "Found potential split point: ");
175 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
176 fprintf (dump_file, " { ");
177 print_generic_expr (dump_file, iv->base, TDF_SLIM);
178 fprintf (dump_file, " + I*");
179 print_generic_expr (dump_file, iv->step, TDF_SLIM);
180 fprintf (dump_file, " } %s ", get_tree_code_name (code));
181 print_generic_expr (dump_file, iv2.base, TDF_SLIM);
182 fprintf (dump_file, "\n");
185 *border = iv2.base;
186 *guard_code = code;
187 return op0;
190 /* Given a GUARD conditional stmt inside LOOP, which we want to make always
191 true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL
192 (a post-increment IV) and NEWBOUND (the comparator) adjust the loop
193 exit test statement to loop back only if the GUARD statement will
194 also be true/false in the next iteration. */
196 static void
197 patch_loop_exit (class loop *loop, tree_code guard_code, tree nextval,
198 tree newbound, bool initial_true)
200 edge exit = single_exit (loop);
201 gcond *stmt = as_a <gcond *> (*gsi_last_bb (exit->src));
202 gimple_cond_set_condition (stmt, guard_code, nextval, newbound);
203 update_stmt (stmt);
205 edge stay = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
207 exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
208 stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
210 if (initial_true)
212 exit->flags |= EDGE_FALSE_VALUE;
213 stay->flags |= EDGE_TRUE_VALUE;
215 else
217 exit->flags |= EDGE_TRUE_VALUE;
218 stay->flags |= EDGE_FALSE_VALUE;
222 /* Give an induction variable GUARD_IV, and its affine descriptor IV,
223 find the loop phi node in LOOP defining it directly, or create
224 such phi node. Return that phi node. */
226 static gphi *
227 find_or_create_guard_phi (class loop *loop, tree guard_iv, affine_iv * /*iv*/)
229 gimple *def = SSA_NAME_DEF_STMT (guard_iv);
230 gphi *phi;
231 if ((phi = dyn_cast <gphi *> (def))
232 && gimple_bb (phi) == loop->header)
233 return phi;
235 /* XXX Create the PHI instead. */
236 return NULL;
239 /* Returns true if the exit values of all loop phi nodes can be
240 determined easily (i.e. that connect_loop_phis can determine them). */
242 static bool
243 easy_exit_values (class loop *loop)
245 edge exit = single_exit (loop);
246 edge latch = loop_latch_edge (loop);
247 gphi_iterator psi;
249 /* Currently we regard the exit values as easy if they are the same
250 as the value over the backedge. Which is the case if the definition
251 of the backedge value dominates the exit edge. */
252 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
254 gphi *phi = psi.phi ();
255 tree next = PHI_ARG_DEF_FROM_EDGE (phi, latch);
256 basic_block bb;
257 if (TREE_CODE (next) == SSA_NAME
258 && (bb = gimple_bb (SSA_NAME_DEF_STMT (next)))
259 && !dominated_by_p (CDI_DOMINATORS, exit->src, bb))
260 return false;
263 return true;
266 /* This function updates the SSA form after connect_loops made a new
267 edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate
268 conditional). I.e. the second loop can now be entered either
269 via the original entry or via NEW_E, so the entry values of LOOP2
270 phi nodes are either the original ones or those at the exit
271 of LOOP1. Insert new phi nodes in LOOP2 pre-header reflecting
272 this. The loops need to fulfill easy_exit_values(). */
274 static void
275 connect_loop_phis (class loop *loop1, class loop *loop2, edge new_e)
277 basic_block rest = loop_preheader_edge (loop2)->src;
278 gcc_assert (new_e->dest == rest);
279 edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e);
281 edge firste = loop_preheader_edge (loop1);
282 edge seconde = loop_preheader_edge (loop2);
283 edge firstn = loop_latch_edge (loop1);
284 gphi_iterator psi_first, psi_second;
285 for (psi_first = gsi_start_phis (loop1->header),
286 psi_second = gsi_start_phis (loop2->header);
287 !gsi_end_p (psi_first);
288 gsi_next (&psi_first), gsi_next (&psi_second))
290 tree init, next, new_init;
291 use_operand_p op;
292 gphi *phi_first = psi_first.phi ();
293 gphi *phi_second = psi_second.phi ();
295 init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste);
296 next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn);
297 op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde);
298 gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
300 /* Prefer using original variable as a base for the new ssa name.
301 This is necessary for virtual ops, and useful in order to avoid
302 losing debug info for real ops. */
303 if (TREE_CODE (next) == SSA_NAME
304 && useless_type_conversion_p (TREE_TYPE (next),
305 TREE_TYPE (init)))
306 new_init = copy_ssa_name (next);
307 else if (TREE_CODE (init) == SSA_NAME
308 && useless_type_conversion_p (TREE_TYPE (init),
309 TREE_TYPE (next)))
310 new_init = copy_ssa_name (init);
311 else if (useless_type_conversion_p (TREE_TYPE (next),
312 TREE_TYPE (init)))
313 new_init = make_temp_ssa_name (TREE_TYPE (next), NULL,
314 "unrinittmp");
315 else
316 new_init = make_temp_ssa_name (TREE_TYPE (init), NULL,
317 "unrinittmp");
319 gphi * newphi = create_phi_node (new_init, rest);
320 add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION);
321 add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION);
322 SET_USE (op, new_init);
326 /* The two loops LOOP1 and LOOP2 were just created by loop versioning,
327 they are still equivalent and placed in two arms of a diamond, like so:
329 .------if (cond)------.
331 pre1 pre2
333 .--->h1 h2<----.
334 | | | |
335 | ex1---. .---ex2 |
336 | / | | \ |
337 '---l1 X | l2---'
340 '--->join<---'
342 This function transforms the program such that LOOP1 is conditionally
343 falling through to LOOP2, or skipping it. This is done by splitting
344 the ex1->join edge at X in the diagram above, and inserting a condition
345 whose one arm goes to pre2, resulting in this situation:
347 .------if (cond)------.
349 pre1 .---------->pre2
350 | | |
351 .--->h1 | h2<----.
352 | | | | |
353 | ex1---. | .---ex2 |
354 | / v | | \ |
355 '---l1 skip---' | l2---'
358 '--->join<---'
361 The condition used is the exit condition of LOOP1, which effectively means
362 that when the first loop exits (for whatever reason) but the real original
363 exit expression is still false the second loop will be entered.
364 The function returns the new edge cond->pre2.
366 This doesn't update the SSA form, see connect_loop_phis for that. */
368 static edge
369 connect_loops (class loop *loop1, class loop *loop2)
371 edge exit = single_exit (loop1);
372 basic_block skip_bb = split_edge (exit);
373 gcond *skip_stmt;
374 gimple_stmt_iterator gsi;
375 edge new_e, skip_e;
377 gcond *stmt = as_a <gcond *> (*gsi_last_bb (exit->src));
378 skip_stmt = gimple_build_cond (gimple_cond_code (stmt),
379 gimple_cond_lhs (stmt),
380 gimple_cond_rhs (stmt),
381 NULL_TREE, NULL_TREE);
382 gsi = gsi_last_bb (skip_bb);
383 gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT);
385 skip_e = EDGE_SUCC (skip_bb, 0);
386 skip_e->flags &= ~EDGE_FALLTHRU;
387 new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0);
388 if (exit->flags & EDGE_TRUE_VALUE)
390 skip_e->flags |= EDGE_TRUE_VALUE;
391 new_e->flags |= EDGE_FALSE_VALUE;
393 else
395 skip_e->flags |= EDGE_FALSE_VALUE;
396 new_e->flags |= EDGE_TRUE_VALUE;
399 new_e->probability = profile_probability::very_likely ();
400 skip_e->probability = new_e->probability.invert ();
402 return new_e;
405 /* This returns the new bound for iterations given the original iteration
406 space in NITER, an arbitrary new bound BORDER, assumed to be some
407 comparison value with a different IV, the initial value GUARD_INIT of
408 that other IV, and the comparison code GUARD_CODE that compares
409 that other IV with BORDER. We return an SSA name, and place any
410 necessary statements for that computation into *STMTS.
412 For example for such a loop:
414 for (i = beg, j = guard_init; i < end; i++, j++)
415 if (j < border) // this is supposed to be true/false
418 we want to return a new bound (on j) that makes the loop iterate
419 as long as the condition j < border stays true. We also don't want
420 to iterate more often than the original loop, so we have to introduce
421 some cut-off as well (via min/max), effectively resulting in:
423 newend = min (end+guard_init-beg, border)
424 for (i = beg; j = guard_init; j < newend; i++, j++)
425 if (j < c)
428 Depending on the direction of the IVs and if the exit tests
429 are strict or non-strict we need to use MIN or MAX,
430 and add or subtract 1. This routine computes newend above. */
432 static tree
433 compute_new_first_bound (gimple_seq *stmts, class tree_niter_desc *niter,
434 tree border,
435 enum tree_code guard_code, tree guard_init)
437 /* The niter structure contains the after-increment IV, we need
438 the loop-enter base, so subtract STEP once. */
439 tree controlbase = force_gimple_operand (niter->control.base,
440 stmts, true, NULL_TREE);
441 tree controlstep = niter->control.step;
442 tree enddiff;
443 if (POINTER_TYPE_P (TREE_TYPE (controlbase)))
445 controlstep = gimple_build (stmts, NEGATE_EXPR,
446 TREE_TYPE (controlstep), controlstep);
447 enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
448 TREE_TYPE (controlbase),
449 controlbase, controlstep);
451 else
452 enddiff = gimple_build (stmts, MINUS_EXPR,
453 TREE_TYPE (controlbase),
454 controlbase, controlstep);
456 /* Compute end-beg. */
457 gimple_seq stmts2;
458 tree end = force_gimple_operand (niter->bound, &stmts2,
459 true, NULL_TREE);
460 gimple_seq_add_seq_without_update (stmts, stmts2);
461 if (POINTER_TYPE_P (TREE_TYPE (enddiff)))
463 tree tem = gimple_convert (stmts, sizetype, enddiff);
464 tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem);
465 enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
466 TREE_TYPE (enddiff),
467 end, tem);
469 else
470 enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
471 end, enddiff);
473 /* Compute guard_init + (end-beg). */
474 tree newbound;
475 enddiff = gimple_convert (stmts, TREE_TYPE (guard_init), enddiff);
476 if (POINTER_TYPE_P (TREE_TYPE (guard_init)))
478 enddiff = gimple_convert (stmts, sizetype, enddiff);
479 newbound = gimple_build (stmts, POINTER_PLUS_EXPR,
480 TREE_TYPE (guard_init),
481 guard_init, enddiff);
483 else
484 newbound = gimple_build (stmts, PLUS_EXPR, TREE_TYPE (guard_init),
485 guard_init, enddiff);
487 /* Depending on the direction of the IVs the new bound for the first
488 loop is the minimum or maximum of old bound and border.
489 Also, if the guard condition isn't strictly less or greater,
490 we need to adjust the bound. */
491 int addbound = 0;
492 enum tree_code minmax;
493 if (niter->cmp == LT_EXPR)
495 /* GT and LE are the same, inverted. */
496 if (guard_code == GT_EXPR || guard_code == LE_EXPR)
497 addbound = -1;
498 minmax = MIN_EXPR;
500 else
502 gcc_assert (niter->cmp == GT_EXPR);
503 if (guard_code == GE_EXPR || guard_code == LT_EXPR)
504 addbound = 1;
505 minmax = MAX_EXPR;
508 if (addbound)
510 tree type2 = TREE_TYPE (newbound);
511 if (POINTER_TYPE_P (type2))
512 type2 = sizetype;
513 newbound = gimple_build (stmts,
514 POINTER_TYPE_P (TREE_TYPE (newbound))
515 ? POINTER_PLUS_EXPR : PLUS_EXPR,
516 TREE_TYPE (newbound),
517 newbound,
518 build_int_cst (type2, addbound));
521 tree newend = gimple_build (stmts, minmax, TREE_TYPE (border),
522 border, newbound);
523 return newend;
526 /* Fix the two loop's bb count after split based on the split edge probability,
527 don't adjust the bbs dominated by true branches of that loop to avoid
528 dropping 1s down. */
529 static void
530 fix_loop_bb_probability (class loop *loop1, class loop *loop2, edge true_edge,
531 edge false_edge)
533 /* Proportion first loop's bb counts except those dominated by true
534 branch to avoid drop 1s down. */
535 basic_block *bbs1, *bbs2;
536 bbs1 = get_loop_body (loop1);
537 unsigned j;
538 for (j = 0; j < loop1->num_nodes; j++)
539 if (bbs1[j] == loop1->latch
540 /* Watch for case where the true conditional is empty. */
541 || !single_pred_p (true_edge->dest)
542 || !dominated_by_p (CDI_DOMINATORS, bbs1[j], true_edge->dest))
543 bbs1[j]->count
544 = bbs1[j]->count.apply_probability (true_edge->probability);
545 free (bbs1);
547 /* Proportion second loop's bb counts except those dominated by false
548 branch to avoid drop 1s down. */
549 basic_block bbi_copy = get_bb_copy (false_edge->dest);
550 bbs2 = get_loop_body (loop2);
551 for (j = 0; j < loop2->num_nodes; j++)
552 if (bbs2[j] == loop2->latch
553 /* Watch for case where the flase conditional is empty. */
554 || !single_pred_p (bbi_copy)
555 || !dominated_by_p (CDI_DOMINATORS, bbs2[j], bbi_copy))
556 bbs2[j]->count
557 = bbs2[j]->count.apply_probability (true_edge->probability.invert ());
558 free (bbs2);
561 /* Checks if LOOP contains an conditional block whose condition
562 depends on which side in the iteration space it is, and if so
563 splits the iteration space into two loops. Returns true if the
564 loop was split. NITER must contain the iteration descriptor for the
565 single exit of LOOP. */
567 static bool
568 split_loop (class loop *loop1)
570 class tree_niter_desc niter;
571 basic_block *bbs;
572 unsigned i;
573 bool changed = false;
574 tree guard_iv;
575 tree border = NULL_TREE;
576 affine_iv iv;
577 edge exit1;
579 if (!(exit1 = single_exit (loop1))
580 || EDGE_COUNT (exit1->src->succs) != 2
581 /* ??? We could handle non-empty latches when we split the latch edge
582 (not the exit edge), and put the new exit condition in the new block.
583 OTOH this executes some code unconditionally that might have been
584 skipped by the original exit before. */
585 || !empty_block_p (loop1->latch)
586 || !easy_exit_values (loop1)
587 || !number_of_iterations_exit (loop1, exit1, &niter, false, true)
588 || niter.cmp == ERROR_MARK)
589 return false;
590 if (niter.cmp == NE_EXPR)
592 if (!niter.control.no_overflow)
593 return false;
594 if (tree_int_cst_sign_bit (niter.control.step))
595 niter.cmp = GT_EXPR;
596 else
597 niter.cmp = LT_EXPR;
600 bbs = get_loop_body (loop1);
602 if (!can_copy_bbs_p (bbs, loop1->num_nodes))
604 free (bbs);
605 return false;
608 /* Find a splitting opportunity. */
609 enum tree_code guard_code;
610 for (i = 0; i < loop1->num_nodes; i++)
611 if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv, &guard_code)))
613 /* Handling opposite steps is not implemented yet. Neither
614 is handling different step sizes. */
615 if ((tree_int_cst_sign_bit (iv.step)
616 != tree_int_cst_sign_bit (niter.control.step))
617 || !tree_int_cst_equal (iv.step, niter.control.step))
618 continue;
620 /* Find a loop PHI node that defines guard_iv directly,
621 or create one doing that. */
622 gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv);
623 if (!phi)
624 continue;
625 gcond *guard_stmt = as_a<gcond *> (*gsi_last_bb (bbs[i]));
626 tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi,
627 loop_preheader_edge (loop1));
629 /* Loop splitting is implemented by versioning the loop, placing
630 the new loop after the old loop, make the first loop iterate
631 as long as the conditional stays true (or false) and let the
632 second (new) loop handle the rest of the iterations.
634 First we need to determine if the condition will start being true
635 or false in the first loop. */
636 bool initial_true;
637 switch (guard_code)
639 case LT_EXPR:
640 case LE_EXPR:
641 initial_true = !tree_int_cst_sign_bit (iv.step);
642 break;
643 case GT_EXPR:
644 case GE_EXPR:
645 initial_true = tree_int_cst_sign_bit (iv.step);
646 break;
647 default:
648 gcc_unreachable ();
651 /* Build a condition that will skip the first loop when the
652 guard condition won't ever be true (or false). */
653 gimple_seq stmts2;
654 border = force_gimple_operand (border, &stmts2, true, NULL_TREE);
655 if (stmts2)
656 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
657 stmts2);
658 tree cond = fold_build2 (guard_code, boolean_type_node,
659 guard_init, border);
660 if (!initial_true)
661 cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond);
663 edge true_edge, false_edge;
664 extract_true_false_edges_from_block (bbs[i], &true_edge, &false_edge);
666 /* Now version the loop, placing loop2 after loop1 connecting
667 them, and fix up SSA form for that. */
668 initialize_original_copy_tables ();
669 basic_block cond_bb;
671 profile_probability loop1_prob
672 = integer_onep (cond) ? profile_probability::always ()
673 : true_edge->probability;
674 /* TODO: It is commonly a case that we know that both loops will be
675 entered. very_likely below is the probability that second loop will
676 be entered given by connect_loops. We should work out the common
677 case it is always true. */
678 class loop *loop2 = loop_version (loop1, cond, &cond_bb,
679 loop1_prob,
680 /* Pass always as we will later
681 redirect first loop to second
682 loop. */
683 profile_probability::always (),
684 profile_probability::always (),
685 profile_probability::very_likely (),
686 true);
687 gcc_assert (loop2);
688 /* Correct probability of edge cond_bb->preheader_of_loop2. */
689 single_pred_edge
690 (loop_preheader_edge (loop2)->src)->probability
691 = loop1_prob.invert ();
693 fix_loop_bb_probability (loop1, loop2, true_edge, false_edge);
694 /* If conditional we split on has reliable profilea nd both
695 preconditionals of loop1 and loop2 are constant true, we can
696 only redistribute the iteration counts to the split loops.
698 If the conditionals we insert before loop1 or loop2 are non-trivial
699 they increase expected loop count, so account this accordingly.
700 If we do not know the probability of split conditional, avoid
701 reudcing loop estimates, since we do not really know how they are
702 split between of the two new loops. Keep orignal estimate since
703 it is likely better then completely dropping it.
705 TODO: If we know that one of the new loops has constant
706 number of iterations, we can do better. We could also update
707 upper bounds. */
708 if (loop1->any_estimate
709 && wi::fits_shwi_p (loop1->nb_iterations_estimate))
711 sreal scale = true_edge->probability.reliable_p ()
712 ? true_edge->probability.to_sreal () : (sreal)1;
713 sreal scale2 = false_edge->probability.reliable_p ()
714 ? false_edge->probability.to_sreal () : (sreal)1;
715 sreal div1 = loop1_prob.to_sreal ();
716 /* +1 to get header interations rather than latch iterations and then
717 -1 to convert back. */
718 if (div1 != 0)
719 loop1->nb_iterations_estimate
720 = MAX ((((sreal)loop1->nb_iterations_estimate.to_shwi () + 1)
721 * scale / div1).to_nearest_int () - 1, 0);
722 else
723 loop1->any_estimate = false;
724 loop2->nb_iterations_estimate
725 = MAX ((((sreal)loop2->nb_iterations_estimate.to_shwi () + 1) * scale2
726 / profile_probability::very_likely ().to_sreal ())
727 .to_nearest_int () - 1, 0);
729 update_loop_exit_probability_scale_dom_bbs (loop1);
730 update_loop_exit_probability_scale_dom_bbs (loop2);
732 edge new_e = connect_loops (loop1, loop2);
733 connect_loop_phis (loop1, loop2, new_e);
735 /* The iterations of the second loop is now already
736 exactly those that the first loop didn't do, but the
737 iteration space of the first loop is still the original one.
738 Compute the new bound for the guarding IV and patch the
739 loop exit to use it instead of original IV and bound. */
740 gimple_seq stmts = NULL;
741 tree newend = compute_new_first_bound (&stmts, &niter, border,
742 guard_code, guard_init);
743 if (stmts)
744 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
745 stmts);
746 tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1));
747 patch_loop_exit (loop1, guard_code, guard_next, newend, initial_true);
749 /* Finally patch out the two copies of the condition to be always
750 true/false (or opposite). */
751 gcond *force_true = as_a<gcond *> (*gsi_last_bb (bbs[i]));
752 gcond *force_false = as_a<gcond *> (*gsi_last_bb (get_bb_copy (bbs[i])));
753 if (!initial_true)
754 std::swap (force_true, force_false);
755 gimple_cond_make_true (force_true);
756 gimple_cond_make_false (force_false);
757 update_stmt (force_true);
758 update_stmt (force_false);
760 free_original_copy_tables ();
762 changed = true;
763 if (dump_file && (dump_flags & TDF_DETAILS))
764 fprintf (dump_file, ";; Loop split.\n");
766 if (dump_enabled_p ())
767 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, guard_stmt, "loop split\n");
769 /* Only deal with the first opportunity. */
770 break;
773 free (bbs);
774 return changed;
777 /* Another transformation of loops like:
779 for (i = INIT (); CHECK (i); i = NEXT ())
781 if (expr (a_1, a_2, ..., a_n)) // expr is pure
782 a_j = ...; // change at least one a_j
783 else
784 S; // not change any a_j
787 into:
789 for (i = INIT (); CHECK (i); i = NEXT ())
791 if (expr (a_1, a_2, ..., a_n))
792 a_j = ...;
793 else
796 i = NEXT ();
797 break;
801 for (; CHECK (i); i = NEXT ())
808 /* Data structure to hold temporary information during loop split upon
809 semi-invariant conditional statement. */
810 class split_info {
811 public:
812 /* Array of all basic blocks in a loop, returned by get_loop_body(). */
813 basic_block *bbs;
815 /* All memory store/clobber statements in a loop. */
816 auto_vec<gimple *> memory_stores;
818 /* Whether above memory stores vector has been filled. */
819 int need_init;
821 /* Control dependencies of basic blocks in a loop. */
822 auto_vec<hash_set<basic_block> *> control_deps;
824 split_info () : bbs (NULL), need_init (true) { }
826 ~split_info ()
828 if (bbs)
829 free (bbs);
831 for (unsigned i = 0; i < control_deps.length (); i++)
832 delete control_deps[i];
836 /* Find all statements with memory-write effect in LOOP, including memory
837 store and non-pure function call, and keep those in a vector. This work
838 is only done one time, for the vector should be constant during analysis
839 stage of semi-invariant condition. */
841 static void
842 find_vdef_in_loop (struct loop *loop)
844 split_info *info = (split_info *) loop->aux;
845 gphi *vphi = get_virtual_phi (loop->header);
847 /* Indicate memory store vector has been filled. */
848 info->need_init = false;
850 /* If loop contains memory operation, there must be a virtual PHI node in
851 loop header basic block. */
852 if (vphi == NULL)
853 return;
855 /* All virtual SSA names inside the loop are connected to be a cyclic
856 graph via virtual PHI nodes. The virtual PHI node in loop header just
857 links the first and the last virtual SSA names, by using the last as
858 PHI operand to define the first. */
859 const edge latch = loop_latch_edge (loop);
860 const tree first = gimple_phi_result (vphi);
861 const tree last = PHI_ARG_DEF_FROM_EDGE (vphi, latch);
863 /* The virtual SSA cyclic graph might consist of only one SSA name, who
864 is defined by itself.
866 .MEM_1 = PHI <.MEM_2(loop entry edge), .MEM_1(latch edge)>
868 This means the loop contains only memory loads, so we can skip it. */
869 if (first == last)
870 return;
872 auto_vec<gimple *> other_stores;
873 auto_vec<tree> worklist;
874 auto_bitmap visited;
876 bitmap_set_bit (visited, SSA_NAME_VERSION (first));
877 bitmap_set_bit (visited, SSA_NAME_VERSION (last));
878 worklist.safe_push (last);
882 tree vuse = worklist.pop ();
883 gimple *stmt = SSA_NAME_DEF_STMT (vuse);
885 /* We mark the first and last SSA names as visited at the beginning,
886 and reversely start the process from the last SSA name towards the
887 first, which ensures that this do-while will not touch SSA names
888 defined outside the loop. */
889 gcc_assert (gimple_bb (stmt)
890 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)));
892 if (gimple_code (stmt) == GIMPLE_PHI)
894 gphi *phi = as_a <gphi *> (stmt);
896 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
898 tree arg = gimple_phi_arg_def (stmt, i);
900 if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
901 worklist.safe_push (arg);
904 else
906 tree prev = gimple_vuse (stmt);
908 /* Non-pure call statement is conservatively assumed to impact all
909 memory locations. So place call statements ahead of other memory
910 stores in the vector with an idea of using them as shortcut
911 terminators to memory alias analysis. */
912 if (gimple_code (stmt) == GIMPLE_CALL)
913 info->memory_stores.safe_push (stmt);
914 else
915 other_stores.safe_push (stmt);
917 if (bitmap_set_bit (visited, SSA_NAME_VERSION (prev)))
918 worklist.safe_push (prev);
920 } while (!worklist.is_empty ());
922 info->memory_stores.safe_splice (other_stores);
925 /* Two basic blocks have equivalent control dependency if one dominates to
926 the other, and it is post-dominated by the latter. Given a basic block
927 BB in LOOP, find farest equivalent dominating basic block. For BB, there
928 is a constraint that BB does not post-dominate loop header of LOOP, this
929 means BB is control-dependent on at least one basic block in LOOP. */
931 static basic_block
932 get_control_equiv_head_block (struct loop *loop, basic_block bb)
934 while (!bb->aux)
936 basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
938 gcc_checking_assert (dom_bb && flow_bb_inside_loop_p (loop, dom_bb));
940 if (!dominated_by_p (CDI_POST_DOMINATORS, dom_bb, bb))
941 break;
943 bb = dom_bb;
945 return bb;
948 /* Given a BB in LOOP, find out all basic blocks in LOOP that BB is control-
949 dependent on. */
951 static hash_set<basic_block> *
952 find_control_dep_blocks (struct loop *loop, basic_block bb)
954 /* BB has same control dependency as loop header, then it is not control-
955 dependent on any basic block in LOOP. */
956 if (dominated_by_p (CDI_POST_DOMINATORS, loop->header, bb))
957 return NULL;
959 basic_block equiv_head = get_control_equiv_head_block (loop, bb);
961 if (equiv_head->aux)
963 /* There is a basic block containing control dependency equivalent
964 to BB. No need to recompute that, and also set this information
965 to other equivalent basic blocks. */
966 for (; bb != equiv_head;
967 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
968 bb->aux = equiv_head->aux;
969 return (hash_set<basic_block> *) equiv_head->aux;
972 /* A basic block X is control-dependent on another Y iff there exists
973 a path from X to Y, in which every basic block other than X and Y
974 is post-dominated by Y, but X is not post-dominated by Y.
976 According to this rule, traverse basic blocks in the loop backwards
977 starting from BB, if a basic block is post-dominated by BB, extend
978 current post-dominating path to this block, otherwise it is another
979 one that BB is control-dependent on. */
981 auto_vec<basic_block> pdom_worklist;
982 hash_set<basic_block> pdom_visited;
983 hash_set<basic_block> *dep_bbs = new hash_set<basic_block>;
985 pdom_worklist.safe_push (equiv_head);
989 basic_block pdom_bb = pdom_worklist.pop ();
990 edge_iterator ei;
991 edge e;
993 if (pdom_visited.add (pdom_bb))
994 continue;
996 FOR_EACH_EDGE (e, ei, pdom_bb->preds)
998 basic_block pred_bb = e->src;
1000 if (!dominated_by_p (CDI_POST_DOMINATORS, pred_bb, bb))
1002 dep_bbs->add (pred_bb);
1003 continue;
1006 pred_bb = get_control_equiv_head_block (loop, pred_bb);
1008 if (pdom_visited.contains (pred_bb))
1009 continue;
1011 if (!pred_bb->aux)
1013 pdom_worklist.safe_push (pred_bb);
1014 continue;
1017 /* If control dependency of basic block is available, fast extend
1018 post-dominating path using the information instead of advancing
1019 forward step-by-step. */
1020 hash_set<basic_block> *pred_dep_bbs
1021 = (hash_set<basic_block> *) pred_bb->aux;
1023 for (hash_set<basic_block>::iterator iter = pred_dep_bbs->begin ();
1024 iter != pred_dep_bbs->end (); ++iter)
1026 basic_block pred_dep_bb = *iter;
1028 /* Basic blocks can either be in control dependency of BB, or
1029 must be post-dominated by BB, if so, extend the path from
1030 these basic blocks. */
1031 if (!dominated_by_p (CDI_POST_DOMINATORS, pred_dep_bb, bb))
1032 dep_bbs->add (pred_dep_bb);
1033 else if (!pdom_visited.contains (pred_dep_bb))
1034 pdom_worklist.safe_push (pred_dep_bb);
1037 } while (!pdom_worklist.is_empty ());
1039 /* Record computed control dependencies in loop so that we can reach them
1040 when reclaiming resources. */
1041 ((split_info *) loop->aux)->control_deps.safe_push (dep_bbs);
1043 /* Associate control dependence with related equivalent basic blocks. */
1044 for (equiv_head->aux = dep_bbs; bb != equiv_head;
1045 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1046 bb->aux = dep_bbs;
1048 return dep_bbs;
1051 /* Forward declaration */
1053 static bool
1054 stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
1055 const_basic_block skip_head,
1056 hash_map<gimple *, bool> &stmt_stat);
1058 /* Given STMT, memory load or pure call statement, check whether it is impacted
1059 by some memory store in LOOP, excluding trace starting from SKIP_HEAD (the
1060 trace is composed of SKIP_HEAD and those basic block dominated by it, always
1061 corresponds to one branch of a conditional statement). If SKIP_HEAD is
1062 NULL, all basic blocks of LOOP are checked. */
1064 static bool
1065 vuse_semi_invariant_p (struct loop *loop, gimple *stmt,
1066 const_basic_block skip_head)
1068 split_info *info = (split_info *) loop->aux;
1069 tree rhs = NULL_TREE;
1070 ao_ref ref;
1071 gimple *store;
1072 unsigned i;
1074 /* Collect memory store/clobber statements if haven't done that. */
1075 if (info->need_init)
1076 find_vdef_in_loop (loop);
1078 if (is_gimple_assign (stmt))
1079 rhs = gimple_assign_rhs1 (stmt);
1081 ao_ref_init (&ref, rhs);
1083 FOR_EACH_VEC_ELT (info->memory_stores, i, store)
1085 /* Skip basic blocks dominated by SKIP_HEAD, if non-NULL. */
1086 if (skip_head
1087 && dominated_by_p (CDI_DOMINATORS, gimple_bb (store), skip_head))
1088 continue;
1090 if (!ref.ref || stmt_may_clobber_ref_p_1 (store, &ref))
1091 return false;
1094 return true;
1097 /* Suppose one condition branch, led by SKIP_HEAD, is not executed since
1098 certain iteration of LOOP, check whether an SSA name (NAME) remains
1099 unchanged in next iteration. We call this characteristic semi-
1100 invariantness. SKIP_HEAD might be NULL, if so, nothing excluded, all basic
1101 blocks and control flows in the loop will be considered. Semi-invariant
1102 state of checked statement is cached in hash map STMT_STAT to avoid
1103 redundant computation in possible following re-check. */
1105 static inline bool
1106 ssa_semi_invariant_p (struct loop *loop, tree name,
1107 const_basic_block skip_head,
1108 hash_map<gimple *, bool> &stmt_stat)
1110 gimple *def = SSA_NAME_DEF_STMT (name);
1111 const_basic_block def_bb = gimple_bb (def);
1113 /* An SSA name defined outside loop is definitely semi-invariant. */
1114 if (!def_bb || !flow_bb_inside_loop_p (loop, def_bb))
1115 return true;
1117 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1118 return false;
1120 return stmt_semi_invariant_p_1 (loop, def, skip_head, stmt_stat);
1123 /* Check whether a loop iteration PHI node (LOOP_PHI) defines a value that is
1124 semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL),
1125 are excluded from LOOP. */
1127 static bool
1128 loop_iter_phi_semi_invariant_p (struct loop *loop, gphi *loop_phi,
1129 const_basic_block skip_head)
1131 const_edge latch = loop_latch_edge (loop);
1132 tree name = gimple_phi_result (loop_phi);
1133 tree from = PHI_ARG_DEF_FROM_EDGE (loop_phi, latch);
1135 gcc_checking_assert (from);
1137 /* Loop iteration PHI node locates in loop header, and it has two source
1138 operands, one is an initial value coming from outside the loop, the other
1139 is a value through latch of the loop, which is derived in last iteration,
1140 we call the latter latch value. From the PHI node to definition of latch
1141 value, if excluding branch trace starting from SKIP_HEAD, except copy-
1142 assignment or likewise, there is no other kind of value redefinition, SSA
1143 name defined by the PHI node is semi-invariant.
1145 loop entry
1146 | .--- latch ---.
1147 | | |
1148 v v |
1149 x_1 = PHI <x_0, x_3> |
1152 .------- if (cond) -------. |
1153 | | |
1154 | [ SKIP ] |
1155 | | |
1156 | x_2 = ... |
1157 | | |
1158 '---- T ---->.<---- F ----' |
1161 x_3 = PHI <x_1, x_2> |
1163 '----------------------'
1165 Suppose in certain iteration, execution flow in above graph goes through
1166 true branch, which means that one source value to define x_3 in false
1167 branch (x_2) is skipped, x_3 only comes from x_1, and x_1 in next
1168 iterations is defined by x_3, we know that x_1 will never changed if COND
1169 always chooses true branch from then on. */
1171 while (from != name)
1173 /* A new value comes from a CONSTANT. */
1174 if (TREE_CODE (from) != SSA_NAME)
1175 return false;
1177 gimple *stmt = SSA_NAME_DEF_STMT (from);
1178 const_basic_block bb = gimple_bb (stmt);
1180 /* A new value comes from outside the loop. */
1181 if (!bb || !flow_bb_inside_loop_p (loop, bb))
1182 return false;
1184 from = NULL_TREE;
1186 if (gimple_code (stmt) == GIMPLE_PHI)
1188 gphi *phi = as_a <gphi *> (stmt);
1190 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
1192 if (skip_head)
1194 const_edge e = gimple_phi_arg_edge (phi, i);
1196 /* Don't consider redefinitions in excluded basic blocks. */
1197 if (dominated_by_p (CDI_DOMINATORS, e->src, skip_head))
1198 continue;
1201 tree arg = gimple_phi_arg_def (phi, i);
1203 if (!from)
1204 from = arg;
1205 else if (!operand_equal_p (from, arg, 0))
1206 /* There are more than one source operands that provide
1207 different values to the SSA name, it is variant. */
1208 return false;
1211 else if (gimple_code (stmt) == GIMPLE_ASSIGN)
1213 /* For simple value copy, check its rhs instead. */
1214 if (gimple_assign_ssa_name_copy_p (stmt))
1215 from = gimple_assign_rhs1 (stmt);
1218 /* Any other kind of definition is deemed to introduce a new value
1219 to the SSA name. */
1220 if (!from)
1221 return false;
1223 return true;
1226 /* Check whether conditional predicates that BB is control-dependent on, are
1227 semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL),
1228 are excluded from LOOP. Semi-invariant state of checked statement is cached
1229 in hash map STMT_STAT. */
1231 static bool
1232 control_dep_semi_invariant_p (struct loop *loop, basic_block bb,
1233 const_basic_block skip_head,
1234 hash_map<gimple *, bool> &stmt_stat)
1236 hash_set<basic_block> *dep_bbs = find_control_dep_blocks (loop, bb);
1238 if (!dep_bbs)
1239 return true;
1241 for (hash_set<basic_block>::iterator iter = dep_bbs->begin ();
1242 iter != dep_bbs->end (); ++iter)
1244 gimple *last = *gsi_last_bb (*iter);
1245 if (!last)
1246 return false;
1248 /* Only check condition predicates. */
1249 if (gimple_code (last) != GIMPLE_COND
1250 && gimple_code (last) != GIMPLE_SWITCH)
1251 return false;
1253 if (!stmt_semi_invariant_p_1 (loop, last, skip_head, stmt_stat))
1254 return false;
1257 return true;
1260 /* Check whether STMT is semi-invariant in LOOP, iff all its operands are
1261 semi-invariant, consequently, all its defined values are semi-invariant.
1262 Basic blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP.
1263 Semi-invariant state of checked statement is cached in hash map
1264 STMT_STAT. */
1266 static bool
1267 stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
1268 const_basic_block skip_head,
1269 hash_map<gimple *, bool> &stmt_stat)
1271 bool existed;
1272 bool &invar = stmt_stat.get_or_insert (stmt, &existed);
1274 if (existed)
1275 return invar;
1277 /* A statement might depend on itself, which is treated as variant. So set
1278 state of statement under check to be variant to ensure that. */
1279 invar = false;
1281 if (gimple_code (stmt) == GIMPLE_PHI)
1283 gphi *phi = as_a <gphi *> (stmt);
1285 if (gimple_bb (stmt) == loop->header)
1287 /* If the entry value is subject to abnormal coalescing
1288 avoid the transform since we're going to duplicate the
1289 loop header and thus likely introduce overlapping life-ranges
1290 between the PHI def and the entry on the path when the
1291 first loop is skipped. */
1292 tree entry_def
1293 = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1294 if (TREE_CODE (entry_def) == SSA_NAME
1295 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (entry_def))
1296 return false;
1297 invar = loop_iter_phi_semi_invariant_p (loop, phi, skip_head);
1298 return invar;
1301 /* For a loop PHI node that does not locate in loop header, it is semi-
1302 invariant only if two conditions are met. The first is its source
1303 values are derived from CONSTANT (including loop-invariant value), or
1304 from SSA name defined by semi-invariant loop iteration PHI node. The
1305 second is its source incoming edges are control-dependent on semi-
1306 invariant conditional predicates. */
1307 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
1309 const_edge e = gimple_phi_arg_edge (phi, i);
1310 tree arg = gimple_phi_arg_def (phi, i);
1312 if (TREE_CODE (arg) == SSA_NAME)
1314 if (!ssa_semi_invariant_p (loop, arg, skip_head, stmt_stat))
1315 return false;
1317 /* If source value is defined in location from where the source
1318 edge comes in, no need to check control dependency again
1319 since this has been done in above SSA name check stage. */
1320 if (e->src == gimple_bb (SSA_NAME_DEF_STMT (arg)))
1321 continue;
1324 if (!control_dep_semi_invariant_p (loop, e->src, skip_head,
1325 stmt_stat))
1326 return false;
1329 else
1331 ssa_op_iter iter;
1332 tree use;
1334 /* Volatile memory load or return of normal (non-const/non-pure) call
1335 should not be treated as constant in each iteration of loop. */
1336 if (gimple_has_side_effects (stmt))
1337 return false;
1339 /* Check if any memory store may kill memory load at this place. */
1340 if (gimple_vuse (stmt) && !vuse_semi_invariant_p (loop, stmt, skip_head))
1341 return false;
1343 /* Although operand of a statement might be SSA name, CONSTANT or
1344 VARDECL, here we only need to check SSA name operands. This is
1345 because check on VARDECL operands, which involve memory loads,
1346 must have been done prior to invocation of this function in
1347 vuse_semi_invariant_p. */
1348 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1349 if (!ssa_semi_invariant_p (loop, use, skip_head, stmt_stat))
1350 return false;
1353 if (!control_dep_semi_invariant_p (loop, gimple_bb (stmt), skip_head,
1354 stmt_stat))
1355 return false;
1357 /* Here we SHOULD NOT use invar = true, since hash map might be changed due
1358 to new insertion, and thus invar may point to invalid memory. */
1359 stmt_stat.put (stmt, true);
1360 return true;
1363 /* A helper function to check whether STMT is semi-invariant in LOOP. Basic
1364 blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP. */
1366 static bool
1367 stmt_semi_invariant_p (struct loop *loop, gimple *stmt,
1368 const_basic_block skip_head)
1370 hash_map<gimple *, bool> stmt_stat;
1371 return stmt_semi_invariant_p_1 (loop, stmt, skip_head, stmt_stat);
1374 /* Determine when conditional statement never transfers execution to one of its
1375 branch, whether we can remove the branch's leading basic block (BRANCH_BB)
1376 and those basic blocks dominated by BRANCH_BB. */
1378 static bool
1379 branch_removable_p (basic_block branch_bb)
1381 edge_iterator ei;
1382 edge e;
1384 if (single_pred_p (branch_bb))
1385 return true;
1387 FOR_EACH_EDGE (e, ei, branch_bb->preds)
1389 if (dominated_by_p (CDI_DOMINATORS, e->src, branch_bb))
1390 continue;
1392 if (dominated_by_p (CDI_DOMINATORS, branch_bb, e->src))
1393 continue;
1395 /* The branch can be reached from opposite branch, or from some
1396 statement not dominated by the conditional statement. */
1397 return false;
1400 return true;
1403 /* Find out which branch of a conditional statement (COND) is invariant in the
1404 execution context of LOOP. That is: once the branch is selected in certain
1405 iteration of the loop, any operand that contributes to computation of the
1406 conditional statement remains unchanged in all following iterations. */
1408 static edge
1409 get_cond_invariant_branch (struct loop *loop, gcond *cond)
1411 basic_block cond_bb = gimple_bb (cond);
1412 basic_block targ_bb[2];
1413 bool invar[2];
1414 unsigned invar_checks = 0;
1416 for (unsigned i = 0; i < 2; i++)
1418 targ_bb[i] = EDGE_SUCC (cond_bb, i)->dest;
1420 /* One branch directs to loop exit, no need to perform loop split upon
1421 this conditional statement. Firstly, it is trivial if the exit branch
1422 is semi-invariant, for the statement is just to break loop. Secondly,
1423 if the opposite branch is semi-invariant, it means that the statement
1424 is real loop-invariant, which is covered by loop unswitch. */
1425 if (!flow_bb_inside_loop_p (loop, targ_bb[i]))
1426 return NULL;
1429 for (unsigned i = 0; i < 2; i++)
1431 invar[!i] = false;
1433 if (!branch_removable_p (targ_bb[i]))
1434 continue;
1436 /* Given a semi-invariant branch, if its opposite branch dominates
1437 loop latch, it and its following trace will only be executed in
1438 final iteration of loop, namely it is not part of repeated body
1439 of the loop. Similar to the above case that the branch is loop
1440 exit, no need to split loop. */
1441 if (dominated_by_p (CDI_DOMINATORS, loop->latch, targ_bb[i]))
1442 continue;
1444 invar[!i] = stmt_semi_invariant_p (loop, cond, targ_bb[i]);
1445 invar_checks++;
1448 /* With both branches being invariant (handled by loop unswitch) or
1449 variant is not what we want. */
1450 if (invar[0] ^ !invar[1])
1451 return NULL;
1453 /* Found a real loop-invariant condition, do nothing. */
1454 if (invar_checks < 2 && stmt_semi_invariant_p (loop, cond, NULL))
1455 return NULL;
1457 return EDGE_SUCC (cond_bb, invar[0] ? 0 : 1);
1460 /* Calculate increased code size measured by estimated insn number if applying
1461 loop split upon certain branch (BRANCH_EDGE) of a conditional statement. */
1463 static int
1464 compute_added_num_insns (struct loop *loop, const_edge branch_edge)
1466 basic_block cond_bb = branch_edge->src;
1467 unsigned branch = EDGE_SUCC (cond_bb, 1) == branch_edge;
1468 basic_block opposite_bb = EDGE_SUCC (cond_bb, !branch)->dest;
1469 basic_block *bbs = ((split_info *) loop->aux)->bbs;
1470 int num = 0;
1472 for (unsigned i = 0; i < loop->num_nodes; i++)
1474 /* Do no count basic blocks only in opposite branch. */
1475 if (dominated_by_p (CDI_DOMINATORS, bbs[i], opposite_bb))
1476 continue;
1478 num += estimate_num_insns_seq (bb_seq (bbs[i]), &eni_size_weights);
1481 /* It is unnecessary to evaluate expression of the conditional statement
1482 in new loop that contains only invariant branch. This expression should
1483 be constant value (either true or false). Exclude code size of insns
1484 that contribute to computation of the expression. */
1486 auto_vec<gimple *> worklist;
1487 hash_set<gimple *> removed;
1488 gimple *stmt = last_nondebug_stmt (cond_bb);
1490 worklist.safe_push (stmt);
1491 removed.add (stmt);
1492 num -= estimate_num_insns (stmt, &eni_size_weights);
1496 ssa_op_iter opnd_iter;
1497 use_operand_p opnd_p;
1499 stmt = worklist.pop ();
1500 FOR_EACH_PHI_OR_STMT_USE (opnd_p, stmt, opnd_iter, SSA_OP_USE)
1502 tree opnd = USE_FROM_PTR (opnd_p);
1504 if (TREE_CODE (opnd) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (opnd))
1505 continue;
1507 gimple *opnd_stmt = SSA_NAME_DEF_STMT (opnd);
1508 use_operand_p use_p;
1509 imm_use_iterator use_iter;
1511 if (removed.contains (opnd_stmt)
1512 || !flow_bb_inside_loop_p (loop, gimple_bb (opnd_stmt)))
1513 continue;
1515 FOR_EACH_IMM_USE_FAST (use_p, use_iter, opnd)
1517 gimple *use_stmt = USE_STMT (use_p);
1519 if (!is_gimple_debug (use_stmt) && !removed.contains (use_stmt))
1521 opnd_stmt = NULL;
1522 break;
1526 if (opnd_stmt)
1528 worklist.safe_push (opnd_stmt);
1529 removed.add (opnd_stmt);
1530 num -= estimate_num_insns (opnd_stmt, &eni_size_weights);
1533 } while (!worklist.is_empty ());
1535 gcc_assert (num >= 0);
1536 return num;
1539 /* Find out loop-invariant branch of a conditional statement (COND) if it has,
1540 and check whether it is eligible and profitable to perform loop split upon
1541 this branch in LOOP. */
1543 static edge
1544 get_cond_branch_to_split_loop (struct loop *loop, gcond *cond)
1546 edge invar_branch = get_cond_invariant_branch (loop, cond);
1547 if (!invar_branch)
1548 return NULL;
1550 /* When accurate profile information is available, and execution
1551 frequency of the branch is too low, just let it go. */
1552 profile_probability prob = invar_branch->probability;
1553 if (prob.reliable_p ())
1555 int thres = param_min_loop_cond_split_prob;
1557 if (prob < profile_probability::always ().apply_scale (thres, 100))
1558 return NULL;
1561 /* Add a threshold for increased code size to disable loop split. */
1562 if (compute_added_num_insns (loop, invar_branch) > param_max_peeled_insns)
1563 return NULL;
1565 return invar_branch;
1568 /* Given a loop (LOOP1) with a loop-invariant branch (INVAR_BRANCH) of some
1569 conditional statement, perform loop split transformation illustrated
1570 as the following graph.
1572 .-------T------ if (true) ------F------.
1573 | .---------------. |
1574 | | | |
1575 v | v v
1576 pre-header | pre-header
1577 | .------------. | | .------------.
1578 | | | | | | |
1579 | v | | | v |
1580 header | | header |
1581 | | | | |
1582 .--- if (cond) ---. | | .--- if (true) ---. |
1583 | | | | | | |
1584 invariant | | | invariant | |
1585 | | | | | | |
1586 '---T--->.<---F---' | | '---T--->.<---F---' |
1587 | | / | |
1588 stmts | / stmts |
1589 | F T | |
1590 / \ | / / \ |
1591 .-------* * [ if (cond) ] .-------* * |
1592 | | | | | |
1593 | latch | | latch |
1594 | | | | | |
1595 | '------------' | '------------'
1596 '------------------------. .-----------'
1597 loop1 | | loop2
1599 exits
1601 In the graph, loop1 represents the part derived from original one, and
1602 loop2 is duplicated using loop_version (), which corresponds to the part
1603 of original one being splitted out. In original latch edge of loop1, we
1604 insert a new conditional statement duplicated from the semi-invariant cond,
1605 and one of its branch goes back to loop1 header as a latch edge, and the
1606 other branch goes to loop2 pre-header as an entry edge. And also in loop2,
1607 we abandon the variant branch of the conditional statement by setting a
1608 constant bool condition, based on which branch is semi-invariant. */
1610 static bool
1611 do_split_loop_on_cond (struct loop *loop1, edge invar_branch)
1613 basic_block cond_bb = invar_branch->src;
1614 bool true_invar = !!(invar_branch->flags & EDGE_TRUE_VALUE);
1615 gcond *cond = as_a <gcond *> (*gsi_last_bb (cond_bb));
1617 gcc_assert (cond_bb->loop_father == loop1);
1619 if (dump_enabled_p ())
1620 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, cond,
1621 "loop split on semi-invariant condition at %s branch\n",
1622 true_invar ? "true" : "false");
1624 initialize_original_copy_tables ();
1626 struct loop *loop2 = loop_version (loop1, boolean_true_node, NULL,
1627 invar_branch->probability.invert (),
1628 invar_branch->probability,
1629 profile_probability::always (),
1630 profile_probability::always (),
1631 true);
1632 if (!loop2)
1634 free_original_copy_tables ();
1635 return false;
1638 basic_block cond_bb_copy = get_bb_copy (cond_bb);
1639 gcond *cond_copy = as_a<gcond *> (*gsi_last_bb (cond_bb_copy));
1641 /* Replace the condition in loop2 with a bool constant to let PassManager
1642 remove the variant branch after current pass completes. */
1643 if (true_invar)
1644 gimple_cond_make_true (cond_copy);
1645 else
1646 gimple_cond_make_false (cond_copy);
1648 update_stmt (cond_copy);
1650 /* Insert a new conditional statement on latch edge of loop1, its condition
1651 is duplicated from the semi-invariant. This statement acts as a switch
1652 to transfer execution from loop1 to loop2, when loop1 enters into
1653 invariant state. */
1654 basic_block latch_bb = split_edge (loop_latch_edge (loop1));
1655 basic_block break_bb = split_edge (single_pred_edge (latch_bb));
1656 gimple *break_cond = gimple_build_cond (gimple_cond_code(cond),
1657 gimple_cond_lhs (cond),
1658 gimple_cond_rhs (cond),
1659 NULL_TREE, NULL_TREE);
1661 gimple_stmt_iterator gsi = gsi_last_bb (break_bb);
1662 gsi_insert_after (&gsi, break_cond, GSI_NEW_STMT);
1664 edge to_loop1 = single_succ_edge (break_bb);
1665 edge to_loop2 = make_edge (break_bb, loop_preheader_edge (loop2)->src, 0);
1667 to_loop1->flags &= ~EDGE_FALLTHRU;
1668 to_loop1->flags |= true_invar ? EDGE_FALSE_VALUE : EDGE_TRUE_VALUE;
1669 to_loop2->flags |= true_invar ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE;
1671 /* Due to introduction of a control flow edge from loop1 latch to loop2
1672 pre-header, we should update PHIs in loop2 to reflect this connection
1673 between loop1 and loop2. */
1674 connect_loop_phis (loop1, loop2, to_loop2);
1676 edge true_edge, false_edge, skip_edge1, skip_edge2;
1677 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1679 skip_edge1 = true_invar ? false_edge : true_edge;
1680 skip_edge2 = true_invar ? true_edge : false_edge;
1681 fix_loop_bb_probability (loop1, loop2, skip_edge1, skip_edge2);
1683 /* Fix first loop's exit probability after scaling. */
1684 to_loop1->probability = invar_branch->probability.invert ();
1685 to_loop2->probability = invar_branch->probability;
1687 free_original_copy_tables ();
1689 return true;
1692 /* Traverse all conditional statements in LOOP, to find out a good candidate
1693 upon which we can do loop split. */
1695 static bool
1696 split_loop_on_cond (struct loop *loop)
1698 split_info *info = new split_info ();
1699 basic_block *bbs = info->bbs = get_loop_body (loop);
1700 bool do_split = false;
1702 /* Allocate an area to keep temporary info, and associate its address
1703 with loop aux field. */
1704 loop->aux = info;
1706 for (unsigned i = 0; i < loop->num_nodes; i++)
1707 bbs[i]->aux = NULL;
1709 for (unsigned i = 0; i < loop->num_nodes; i++)
1711 basic_block bb = bbs[i];
1713 /* We only consider conditional statement, which be executed at most once
1714 in each iteration of the loop. So skip statements in inner loops. */
1715 if ((bb->loop_father != loop) || (bb->flags & BB_IRREDUCIBLE_LOOP))
1716 continue;
1718 /* Actually this check is not a must constraint. With it, we can ensure
1719 conditional statement will always be executed in each iteration. */
1720 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1721 continue;
1723 gcond *cond = safe_dyn_cast <gcond *> (*gsi_last_bb (bb));
1724 if (!cond)
1725 continue;
1727 edge branch_edge = get_cond_branch_to_split_loop (loop, cond);
1729 if (branch_edge)
1731 do_split_loop_on_cond (loop, branch_edge);
1732 do_split = true;
1733 break;
1737 delete info;
1738 loop->aux = NULL;
1740 return do_split;
1743 /* Main entry point. Perform loop splitting on all suitable loops. */
1745 static unsigned int
1746 tree_ssa_split_loops (void)
1748 bool changed = false;
1750 gcc_assert (scev_initialized_p ());
1752 calculate_dominance_info (CDI_POST_DOMINATORS);
1754 for (auto loop : loops_list (cfun, LI_INCLUDE_ROOT))
1755 loop->aux = NULL;
1757 /* Go through all loops starting from innermost. */
1758 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1760 if (loop->aux)
1762 /* If any of our inner loops was split, don't split us,
1763 and mark our containing loop as having had splits as well.
1764 This allows for delaying SSA update. */
1765 loop_outer (loop)->aux = loop;
1766 continue;
1769 if (optimize_loop_for_size_p (loop))
1770 continue;
1772 if (split_loop (loop) || split_loop_on_cond (loop))
1774 /* Mark our containing loop as having had some split inner loops. */
1775 loop_outer (loop)->aux = loop;
1776 changed = true;
1780 for (auto loop : loops_list (cfun, LI_INCLUDE_ROOT))
1781 loop->aux = NULL;
1783 clear_aux_for_blocks ();
1785 free_dominance_info (CDI_POST_DOMINATORS);
1787 if (changed)
1789 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1790 return TODO_cleanup_cfg;
1792 return 0;
1795 /* Loop splitting pass. */
1797 namespace {
1799 const pass_data pass_data_loop_split =
1801 GIMPLE_PASS, /* type */
1802 "lsplit", /* name */
1803 OPTGROUP_LOOP, /* optinfo_flags */
1804 TV_LOOP_SPLIT, /* tv_id */
1805 PROP_cfg, /* properties_required */
1806 0, /* properties_provided */
1807 0, /* properties_destroyed */
1808 0, /* todo_flags_start */
1809 0, /* todo_flags_finish */
1812 class pass_loop_split : public gimple_opt_pass
1814 public:
1815 pass_loop_split (gcc::context *ctxt)
1816 : gimple_opt_pass (pass_data_loop_split, ctxt)
1819 /* opt_pass methods: */
1820 bool gate (function *) final override { return flag_split_loops != 0; }
1821 unsigned int execute (function *) final override;
1823 }; // class pass_loop_split
1825 unsigned int
1826 pass_loop_split::execute (function *fun)
1828 if (number_of_loops (fun) <= 1)
1829 return 0;
1831 return tree_ssa_split_loops ();
1834 } // anon namespace
1836 gimple_opt_pass *
1837 make_pass_loop_split (gcc::context *ctxt)
1839 return new pass_loop_split (ctxt);