Skip analyzer strndup test on hppa*-*-hpux*
[official-gcc.git] / gcc / dse.cc
blob40c4c29d07e02dd41ecd586b26ac88b0ceda421e
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2023 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #undef BASELINE
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "memmodel.h"
36 #include "tm_p.h"
37 #include "gimple-ssa.h"
38 #include "expmed.h"
39 #include "optabs.h"
40 #include "emit-rtl.h"
41 #include "recog.h"
42 #include "alias.h"
43 #include "stor-layout.h"
44 #include "cfgrtl.h"
45 #include "cselib.h"
46 #include "tree-pass.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "dbgcnt.h"
50 #include "rtl-iter.h"
51 #include "cfgcleanup.h"
52 #include "calls.h"
54 /* This file contains three techniques for performing Dead Store
55 Elimination (dse).
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
66 * The third technique, (which is only done after register allocation)
67 processes the spill slots. This differs from the second
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
77 The pass is logically broken into 7 steps:
79 0) Initialization.
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
91 3) Set up the global dataflow equations based on processing the
92 info parsed in the first step.
94 4) Solve the dataflow equations.
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
99 6) Delete insns that store the same value as preceding store
100 where the earlier store couldn't be eliminated.
102 7) Cleanup.
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
108 forwards ordering is to accommodate cselib.
110 We make a simplifying assumption: addresses fall into four broad
111 categories:
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
118 The local passes are able to process all 4 kinds of addresses. The
119 global pass only handles 1).
121 The global problem is formulated as follows:
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
125 function contain another store to A before a read to A.
127 If the address A is relative to the stack frame, a store S2 to A
128 can be eliminated if there are no paths from S2 that reach the
129 end of the function that read A before another store to A. In
130 this case S2 can be deleted if there are paths from S2 to the
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
141 implementation requires a lot of bitmaps filled with 1s.
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
145 for details.
147 There are two places for further enhancements to this algorithm:
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
152 A <- r100
153 ... <- A
155 flow would replace the right hand side of the second insn with a
156 reference to r100. Most of the information is available to add this
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
190 off the frame pointer, the global algorithm handles this slot.
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
195 required is to have those passes make the same calls that reload
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
199 /* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203 #define MAX_OFFSET (64 * 1024)
205 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211 static bitmap_obstack dse_bitmap_obstack;
213 /* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215 static struct obstack dse_obstack;
217 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
218 static bitmap scratch = NULL;
220 struct insn_info_type;
222 /* This structure holds information about a candidate store. */
223 class store_info
225 public:
227 /* False means this is a clobber. */
228 bool is_set;
230 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
231 bool is_large;
233 /* The id of the mem group of the base address. If rtx_varies_p is
234 true, this is -1. Otherwise, it is the index into the group
235 table. */
236 int group_id;
238 /* This is the cselib value. */
239 cselib_val *cse_base;
241 /* This canonized mem. */
242 rtx mem;
244 /* Canonized MEM address for use by canon_true_dependence. */
245 rtx mem_addr;
247 /* The offset of the first byte associated with the operation. */
248 poly_int64 offset;
250 /* The number of bytes covered by the operation. This is always exact
251 and known (rather than -1). */
252 poly_int64 width;
254 /* The address space that the memory reference uses. */
255 unsigned char addrspace;
257 union
259 /* A bitmask as wide as the number of bytes in the word that
260 contains a 1 if the byte may be needed. The store is unused if
261 all of the bits are 0. This is used if IS_LARGE is false. */
262 unsigned HOST_WIDE_INT small_bitmask;
264 struct
266 /* A bitmap with one bit per byte, or null if the number of
267 bytes isn't known at compile time. A cleared bit means
268 the position is needed. Used if IS_LARGE is true. */
269 bitmap bmap;
271 /* When BITMAP is nonnull, this counts the number of set bits
272 (i.e. unneeded bytes) in the bitmap. If it is equal to
273 WIDTH, the whole store is unused.
275 When BITMAP is null:
276 - the store is definitely not needed when COUNT == 1
277 - all the store is needed when COUNT == 0 and RHS is nonnull
278 - otherwise we don't know which parts of the store are needed. */
279 int count;
280 } large;
281 } positions_needed;
283 /* The next store info for this insn. */
284 class store_info *next;
286 /* The right hand side of the store. This is used if there is a
287 subsequent reload of the mems address somewhere later in the
288 basic block. */
289 rtx rhs;
291 /* If rhs is or holds a constant, this contains that constant,
292 otherwise NULL. */
293 rtx const_rhs;
295 /* Set if this store stores the same constant value as REDUNDANT_REASON
296 insn stored. These aren't eliminated early, because doing that
297 might prevent the earlier larger store to be eliminated. */
298 struct insn_info_type *redundant_reason;
301 /* Return a bitmask with the first N low bits set. */
303 static unsigned HOST_WIDE_INT
304 lowpart_bitmask (int n)
306 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
307 return mask >> (HOST_BITS_PER_WIDE_INT - n);
310 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
312 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
314 /* This structure holds information about a load. These are only
315 built for rtx bases. */
316 class read_info_type
318 public:
319 /* The id of the mem group of the base address. */
320 int group_id;
322 /* The offset of the first byte associated with the operation. */
323 poly_int64 offset;
325 /* The number of bytes covered by the operation, or -1 if not known. */
326 poly_int64 width;
328 /* The mem being read. */
329 rtx mem;
331 /* The next read_info for this insn. */
332 class read_info_type *next;
334 typedef class read_info_type *read_info_t;
336 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
338 /* One of these records is created for each insn. */
340 struct insn_info_type
342 /* Set true if the insn contains a store but the insn itself cannot
343 be deleted. This is set if the insn is a parallel and there is
344 more than one non dead output or if the insn is in some way
345 volatile. */
346 bool cannot_delete;
348 /* This field is only used by the global algorithm. It is set true
349 if the insn contains any read of mem except for a (1). This is
350 also set if the insn is a call or has a clobber mem. If the insn
351 contains a wild read, the use_rec will be null. */
352 bool wild_read;
354 /* This is true only for CALL instructions which could potentially read
355 any non-frame memory location. This field is used by the global
356 algorithm. */
357 bool non_frame_wild_read;
359 /* This field is only used for the processing of const functions.
360 These functions cannot read memory, but they can read the stack
361 because that is where they may get their parms. We need to be
362 this conservative because, like the store motion pass, we don't
363 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
364 Moreover, we need to distinguish two cases:
365 1. Before reload (register elimination), the stores related to
366 outgoing arguments are stack pointer based and thus deemed
367 of non-constant base in this pass. This requires special
368 handling but also means that the frame pointer based stores
369 need not be killed upon encountering a const function call.
370 2. After reload, the stores related to outgoing arguments can be
371 either stack pointer or hard frame pointer based. This means
372 that we have no other choice than also killing all the frame
373 pointer based stores upon encountering a const function call.
374 This field is set after reload for const function calls and before
375 reload for const tail function calls on targets where arg pointer
376 is the frame pointer. Having this set is less severe than a wild
377 read, it just means that all the frame related stores are killed
378 rather than all the stores. */
379 bool frame_read;
381 /* This field is only used for the processing of const functions.
382 It is set if the insn may contain a stack pointer based store. */
383 bool stack_pointer_based;
385 /* This is true if any of the sets within the store contains a
386 cselib base. Such stores can only be deleted by the local
387 algorithm. */
388 bool contains_cselib_groups;
390 /* The insn. */
391 rtx_insn *insn;
393 /* The list of mem sets or mem clobbers that are contained in this
394 insn. If the insn is deletable, it contains only one mem set.
395 But it could also contain clobbers. Insns that contain more than
396 one mem set are not deletable, but each of those mems are here in
397 order to provide info to delete other insns. */
398 store_info *store_rec;
400 /* The linked list of mem uses in this insn. Only the reads from
401 rtx bases are listed here. The reads to cselib bases are
402 completely processed during the first scan and so are never
403 created. */
404 read_info_t read_rec;
406 /* The live fixed registers. We assume only fixed registers can
407 cause trouble by being clobbered from an expanded pattern;
408 storing only the live fixed registers (rather than all registers)
409 means less memory needs to be allocated / copied for the individual
410 stores. */
411 regset fixed_regs_live;
413 /* The prev insn in the basic block. */
414 struct insn_info_type * prev_insn;
416 /* The linked list of insns that are in consideration for removal in
417 the forwards pass through the basic block. This pointer may be
418 trash as it is not cleared when a wild read occurs. The only
419 time it is guaranteed to be correct is when the traversal starts
420 at active_local_stores. */
421 struct insn_info_type * next_local_store;
423 typedef struct insn_info_type *insn_info_t;
425 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
427 /* The linked list of stores that are under consideration in this
428 basic block. */
429 static insn_info_t active_local_stores;
430 static int active_local_stores_len;
432 struct dse_bb_info_type
434 /* Pointer to the insn info for the last insn in the block. These
435 are linked so this is how all of the insns are reached. During
436 scanning this is the current insn being scanned. */
437 insn_info_t last_insn;
439 /* The info for the global dataflow problem. */
442 /* This is set if the transfer function should and in the wild_read
443 bitmap before applying the kill and gen sets. That vector knocks
444 out most of the bits in the bitmap and thus speeds up the
445 operations. */
446 bool apply_wild_read;
448 /* The following 4 bitvectors hold information about which positions
449 of which stores are live or dead. They are indexed by
450 get_bitmap_index. */
452 /* The set of store positions that exist in this block before a wild read. */
453 bitmap gen;
455 /* The set of load positions that exist in this block above the
456 same position of a store. */
457 bitmap kill;
459 /* The set of stores that reach the top of the block without being
460 killed by a read.
462 Do not represent the in if it is all ones. Note that this is
463 what the bitvector should logically be initialized to for a set
464 intersection problem. However, like the kill set, this is too
465 expensive. So initially, the in set will only be created for the
466 exit block and any block that contains a wild read. */
467 bitmap in;
469 /* The set of stores that reach the bottom of the block from it's
470 successors.
472 Do not represent the in if it is all ones. Note that this is
473 what the bitvector should logically be initialized to for a set
474 intersection problem. However, like the kill and in set, this is
475 too expensive. So what is done is that the confluence operator
476 just initializes the vector from one of the out sets of the
477 successors of the block. */
478 bitmap out;
480 /* The following bitvector is indexed by the reg number. It
481 contains the set of regs that are live at the current instruction
482 being processed. While it contains info for all of the
483 registers, only the hard registers are actually examined. It is used
484 to assure that shift and/or add sequences that are inserted do not
485 accidentally clobber live hard regs. */
486 bitmap regs_live;
489 typedef struct dse_bb_info_type *bb_info_t;
491 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
492 ("bb_info_pool");
494 /* Table to hold all bb_infos. */
495 static bb_info_t *bb_table;
497 /* There is a group_info for each rtx base that is used to reference
498 memory. There are also not many of the rtx bases because they are
499 very limited in scope. */
501 struct group_info
503 /* The actual base of the address. */
504 rtx rtx_base;
506 /* The sequential id of the base. This allows us to have a
507 canonical ordering of these that is not based on addresses. */
508 int id;
510 /* True if there are any positions that are to be processed
511 globally. */
512 bool process_globally;
514 /* True if the base of this group is either the frame_pointer or
515 hard_frame_pointer. */
516 bool frame_related;
518 /* A mem wrapped around the base pointer for the group in order to do
519 read dependency. It must be given BLKmode in order to encompass all
520 the possible offsets from the base. */
521 rtx base_mem;
523 /* Canonized version of base_mem's address. */
524 rtx canon_base_addr;
526 /* These two sets of two bitmaps are used to keep track of how many
527 stores are actually referencing that position from this base. We
528 only do this for rtx bases as this will be used to assign
529 positions in the bitmaps for the global problem. Bit N is set in
530 store1 on the first store for offset N. Bit N is set in store2
531 for the second store to offset N. This is all we need since we
532 only care about offsets that have two or more stores for them.
534 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
535 for 0 and greater offsets.
537 There is one special case here, for stores into the stack frame,
538 we will or store1 into store2 before deciding which stores look
539 at globally. This is because stores to the stack frame that have
540 no other reads before the end of the function can also be
541 deleted. */
542 bitmap store1_n, store1_p, store2_n, store2_p;
544 /* These bitmaps keep track of offsets in this group escape this function.
545 An offset escapes if it corresponds to a named variable whose
546 addressable flag is set. */
547 bitmap escaped_n, escaped_p;
549 /* The positions in this bitmap have the same assignments as the in,
550 out, gen and kill bitmaps. This bitmap is all zeros except for
551 the positions that are occupied by stores for this group. */
552 bitmap group_kill;
554 /* The offset_map is used to map the offsets from this base into
555 positions in the global bitmaps. It is only created after all of
556 the all of stores have been scanned and we know which ones we
557 care about. */
558 int *offset_map_n, *offset_map_p;
559 int offset_map_size_n, offset_map_size_p;
562 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
564 /* Index into the rtx_group_vec. */
565 static int rtx_group_next_id;
568 static vec<group_info *> rtx_group_vec;
571 /* This structure holds the set of changes that are being deferred
572 when removing read operation. See replace_read. */
573 struct deferred_change
576 /* The mem that is being replaced. */
577 rtx *loc;
579 /* The reg it is being replaced with. */
580 rtx reg;
582 struct deferred_change *next;
585 static object_allocator<deferred_change> deferred_change_pool
586 ("deferred_change_pool");
588 static deferred_change *deferred_change_list = NULL;
590 /* This is true except if cfun->stdarg -- i.e. we cannot do
591 this for vararg functions because they play games with the frame. */
592 static bool stores_off_frame_dead_at_return;
594 /* Counter for stats. */
595 static int globally_deleted;
596 static int locally_deleted;
598 static bitmap all_blocks;
600 /* Locations that are killed by calls in the global phase. */
601 static bitmap kill_on_calls;
603 /* The number of bits used in the global bitmaps. */
604 static unsigned int current_position;
606 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
608 static void
609 print_range (FILE *file, poly_int64 offset, poly_int64 width)
611 fprintf (file, "[");
612 print_dec (offset, file, SIGNED);
613 fprintf (file, "..");
614 print_dec (offset + width, file, SIGNED);
615 fprintf (file, ")");
618 /*----------------------------------------------------------------------------
619 Zeroth step.
621 Initialization.
622 ----------------------------------------------------------------------------*/
625 /* Hashtable callbacks for maintaining the "bases" field of
626 store_group_info, given that the addresses are function invariants. */
628 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
630 static inline hashval_t hash (const group_info *);
631 static inline bool equal (const group_info *, const group_info *);
634 inline bool
635 invariant_group_base_hasher::equal (const group_info *gi1,
636 const group_info *gi2)
638 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
641 inline hashval_t
642 invariant_group_base_hasher::hash (const group_info *gi)
644 int do_not_record;
645 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
648 /* Tables of group_info structures, hashed by base value. */
649 static hash_table<invariant_group_base_hasher> *rtx_group_table;
652 /* Get the GROUP for BASE. Add a new group if it is not there. */
654 static group_info *
655 get_group_info (rtx base)
657 struct group_info tmp_gi;
658 group_info *gi;
659 group_info **slot;
661 gcc_assert (base != NULL_RTX);
663 /* Find the store_base_info structure for BASE, creating a new one
664 if necessary. */
665 tmp_gi.rtx_base = base;
666 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
667 gi = *slot;
669 if (gi == NULL)
671 *slot = gi = group_info_pool.allocate ();
672 gi->rtx_base = base;
673 gi->id = rtx_group_next_id++;
674 gi->base_mem = gen_rtx_MEM (BLKmode, base);
675 gi->canon_base_addr = canon_rtx (base);
676 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
679 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
680 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
681 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
682 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
683 gi->process_globally = false;
684 gi->frame_related =
685 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
686 gi->offset_map_size_n = 0;
687 gi->offset_map_size_p = 0;
688 gi->offset_map_n = NULL;
689 gi->offset_map_p = NULL;
690 rtx_group_vec.safe_push (gi);
693 return gi;
697 /* Initialization of data structures. */
699 static void
700 dse_step0 (void)
702 locally_deleted = 0;
703 globally_deleted = 0;
705 bitmap_obstack_initialize (&dse_bitmap_obstack);
706 gcc_obstack_init (&dse_obstack);
708 scratch = BITMAP_ALLOC (&reg_obstack);
709 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
712 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
714 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
715 rtx_group_next_id = 0;
717 stores_off_frame_dead_at_return = !cfun->stdarg;
719 init_alias_analysis ();
724 /*----------------------------------------------------------------------------
725 First step.
727 Scan all of the insns. Any random ordering of the blocks is fine.
728 Each block is scanned in forward order to accommodate cselib which
729 is used to remove stores with non-constant bases.
730 ----------------------------------------------------------------------------*/
732 /* Delete all of the store_info recs from INSN_INFO. */
734 static void
735 free_store_info (insn_info_t insn_info)
737 store_info *cur = insn_info->store_rec;
738 while (cur)
740 store_info *next = cur->next;
741 if (cur->is_large)
742 BITMAP_FREE (cur->positions_needed.large.bmap);
743 if (cur->cse_base)
744 cse_store_info_pool.remove (cur);
745 else
746 rtx_store_info_pool.remove (cur);
747 cur = next;
750 insn_info->cannot_delete = true;
751 insn_info->contains_cselib_groups = false;
752 insn_info->store_rec = NULL;
755 struct note_add_store_info
757 rtx_insn *first, *current;
758 regset fixed_regs_live;
759 bool failure;
762 /* Callback for emit_inc_dec_insn_before via note_stores.
763 Check if a register is clobbered which is live afterwards. */
765 static void
766 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
768 rtx_insn *insn;
769 note_add_store_info *info = (note_add_store_info *) data;
771 if (!REG_P (loc))
772 return;
774 /* If this register is referenced by the current or an earlier insn,
775 that's OK. E.g. this applies to the register that is being incremented
776 with this addition. */
777 for (insn = info->first;
778 insn != NEXT_INSN (info->current);
779 insn = NEXT_INSN (insn))
780 if (reg_referenced_p (loc, PATTERN (insn)))
781 return;
783 /* If we come here, we have a clobber of a register that's only OK
784 if that register is not live. If we don't have liveness information
785 available, fail now. */
786 if (!info->fixed_regs_live)
788 info->failure = true;
789 return;
791 /* Now check if this is a live fixed register. */
792 unsigned int end_regno = END_REGNO (loc);
793 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
794 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
795 info->failure = true;
798 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
799 SRC + SRCOFF before insn ARG. */
801 static int
802 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
803 rtx op ATTRIBUTE_UNUSED,
804 rtx dest, rtx src, rtx srcoff, void *arg)
806 insn_info_t insn_info = (insn_info_t) arg;
807 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
808 note_add_store_info info;
810 /* We can reuse all operands without copying, because we are about
811 to delete the insn that contained it. */
812 if (srcoff)
814 start_sequence ();
815 emit_insn (gen_add3_insn (dest, src, srcoff));
816 new_insn = get_insns ();
817 end_sequence ();
819 else
820 new_insn = gen_move_insn (dest, src);
821 info.first = new_insn;
822 info.fixed_regs_live = insn_info->fixed_regs_live;
823 info.failure = false;
824 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
826 info.current = cur;
827 note_stores (cur, note_add_store, &info);
830 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
831 return it immediately, communicating the failure to its caller. */
832 if (info.failure)
833 return 1;
835 emit_insn_before (new_insn, insn);
837 return 0;
840 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
841 is there, is split into a separate insn.
842 Return true on success (or if there was nothing to do), false on failure. */
844 static bool
845 check_for_inc_dec_1 (insn_info_t insn_info)
847 rtx_insn *insn = insn_info->insn;
848 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
849 if (note)
850 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
851 insn_info) == 0;
853 /* Punt on stack pushes, those don't have REG_INC notes and we are
854 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
855 subrtx_iterator::array_type array;
856 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
858 const_rtx x = *iter;
859 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
860 return false;
863 return true;
867 /* Entry point for postreload. If you work on reload_cse, or you need this
868 anywhere else, consider if you can provide register liveness information
869 and add a parameter to this function so that it can be passed down in
870 insn_info.fixed_regs_live. */
871 bool
872 check_for_inc_dec (rtx_insn *insn)
874 insn_info_type insn_info;
875 rtx note;
877 insn_info.insn = insn;
878 insn_info.fixed_regs_live = NULL;
879 note = find_reg_note (insn, REG_INC, NULL_RTX);
880 if (note)
881 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
882 &insn_info) == 0;
884 /* Punt on stack pushes, those don't have REG_INC notes and we are
885 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
886 subrtx_iterator::array_type array;
887 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
889 const_rtx x = *iter;
890 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
891 return false;
894 return true;
897 /* Delete the insn and free all of the fields inside INSN_INFO. */
899 static void
900 delete_dead_store_insn (insn_info_t insn_info)
902 read_info_t read_info;
904 if (!dbg_cnt (dse))
905 return;
907 if (!check_for_inc_dec_1 (insn_info))
908 return;
909 if (dump_file && (dump_flags & TDF_DETAILS))
910 fprintf (dump_file, "Locally deleting insn %d\n",
911 INSN_UID (insn_info->insn));
913 free_store_info (insn_info);
914 read_info = insn_info->read_rec;
916 while (read_info)
918 read_info_t next = read_info->next;
919 read_info_type_pool.remove (read_info);
920 read_info = next;
922 insn_info->read_rec = NULL;
924 delete_insn (insn_info->insn);
925 locally_deleted++;
926 insn_info->insn = NULL;
928 insn_info->wild_read = false;
931 /* Return whether DECL, a local variable, can possibly escape the current
932 function scope. */
934 static bool
935 local_variable_can_escape (tree decl)
937 if (TREE_ADDRESSABLE (decl))
938 return true;
940 /* If this is a partitioned variable, we need to consider all the variables
941 in the partition. This is necessary because a store into one of them can
942 be replaced with a store into another and this may not change the outcome
943 of the escape analysis. */
944 if (cfun->gimple_df->decls_to_pointers != NULL)
946 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
947 if (namep)
948 return TREE_ADDRESSABLE (*namep);
951 return false;
954 /* Return whether EXPR can possibly escape the current function scope. */
956 static bool
957 can_escape (tree expr)
959 tree base;
960 if (!expr)
961 return true;
962 base = get_base_address (expr);
963 if (DECL_P (base)
964 && !may_be_aliased (base)
965 && !(VAR_P (base)
966 && !DECL_EXTERNAL (base)
967 && !TREE_STATIC (base)
968 && local_variable_can_escape (base)))
969 return false;
970 return true;
973 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
974 OFFSET and WIDTH. */
976 static void
977 set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
978 tree expr)
980 /* Non-constant offsets and widths act as global kills, so there's no point
981 trying to use them to derive global DSE candidates. */
982 HOST_WIDE_INT i, const_offset, const_width;
983 bool expr_escapes = can_escape (expr);
984 if (offset.is_constant (&const_offset)
985 && width.is_constant (&const_width)
986 && const_offset > -MAX_OFFSET
987 && const_offset + const_width < MAX_OFFSET)
988 for (i = const_offset; i < const_offset + const_width; ++i)
990 bitmap store1;
991 bitmap store2;
992 bitmap escaped;
993 int ai;
994 if (i < 0)
996 store1 = group->store1_n;
997 store2 = group->store2_n;
998 escaped = group->escaped_n;
999 ai = -i;
1001 else
1003 store1 = group->store1_p;
1004 store2 = group->store2_p;
1005 escaped = group->escaped_p;
1006 ai = i;
1009 if (!bitmap_set_bit (store1, ai))
1010 bitmap_set_bit (store2, ai);
1011 else
1013 if (i < 0)
1015 if (group->offset_map_size_n < ai)
1016 group->offset_map_size_n = ai;
1018 else
1020 if (group->offset_map_size_p < ai)
1021 group->offset_map_size_p = ai;
1024 if (expr_escapes)
1025 bitmap_set_bit (escaped, ai);
1029 static void
1030 reset_active_stores (void)
1032 active_local_stores = NULL;
1033 active_local_stores_len = 0;
1036 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1038 static void
1039 free_read_records (bb_info_t bb_info)
1041 insn_info_t insn_info = bb_info->last_insn;
1042 read_info_t *ptr = &insn_info->read_rec;
1043 while (*ptr)
1045 read_info_t next = (*ptr)->next;
1046 read_info_type_pool.remove (*ptr);
1047 *ptr = next;
1051 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1053 static void
1054 add_wild_read (bb_info_t bb_info)
1056 insn_info_t insn_info = bb_info->last_insn;
1057 insn_info->wild_read = true;
1058 free_read_records (bb_info);
1059 reset_active_stores ();
1062 /* Set the BB_INFO so that the last insn is marked as a wild read of
1063 non-frame locations. */
1065 static void
1066 add_non_frame_wild_read (bb_info_t bb_info)
1068 insn_info_t insn_info = bb_info->last_insn;
1069 insn_info->non_frame_wild_read = true;
1070 free_read_records (bb_info);
1071 reset_active_stores ();
1074 /* Return true if X is a constant or one of the registers that behave
1075 as a constant over the life of a function. This is equivalent to
1076 !rtx_varies_p for memory addresses. */
1078 static bool
1079 const_or_frame_p (rtx x)
1081 if (CONSTANT_P (x))
1082 return true;
1084 if (GET_CODE (x) == REG)
1086 /* Note that we have to test for the actual rtx used for the frame
1087 and arg pointers and not just the register number in case we have
1088 eliminated the frame and/or arg pointer and are using it
1089 for pseudos. */
1090 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1091 /* The arg pointer varies if it is not a fixed register. */
1092 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1093 || x == pic_offset_table_rtx)
1094 return true;
1095 return false;
1098 return false;
1101 /* Take all reasonable action to put the address of MEM into the form
1102 that we can do analysis on.
1104 The gold standard is to get the address into the form: address +
1105 OFFSET where address is something that rtx_varies_p considers a
1106 constant. When we can get the address in this form, we can do
1107 global analysis on it. Note that for constant bases, address is
1108 not actually returned, only the group_id. The address can be
1109 obtained from that.
1111 If that fails, we try cselib to get a value we can at least use
1112 locally. If that fails we return false.
1114 The GROUP_ID is set to -1 for cselib bases and the index of the
1115 group for non_varying bases.
1117 FOR_READ is true if this is a mem read and false if not. */
1119 static bool
1120 canon_address (rtx mem,
1121 int *group_id,
1122 poly_int64 *offset,
1123 cselib_val **base)
1125 machine_mode address_mode = get_address_mode (mem);
1126 rtx mem_address = XEXP (mem, 0);
1127 rtx expanded_address, address;
1128 int expanded;
1130 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1132 if (dump_file && (dump_flags & TDF_DETAILS))
1134 fprintf (dump_file, " mem: ");
1135 print_inline_rtx (dump_file, mem_address, 0);
1136 fprintf (dump_file, "\n");
1139 /* First see if just canon_rtx (mem_address) is const or frame,
1140 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1141 address = NULL_RTX;
1142 for (expanded = 0; expanded < 2; expanded++)
1144 if (expanded)
1146 /* Use cselib to replace all of the reg references with the full
1147 expression. This will take care of the case where we have
1149 r_x = base + offset;
1150 val = *r_x;
1152 by making it into
1154 val = *(base + offset); */
1156 expanded_address = cselib_expand_value_rtx (mem_address,
1157 scratch, 5);
1159 /* If this fails, just go with the address from first
1160 iteration. */
1161 if (!expanded_address)
1162 break;
1164 else
1165 expanded_address = mem_address;
1167 /* Split the address into canonical BASE + OFFSET terms. */
1168 address = canon_rtx (expanded_address);
1170 *offset = 0;
1172 if (dump_file && (dump_flags & TDF_DETAILS))
1174 if (expanded)
1176 fprintf (dump_file, "\n after cselib_expand address: ");
1177 print_inline_rtx (dump_file, expanded_address, 0);
1178 fprintf (dump_file, "\n");
1181 fprintf (dump_file, "\n after canon_rtx address: ");
1182 print_inline_rtx (dump_file, address, 0);
1183 fprintf (dump_file, "\n");
1186 if (GET_CODE (address) == CONST)
1187 address = XEXP (address, 0);
1189 address = strip_offset_and_add (address, offset);
1191 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1192 && const_or_frame_p (address))
1194 group_info *group = get_group_info (address);
1196 if (dump_file && (dump_flags & TDF_DETAILS))
1198 fprintf (dump_file, " gid=%d offset=", group->id);
1199 print_dec (*offset, dump_file);
1200 fprintf (dump_file, "\n");
1202 *base = NULL;
1203 *group_id = group->id;
1204 return true;
1208 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1209 *group_id = -1;
1211 if (*base == NULL)
1213 if (dump_file && (dump_flags & TDF_DETAILS))
1214 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1215 return false;
1217 if (dump_file && (dump_flags & TDF_DETAILS))
1219 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1220 (*base)->uid, (*base)->hash);
1221 print_dec (*offset, dump_file);
1222 fprintf (dump_file, "\n");
1224 return true;
1228 /* Clear the rhs field from the active_local_stores array. */
1230 static void
1231 clear_rhs_from_active_local_stores (void)
1233 insn_info_t ptr = active_local_stores;
1235 while (ptr)
1237 store_info *store_info = ptr->store_rec;
1238 /* Skip the clobbers. */
1239 while (!store_info->is_set)
1240 store_info = store_info->next;
1242 store_info->rhs = NULL;
1243 store_info->const_rhs = NULL;
1245 ptr = ptr->next_local_store;
1250 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1252 static inline void
1253 set_position_unneeded (store_info *s_info, int pos)
1255 if (UNLIKELY (s_info->is_large))
1257 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1258 s_info->positions_needed.large.count++;
1260 else
1261 s_info->positions_needed.small_bitmask
1262 &= ~(HOST_WIDE_INT_1U << pos);
1265 /* Mark the whole store S_INFO as unneeded. */
1267 static inline void
1268 set_all_positions_unneeded (store_info *s_info)
1270 if (UNLIKELY (s_info->is_large))
1272 HOST_WIDE_INT width;
1273 if (s_info->width.is_constant (&width))
1275 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1276 s_info->positions_needed.large.count = width;
1278 else
1280 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1281 s_info->positions_needed.large.count = 1;
1284 else
1285 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
1288 /* Return TRUE if any bytes from S_INFO store are needed. */
1290 static inline bool
1291 any_positions_needed_p (store_info *s_info)
1293 if (UNLIKELY (s_info->is_large))
1295 HOST_WIDE_INT width;
1296 if (s_info->width.is_constant (&width))
1298 gcc_checking_assert (s_info->positions_needed.large.bmap);
1299 return s_info->positions_needed.large.count < width;
1301 else
1303 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1304 return s_info->positions_needed.large.count == 0;
1307 else
1308 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
1311 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1312 store are known to be needed. */
1314 static inline bool
1315 all_positions_needed_p (store_info *s_info, poly_int64 start,
1316 poly_int64 width)
1318 gcc_assert (s_info->rhs);
1319 if (!s_info->width.is_constant ())
1321 gcc_assert (s_info->is_large
1322 && !s_info->positions_needed.large.bmap);
1323 return s_info->positions_needed.large.count == 0;
1326 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1327 a non-constant region of a constant-sized store. We can't say for
1328 sure that all positions are needed. */
1329 HOST_WIDE_INT const_start, const_width;
1330 if (!start.is_constant (&const_start)
1331 || !width.is_constant (&const_width))
1332 return false;
1334 if (UNLIKELY (s_info->is_large))
1336 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1337 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
1338 return false;
1339 return true;
1341 else
1343 unsigned HOST_WIDE_INT mask
1344 = lowpart_bitmask (const_width) << const_start;
1345 return (s_info->positions_needed.small_bitmask & mask) == mask;
1350 static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1351 poly_int64, basic_block, bool);
1354 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1355 there is a candidate store, after adding it to the appropriate
1356 local store group if so. */
1358 static int
1359 record_store (rtx body, bb_info_t bb_info)
1361 rtx mem, rhs, const_rhs, mem_addr;
1362 poly_int64 offset = 0;
1363 poly_int64 width = 0;
1364 insn_info_t insn_info = bb_info->last_insn;
1365 store_info *store_info = NULL;
1366 int group_id;
1367 cselib_val *base = NULL;
1368 insn_info_t ptr, last, redundant_reason;
1369 bool store_is_unused;
1371 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1372 return 0;
1374 mem = SET_DEST (body);
1376 /* If this is not used, then this cannot be used to keep the insn
1377 from being deleted. On the other hand, it does provide something
1378 that can be used to prove that another store is dead. */
1379 store_is_unused
1380 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1382 /* Check whether that value is a suitable memory location. */
1383 if (!MEM_P (mem))
1385 /* If the set or clobber is unused, then it does not effect our
1386 ability to get rid of the entire insn. */
1387 if (!store_is_unused)
1388 insn_info->cannot_delete = true;
1389 return 0;
1392 /* At this point we know mem is a mem. */
1393 if (GET_MODE (mem) == BLKmode)
1395 HOST_WIDE_INT const_size;
1396 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1398 if (dump_file && (dump_flags & TDF_DETAILS))
1399 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1400 add_wild_read (bb_info);
1401 insn_info->cannot_delete = true;
1402 return 0;
1404 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1405 as memset (addr, 0, 36); */
1406 else if (!MEM_SIZE_KNOWN_P (mem)
1407 || maybe_le (MEM_SIZE (mem), 0)
1408 /* This is a limit on the bitmap size, which is only relevant
1409 for constant-sized MEMs. */
1410 || (MEM_SIZE (mem).is_constant (&const_size)
1411 && const_size > MAX_OFFSET)
1412 || GET_CODE (body) != SET
1413 || !CONST_INT_P (SET_SRC (body)))
1415 if (!store_is_unused)
1417 /* If the set or clobber is unused, then it does not effect our
1418 ability to get rid of the entire insn. */
1419 insn_info->cannot_delete = true;
1420 clear_rhs_from_active_local_stores ();
1422 return 0;
1426 /* We can still process a volatile mem, we just cannot delete it. */
1427 if (MEM_VOLATILE_P (mem))
1428 insn_info->cannot_delete = true;
1430 if (!canon_address (mem, &group_id, &offset, &base))
1432 clear_rhs_from_active_local_stores ();
1433 return 0;
1436 if (GET_MODE (mem) == BLKmode)
1437 width = MEM_SIZE (mem);
1438 else
1439 width = GET_MODE_SIZE (GET_MODE (mem));
1441 if (!endpoint_representable_p (offset, width))
1443 clear_rhs_from_active_local_stores ();
1444 return 0;
1447 if (known_eq (width, 0))
1448 return 0;
1450 if (group_id >= 0)
1452 /* In the restrictive case where the base is a constant or the
1453 frame pointer we can do global analysis. */
1455 group_info *group
1456 = rtx_group_vec[group_id];
1457 tree expr = MEM_EXPR (mem);
1459 store_info = rtx_store_info_pool.allocate ();
1460 set_usage_bits (group, offset, width, expr);
1462 if (dump_file && (dump_flags & TDF_DETAILS))
1464 fprintf (dump_file, " processing const base store gid=%d",
1465 group_id);
1466 print_range (dump_file, offset, width);
1467 fprintf (dump_file, "\n");
1470 else
1472 if (may_be_sp_based_p (XEXP (mem, 0)))
1473 insn_info->stack_pointer_based = true;
1474 insn_info->contains_cselib_groups = true;
1476 store_info = cse_store_info_pool.allocate ();
1477 group_id = -1;
1479 if (dump_file && (dump_flags & TDF_DETAILS))
1481 fprintf (dump_file, " processing cselib store ");
1482 print_range (dump_file, offset, width);
1483 fprintf (dump_file, "\n");
1487 const_rhs = rhs = NULL_RTX;
1488 if (GET_CODE (body) == SET
1489 /* No place to keep the value after ra. */
1490 && !reload_completed
1491 && (REG_P (SET_SRC (body))
1492 || GET_CODE (SET_SRC (body)) == SUBREG
1493 || CONSTANT_P (SET_SRC (body)))
1494 && !MEM_VOLATILE_P (mem)
1495 /* Sometimes the store and reload is used for truncation and
1496 rounding. */
1497 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1499 rhs = SET_SRC (body);
1500 if (CONSTANT_P (rhs))
1501 const_rhs = rhs;
1502 else if (body == PATTERN (insn_info->insn))
1504 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1505 if (tem && CONSTANT_P (XEXP (tem, 0)))
1506 const_rhs = XEXP (tem, 0);
1508 if (const_rhs == NULL_RTX && REG_P (rhs))
1510 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1512 if (tem && CONSTANT_P (tem))
1513 const_rhs = tem;
1514 else
1516 /* If RHS is set only once to a constant, set CONST_RHS
1517 to the constant. */
1518 rtx def_src = df_find_single_def_src (rhs);
1519 if (def_src != nullptr && CONSTANT_P (def_src))
1520 const_rhs = def_src;
1525 /* Check to see if this stores causes some other stores to be
1526 dead. */
1527 ptr = active_local_stores;
1528 last = NULL;
1529 redundant_reason = NULL;
1530 unsigned char addrspace = MEM_ADDR_SPACE (mem);
1531 mem = canon_rtx (mem);
1533 if (group_id < 0)
1534 mem_addr = base->val_rtx;
1535 else
1537 group_info *group = rtx_group_vec[group_id];
1538 mem_addr = group->canon_base_addr;
1540 if (maybe_ne (offset, 0))
1541 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1543 while (ptr)
1545 insn_info_t next = ptr->next_local_store;
1546 class store_info *s_info = ptr->store_rec;
1547 bool del = true;
1549 /* Skip the clobbers. We delete the active insn if this insn
1550 shadows the set. To have been put on the active list, it
1551 has exactly on set. */
1552 while (!s_info->is_set)
1553 s_info = s_info->next;
1555 if (s_info->group_id == group_id
1556 && s_info->cse_base == base
1557 && s_info->addrspace == addrspace)
1559 HOST_WIDE_INT i;
1560 if (dump_file && (dump_flags & TDF_DETAILS))
1562 fprintf (dump_file, " trying store in insn=%d gid=%d",
1563 INSN_UID (ptr->insn), s_info->group_id);
1564 print_range (dump_file, s_info->offset, s_info->width);
1565 fprintf (dump_file, "\n");
1568 /* Even if PTR won't be eliminated as unneeded, if both
1569 PTR and this insn store the same constant value, we might
1570 eliminate this insn instead. */
1571 if (s_info->const_rhs
1572 && const_rhs
1573 && known_subrange_p (offset, width,
1574 s_info->offset, s_info->width)
1575 && all_positions_needed_p (s_info, offset - s_info->offset,
1576 width)
1577 /* We can only remove the later store if the earlier aliases
1578 at least all accesses the later one. */
1579 && mems_same_for_tbaa_p (s_info->mem, mem))
1581 if (GET_MODE (mem) == BLKmode)
1583 if (GET_MODE (s_info->mem) == BLKmode
1584 && s_info->const_rhs == const_rhs)
1585 redundant_reason = ptr;
1587 else if (s_info->const_rhs == const0_rtx
1588 && const_rhs == const0_rtx)
1589 redundant_reason = ptr;
1590 else
1592 rtx val;
1593 start_sequence ();
1594 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
1595 BLOCK_FOR_INSN (insn_info->insn),
1596 true);
1597 if (get_insns () != NULL)
1598 val = NULL_RTX;
1599 end_sequence ();
1600 if (val && rtx_equal_p (val, const_rhs))
1601 redundant_reason = ptr;
1605 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
1606 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1607 /* The new store touches every byte that S_INFO does. */
1608 set_all_positions_unneeded (s_info);
1609 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1610 && s_info->width.is_constant (&const_s_width)
1611 && width.is_constant (&const_width))
1613 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
1614 begin_unneeded = MAX (begin_unneeded, 0);
1615 end_unneeded = MIN (end_unneeded, const_s_width);
1616 for (i = begin_unneeded; i < end_unneeded; ++i)
1617 set_position_unneeded (s_info, i);
1619 else
1621 /* We don't know which parts of S_INFO are needed and
1622 which aren't, so invalidate the RHS. */
1623 s_info->rhs = NULL;
1624 s_info->const_rhs = NULL;
1627 else if (s_info->rhs)
1628 /* Need to see if it is possible for this store to overwrite
1629 the value of store_info. If it is, set the rhs to NULL to
1630 keep it from being used to remove a load. */
1632 if (canon_output_dependence (s_info->mem, true,
1633 mem, GET_MODE (mem),
1634 mem_addr))
1636 s_info->rhs = NULL;
1637 s_info->const_rhs = NULL;
1641 /* An insn can be deleted if every position of every one of
1642 its s_infos is zero. */
1643 if (any_positions_needed_p (s_info))
1644 del = false;
1646 if (del)
1648 insn_info_t insn_to_delete = ptr;
1650 active_local_stores_len--;
1651 if (last)
1652 last->next_local_store = ptr->next_local_store;
1653 else
1654 active_local_stores = ptr->next_local_store;
1656 if (!insn_to_delete->cannot_delete)
1657 delete_dead_store_insn (insn_to_delete);
1659 else
1660 last = ptr;
1662 ptr = next;
1665 /* Finish filling in the store_info. */
1666 store_info->next = insn_info->store_rec;
1667 insn_info->store_rec = store_info;
1668 store_info->mem = mem;
1669 store_info->mem_addr = mem_addr;
1670 store_info->cse_base = base;
1671 HOST_WIDE_INT const_width;
1672 if (!width.is_constant (&const_width))
1674 store_info->is_large = true;
1675 store_info->positions_needed.large.count = 0;
1676 store_info->positions_needed.large.bmap = NULL;
1678 else if (const_width > HOST_BITS_PER_WIDE_INT)
1680 store_info->is_large = true;
1681 store_info->positions_needed.large.count = 0;
1682 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1684 else
1686 store_info->is_large = false;
1687 store_info->positions_needed.small_bitmask
1688 = lowpart_bitmask (const_width);
1690 store_info->group_id = group_id;
1691 store_info->offset = offset;
1692 store_info->width = width;
1693 store_info->is_set = GET_CODE (body) == SET;
1694 store_info->rhs = rhs;
1695 store_info->const_rhs = const_rhs;
1696 store_info->redundant_reason = redundant_reason;
1697 store_info->addrspace = addrspace;
1699 /* If this is a clobber, we return 0. We will only be able to
1700 delete this insn if there is only one store USED store, but we
1701 can use the clobber to delete other stores earlier. */
1702 return store_info->is_set ? 1 : 0;
1706 static void
1707 dump_insn_info (const char * start, insn_info_t insn_info)
1709 fprintf (dump_file, "%s insn=%d %s\n", start,
1710 INSN_UID (insn_info->insn),
1711 insn_info->store_rec ? "has store" : "naked");
1715 /* If the modes are different and the value's source and target do not
1716 line up, we need to extract the value from lower part of the rhs of
1717 the store, shift it, and then put it into a form that can be shoved
1718 into the read_insn. This function generates a right SHIFT of a
1719 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1720 shift sequence is returned or NULL if we failed to find a
1721 shift. */
1723 static rtx
1724 find_shift_sequence (poly_int64 access_size,
1725 store_info *store_info,
1726 machine_mode read_mode,
1727 poly_int64 shift, bool speed, bool require_cst)
1729 machine_mode store_mode = GET_MODE (store_info->mem);
1730 scalar_int_mode new_mode;
1731 rtx read_reg = NULL;
1733 /* If a constant was stored into memory, try to simplify it here,
1734 otherwise the cost of the shift might preclude this optimization
1735 e.g. at -Os, even when no actual shift will be needed. */
1736 if (store_info->const_rhs
1737 && known_le (access_size, GET_MODE_SIZE (MAX_MODE_INT)))
1739 auto new_mode = smallest_int_mode_for_size (access_size * BITS_PER_UNIT);
1740 auto byte = subreg_lowpart_offset (new_mode, store_mode);
1741 rtx ret
1742 = simplify_subreg (new_mode, store_info->const_rhs, store_mode, byte);
1743 if (ret && CONSTANT_P (ret))
1745 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1746 ret = simplify_const_binary_operation (LSHIFTRT, new_mode, ret,
1747 shift_rtx);
1748 if (ret && CONSTANT_P (ret))
1750 byte = subreg_lowpart_offset (read_mode, new_mode);
1751 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1752 if (ret && CONSTANT_P (ret)
1753 && (set_src_cost (ret, read_mode, speed)
1754 <= COSTS_N_INSNS (1)))
1755 return ret;
1760 if (require_cst)
1761 return NULL_RTX;
1763 /* Some machines like the x86 have shift insns for each size of
1764 operand. Other machines like the ppc or the ia-64 may only have
1765 shift insns that shift values within 32 or 64 bit registers.
1766 This loop tries to find the smallest shift insn that will right
1767 justify the value we want to read but is available in one insn on
1768 the machine. */
1770 opt_scalar_int_mode new_mode_iter;
1771 FOR_EACH_MODE_IN_CLASS (new_mode_iter, MODE_INT)
1773 rtx target, new_reg, new_lhs;
1774 rtx_insn *shift_seq, *insn;
1775 int cost;
1777 new_mode = new_mode_iter.require ();
1778 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1779 break;
1780 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (read_mode)))
1781 continue;
1783 /* Try a wider mode if truncating the store mode to NEW_MODE
1784 requires a real instruction. */
1785 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
1786 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1787 continue;
1789 /* Also try a wider mode if the necessary punning is either not
1790 desirable or not possible. */
1791 if (!CONSTANT_P (store_info->rhs)
1792 && !targetm.modes_tieable_p (new_mode, store_mode))
1793 continue;
1795 if (multiple_p (shift, GET_MODE_BITSIZE (new_mode))
1796 && known_le (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode)))
1798 /* Try to implement the shift using a subreg. */
1799 poly_int64 offset
1800 = subreg_offset_from_lsb (new_mode, store_mode, shift);
1801 rtx rhs_subreg = simplify_gen_subreg (new_mode, store_info->rhs,
1802 store_mode, offset);
1803 if (rhs_subreg)
1805 read_reg
1806 = extract_low_bits (read_mode, new_mode, copy_rtx (rhs_subreg));
1807 break;
1811 if (maybe_lt (GET_MODE_SIZE (new_mode), access_size))
1812 continue;
1814 new_reg = gen_reg_rtx (new_mode);
1816 start_sequence ();
1818 /* In theory we could also check for an ashr. Ian Taylor knows
1819 of one dsp where the cost of these two was not the same. But
1820 this really is a rare case anyway. */
1821 target = expand_binop (new_mode, lshr_optab, new_reg,
1822 gen_int_shift_amount (new_mode, shift),
1823 new_reg, 1, OPTAB_DIRECT);
1825 shift_seq = get_insns ();
1826 end_sequence ();
1828 if (target != new_reg || shift_seq == NULL)
1829 continue;
1831 cost = 0;
1832 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1833 if (INSN_P (insn))
1834 cost += insn_cost (insn, speed);
1836 /* The computation up to here is essentially independent
1837 of the arguments and could be precomputed. It may
1838 not be worth doing so. We could precompute if
1839 worthwhile or at least cache the results. The result
1840 technically depends on both SHIFT and ACCESS_SIZE,
1841 but in practice the answer will depend only on ACCESS_SIZE. */
1843 if (cost > COSTS_N_INSNS (1))
1844 continue;
1846 new_lhs = extract_low_bits (new_mode, store_mode,
1847 copy_rtx (store_info->rhs));
1848 if (new_lhs == NULL_RTX)
1849 continue;
1851 /* We found an acceptable shift. Generate a move to
1852 take the value from the store and put it into the
1853 shift pseudo, then shift it, then generate another
1854 move to put in into the target of the read. */
1855 emit_move_insn (new_reg, new_lhs);
1856 emit_insn (shift_seq);
1857 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1858 break;
1861 return read_reg;
1865 /* Call back for note_stores to find the hard regs set or clobbered by
1866 insn. Data is a bitmap of the hardregs set so far. */
1868 static void
1869 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1871 bitmap regs_set = (bitmap) data;
1873 if (REG_P (x)
1874 && HARD_REGISTER_P (x))
1875 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1878 /* Helper function for replace_read and record_store.
1879 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1880 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
1881 if not successful. If REQUIRE_CST is true, return always constant. */
1883 static rtx
1884 get_stored_val (store_info *store_info, machine_mode read_mode,
1885 poly_int64 read_offset, poly_int64 read_width,
1886 basic_block bb, bool require_cst)
1888 machine_mode store_mode = GET_MODE (store_info->mem);
1889 poly_int64 gap;
1890 rtx read_reg;
1892 /* To get here the read is within the boundaries of the write so
1893 shift will never be negative. Start out with the shift being in
1894 bytes. */
1895 if (store_mode == BLKmode)
1896 gap = 0;
1897 else if (BYTES_BIG_ENDIAN)
1898 gap = ((store_info->offset + store_info->width)
1899 - (read_offset + read_width));
1900 else
1901 gap = read_offset - store_info->offset;
1903 if (maybe_ne (gap, 0))
1905 if (!gap.is_constant ())
1906 return NULL_RTX;
1908 poly_int64 shift = gap * BITS_PER_UNIT;
1909 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
1910 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1911 shift, optimize_bb_for_speed_p (bb),
1912 require_cst);
1914 else if (store_mode == BLKmode)
1916 /* The store is a memset (addr, const_val, const_size). */
1917 gcc_assert (CONST_INT_P (store_info->rhs));
1918 scalar_int_mode int_store_mode;
1919 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
1920 read_reg = NULL_RTX;
1921 else if (store_info->rhs == const0_rtx)
1922 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1923 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
1924 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1925 read_reg = NULL_RTX;
1926 else
1928 unsigned HOST_WIDE_INT c
1929 = INTVAL (store_info->rhs)
1930 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1931 int shift = BITS_PER_UNIT;
1932 while (shift < HOST_BITS_PER_WIDE_INT)
1934 c |= (c << shift);
1935 shift <<= 1;
1937 read_reg = gen_int_mode (c, int_store_mode);
1938 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
1941 else if (store_info->const_rhs
1942 && (require_cst
1943 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1944 read_reg = extract_low_bits (read_mode, store_mode,
1945 copy_rtx (store_info->const_rhs));
1946 else if (VECTOR_MODE_P (read_mode) && VECTOR_MODE_P (store_mode)
1947 && known_le (GET_MODE_BITSIZE (read_mode), GET_MODE_BITSIZE (store_mode))
1948 && targetm.modes_tieable_p (read_mode, store_mode))
1949 read_reg = gen_lowpart (read_mode, copy_rtx (store_info->rhs));
1950 else
1951 read_reg = extract_low_bits (read_mode, store_mode,
1952 copy_rtx (store_info->rhs));
1953 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1954 read_reg = NULL_RTX;
1955 return read_reg;
1958 /* Take a sequence of:
1959 A <- r1
1961 ... <- A
1963 and change it into
1964 r2 <- r1
1965 A <- r1
1967 ... <- r2
1971 r3 <- extract (r1)
1972 r3 <- r3 >> shift
1973 r2 <- extract (r3)
1974 ... <- r2
1978 r2 <- extract (r1)
1979 ... <- r2
1981 Depending on the alignment and the mode of the store and
1982 subsequent load.
1985 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1986 and READ_INSN are for the read. Return true if the replacement
1987 went ok. */
1989 static bool
1990 replace_read (store_info *store_info, insn_info_t store_insn,
1991 read_info_t read_info, insn_info_t read_insn, rtx *loc)
1993 machine_mode store_mode = GET_MODE (store_info->mem);
1994 machine_mode read_mode = GET_MODE (read_info->mem);
1995 rtx_insn *insns, *this_insn;
1996 rtx read_reg;
1997 basic_block bb;
1999 if (!dbg_cnt (dse))
2000 return false;
2002 /* Create a sequence of instructions to set up the read register.
2003 This sequence goes immediately before the store and its result
2004 is read by the load.
2006 We need to keep this in perspective. We are replacing a read
2007 with a sequence of insns, but the read will almost certainly be
2008 in cache, so it is not going to be an expensive one. Thus, we
2009 are not willing to do a multi insn shift or worse a subroutine
2010 call to get rid of the read. */
2011 if (dump_file && (dump_flags & TDF_DETAILS))
2012 fprintf (dump_file, "trying to replace %smode load in insn %d"
2013 " from %smode store in insn %d\n",
2014 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
2015 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
2016 start_sequence ();
2017 bb = BLOCK_FOR_INSN (read_insn->insn);
2018 read_reg = get_stored_val (store_info,
2019 read_mode, read_info->offset, read_info->width,
2020 bb, false);
2021 if (read_reg == NULL_RTX)
2023 end_sequence ();
2024 if (dump_file && (dump_flags & TDF_DETAILS))
2025 fprintf (dump_file, " -- could not extract bits of stored value\n");
2026 return false;
2028 /* Force the value into a new register so that it won't be clobbered
2029 between the store and the load. */
2030 if (WORD_REGISTER_OPERATIONS
2031 && GET_CODE (read_reg) == SUBREG
2032 && REG_P (SUBREG_REG (read_reg))
2033 && GET_MODE (SUBREG_REG (read_reg)) == word_mode)
2035 /* For WORD_REGISTER_OPERATIONS with subreg of word_mode register
2036 force SUBREG_REG into a new register rather than the SUBREG. */
2037 rtx r = copy_to_mode_reg (word_mode, SUBREG_REG (read_reg));
2038 read_reg = shallow_copy_rtx (read_reg);
2039 SUBREG_REG (read_reg) = r;
2041 else
2042 read_reg = copy_to_mode_reg (read_mode, read_reg);
2043 insns = get_insns ();
2044 end_sequence ();
2046 if (insns != NULL_RTX)
2048 /* Now we have to scan the set of new instructions to see if the
2049 sequence contains and sets of hardregs that happened to be
2050 live at this point. For instance, this can happen if one of
2051 the insns sets the CC and the CC happened to be live at that
2052 point. This does occasionally happen, see PR 37922. */
2053 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2055 for (this_insn = insns;
2056 this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2058 if (insn_invalid_p (this_insn, false))
2060 if (dump_file && (dump_flags & TDF_DETAILS))
2062 fprintf (dump_file, " -- replacing the loaded MEM with ");
2063 print_simple_rtl (dump_file, read_reg);
2064 fprintf (dump_file, " led to an invalid instruction\n");
2066 BITMAP_FREE (regs_set);
2067 return false;
2069 note_stores (this_insn, look_for_hardregs, regs_set);
2072 if (store_insn->fixed_regs_live)
2073 bitmap_and_into (regs_set, store_insn->fixed_regs_live);
2074 if (!bitmap_empty_p (regs_set))
2076 if (dump_file && (dump_flags & TDF_DETAILS))
2078 fprintf (dump_file, "abandoning replacement because sequence "
2079 "clobbers live hardregs:");
2080 df_print_regset (dump_file, regs_set);
2083 BITMAP_FREE (regs_set);
2084 return false;
2086 BITMAP_FREE (regs_set);
2089 subrtx_iterator::array_type array;
2090 FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
2092 const_rtx x = *iter;
2093 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2095 if (dump_file && (dump_flags & TDF_DETAILS))
2096 fprintf (dump_file, " -- replacing the MEM failed due to address "
2097 "side-effects\n");
2098 return false;
2102 if (validate_change (read_insn->insn, loc, read_reg, 0))
2104 deferred_change *change = deferred_change_pool.allocate ();
2106 /* Insert this right before the store insn where it will be safe
2107 from later insns that might change it before the read. */
2108 emit_insn_before (insns, store_insn->insn);
2110 /* And now for the kludge part: cselib croaks if you just
2111 return at this point. There are two reasons for this:
2113 1) Cselib has an idea of how many pseudos there are and
2114 that does not include the new ones we just added.
2116 2) Cselib does not know about the move insn we added
2117 above the store_info, and there is no way to tell it
2118 about it, because it has "moved on".
2120 Problem (1) is fixable with a certain amount of engineering.
2121 Problem (2) is requires starting the bb from scratch. This
2122 could be expensive.
2124 So we are just going to have to lie. The move/extraction
2125 insns are not really an issue, cselib did not see them. But
2126 the use of the new pseudo read_insn is a real problem because
2127 cselib has not scanned this insn. The way that we solve this
2128 problem is that we are just going to put the mem back for now
2129 and when we are finished with the block, we undo this. We
2130 keep a table of mems to get rid of. At the end of the basic
2131 block we can put them back. */
2133 *loc = read_info->mem;
2134 change->next = deferred_change_list;
2135 deferred_change_list = change;
2136 change->loc = loc;
2137 change->reg = read_reg;
2139 /* Get rid of the read_info, from the point of view of the
2140 rest of dse, play like this read never happened. */
2141 read_insn->read_rec = read_info->next;
2142 read_info_type_pool.remove (read_info);
2143 if (dump_file && (dump_flags & TDF_DETAILS))
2145 fprintf (dump_file, " -- replaced the loaded MEM with ");
2146 print_simple_rtl (dump_file, read_reg);
2147 fprintf (dump_file, "\n");
2149 return true;
2151 else
2153 if (dump_file && (dump_flags & TDF_DETAILS))
2155 fprintf (dump_file, " -- replacing the loaded MEM with ");
2156 print_simple_rtl (dump_file, read_reg);
2157 fprintf (dump_file, " led to an invalid instruction\n");
2159 return false;
2163 /* Check the address of MEM *LOC and kill any appropriate stores that may
2164 be active. */
2166 static void
2167 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2169 rtx mem = *loc, mem_addr;
2170 insn_info_t insn_info;
2171 poly_int64 offset = 0;
2172 poly_int64 width = 0;
2173 cselib_val *base = NULL;
2174 int group_id;
2175 read_info_t read_info;
2177 insn_info = bb_info->last_insn;
2179 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2180 || MEM_VOLATILE_P (mem))
2182 if (crtl->stack_protect_guard
2183 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2184 || (crtl->stack_protect_guard_decl
2185 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2186 && MEM_VOLATILE_P (mem))
2188 /* This is either the stack protector canary on the stack,
2189 which ought to be written by a MEM_VOLATILE_P store and
2190 thus shouldn't be deleted and is read at the very end of
2191 function, but shouldn't conflict with any other store.
2192 Or it is __stack_chk_guard variable or TLS or whatever else
2193 MEM holding the canary value, which really shouldn't be
2194 ever modified in -fstack-protector* protected functions,
2195 otherwise the prologue store wouldn't match the epilogue
2196 check. */
2197 if (dump_file && (dump_flags & TDF_DETAILS))
2198 fprintf (dump_file, " stack protector canary read ignored.\n");
2199 insn_info->cannot_delete = true;
2200 return;
2203 if (dump_file && (dump_flags & TDF_DETAILS))
2204 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2205 add_wild_read (bb_info);
2206 insn_info->cannot_delete = true;
2207 return;
2210 /* If it is reading readonly mem, then there can be no conflict with
2211 another write. */
2212 if (MEM_READONLY_P (mem))
2213 return;
2215 if (!canon_address (mem, &group_id, &offset, &base))
2217 if (dump_file && (dump_flags & TDF_DETAILS))
2218 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2219 add_wild_read (bb_info);
2220 return;
2223 if (GET_MODE (mem) == BLKmode)
2224 width = -1;
2225 else
2226 width = GET_MODE_SIZE (GET_MODE (mem));
2228 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
2230 if (dump_file && (dump_flags & TDF_DETAILS))
2231 fprintf (dump_file, " adding wild read, due to overflow.\n");
2232 add_wild_read (bb_info);
2233 return;
2236 read_info = read_info_type_pool.allocate ();
2237 read_info->group_id = group_id;
2238 read_info->mem = mem;
2239 read_info->offset = offset;
2240 read_info->width = width;
2241 read_info->next = insn_info->read_rec;
2242 insn_info->read_rec = read_info;
2243 if (group_id < 0)
2244 mem_addr = base->val_rtx;
2245 else
2247 group_info *group = rtx_group_vec[group_id];
2248 mem_addr = group->canon_base_addr;
2250 if (maybe_ne (offset, 0))
2251 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2252 /* Avoid passing VALUE RTXen as mem_addr to canon_true_dependence
2253 which will over and over re-create proper RTL and re-apply the
2254 offset above. See PR80960 where we almost allocate 1.6GB of PLUS
2255 RTXen that way. */
2256 mem_addr = get_addr (mem_addr);
2258 if (group_id >= 0)
2260 /* This is the restricted case where the base is a constant or
2261 the frame pointer and offset is a constant. */
2262 insn_info_t i_ptr = active_local_stores;
2263 insn_info_t last = NULL;
2265 if (dump_file && (dump_flags & TDF_DETAILS))
2267 if (!known_size_p (width))
2268 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2269 group_id);
2270 else
2272 fprintf (dump_file, " processing const load gid=%d", group_id);
2273 print_range (dump_file, offset, width);
2274 fprintf (dump_file, "\n");
2278 while (i_ptr)
2280 bool remove = false;
2281 store_info *store_info = i_ptr->store_rec;
2283 /* Skip the clobbers. */
2284 while (!store_info->is_set)
2285 store_info = store_info->next;
2287 /* There are three cases here. */
2288 if (store_info->group_id < 0)
2289 /* We have a cselib store followed by a read from a
2290 const base. */
2291 remove
2292 = canon_true_dependence (store_info->mem,
2293 GET_MODE (store_info->mem),
2294 store_info->mem_addr,
2295 mem, mem_addr);
2297 else if (group_id == store_info->group_id)
2299 /* This is a block mode load. We may get lucky and
2300 canon_true_dependence may save the day. */
2301 if (!known_size_p (width))
2302 remove
2303 = canon_true_dependence (store_info->mem,
2304 GET_MODE (store_info->mem),
2305 store_info->mem_addr,
2306 mem, mem_addr);
2308 /* If this read is just reading back something that we just
2309 stored, rewrite the read. */
2310 else
2312 if (store_info->rhs
2313 && known_subrange_p (offset, width, store_info->offset,
2314 store_info->width)
2315 && all_positions_needed_p (store_info,
2316 offset - store_info->offset,
2317 width)
2318 && replace_read (store_info, i_ptr, read_info,
2319 insn_info, loc))
2320 return;
2322 /* The bases are the same, just see if the offsets
2323 could overlap. */
2324 if (ranges_maybe_overlap_p (offset, width,
2325 store_info->offset,
2326 store_info->width))
2327 remove = true;
2331 /* else
2332 The else case that is missing here is that the
2333 bases are constant but different. There is nothing
2334 to do here because there is no overlap. */
2336 if (remove)
2338 if (dump_file && (dump_flags & TDF_DETAILS))
2339 dump_insn_info ("removing from active", i_ptr);
2341 active_local_stores_len--;
2342 if (last)
2343 last->next_local_store = i_ptr->next_local_store;
2344 else
2345 active_local_stores = i_ptr->next_local_store;
2347 else
2348 last = i_ptr;
2349 i_ptr = i_ptr->next_local_store;
2352 else
2354 insn_info_t i_ptr = active_local_stores;
2355 insn_info_t last = NULL;
2356 if (dump_file && (dump_flags & TDF_DETAILS))
2358 fprintf (dump_file, " processing cselib load mem:");
2359 print_inline_rtx (dump_file, mem, 0);
2360 fprintf (dump_file, "\n");
2363 while (i_ptr)
2365 bool remove = false;
2366 store_info *store_info = i_ptr->store_rec;
2368 if (dump_file && (dump_flags & TDF_DETAILS))
2369 fprintf (dump_file, " processing cselib load against insn %d\n",
2370 INSN_UID (i_ptr->insn));
2372 /* Skip the clobbers. */
2373 while (!store_info->is_set)
2374 store_info = store_info->next;
2376 /* If this read is just reading back something that we just
2377 stored, rewrite the read. */
2378 if (store_info->rhs
2379 && store_info->group_id == -1
2380 && store_info->cse_base == base
2381 && known_subrange_p (offset, width, store_info->offset,
2382 store_info->width)
2383 && all_positions_needed_p (store_info,
2384 offset - store_info->offset, width)
2385 && replace_read (store_info, i_ptr, read_info, insn_info, loc))
2386 return;
2388 remove = canon_true_dependence (store_info->mem,
2389 GET_MODE (store_info->mem),
2390 store_info->mem_addr,
2391 mem, mem_addr);
2393 if (remove)
2395 if (dump_file && (dump_flags & TDF_DETAILS))
2396 dump_insn_info ("removing from active", i_ptr);
2398 active_local_stores_len--;
2399 if (last)
2400 last->next_local_store = i_ptr->next_local_store;
2401 else
2402 active_local_stores = i_ptr->next_local_store;
2404 else
2405 last = i_ptr;
2406 i_ptr = i_ptr->next_local_store;
2411 /* A note_uses callback in which DATA points the INSN_INFO for
2412 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2413 true for any part of *LOC. */
2415 static void
2416 check_mem_read_use (rtx *loc, void *data)
2418 subrtx_ptr_iterator::array_type array;
2419 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2421 rtx *loc = *iter;
2422 if (MEM_P (*loc))
2423 check_mem_read_rtx (loc, (bb_info_t) data);
2428 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2429 So far it only handles arguments passed in registers. */
2431 static bool
2432 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2434 CUMULATIVE_ARGS args_so_far_v;
2435 cumulative_args_t args_so_far;
2436 tree arg;
2437 int idx;
2439 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2440 args_so_far = pack_cumulative_args (&args_so_far_v);
2442 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2443 for (idx = 0;
2444 arg != void_list_node && idx < nargs;
2445 arg = TREE_CHAIN (arg), idx++)
2447 scalar_int_mode mode;
2448 rtx reg, link, tmp;
2450 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2451 return false;
2453 function_arg_info arg (mode, /*named=*/true);
2454 reg = targetm.calls.function_arg (args_so_far, arg);
2455 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
2456 return false;
2458 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2459 link;
2460 link = XEXP (link, 1))
2461 if (GET_CODE (XEXP (link, 0)) == USE)
2463 scalar_int_mode arg_mode;
2464 args[idx] = XEXP (XEXP (link, 0), 0);
2465 if (REG_P (args[idx])
2466 && REGNO (args[idx]) == REGNO (reg)
2467 && (GET_MODE (args[idx]) == mode
2468 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2469 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2470 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
2471 break;
2473 if (!link)
2474 return false;
2476 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2477 if (GET_MODE (args[idx]) != mode)
2479 if (!tmp || !CONST_INT_P (tmp))
2480 return false;
2481 tmp = gen_int_mode (INTVAL (tmp), mode);
2483 if (tmp)
2484 args[idx] = tmp;
2486 targetm.calls.function_arg_advance (args_so_far, arg);
2488 if (arg != void_list_node || idx != nargs)
2489 return false;
2490 return true;
2493 /* Return a bitmap of the fixed registers contained in IN. */
2495 static bitmap
2496 copy_fixed_regs (const_bitmap in)
2498 bitmap ret;
2500 ret = ALLOC_REG_SET (NULL);
2501 bitmap_and (ret, in, bitmap_view<HARD_REG_SET> (fixed_reg_set));
2502 return ret;
2505 /* Apply record_store to all candidate stores in INSN. Mark INSN
2506 if some part of it is not a candidate store and assigns to a
2507 non-register target. */
2509 static void
2510 scan_insn (bb_info_t bb_info, rtx_insn *insn, int max_active_local_stores)
2512 rtx body;
2513 insn_info_type *insn_info = insn_info_type_pool.allocate ();
2514 int mems_found = 0;
2515 memset (insn_info, 0, sizeof (struct insn_info_type));
2517 if (dump_file && (dump_flags & TDF_DETAILS))
2518 fprintf (dump_file, "\n**scanning insn=%d\n",
2519 INSN_UID (insn));
2521 insn_info->prev_insn = bb_info->last_insn;
2522 insn_info->insn = insn;
2523 bb_info->last_insn = insn_info;
2525 if (DEBUG_INSN_P (insn))
2527 insn_info->cannot_delete = true;
2528 return;
2531 /* Look at all of the uses in the insn. */
2532 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2534 if (CALL_P (insn))
2536 bool const_call;
2537 rtx call, sym;
2538 tree memset_call = NULL_TREE;
2540 insn_info->cannot_delete = true;
2542 /* Const functions cannot do anything bad i.e. read memory,
2543 however, they can read their parameters which may have
2544 been pushed onto the stack.
2545 memset and bzero don't read memory either. */
2546 const_call = RTL_CONST_CALL_P (insn);
2547 if (!const_call
2548 && (call = get_call_rtx_from (insn))
2549 && (sym = XEXP (XEXP (call, 0), 0))
2550 && GET_CODE (sym) == SYMBOL_REF
2551 && SYMBOL_REF_DECL (sym)
2552 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2553 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
2554 memset_call = SYMBOL_REF_DECL (sym);
2556 if (const_call || memset_call)
2558 insn_info_t i_ptr = active_local_stores;
2559 insn_info_t last = NULL;
2561 if (dump_file && (dump_flags & TDF_DETAILS))
2562 fprintf (dump_file, "%s call %d\n",
2563 const_call ? "const" : "memset", INSN_UID (insn));
2565 /* See the head comment of the frame_read field. */
2566 if (reload_completed
2567 /* Tail calls are storing their arguments using
2568 arg pointer. If it is a frame pointer on the target,
2569 even before reload we need to kill frame pointer based
2570 stores. */
2571 || (SIBLING_CALL_P (insn)
2572 && HARD_FRAME_POINTER_IS_ARG_POINTER))
2573 insn_info->frame_read = true;
2575 /* Loop over the active stores and remove those which are
2576 killed by the const function call. */
2577 while (i_ptr)
2579 bool remove_store = false;
2581 /* The stack pointer based stores are always killed. */
2582 if (i_ptr->stack_pointer_based)
2583 remove_store = true;
2585 /* If the frame is read, the frame related stores are killed. */
2586 else if (insn_info->frame_read)
2588 store_info *store_info = i_ptr->store_rec;
2590 /* Skip the clobbers. */
2591 while (!store_info->is_set)
2592 store_info = store_info->next;
2594 if (store_info->group_id >= 0
2595 && rtx_group_vec[store_info->group_id]->frame_related)
2596 remove_store = true;
2599 if (remove_store)
2601 if (dump_file && (dump_flags & TDF_DETAILS))
2602 dump_insn_info ("removing from active", i_ptr);
2604 active_local_stores_len--;
2605 if (last)
2606 last->next_local_store = i_ptr->next_local_store;
2607 else
2608 active_local_stores = i_ptr->next_local_store;
2610 else
2611 last = i_ptr;
2613 i_ptr = i_ptr->next_local_store;
2616 if (memset_call)
2618 rtx args[3];
2619 if (get_call_args (insn, memset_call, args, 3)
2620 && CONST_INT_P (args[1])
2621 && CONST_INT_P (args[2])
2622 && INTVAL (args[2]) > 0)
2624 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2625 set_mem_size (mem, INTVAL (args[2]));
2626 body = gen_rtx_SET (mem, args[1]);
2627 mems_found += record_store (body, bb_info);
2628 if (dump_file && (dump_flags & TDF_DETAILS))
2629 fprintf (dump_file, "handling memset as BLKmode store\n");
2630 if (mems_found == 1)
2632 if (active_local_stores_len++ >= max_active_local_stores)
2634 active_local_stores_len = 1;
2635 active_local_stores = NULL;
2637 insn_info->fixed_regs_live
2638 = copy_fixed_regs (bb_info->regs_live);
2639 insn_info->next_local_store = active_local_stores;
2640 active_local_stores = insn_info;
2643 else
2644 clear_rhs_from_active_local_stores ();
2647 else if (SIBLING_CALL_P (insn)
2648 && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER))
2649 /* Arguments for a sibling call that are pushed to memory are passed
2650 using the incoming argument pointer of the current function. After
2651 reload that might be (and likely is) frame pointer based. And, if
2652 it is a frame pointer on the target, even before reload we need to
2653 kill frame pointer based stores. */
2654 add_wild_read (bb_info);
2655 else
2656 /* Every other call, including pure functions, may read any memory
2657 that is not relative to the frame. */
2658 add_non_frame_wild_read (bb_info);
2660 return;
2663 /* Assuming that there are sets in these insns, we cannot delete
2664 them. */
2665 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2666 || volatile_refs_p (PATTERN (insn))
2667 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2668 || (RTX_FRAME_RELATED_P (insn))
2669 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2670 insn_info->cannot_delete = true;
2672 body = PATTERN (insn);
2673 if (GET_CODE (body) == PARALLEL)
2675 int i;
2676 for (i = 0; i < XVECLEN (body, 0); i++)
2677 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2679 else
2680 mems_found += record_store (body, bb_info);
2682 if (dump_file && (dump_flags & TDF_DETAILS))
2683 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2684 mems_found, insn_info->cannot_delete ? "true" : "false");
2686 /* If we found some sets of mems, add it into the active_local_stores so
2687 that it can be locally deleted if found dead or used for
2688 replace_read and redundant constant store elimination. Otherwise mark
2689 it as cannot delete. This simplifies the processing later. */
2690 if (mems_found == 1)
2692 if (active_local_stores_len++ >= max_active_local_stores)
2694 active_local_stores_len = 1;
2695 active_local_stores = NULL;
2697 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2698 insn_info->next_local_store = active_local_stores;
2699 active_local_stores = insn_info;
2701 else
2702 insn_info->cannot_delete = true;
2706 /* Remove BASE from the set of active_local_stores. This is a
2707 callback from cselib that is used to get rid of the stores in
2708 active_local_stores. */
2710 static void
2711 remove_useless_values (cselib_val *base)
2713 insn_info_t insn_info = active_local_stores;
2714 insn_info_t last = NULL;
2716 while (insn_info)
2718 store_info *store_info = insn_info->store_rec;
2719 bool del = false;
2721 /* If ANY of the store_infos match the cselib group that is
2722 being deleted, then the insn cannot be deleted. */
2723 while (store_info)
2725 if ((store_info->group_id == -1)
2726 && (store_info->cse_base == base))
2728 del = true;
2729 break;
2731 store_info = store_info->next;
2734 if (del)
2736 active_local_stores_len--;
2737 if (last)
2738 last->next_local_store = insn_info->next_local_store;
2739 else
2740 active_local_stores = insn_info->next_local_store;
2741 free_store_info (insn_info);
2743 else
2744 last = insn_info;
2746 insn_info = insn_info->next_local_store;
2751 /* Do all of step 1. */
2753 static void
2754 dse_step1 (void)
2756 basic_block bb;
2757 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2759 cselib_init (0);
2760 all_blocks = BITMAP_ALLOC (NULL);
2761 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2762 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2764 /* For -O1 reduce the maximum number of active local stores for RTL DSE
2765 since this can consume huge amounts of memory (PR89115). */
2766 int max_active_local_stores = param_max_dse_active_local_stores;
2767 if (optimize < 2)
2768 max_active_local_stores /= 10;
2770 FOR_ALL_BB_FN (bb, cfun)
2772 insn_info_t ptr;
2773 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2775 memset (bb_info, 0, sizeof (dse_bb_info_type));
2776 bitmap_set_bit (all_blocks, bb->index);
2777 bb_info->regs_live = regs_live;
2779 bitmap_copy (regs_live, DF_LR_IN (bb));
2780 df_simulate_initialize_forwards (bb, regs_live);
2782 bb_table[bb->index] = bb_info;
2783 cselib_discard_hook = remove_useless_values;
2785 if (bb->index >= NUM_FIXED_BLOCKS)
2787 rtx_insn *insn;
2789 active_local_stores = NULL;
2790 active_local_stores_len = 0;
2791 cselib_clear_table ();
2793 /* Scan the insns. */
2794 FOR_BB_INSNS (bb, insn)
2796 if (INSN_P (insn))
2797 scan_insn (bb_info, insn, max_active_local_stores);
2798 cselib_process_insn (insn);
2799 if (INSN_P (insn))
2800 df_simulate_one_insn_forwards (bb, insn, regs_live);
2803 /* This is something of a hack, because the global algorithm
2804 is supposed to take care of the case where stores go dead
2805 at the end of the function. However, the global
2806 algorithm must take a more conservative view of block
2807 mode reads than the local alg does. So to get the case
2808 where you have a store to the frame followed by a non
2809 overlapping block more read, we look at the active local
2810 stores at the end of the function and delete all of the
2811 frame and spill based ones. */
2812 if (stores_off_frame_dead_at_return
2813 && (EDGE_COUNT (bb->succs) == 0
2814 || (single_succ_p (bb)
2815 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2816 && ! crtl->calls_eh_return)))
2818 insn_info_t i_ptr = active_local_stores;
2819 while (i_ptr)
2821 store_info *store_info = i_ptr->store_rec;
2823 /* Skip the clobbers. */
2824 while (!store_info->is_set)
2825 store_info = store_info->next;
2826 if (store_info->group_id >= 0)
2828 group_info *group = rtx_group_vec[store_info->group_id];
2829 if (group->frame_related && !i_ptr->cannot_delete)
2830 delete_dead_store_insn (i_ptr);
2833 i_ptr = i_ptr->next_local_store;
2837 /* Get rid of the loads that were discovered in
2838 replace_read. Cselib is finished with this block. */
2839 while (deferred_change_list)
2841 deferred_change *next = deferred_change_list->next;
2843 /* There is no reason to validate this change. That was
2844 done earlier. */
2845 *deferred_change_list->loc = deferred_change_list->reg;
2846 deferred_change_pool.remove (deferred_change_list);
2847 deferred_change_list = next;
2850 /* Get rid of all of the cselib based store_infos in this
2851 block and mark the containing insns as not being
2852 deletable. */
2853 ptr = bb_info->last_insn;
2854 while (ptr)
2856 if (ptr->contains_cselib_groups)
2858 store_info *s_info = ptr->store_rec;
2859 while (s_info && !s_info->is_set)
2860 s_info = s_info->next;
2861 if (s_info
2862 && s_info->redundant_reason
2863 && s_info->redundant_reason->insn
2864 && !ptr->cannot_delete)
2866 if (dump_file && (dump_flags & TDF_DETAILS))
2867 fprintf (dump_file, "Locally deleting insn %d "
2868 "because insn %d stores the "
2869 "same value and couldn't be "
2870 "eliminated\n",
2871 INSN_UID (ptr->insn),
2872 INSN_UID (s_info->redundant_reason->insn));
2873 delete_dead_store_insn (ptr);
2875 free_store_info (ptr);
2877 else
2879 store_info *s_info;
2881 /* Free at least positions_needed bitmaps. */
2882 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2883 if (s_info->is_large)
2885 BITMAP_FREE (s_info->positions_needed.large.bmap);
2886 s_info->is_large = false;
2889 ptr = ptr->prev_insn;
2892 cse_store_info_pool.release ();
2894 bb_info->regs_live = NULL;
2897 BITMAP_FREE (regs_live);
2898 cselib_finish ();
2899 rtx_group_table->empty ();
2903 /*----------------------------------------------------------------------------
2904 Second step.
2906 Assign each byte position in the stores that we are going to
2907 analyze globally to a position in the bitmaps. Returns true if
2908 there are any bit positions assigned.
2909 ----------------------------------------------------------------------------*/
2911 static void
2912 dse_step2_init (void)
2914 unsigned int i;
2915 group_info *group;
2917 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2919 /* For all non stack related bases, we only consider a store to
2920 be deletable if there are two or more stores for that
2921 position. This is because it takes one store to make the
2922 other store redundant. However, for the stores that are
2923 stack related, we consider them if there is only one store
2924 for the position. We do this because the stack related
2925 stores can be deleted if their is no read between them and
2926 the end of the function.
2928 To make this work in the current framework, we take the stack
2929 related bases add all of the bits from store1 into store2.
2930 This has the effect of making the eligible even if there is
2931 only one store. */
2933 if (stores_off_frame_dead_at_return && group->frame_related)
2935 bitmap_ior_into (group->store2_n, group->store1_n);
2936 bitmap_ior_into (group->store2_p, group->store1_p);
2937 if (dump_file && (dump_flags & TDF_DETAILS))
2938 fprintf (dump_file, "group %d is frame related ", i);
2941 group->offset_map_size_n++;
2942 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2943 group->offset_map_size_n);
2944 group->offset_map_size_p++;
2945 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2946 group->offset_map_size_p);
2947 group->process_globally = false;
2948 if (dump_file && (dump_flags & TDF_DETAILS))
2950 fprintf (dump_file, "group %d(%d+%d): ", i,
2951 (int)bitmap_count_bits (group->store2_n),
2952 (int)bitmap_count_bits (group->store2_p));
2953 bitmap_print (dump_file, group->store2_n, "n ", " ");
2954 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2960 /* Init the offset tables. */
2962 static bool
2963 dse_step2 (void)
2965 unsigned int i;
2966 group_info *group;
2967 /* Position 0 is unused because 0 is used in the maps to mean
2968 unused. */
2969 current_position = 1;
2970 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2972 bitmap_iterator bi;
2973 unsigned int j;
2975 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2976 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2977 bitmap_clear (group->group_kill);
2979 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2981 bitmap_set_bit (group->group_kill, current_position);
2982 if (bitmap_bit_p (group->escaped_n, j))
2983 bitmap_set_bit (kill_on_calls, current_position);
2984 group->offset_map_n[j] = current_position++;
2985 group->process_globally = true;
2987 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2989 bitmap_set_bit (group->group_kill, current_position);
2990 if (bitmap_bit_p (group->escaped_p, j))
2991 bitmap_set_bit (kill_on_calls, current_position);
2992 group->offset_map_p[j] = current_position++;
2993 group->process_globally = true;
2996 return current_position != 1;
3001 /*----------------------------------------------------------------------------
3002 Third step.
3004 Build the bit vectors for the transfer functions.
3005 ----------------------------------------------------------------------------*/
3008 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3009 there, return 0. */
3011 static int
3012 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
3014 if (offset < 0)
3016 HOST_WIDE_INT offset_p = -offset;
3017 if (offset_p >= group_info->offset_map_size_n)
3018 return 0;
3019 return group_info->offset_map_n[offset_p];
3021 else
3023 if (offset >= group_info->offset_map_size_p)
3024 return 0;
3025 return group_info->offset_map_p[offset];
3030 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3031 may be NULL. */
3033 static void
3034 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
3036 while (store_info)
3038 HOST_WIDE_INT i, offset, width;
3039 group_info *group_info
3040 = rtx_group_vec[store_info->group_id];
3041 /* We can (conservatively) ignore stores whose bounds aren't known;
3042 they simply don't generate new global dse opportunities. */
3043 if (group_info->process_globally
3044 && store_info->offset.is_constant (&offset)
3045 && store_info->width.is_constant (&width))
3047 HOST_WIDE_INT end = offset + width;
3048 for (i = offset; i < end; i++)
3050 int index = get_bitmap_index (group_info, i);
3051 if (index != 0)
3053 bitmap_set_bit (gen, index);
3054 if (kill)
3055 bitmap_clear_bit (kill, index);
3059 store_info = store_info->next;
3064 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3065 may be NULL. */
3067 static void
3068 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
3070 read_info_t read_info = insn_info->read_rec;
3071 int i;
3072 group_info *group;
3074 /* If this insn reads the frame, kill all the frame related stores. */
3075 if (insn_info->frame_read)
3077 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3078 if (group->process_globally && group->frame_related)
3080 if (kill)
3081 bitmap_ior_into (kill, group->group_kill);
3082 bitmap_and_compl_into (gen, group->group_kill);
3085 if (insn_info->non_frame_wild_read)
3087 /* Kill all non-frame related stores. Kill all stores of variables that
3088 escape. */
3089 if (kill)
3090 bitmap_ior_into (kill, kill_on_calls);
3091 bitmap_and_compl_into (gen, kill_on_calls);
3092 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3093 if (group->process_globally && !group->frame_related)
3095 if (kill)
3096 bitmap_ior_into (kill, group->group_kill);
3097 bitmap_and_compl_into (gen, group->group_kill);
3100 while (read_info)
3102 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3104 if (group->process_globally)
3106 if (i == read_info->group_id)
3108 HOST_WIDE_INT offset, width;
3109 /* Reads with non-constant size kill all DSE opportunities
3110 in the group. */
3111 if (!read_info->offset.is_constant (&offset)
3112 || !read_info->width.is_constant (&width)
3113 || !known_size_p (width))
3115 /* Handle block mode reads. */
3116 if (kill)
3117 bitmap_ior_into (kill, group->group_kill);
3118 bitmap_and_compl_into (gen, group->group_kill);
3120 else
3122 /* The groups are the same, just process the
3123 offsets. */
3124 HOST_WIDE_INT j;
3125 HOST_WIDE_INT end = offset + width;
3126 for (j = offset; j < end; j++)
3128 int index = get_bitmap_index (group, j);
3129 if (index != 0)
3131 if (kill)
3132 bitmap_set_bit (kill, index);
3133 bitmap_clear_bit (gen, index);
3138 else
3140 /* The groups are different, if the alias sets
3141 conflict, clear the entire group. We only need
3142 to apply this test if the read_info is a cselib
3143 read. Anything with a constant base cannot alias
3144 something else with a different constant
3145 base. */
3146 if ((read_info->group_id < 0)
3147 && canon_true_dependence (group->base_mem,
3148 GET_MODE (group->base_mem),
3149 group->canon_base_addr,
3150 read_info->mem, NULL_RTX))
3152 if (kill)
3153 bitmap_ior_into (kill, group->group_kill);
3154 bitmap_and_compl_into (gen, group->group_kill);
3160 read_info = read_info->next;
3165 /* Return the insn in BB_INFO before the first wild read or if there
3166 are no wild reads in the block, return the last insn. */
3168 static insn_info_t
3169 find_insn_before_first_wild_read (bb_info_t bb_info)
3171 insn_info_t insn_info = bb_info->last_insn;
3172 insn_info_t last_wild_read = NULL;
3174 while (insn_info)
3176 if (insn_info->wild_read)
3178 last_wild_read = insn_info->prev_insn;
3179 /* Block starts with wild read. */
3180 if (!last_wild_read)
3181 return NULL;
3184 insn_info = insn_info->prev_insn;
3187 if (last_wild_read)
3188 return last_wild_read;
3189 else
3190 return bb_info->last_insn;
3194 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3195 the block in order to build the gen and kill sets for the block.
3196 We start at ptr which may be the last insn in the block or may be
3197 the first insn with a wild read. In the latter case we are able to
3198 skip the rest of the block because it just does not matter:
3199 anything that happens is hidden by the wild read. */
3201 static void
3202 dse_step3_scan (basic_block bb)
3204 bb_info_t bb_info = bb_table[bb->index];
3205 insn_info_t insn_info;
3207 insn_info = find_insn_before_first_wild_read (bb_info);
3209 /* In the spill case or in the no_spill case if there is no wild
3210 read in the block, we will need a kill set. */
3211 if (insn_info == bb_info->last_insn)
3213 if (bb_info->kill)
3214 bitmap_clear (bb_info->kill);
3215 else
3216 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3218 else
3219 if (bb_info->kill)
3220 BITMAP_FREE (bb_info->kill);
3222 while (insn_info)
3224 /* There may have been code deleted by the dce pass run before
3225 this phase. */
3226 if (insn_info->insn && INSN_P (insn_info->insn))
3228 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3229 scan_reads (insn_info, bb_info->gen, bb_info->kill);
3232 insn_info = insn_info->prev_insn;
3237 /* Set the gen set of the exit block, and also any block with no
3238 successors that does not have a wild read. */
3240 static void
3241 dse_step3_exit_block_scan (bb_info_t bb_info)
3243 /* The gen set is all 0's for the exit block except for the
3244 frame_pointer_group. */
3246 if (stores_off_frame_dead_at_return)
3248 unsigned int i;
3249 group_info *group;
3251 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3253 if (group->process_globally && group->frame_related)
3254 bitmap_ior_into (bb_info->gen, group->group_kill);
3260 /* Find all of the blocks that are not backwards reachable from the
3261 exit block or any block with no successors (BB). These are the
3262 infinite loops or infinite self loops. These blocks will still
3263 have their bits set in UNREACHABLE_BLOCKS. */
3265 static void
3266 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3268 edge e;
3269 edge_iterator ei;
3271 if (bitmap_bit_p (unreachable_blocks, bb->index))
3273 bitmap_clear_bit (unreachable_blocks, bb->index);
3274 FOR_EACH_EDGE (e, ei, bb->preds)
3276 mark_reachable_blocks (unreachable_blocks, e->src);
3281 /* Build the transfer functions for the function. */
3283 static void
3284 dse_step3 ()
3286 basic_block bb;
3287 sbitmap_iterator sbi;
3288 bitmap all_ones = NULL;
3289 unsigned int i;
3291 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
3292 bitmap_ones (unreachable_blocks);
3294 FOR_ALL_BB_FN (bb, cfun)
3296 bb_info_t bb_info = bb_table[bb->index];
3297 if (bb_info->gen)
3298 bitmap_clear (bb_info->gen);
3299 else
3300 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3302 if (bb->index == ENTRY_BLOCK)
3304 else if (bb->index == EXIT_BLOCK)
3305 dse_step3_exit_block_scan (bb_info);
3306 else
3307 dse_step3_scan (bb);
3308 if (EDGE_COUNT (bb->succs) == 0)
3309 mark_reachable_blocks (unreachable_blocks, bb);
3311 /* If this is the second time dataflow is run, delete the old
3312 sets. */
3313 if (bb_info->in)
3314 BITMAP_FREE (bb_info->in);
3315 if (bb_info->out)
3316 BITMAP_FREE (bb_info->out);
3319 /* For any block in an infinite loop, we must initialize the out set
3320 to all ones. This could be expensive, but almost never occurs in
3321 practice. However, it is common in regression tests. */
3322 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3324 if (bitmap_bit_p (all_blocks, i))
3326 bb_info_t bb_info = bb_table[i];
3327 if (!all_ones)
3329 unsigned int j;
3330 group_info *group;
3332 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3333 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3334 bitmap_ior_into (all_ones, group->group_kill);
3336 if (!bb_info->out)
3338 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3339 bitmap_copy (bb_info->out, all_ones);
3344 if (all_ones)
3345 BITMAP_FREE (all_ones);
3350 /*----------------------------------------------------------------------------
3351 Fourth step.
3353 Solve the bitvector equations.
3354 ----------------------------------------------------------------------------*/
3357 /* Confluence function for blocks with no successors. Create an out
3358 set from the gen set of the exit block. This block logically has
3359 the exit block as a successor. */
3363 static void
3364 dse_confluence_0 (basic_block bb)
3366 bb_info_t bb_info = bb_table[bb->index];
3368 if (bb->index == EXIT_BLOCK)
3369 return;
3371 if (!bb_info->out)
3373 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3374 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3378 /* Propagate the information from the in set of the dest of E to the
3379 out set of the src of E. If the various in or out sets are not
3380 there, that means they are all ones. */
3382 static bool
3383 dse_confluence_n (edge e)
3385 bb_info_t src_info = bb_table[e->src->index];
3386 bb_info_t dest_info = bb_table[e->dest->index];
3388 if (dest_info->in)
3390 if (src_info->out)
3391 bitmap_and_into (src_info->out, dest_info->in);
3392 else
3394 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3395 bitmap_copy (src_info->out, dest_info->in);
3398 return true;
3402 /* Propagate the info from the out to the in set of BB_INDEX's basic
3403 block. There are three cases:
3405 1) The block has no kill set. In this case the kill set is all
3406 ones. It does not matter what the out set of the block is, none of
3407 the info can reach the top. The only thing that reaches the top is
3408 the gen set and we just copy the set.
3410 2) There is a kill set but no out set and bb has successors. In
3411 this case we just return. Eventually an out set will be created and
3412 it is better to wait than to create a set of ones.
3414 3) There is both a kill and out set. We apply the obvious transfer
3415 function.
3418 static bool
3419 dse_transfer_function (int bb_index)
3421 bb_info_t bb_info = bb_table[bb_index];
3423 if (bb_info->kill)
3425 if (bb_info->out)
3427 /* Case 3 above. */
3428 if (bb_info->in)
3429 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3430 bb_info->out, bb_info->kill);
3431 else
3433 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3434 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3435 bb_info->out, bb_info->kill);
3436 return true;
3439 else
3440 /* Case 2 above. */
3441 return false;
3443 else
3445 /* Case 1 above. If there is already an in set, nothing
3446 happens. */
3447 if (bb_info->in)
3448 return false;
3449 else
3451 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3452 bitmap_copy (bb_info->in, bb_info->gen);
3453 return true;
3458 /* Solve the dataflow equations. */
3460 static void
3461 dse_step4 (void)
3463 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3464 dse_confluence_n, dse_transfer_function,
3465 all_blocks, df_get_postorder (DF_BACKWARD),
3466 df_get_n_blocks (DF_BACKWARD));
3467 if (dump_file && (dump_flags & TDF_DETAILS))
3469 basic_block bb;
3471 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3472 FOR_ALL_BB_FN (bb, cfun)
3474 bb_info_t bb_info = bb_table[bb->index];
3476 df_print_bb_index (bb, dump_file);
3477 if (bb_info->in)
3478 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3479 else
3480 fprintf (dump_file, " in: *MISSING*\n");
3481 if (bb_info->gen)
3482 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3483 else
3484 fprintf (dump_file, " gen: *MISSING*\n");
3485 if (bb_info->kill)
3486 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3487 else
3488 fprintf (dump_file, " kill: *MISSING*\n");
3489 if (bb_info->out)
3490 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3491 else
3492 fprintf (dump_file, " out: *MISSING*\n\n");
3499 /*----------------------------------------------------------------------------
3500 Fifth step.
3502 Delete the stores that can only be deleted using the global information.
3503 ----------------------------------------------------------------------------*/
3506 static void
3507 dse_step5 (void)
3509 basic_block bb;
3510 FOR_EACH_BB_FN (bb, cfun)
3512 bb_info_t bb_info = bb_table[bb->index];
3513 insn_info_t insn_info = bb_info->last_insn;
3514 bitmap v = bb_info->out;
3516 while (insn_info)
3518 bool deleted = false;
3519 if (dump_file && insn_info->insn)
3521 fprintf (dump_file, "starting to process insn %d\n",
3522 INSN_UID (insn_info->insn));
3523 bitmap_print (dump_file, v, " v: ", "\n");
3526 /* There may have been code deleted by the dce pass run before
3527 this phase. */
3528 if (insn_info->insn
3529 && INSN_P (insn_info->insn)
3530 && (!insn_info->cannot_delete)
3531 && (!bitmap_empty_p (v)))
3533 store_info *store_info = insn_info->store_rec;
3535 /* Try to delete the current insn. */
3536 deleted = true;
3538 /* Skip the clobbers. */
3539 while (!store_info->is_set)
3540 store_info = store_info->next;
3542 HOST_WIDE_INT i, offset, width;
3543 group_info *group_info = rtx_group_vec[store_info->group_id];
3545 if (!store_info->offset.is_constant (&offset)
3546 || !store_info->width.is_constant (&width))
3547 deleted = false;
3548 else
3550 HOST_WIDE_INT end = offset + width;
3551 for (i = offset; i < end; i++)
3553 int index = get_bitmap_index (group_info, i);
3555 if (dump_file && (dump_flags & TDF_DETAILS))
3556 fprintf (dump_file, "i = %d, index = %d\n",
3557 (int) i, index);
3558 if (index == 0 || !bitmap_bit_p (v, index))
3560 if (dump_file && (dump_flags & TDF_DETAILS))
3561 fprintf (dump_file, "failing at i = %d\n",
3562 (int) i);
3563 deleted = false;
3564 break;
3568 if (deleted)
3570 if (dbg_cnt (dse)
3571 && check_for_inc_dec_1 (insn_info))
3573 delete_insn (insn_info->insn);
3574 insn_info->insn = NULL;
3575 globally_deleted++;
3579 /* We do want to process the local info if the insn was
3580 deleted. For instance, if the insn did a wild read, we
3581 no longer need to trash the info. */
3582 if (insn_info->insn
3583 && INSN_P (insn_info->insn)
3584 && (!deleted))
3586 scan_stores (insn_info->store_rec, v, NULL);
3587 if (insn_info->wild_read)
3589 if (dump_file && (dump_flags & TDF_DETAILS))
3590 fprintf (dump_file, "wild read\n");
3591 bitmap_clear (v);
3593 else if (insn_info->read_rec
3594 || insn_info->non_frame_wild_read
3595 || insn_info->frame_read)
3597 if (dump_file && (dump_flags & TDF_DETAILS))
3599 if (!insn_info->non_frame_wild_read
3600 && !insn_info->frame_read)
3601 fprintf (dump_file, "regular read\n");
3602 if (insn_info->non_frame_wild_read)
3603 fprintf (dump_file, "non-frame wild read\n");
3604 if (insn_info->frame_read)
3605 fprintf (dump_file, "frame read\n");
3607 scan_reads (insn_info, v, NULL);
3611 insn_info = insn_info->prev_insn;
3618 /*----------------------------------------------------------------------------
3619 Sixth step.
3621 Delete stores made redundant by earlier stores (which store the same
3622 value) that couldn't be eliminated.
3623 ----------------------------------------------------------------------------*/
3625 static void
3626 dse_step6 (void)
3628 basic_block bb;
3630 FOR_ALL_BB_FN (bb, cfun)
3632 bb_info_t bb_info = bb_table[bb->index];
3633 insn_info_t insn_info = bb_info->last_insn;
3635 while (insn_info)
3637 /* There may have been code deleted by the dce pass run before
3638 this phase. */
3639 if (insn_info->insn
3640 && INSN_P (insn_info->insn)
3641 && !insn_info->cannot_delete)
3643 store_info *s_info = insn_info->store_rec;
3645 while (s_info && !s_info->is_set)
3646 s_info = s_info->next;
3647 if (s_info
3648 && s_info->redundant_reason
3649 && s_info->redundant_reason->insn
3650 && INSN_P (s_info->redundant_reason->insn))
3652 rtx_insn *rinsn = s_info->redundant_reason->insn;
3653 if (dump_file && (dump_flags & TDF_DETAILS))
3654 fprintf (dump_file, "Locally deleting insn %d "
3655 "because insn %d stores the "
3656 "same value and couldn't be "
3657 "eliminated\n",
3658 INSN_UID (insn_info->insn),
3659 INSN_UID (rinsn));
3660 delete_dead_store_insn (insn_info);
3663 insn_info = insn_info->prev_insn;
3668 /*----------------------------------------------------------------------------
3669 Seventh step.
3671 Destroy everything left standing.
3672 ----------------------------------------------------------------------------*/
3674 static void
3675 dse_step7 (void)
3677 bitmap_obstack_release (&dse_bitmap_obstack);
3678 obstack_free (&dse_obstack, NULL);
3680 end_alias_analysis ();
3681 free (bb_table);
3682 delete rtx_group_table;
3683 rtx_group_table = NULL;
3684 rtx_group_vec.release ();
3685 BITMAP_FREE (all_blocks);
3686 BITMAP_FREE (scratch);
3688 rtx_store_info_pool.release ();
3689 read_info_type_pool.release ();
3690 insn_info_type_pool.release ();
3691 dse_bb_info_type_pool.release ();
3692 group_info_pool.release ();
3693 deferred_change_pool.release ();
3697 /* -------------------------------------------------------------------------
3699 ------------------------------------------------------------------------- */
3701 /* Callback for running pass_rtl_dse. */
3703 static unsigned int
3704 rest_of_handle_dse (void)
3706 df_set_flags (DF_DEFER_INSN_RESCAN);
3708 /* Need the notes since we must track live hardregs in the forwards
3709 direction. */
3710 df_note_add_problem ();
3711 df_analyze ();
3713 dse_step0 ();
3714 dse_step1 ();
3715 /* DSE can eliminate potentially-trapping MEMs.
3716 Remove any EH edges associated with them, since otherwise
3717 DF_LR_RUN_DCE will complain later. */
3718 if ((locally_deleted || globally_deleted)
3719 && cfun->can_throw_non_call_exceptions
3720 && purge_all_dead_edges ())
3722 free_dominance_info (CDI_DOMINATORS);
3723 delete_unreachable_blocks ();
3725 dse_step2_init ();
3726 if (dse_step2 ())
3728 df_set_flags (DF_LR_RUN_DCE);
3729 df_analyze ();
3730 if (dump_file && (dump_flags & TDF_DETAILS))
3731 fprintf (dump_file, "doing global processing\n");
3732 dse_step3 ();
3733 dse_step4 ();
3734 dse_step5 ();
3737 dse_step6 ();
3738 dse_step7 ();
3740 if (dump_file)
3741 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3742 locally_deleted, globally_deleted);
3744 /* DSE can eliminate potentially-trapping MEMs.
3745 Remove any EH edges associated with them. */
3746 if ((locally_deleted || globally_deleted)
3747 && cfun->can_throw_non_call_exceptions
3748 && purge_all_dead_edges ())
3750 free_dominance_info (CDI_DOMINATORS);
3751 cleanup_cfg (0);
3754 return 0;
3757 namespace {
3759 const pass_data pass_data_rtl_dse1 =
3761 RTL_PASS, /* type */
3762 "dse1", /* name */
3763 OPTGROUP_NONE, /* optinfo_flags */
3764 TV_DSE1, /* tv_id */
3765 0, /* properties_required */
3766 0, /* properties_provided */
3767 0, /* properties_destroyed */
3768 0, /* todo_flags_start */
3769 TODO_df_finish, /* todo_flags_finish */
3772 class pass_rtl_dse1 : public rtl_opt_pass
3774 public:
3775 pass_rtl_dse1 (gcc::context *ctxt)
3776 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3779 /* opt_pass methods: */
3780 bool gate (function *) final override
3782 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3785 unsigned int execute (function *) final override
3787 return rest_of_handle_dse ();
3790 }; // class pass_rtl_dse1
3792 } // anon namespace
3794 rtl_opt_pass *
3795 make_pass_rtl_dse1 (gcc::context *ctxt)
3797 return new pass_rtl_dse1 (ctxt);
3800 namespace {
3802 const pass_data pass_data_rtl_dse2 =
3804 RTL_PASS, /* type */
3805 "dse2", /* name */
3806 OPTGROUP_NONE, /* optinfo_flags */
3807 TV_DSE2, /* tv_id */
3808 0, /* properties_required */
3809 0, /* properties_provided */
3810 0, /* properties_destroyed */
3811 0, /* todo_flags_start */
3812 TODO_df_finish, /* todo_flags_finish */
3815 class pass_rtl_dse2 : public rtl_opt_pass
3817 public:
3818 pass_rtl_dse2 (gcc::context *ctxt)
3819 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3822 /* opt_pass methods: */
3823 bool gate (function *) final override
3825 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3828 unsigned int execute (function *) final override
3830 return rest_of_handle_dse ();
3833 }; // class pass_rtl_dse2
3835 } // anon namespace
3837 rtl_opt_pass *
3838 make_pass_rtl_dse2 (gcc::context *ctxt)
3840 return new pass_rtl_dse2 (ctxt);