2015-03-02 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / sem_util.ads
blobe0781ab937222b449084afdcf02de44fc1612696
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Einfo; use Einfo;
29 with Exp_Tss; use Exp_Tss;
30 with Namet; use Namet;
31 with Opt; use Opt;
32 with Snames; use Snames;
33 with Types; use Types;
34 with Uintp; use Uintp;
35 with Urealp; use Urealp;
37 package Sem_Util is
39 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
40 -- Given a type that implements interfaces look for its associated
41 -- definition node and return its list of interfaces.
43 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
44 -- Add A to the list of access types to process when expanding the
45 -- freeze node of E.
47 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
48 -- Given a block statement N, generate an internal E_Block label and make
49 -- it the identifier of the block. Id denotes the generated entity. If the
50 -- block already has an identifier, Id returns the entity of its label.
52 procedure Add_Contract_Item (Prag : Node_Id; Id : Entity_Id);
53 -- Add pragma Prag to the contract of an entry, a package [body], a
54 -- subprogram [body] or variable denoted by Id. The following are valid
55 -- pragmas:
56 -- Abstract_States
57 -- Async_Readers
58 -- Async_Writers
59 -- Contract_Cases
60 -- Depends
61 -- Effective_Reads
62 -- Effective_Writes
63 -- Extensions_Visible
64 -- Global
65 -- Initial_Condition
66 -- Initializes
67 -- Part_Of
68 -- Postcondition
69 -- Precondition
70 -- Refined_Depends
71 -- Refined_Global
72 -- Refined_Post
73 -- Refined_States
74 -- Test_Case
76 procedure Add_Global_Declaration (N : Node_Id);
77 -- These procedures adds a declaration N at the library level, to be
78 -- elaborated before any other code in the unit. It is used for example
79 -- for the entity that marks whether a unit has been elaborated. The
80 -- declaration is added to the Declarations list of the Aux_Decls_Node
81 -- for the current unit. The declarations are added in the current scope,
82 -- so the caller should push a new scope as required before the call.
84 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
85 -- Given two types, returns True if we are in Allow_Integer_Address mode
86 -- and one of the types is (a descendent of) System.Address (and this type
87 -- is private), and the other type is any integer type.
89 function Addressable (V : Uint) return Boolean;
90 function Addressable (V : Int) return Boolean;
91 pragma Inline (Addressable);
92 -- Returns True if the value of V is the word size or an addressable factor
93 -- of the word size (typically 8, 16, 32 or 64).
95 procedure Aggregate_Constraint_Checks
96 (Exp : Node_Id;
97 Check_Typ : Entity_Id);
98 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
99 -- and Check_Typ a constrained record type with discriminants, we generate
100 -- the appropriate discriminant checks. If Exp is an array aggregate then
101 -- emit the appropriate length checks. If Exp is a scalar type, or a string
102 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
103 -- are performed at run time. Also used for expressions in the argument of
104 -- 'Update, which shares some of the features of an aggregate.
106 function Alignment_In_Bits (E : Entity_Id) return Uint;
107 -- If the alignment of the type or object E is currently known to the
108 -- compiler, then this function returns the alignment value in bits.
109 -- Otherwise Uint_0 is returned, indicating that the alignment of the
110 -- entity is not yet known to the compiler.
112 procedure Append_Inherited_Subprogram (S : Entity_Id);
113 -- If the parent of the operation is declared in the visible part of
114 -- the current scope, the inherited operation is visible even though the
115 -- derived type that inherits the operation may be completed in the private
116 -- part of the current package.
118 procedure Apply_Compile_Time_Constraint_Error
119 (N : Node_Id;
120 Msg : String;
121 Reason : RT_Exception_Code;
122 Ent : Entity_Id := Empty;
123 Typ : Entity_Id := Empty;
124 Loc : Source_Ptr := No_Location;
125 Rep : Boolean := True;
126 Warn : Boolean := False);
127 -- N is a subexpression which will raise constraint error when evaluated
128 -- at runtime. Msg is a message that explains the reason for raising the
129 -- exception. The last character is ? if the message is always a warning,
130 -- even in Ada 95, and is not a ? if the message represents an illegality
131 -- (because of violation of static expression rules) in Ada 95 (but not
132 -- in Ada 83). Typically this routine posts all messages at the Sloc of
133 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
134 -- the message. After posting the appropriate message, and if the flag
135 -- Rep is set, this routine replaces the expression with an appropriate
136 -- N_Raise_Constraint_Error node using the given Reason code. This node
137 -- is then marked as being static if the original node is static, but
138 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
139 -- The error message may contain a } or & insertion character. This
140 -- normally references Etype (N), unless the Ent argument is given
141 -- explicitly, in which case it is used instead. The type of the raise
142 -- node that is built is normally Etype (N), but if the Typ parameter
143 -- is present, this is used instead. Warn is normally False. If it is
144 -- True then the message is treated as a warning even though it does
145 -- not end with a ? (this is used when the caller wants to parameterize
146 -- whether an error or warning is given).
148 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
149 -- Given the entity of an abstract state or a variable, determine whether
150 -- Id is subject to external property Async_Readers and if it is, the
151 -- related expression evaluates to True.
153 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
154 -- Given the entity of an abstract state or a variable, determine whether
155 -- Id is subject to external property Async_Writers and if it is, the
156 -- related expression evaluates to True.
158 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
159 -- If at the point of declaration an array type has a private or limited
160 -- component, several array operations are not avaiable on the type, and
161 -- the array type is flagged accordingly. If in the immediate scope of
162 -- the array type the component becomes non-private or non-limited, these
163 -- operations become avaiable. This can happen if the scopes of both types
164 -- are open, and the scope of the array is not outside the scope of the
165 -- component.
167 procedure Bad_Attribute
168 (N : Node_Id;
169 Nam : Name_Id;
170 Warn : Boolean := False);
171 -- Called when node N is expected to contain a valid attribute name, and
172 -- Nam is found instead. If Warn is set True this is a warning, else this
173 -- is an error.
175 procedure Bad_Predicated_Subtype_Use
176 (Msg : String;
177 N : Node_Id;
178 Typ : Entity_Id;
179 Suggest_Static : Boolean := False);
180 -- This is called when Typ, a predicated subtype, is used in a context
181 -- which does not allow the use of a predicated subtype. Msg is passed to
182 -- Error_Msg_FE to output an appropriate message using N as the location,
183 -- and Typ as the entity. The caller must set up any insertions other than
184 -- the & for the type itself. Note that if Typ is a generic actual type,
185 -- then the message will be output as a warning, and a raise Program_Error
186 -- is inserted using Insert_Action with node N as the insertion point. Node
187 -- N also supplies the source location for construction of the raise node.
188 -- If Typ does not have any predicates, the call has no effect. Set flag
189 -- Suggest_Static when the context warrants an advice on how to avoid the
190 -- use error.
192 function Bad_Unordered_Enumeration_Reference
193 (N : Node_Id;
194 T : Entity_Id) return Boolean;
195 -- Node N contains a potentially dubious reference to type T, either an
196 -- explicit comparison, or an explicit range. This function returns True
197 -- if the type T is an enumeration type for which No pragma Order has been
198 -- given, and the reference N is not in the same extended source unit as
199 -- the declaration of T.
201 function Build_Actual_Subtype
202 (T : Entity_Id;
203 N : Node_Or_Entity_Id) return Node_Id;
204 -- Build an anonymous subtype for an entity or expression, using the
205 -- bounds of the entity or the discriminants of the enclosing record.
206 -- T is the type for which the actual subtype is required, and N is either
207 -- a defining identifier, or any subexpression.
209 function Build_Actual_Subtype_Of_Component
210 (T : Entity_Id;
211 N : Node_Id) return Node_Id;
212 -- Determine whether a selected component has a type that depends on
213 -- discriminants, and build actual subtype for it if so.
215 function Build_Default_Init_Cond_Call
216 (Loc : Source_Ptr;
217 Obj_Id : Entity_Id;
218 Typ : Entity_Id) return Node_Id;
219 -- Build a call to the default initial condition procedure of type Typ with
220 -- Obj_Id as the actual parameter.
222 procedure Build_Default_Init_Cond_Procedure_Bodies (Priv_Decls : List_Id);
223 -- Inspect the contents of private declarations Priv_Decls and build the
224 -- bodies the default initial condition procedures for all types subject
225 -- to pragma Default_Initial_Condition.
227 procedure Build_Default_Init_Cond_Procedure_Declaration (Typ : Entity_Id);
228 -- If private type Typ is subject to pragma Default_Initial_Condition,
229 -- build the declaration of the procedure which verifies the assumption
230 -- of the pragma at runtime. The declaration is inserted after the related
231 -- pragma.
233 function Build_Default_Subtype
234 (T : Entity_Id;
235 N : Node_Id) return Entity_Id;
236 -- If T is an unconstrained type with defaulted discriminants, build a
237 -- subtype constrained by the default values, insert the subtype
238 -- declaration in the tree before N, and return the entity of that
239 -- subtype. Otherwise, simply return T.
241 function Build_Discriminal_Subtype_Of_Component
242 (T : Entity_Id) return Node_Id;
243 -- Determine whether a record component has a type that depends on
244 -- discriminants, and build actual subtype for it if so.
246 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
247 -- Given a compilation unit node N, allocate an elaboration counter for
248 -- the compilation unit, and install it in the Elaboration_Entity field
249 -- of Spec_Id, the entity for the compilation unit.
251 procedure Build_Explicit_Dereference
252 (Expr : Node_Id;
253 Disc : Entity_Id);
254 -- AI05-139: Names with implicit dereference. If the expression N is a
255 -- reference type and the context imposes the corresponding designated
256 -- type, convert N into N.Disc.all. Such expressions are always over-
257 -- loaded with both interpretations, and the dereference interpretation
258 -- carries the name of the reference discriminant.
260 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
261 -- Returns True if the expression cannot possibly raise Constraint_Error.
262 -- The response is conservative in the sense that a result of False does
263 -- not necessarily mean that CE could be raised, but a response of True
264 -- means that for sure CE cannot be raised.
266 procedure Check_Dynamically_Tagged_Expression
267 (Expr : Node_Id;
268 Typ : Entity_Id;
269 Related_Nod : Node_Id);
270 -- Check wrong use of dynamically tagged expression
272 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
273 -- Verify that the full declaration of type T has been seen. If not, place
274 -- error message on node N. Used in object declarations, type conversions
275 -- and qualified expressions.
277 procedure Check_Function_Writable_Actuals (N : Node_Id);
278 -- (Ada 2012): If the construct N has two or more direct constituents that
279 -- are names or expressions whose evaluation may occur in an arbitrary
280 -- order, at least one of which contains a function call with an in out or
281 -- out parameter, then the construct is legal only if: for each name that
282 -- is passed as a parameter of mode in out or out to some inner function
283 -- call C2 (not including the construct N itself), there is no other name
284 -- anywhere within a direct constituent of the construct C other than
285 -- the one containing C2, that is known to refer to the same object (RM
286 -- 6.4.1(6.17/3)).
288 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
289 -- AI05-139-2: Accessors and iterators for containers. This procedure
290 -- checks whether T is a reference type, and if so it adds an interprettion
291 -- to N whose type is the designated type of the reference_discriminant.
292 -- If N is a generalized indexing operation, the interpretation is added
293 -- both to the corresponding function call, and to the indexing node.
295 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
296 -- Within a protected function, the current object is a constant, and
297 -- internal calls to a procedure or entry are illegal. Similarly, other
298 -- uses of a protected procedure in a renaming or a generic instantiation
299 -- in the context of a protected function are illegal (AI05-0225).
301 procedure Check_Later_Vs_Basic_Declarations
302 (Decls : List_Id;
303 During_Parsing : Boolean);
304 -- If During_Parsing is True, check for misplacement of later vs basic
305 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
306 -- restriction is set, do the same: although SPARK 95 removes the
307 -- distinction between initial and later declarative items, the distinction
308 -- remains in the Examiner (JB01-005). Note that the Examiner does not
309 -- count package declarations in later declarative items.
311 procedure Check_Nested_Access (Ent : Entity_Id);
312 -- Check whether Ent denotes an entity declared in an uplevel scope, which
313 -- is accessed inside a nested procedure, and set Has_Up_Level_Access flag
314 -- accordingly. This is currently only enabled for VM_Target /= No_VM.
316 procedure Check_No_Hidden_State (Id : Entity_Id);
317 -- Determine whether object or state Id introduces a hidden state. If this
318 -- is the case, emit an error.
320 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
321 -- N is one of the statement forms that is a potentially blocking
322 -- operation. If it appears within a protected action, emit warning.
324 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
325 -- Determine whether the contract of subprogram Subp_Id mentions attribute
326 -- 'Result and it contains an expression that evaluates differently in pre-
327 -- and post-state.
329 procedure Check_Unprotected_Access
330 (Context : Node_Id;
331 Expr : Node_Id);
332 -- Check whether the expression is a pointer to a protected component,
333 -- and the context is external to the protected operation, to warn against
334 -- a possible unlocked access to data.
336 procedure Collect_Interfaces
337 (T : Entity_Id;
338 Ifaces_List : out Elist_Id;
339 Exclude_Parents : Boolean := False;
340 Use_Full_View : Boolean := True);
341 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
342 -- directly or indirectly implemented by T. Exclude_Parents is used to
343 -- avoid the addition of inherited interfaces to the generated list.
344 -- Use_Full_View is used to collect the interfaces using the full-view
345 -- (if available).
347 procedure Collect_Interface_Components
348 (Tagged_Type : Entity_Id;
349 Components_List : out Elist_Id);
350 -- Ada 2005 (AI-251): Collect all the tag components associated with the
351 -- secondary dispatch tables of a tagged type.
353 procedure Collect_Interfaces_Info
354 (T : Entity_Id;
355 Ifaces_List : out Elist_Id;
356 Components_List : out Elist_Id;
357 Tags_List : out Elist_Id);
358 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
359 -- the record component and tag associated with each of these interfaces.
360 -- On exit Ifaces_List, Components_List and Tags_List have the same number
361 -- of elements, and elements at the same position on these tables provide
362 -- information on the same interface type.
364 procedure Collect_Parents
365 (T : Entity_Id;
366 List : out Elist_Id;
367 Use_Full_View : Boolean := True);
368 -- Collect all the parents of Typ. Use_Full_View is used to collect them
369 -- using the full-view of private parents (if available).
371 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
372 -- Called upon type derivation and extension. We scan the declarative part
373 -- in which the type appears, and collect subprograms that have one
374 -- subsidiary subtype of the type. These subprograms can only appear after
375 -- the type itself.
377 function Compile_Time_Constraint_Error
378 (N : Node_Id;
379 Msg : String;
380 Ent : Entity_Id := Empty;
381 Loc : Source_Ptr := No_Location;
382 Warn : Boolean := False) return Node_Id;
383 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
384 -- generates a warning (or error) message in the same manner, but it does
385 -- not replace any nodes. For convenience, the function always returns its
386 -- first argument. The message is a warning if the message ends with ?, or
387 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
389 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
390 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
391 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
393 function Contains_Refined_State (Prag : Node_Id) return Boolean;
394 -- Determine whether pragma Prag contains a reference to the entity of an
395 -- abstract state with a visible refinement. Prag must denote one of the
396 -- following pragmas:
397 -- Depends
398 -- Global
400 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
401 -- Utility to create a parameter profile for a new subprogram spec, when
402 -- the subprogram has a body that acts as spec. This is done for some cases
403 -- of inlining, and for private protected ops. Also used to create bodies
404 -- for stubbed subprograms.
406 function Copy_Component_List
407 (R_Typ : Entity_Id;
408 Loc : Source_Ptr) return List_Id;
409 -- Copy components from record type R_Typ that come from source. Used to
410 -- create a new compatible record type. Loc is the source location assigned
411 -- to the created nodes.
413 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
414 -- If a type is a generic actual type, return the corresponding formal in
415 -- the generic parent unit. There is no direct link in the tree for this
416 -- attribute, except in the case of formal private and derived types.
417 -- Possible optimization???
419 function Corresponding_Spec_Of (Subp_Decl : Node_Id) return Entity_Id;
420 -- Return the corresponding spec of Subp_Decl when it denotes a body [stub]
421 -- or the defining entity of subprogram declaration Subp_Decl in all other
422 -- cases.
424 function Current_Entity (N : Node_Id) return Entity_Id;
425 pragma Inline (Current_Entity);
426 -- Find the currently visible definition for a given identifier, that is to
427 -- say the first entry in the visibility chain for the Chars of N.
429 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
430 -- Find whether there is a previous definition for identifier N in the
431 -- current scope. Because declarations for a scope are not necessarily
432 -- contiguous (e.g. for packages) the first entry on the visibility chain
433 -- for N is not necessarily in the current scope.
435 function Current_Scope return Entity_Id;
436 -- Get entity representing current scope
438 function Current_Subprogram return Entity_Id;
439 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
440 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
441 -- Current_Scope is returned. The returned value is Empty if this is called
442 -- from a library package which is not within any subprogram.
444 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
445 -- Same as Type_Access_Level, except that if the type is the type of an Ada
446 -- 2012 stand-alone object of an anonymous access type, then return the
447 -- static accesssibility level of the object. In that case, the dynamic
448 -- accessibility level of the object may take on values in a range. The low
449 -- bound of of that range is returned by Type_Access_Level; this function
450 -- yields the high bound of that range. Also differs from Type_Access_Level
451 -- in the case of a descendant of a generic formal type (returns Int'Last
452 -- instead of 0).
454 function Defining_Entity (N : Node_Id) return Entity_Id;
455 -- Given a declaration N, returns the associated defining entity. If the
456 -- declaration has a specification, the entity is obtained from the
457 -- specification. If the declaration has a defining unit name, then the
458 -- defining entity is obtained from the defining unit name ignoring any
459 -- child unit prefixes.
461 -- Iterator loops also have a defining entity, which holds the list of
462 -- local entities declared during loop expansion. These entities need
463 -- debugging information, generated through Qualify_Entity_Names, and
464 -- the loop declaration must be placed in the table Name_Qualify_Units.
466 function Denotes_Discriminant
467 (N : Node_Id;
468 Check_Concurrent : Boolean := False) return Boolean;
469 -- Returns True if node N is an Entity_Name node for a discriminant. If the
470 -- flag Check_Concurrent is true, function also returns true when N denotes
471 -- the discriminal of the discriminant of a concurrent type. This is needed
472 -- to disable some optimizations on private components of protected types,
473 -- and constraint checks on entry families constrained by discriminants.
475 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
476 -- Detect suspicious overlapping between actuals in a call, when both are
477 -- writable (RM 2012 6.4.1(6.4/3))
479 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
480 -- Functions to detect suspicious overlapping between actuals in a call,
481 -- when one of them is writable. The predicates are those proposed in
482 -- AI05-0144, to detect dangerous order dependence in complex calls.
483 -- I would add a parameter Warn which enables more extensive testing of
484 -- cases as we find appropriate when we are only warning ??? Or perhaps
485 -- return an indication of (Error, Warn, OK) ???
487 function Denotes_Variable (N : Node_Id) return Boolean;
488 -- Returns True if node N denotes a single variable without parentheses
490 function Depends_On_Discriminant (N : Node_Id) return Boolean;
491 -- Returns True if N denotes a discriminant or if N is a range, a subtype
492 -- indication or a scalar subtype where one of the bounds is a
493 -- discriminant.
495 function Designate_Same_Unit
496 (Name1 : Node_Id;
497 Name2 : Node_Id) return Boolean;
498 -- Returns True if Name1 and Name2 designate the same unit name; each of
499 -- these names is supposed to be a selected component name, an expanded
500 -- name, a defining program unit name or an identifier.
502 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
503 -- Expr should be an expression of an access type. Builds an integer
504 -- literal except in cases involving anonymous access types where
505 -- accessibility levels are tracked at runtime (access parameters and Ada
506 -- 2012 stand-alone objects).
508 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
509 -- Same as Einfo.Extra_Accessibility except thtat object renames
510 -- are looked through.
512 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
513 -- Given the entity of an abstract state or a variable, determine whether
514 -- Id is subject to external property Effective_Reads and if it is, the
515 -- related expression evaluates to True.
517 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
518 -- Given the entity of an abstract state or a variable, determine whether
519 -- Id is subject to external property Effective_Writes and if it is, the
520 -- related expression evaluates to True.
522 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
523 -- Returns the enclosing N_Compilation_Unit Node that is the root of a
524 -- subtree containing N.
526 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
527 -- Returns the closest ancestor of Typ that is a CPP type.
529 function Enclosing_Generic_Body
530 (N : Node_Id) return Node_Id;
531 -- Returns the Node_Id associated with the innermost enclosing generic
532 -- body, if any. If none, then returns Empty.
534 function Enclosing_Generic_Unit
535 (N : Node_Id) return Node_Id;
536 -- Returns the Node_Id associated with the innermost enclosing generic
537 -- unit, if any. If none, then returns Empty.
539 function Enclosing_Lib_Unit_Entity
540 (E : Entity_Id := Current_Scope) return Entity_Id;
541 -- Returns the entity of enclosing library unit node which is the
542 -- root of the current scope (which must not be Standard_Standard, and the
543 -- caller is responsible for ensuring this condition) or other specified
544 -- entity.
546 function Enclosing_Package (E : Entity_Id) return Entity_Id;
547 -- Utility function to return the Ada entity of the package enclosing
548 -- the entity E, if any. Returns Empty if no enclosing package.
550 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
551 -- Utility function to return the Ada entity of the subprogram enclosing
552 -- the entity E, if any. Returns Empty if no enclosing subprogram.
554 procedure Ensure_Freeze_Node (E : Entity_Id);
555 -- Make sure a freeze node is allocated for entity E. If necessary, build
556 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
558 procedure Enter_Name (Def_Id : Entity_Id);
559 -- Insert new name in symbol table of current scope with check for
560 -- duplications (error message is issued if a conflict is found).
561 -- Note: Enter_Name is not used for overloadable entities, instead these
562 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
564 function Entity_Of (N : Node_Id) return Entity_Id;
565 -- Return the entity of N or Empty. If N is a renaming, return the entity
566 -- of the root renamed object.
568 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
569 -- This procedure is called after issuing a message complaining about an
570 -- inappropriate use of limited type T. If useful, it adds additional
571 -- continuation lines to the message explaining why type T is limited.
572 -- Messages are placed at node N.
574 type Extensions_Visible_Mode is
575 (Extensions_Visible_None,
576 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
577 -- value acts as a default in a non-SPARK compilation.
579 Extensions_Visible_False,
580 -- A value of "False" signifies that Extensions_Visible is either
581 -- missing or the pragma is present and the value of its Boolean
582 -- expression is False.
584 Extensions_Visible_True);
585 -- A value of "True" signifies that Extensions_Visible is present and
586 -- the value of its Boolean expression is True.
588 function Extensions_Visible_Status
589 (Id : Entity_Id) return Extensions_Visible_Mode;
590 -- Given the entity of a subprogram or formal parameter subject to pragma
591 -- Extensions_Visible, return the Boolean value denoted by the expression
592 -- of the pragma.
594 procedure Find_Actual
595 (N : Node_Id;
596 Formal : out Entity_Id;
597 Call : out Node_Id);
598 -- Determines if the node N is an actual parameter of a function of a
599 -- procedure call. If so, then Formal points to the entity for the formal
600 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
601 -- Call is set to the node for the corresponding call. If the node N is not
602 -- an actual parameter then Formal and Call are set to Empty.
604 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
605 -- Find specific type of a class-wide type, and handle the case of an
606 -- incomplete type coming either from a limited_with clause or from an
607 -- incomplete type declaration. If resulting type is private return its
608 -- full view.
610 function Find_Body_Discriminal
611 (Spec_Discriminant : Entity_Id) return Entity_Id;
612 -- Given a discriminant of the record type that implements a task or
613 -- protected type, return the discriminal of the corresponding discriminant
614 -- of the actual concurrent type.
616 function Find_Corresponding_Discriminant
617 (Id : Node_Id;
618 Typ : Entity_Id) return Entity_Id;
619 -- Because discriminants may have different names in a generic unit and in
620 -- an instance, they are resolved positionally when possible. A reference
621 -- to a discriminant carries the discriminant that it denotes when it is
622 -- analyzed. Subsequent uses of this id on a different type denotes the
623 -- discriminant at the same position in this new type.
625 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
626 -- Given an arbitrary entity, try to find the nearest enclosing iterator
627 -- loop. If such a loop is found, return the entity of its identifier (the
628 -- E_Loop scope), otherwise return Empty.
630 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
631 -- Find the nested loop statement in a conditional block. Loops subject to
632 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
633 -- loop are nested within the block.
635 procedure Find_Overlaid_Entity
636 (N : Node_Id;
637 Ent : out Entity_Id;
638 Off : out Boolean);
639 -- The node N should be an address representation clause. Determines if
640 -- the target expression is the address of an entity with an optional
641 -- offset. If so, set Ent to the entity and, if there is an offset, set
642 -- Off to True, otherwise to False. If N is not an address representation
643 -- clause, or if it is not possible to determine that the address is of
644 -- this form, then set Ent to Empty.
646 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
647 -- Return the type of formal parameter Param as determined by its
648 -- specification.
650 -- The following type describes the placement of an arbitrary entity with
651 -- respect to SPARK visible / hidden state space.
653 type State_Space_Kind is
654 (Not_In_Package,
655 -- An entity is not in the visible, private or body state space when
656 -- the immediate enclosing construct is not a package.
658 Visible_State_Space,
659 -- An entity is in the visible state space when it appears immediately
660 -- within the visible declarations of a package or when it appears in
661 -- the visible state space of a nested package which in turn is declared
662 -- in the visible declarations of an enclosing package:
664 -- package Pack is
665 -- Visible_Variable : ...
666 -- package Nested
667 -- with Abstract_State => Visible_State
668 -- is
669 -- Visible_Nested_Variable : ...
670 -- end Nested;
671 -- end Pack;
673 -- Entities associated with a package instantiation inherit the state
674 -- space from the instance placement:
676 -- generic
677 -- package Gen is
678 -- Generic_Variable : ...
679 -- end Gen;
681 -- with Gen;
682 -- package Pack is
683 -- package Inst is new Gen;
684 -- -- Generic_Variable is in the visible state space of Pack
685 -- end Pack;
687 Private_State_Space,
688 -- An entity is in the private state space when it appears immediately
689 -- within the private declarations of a package or when it appears in
690 -- the visible state space of a nested package which in turn is declared
691 -- in the private declarations of an enclosing package:
693 -- package Pack is
694 -- private
695 -- Private_Variable : ...
696 -- package Nested
697 -- with Abstract_State => Private_State
698 -- is
699 -- Private_Nested_Variable : ...
700 -- end Nested;
701 -- end Pack;
703 -- The same placement principle applies to package instantiations
705 Body_State_Space);
706 -- An entity is in the body state space when it appears immediately
707 -- within the declarations of a package body or when it appears in the
708 -- visible state space of a nested package which in turn is declared in
709 -- the declarations of an enclosing package body:
711 -- package body Pack is
712 -- Body_Variable : ...
713 -- package Nested
714 -- with Abstract_State => Body_State
715 -- is
716 -- Body_Nested_Variable : ...
717 -- end Nested;
718 -- end Pack;
720 -- The same placement principle applies to package instantiations
722 procedure Find_Placement_In_State_Space
723 (Item_Id : Entity_Id;
724 Placement : out State_Space_Kind;
725 Pack_Id : out Entity_Id);
726 -- Determine the state space placement of an item. Item_Id denotes the
727 -- entity of an abstract state, variable or package instantiation.
728 -- Placement captures the precise placement of the item in the enclosing
729 -- state space. If the state space is that of a package, Pack_Id denotes
730 -- its entity, otherwise Pack_Id is Empty.
732 function Find_Static_Alternative (N : Node_Id) return Node_Id;
733 -- N is a case statement whose expression is a compile-time value.
734 -- Determine the alternative chosen, so that the code of non-selected
735 -- alternatives, and the warnings that may apply to them, are removed.
737 function First_Actual (Node : Node_Id) return Node_Id;
738 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
739 -- result returned is the first actual parameter in declaration order
740 -- (not the order of parameters as they appeared in the source, which
741 -- can be quite different as a result of the use of named parameters).
742 -- Empty is returned for a call with no parameters. The procedure for
743 -- iterating through the actuals in declaration order is to use this
744 -- function to find the first actual, and then use Next_Actual to obtain
745 -- the next actual in declaration order. Note that the value returned
746 -- is always the expression (not the N_Parameter_Association nodes,
747 -- even if named association is used).
749 procedure Gather_Components
750 (Typ : Entity_Id;
751 Comp_List : Node_Id;
752 Governed_By : List_Id;
753 Into : Elist_Id;
754 Report_Errors : out Boolean);
755 -- The purpose of this procedure is to gather the valid components in a
756 -- record type according to the values of its discriminants, in order to
757 -- validate the components of a record aggregate.
759 -- Typ is the type of the aggregate when its constrained discriminants
760 -- need to be collected, otherwise it is Empty.
762 -- Comp_List is an N_Component_List node.
764 -- Governed_By is a list of N_Component_Association nodes, where each
765 -- choice list contains the name of a discriminant and the expression
766 -- field gives its value. The values of the discriminants governing
767 -- the (possibly nested) variant parts in Comp_List are found in this
768 -- Component_Association List.
770 -- Into is the list where the valid components are appended. Note that
771 -- Into need not be an Empty list. If it's not, components are attached
772 -- to its tail.
774 -- Report_Errors is set to True if the values of the discriminants are
775 -- non-static.
777 -- This procedure is also used when building a record subtype. If the
778 -- discriminant constraint of the subtype is static, the components of the
779 -- subtype are only those of the variants selected by the values of the
780 -- discriminants. Otherwise all components of the parent must be included
781 -- in the subtype for semantic analysis.
783 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
784 -- Given a node for an expression, obtain the actual subtype of the
785 -- expression. In the case of a parameter where the formal is an
786 -- unconstrained array or discriminated type, this will be the previously
787 -- constructed subtype of the actual. Note that this is not quite the
788 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
789 -- it is the subtype of the value of the actual. The actual subtype is also
790 -- returned in other cases where it has already been constructed for an
791 -- object. Otherwise the expression type is returned unchanged, except for
792 -- the case of an unconstrained array type, where an actual subtype is
793 -- created, using Insert_Actions if necessary to insert any associated
794 -- actions.
796 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
797 -- This is like Get_Actual_Subtype, except that it never constructs an
798 -- actual subtype. If an actual subtype is already available, i.e. the
799 -- Actual_Subtype field of the corresponding entity is set, then it is
800 -- returned. Otherwise the Etype of the node is returned.
802 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
803 -- Return the body node for a stub (subprogram or package)
805 function Get_Cursor_Type
806 (Aspect : Node_Id;
807 Typ : Entity_Id) return Entity_Id;
808 -- Find Cursor type in scope of formal container Typ, by locating primitive
809 -- operation First. For use in resolving the other primitive operations
810 -- of an Iterable type and expanding loops and quantified expressions
811 -- over formal containers.
813 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
814 -- This is used to construct the string literal node representing a
815 -- default external name, i.e. one that is constructed from the name of an
816 -- entity, or (in the case of extended DEC import/export pragmas, an
817 -- identifier provided as the external name. Letters in the name are
818 -- according to the setting of Opt.External_Name_Default_Casing.
820 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
821 -- If expression N references a part of an object, return this object.
822 -- Otherwise return Empty. Expression N should have been resolved already.
824 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
825 -- Returns the true generic entity in an instantiation. If the name in the
826 -- instantiation is a renaming, the function returns the renamed generic.
828 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
829 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
830 -- in a child unit a derived type is within the derivation class of an
831 -- ancestor declared in a parent unit, even if there is an intermediate
832 -- derivation that does not see the full view of that ancestor.
834 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
835 -- This procedure assigns to L and H respectively the values of the low and
836 -- high bounds of node N, which must be a range, subtype indication, or the
837 -- name of a scalar subtype. The result in L, H may be set to Error if
838 -- there was an earlier error in the range.
840 function Get_Enum_Lit_From_Pos
841 (T : Entity_Id;
842 Pos : Uint;
843 Loc : Source_Ptr) return Node_Id;
844 -- This function returns an identifier denoting the E_Enumeration_Literal
845 -- entity for the specified value from the enumeration type or subtype T.
846 -- The second argument is the Pos value, which is assumed to be in range.
847 -- The third argument supplies a source location for constructed nodes
848 -- returned by this function.
850 function Get_Iterable_Type_Primitive
851 (Typ : Entity_Id;
852 Nam : Name_Id) return Entity_Id;
853 -- Retrieve one of the primitives First, Next, Has_Element, Element from
854 -- the value of the Iterable aspect of a formal type.
856 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
857 -- Retrieve the fully expanded name of the library unit declared by
858 -- Decl_Node into the name buffer.
860 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
861 pragma Inline (Get_Name_Entity_Id);
862 -- An entity value is associated with each name in the name table. The
863 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
864 -- is the innermost visible entity with the given name. See the body of
865 -- Sem_Ch8 for further details on handling of entity visibility.
867 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
868 -- Return the Name component of Test_Case pragma N
869 -- Bad name now that this no longer applies to Contract_Case ???
871 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
872 -- Get defining entity of parent unit of a child unit. In most cases this
873 -- is the defining entity of the unit, but for a child instance whose
874 -- parent needs a body for inlining, the instantiation node of the parent
875 -- has not yet been rewritten as a package declaration, and the entity has
876 -- to be retrieved from the Instance_Spec of the unit.
878 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
879 pragma Inline (Get_Pragma_Id);
880 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
882 procedure Get_Reason_String (N : Node_Id);
883 -- Recursive routine to analyze reason argument for pragma Warnings. The
884 -- value of the reason argument is appended to the current string using
885 -- Store_String_Chars. The reason argument is expected to be a string
886 -- literal or concatenation of string literals. An error is given for
887 -- any other form.
889 function Get_Referenced_Object (N : Node_Id) return Node_Id;
890 -- Given a node, return the renamed object if the node represents a renamed
891 -- object, otherwise return the node unchanged. The node may represent an
892 -- arbitrary expression.
894 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
895 -- Given an entity for an exception, package, subprogram or generic unit,
896 -- returns the ultimately renamed entity if this is a renaming. If this is
897 -- not a renamed entity, returns its argument. It is an error to call this
898 -- with any other kind of entity.
900 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
901 -- Nod is either a procedure call statement, or a function call, or an
902 -- accept statement node. This procedure finds the Entity_Id of the related
903 -- subprogram or entry and returns it, or if no subprogram can be found,
904 -- returns Empty.
906 function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
907 -- Given the entity for a subprogram (E_Function or E_Procedure), return
908 -- the corresponding N_Subprogram_Body node. If the corresponding body
909 -- is missing (as for an imported subprogram), return Empty.
911 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
912 pragma Inline (Get_Task_Body_Procedure);
913 -- Given an entity for a task type or subtype, retrieves the
914 -- Task_Body_Procedure field from the corresponding task type declaration.
916 function Has_Access_Values (T : Entity_Id) return Boolean;
917 -- Returns true if type or subtype T is an access type, or has a component
918 -- (at any recursive level) that is an access type. This is a conservative
919 -- predicate, if it is not known whether or not T contains access values
920 -- (happens for generic formals in some cases), then False is returned.
921 -- Note that tagged types return False. Even though the tag is implemented
922 -- as an access type internally, this function tests only for access types
923 -- known to the programmer. See also Has_Tagged_Component.
925 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
926 -- Simple predicate to test for defaulted discriminants
928 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
929 -- Result of Has_Compatible_Alignment test, description found below. Note
930 -- that the values are arranged in increasing order of problematicness.
932 function Has_Compatible_Alignment
933 (Obj : Entity_Id;
934 Expr : Node_Id) return Alignment_Result;
935 -- Obj is an object entity, and expr is a node for an object reference. If
936 -- the alignment of the object referenced by Expr is known to be compatible
937 -- with the alignment of Obj (i.e. is larger or the same), then the result
938 -- is Known_Compatible. If the alignment of the object referenced by Expr
939 -- is known to be less than the alignment of Obj, then Known_Incompatible
940 -- is returned. If neither condition can be reliably established at compile
941 -- time, then Unknown is returned. This is used to determine if alignment
942 -- checks are required for address clauses, and also whether copies must
943 -- be made when objects are passed by reference.
945 -- Note: Known_Incompatible does not mean that at run time the alignment
946 -- of Expr is known to be wrong for Obj, just that it can be determined
947 -- that alignments have been explicitly or implicitly specified which are
948 -- incompatible (whereas Unknown means that even this is not known). The
949 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
950 -- Unknown, but issue a warning that there may be an alignment error.
952 function Has_Declarations (N : Node_Id) return Boolean;
953 -- Determines if the node can have declarations
955 function Has_Denormals (E : Entity_Id) return Boolean;
956 -- Determines if the floating-point type E supports denormal numbers.
957 -- Returns False if E is not a floating-point type.
959 function Has_Discriminant_Dependent_Constraint
960 (Comp : Entity_Id) return Boolean;
961 -- Returns True if and only if Comp has a constrained subtype that depends
962 -- on a discriminant.
964 function Has_Infinities (E : Entity_Id) return Boolean;
965 -- Determines if the range of the floating-point type E includes
966 -- infinities. Returns False if E is not a floating-point type.
968 function Has_Interfaces
969 (T : Entity_Id;
970 Use_Full_View : Boolean := True) return Boolean;
971 -- Where T is a concurrent type or a record type, returns true if T covers
972 -- any abstract interface types. In case of private types the argument
973 -- Use_Full_View controls if the check is done using its full view (if
974 -- available).
976 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
977 -- This is a simple minded function for determining whether an expression
978 -- has no obvious side effects. It is used only for determining whether
979 -- warnings are needed in certain situations, and is not guaranteed to
980 -- be accurate in either direction. Exceptions may mean an expression
981 -- does in fact have side effects, but this may be ignored and True is
982 -- returned, or a complex expression may in fact be side effect free
983 -- but we don't recognize it here and return False. The Side_Effect_Free
984 -- routine in Remove_Side_Effects is much more extensive and perhaps could
985 -- be shared, so that this routine would be more accurate.
987 function Has_Null_Exclusion (N : Node_Id) return Boolean;
988 -- Determine whether node N has a null exclusion
990 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
991 -- Predicate to determine whether a controlled type has a user-defined
992 -- Initialize primitive (and, in Ada 2012, whether that primitive is
993 -- non-null), which causes the type to not have preelaborable
994 -- initialization.
996 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
997 -- Return True iff type E has preelaborable initialization as defined in
998 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1000 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1001 -- Check if a type has a (sub)component of a private type that has not
1002 -- yet received a full declaration.
1004 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1005 -- Determines if the floating-point type E supports signed zeros.
1006 -- Returns False if E is not a floating-point type.
1008 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1009 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1010 -- All subprograms have a N_Contract node, but this does not mean that the
1011 -- contract is useful.
1013 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1014 -- Return whether an array type has static bounds
1016 function Has_Stream (T : Entity_Id) return Boolean;
1017 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1018 -- case of a composite type, has a component for which this predicate is
1019 -- True, and if so returns True. Otherwise a result of False means that
1020 -- there is no Stream type in sight. For a private type, the test is
1021 -- applied to the underlying type (or returns False if there is no
1022 -- underlying type).
1024 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1025 -- Returns true if the last character of E is Suffix. Used in Assertions.
1027 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
1028 -- Returns the name of E adding Suffix
1030 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
1031 -- Returns the name of E without Suffix
1033 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1034 -- Returns True if Typ is a composite type (array or record) which is
1035 -- either itself a tagged type, or has a component (recursively) which is
1036 -- a tagged type. Returns False for non-composite type, or if no tagged
1037 -- component is present. This function is used to check if "=" has to be
1038 -- expanded into a bunch component comparisons.
1040 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1041 -- Given an arbitrary type, determine whether it contains at least one
1042 -- volatile component.
1044 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1045 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1046 -- implementation requirement which the pragma imposes. The return value is
1047 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1049 function Implements_Interface
1050 (Typ_Ent : Entity_Id;
1051 Iface_Ent : Entity_Id;
1052 Exclude_Parents : Boolean := False) return Boolean;
1053 -- Returns true if the Typ_Ent implements interface Iface_Ent
1055 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1056 -- Determine whether an arbitrary node appears in a pragma that acts as an
1057 -- assertion expression. See Sem_Prag for the list of qualifying pragmas.
1059 function In_Instance return Boolean;
1060 -- Returns True if the current scope is within a generic instance
1062 function In_Instance_Body return Boolean;
1063 -- Returns True if current scope is within the body of an instance, where
1064 -- several semantic checks (e.g. accessibility checks) are relaxed.
1066 function In_Instance_Not_Visible return Boolean;
1067 -- Returns True if current scope is with the private part or the body of
1068 -- an instance. Other semantic checks are suppressed in this context.
1070 function In_Instance_Visible_Part return Boolean;
1071 -- Returns True if current scope is within the visible part of a package
1072 -- instance, where several additional semantic checks apply.
1074 function In_Package_Body return Boolean;
1075 -- Returns True if current scope is within a package body
1077 function In_Parameter_Specification (N : Node_Id) return Boolean;
1078 -- Returns True if node N belongs to a parameter specification
1080 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1081 -- Returns true if the expression N occurs within a pragma with name Nam
1083 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1084 -- Returns True if N denotes a component or subcomponent in a record or
1085 -- array that has Reverse_Storage_Order.
1087 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1088 -- Determines if the current scope is within a subprogram compilation unit
1089 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1090 -- declaration) or within a task or protected body. The test is for
1091 -- appearing anywhere within such a construct (that is it does not need
1092 -- to be directly within).
1094 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1095 -- Determine whether a declaration occurs within the visible part of a
1096 -- package specification. The package must be on the scope stack, and the
1097 -- corresponding private part must not.
1099 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1100 -- Given the entity of a constant or a type, retrieve the incomplete or
1101 -- partial view of the same entity. Note that Id may not have a partial
1102 -- view in which case the function returns Empty.
1104 procedure Inherit_Default_Init_Cond_Procedure (Typ : Entity_Id);
1105 -- Inherit the default initial condition procedure from the parent type of
1106 -- derived type Typ.
1108 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1109 -- Inherit the rep item chain of type From_Typ without clobbering any
1110 -- existing rep items on Typ's chain. Typ is the destination type.
1112 procedure Inherit_Subprogram_Contract
1113 (Subp : Entity_Id;
1114 From_Subp : Entity_Id);
1115 -- Inherit relevant contract items from source subprogram From_Subp. Subp
1116 -- denotes the destination subprogram. The inherited items are:
1117 -- Extensions_Visible
1118 -- ??? it would be nice if this routine handles Pre'Class and Post'Class
1120 procedure Insert_Explicit_Dereference (N : Node_Id);
1121 -- In a context that requires a composite or subprogram type and where a
1122 -- prefix is an access type, rewrite the access type node N (which is the
1123 -- prefix, e.g. of an indexed component) as an explicit dereference.
1125 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1126 -- Examine all deferred constants in the declaration list Decls and check
1127 -- whether they have been completed by a full constant declaration or an
1128 -- Import pragma. Emit the error message if that is not the case.
1130 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1131 -- Install both the generic formal parameters and the formal parameters of
1132 -- generic subprogram Subp_Id into visibility.
1134 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1135 -- Determines if N is an actual parameter of out mode in a subprogram call
1137 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1138 -- Determines if N is an actual parameter in a subprogram call
1140 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1141 -- Determines if N is an actual parameter of a formal of tagged type in a
1142 -- subprogram call.
1144 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1145 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1146 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1147 -- rules of the language, it does not take into account the restriction
1148 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1149 -- and Obj violates the restriction. The caller is responsible for calling
1150 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1151 -- requirement for obeying the restriction in the call context.
1153 function Is_Ancestor_Package
1154 (E1 : Entity_Id;
1155 E2 : Entity_Id) return Boolean;
1156 -- Determine whether package E1 is an ancestor of E2
1158 function Is_Atomic_Object (N : Node_Id) return Boolean;
1159 -- Determines if the given node denotes an atomic object in the sense of
1160 -- the legality checks described in RM C.6(12).
1162 function Is_Attribute_Result (N : Node_Id) return Boolean;
1163 -- Determine whether node N denotes attribute 'Result
1165 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1166 -- Determine whether node N denotes a body or a package declaration
1168 function Is_Bounded_String (T : Entity_Id) return Boolean;
1169 -- True if T is a bounded string type. Used to make sure "=" composes
1170 -- properly for bounded string types.
1172 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1173 -- Exp is the expression for an array bound. Determines whether the
1174 -- bound is a compile-time known value, or a constant entity, or an
1175 -- enumeration literal, or an expression composed of constant-bound
1176 -- subexpressions which are evaluated by means of standard operators.
1178 function Is_Container_Element (Exp : Node_Id) return Boolean;
1179 -- This routine recognizes expressions that denote an element of one of
1180 -- the predefined containers, when the source only contains an indexing
1181 -- operation and an implicit dereference is inserted by the compiler.
1182 -- In the absence of this optimization, the indexing creates a temporary
1183 -- controlled cursor that sets the tampering bit of the container, and
1184 -- restricts the use of the convenient notation C (X) to contexts that
1185 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1186 -- explicit dereference. The transformation applies when it has the form
1187 -- F (X).Discr.all.
1189 function Is_Controlling_Limited_Procedure
1190 (Proc_Nam : Entity_Id) return Boolean;
1191 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1192 -- of a limited interface with a controlling first parameter.
1194 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1195 -- Returns True if N is a call to a CPP constructor
1197 function Is_Child_Or_Sibling
1198 (Pack_1 : Entity_Id;
1199 Pack_2 : Entity_Id) return Boolean;
1200 -- Determine the following relations between two arbitrary packages:
1201 -- 1) One package is the parent of a child package
1202 -- 2) Both packages are siblings and share a common parent
1204 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1205 -- First determine whether type T is an interface and then check whether
1206 -- it is of protected, synchronized or task kind.
1208 function Is_Declaration (N : Node_Id) return Boolean;
1209 -- Determine whether arbitrary node N denotes a declaration
1211 function Is_Delegate (T : Entity_Id) return Boolean;
1212 -- Returns true if type T represents a delegate. A Delegate is the CIL
1213 -- object used to represent access-to-subprogram types. This is only
1214 -- relevant to CIL, will always return false for other targets.
1216 function Is_Dependent_Component_Of_Mutable_Object
1217 (Object : Node_Id) return Boolean;
1218 -- Returns True if Object is the name of a subcomponent that depends on
1219 -- discriminants of a variable whose nominal subtype is unconstrained and
1220 -- not indefinite, and the variable is not aliased. Otherwise returns
1221 -- False. The nodes passed to this function are assumed to denote objects.
1223 function Is_Dereferenced (N : Node_Id) return Boolean;
1224 -- N is a subexpression node of an access type. This function returns true
1225 -- if N appears as the prefix of a node that does a dereference of the
1226 -- access value (selected/indexed component, explicit dereference or a
1227 -- slice), and false otherwise.
1229 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1230 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
1231 -- This is the RM definition, a type is a descendent of another type if it
1232 -- is the same type or is derived from a descendent of the other type.
1234 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean;
1235 -- The SPARK property "effectively volatile" applies to both types and
1236 -- objects. To qualify as such, an entity must be either volatile or be
1237 -- (of) an array type subject to aspect Volatile_Components.
1239 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean;
1240 -- Determine whether an arbitrary node denotes an effectively volatile
1241 -- object.
1243 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1244 -- Predicate to determine whether a scope entity comes from a rewritten
1245 -- expression function call, and should be inlined unconditionally. Also
1246 -- used to determine that such a call does not constitute a freeze point.
1248 function Is_EVF_Expression (N : Node_Id) return Boolean;
1249 -- Determine whether node N denotes a reference to a formal parameter of
1250 -- a specific tagged type whose related subprogram is subject to pragma
1251 -- Extensions_Visible with value "False". Several other constructs fall
1252 -- under this category:
1253 -- 1) A qualified expression whose operand is EVF
1254 -- 2) A type conversion whose operand is EVF
1255 -- 3) An if expression with at least one EVF dependent_expression
1256 -- 4) A case expression with at least one EVF dependent_expression
1258 function Is_False (U : Uint) return Boolean;
1259 pragma Inline (Is_False);
1260 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1261 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1262 -- if it is False (i.e. zero).
1264 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1265 -- Returns True iff the number U is a model number of the fixed-point type
1266 -- T, i.e. if it is an exact multiple of Small.
1268 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1269 -- Typ is a type entity. This function returns true if this type is fully
1270 -- initialized, meaning that an object of the type is fully initialized.
1271 -- Note that initialization resulting from use of pragma Normalized_Scalars
1272 -- does not count. Note that this is only used for the purpose of issuing
1273 -- warnings for objects that are potentially referenced uninitialized. This
1274 -- means that the result returned is not crucial, but should err on the
1275 -- side of thinking things are fully initialized if it does not know.
1277 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1278 -- E is a subprogram. Return True is E is an implicit operation inherited
1279 -- by a derived type declaration.
1281 function Is_Inherited_Operation_For_Type
1282 (E : Entity_Id;
1283 Typ : Entity_Id) return Boolean;
1284 -- E is a subprogram. Return True is E is an implicit operation inherited
1285 -- by the derived type declaration for type Typ.
1287 function Is_Iterator (Typ : Entity_Id) return Boolean;
1288 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1289 -- Ada.Iterator_Interfaces, or it is derived from one.
1291 type Is_LHS_Result is (Yes, No, Unknown);
1292 function Is_LHS (N : Node_Id) return Is_LHS_Result;
1293 -- Returns Yes if N is definitely used as Name in an assignment statement.
1294 -- Returns No if N is definitely NOT used as a Name in an assignment
1295 -- statement. Returns Unknown if we can't tell at this stage (happens in
1296 -- the case where we don't know the type of N yet, and we have something
1297 -- like N.A := 3, where this counts as N being used on the left side of
1298 -- an assignment only if N is not an access type. If it is an access type
1299 -- then it is N.all.A that is assigned, not N.
1301 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1302 -- A library-level declaration is one that is accessible from Standard,
1303 -- i.e. a library unit or an entity declared in a library package.
1305 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1306 -- Determine whether a given type is a limited class-wide type, in which
1307 -- case it needs a Master_Id, because extensions of its designated type
1308 -- may include task components. A class-wide type that comes from a
1309 -- limited view must be treated in the same way.
1311 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1312 -- Determines whether Expr is a reference to a variable or IN OUT mode
1313 -- parameter of the current enclosing subprogram.
1314 -- Why are OUT parameters not considered here ???
1316 function Is_Object_Reference (N : Node_Id) return Boolean;
1317 -- Determines if the tree referenced by N represents an object. Both
1318 -- variable and constant objects return True (compare Is_Variable).
1320 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1321 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1322 -- Note that the Is_Variable function is not quite the right test because
1323 -- this is a case in which conversions whose expression is a variable (in
1324 -- the Is_Variable sense) with an untagged type target are considered view
1325 -- conversions and hence variables.
1327 function Is_Partially_Initialized_Type
1328 (Typ : Entity_Id;
1329 Include_Implicit : Boolean := True) return Boolean;
1330 -- Typ is a type entity. This function returns true if this type is partly
1331 -- initialized, meaning that an object of the type is at least partly
1332 -- initialized (in particular in the record case, that at least one
1333 -- component has an initialization expression). Note that initialization
1334 -- resulting from the use of pragma Normalized_Scalars does not count.
1335 -- Include_Implicit controls whether implicit initialization of access
1336 -- values to null, and of discriminant values, is counted as making the
1337 -- type be partially initialized. For the default setting of True, these
1338 -- implicit cases do count, and discriminated types or types containing
1339 -- access values not explicitly initialized will return True. Otherwise
1340 -- if Include_Implicit is False, these cases do not count as making the
1341 -- type be partially initialized.
1343 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1344 -- Predicate to implement definition given in RM 6.1.1 (20/3)
1346 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1347 -- Determines if type T is a potentially persistent type. A potentially
1348 -- persistent type is defined (recursively) as a scalar type, an untagged
1349 -- record whose components are all of a potentially persistent type, or an
1350 -- array with all static constraints whose component type is potentially
1351 -- persistent. A private type is potentially persistent if the full type
1352 -- is potentially persistent.
1354 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1355 -- Return True if node N denotes a protected type name which represents
1356 -- the current instance of a protected object according to RM 9.4(21/2).
1358 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1359 -- Return True if a compilation unit is the specification or the
1360 -- body of a remote call interface package.
1362 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1363 -- Return True if E is a remote access-to-class-wide type
1365 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1366 -- Return True if E is a remote access to subprogram type
1368 function Is_Remote_Call (N : Node_Id) return Boolean;
1369 -- Return True if N denotes a potentially remote call
1371 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1372 -- Return True if Proc_Nam is a procedure renaming of an entry
1374 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1375 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1376 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1378 function Is_Selector_Name (N : Node_Id) return Boolean;
1379 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1380 -- As described in Sinfo, Selector_Names are special because they
1381 -- represent use of the N_Identifier node for a true identifier, when
1382 -- normally such nodes represent a direct name.
1384 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean;
1385 -- Determines if the tree referenced by N represents an initialization
1386 -- expression in SPARK 2005, suitable for initializing an object in an
1387 -- object declaration.
1389 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean;
1390 -- Determines if the tree referenced by N represents an object in SPARK
1391 -- 2005. This differs from Is_Object_Reference in that only variables,
1392 -- constants, formal parameters, and selected_components of those are
1393 -- valid objects in SPARK 2005.
1395 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
1396 -- Determine whether an arbitrary [private] type is specifically tagged
1398 function Is_Statement (N : Node_Id) return Boolean;
1399 pragma Inline (Is_Statement);
1400 -- Check if the node N is a statement node. Note that this includes
1401 -- the case of procedure call statements (unlike the direct use of
1402 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1403 -- Note that a label is *not* a statement, and will return False.
1405 function Is_Subprogram_Stub_Without_Prior_Declaration
1406 (N : Node_Id) return Boolean;
1407 -- Return True if N is a subprogram stub with no prior subprogram
1408 -- declaration.
1410 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1411 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1413 function Is_Transfer (N : Node_Id) return Boolean;
1414 -- Returns True if the node N is a statement which is known to cause an
1415 -- unconditional transfer of control at runtime, i.e. the following
1416 -- statement definitely will not be executed.
1418 function Is_True (U : Uint) return Boolean;
1419 pragma Inline (Is_True);
1420 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1421 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1422 -- if it is True (i.e. non-zero).
1424 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
1425 -- Determine whether an arbitrary entity denotes an instance of function
1426 -- Ada.Unchecked_Conversion.
1428 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1429 pragma Inline (Is_Universal_Numeric_Type);
1430 -- True if T is Universal_Integer or Universal_Real
1432 function Is_Value_Type (T : Entity_Id) return Boolean;
1433 -- Returns true if type T represents a value type. This is only relevant to
1434 -- CIL, will always return false for other targets. A value type is a CIL
1435 -- object that is accessed directly, as opposed to the other CIL objects
1436 -- that are accessed through managed pointers.
1438 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1439 -- Returns true if E has variable size components
1441 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
1442 -- Returns true if E has variable size components
1444 function Is_Variable
1445 (N : Node_Id;
1446 Use_Original_Node : Boolean := True) return Boolean;
1447 -- Determines if the tree referenced by N represents a variable, i.e. can
1448 -- appear on the left side of an assignment. There is one situation (formal
1449 -- parameters) in which untagged type conversions are also considered
1450 -- variables, but Is_Variable returns False for such cases, since it has
1451 -- no knowledge of the context. Note that this is the point at which
1452 -- Assignment_OK is checked, and True is returned for any tree thus marked.
1453 -- Use_Original_Node is used to perform the test on Original_Node (N). By
1454 -- default is True since this routine is commonly invoked as part of the
1455 -- semantic analysis and it must not be disturbed by the rewriten nodes.
1457 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1458 -- Check whether T is derived from a visibly controlled type. This is true
1459 -- if the root type is declared in Ada.Finalization. If T is derived
1460 -- instead from a private type whose full view is controlled, an explicit
1461 -- Initialize/Adjust/Finalize subprogram does not override the inherited
1462 -- one.
1464 function Is_Volatile_Object (N : Node_Id) return Boolean;
1465 -- Determines if the given node denotes an volatile object in the sense of
1466 -- the legality checks described in RM C.6(12). Note that the test here is
1467 -- for something actually declared as volatile, not for an object that gets
1468 -- treated as volatile (see Einfo.Treat_As_Volatile).
1470 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1471 -- Applies to Itypes. True if the Itype is attached to a declaration for
1472 -- the type through its Parent field, which may or not be present in the
1473 -- tree.
1475 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1476 -- This procedure is called to clear all constant indications from all
1477 -- entities in the current scope and in any parent scopes if the current
1478 -- scope is a block or a package (and that recursion continues to the top
1479 -- scope that is not a block or a package). This is used when the
1480 -- sequential flow-of-control assumption is violated (occurrence of a
1481 -- label, head of a loop, or start of an exception handler). The effect of
1482 -- the call is to clear the Current_Value field (but we do not need to
1483 -- clear the Is_True_Constant flag, since that only gets reset if there
1484 -- really is an assignment somewhere in the entity scope). This procedure
1485 -- also calls Kill_All_Checks, since this is a special case of needing to
1486 -- forget saved values. This procedure also clears the Is_Known_Null and
1487 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1488 -- parameters since these are also not known to be trustable any more.
1490 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
1491 -- fields and leave other fields unchanged. This is used when we encounter
1492 -- an unconditional flow of control change (return, goto, raise). In such
1493 -- cases we don't need to clear the current values, since it may be that
1494 -- the flow of control change occurs in a conditional context, and if it
1495 -- is not taken, then it is just fine to keep the current values. But the
1496 -- Last_Assignment field is different, if we have a sequence assign-to-v,
1497 -- conditional-return, assign-to-v, we do not want to complain that the
1498 -- second assignment clobbers the first.
1500 procedure Kill_Current_Values
1501 (Ent : Entity_Id;
1502 Last_Assignment_Only : Boolean := False);
1503 -- This performs the same processing as described above for the form with
1504 -- no argument, but for the specific entity given. The call has no effect
1505 -- if the entity Ent is not for an object. Last_Assignment_Only has the
1506 -- same meaning as for the call with no Ent.
1508 procedure Kill_Size_Check_Code (E : Entity_Id);
1509 -- Called when an address clause or pragma Import is applied to an entity.
1510 -- If the entity is a variable or a constant, and size check code is
1511 -- present, this size check code is killed, since the object will not be
1512 -- allocated by the program.
1514 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1515 -- The node N is an entity reference. This function determines whether the
1516 -- reference is for sure an assignment of the entity, returning True if
1517 -- so. This differs from May_Be_Lvalue in that it defaults in the other
1518 -- direction. Cases which may possibly be assignments but are not known to
1519 -- be may return True from May_Be_Lvalue, but False from this function.
1521 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1522 -- HSS is a handled statement sequence. This function returns the last
1523 -- statement in Statements (HSS) that has Comes_From_Source set. If no
1524 -- such statement exists, Empty is returned.
1526 function Matching_Static_Array_Bounds
1527 (L_Typ : Node_Id;
1528 R_Typ : Node_Id) return Boolean;
1529 -- L_Typ and R_Typ are two array types. Returns True when they have the
1530 -- same number of dimensions, and the same static bounds for each index
1531 -- position.
1533 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1534 -- Given a node which designates the context of analysis and an origin in
1535 -- the tree, traverse from Root_Nod and mark all allocators as either
1536 -- dynamic or static depending on Context_Nod. Any incorrect marking is
1537 -- cleaned up during resolution.
1539 function May_Be_Lvalue (N : Node_Id) return Boolean;
1540 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1541 -- An lvalue is defined as any expression which appears in a context where
1542 -- a name is required by the syntax, and the identity, rather than merely
1543 -- the value of the node is needed (for example, the prefix of an Access
1544 -- attribute is in this category). Note that, as implied by the name, this
1545 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1546 -- it returns True. It tries hard to get the answer right, but it is hard
1547 -- to guarantee this in all cases. Note that it is more possible to give
1548 -- correct answer if the tree is fully analyzed.
1550 function Needs_One_Actual (E : Entity_Id) return Boolean;
1551 -- Returns True if a function has defaults for all but its first
1552 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1553 -- results from an indexing of a function call written in prefix form.
1555 function New_Copy_List_Tree (List : List_Id) return List_Id;
1556 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1557 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1558 -- nodes (entities) either directly or indirectly using this function.
1560 function New_Copy_Tree
1561 (Source : Node_Id;
1562 Map : Elist_Id := No_Elist;
1563 New_Sloc : Source_Ptr := No_Location;
1564 New_Scope : Entity_Id := Empty) return Node_Id;
1565 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1566 -- syntactic subtree, including recursively any descendents whose parent
1567 -- field references a copied node (descendents not linked to a copied node
1568 -- by the parent field are not copied, instead the copied tree references
1569 -- the same descendent as the original in this case, which is appropriate
1570 -- for non-syntactic fields such as Etype). The parent pointers in the
1571 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1572 -- The one exception to the rule of not copying semantic fields is that
1573 -- any implicit types attached to the subtree are duplicated, so that
1574 -- the copy contains a distinct set of implicit type entities. Thus this
1575 -- function is used when it is necessary to duplicate an analyzed tree,
1576 -- declared in the same or some other compilation unit. This function is
1577 -- declared here rather than in atree because it uses semantic information
1578 -- in particular concerning the structure of itypes and the generation of
1579 -- public symbols.
1581 -- The Map argument, if set to a non-empty Elist, specifies a set of
1582 -- mappings to be applied to entities in the tree. The map has the form:
1584 -- old entity 1
1585 -- new entity to replace references to entity 1
1586 -- old entity 2
1587 -- new entity to replace references to entity 2
1588 -- ...
1590 -- The call destroys the contents of Map in this case
1592 -- The parameter New_Sloc, if set to a value other than No_Location, is
1593 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1594 -- set to its default value No_Location, then the Sloc values of the
1595 -- nodes in the copy are simply copied from the corresponding original.
1597 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1598 -- the default No_Location value, but is reset if New_Sloc is given, since
1599 -- in this case the result clearly is neither a source node or an exact
1600 -- copy of a source node.
1602 -- The parameter New_Scope, if set to a value other than Empty, is the
1603 -- value to use as the Scope for any Itypes that are copied. The most
1604 -- typical value for this parameter, if given, is Current_Scope.
1606 function New_External_Entity
1607 (Kind : Entity_Kind;
1608 Scope_Id : Entity_Id;
1609 Sloc_Value : Source_Ptr;
1610 Related_Id : Entity_Id;
1611 Suffix : Character;
1612 Suffix_Index : Nat := 0;
1613 Prefix : Character := ' ') return Entity_Id;
1614 -- This function creates an N_Defining_Identifier node for an internal
1615 -- created entity, such as an implicit type or subtype, or a record
1616 -- initialization procedure. The entity name is constructed with a call
1617 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1618 -- that the generated name may be referenced as a public entry, and the
1619 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1620 -- entity is for a type or subtype, the size/align fields are initialized
1621 -- to unknown (Uint_0).
1623 function New_Internal_Entity
1624 (Kind : Entity_Kind;
1625 Scope_Id : Entity_Id;
1626 Sloc_Value : Source_Ptr;
1627 Id_Char : Character) return Entity_Id;
1628 -- This function is similar to New_External_Entity, except that the
1629 -- name is constructed by New_Internal_Name (Id_Char). This is used
1630 -- when the resulting entity does not have to be referenced as a
1631 -- public entity (and in this case Is_Public is not set).
1633 procedure Next_Actual (Actual_Id : in out Node_Id);
1634 pragma Inline (Next_Actual);
1635 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1636 -- inline this procedural form, but not the functional form that follows.
1638 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1639 -- Find next actual parameter in declaration order. As described for
1640 -- First_Actual, this is the next actual in the declaration order, not
1641 -- the call order, so this does not correspond to simply taking the
1642 -- next entry of the Parameter_Associations list. The argument is an
1643 -- actual previously returned by a call to First_Actual or Next_Actual.
1644 -- Note that the result produced is always an expression, not a parameter
1645 -- association node, even if named notation was used.
1647 procedure Normalize_Actuals
1648 (N : Node_Id;
1649 S : Entity_Id;
1650 Report : Boolean;
1651 Success : out Boolean);
1652 -- Reorders lists of actuals according to names of formals, value returned
1653 -- in Success indicates success of reordering. For more details, see body.
1654 -- Errors are reported only if Report is set to True.
1656 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1657 -- This routine is called if the sub-expression N maybe the target of
1658 -- an assignment (e.g. it is the left side of an assignment, used as
1659 -- an out parameters, or used as prefixes of access attributes). It
1660 -- sets May_Be_Modified in the associated entity if there is one,
1661 -- taking into account the rule that in the case of renamed objects,
1662 -- it is the flag in the renamed object that must be set.
1664 -- The parameter Sure is set True if the modification is sure to occur
1665 -- (e.g. target of assignment, or out parameter), and to False if the
1666 -- modification is only potential (e.g. address of entity taken).
1668 function Object_Access_Level (Obj : Node_Id) return Uint;
1669 -- Return the accessibility level of the view of the object Obj. For
1670 -- convenience, qualified expressions applied to object names are also
1671 -- allowed as actuals for this function.
1673 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1674 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1675 -- or overrides an inherited dispatching primitive S2, the original
1676 -- corresponding operation of S is the original corresponding operation of
1677 -- S2. Otherwise, it is S itself.
1679 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
1680 -- Retrieve the name of aspect or pragma N taking into account a possible
1681 -- rewrite and whether the pragma is generated from an aspect as the names
1682 -- may be different. The routine also deals with 'Class in which case it
1683 -- returns the following values:
1685 -- Invariant -> Name_uInvariant
1686 -- Post'Class -> Name_uPost
1687 -- Pre'Class -> Name_uPre
1688 -- Type_Invariant -> Name_uType_Invariant
1689 -- Type_Invariant'Class -> Name_uType_Invariant
1691 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
1692 -- Given a policy, return the policy identifier associated with it. If no
1693 -- such policy is in effect, the value returned is No_Name.
1695 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
1696 -- Subp is the entity for a subprogram call. This function returns True if
1697 -- predicate tests are required for the arguments in this call (this is the
1698 -- normal case). It returns False for special cases where these predicate
1699 -- tests should be skipped (see body for details).
1701 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1702 -- Returns True if the names of both entities correspond with matching
1703 -- primitives. This routine includes support for the case in which one
1704 -- or both entities correspond with entities built by Derive_Subprogram
1705 -- with a special name to avoid being overridden (i.e. return true in case
1706 -- of entities with names "nameP" and "name" or vice versa).
1708 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1709 -- Returns some private component (if any) of the given Type_Id.
1710 -- Used to enforce the rules on visibility of operations on composite
1711 -- types, that depend on the full view of the component type. For a
1712 -- record type there may be several such components, we just return
1713 -- the first one.
1715 procedure Process_End_Label
1716 (N : Node_Id;
1717 Typ : Character;
1718 Ent : Entity_Id);
1719 -- N is a node whose End_Label is to be processed, generating all
1720 -- appropriate cross-reference entries, and performing style checks
1721 -- for any identifier references in the end label. Typ is either
1722 -- 'e' or 't indicating the type of the cross-reference entity
1723 -- (e for spec, t for body, see Lib.Xref spec for details). The
1724 -- parameter Ent gives the entity to which the End_Label refers,
1725 -- and to which cross-references are to be generated.
1727 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
1728 -- Determine whether entity Id is referenced within expression Expr
1730 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1731 -- Returns True if the expression Expr contains any references to a
1732 -- generic type. This can only happen within a generic template.
1734 procedure Remove_Homonym (E : Entity_Id);
1735 -- Removes E from the homonym chain
1737 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1738 -- This is used to construct the second argument in a call to Rep_To_Pos
1739 -- which is Standard_True if range checks are enabled (E is an entity to
1740 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1741 -- if range checks are suppressed. Loc is the location for the node that
1742 -- is returned (which is a New_Occurrence of the appropriate entity).
1744 -- Note: one might think that it would be fine to always use True and
1745 -- to ignore the suppress in this case, but it is generally better to
1746 -- believe a request to suppress exceptions if possible, and further
1747 -- more there is at least one case in the generated code (the code for
1748 -- array assignment in a loop) that depends on this suppression.
1750 procedure Require_Entity (N : Node_Id);
1751 -- N is a node which should have an entity value if it is an entity name.
1752 -- If not, then check if there were previous errors. If so, just fill
1753 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1754 -- This is used as a defense mechanism against ill-formed trees caused by
1755 -- previous errors (particularly in -gnatq mode).
1757 function Requires_State_Refinement
1758 (Spec_Id : Entity_Id;
1759 Body_Id : Entity_Id) return Boolean;
1760 -- Determine whether a package denoted by its spec and body entities
1761 -- requires refinement of abstract states.
1763 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1764 -- Id is a type entity. The result is True when temporaries of this type
1765 -- need to be wrapped in a transient scope to be reclaimed properly when a
1766 -- secondary stack is in use. Examples of types requiring such wrapping are
1767 -- controlled types and variable-sized types including unconstrained
1768 -- arrays.
1770 procedure Reset_Analyzed_Flags (N : Node_Id);
1771 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1773 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type);
1774 -- Set the current SPARK_Mode to whatever Mode denotes. This routime must
1775 -- be used in tandem with Save_SPARK_Mode_And_Set.
1777 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
1778 -- Return true if Subp is a function that returns an unconstrained type
1780 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
1781 -- Similar to attribute Root_Type, but this version always follows the
1782 -- Full_View of a private type (if available) while searching for the
1783 -- ultimate derivation ancestor.
1785 function Safe_To_Capture_Value
1786 (N : Node_Id;
1787 Ent : Entity_Id;
1788 Cond : Boolean := False) return Boolean;
1789 -- The caller is interested in capturing a value (either the current value,
1790 -- or an indication that the value is non-null) for the given entity Ent.
1791 -- This value can only be captured if sequential execution semantics can be
1792 -- properly guaranteed so that a subsequent reference will indeed be sure
1793 -- that this current value indication is correct. The node N is the
1794 -- construct which resulted in the possible capture of the value (this
1795 -- is used to check if we are in a conditional).
1797 -- Cond is used to skip the test for being inside a conditional. It is used
1798 -- in the case of capturing values from if/while tests, which already do a
1799 -- proper job of handling scoping issues without this help.
1801 -- The only entities whose values can be captured are OUT and IN OUT formal
1802 -- parameters, and variables unless Cond is True, in which case we also
1803 -- allow IN formals, loop parameters and constants, where we cannot ever
1804 -- capture actual value information, but we can capture conditional tests.
1806 function Same_Name (N1, N2 : Node_Id) return Boolean;
1807 -- Determine if two (possibly expanded) names are the same name. This is
1808 -- a purely syntactic test, and N1 and N2 need not be analyzed.
1810 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1811 -- Determine if Node1 and Node2 are known to designate the same object.
1812 -- This is a semantic test and both nodes must be fully analyzed. A result
1813 -- of True is decisively correct. A result of False does not necessarily
1814 -- mean that different objects are designated, just that this could not
1815 -- be reliably determined at compile time.
1817 function Same_Type (T1, T2 : Entity_Id) return Boolean;
1818 -- Determines if T1 and T2 represent exactly the same type. Two types
1819 -- are the same if they are identical, or if one is an unconstrained
1820 -- subtype of the other, or they are both common subtypes of the same
1821 -- type with identical constraints. The result returned is conservative.
1822 -- It is True if the types are known to be the same, but a result of
1823 -- False is indecisive (e.g. the compiler may not be able to tell that
1824 -- two constraints are identical).
1826 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1827 -- Determines if Node1 and Node2 are known to be the same value, which is
1828 -- true if they are both compile time known values and have the same value,
1829 -- or if they are the same object (in the sense of function Same_Object).
1830 -- A result of False does not necessarily mean they have different values,
1831 -- just that it is not possible to determine they have the same value.
1833 procedure Save_SPARK_Mode_And_Set
1834 (Context : Entity_Id;
1835 Mode : out SPARK_Mode_Type);
1836 -- Save the current SPARK_Mode in effect in Mode. Establish the SPARK_Mode
1837 -- (if any) of a package or a subprogram denoted by Context. This routine
1838 -- must be used in tandem with Restore_SPARK_Mode.
1840 function Scalar_Part_Present (T : Entity_Id) return Boolean;
1841 -- Tests if type T can be determined at compile time to have at least one
1842 -- scalar part in the sense of the Valid_Scalars attribute. Returns True if
1843 -- this is the case, and False if no scalar parts are present (meaning that
1844 -- the result of Valid_Scalars applied to T is always vacuously True).
1846 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1847 -- Determines if the entity Scope1 is the same as Scope2, or if it is
1848 -- inside it, where both entities represent scopes. Note that scopes
1849 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
1850 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1852 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1853 -- Like Scope_Within_Or_Same, except that this function returns
1854 -- False in the case where Scope1 and Scope2 are the same scope.
1856 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1857 -- Same as Basic_Set_Convention, but with an extra check for access types.
1858 -- In particular, if E is an access-to-subprogram type, and Val is a
1859 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
1860 -- Also, if the Etype of E is set and is an anonymous access type with
1861 -- no convention set, this anonymous type inherits the convention of E.
1863 procedure Set_Current_Entity (E : Entity_Id);
1864 pragma Inline (Set_Current_Entity);
1865 -- Establish the entity E as the currently visible definition of its
1866 -- associated name (i.e. the Node_Id associated with its name).
1868 procedure Set_Debug_Info_Needed (T : Entity_Id);
1869 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
1870 -- that are needed by T (for an object, the type of the object is needed,
1871 -- and for a type, various subsidiary types are needed -- see body for
1872 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
1873 -- This routine should always be used instead of Set_Needs_Debug_Info to
1874 -- ensure that subsidiary entities are properly handled.
1876 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
1877 -- This procedure has the same calling sequence as Set_Entity, but it
1878 -- performs additional checks as follows:
1880 -- If Style_Check is set, then it calls a style checking routine which
1881 -- can check identifier spelling style. This procedure also takes care
1882 -- of checking the restriction No_Implementation_Identifiers.
1884 -- If restriction No_Abort_Statements is set, then it checks that the
1885 -- entity is not Ada.Task_Identification.Abort_Task.
1887 -- If restriction No_Dynamic_Attachment is set, then it checks that the
1888 -- entity is not one of the restricted names for this restriction.
1890 -- If restriction No_Long_Long_Integers is set, then it checks that the
1891 -- entity is not Standard.Long_Long_Integer.
1893 -- If restriction No_Implementation_Identifiers is set, then it checks
1894 -- that the entity is not implementation defined.
1896 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1897 pragma Inline (Set_Name_Entity_Id);
1898 -- Sets the Entity_Id value associated with the given name, which is the
1899 -- Id of the innermost visible entity with the given name. See the body
1900 -- of package Sem_Ch8 for further details on the handling of visibility.
1902 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1903 -- The arguments may be parameter associations, whose descendants
1904 -- are the optional formal name and the actual parameter. Positional
1905 -- parameters are already members of a list, and do not need to be
1906 -- chained separately. See also First_Actual and Next_Actual.
1908 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1909 pragma Inline (Set_Optimize_Alignment_Flags);
1910 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
1912 procedure Set_Public_Status (Id : Entity_Id);
1913 -- If an entity (visible or otherwise) is defined in a library
1914 -- package, or a package that is itself public, then this subprogram
1915 -- labels the entity public as well.
1917 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1918 -- N is the node for either a left hand side (Out_Param set to False),
1919 -- or an Out or In_Out parameter (Out_Param set to True). If there is
1920 -- an assignable entity being referenced, then the appropriate flag
1921 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1922 -- if Out_Param is True) is set True, and the other flag set False.
1924 procedure Set_Scope_Is_Transient (V : Boolean := True);
1925 -- Set the flag Is_Transient of the current scope
1927 procedure Set_Size_Info (T1, T2 : Entity_Id);
1928 pragma Inline (Set_Size_Info);
1929 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
1930 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1931 -- in the fixed-point and discrete cases, and also copies the alignment
1932 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
1933 -- separately set if this is required to be copied also.
1935 function Scope_Is_Transient return Boolean;
1936 -- True if the current scope is transient
1938 function Static_Boolean (N : Node_Id) return Uint;
1939 -- This function analyzes the given expression node and then resolves it
1940 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1941 -- returned corresponding to the value, otherwise an error message is
1942 -- output and No_Uint is returned.
1944 function Static_Integer (N : Node_Id) return Uint;
1945 -- This function analyzes the given expression node and then resolves it
1946 -- as any integer type. If the result is static, then the value of the
1947 -- universal expression is returned, otherwise an error message is output
1948 -- and a value of No_Uint is returned.
1950 function Statically_Different (E1, E2 : Node_Id) return Boolean;
1951 -- Return True if it can be statically determined that the Expressions
1952 -- E1 and E2 refer to different objects
1954 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
1955 -- Determine whether node N is a loop statement subject to at least one
1956 -- 'Loop_Entry attribute.
1958 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1959 -- Return the accessibility level of the view denoted by Subp
1961 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
1962 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
1963 -- Typ is properly sized and aligned).
1965 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1966 -- Print debugging information on entry to each unit being analyzed
1968 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1969 -- Move a list of entities from one scope to another, and recompute
1970 -- Is_Public based upon the new scope.
1972 function Type_Access_Level (Typ : Entity_Id) return Uint;
1973 -- Return the accessibility level of Typ
1975 function Type_Without_Stream_Operation
1976 (T : Entity_Id;
1977 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
1978 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
1979 -- is active then we cannot generate stream subprograms for composite types
1980 -- with elementary subcomponents that lack user-defined stream subprograms.
1981 -- This predicate determines whether a type has such an elementary
1982 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
1983 -- prevents the construction of a composite stream operation. If Op is
1984 -- specified we check only for the given stream operation.
1986 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
1987 -- Return the entity which represents declaration N, so that different
1988 -- views of the same entity have the same unique defining entity:
1989 -- * package spec and body;
1990 -- * subprogram declaration, subprogram stub and subprogram body;
1991 -- * private view and full view of a type;
1992 -- * private view and full view of a deferred constant.
1993 -- In other cases, return the defining entity for N.
1995 function Unique_Entity (E : Entity_Id) return Entity_Id;
1996 -- Return the unique entity for entity E, which would be returned by
1997 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
1999 function Unique_Name (E : Entity_Id) return String;
2000 -- Return a unique name for entity E, which could be used to identify E
2001 -- across compilation units.
2003 function Unit_Is_Visible (U : Entity_Id) return Boolean;
2004 -- Determine whether a compilation unit is visible in the current context,
2005 -- because there is a with_clause that makes the unit available. Used to
2006 -- provide better messages on common visiblity errors on operators.
2008 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
2009 -- Yields Universal_Integer or Universal_Real if this is a candidate
2011 function Unqualify (Expr : Node_Id) return Node_Id;
2012 pragma Inline (Unqualify);
2013 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
2014 -- returns X. If Expr is not a qualified expression, returns Expr.
2016 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
2017 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
2018 -- of a type extension or private extension declaration. If the full-view
2019 -- of private parents and progenitors is available then it is used to
2020 -- generate the list of visible ancestors; otherwise their partial
2021 -- view is added to the resulting list.
2023 function Within_Init_Proc return Boolean;
2024 -- Determines if Current_Scope is within an init proc
2026 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
2027 -- Returns True if entity Id is declared within scope S
2029 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
2030 -- Output error message for incorrectly typed expression. Expr is the node
2031 -- for the incorrectly typed construct (Etype (Expr) is the type found),
2032 -- and Expected_Type is the entity for the expected type. Note that Expr
2033 -- does not have to be a subexpression, anything with an Etype field may
2034 -- be used.
2036 end Sem_Util;