2015-03-02 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch8.adb
blob3e7d5ab70a70fc7f243e49d1a2203cab2a93affd
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Tss; use Exp_Tss;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Impunit; use Impunit;
37 with Lib; use Lib;
38 with Lib.Load; use Lib.Load;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch4; use Sem_Ch4;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch12; use Sem_Ch12;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Disp; use Sem_Disp;
59 with Sem_Dist; use Sem_Dist;
60 with Sem_Eval; use Sem_Eval;
61 with Sem_Res; use Sem_Res;
62 with Sem_Util; use Sem_Util;
63 with Sem_Type; use Sem_Type;
64 with Stand; use Stand;
65 with Sinfo; use Sinfo;
66 with Sinfo.CN; use Sinfo.CN;
67 with Snames; use Snames;
68 with Style; use Style;
69 with Table;
70 with Targparm; use Targparm;
71 with Tbuild; use Tbuild;
72 with Uintp; use Uintp;
74 package body Sem_Ch8 is
76 ------------------------------------
77 -- Visibility and Name Resolution --
78 ------------------------------------
80 -- This package handles name resolution and the collection of possible
81 -- interpretations for overloaded names, prior to overload resolution.
83 -- Name resolution is the process that establishes a mapping between source
84 -- identifiers and the entities they denote at each point in the program.
85 -- Each entity is represented by a defining occurrence. Each identifier
86 -- that denotes an entity points to the corresponding defining occurrence.
87 -- This is the entity of the applied occurrence. Each occurrence holds
88 -- an index into the names table, where source identifiers are stored.
90 -- Each entry in the names table for an identifier or designator uses the
91 -- Info pointer to hold a link to the currently visible entity that has
92 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
93 -- in package Sem_Util). The visibility is initialized at the beginning of
94 -- semantic processing to make entities in package Standard immediately
95 -- visible. The visibility table is used in a more subtle way when
96 -- compiling subunits (see below).
98 -- Entities that have the same name (i.e. homonyms) are chained. In the
99 -- case of overloaded entities, this chain holds all the possible meanings
100 -- of a given identifier. The process of overload resolution uses type
101 -- information to select from this chain the unique meaning of a given
102 -- identifier.
104 -- Entities are also chained in their scope, through the Next_Entity link.
105 -- As a consequence, the name space is organized as a sparse matrix, where
106 -- each row corresponds to a scope, and each column to a source identifier.
107 -- Open scopes, that is to say scopes currently being compiled, have their
108 -- corresponding rows of entities in order, innermost scope first.
110 -- The scopes of packages that are mentioned in context clauses appear in
111 -- no particular order, interspersed among open scopes. This is because
112 -- in the course of analyzing the context of a compilation, a package
113 -- declaration is first an open scope, and subsequently an element of the
114 -- context. If subunits or child units are present, a parent unit may
115 -- appear under various guises at various times in the compilation.
117 -- When the compilation of the innermost scope is complete, the entities
118 -- defined therein are no longer visible. If the scope is not a package
119 -- declaration, these entities are never visible subsequently, and can be
120 -- removed from visibility chains. If the scope is a package declaration,
121 -- its visible declarations may still be accessible. Therefore the entities
122 -- defined in such a scope are left on the visibility chains, and only
123 -- their visibility (immediately visibility or potential use-visibility)
124 -- is affected.
126 -- The ordering of homonyms on their chain does not necessarily follow
127 -- the order of their corresponding scopes on the scope stack. For
128 -- example, if package P and the enclosing scope both contain entities
129 -- named E, then when compiling the package body the chain for E will
130 -- hold the global entity first, and the local one (corresponding to
131 -- the current inner scope) next. As a result, name resolution routines
132 -- do not assume any relative ordering of the homonym chains, either
133 -- for scope nesting or to order of appearance of context clauses.
135 -- When compiling a child unit, entities in the parent scope are always
136 -- immediately visible. When compiling the body of a child unit, private
137 -- entities in the parent must also be made immediately visible. There
138 -- are separate routines to make the visible and private declarations
139 -- visible at various times (see package Sem_Ch7).
141 -- +--------+ +-----+
142 -- | In use |-------->| EU1 |-------------------------->
143 -- +--------+ +-----+
144 -- | |
145 -- +--------+ +-----+ +-----+
146 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
147 -- +--------+ +-----+ +-----+
148 -- | |
149 -- +---------+ | +-----+
150 -- | with'ed |------------------------------>| EW2 |--->
151 -- +---------+ | +-----+
152 -- | |
153 -- +--------+ +-----+ +-----+
154 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
155 -- +--------+ +-----+ +-----+
156 -- | |
157 -- +--------+ +-----+ +-----+
158 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
159 -- +--------+ +-----+ +-----+
160 -- ^ | |
161 -- | | |
162 -- | +---------+ | |
163 -- | | with'ed |----------------------------------------->
164 -- | +---------+ | |
165 -- | | |
166 -- Scope stack | |
167 -- (innermost first) | |
168 -- +----------------------------+
169 -- Names table => | Id1 | | | | Id2 |
170 -- +----------------------------+
172 -- Name resolution must deal with several syntactic forms: simple names,
173 -- qualified names, indexed names, and various forms of calls.
175 -- Each identifier points to an entry in the names table. The resolution
176 -- of a simple name consists in traversing the homonym chain, starting
177 -- from the names table. If an entry is immediately visible, it is the one
178 -- designated by the identifier. If only potentially use-visible entities
179 -- are on the chain, we must verify that they do not hide each other. If
180 -- the entity we find is overloadable, we collect all other overloadable
181 -- entities on the chain as long as they are not hidden.
183 -- To resolve expanded names, we must find the entity at the intersection
184 -- of the entity chain for the scope (the prefix) and the homonym chain
185 -- for the selector. In general, homonym chains will be much shorter than
186 -- entity chains, so it is preferable to start from the names table as
187 -- well. If the entity found is overloadable, we must collect all other
188 -- interpretations that are defined in the scope denoted by the prefix.
190 -- For records, protected types, and tasks, their local entities are
191 -- removed from visibility chains on exit from the corresponding scope.
192 -- From the outside, these entities are always accessed by selected
193 -- notation, and the entity chain for the record type, protected type,
194 -- etc. is traversed sequentially in order to find the designated entity.
196 -- The discriminants of a type and the operations of a protected type or
197 -- task are unchained on exit from the first view of the type, (such as
198 -- a private or incomplete type declaration, or a protected type speci-
199 -- fication) and re-chained when compiling the second view.
201 -- In the case of operators, we do not make operators on derived types
202 -- explicit. As a result, the notation P."+" may denote either a user-
203 -- defined function with name "+", or else an implicit declaration of the
204 -- operator "+" in package P. The resolution of expanded names always
205 -- tries to resolve an operator name as such an implicitly defined entity,
206 -- in addition to looking for explicit declarations.
208 -- All forms of names that denote entities (simple names, expanded names,
209 -- character literals in some cases) have a Entity attribute, which
210 -- identifies the entity denoted by the name.
212 ---------------------
213 -- The Scope Stack --
214 ---------------------
216 -- The Scope stack keeps track of the scopes currently been compiled.
217 -- Every entity that contains declarations (including records) is placed
218 -- on the scope stack while it is being processed, and removed at the end.
219 -- Whenever a non-package scope is exited, the entities defined therein
220 -- are removed from the visibility table, so that entities in outer scopes
221 -- become visible (see previous description). On entry to Sem, the scope
222 -- stack only contains the package Standard. As usual, subunits complicate
223 -- this picture ever so slightly.
225 -- The Rtsfind mechanism can force a call to Semantics while another
226 -- compilation is in progress. The unit retrieved by Rtsfind must be
227 -- compiled in its own context, and has no access to the visibility of
228 -- the unit currently being compiled. The procedures Save_Scope_Stack and
229 -- Restore_Scope_Stack make entities in current open scopes invisible
230 -- before compiling the retrieved unit, and restore the compilation
231 -- environment afterwards.
233 ------------------------
234 -- Compiling subunits --
235 ------------------------
237 -- Subunits must be compiled in the environment of the corresponding stub,
238 -- that is to say with the same visibility into the parent (and its
239 -- context) that is available at the point of the stub declaration, but
240 -- with the additional visibility provided by the context clause of the
241 -- subunit itself. As a result, compilation of a subunit forces compilation
242 -- of the parent (see description in lib-). At the point of the stub
243 -- declaration, Analyze is called recursively to compile the proper body of
244 -- the subunit, but without reinitializing the names table, nor the scope
245 -- stack (i.e. standard is not pushed on the stack). In this fashion the
246 -- context of the subunit is added to the context of the parent, and the
247 -- subunit is compiled in the correct environment. Note that in the course
248 -- of processing the context of a subunit, Standard will appear twice on
249 -- the scope stack: once for the parent of the subunit, and once for the
250 -- unit in the context clause being compiled. However, the two sets of
251 -- entities are not linked by homonym chains, so that the compilation of
252 -- any context unit happens in a fresh visibility environment.
254 -------------------------------
255 -- Processing of USE Clauses --
256 -------------------------------
258 -- Every defining occurrence has a flag indicating if it is potentially use
259 -- visible. Resolution of simple names examines this flag. The processing
260 -- of use clauses consists in setting this flag on all visible entities
261 -- defined in the corresponding package. On exit from the scope of the use
262 -- clause, the corresponding flag must be reset. However, a package may
263 -- appear in several nested use clauses (pathological but legal, alas)
264 -- which forces us to use a slightly more involved scheme:
266 -- a) The defining occurrence for a package holds a flag -In_Use- to
267 -- indicate that it is currently in the scope of a use clause. If a
268 -- redundant use clause is encountered, then the corresponding occurrence
269 -- of the package name is flagged -Redundant_Use-.
271 -- b) On exit from a scope, the use clauses in its declarative part are
272 -- scanned. The visibility flag is reset in all entities declared in
273 -- package named in a use clause, as long as the package is not flagged
274 -- as being in a redundant use clause (in which case the outer use
275 -- clause is still in effect, and the direct visibility of its entities
276 -- must be retained).
278 -- Note that entities are not removed from their homonym chains on exit
279 -- from the package specification. A subsequent use clause does not need
280 -- to rechain the visible entities, but only to establish their direct
281 -- visibility.
283 -----------------------------------
284 -- Handling private declarations --
285 -----------------------------------
287 -- The principle that each entity has a single defining occurrence clashes
288 -- with the presence of two separate definitions for private types: the
289 -- first is the private type declaration, and second is the full type
290 -- declaration. It is important that all references to the type point to
291 -- the same defining occurrence, namely the first one. To enforce the two
292 -- separate views of the entity, the corresponding information is swapped
293 -- between the two declarations. Outside of the package, the defining
294 -- occurrence only contains the private declaration information, while in
295 -- the private part and the body of the package the defining occurrence
296 -- contains the full declaration. To simplify the swap, the defining
297 -- occurrence that currently holds the private declaration points to the
298 -- full declaration. During semantic processing the defining occurrence
299 -- also points to a list of private dependents, that is to say access types
300 -- or composite types whose designated types or component types are
301 -- subtypes or derived types of the private type in question. After the
302 -- full declaration has been seen, the private dependents are updated to
303 -- indicate that they have full definitions.
305 ------------------------------------
306 -- Handling of Undefined Messages --
307 ------------------------------------
309 -- In normal mode, only the first use of an undefined identifier generates
310 -- a message. The table Urefs is used to record error messages that have
311 -- been issued so that second and subsequent ones do not generate further
312 -- messages. However, the second reference causes text to be added to the
313 -- original undefined message noting "(more references follow)". The
314 -- full error list option (-gnatf) forces messages to be generated for
315 -- every reference and disconnects the use of this table.
317 type Uref_Entry is record
318 Node : Node_Id;
319 -- Node for identifier for which original message was posted. The
320 -- Chars field of this identifier is used to detect later references
321 -- to the same identifier.
323 Err : Error_Msg_Id;
324 -- Records error message Id of original undefined message. Reset to
325 -- No_Error_Msg after the second occurrence, where it is used to add
326 -- text to the original message as described above.
328 Nvis : Boolean;
329 -- Set if the message is not visible rather than undefined
331 Loc : Source_Ptr;
332 -- Records location of error message. Used to make sure that we do
333 -- not consider a, b : undefined as two separate instances, which
334 -- would otherwise happen, since the parser converts this sequence
335 -- to a : undefined; b : undefined.
337 end record;
339 package Urefs is new Table.Table (
340 Table_Component_Type => Uref_Entry,
341 Table_Index_Type => Nat,
342 Table_Low_Bound => 1,
343 Table_Initial => 10,
344 Table_Increment => 100,
345 Table_Name => "Urefs");
347 Candidate_Renaming : Entity_Id;
348 -- Holds a candidate interpretation that appears in a subprogram renaming
349 -- declaration and does not match the given specification, but matches at
350 -- least on the first formal. Allows better error message when given
351 -- specification omits defaulted parameters, a common error.
353 -----------------------
354 -- Local Subprograms --
355 -----------------------
357 procedure Analyze_Generic_Renaming
358 (N : Node_Id;
359 K : Entity_Kind);
360 -- Common processing for all three kinds of generic renaming declarations.
361 -- Enter new name and indicate that it renames the generic unit.
363 procedure Analyze_Renamed_Character
364 (N : Node_Id;
365 New_S : Entity_Id;
366 Is_Body : Boolean);
367 -- Renamed entity is given by a character literal, which must belong
368 -- to the return type of the new entity. Is_Body indicates whether the
369 -- declaration is a renaming_as_body. If the original declaration has
370 -- already been frozen (because of an intervening body, e.g.) the body of
371 -- the function must be built now. The same applies to the following
372 -- various renaming procedures.
374 procedure Analyze_Renamed_Dereference
375 (N : Node_Id;
376 New_S : Entity_Id;
377 Is_Body : Boolean);
378 -- Renamed entity is given by an explicit dereference. Prefix must be a
379 -- conformant access_to_subprogram type.
381 procedure Analyze_Renamed_Entry
382 (N : Node_Id;
383 New_S : Entity_Id;
384 Is_Body : Boolean);
385 -- If the renamed entity in a subprogram renaming is an entry or protected
386 -- subprogram, build a body for the new entity whose only statement is a
387 -- call to the renamed entity.
389 procedure Analyze_Renamed_Family_Member
390 (N : Node_Id;
391 New_S : Entity_Id;
392 Is_Body : Boolean);
393 -- Used when the renamed entity is an indexed component. The prefix must
394 -- denote an entry family.
396 procedure Analyze_Renamed_Primitive_Operation
397 (N : Node_Id;
398 New_S : Entity_Id;
399 Is_Body : Boolean);
400 -- If the renamed entity in a subprogram renaming is a primitive operation
401 -- or a class-wide operation in prefix form, save the target object,
402 -- which must be added to the list of actuals in any subsequent call.
403 -- The renaming operation is intrinsic because the compiler must in
404 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
406 function Applicable_Use (Pack_Name : Node_Id) return Boolean;
407 -- Common code to Use_One_Package and Set_Use, to determine whether use
408 -- clause must be processed. Pack_Name is an entity name that references
409 -- the package in question.
411 procedure Attribute_Renaming (N : Node_Id);
412 -- Analyze renaming of attribute as subprogram. The renaming declaration N
413 -- is rewritten as a subprogram body that returns the attribute reference
414 -- applied to the formals of the function.
416 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
417 -- Set Entity, with style check if need be. For a discriminant reference,
418 -- replace by the corresponding discriminal, i.e. the parameter of the
419 -- initialization procedure that corresponds to the discriminant.
421 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
422 -- A renaming_as_body may occur after the entity of the original decla-
423 -- ration has been frozen. In that case, the body of the new entity must
424 -- be built now, because the usual mechanism of building the renamed
425 -- body at the point of freezing will not work. Subp is the subprogram
426 -- for which N provides the Renaming_As_Body.
428 procedure Check_In_Previous_With_Clause
429 (N : Node_Id;
430 Nam : Node_Id);
431 -- N is a use_package clause and Nam the package name, or N is a use_type
432 -- clause and Nam is the prefix of the type name. In either case, verify
433 -- that the package is visible at that point in the context: either it
434 -- appears in a previous with_clause, or because it is a fully qualified
435 -- name and the root ancestor appears in a previous with_clause.
437 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
438 -- Verify that the entity in a renaming declaration that is a library unit
439 -- is itself a library unit and not a nested unit or subunit. Also check
440 -- that if the renaming is a child unit of a generic parent, then the
441 -- renamed unit must also be a child unit of that parent. Finally, verify
442 -- that a renamed generic unit is not an implicit child declared within
443 -- an instance of the parent.
445 procedure Chain_Use_Clause (N : Node_Id);
446 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
447 -- the proper scope table entry. This is usually the current scope, but it
448 -- will be an inner scope when installing the use clauses of the private
449 -- declarations of a parent unit prior to compiling the private part of a
450 -- child unit. This chain is traversed when installing/removing use clauses
451 -- when compiling a subunit or instantiating a generic body on the fly,
452 -- when it is necessary to save and restore full environments.
454 function Enclosing_Instance return Entity_Id;
455 -- In an instance nested within another one, several semantic checks are
456 -- unnecessary because the legality of the nested instance has been checked
457 -- in the enclosing generic unit. This applies in particular to legality
458 -- checks on actuals for formal subprograms of the inner instance, which
459 -- are checked as subprogram renamings, and may be complicated by confusion
460 -- in private/full views. This function returns the instance enclosing the
461 -- current one if there is such, else it returns Empty.
463 -- If the renaming determines the entity for the default of a formal
464 -- subprogram nested within another instance, choose the innermost
465 -- candidate. This is because if the formal has a box, and we are within
466 -- an enclosing instance where some candidate interpretations are local
467 -- to this enclosing instance, we know that the default was properly
468 -- resolved when analyzing the generic, so we prefer the local
469 -- candidates to those that are external. This is not always the case
470 -- but is a reasonable heuristic on the use of nested generics. The
471 -- proper solution requires a full renaming model.
473 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
474 -- Find a type derived from Character or Wide_Character in the prefix of N.
475 -- Used to resolved qualified names whose selector is a character literal.
477 function Has_Private_With (E : Entity_Id) return Boolean;
478 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
479 -- private with on E.
481 procedure Find_Expanded_Name (N : Node_Id);
482 -- The input is a selected component known to be an expanded name. Verify
483 -- legality of selector given the scope denoted by prefix, and change node
484 -- N into a expanded name with a properly set Entity field.
486 function Find_Renamed_Entity
487 (N : Node_Id;
488 Nam : Node_Id;
489 New_S : Entity_Id;
490 Is_Actual : Boolean := False) return Entity_Id;
491 -- Find the renamed entity that corresponds to the given parameter profile
492 -- in a subprogram renaming declaration. The renamed entity may be an
493 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
494 -- indicates that the renaming is the one generated for an actual subpro-
495 -- gram in an instance, for which special visibility checks apply.
497 function Has_Implicit_Operator (N : Node_Id) return Boolean;
498 -- N is an expanded name whose selector is an operator name (e.g. P."+").
499 -- declarative part contains an implicit declaration of an operator if it
500 -- has a declaration of a type to which one of the predefined operators
501 -- apply. The existence of this routine is an implementation artifact. A
502 -- more straightforward but more space-consuming choice would be to make
503 -- all inherited operators explicit in the symbol table.
505 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
506 -- A subprogram defined by a renaming declaration inherits the parameter
507 -- profile of the renamed entity. The subtypes given in the subprogram
508 -- specification are discarded and replaced with those of the renamed
509 -- subprogram, which are then used to recheck the default values.
511 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
512 -- Prefix is appropriate for record if it is of a record type, or an access
513 -- to such.
515 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
516 -- True if it is of a task type, a protected type, or else an access to one
517 -- of these types.
519 procedure Note_Redundant_Use (Clause : Node_Id);
520 -- Mark the name in a use clause as redundant if the corresponding entity
521 -- is already use-visible. Emit a warning if the use clause comes from
522 -- source and the proper warnings are enabled.
524 procedure Premature_Usage (N : Node_Id);
525 -- Diagnose usage of an entity before it is visible
527 procedure Use_One_Package (P : Entity_Id; N : Node_Id);
528 -- Make visible entities declared in package P potentially use-visible
529 -- in the current context. Also used in the analysis of subunits, when
530 -- re-installing use clauses of parent units. N is the use_clause that
531 -- names P (and possibly other packages).
533 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False);
534 -- Id is the subtype mark from a use type clause. This procedure makes
535 -- the primitive operators of the type potentially use-visible. The
536 -- boolean flag Installed indicates that the clause is being reinstalled
537 -- after previous analysis, and primitive operations are already chained
538 -- on the Used_Operations list of the clause.
540 procedure Write_Info;
541 -- Write debugging information on entities declared in current scope
543 --------------------------------
544 -- Analyze_Exception_Renaming --
545 --------------------------------
547 -- The language only allows a single identifier, but the tree holds an
548 -- identifier list. The parser has already issued an error message if
549 -- there is more than one element in the list.
551 procedure Analyze_Exception_Renaming (N : Node_Id) is
552 Id : constant Node_Id := Defining_Identifier (N);
553 Nam : constant Node_Id := Name (N);
555 begin
556 -- The exception renaming declaration may be subject to pragma Ghost
557 -- with policy Ignore. Set the mode now to ensure that any nodes
558 -- generated during analysis and expansion are properly flagged as
559 -- ignored Ghost.
561 Set_Ghost_Mode (N);
562 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
564 Enter_Name (Id);
565 Analyze (Nam);
567 Set_Ekind (Id, E_Exception);
568 Set_Etype (Id, Standard_Exception_Type);
569 Set_Is_Pure (Id, Is_Pure (Current_Scope));
571 if not Is_Entity_Name (Nam)
572 or else Ekind (Entity (Nam)) /= E_Exception
573 then
574 Error_Msg_N ("invalid exception name in renaming", Nam);
575 else
576 if Present (Renamed_Object (Entity (Nam))) then
577 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
578 else
579 Set_Renamed_Object (Id, Entity (Nam));
580 end if;
582 -- An exception renaming is Ghost if the renamed entity is Ghost or
583 -- the construct appears within a Ghost scope.
585 if Is_Ghost_Entity (Entity (Nam)) or else Ghost_Mode > None then
586 Set_Is_Ghost_Entity (Id);
587 end if;
588 end if;
590 -- Implementation-defined aspect specifications can appear in a renaming
591 -- declaration, but not language-defined ones. The call to procedure
592 -- Analyze_Aspect_Specifications will take care of this error check.
594 if Has_Aspects (N) then
595 Analyze_Aspect_Specifications (N, Id);
596 end if;
597 end Analyze_Exception_Renaming;
599 ---------------------------
600 -- Analyze_Expanded_Name --
601 ---------------------------
603 procedure Analyze_Expanded_Name (N : Node_Id) is
604 begin
605 -- If the entity pointer is already set, this is an internal node, or a
606 -- node that is analyzed more than once, after a tree modification. In
607 -- such a case there is no resolution to perform, just set the type. For
608 -- completeness, analyze prefix as well.
610 if Present (Entity (N)) then
611 if Is_Type (Entity (N)) then
612 Set_Etype (N, Entity (N));
613 else
614 Set_Etype (N, Etype (Entity (N)));
615 end if;
617 Analyze (Prefix (N));
618 return;
619 else
620 Find_Expanded_Name (N);
621 end if;
623 Analyze_Dimension (N);
624 end Analyze_Expanded_Name;
626 ---------------------------------------
627 -- Analyze_Generic_Function_Renaming --
628 ---------------------------------------
630 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
631 begin
632 Analyze_Generic_Renaming (N, E_Generic_Function);
633 end Analyze_Generic_Function_Renaming;
635 --------------------------------------
636 -- Analyze_Generic_Package_Renaming --
637 --------------------------------------
639 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
640 begin
641 -- Test for the Text_IO special unit case here, since we may be renaming
642 -- one of the subpackages of Text_IO, then join common routine.
644 Check_Text_IO_Special_Unit (Name (N));
646 Analyze_Generic_Renaming (N, E_Generic_Package);
647 end Analyze_Generic_Package_Renaming;
649 ----------------------------------------
650 -- Analyze_Generic_Procedure_Renaming --
651 ----------------------------------------
653 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
654 begin
655 Analyze_Generic_Renaming (N, E_Generic_Procedure);
656 end Analyze_Generic_Procedure_Renaming;
658 ------------------------------
659 -- Analyze_Generic_Renaming --
660 ------------------------------
662 procedure Analyze_Generic_Renaming
663 (N : Node_Id;
664 K : Entity_Kind)
666 New_P : constant Entity_Id := Defining_Entity (N);
667 Old_P : Entity_Id;
668 Inst : Boolean := False; -- prevent junk warning
670 begin
671 if Name (N) = Error then
672 return;
673 end if;
675 -- The generic renaming declaration may be subject to pragma Ghost with
676 -- policy Ignore. Set the mode now to ensure that any nodes generated
677 -- during analysis and expansion are properly flagged as ignored Ghost.
679 Set_Ghost_Mode (N);
680 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
682 Generate_Definition (New_P);
684 if Current_Scope /= Standard_Standard then
685 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
686 end if;
688 if Nkind (Name (N)) = N_Selected_Component then
689 Check_Generic_Child_Unit (Name (N), Inst);
690 else
691 Analyze (Name (N));
692 end if;
694 if not Is_Entity_Name (Name (N)) then
695 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
696 Old_P := Any_Id;
697 else
698 Old_P := Entity (Name (N));
699 end if;
701 Enter_Name (New_P);
702 Set_Ekind (New_P, K);
704 if Etype (Old_P) = Any_Type then
705 null;
707 elsif Ekind (Old_P) /= K then
708 Error_Msg_N ("invalid generic unit name", Name (N));
710 else
711 if Present (Renamed_Object (Old_P)) then
712 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
713 else
714 Set_Renamed_Object (New_P, Old_P);
715 end if;
717 Set_Is_Pure (New_P, Is_Pure (Old_P));
718 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
720 Set_Etype (New_P, Etype (Old_P));
721 Set_Has_Completion (New_P);
723 -- An generic renaming is Ghost if the renamed entity is Ghost or the
724 -- construct appears within a Ghost scope.
726 if Is_Ghost_Entity (Old_P) or else Ghost_Mode > None then
727 Set_Is_Ghost_Entity (New_P);
728 end if;
730 if In_Open_Scopes (Old_P) then
731 Error_Msg_N ("within its scope, generic denotes its instance", N);
732 end if;
734 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
735 -- renamings and subsequent instantiations of Unchecked_Conversion.
737 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
738 Set_Is_Intrinsic_Subprogram
739 (New_P, Is_Intrinsic_Subprogram (Old_P));
740 end if;
742 Check_Library_Unit_Renaming (N, Old_P);
743 end if;
745 -- Implementation-defined aspect specifications can appear in a renaming
746 -- declaration, but not language-defined ones. The call to procedure
747 -- Analyze_Aspect_Specifications will take care of this error check.
749 if Has_Aspects (N) then
750 Analyze_Aspect_Specifications (N, New_P);
751 end if;
752 end Analyze_Generic_Renaming;
754 -----------------------------
755 -- Analyze_Object_Renaming --
756 -----------------------------
758 procedure Analyze_Object_Renaming (N : Node_Id) is
759 Loc : constant Source_Ptr := Sloc (N);
760 Id : constant Entity_Id := Defining_Identifier (N);
761 Dec : Node_Id;
762 Nam : constant Node_Id := Name (N);
763 T : Entity_Id;
764 T2 : Entity_Id;
766 procedure Check_Constrained_Object;
767 -- If the nominal type is unconstrained but the renamed object is
768 -- constrained, as can happen with renaming an explicit dereference or
769 -- a function return, build a constrained subtype from the object. If
770 -- the renaming is for a formal in an accept statement, the analysis
771 -- has already established its actual subtype. This is only relevant
772 -- if the renamed object is an explicit dereference.
774 function In_Generic_Scope (E : Entity_Id) return Boolean;
775 -- Determine whether entity E is inside a generic cope
777 ------------------------------
778 -- Check_Constrained_Object --
779 ------------------------------
781 procedure Check_Constrained_Object is
782 Typ : constant Entity_Id := Etype (Nam);
783 Subt : Entity_Id;
785 begin
786 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
787 and then Is_Composite_Type (Etype (Nam))
788 and then not Is_Constrained (Etype (Nam))
789 and then not Has_Unknown_Discriminants (Etype (Nam))
790 and then Expander_Active
791 then
792 -- If Actual_Subtype is already set, nothing to do
794 if Ekind_In (Id, E_Variable, E_Constant)
795 and then Present (Actual_Subtype (Id))
796 then
797 null;
799 -- A renaming of an unchecked union has no actual subtype
801 elsif Is_Unchecked_Union (Typ) then
802 null;
804 -- If a record is limited its size is invariant. This is the case
805 -- in particular with record types with an access discirminant
806 -- that are used in iterators. This is an optimization, but it
807 -- also prevents typing anomalies when the prefix is further
808 -- expanded. Limited types with discriminants are included.
810 elsif Is_Limited_Record (Typ)
811 or else
812 (Ekind (Typ) = E_Limited_Private_Type
813 and then Has_Discriminants (Typ)
814 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
815 then
816 null;
818 else
819 Subt := Make_Temporary (Loc, 'T');
820 Remove_Side_Effects (Nam);
821 Insert_Action (N,
822 Make_Subtype_Declaration (Loc,
823 Defining_Identifier => Subt,
824 Subtype_Indication =>
825 Make_Subtype_From_Expr (Nam, Typ)));
826 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
827 Set_Etype (Nam, Subt);
829 -- Freeze subtype at once, to prevent order of elaboration
830 -- issues in the backend. The renamed object exists, so its
831 -- type is already frozen in any case.
833 Freeze_Before (N, Subt);
834 end if;
835 end if;
836 end Check_Constrained_Object;
838 ----------------------
839 -- In_Generic_Scope --
840 ----------------------
842 function In_Generic_Scope (E : Entity_Id) return Boolean is
843 S : Entity_Id;
845 begin
846 S := Scope (E);
847 while Present (S) and then S /= Standard_Standard loop
848 if Is_Generic_Unit (S) then
849 return True;
850 end if;
852 S := Scope (S);
853 end loop;
855 return False;
856 end In_Generic_Scope;
858 -- Start of processing for Analyze_Object_Renaming
860 begin
861 if Nam = Error then
862 return;
863 end if;
865 -- The object renaming declaration may be subject to pragma Ghost with
866 -- policy Ignore. Set the mode now to ensure that any nodes generated
867 -- during analysis and expansion are properly flagged as ignored Ghost.
869 Set_Ghost_Mode (N);
870 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
872 Set_Is_Pure (Id, Is_Pure (Current_Scope));
873 Enter_Name (Id);
875 -- The renaming of a component that depends on a discriminant requires
876 -- an actual subtype, because in subsequent use of the object Gigi will
877 -- be unable to locate the actual bounds. This explicit step is required
878 -- when the renaming is generated in removing side effects of an
879 -- already-analyzed expression.
881 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
882 T := Etype (Nam);
883 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
885 if Present (Dec) then
886 Insert_Action (N, Dec);
887 T := Defining_Identifier (Dec);
888 Set_Etype (Nam, T);
889 end if;
891 -- Complete analysis of the subtype mark in any case, for ASIS use
893 if Present (Subtype_Mark (N)) then
894 Find_Type (Subtype_Mark (N));
895 end if;
897 elsif Present (Subtype_Mark (N)) then
898 Find_Type (Subtype_Mark (N));
899 T := Entity (Subtype_Mark (N));
900 Analyze (Nam);
902 -- Reject renamings of conversions unless the type is tagged, or
903 -- the conversion is implicit (which can occur for cases of anonymous
904 -- access types in Ada 2012).
906 if Nkind (Nam) = N_Type_Conversion
907 and then Comes_From_Source (Nam)
908 and then not Is_Tagged_Type (T)
909 then
910 Error_Msg_N
911 ("renaming of conversion only allowed for tagged types", Nam);
912 end if;
914 Resolve (Nam, T);
916 -- If the renamed object is a function call of a limited type,
917 -- the expansion of the renaming is complicated by the presence
918 -- of various temporaries and subtypes that capture constraints
919 -- of the renamed object. Rewrite node as an object declaration,
920 -- whose expansion is simpler. Given that the object is limited
921 -- there is no copy involved and no performance hit.
923 if Nkind (Nam) = N_Function_Call
924 and then Is_Limited_View (Etype (Nam))
925 and then not Is_Constrained (Etype (Nam))
926 and then Comes_From_Source (N)
927 then
928 Set_Etype (Id, T);
929 Set_Ekind (Id, E_Constant);
930 Rewrite (N,
931 Make_Object_Declaration (Loc,
932 Defining_Identifier => Id,
933 Constant_Present => True,
934 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
935 Expression => Relocate_Node (Nam)));
936 return;
937 end if;
939 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
940 -- when renaming declaration has a named access type. The Ada 2012
941 -- coverage rules allow an anonymous access type in the context of
942 -- an expected named general access type, but the renaming rules
943 -- require the types to be the same. (An exception is when the type
944 -- of the renaming is also an anonymous access type, which can only
945 -- happen due to a renaming created by the expander.)
947 if Nkind (Nam) = N_Type_Conversion
948 and then not Comes_From_Source (Nam)
949 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
950 and then Ekind (T) /= E_Anonymous_Access_Type
951 then
952 Wrong_Type (Expression (Nam), T); -- Should we give better error???
953 end if;
955 -- Check that a class-wide object is not being renamed as an object
956 -- of a specific type. The test for access types is needed to exclude
957 -- cases where the renamed object is a dynamically tagged access
958 -- result, such as occurs in certain expansions.
960 if Is_Tagged_Type (T) then
961 Check_Dynamically_Tagged_Expression
962 (Expr => Nam,
963 Typ => T,
964 Related_Nod => N);
965 end if;
967 -- Ada 2005 (AI-230/AI-254): Access renaming
969 else pragma Assert (Present (Access_Definition (N)));
970 T := Access_Definition
971 (Related_Nod => N,
972 N => Access_Definition (N));
974 Analyze (Nam);
976 -- Ada 2005 AI05-105: if the declaration has an anonymous access
977 -- type, the renamed object must also have an anonymous type, and
978 -- this is a name resolution rule. This was implicit in the last part
979 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
980 -- recent AI.
982 if not Is_Overloaded (Nam) then
983 if Ekind (Etype (Nam)) /= Ekind (T) then
984 Error_Msg_N
985 ("expect anonymous access type in object renaming", N);
986 end if;
988 else
989 declare
990 I : Interp_Index;
991 It : Interp;
992 Typ : Entity_Id := Empty;
993 Seen : Boolean := False;
995 begin
996 Get_First_Interp (Nam, I, It);
997 while Present (It.Typ) loop
999 -- Renaming is ambiguous if more than one candidate
1000 -- interpretation is type-conformant with the context.
1002 if Ekind (It.Typ) = Ekind (T) then
1003 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1004 and then
1005 Type_Conformant
1006 (Designated_Type (T), Designated_Type (It.Typ))
1007 then
1008 if not Seen then
1009 Seen := True;
1010 else
1011 Error_Msg_N
1012 ("ambiguous expression in renaming", Nam);
1013 end if;
1015 elsif Ekind (T) = E_Anonymous_Access_Type
1016 and then
1017 Covers (Designated_Type (T), Designated_Type (It.Typ))
1018 then
1019 if not Seen then
1020 Seen := True;
1021 else
1022 Error_Msg_N
1023 ("ambiguous expression in renaming", Nam);
1024 end if;
1025 end if;
1027 if Covers (T, It.Typ) then
1028 Typ := It.Typ;
1029 Set_Etype (Nam, Typ);
1030 Set_Is_Overloaded (Nam, False);
1031 end if;
1032 end if;
1034 Get_Next_Interp (I, It);
1035 end loop;
1036 end;
1037 end if;
1039 Resolve (Nam, T);
1041 -- Ada 2005 (AI-231): In the case where the type is defined by an
1042 -- access_definition, the renamed entity shall be of an access-to-
1043 -- constant type if and only if the access_definition defines an
1044 -- access-to-constant type. ARM 8.5.1(4)
1046 if Constant_Present (Access_Definition (N))
1047 and then not Is_Access_Constant (Etype (Nam))
1048 then
1049 Error_Msg_N ("(Ada 2005): the renamed object is not "
1050 & "access-to-constant (RM 8.5.1(6))", N);
1052 elsif not Constant_Present (Access_Definition (N))
1053 and then Is_Access_Constant (Etype (Nam))
1054 then
1055 Error_Msg_N ("(Ada 2005): the renamed object is not "
1056 & "access-to-variable (RM 8.5.1(6))", N);
1057 end if;
1059 if Is_Access_Subprogram_Type (Etype (Nam)) then
1060 Check_Subtype_Conformant
1061 (Designated_Type (T), Designated_Type (Etype (Nam)));
1063 elsif not Subtypes_Statically_Match
1064 (Designated_Type (T),
1065 Available_View (Designated_Type (Etype (Nam))))
1066 then
1067 Error_Msg_N
1068 ("subtype of renamed object does not statically match", N);
1069 end if;
1070 end if;
1072 -- Special processing for renaming function return object. Some errors
1073 -- and warnings are produced only for calls that come from source.
1075 if Nkind (Nam) = N_Function_Call then
1076 case Ada_Version is
1078 -- Usage is illegal in Ada 83, but renamings are also introduced
1079 -- during expansion, and error does not apply to those.
1081 when Ada_83 =>
1082 if Comes_From_Source (N) then
1083 Error_Msg_N
1084 ("(Ada 83) cannot rename function return object", Nam);
1085 end if;
1087 -- In Ada 95, warn for odd case of renaming parameterless function
1088 -- call if this is not a limited type (where this is useful).
1090 when others =>
1091 if Warn_On_Object_Renames_Function
1092 and then No (Parameter_Associations (Nam))
1093 and then not Is_Limited_Type (Etype (Nam))
1094 and then Comes_From_Source (Nam)
1095 then
1096 Error_Msg_N
1097 ("renaming function result object is suspicious?R?", Nam);
1098 Error_Msg_NE
1099 ("\function & will be called only once?R?", Nam,
1100 Entity (Name (Nam)));
1101 Error_Msg_N -- CODEFIX
1102 ("\suggest using an initialized constant "
1103 & "object instead?R?", Nam);
1104 end if;
1106 end case;
1107 end if;
1109 Check_Constrained_Object;
1111 -- An object renaming requires an exact match of the type. Class-wide
1112 -- matching is not allowed.
1114 if Is_Class_Wide_Type (T)
1115 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1116 then
1117 Wrong_Type (Nam, T);
1118 end if;
1120 T2 := Etype (Nam);
1122 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1124 if Nkind (Nam) = N_Explicit_Dereference
1125 and then Ekind (Etype (T2)) = E_Incomplete_Type
1126 then
1127 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1128 return;
1130 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1131 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1132 return;
1133 end if;
1135 -- Ada 2005 (AI-327)
1137 if Ada_Version >= Ada_2005
1138 and then Nkind (Nam) = N_Attribute_Reference
1139 and then Attribute_Name (Nam) = Name_Priority
1140 then
1141 null;
1143 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1144 declare
1145 Nam_Decl : Node_Id;
1146 Nam_Ent : Entity_Id;
1148 begin
1149 if Nkind (Nam) = N_Attribute_Reference then
1150 Nam_Ent := Entity (Prefix (Nam));
1151 else
1152 Nam_Ent := Entity (Nam);
1153 end if;
1155 Nam_Decl := Parent (Nam_Ent);
1157 if Has_Null_Exclusion (N)
1158 and then not Has_Null_Exclusion (Nam_Decl)
1159 then
1160 -- Ada 2005 (AI-423): If the object name denotes a generic
1161 -- formal object of a generic unit G, and the object renaming
1162 -- declaration occurs within the body of G or within the body
1163 -- of a generic unit declared within the declarative region
1164 -- of G, then the declaration of the formal object of G must
1165 -- have a null exclusion or a null-excluding subtype.
1167 if Is_Formal_Object (Nam_Ent)
1168 and then In_Generic_Scope (Id)
1169 then
1170 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1171 Error_Msg_N
1172 ("renamed formal does not exclude `NULL` "
1173 & "(RM 8.5.1(4.6/2))", N);
1175 elsif In_Package_Body (Scope (Id)) then
1176 Error_Msg_N
1177 ("formal object does not have a null exclusion"
1178 & "(RM 8.5.1(4.6/2))", N);
1179 end if;
1181 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1182 -- shall exclude null.
1184 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1185 Error_Msg_N
1186 ("renamed object does not exclude `NULL` "
1187 & "(RM 8.5.1(4.6/2))", N);
1189 -- An instance is illegal if it contains a renaming that
1190 -- excludes null, and the actual does not. The renaming
1191 -- declaration has already indicated that the declaration
1192 -- of the renamed actual in the instance will raise
1193 -- constraint_error.
1195 elsif Nkind (Nam_Decl) = N_Object_Declaration
1196 and then In_Instance
1197 and then
1198 Present (Corresponding_Generic_Association (Nam_Decl))
1199 and then Nkind (Expression (Nam_Decl)) =
1200 N_Raise_Constraint_Error
1201 then
1202 Error_Msg_N
1203 ("renamed actual does not exclude `NULL` "
1204 & "(RM 8.5.1(4.6/2))", N);
1206 -- Finally, if there is a null exclusion, the subtype mark
1207 -- must not be null-excluding.
1209 elsif No (Access_Definition (N))
1210 and then Can_Never_Be_Null (T)
1211 then
1212 Error_Msg_NE
1213 ("`NOT NULL` not allowed (& already excludes null)",
1214 N, T);
1216 end if;
1218 elsif Can_Never_Be_Null (T)
1219 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1220 then
1221 Error_Msg_N
1222 ("renamed object does not exclude `NULL` "
1223 & "(RM 8.5.1(4.6/2))", N);
1225 elsif Has_Null_Exclusion (N)
1226 and then No (Access_Definition (N))
1227 and then Can_Never_Be_Null (T)
1228 then
1229 Error_Msg_NE
1230 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1231 end if;
1232 end;
1233 end if;
1235 -- Set the Ekind of the entity, unless it has been set already, as is
1236 -- the case for the iteration object over a container with no variable
1237 -- indexing. In that case it's been marked as a constant, and we do not
1238 -- want to change it to a variable.
1240 if Ekind (Id) /= E_Constant then
1241 Set_Ekind (Id, E_Variable);
1242 end if;
1244 -- Initialize the object size and alignment. Note that we used to call
1245 -- Init_Size_Align here, but that's wrong for objects which have only
1246 -- an Esize, not an RM_Size field.
1248 Init_Object_Size_Align (Id);
1250 if T = Any_Type or else Etype (Nam) = Any_Type then
1251 return;
1253 -- Verify that the renamed entity is an object or a function call. It
1254 -- may have been rewritten in several ways.
1256 elsif Is_Object_Reference (Nam) then
1257 if Comes_From_Source (N) then
1258 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1259 Error_Msg_N
1260 ("illegal renaming of discriminant-dependent component", Nam);
1261 end if;
1263 -- If the renaming comes from source and the renamed object is a
1264 -- dereference, then mark the prefix as needing debug information,
1265 -- since it might have been rewritten hence internally generated
1266 -- and Debug_Renaming_Declaration will link the renaming to it.
1268 if Nkind (Nam) = N_Explicit_Dereference
1269 and then Is_Entity_Name (Prefix (Nam))
1270 then
1271 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1272 end if;
1273 end if;
1275 -- A static function call may have been folded into a literal
1277 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1279 -- When expansion is disabled, attribute reference is not rewritten
1280 -- as function call. Otherwise it may be rewritten as a conversion,
1281 -- so check original node.
1283 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1284 and then Is_Function_Attribute_Name
1285 (Attribute_Name (Original_Node (Nam))))
1287 -- Weird but legal, equivalent to renaming a function call. Illegal
1288 -- if the literal is the result of constant-folding an attribute
1289 -- reference that is not a function.
1291 or else (Is_Entity_Name (Nam)
1292 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1293 and then
1294 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1296 or else (Nkind (Nam) = N_Type_Conversion
1297 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1298 then
1299 null;
1301 elsif Nkind (Nam) = N_Type_Conversion then
1302 Error_Msg_N
1303 ("renaming of conversion only allowed for tagged types", Nam);
1305 -- Ada 2005 (AI-327)
1307 elsif Ada_Version >= Ada_2005
1308 and then Nkind (Nam) = N_Attribute_Reference
1309 and then Attribute_Name (Nam) = Name_Priority
1310 then
1311 null;
1313 -- Allow internally generated x'Reference expression
1315 elsif Nkind (Nam) = N_Reference then
1316 null;
1318 else
1319 Error_Msg_N ("expect object name in renaming", Nam);
1320 end if;
1322 Set_Etype (Id, T2);
1324 if not Is_Variable (Nam) then
1325 Set_Ekind (Id, E_Constant);
1326 Set_Never_Set_In_Source (Id, True);
1327 Set_Is_True_Constant (Id, True);
1328 end if;
1330 -- An object renaming is Ghost if the renamed entity is Ghost or the
1331 -- construct appears within a Ghost scope.
1333 if (Is_Entity_Name (Nam)
1334 and then Is_Ghost_Entity (Entity (Nam)))
1335 or else Ghost_Mode > None
1336 then
1337 Set_Is_Ghost_Entity (Id);
1338 end if;
1340 -- The entity of the renaming declaration needs to reflect whether the
1341 -- renamed object is volatile. Is_Volatile is set if the renamed object
1342 -- is volatile in the RM legality sense.
1344 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1346 -- Treat as volatile if we just set the Volatile flag
1348 if Is_Volatile (Id)
1350 -- Or if we are renaming an entity which was marked this way
1352 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1354 or else (Is_Entity_Name (Nam)
1355 and then Treat_As_Volatile (Entity (Nam)))
1356 then
1357 Set_Treat_As_Volatile (Id, True);
1358 end if;
1360 -- Now make the link to the renamed object
1362 Set_Renamed_Object (Id, Nam);
1364 -- Implementation-defined aspect specifications can appear in a renaming
1365 -- declaration, but not language-defined ones. The call to procedure
1366 -- Analyze_Aspect_Specifications will take care of this error check.
1368 if Has_Aspects (N) then
1369 Analyze_Aspect_Specifications (N, Id);
1370 end if;
1372 -- Deal with dimensions
1374 Analyze_Dimension (N);
1375 end Analyze_Object_Renaming;
1377 ------------------------------
1378 -- Analyze_Package_Renaming --
1379 ------------------------------
1381 procedure Analyze_Package_Renaming (N : Node_Id) is
1382 New_P : constant Entity_Id := Defining_Entity (N);
1383 Old_P : Entity_Id;
1384 Spec : Node_Id;
1386 begin
1387 if Name (N) = Error then
1388 return;
1389 end if;
1391 -- The package renaming declaration may be subject to pragma Ghost with
1392 -- policy Ignore. Set the mode now to ensure that any nodes generated
1393 -- during analysis and expansion are properly flagged as ignored Ghost.
1395 Set_Ghost_Mode (N);
1397 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1399 Check_Text_IO_Special_Unit (Name (N));
1401 if Current_Scope /= Standard_Standard then
1402 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1403 end if;
1405 Enter_Name (New_P);
1406 Analyze (Name (N));
1408 if Is_Entity_Name (Name (N)) then
1409 Old_P := Entity (Name (N));
1410 else
1411 Old_P := Any_Id;
1412 end if;
1414 if Etype (Old_P) = Any_Type then
1415 Error_Msg_N ("expect package name in renaming", Name (N));
1417 elsif Ekind (Old_P) /= E_Package
1418 and then not (Ekind (Old_P) = E_Generic_Package
1419 and then In_Open_Scopes (Old_P))
1420 then
1421 if Ekind (Old_P) = E_Generic_Package then
1422 Error_Msg_N
1423 ("generic package cannot be renamed as a package", Name (N));
1424 else
1425 Error_Msg_Sloc := Sloc (Old_P);
1426 Error_Msg_NE
1427 ("expect package name in renaming, found& declared#",
1428 Name (N), Old_P);
1429 end if;
1431 -- Set basic attributes to minimize cascaded errors
1433 Set_Ekind (New_P, E_Package);
1434 Set_Etype (New_P, Standard_Void_Type);
1436 -- Here for OK package renaming
1438 else
1439 -- Entities in the old package are accessible through the renaming
1440 -- entity. The simplest implementation is to have both packages share
1441 -- the entity list.
1443 Set_Ekind (New_P, E_Package);
1444 Set_Etype (New_P, Standard_Void_Type);
1446 if Present (Renamed_Object (Old_P)) then
1447 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1448 else
1449 Set_Renamed_Object (New_P, Old_P);
1450 end if;
1452 Set_Has_Completion (New_P);
1454 Set_First_Entity (New_P, First_Entity (Old_P));
1455 Set_Last_Entity (New_P, Last_Entity (Old_P));
1456 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1457 Check_Library_Unit_Renaming (N, Old_P);
1458 Generate_Reference (Old_P, Name (N));
1460 -- A package renaming is Ghost if the renamed entity is Ghost or
1461 -- the construct appears within a Ghost scope.
1463 if Is_Ghost_Entity (Old_P) or else Ghost_Mode > None then
1464 Set_Is_Ghost_Entity (New_P);
1465 end if;
1467 -- If the renaming is in the visible part of a package, then we set
1468 -- Renamed_In_Spec for the renamed package, to prevent giving
1469 -- warnings about no entities referenced. Such a warning would be
1470 -- overenthusiastic, since clients can see entities in the renamed
1471 -- package via the visible package renaming.
1473 declare
1474 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1475 begin
1476 if Ekind (Ent) = E_Package
1477 and then not In_Private_Part (Ent)
1478 and then In_Extended_Main_Source_Unit (N)
1479 and then Ekind (Old_P) = E_Package
1480 then
1481 Set_Renamed_In_Spec (Old_P);
1482 end if;
1483 end;
1485 -- If this is the renaming declaration of a package instantiation
1486 -- within itself, it is the declaration that ends the list of actuals
1487 -- for the instantiation. At this point, the subtypes that rename
1488 -- the actuals are flagged as generic, to avoid spurious ambiguities
1489 -- if the actuals for two distinct formals happen to coincide. If
1490 -- the actual is a private type, the subtype has a private completion
1491 -- that is flagged in the same fashion.
1493 -- Resolution is identical to what is was in the original generic.
1494 -- On exit from the generic instance, these are turned into regular
1495 -- subtypes again, so they are compatible with types in their class.
1497 if not Is_Generic_Instance (Old_P) then
1498 return;
1499 else
1500 Spec := Specification (Unit_Declaration_Node (Old_P));
1501 end if;
1503 if Nkind (Spec) = N_Package_Specification
1504 and then Present (Generic_Parent (Spec))
1505 and then Old_P = Current_Scope
1506 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1507 then
1508 declare
1509 E : Entity_Id;
1511 begin
1512 E := First_Entity (Old_P);
1513 while Present (E) and then E /= New_P loop
1514 if Is_Type (E)
1515 and then Nkind (Parent (E)) = N_Subtype_Declaration
1516 then
1517 Set_Is_Generic_Actual_Type (E);
1519 if Is_Private_Type (E)
1520 and then Present (Full_View (E))
1521 then
1522 Set_Is_Generic_Actual_Type (Full_View (E));
1523 end if;
1524 end if;
1526 Next_Entity (E);
1527 end loop;
1528 end;
1529 end if;
1530 end if;
1532 -- Implementation-defined aspect specifications can appear in a renaming
1533 -- declaration, but not language-defined ones. The call to procedure
1534 -- Analyze_Aspect_Specifications will take care of this error check.
1536 if Has_Aspects (N) then
1537 Analyze_Aspect_Specifications (N, New_P);
1538 end if;
1539 end Analyze_Package_Renaming;
1541 -------------------------------
1542 -- Analyze_Renamed_Character --
1543 -------------------------------
1545 procedure Analyze_Renamed_Character
1546 (N : Node_Id;
1547 New_S : Entity_Id;
1548 Is_Body : Boolean)
1550 C : constant Node_Id := Name (N);
1552 begin
1553 if Ekind (New_S) = E_Function then
1554 Resolve (C, Etype (New_S));
1556 if Is_Body then
1557 Check_Frozen_Renaming (N, New_S);
1558 end if;
1560 else
1561 Error_Msg_N ("character literal can only be renamed as function", N);
1562 end if;
1563 end Analyze_Renamed_Character;
1565 ---------------------------------
1566 -- Analyze_Renamed_Dereference --
1567 ---------------------------------
1569 procedure Analyze_Renamed_Dereference
1570 (N : Node_Id;
1571 New_S : Entity_Id;
1572 Is_Body : Boolean)
1574 Nam : constant Node_Id := Name (N);
1575 P : constant Node_Id := Prefix (Nam);
1576 Typ : Entity_Id;
1577 Ind : Interp_Index;
1578 It : Interp;
1580 begin
1581 if not Is_Overloaded (P) then
1582 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1583 or else not Type_Conformant (Etype (Nam), New_S)
1584 then
1585 Error_Msg_N ("designated type does not match specification", P);
1586 else
1587 Resolve (P);
1588 end if;
1590 return;
1592 else
1593 Typ := Any_Type;
1594 Get_First_Interp (Nam, Ind, It);
1596 while Present (It.Nam) loop
1598 if Ekind (It.Nam) = E_Subprogram_Type
1599 and then Type_Conformant (It.Nam, New_S)
1600 then
1601 if Typ /= Any_Id then
1602 Error_Msg_N ("ambiguous renaming", P);
1603 return;
1604 else
1605 Typ := It.Nam;
1606 end if;
1607 end if;
1609 Get_Next_Interp (Ind, It);
1610 end loop;
1612 if Typ = Any_Type then
1613 Error_Msg_N ("designated type does not match specification", P);
1614 else
1615 Resolve (N, Typ);
1617 if Is_Body then
1618 Check_Frozen_Renaming (N, New_S);
1619 end if;
1620 end if;
1621 end if;
1622 end Analyze_Renamed_Dereference;
1624 ---------------------------
1625 -- Analyze_Renamed_Entry --
1626 ---------------------------
1628 procedure Analyze_Renamed_Entry
1629 (N : Node_Id;
1630 New_S : Entity_Id;
1631 Is_Body : Boolean)
1633 Nam : constant Node_Id := Name (N);
1634 Sel : constant Node_Id := Selector_Name (Nam);
1635 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1636 Old_S : Entity_Id;
1638 begin
1639 if Entity (Sel) = Any_Id then
1641 -- Selector is undefined on prefix. Error emitted already
1643 Set_Has_Completion (New_S);
1644 return;
1645 end if;
1647 -- Otherwise find renamed entity and build body of New_S as a call to it
1649 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1651 if Old_S = Any_Id then
1652 Error_Msg_N (" no subprogram or entry matches specification", N);
1653 else
1654 if Is_Body then
1655 Check_Subtype_Conformant (New_S, Old_S, N);
1656 Generate_Reference (New_S, Defining_Entity (N), 'b');
1657 Style.Check_Identifier (Defining_Entity (N), New_S);
1659 else
1660 -- Only mode conformance required for a renaming_as_declaration
1662 Check_Mode_Conformant (New_S, Old_S, N);
1663 end if;
1665 Inherit_Renamed_Profile (New_S, Old_S);
1667 -- The prefix can be an arbitrary expression that yields a task or
1668 -- protected object, so it must be resolved.
1670 Resolve (Prefix (Nam), Scope (Old_S));
1671 end if;
1673 Set_Convention (New_S, Convention (Old_S));
1674 Set_Has_Completion (New_S, Inside_A_Generic);
1676 -- AI05-0225: If the renamed entity is a procedure or entry of a
1677 -- protected object, the target object must be a variable.
1679 if Ekind (Scope (Old_S)) in Protected_Kind
1680 and then Ekind (New_S) = E_Procedure
1681 and then not Is_Variable (Prefix (Nam))
1682 then
1683 if Is_Actual then
1684 Error_Msg_N
1685 ("target object of protected operation used as actual for "
1686 & "formal procedure must be a variable", Nam);
1687 else
1688 Error_Msg_N
1689 ("target object of protected operation renamed as procedure, "
1690 & "must be a variable", Nam);
1691 end if;
1692 end if;
1694 if Is_Body then
1695 Check_Frozen_Renaming (N, New_S);
1696 end if;
1697 end Analyze_Renamed_Entry;
1699 -----------------------------------
1700 -- Analyze_Renamed_Family_Member --
1701 -----------------------------------
1703 procedure Analyze_Renamed_Family_Member
1704 (N : Node_Id;
1705 New_S : Entity_Id;
1706 Is_Body : Boolean)
1708 Nam : constant Node_Id := Name (N);
1709 P : constant Node_Id := Prefix (Nam);
1710 Old_S : Entity_Id;
1712 begin
1713 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1714 or else (Nkind (P) = N_Selected_Component
1715 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1716 then
1717 if Is_Entity_Name (P) then
1718 Old_S := Entity (P);
1719 else
1720 Old_S := Entity (Selector_Name (P));
1721 end if;
1723 if not Entity_Matches_Spec (Old_S, New_S) then
1724 Error_Msg_N ("entry family does not match specification", N);
1726 elsif Is_Body then
1727 Check_Subtype_Conformant (New_S, Old_S, N);
1728 Generate_Reference (New_S, Defining_Entity (N), 'b');
1729 Style.Check_Identifier (Defining_Entity (N), New_S);
1730 end if;
1732 else
1733 Error_Msg_N ("no entry family matches specification", N);
1734 end if;
1736 Set_Has_Completion (New_S, Inside_A_Generic);
1738 if Is_Body then
1739 Check_Frozen_Renaming (N, New_S);
1740 end if;
1741 end Analyze_Renamed_Family_Member;
1743 -----------------------------------------
1744 -- Analyze_Renamed_Primitive_Operation --
1745 -----------------------------------------
1747 procedure Analyze_Renamed_Primitive_Operation
1748 (N : Node_Id;
1749 New_S : Entity_Id;
1750 Is_Body : Boolean)
1752 Old_S : Entity_Id;
1754 function Conforms
1755 (Subp : Entity_Id;
1756 Ctyp : Conformance_Type) return Boolean;
1757 -- Verify that the signatures of the renamed entity and the new entity
1758 -- match. The first formal of the renamed entity is skipped because it
1759 -- is the target object in any subsequent call.
1761 --------------
1762 -- Conforms --
1763 --------------
1765 function Conforms
1766 (Subp : Entity_Id;
1767 Ctyp : Conformance_Type) return Boolean
1769 Old_F : Entity_Id;
1770 New_F : Entity_Id;
1772 begin
1773 if Ekind (Subp) /= Ekind (New_S) then
1774 return False;
1775 end if;
1777 Old_F := Next_Formal (First_Formal (Subp));
1778 New_F := First_Formal (New_S);
1779 while Present (Old_F) and then Present (New_F) loop
1780 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1781 return False;
1782 end if;
1784 if Ctyp >= Mode_Conformant
1785 and then Ekind (Old_F) /= Ekind (New_F)
1786 then
1787 return False;
1788 end if;
1790 Next_Formal (New_F);
1791 Next_Formal (Old_F);
1792 end loop;
1794 return True;
1795 end Conforms;
1797 -- Start of processing for Analyze_Renamed_Primitive_Operation
1799 begin
1800 if not Is_Overloaded (Selector_Name (Name (N))) then
1801 Old_S := Entity (Selector_Name (Name (N)));
1803 if not Conforms (Old_S, Type_Conformant) then
1804 Old_S := Any_Id;
1805 end if;
1807 else
1808 -- Find the operation that matches the given signature
1810 declare
1811 It : Interp;
1812 Ind : Interp_Index;
1814 begin
1815 Old_S := Any_Id;
1816 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1818 while Present (It.Nam) loop
1819 if Conforms (It.Nam, Type_Conformant) then
1820 Old_S := It.Nam;
1821 end if;
1823 Get_Next_Interp (Ind, It);
1824 end loop;
1825 end;
1826 end if;
1828 if Old_S = Any_Id then
1829 Error_Msg_N (" no subprogram or entry matches specification", N);
1831 else
1832 if Is_Body then
1833 if not Conforms (Old_S, Subtype_Conformant) then
1834 Error_Msg_N ("subtype conformance error in renaming", N);
1835 end if;
1837 Generate_Reference (New_S, Defining_Entity (N), 'b');
1838 Style.Check_Identifier (Defining_Entity (N), New_S);
1840 else
1841 -- Only mode conformance required for a renaming_as_declaration
1843 if not Conforms (Old_S, Mode_Conformant) then
1844 Error_Msg_N ("mode conformance error in renaming", N);
1845 end if;
1847 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1848 -- view of a subprogram is intrinsic, because the compiler has
1849 -- to generate a wrapper for any call to it. If the name in a
1850 -- subprogram renaming is a prefixed view, the entity is thus
1851 -- intrinsic, and 'Access cannot be applied to it.
1853 Set_Convention (New_S, Convention_Intrinsic);
1854 end if;
1856 -- Inherit_Renamed_Profile (New_S, Old_S);
1858 -- The prefix can be an arbitrary expression that yields an
1859 -- object, so it must be resolved.
1861 Resolve (Prefix (Name (N)));
1862 end if;
1863 end Analyze_Renamed_Primitive_Operation;
1865 ---------------------------------
1866 -- Analyze_Subprogram_Renaming --
1867 ---------------------------------
1869 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1870 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1871 Is_Actual : constant Boolean := Present (Formal_Spec);
1872 Nam : constant Node_Id := Name (N);
1873 Save_AV : constant Ada_Version_Type := Ada_Version;
1874 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1875 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1876 Spec : constant Node_Id := Specification (N);
1878 Old_S : Entity_Id := Empty;
1879 Rename_Spec : Entity_Id;
1881 procedure Build_Class_Wide_Wrapper
1882 (Ren_Id : out Entity_Id;
1883 Wrap_Id : out Entity_Id);
1884 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1885 -- type with unknown discriminants and a generic primitive operation of
1886 -- the said type with a box require special processing when the actual
1887 -- is a class-wide type:
1889 -- generic
1890 -- type Formal_Typ (<>) is private;
1891 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1892 -- package Gen is ...
1894 -- package Inst is new Gen (Actual_Typ'Class);
1896 -- In this case the general renaming mechanism used in the prologue of
1897 -- an instance no longer applies:
1899 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1901 -- The above is replaced the following wrapper/renaming combination:
1903 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1904 -- begin
1905 -- Prim_Op (Param); -- primitive
1906 -- end Wrapper;
1908 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1910 -- This transformation applies only if there is no explicit visible
1911 -- class-wide operation at the point of the instantiation. Ren_Id is
1912 -- the entity of the renaming declaration. Wrap_Id is the entity of
1913 -- the generated class-wide wrapper (or Any_Id).
1915 procedure Check_Null_Exclusion
1916 (Ren : Entity_Id;
1917 Sub : Entity_Id);
1918 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1919 -- following AI rules:
1921 -- If Ren is a renaming of a formal subprogram and one of its
1922 -- parameters has a null exclusion, then the corresponding formal
1923 -- in Sub must also have one. Otherwise the subtype of the Sub's
1924 -- formal parameter must exclude null.
1926 -- If Ren is a renaming of a formal function and its return
1927 -- profile has a null exclusion, then Sub's return profile must
1928 -- have one. Otherwise the subtype of Sub's return profile must
1929 -- exclude null.
1931 procedure Freeze_Actual_Profile;
1932 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1933 -- types: a callable entity freezes its profile, unless it has an
1934 -- incomplete untagged formal (RM 13.14(10.2/3)).
1936 function Has_Class_Wide_Actual return Boolean;
1937 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1938 -- defaulted formal subprogram where the actual for the controlling
1939 -- formal type is class-wide.
1941 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1942 -- Find renamed entity when the declaration is a renaming_as_body and
1943 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1944 -- rule that a renaming_as_body is illegal if the declaration occurs
1945 -- before the subprogram it completes is frozen, and renaming indirectly
1946 -- renames the subprogram itself.(Defect Report 8652/0027).
1948 ------------------------------
1949 -- Build_Class_Wide_Wrapper --
1950 ------------------------------
1952 procedure Build_Class_Wide_Wrapper
1953 (Ren_Id : out Entity_Id;
1954 Wrap_Id : out Entity_Id)
1956 Loc : constant Source_Ptr := Sloc (N);
1958 function Build_Call
1959 (Subp_Id : Entity_Id;
1960 Params : List_Id) return Node_Id;
1961 -- Create a dispatching call to invoke routine Subp_Id with actuals
1962 -- built from the parameter specifications of list Params.
1964 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1965 -- Create a subprogram specification based on the subprogram profile
1966 -- of Subp_Id.
1968 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1969 -- Find a primitive subprogram of type Typ which matches the profile
1970 -- of the renaming declaration.
1972 procedure Interpretation_Error (Subp_Id : Entity_Id);
1973 -- Emit a continuation error message suggesting subprogram Subp_Id as
1974 -- a possible interpretation.
1976 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1977 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1978 -- operator.
1980 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1981 -- Determine whether subprogram Subp_Id is a suitable candidate for
1982 -- the role of a wrapped subprogram.
1984 ----------------
1985 -- Build_Call --
1986 ----------------
1988 function Build_Call
1989 (Subp_Id : Entity_Id;
1990 Params : List_Id) return Node_Id
1992 Actuals : constant List_Id := New_List;
1993 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
1994 Formal : Node_Id;
1996 begin
1997 -- Build the actual parameters of the call
1999 Formal := First (Params);
2000 while Present (Formal) loop
2001 Append_To (Actuals,
2002 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2003 Next (Formal);
2004 end loop;
2006 -- Generate:
2007 -- return Subp_Id (Actuals);
2009 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2010 return
2011 Make_Simple_Return_Statement (Loc,
2012 Expression =>
2013 Make_Function_Call (Loc,
2014 Name => Call_Ref,
2015 Parameter_Associations => Actuals));
2017 -- Generate:
2018 -- Subp_Id (Actuals);
2020 else
2021 return
2022 Make_Procedure_Call_Statement (Loc,
2023 Name => Call_Ref,
2024 Parameter_Associations => Actuals);
2025 end if;
2026 end Build_Call;
2028 ----------------
2029 -- Build_Spec --
2030 ----------------
2032 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2033 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2034 Spec_Id : constant Entity_Id :=
2035 Make_Defining_Identifier (Loc,
2036 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2038 begin
2039 if Ekind (Formal_Spec) = E_Procedure then
2040 return
2041 Make_Procedure_Specification (Loc,
2042 Defining_Unit_Name => Spec_Id,
2043 Parameter_Specifications => Params);
2044 else
2045 return
2046 Make_Function_Specification (Loc,
2047 Defining_Unit_Name => Spec_Id,
2048 Parameter_Specifications => Params,
2049 Result_Definition =>
2050 New_Copy_Tree (Result_Definition (Spec)));
2051 end if;
2052 end Build_Spec;
2054 --------------------
2055 -- Find_Primitive --
2056 --------------------
2058 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2059 procedure Replace_Parameter_Types (Spec : Node_Id);
2060 -- Given a specification Spec, replace all class-wide parameter
2061 -- types with reference to type Typ.
2063 -----------------------------
2064 -- Replace_Parameter_Types --
2065 -----------------------------
2067 procedure Replace_Parameter_Types (Spec : Node_Id) is
2068 Formal : Node_Id;
2069 Formal_Id : Entity_Id;
2070 Formal_Typ : Node_Id;
2072 begin
2073 Formal := First (Parameter_Specifications (Spec));
2074 while Present (Formal) loop
2075 Formal_Id := Defining_Identifier (Formal);
2076 Formal_Typ := Parameter_Type (Formal);
2078 -- Create a new entity for each class-wide formal to prevent
2079 -- aliasing with the original renaming. Replace the type of
2080 -- such a parameter with the candidate type.
2082 if Nkind (Formal_Typ) = N_Identifier
2083 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2084 then
2085 Set_Defining_Identifier (Formal,
2086 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2088 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2089 end if;
2091 Next (Formal);
2092 end loop;
2093 end Replace_Parameter_Types;
2095 -- Local variables
2097 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2098 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2099 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2100 Subp_Id : Entity_Id;
2102 -- Start of processing for Find_Primitive
2104 begin
2105 -- Each attempt to find a suitable primitive of a particular type
2106 -- operates on its own copy of the original renaming. As a result
2107 -- the original renaming is kept decoration and side-effect free.
2109 -- Inherit the overloaded status of the renamed subprogram name
2111 if Is_Overloaded (Nam) then
2112 Set_Is_Overloaded (Alt_Nam);
2113 Save_Interps (Nam, Alt_Nam);
2114 end if;
2116 -- The copied renaming is hidden from visibility to prevent the
2117 -- pollution of the enclosing context.
2119 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2121 -- The types of all class-wide parameters must be changed to the
2122 -- candidate type.
2124 Replace_Parameter_Types (Alt_Spec);
2126 -- Try to find a suitable primitive which matches the altered
2127 -- profile of the renaming specification.
2129 Subp_Id :=
2130 Find_Renamed_Entity
2131 (N => Alt_Ren,
2132 Nam => Name (Alt_Ren),
2133 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2134 Is_Actual => Is_Actual);
2136 -- Do not return Any_Id if the resolion of the altered profile
2137 -- failed as this complicates further checks on the caller side,
2138 -- return Empty instead.
2140 if Subp_Id = Any_Id then
2141 return Empty;
2142 else
2143 return Subp_Id;
2144 end if;
2145 end Find_Primitive;
2147 --------------------------
2148 -- Interpretation_Error --
2149 --------------------------
2151 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2152 begin
2153 Error_Msg_Sloc := Sloc (Subp_Id);
2155 if Is_Internal (Subp_Id) then
2156 Error_Msg_NE
2157 ("\\possible interpretation: predefined & #",
2158 Spec, Formal_Spec);
2159 else
2160 Error_Msg_NE
2161 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2162 end if;
2163 end Interpretation_Error;
2165 ---------------------------
2166 -- Is_Intrinsic_Equality --
2167 ---------------------------
2169 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2170 begin
2171 return
2172 Ekind (Subp_Id) = E_Operator
2173 and then Chars (Subp_Id) = Name_Op_Eq
2174 and then Is_Intrinsic_Subprogram (Subp_Id);
2175 end Is_Intrinsic_Equality;
2177 ---------------------------
2178 -- Is_Suitable_Candidate --
2179 ---------------------------
2181 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2182 begin
2183 if No (Subp_Id) then
2184 return False;
2186 -- An intrinsic subprogram is never a good candidate. This is an
2187 -- indication of a missing primitive, either defined directly or
2188 -- inherited from a parent tagged type.
2190 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2191 return False;
2193 else
2194 return True;
2195 end if;
2196 end Is_Suitable_Candidate;
2198 -- Local variables
2200 Actual_Typ : Entity_Id := Empty;
2201 -- The actual class-wide type for Formal_Typ
2203 CW_Prim_OK : Boolean;
2204 CW_Prim_Op : Entity_Id;
2205 -- The class-wide subprogram (if available) which corresponds to the
2206 -- renamed generic formal subprogram.
2208 Formal_Typ : Entity_Id := Empty;
2209 -- The generic formal type with unknown discriminants
2211 Root_Prim_OK : Boolean;
2212 Root_Prim_Op : Entity_Id;
2213 -- The root type primitive (if available) which corresponds to the
2214 -- renamed generic formal subprogram.
2216 Root_Typ : Entity_Id := Empty;
2217 -- The root type of Actual_Typ
2219 Body_Decl : Node_Id;
2220 Formal : Node_Id;
2221 Prim_Op : Entity_Id;
2222 Spec_Decl : Node_Id;
2224 -- Start of processing for Build_Class_Wide_Wrapper
2226 begin
2227 -- Analyze the specification of the renaming in case the generation
2228 -- of the class-wide wrapper fails.
2230 Ren_Id := Analyze_Subprogram_Specification (Spec);
2231 Wrap_Id := Any_Id;
2233 -- Do not attempt to build a wrapper if the renaming is in error
2235 if Error_Posted (Nam) then
2236 return;
2237 end if;
2239 -- Analyze the renamed name, but do not resolve it. The resolution is
2240 -- completed once a suitable subprogram is found.
2242 Analyze (Nam);
2244 -- When the renamed name denotes the intrinsic operator equals, the
2245 -- name must be treated as overloaded. This allows for a potential
2246 -- match against the root type's predefined equality function.
2248 if Is_Intrinsic_Equality (Entity (Nam)) then
2249 Set_Is_Overloaded (Nam);
2250 Collect_Interps (Nam);
2251 end if;
2253 -- Step 1: Find the generic formal type with unknown discriminants
2254 -- and its corresponding class-wide actual type from the renamed
2255 -- generic formal subprogram.
2257 Formal := First_Formal (Formal_Spec);
2258 while Present (Formal) loop
2259 if Has_Unknown_Discriminants (Etype (Formal))
2260 and then not Is_Class_Wide_Type (Etype (Formal))
2261 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2262 then
2263 Formal_Typ := Etype (Formal);
2264 Actual_Typ := Get_Instance_Of (Formal_Typ);
2265 Root_Typ := Etype (Actual_Typ);
2266 exit;
2267 end if;
2269 Next_Formal (Formal);
2270 end loop;
2272 -- The specification of the generic formal subprogram should always
2273 -- contain a formal type with unknown discriminants whose actual is
2274 -- a class-wide type, otherwise this indicates a failure in routine
2275 -- Has_Class_Wide_Actual.
2277 pragma Assert (Present (Formal_Typ));
2279 -- Step 2: Find the proper class-wide subprogram or primitive which
2280 -- corresponds to the renamed generic formal subprogram.
2282 CW_Prim_Op := Find_Primitive (Actual_Typ);
2283 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2284 Root_Prim_Op := Find_Primitive (Root_Typ);
2285 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2287 -- The class-wide actual type has two subprograms which correspond to
2288 -- the renamed generic formal subprogram:
2290 -- with procedure Prim_Op (Param : Formal_Typ);
2292 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2293 -- procedure Prim_Op (Param : Actual_Typ'Class);
2295 -- Even though the declaration of the two subprograms is legal, a
2296 -- call to either one is ambiguous and therefore illegal.
2298 if CW_Prim_OK and Root_Prim_OK then
2300 -- A user-defined primitive has precedence over a predefined one
2302 if Is_Internal (CW_Prim_Op)
2303 and then not Is_Internal (Root_Prim_Op)
2304 then
2305 Prim_Op := Root_Prim_Op;
2307 elsif Is_Internal (Root_Prim_Op)
2308 and then not Is_Internal (CW_Prim_Op)
2309 then
2310 Prim_Op := CW_Prim_Op;
2312 elsif CW_Prim_Op = Root_Prim_Op then
2313 Prim_Op := Root_Prim_Op;
2315 -- Otherwise both candidate subprograms are user-defined and
2316 -- ambiguous.
2318 else
2319 Error_Msg_NE
2320 ("ambiguous actual for generic subprogram &",
2321 Spec, Formal_Spec);
2322 Interpretation_Error (Root_Prim_Op);
2323 Interpretation_Error (CW_Prim_Op);
2324 return;
2325 end if;
2327 elsif CW_Prim_OK and not Root_Prim_OK then
2328 Prim_Op := CW_Prim_Op;
2330 elsif not CW_Prim_OK and Root_Prim_OK then
2331 Prim_Op := Root_Prim_Op;
2333 -- An intrinsic equality may act as a suitable candidate in the case
2334 -- of a null type extension where the parent's equality is hidden. A
2335 -- call to an intrinsic equality is expanded as dispatching.
2337 elsif Present (Root_Prim_Op)
2338 and then Is_Intrinsic_Equality (Root_Prim_Op)
2339 then
2340 Prim_Op := Root_Prim_Op;
2342 -- Otherwise there are no candidate subprograms. Let the caller
2343 -- diagnose the error.
2345 else
2346 return;
2347 end if;
2349 -- At this point resolution has taken place and the name is no longer
2350 -- overloaded. Mark the primitive as referenced.
2352 Set_Is_Overloaded (Name (N), False);
2353 Set_Referenced (Prim_Op);
2355 -- Step 3: Create the declaration and the body of the wrapper, insert
2356 -- all the pieces into the tree.
2358 Spec_Decl :=
2359 Make_Subprogram_Declaration (Loc,
2360 Specification => Build_Spec (Ren_Id));
2361 Insert_Before_And_Analyze (N, Spec_Decl);
2363 -- If the operator carries an Eliminated pragma, indicate that the
2364 -- wrapper is also to be eliminated, to prevent spurious error when
2365 -- using gnatelim on programs that include box-initialization of
2366 -- equality operators.
2368 Wrap_Id := Defining_Entity (Spec_Decl);
2369 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2371 Body_Decl :=
2372 Make_Subprogram_Body (Loc,
2373 Specification => Build_Spec (Ren_Id),
2374 Declarations => New_List,
2375 Handled_Statement_Sequence =>
2376 Make_Handled_Sequence_Of_Statements (Loc,
2377 Statements => New_List (
2378 Build_Call
2379 (Subp_Id => Prim_Op,
2380 Params =>
2381 Parameter_Specifications
2382 (Specification (Spec_Decl))))));
2384 -- The generated body does not freeze and must be analyzed when the
2385 -- class-wide wrapper is frozen. The body is only needed if expansion
2386 -- is enabled.
2388 if Expander_Active then
2389 Append_Freeze_Action (Wrap_Id, Body_Decl);
2390 end if;
2392 -- Step 4: The subprogram renaming aliases the wrapper
2394 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2395 end Build_Class_Wide_Wrapper;
2397 --------------------------
2398 -- Check_Null_Exclusion --
2399 --------------------------
2401 procedure Check_Null_Exclusion
2402 (Ren : Entity_Id;
2403 Sub : Entity_Id)
2405 Ren_Formal : Entity_Id;
2406 Sub_Formal : Entity_Id;
2408 begin
2409 -- Parameter check
2411 Ren_Formal := First_Formal (Ren);
2412 Sub_Formal := First_Formal (Sub);
2413 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2414 if Has_Null_Exclusion (Parent (Ren_Formal))
2415 and then
2416 not (Has_Null_Exclusion (Parent (Sub_Formal))
2417 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2418 then
2419 Error_Msg_NE
2420 ("`NOT NULL` required for parameter &",
2421 Parent (Sub_Formal), Sub_Formal);
2422 end if;
2424 Next_Formal (Ren_Formal);
2425 Next_Formal (Sub_Formal);
2426 end loop;
2428 -- Return profile check
2430 if Nkind (Parent (Ren)) = N_Function_Specification
2431 and then Nkind (Parent (Sub)) = N_Function_Specification
2432 and then Has_Null_Exclusion (Parent (Ren))
2433 and then not (Has_Null_Exclusion (Parent (Sub))
2434 or else Can_Never_Be_Null (Etype (Sub)))
2435 then
2436 Error_Msg_N
2437 ("return must specify `NOT NULL`",
2438 Result_Definition (Parent (Sub)));
2439 end if;
2440 end Check_Null_Exclusion;
2442 ---------------------------
2443 -- Freeze_Actual_Profile --
2444 ---------------------------
2446 procedure Freeze_Actual_Profile is
2447 F : Entity_Id;
2448 Has_Untagged_Inc : Boolean;
2449 Instantiation_Node : constant Node_Id := Parent (N);
2451 begin
2452 if Ada_Version >= Ada_2012 then
2453 F := First_Formal (Formal_Spec);
2454 Has_Untagged_Inc := False;
2455 while Present (F) loop
2456 if Ekind (Etype (F)) = E_Incomplete_Type
2457 and then not Is_Tagged_Type (Etype (F))
2458 then
2459 Has_Untagged_Inc := True;
2460 exit;
2461 end if;
2463 F := Next_Formal (F);
2464 end loop;
2466 if Ekind (Formal_Spec) = E_Function
2467 and then Ekind (Etype (Formal_Spec)) = E_Incomplete_Type
2468 and then not Is_Tagged_Type (Etype (F))
2469 then
2470 Has_Untagged_Inc := True;
2471 end if;
2473 if not Has_Untagged_Inc then
2474 F := First_Formal (Old_S);
2475 while Present (F) loop
2476 Freeze_Before (Instantiation_Node, Etype (F));
2478 if Is_Incomplete_Or_Private_Type (Etype (F))
2479 and then No (Underlying_Type (Etype (F)))
2480 then
2481 -- Exclude generic types, or types derived from them.
2482 -- They will be frozen in the enclosing instance.
2484 if Is_Generic_Type (Etype (F))
2485 or else Is_Generic_Type (Root_Type (Etype (F)))
2486 then
2487 null;
2488 else
2489 Error_Msg_NE
2490 ("type& must be frozen before this point",
2491 Instantiation_Node, Etype (F));
2492 end if;
2493 end if;
2495 F := Next_Formal (F);
2496 end loop;
2497 end if;
2498 end if;
2499 end Freeze_Actual_Profile;
2501 ---------------------------
2502 -- Has_Class_Wide_Actual --
2503 ---------------------------
2505 function Has_Class_Wide_Actual return Boolean is
2506 Formal : Entity_Id;
2507 Formal_Typ : Entity_Id;
2509 begin
2510 if Is_Actual then
2511 Formal := First_Formal (Formal_Spec);
2512 while Present (Formal) loop
2513 Formal_Typ := Etype (Formal);
2515 if Has_Unknown_Discriminants (Formal_Typ)
2516 and then not Is_Class_Wide_Type (Formal_Typ)
2517 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2518 then
2519 return True;
2520 end if;
2522 Next_Formal (Formal);
2523 end loop;
2524 end if;
2526 return False;
2527 end Has_Class_Wide_Actual;
2529 -------------------------
2530 -- Original_Subprogram --
2531 -------------------------
2533 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2534 Orig_Decl : Node_Id;
2535 Orig_Subp : Entity_Id;
2537 begin
2538 -- First case: renamed entity is itself a renaming
2540 if Present (Alias (Subp)) then
2541 return Alias (Subp);
2543 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2544 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2545 then
2546 -- Check if renamed entity is a renaming_as_body
2548 Orig_Decl :=
2549 Unit_Declaration_Node
2550 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2552 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2553 Orig_Subp := Entity (Name (Orig_Decl));
2555 if Orig_Subp = Rename_Spec then
2557 -- Circularity detected
2559 return Orig_Subp;
2561 else
2562 return (Original_Subprogram (Orig_Subp));
2563 end if;
2564 else
2565 return Subp;
2566 end if;
2567 else
2568 return Subp;
2569 end if;
2570 end Original_Subprogram;
2572 -- Local variables
2574 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2575 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2576 -- defaulted formal subprogram when the actual for a related formal
2577 -- type is class-wide.
2579 Inst_Node : Node_Id := Empty;
2580 New_S : Entity_Id;
2582 -- Start of processing for Analyze_Subprogram_Renaming
2584 begin
2585 -- The subprogram renaming declaration may be subject to pragma Ghost
2586 -- with policy Ignore. Set the mode now to ensure that any nodes
2587 -- generated during analysis and expansion are properly flagged as
2588 -- ignored Ghost.
2590 Set_Ghost_Mode (N);
2592 -- We must test for the attribute renaming case before the Analyze
2593 -- call because otherwise Sem_Attr will complain that the attribute
2594 -- is missing an argument when it is analyzed.
2596 if Nkind (Nam) = N_Attribute_Reference then
2598 -- In the case of an abstract formal subprogram association, rewrite
2599 -- an actual given by a stream attribute as the name of the
2600 -- corresponding stream primitive of the type.
2602 -- In a generic context the stream operations are not generated, and
2603 -- this must be treated as a normal attribute reference, to be
2604 -- expanded in subsequent instantiations.
2606 if Is_Actual
2607 and then Is_Abstract_Subprogram (Formal_Spec)
2608 and then Expander_Active
2609 then
2610 declare
2611 Stream_Prim : Entity_Id;
2612 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2614 begin
2615 -- The class-wide forms of the stream attributes are not
2616 -- primitive dispatching operations (even though they
2617 -- internally dispatch to a stream attribute).
2619 if Is_Class_Wide_Type (Prefix_Type) then
2620 Error_Msg_N
2621 ("attribute must be a primitive dispatching operation",
2622 Nam);
2623 return;
2624 end if;
2626 -- Retrieve the primitive subprogram associated with the
2627 -- attribute. This can only be a stream attribute, since those
2628 -- are the only ones that are dispatching (and the actual for
2629 -- an abstract formal subprogram must be dispatching
2630 -- operation).
2632 begin
2633 case Attribute_Name (Nam) is
2634 when Name_Input =>
2635 Stream_Prim :=
2636 Find_Prim_Op (Prefix_Type, TSS_Stream_Input);
2637 when Name_Output =>
2638 Stream_Prim :=
2639 Find_Prim_Op (Prefix_Type, TSS_Stream_Output);
2640 when Name_Read =>
2641 Stream_Prim :=
2642 Find_Prim_Op (Prefix_Type, TSS_Stream_Read);
2643 when Name_Write =>
2644 Stream_Prim :=
2645 Find_Prim_Op (Prefix_Type, TSS_Stream_Write);
2646 when others =>
2647 Error_Msg_N
2648 ("attribute must be a primitive"
2649 & " dispatching operation", Nam);
2650 return;
2651 end case;
2653 exception
2655 -- If no operation was found, and the type is limited,
2656 -- the user should have defined one.
2658 when Program_Error =>
2659 if Is_Limited_Type (Prefix_Type) then
2660 Error_Msg_NE
2661 ("stream operation not defined for type&",
2662 N, Prefix_Type);
2663 return;
2665 -- Otherwise, compiler should have generated default
2667 else
2668 raise;
2669 end if;
2670 end;
2672 -- Rewrite the attribute into the name of its corresponding
2673 -- primitive dispatching subprogram. We can then proceed with
2674 -- the usual processing for subprogram renamings.
2676 declare
2677 Prim_Name : constant Node_Id :=
2678 Make_Identifier (Sloc (Nam),
2679 Chars => Chars (Stream_Prim));
2680 begin
2681 Set_Entity (Prim_Name, Stream_Prim);
2682 Rewrite (Nam, Prim_Name);
2683 Analyze (Nam);
2684 end;
2685 end;
2687 -- Normal processing for a renaming of an attribute
2689 else
2690 Attribute_Renaming (N);
2691 return;
2692 end if;
2693 end if;
2695 -- Check whether this declaration corresponds to the instantiation
2696 -- of a formal subprogram.
2698 -- If this is an instantiation, the corresponding actual is frozen and
2699 -- error messages can be made more precise. If this is a default
2700 -- subprogram, the entity is already established in the generic, and is
2701 -- not retrieved by visibility. If it is a default with a box, the
2702 -- candidate interpretations, if any, have been collected when building
2703 -- the renaming declaration. If overloaded, the proper interpretation is
2704 -- determined in Find_Renamed_Entity. If the entity is an operator,
2705 -- Find_Renamed_Entity applies additional visibility checks.
2707 if Is_Actual then
2708 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2710 -- Check whether the renaming is for a defaulted actual subprogram
2711 -- with a class-wide actual.
2713 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2714 -- is an external axiomatization on the package.
2716 if CW_Actual
2717 and then Box_Present (Inst_Node)
2718 and then not
2719 (GNATprove_Mode
2720 and then
2721 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2722 then
2723 Build_Class_Wide_Wrapper (New_S, Old_S);
2725 elsif Is_Entity_Name (Nam)
2726 and then Present (Entity (Nam))
2727 and then not Comes_From_Source (Nam)
2728 and then not Is_Overloaded (Nam)
2729 then
2730 Old_S := Entity (Nam);
2731 New_S := Analyze_Subprogram_Specification (Spec);
2733 -- Operator case
2735 if Ekind (Entity (Nam)) = E_Operator then
2737 -- Box present
2739 if Box_Present (Inst_Node) then
2740 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2742 -- If there is an immediately visible homonym of the operator
2743 -- and the declaration has a default, this is worth a warning
2744 -- because the user probably did not intend to get the pre-
2745 -- defined operator, visible in the generic declaration. To
2746 -- find if there is an intended candidate, analyze the renaming
2747 -- again in the current context.
2749 elsif Scope (Old_S) = Standard_Standard
2750 and then Present (Default_Name (Inst_Node))
2751 then
2752 declare
2753 Decl : constant Node_Id := New_Copy_Tree (N);
2754 Hidden : Entity_Id;
2756 begin
2757 Set_Entity (Name (Decl), Empty);
2758 Analyze (Name (Decl));
2759 Hidden :=
2760 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2762 if Present (Hidden)
2763 and then In_Open_Scopes (Scope (Hidden))
2764 and then Is_Immediately_Visible (Hidden)
2765 and then Comes_From_Source (Hidden)
2766 and then Hidden /= Old_S
2767 then
2768 Error_Msg_Sloc := Sloc (Hidden);
2769 Error_Msg_N ("default subprogram is resolved " &
2770 "in the generic declaration " &
2771 "(RM 12.6(17))??", N);
2772 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2773 end if;
2774 end;
2775 end if;
2776 end if;
2778 else
2779 Analyze (Nam);
2780 New_S := Analyze_Subprogram_Specification (Spec);
2781 end if;
2783 else
2784 -- Renamed entity must be analyzed first, to avoid being hidden by
2785 -- new name (which might be the same in a generic instance).
2787 Analyze (Nam);
2789 -- The renaming defines a new overloaded entity, which is analyzed
2790 -- like a subprogram declaration.
2792 New_S := Analyze_Subprogram_Specification (Spec);
2793 end if;
2795 if Current_Scope /= Standard_Standard then
2796 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2797 end if;
2799 -- Set SPARK mode from current context
2801 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2802 Set_SPARK_Pragma_Inherited (New_S, True);
2804 Rename_Spec := Find_Corresponding_Spec (N);
2806 -- Case of Renaming_As_Body
2808 if Present (Rename_Spec) then
2810 -- Renaming declaration is the completion of the declaration of
2811 -- Rename_Spec. We build an actual body for it at the freezing point.
2813 Set_Corresponding_Spec (N, Rename_Spec);
2815 -- Deal with special case of stream functions of abstract types
2816 -- and interfaces.
2818 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2819 N_Abstract_Subprogram_Declaration
2820 then
2821 -- Input stream functions are abstract if the object type is
2822 -- abstract. Similarly, all default stream functions for an
2823 -- interface type are abstract. However, these subprograms may
2824 -- receive explicit declarations in representation clauses, making
2825 -- the attribute subprograms usable as defaults in subsequent
2826 -- type extensions.
2827 -- In this case we rewrite the declaration to make the subprogram
2828 -- non-abstract. We remove the previous declaration, and insert
2829 -- the new one at the point of the renaming, to prevent premature
2830 -- access to unfrozen types. The new declaration reuses the
2831 -- specification of the previous one, and must not be analyzed.
2833 pragma Assert
2834 (Is_Primitive (Entity (Nam))
2835 and then
2836 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2837 declare
2838 Old_Decl : constant Node_Id :=
2839 Unit_Declaration_Node (Rename_Spec);
2840 New_Decl : constant Node_Id :=
2841 Make_Subprogram_Declaration (Sloc (N),
2842 Specification =>
2843 Relocate_Node (Specification (Old_Decl)));
2844 begin
2845 Remove (Old_Decl);
2846 Insert_After (N, New_Decl);
2847 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2848 Set_Analyzed (New_Decl);
2849 end;
2850 end if;
2852 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2854 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2855 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2856 end if;
2858 Set_Convention (New_S, Convention (Rename_Spec));
2859 Check_Fully_Conformant (New_S, Rename_Spec);
2860 Set_Public_Status (New_S);
2862 -- The specification does not introduce new formals, but only
2863 -- repeats the formals of the original subprogram declaration.
2864 -- For cross-reference purposes, and for refactoring tools, we
2865 -- treat the formals of the renaming declaration as body formals.
2867 Reference_Body_Formals (Rename_Spec, New_S);
2869 -- Indicate that the entity in the declaration functions like the
2870 -- corresponding body, and is not a new entity. The body will be
2871 -- constructed later at the freeze point, so indicate that the
2872 -- completion has not been seen yet.
2874 Set_Ekind (New_S, E_Subprogram_Body);
2875 New_S := Rename_Spec;
2876 Set_Has_Completion (Rename_Spec, False);
2878 -- Ada 2005: check overriding indicator
2880 if Present (Overridden_Operation (Rename_Spec)) then
2881 if Must_Not_Override (Specification (N)) then
2882 Error_Msg_NE
2883 ("subprogram& overrides inherited operation",
2884 N, Rename_Spec);
2885 elsif
2886 Style_Check and then not Must_Override (Specification (N))
2887 then
2888 Style.Missing_Overriding (N, Rename_Spec);
2889 end if;
2891 elsif Must_Override (Specification (N)) then
2892 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
2893 end if;
2895 -- Normal subprogram renaming (not renaming as body)
2897 else
2898 Generate_Definition (New_S);
2899 New_Overloaded_Entity (New_S);
2901 if Is_Entity_Name (Nam)
2902 and then Is_Intrinsic_Subprogram (Entity (Nam))
2903 then
2904 null;
2905 else
2906 Check_Delayed_Subprogram (New_S);
2907 end if;
2908 end if;
2910 -- There is no need for elaboration checks on the new entity, which may
2911 -- be called before the next freezing point where the body will appear.
2912 -- Elaboration checks refer to the real entity, not the one created by
2913 -- the renaming declaration.
2915 Set_Kill_Elaboration_Checks (New_S, True);
2917 -- If we had a previous error, indicate a completely is present to stop
2918 -- junk cascaded messages, but don't take any further action.
2920 if Etype (Nam) = Any_Type then
2921 Set_Has_Completion (New_S);
2922 return;
2924 -- Case where name has the form of a selected component
2926 elsif Nkind (Nam) = N_Selected_Component then
2928 -- A name which has the form A.B can designate an entry of task A, a
2929 -- protected operation of protected object A, or finally a primitive
2930 -- operation of object A. In the later case, A is an object of some
2931 -- tagged type, or an access type that denotes one such. To further
2932 -- distinguish these cases, note that the scope of a task entry or
2933 -- protected operation is type of the prefix.
2935 -- The prefix could be an overloaded function call that returns both
2936 -- kinds of operations. This overloading pathology is left to the
2937 -- dedicated reader ???
2939 declare
2940 T : constant Entity_Id := Etype (Prefix (Nam));
2942 begin
2943 if Present (T)
2944 and then
2945 (Is_Tagged_Type (T)
2946 or else
2947 (Is_Access_Type (T)
2948 and then Is_Tagged_Type (Designated_Type (T))))
2949 and then Scope (Entity (Selector_Name (Nam))) /= T
2950 then
2951 Analyze_Renamed_Primitive_Operation
2952 (N, New_S, Present (Rename_Spec));
2953 return;
2955 else
2956 -- Renamed entity is an entry or protected operation. For those
2957 -- cases an explicit body is built (at the point of freezing of
2958 -- this entity) that contains a call to the renamed entity.
2960 -- This is not allowed for renaming as body if the renamed
2961 -- spec is already frozen (see RM 8.5.4(5) for details).
2963 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
2964 Error_Msg_N
2965 ("renaming-as-body cannot rename entry as subprogram", N);
2966 Error_Msg_NE
2967 ("\since & is already frozen (RM 8.5.4(5))",
2968 N, Rename_Spec);
2969 else
2970 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
2971 end if;
2973 return;
2974 end if;
2975 end;
2977 -- Case where name is an explicit dereference X.all
2979 elsif Nkind (Nam) = N_Explicit_Dereference then
2981 -- Renamed entity is designated by access_to_subprogram expression.
2982 -- Must build body to encapsulate call, as in the entry case.
2984 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
2985 return;
2987 -- Indexed component
2989 elsif Nkind (Nam) = N_Indexed_Component then
2990 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
2991 return;
2993 -- Character literal
2995 elsif Nkind (Nam) = N_Character_Literal then
2996 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
2997 return;
2999 -- Only remaining case is where we have a non-entity name, or a renaming
3000 -- of some other non-overloadable entity.
3002 elsif not Is_Entity_Name (Nam)
3003 or else not Is_Overloadable (Entity (Nam))
3004 then
3005 -- Do not mention the renaming if it comes from an instance
3007 if not Is_Actual then
3008 Error_Msg_N ("expect valid subprogram name in renaming", N);
3009 else
3010 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3011 end if;
3013 return;
3014 end if;
3016 -- Find the renamed entity that matches the given specification. Disable
3017 -- Ada_83 because there is no requirement of full conformance between
3018 -- renamed entity and new entity, even though the same circuit is used.
3020 -- This is a bit of an odd case, which introduces a really irregular use
3021 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3022 -- this. ???
3024 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3025 Ada_Version_Pragma := Empty;
3026 Ada_Version_Explicit := Ada_Version;
3028 if No (Old_S) then
3029 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3031 -- The visible operation may be an inherited abstract operation that
3032 -- was overridden in the private part, in which case a call will
3033 -- dispatch to the overriding operation. Use the overriding one in
3034 -- the renaming declaration, to prevent spurious errors below.
3036 if Is_Overloadable (Old_S)
3037 and then Is_Abstract_Subprogram (Old_S)
3038 and then No (DTC_Entity (Old_S))
3039 and then Present (Alias (Old_S))
3040 and then not Is_Abstract_Subprogram (Alias (Old_S))
3041 and then Present (Overridden_Operation (Alias (Old_S)))
3042 then
3043 Old_S := Alias (Old_S);
3044 end if;
3046 -- When the renamed subprogram is overloaded and used as an actual
3047 -- of a generic, its entity is set to the first available homonym.
3048 -- We must first disambiguate the name, then set the proper entity.
3050 if Is_Actual and then Is_Overloaded (Nam) then
3051 Set_Entity (Nam, Old_S);
3052 end if;
3053 end if;
3055 -- Most common case: subprogram renames subprogram. No body is generated
3056 -- in this case, so we must indicate the declaration is complete as is.
3057 -- and inherit various attributes of the renamed subprogram.
3059 if No (Rename_Spec) then
3060 Set_Has_Completion (New_S);
3061 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3062 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3063 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3065 -- A subprogram renaming is Ghost if the renamed entity is Ghost or
3066 -- the construct appears within a Ghost scope.
3068 if Is_Ghost_Entity (Entity (Nam)) or else Ghost_Mode > None then
3069 Set_Is_Ghost_Entity (New_S);
3070 end if;
3072 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3073 -- between a subprogram and its correct renaming.
3075 -- Note: the Any_Id check is a guard that prevents compiler crashes
3076 -- when performing a null exclusion check between a renaming and a
3077 -- renamed subprogram that has been found to be illegal.
3079 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3080 Check_Null_Exclusion
3081 (Ren => New_S,
3082 Sub => Entity (Nam));
3083 end if;
3085 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3086 -- overriding. The flag Requires_Overriding is set very selectively
3087 -- and misses some other illegal cases. The additional conditions
3088 -- checked below are sufficient but not necessary ???
3090 -- The rule does not apply to the renaming generated for an actual
3091 -- subprogram in an instance.
3093 if Is_Actual then
3094 null;
3096 -- Guard against previous errors, and omit renamings of predefined
3097 -- operators.
3099 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3100 null;
3102 elsif Requires_Overriding (Old_S)
3103 or else
3104 (Is_Abstract_Subprogram (Old_S)
3105 and then Present (Find_Dispatching_Type (Old_S))
3106 and then
3107 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3108 then
3109 Error_Msg_N
3110 ("renamed entity cannot be "
3111 & "subprogram that requires overriding (RM 8.5.4 (5.1))", N);
3112 end if;
3113 end if;
3115 if Old_S /= Any_Id then
3116 if Is_Actual and then From_Default (N) then
3118 -- This is an implicit reference to the default actual
3120 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3122 else
3123 Generate_Reference (Old_S, Nam);
3124 end if;
3126 Check_Internal_Protected_Use (N, Old_S);
3128 -- For a renaming-as-body, require subtype conformance, but if the
3129 -- declaration being completed has not been frozen, then inherit the
3130 -- convention of the renamed subprogram prior to checking conformance
3131 -- (unless the renaming has an explicit convention established; the
3132 -- rule stated in the RM doesn't seem to address this ???).
3134 if Present (Rename_Spec) then
3135 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3136 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3138 if not Is_Frozen (Rename_Spec) then
3139 if not Has_Convention_Pragma (Rename_Spec) then
3140 Set_Convention (New_S, Convention (Old_S));
3141 end if;
3143 if Ekind (Old_S) /= E_Operator then
3144 Check_Mode_Conformant (New_S, Old_S, Spec);
3145 end if;
3147 if Original_Subprogram (Old_S) = Rename_Spec then
3148 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3149 end if;
3150 else
3151 Check_Subtype_Conformant (New_S, Old_S, Spec);
3152 end if;
3154 Check_Frozen_Renaming (N, Rename_Spec);
3156 -- Check explicitly that renamed entity is not intrinsic, because
3157 -- in a generic the renamed body is not built. In this case,
3158 -- the renaming_as_body is a completion.
3160 if Inside_A_Generic then
3161 if Is_Frozen (Rename_Spec)
3162 and then Is_Intrinsic_Subprogram (Old_S)
3163 then
3164 Error_Msg_N
3165 ("subprogram in renaming_as_body cannot be intrinsic",
3166 Name (N));
3167 end if;
3169 Set_Has_Completion (Rename_Spec);
3170 end if;
3172 elsif Ekind (Old_S) /= E_Operator then
3174 -- If this a defaulted subprogram for a class-wide actual there is
3175 -- no check for mode conformance, given that the signatures don't
3176 -- match (the source mentions T but the actual mentions T'Class).
3178 if CW_Actual then
3179 null;
3180 elsif not Is_Actual or else No (Enclosing_Instance) then
3181 Check_Mode_Conformant (New_S, Old_S);
3182 end if;
3184 if Is_Actual and then Error_Posted (New_S) then
3185 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3186 end if;
3187 end if;
3189 if No (Rename_Spec) then
3191 -- The parameter profile of the new entity is that of the renamed
3192 -- entity: the subtypes given in the specification are irrelevant.
3194 Inherit_Renamed_Profile (New_S, Old_S);
3196 -- A call to the subprogram is transformed into a call to the
3197 -- renamed entity. This is transitive if the renamed entity is
3198 -- itself a renaming.
3200 if Present (Alias (Old_S)) then
3201 Set_Alias (New_S, Alias (Old_S));
3202 else
3203 Set_Alias (New_S, Old_S);
3204 end if;
3206 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3207 -- renaming as body, since the entity in this case is not an
3208 -- intrinsic (it calls an intrinsic, but we have a real body for
3209 -- this call, and it is in this body that the required intrinsic
3210 -- processing will take place).
3212 -- Also, if this is a renaming of inequality, the renamed operator
3213 -- is intrinsic, but what matters is the corresponding equality
3214 -- operator, which may be user-defined.
3216 Set_Is_Intrinsic_Subprogram
3217 (New_S,
3218 Is_Intrinsic_Subprogram (Old_S)
3219 and then
3220 (Chars (Old_S) /= Name_Op_Ne
3221 or else Ekind (Old_S) = E_Operator
3222 or else Is_Intrinsic_Subprogram
3223 (Corresponding_Equality (Old_S))));
3225 if Ekind (Alias (New_S)) = E_Operator then
3226 Set_Has_Delayed_Freeze (New_S, False);
3227 end if;
3229 -- If the renaming corresponds to an association for an abstract
3230 -- formal subprogram, then various attributes must be set to
3231 -- indicate that the renaming is an abstract dispatching operation
3232 -- with a controlling type.
3234 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3236 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3237 -- see it as corresponding to a generic association for a
3238 -- formal abstract subprogram
3240 Set_Is_Abstract_Subprogram (New_S);
3242 declare
3243 New_S_Ctrl_Type : constant Entity_Id :=
3244 Find_Dispatching_Type (New_S);
3245 Old_S_Ctrl_Type : constant Entity_Id :=
3246 Find_Dispatching_Type (Old_S);
3248 begin
3249 if Old_S_Ctrl_Type /= New_S_Ctrl_Type then
3250 Error_Msg_NE
3251 ("actual must be dispatching subprogram for type&",
3252 Nam, New_S_Ctrl_Type);
3254 else
3255 Set_Is_Dispatching_Operation (New_S);
3256 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3258 -- If the actual in the formal subprogram is itself a
3259 -- formal abstract subprogram association, there's no
3260 -- dispatch table component or position to inherit.
3262 if Present (DTC_Entity (Old_S)) then
3263 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3264 Set_DT_Position (New_S, DT_Position (Old_S));
3265 end if;
3266 end if;
3267 end;
3268 end if;
3269 end if;
3271 if Is_Actual then
3272 null;
3274 -- The following is illegal, because F hides whatever other F may
3275 -- be around:
3276 -- function F (...) renames F;
3278 elsif Old_S = New_S
3279 or else (Nkind (Nam) /= N_Expanded_Name
3280 and then Chars (Old_S) = Chars (New_S))
3281 then
3282 Error_Msg_N ("subprogram cannot rename itself", N);
3284 -- This is illegal even if we use a selector:
3285 -- function F (...) renames Pkg.F;
3286 -- because F is still hidden.
3288 elsif Nkind (Nam) = N_Expanded_Name
3289 and then Entity (Prefix (Nam)) = Current_Scope
3290 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3291 then
3292 -- This is an error, but we overlook the error and accept the
3293 -- renaming if the special Overriding_Renamings mode is in effect.
3295 if not Overriding_Renamings then
3296 Error_Msg_NE
3297 ("implicit operation& is not visible (RM 8.3 (15))",
3298 Nam, Old_S);
3299 end if;
3300 end if;
3302 Set_Convention (New_S, Convention (Old_S));
3304 if Is_Abstract_Subprogram (Old_S) then
3305 if Present (Rename_Spec) then
3306 Error_Msg_N
3307 ("a renaming-as-body cannot rename an abstract subprogram",
3309 Set_Has_Completion (Rename_Spec);
3310 else
3311 Set_Is_Abstract_Subprogram (New_S);
3312 end if;
3313 end if;
3315 Check_Library_Unit_Renaming (N, Old_S);
3317 -- Pathological case: procedure renames entry in the scope of its
3318 -- task. Entry is given by simple name, but body must be built for
3319 -- procedure. Of course if called it will deadlock.
3321 if Ekind (Old_S) = E_Entry then
3322 Set_Has_Completion (New_S, False);
3323 Set_Alias (New_S, Empty);
3324 end if;
3326 if Is_Actual then
3327 Freeze_Before (N, Old_S);
3328 Freeze_Actual_Profile;
3329 Set_Has_Delayed_Freeze (New_S, False);
3330 Freeze_Before (N, New_S);
3332 -- An abstract subprogram is only allowed as an actual in the case
3333 -- where the formal subprogram is also abstract.
3335 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3336 and then Is_Abstract_Subprogram (Old_S)
3337 and then not Is_Abstract_Subprogram (Formal_Spec)
3338 then
3339 Error_Msg_N
3340 ("abstract subprogram not allowed as generic actual", Nam);
3341 end if;
3342 end if;
3344 else
3345 -- A common error is to assume that implicit operators for types are
3346 -- defined in Standard, or in the scope of a subtype. In those cases
3347 -- where the renamed entity is given with an expanded name, it is
3348 -- worth mentioning that operators for the type are not declared in
3349 -- the scope given by the prefix.
3351 if Nkind (Nam) = N_Expanded_Name
3352 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3353 and then Scope (Entity (Nam)) = Standard_Standard
3354 then
3355 declare
3356 T : constant Entity_Id :=
3357 Base_Type (Etype (First_Formal (New_S)));
3358 begin
3359 Error_Msg_Node_2 := Prefix (Nam);
3360 Error_Msg_NE
3361 ("operator for type& is not declared in&", Prefix (Nam), T);
3362 end;
3364 else
3365 Error_Msg_NE
3366 ("no visible subprogram matches the specification for&",
3367 Spec, New_S);
3368 end if;
3370 if Present (Candidate_Renaming) then
3371 declare
3372 F1 : Entity_Id;
3373 F2 : Entity_Id;
3374 T1 : Entity_Id;
3376 begin
3377 F1 := First_Formal (Candidate_Renaming);
3378 F2 := First_Formal (New_S);
3379 T1 := First_Subtype (Etype (F1));
3380 while Present (F1) and then Present (F2) loop
3381 Next_Formal (F1);
3382 Next_Formal (F2);
3383 end loop;
3385 if Present (F1) and then Present (Default_Value (F1)) then
3386 if Present (Next_Formal (F1)) then
3387 Error_Msg_NE
3388 ("\missing specification for &" &
3389 " and other formals with defaults", Spec, F1);
3390 else
3391 Error_Msg_NE
3392 ("\missing specification for &", Spec, F1);
3393 end if;
3394 end if;
3396 if Nkind (Nam) = N_Operator_Symbol
3397 and then From_Default (N)
3398 then
3399 Error_Msg_Node_2 := T1;
3400 Error_Msg_NE
3401 ("default & on & is not directly visible",
3402 Nam, Nam);
3403 end if;
3404 end;
3405 end if;
3406 end if;
3408 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3409 -- controlling access parameters are known non-null for the renamed
3410 -- subprogram. Test also applies to a subprogram instantiation that
3411 -- is dispatching. Test is skipped if some previous error was detected
3412 -- that set Old_S to Any_Id.
3414 if Ada_Version >= Ada_2005
3415 and then Old_S /= Any_Id
3416 and then not Is_Dispatching_Operation (Old_S)
3417 and then Is_Dispatching_Operation (New_S)
3418 then
3419 declare
3420 Old_F : Entity_Id;
3421 New_F : Entity_Id;
3423 begin
3424 Old_F := First_Formal (Old_S);
3425 New_F := First_Formal (New_S);
3426 while Present (Old_F) loop
3427 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3428 and then Is_Controlling_Formal (New_F)
3429 and then not Can_Never_Be_Null (Old_F)
3430 then
3431 Error_Msg_N ("access parameter is controlling,", New_F);
3432 Error_Msg_NE
3433 ("\corresponding parameter of& "
3434 & "must be explicitly null excluding", New_F, Old_S);
3435 end if;
3437 Next_Formal (Old_F);
3438 Next_Formal (New_F);
3439 end loop;
3440 end;
3441 end if;
3443 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3444 -- is to warn if an operator is being renamed as a different operator.
3445 -- If the operator is predefined, examine the kind of the entity, not
3446 -- the abbreviated declaration in Standard.
3448 if Comes_From_Source (N)
3449 and then Present (Old_S)
3450 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3451 or else Ekind (Old_S) = E_Operator)
3452 and then Nkind (New_S) = N_Defining_Operator_Symbol
3453 and then Chars (Old_S) /= Chars (New_S)
3454 then
3455 Error_Msg_NE
3456 ("& is being renamed as a different operator??", N, Old_S);
3457 end if;
3459 -- Check for renaming of obsolescent subprogram
3461 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3463 -- Another warning or some utility: if the new subprogram as the same
3464 -- name as the old one, the old one is not hidden by an outer homograph,
3465 -- the new one is not a public symbol, and the old one is otherwise
3466 -- directly visible, the renaming is superfluous.
3468 if Chars (Old_S) = Chars (New_S)
3469 and then Comes_From_Source (N)
3470 and then Scope (Old_S) /= Standard_Standard
3471 and then Warn_On_Redundant_Constructs
3472 and then (Is_Immediately_Visible (Old_S)
3473 or else Is_Potentially_Use_Visible (Old_S))
3474 and then Is_Overloadable (Current_Scope)
3475 and then Chars (Current_Scope) /= Chars (Old_S)
3476 then
3477 Error_Msg_N
3478 ("redundant renaming, entity is directly visible?r?", Name (N));
3479 end if;
3481 -- Implementation-defined aspect specifications can appear in a renaming
3482 -- declaration, but not language-defined ones. The call to procedure
3483 -- Analyze_Aspect_Specifications will take care of this error check.
3485 if Has_Aspects (N) then
3486 Analyze_Aspect_Specifications (N, New_S);
3487 end if;
3489 Ada_Version := Save_AV;
3490 Ada_Version_Pragma := Save_AVP;
3491 Ada_Version_Explicit := Save_AV_Exp;
3493 -- In GNATprove mode, the renamings of actual subprograms are replaced
3494 -- with wrapper functions that make it easier to propagate axioms to the
3495 -- points of call within an instance. Wrappers are generated if formal
3496 -- subprogram is subject to axiomatization.
3498 -- The types in the wrapper profiles are obtained from (instances of)
3499 -- the types of the formal subprogram.
3501 if Is_Actual
3502 and then GNATprove_Mode
3503 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3504 and then not Inside_A_Generic
3505 then
3506 if Ekind (Old_S) = E_Function then
3507 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3508 Analyze (N);
3510 elsif Ekind (Old_S) = E_Operator then
3511 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3512 Analyze (N);
3513 end if;
3514 end if;
3515 end Analyze_Subprogram_Renaming;
3517 -------------------------
3518 -- Analyze_Use_Package --
3519 -------------------------
3521 -- Resolve the package names in the use clause, and make all the visible
3522 -- entities defined in the package potentially use-visible. If the package
3523 -- is already in use from a previous use clause, its visible entities are
3524 -- already use-visible. In that case, mark the occurrence as a redundant
3525 -- use. If the package is an open scope, i.e. if the use clause occurs
3526 -- within the package itself, ignore it.
3528 procedure Analyze_Use_Package (N : Node_Id) is
3529 Pack_Name : Node_Id;
3530 Pack : Entity_Id;
3532 -- Start of processing for Analyze_Use_Package
3534 begin
3535 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3537 Set_Hidden_By_Use_Clause (N, No_Elist);
3539 -- Use clause not allowed in a spec of a predefined package declaration
3540 -- except that packages whose file name starts a-n are OK (these are
3541 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3543 if Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
3544 and then Name_Buffer (1 .. 3) /= "a-n"
3545 and then
3546 Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
3547 then
3548 Error_Msg_N ("use clause not allowed in predefined spec", N);
3549 end if;
3551 -- Chain clause to list of use clauses in current scope
3553 if Nkind (Parent (N)) /= N_Compilation_Unit then
3554 Chain_Use_Clause (N);
3555 end if;
3557 -- Loop through package names to identify referenced packages
3559 Pack_Name := First (Names (N));
3560 while Present (Pack_Name) loop
3561 Analyze (Pack_Name);
3563 if Nkind (Parent (N)) = N_Compilation_Unit
3564 and then Nkind (Pack_Name) = N_Expanded_Name
3565 then
3566 declare
3567 Pref : Node_Id;
3569 begin
3570 Pref := Prefix (Pack_Name);
3571 while Nkind (Pref) = N_Expanded_Name loop
3572 Pref := Prefix (Pref);
3573 end loop;
3575 if Entity (Pref) = Standard_Standard then
3576 Error_Msg_N
3577 ("predefined package Standard cannot appear"
3578 & " in a context clause", Pref);
3579 end if;
3580 end;
3581 end if;
3583 Next (Pack_Name);
3584 end loop;
3586 -- Loop through package names to mark all entities as potentially
3587 -- use visible.
3589 Pack_Name := First (Names (N));
3590 while Present (Pack_Name) loop
3591 if Is_Entity_Name (Pack_Name) then
3592 Pack := Entity (Pack_Name);
3594 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3595 if Ekind (Pack) = E_Generic_Package then
3596 Error_Msg_N -- CODEFIX
3597 ("a generic package is not allowed in a use clause",
3598 Pack_Name);
3600 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3601 then
3602 Error_Msg_N -- CODEFIX
3603 ("a generic subprogram is not allowed in a use clause",
3604 Pack_Name);
3606 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3607 Error_Msg_N -- CODEFIX
3608 ("a subprogram is not allowed in a use clause",
3609 Pack_Name);
3611 else
3612 Error_Msg_N ("& is not allowed in a use clause", Pack_Name);
3613 end if;
3615 else
3616 if Nkind (Parent (N)) = N_Compilation_Unit then
3617 Check_In_Previous_With_Clause (N, Pack_Name);
3618 end if;
3620 if Applicable_Use (Pack_Name) then
3621 Use_One_Package (Pack, N);
3622 end if;
3623 end if;
3625 -- Report error because name denotes something other than a package
3627 else
3628 Error_Msg_N ("& is not a package", Pack_Name);
3629 end if;
3631 Next (Pack_Name);
3632 end loop;
3633 end Analyze_Use_Package;
3635 ----------------------
3636 -- Analyze_Use_Type --
3637 ----------------------
3639 procedure Analyze_Use_Type (N : Node_Id) is
3640 E : Entity_Id;
3641 Id : Node_Id;
3643 begin
3644 Set_Hidden_By_Use_Clause (N, No_Elist);
3646 -- Chain clause to list of use clauses in current scope
3648 if Nkind (Parent (N)) /= N_Compilation_Unit then
3649 Chain_Use_Clause (N);
3650 end if;
3652 -- If the Used_Operations list is already initialized, the clause has
3653 -- been analyzed previously, and it is begin reinstalled, for example
3654 -- when the clause appears in a package spec and we are compiling the
3655 -- corresponding package body. In that case, make the entities on the
3656 -- existing list use_visible, and mark the corresponding types In_Use.
3658 if Present (Used_Operations (N)) then
3659 declare
3660 Mark : Node_Id;
3661 Elmt : Elmt_Id;
3663 begin
3664 Mark := First (Subtype_Marks (N));
3665 while Present (Mark) loop
3666 Use_One_Type (Mark, Installed => True);
3667 Next (Mark);
3668 end loop;
3670 Elmt := First_Elmt (Used_Operations (N));
3671 while Present (Elmt) loop
3672 Set_Is_Potentially_Use_Visible (Node (Elmt));
3673 Next_Elmt (Elmt);
3674 end loop;
3675 end;
3677 return;
3678 end if;
3680 -- Otherwise, create new list and attach to it the operations that
3681 -- are made use-visible by the clause.
3683 Set_Used_Operations (N, New_Elmt_List);
3684 Id := First (Subtype_Marks (N));
3685 while Present (Id) loop
3686 Find_Type (Id);
3687 E := Entity (Id);
3689 if E /= Any_Type then
3690 Use_One_Type (Id);
3692 if Nkind (Parent (N)) = N_Compilation_Unit then
3693 if Nkind (Id) = N_Identifier then
3694 Error_Msg_N ("type is not directly visible", Id);
3696 elsif Is_Child_Unit (Scope (E))
3697 and then Scope (E) /= System_Aux_Id
3698 then
3699 Check_In_Previous_With_Clause (N, Prefix (Id));
3700 end if;
3701 end if;
3703 else
3704 -- If the use_type_clause appears in a compilation unit context,
3705 -- check whether it comes from a unit that may appear in a
3706 -- limited_with_clause, for a better error message.
3708 if Nkind (Parent (N)) = N_Compilation_Unit
3709 and then Nkind (Id) /= N_Identifier
3710 then
3711 declare
3712 Item : Node_Id;
3713 Pref : Node_Id;
3715 function Mentioned (Nam : Node_Id) return Boolean;
3716 -- Check whether the prefix of expanded name for the type
3717 -- appears in the prefix of some limited_with_clause.
3719 ---------------
3720 -- Mentioned --
3721 ---------------
3723 function Mentioned (Nam : Node_Id) return Boolean is
3724 begin
3725 return Nkind (Name (Item)) = N_Selected_Component
3726 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3727 end Mentioned;
3729 begin
3730 Pref := Prefix (Id);
3731 Item := First (Context_Items (Parent (N)));
3732 while Present (Item) and then Item /= N loop
3733 if Nkind (Item) = N_With_Clause
3734 and then Limited_Present (Item)
3735 and then Mentioned (Pref)
3736 then
3737 Change_Error_Text
3738 (Get_Msg_Id, "premature usage of incomplete type");
3739 end if;
3741 Next (Item);
3742 end loop;
3743 end;
3744 end if;
3745 end if;
3747 Next (Id);
3748 end loop;
3749 end Analyze_Use_Type;
3751 --------------------
3752 -- Applicable_Use --
3753 --------------------
3755 function Applicable_Use (Pack_Name : Node_Id) return Boolean is
3756 Pack : constant Entity_Id := Entity (Pack_Name);
3758 begin
3759 if In_Open_Scopes (Pack) then
3760 if Warn_On_Redundant_Constructs and then Pack = Current_Scope then
3761 Error_Msg_NE -- CODEFIX
3762 ("& is already use-visible within itself?r?", Pack_Name, Pack);
3763 end if;
3765 return False;
3767 elsif In_Use (Pack) then
3768 Note_Redundant_Use (Pack_Name);
3769 return False;
3771 elsif Present (Renamed_Object (Pack))
3772 and then In_Use (Renamed_Object (Pack))
3773 then
3774 Note_Redundant_Use (Pack_Name);
3775 return False;
3777 else
3778 return True;
3779 end if;
3780 end Applicable_Use;
3782 ------------------------
3783 -- Attribute_Renaming --
3784 ------------------------
3786 procedure Attribute_Renaming (N : Node_Id) is
3787 Loc : constant Source_Ptr := Sloc (N);
3788 Nam : constant Node_Id := Name (N);
3789 Spec : constant Node_Id := Specification (N);
3790 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3791 Aname : constant Name_Id := Attribute_Name (Nam);
3793 Form_Num : Nat := 0;
3794 Expr_List : List_Id := No_List;
3796 Attr_Node : Node_Id;
3797 Body_Node : Node_Id;
3798 Param_Spec : Node_Id;
3800 begin
3801 Generate_Definition (New_S);
3803 -- This procedure is called in the context of subprogram renaming, and
3804 -- thus the attribute must be one that is a subprogram. All of those
3805 -- have at least one formal parameter, with the exceptions of the GNAT
3806 -- attribute 'Img, which GNAT treats as renameable.
3808 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3809 if Aname /= Name_Img then
3810 Error_Msg_N
3811 ("subprogram renaming an attribute must have formals", N);
3812 return;
3813 end if;
3815 else
3816 Param_Spec := First (Parameter_Specifications (Spec));
3817 while Present (Param_Spec) loop
3818 Form_Num := Form_Num + 1;
3820 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
3821 Find_Type (Parameter_Type (Param_Spec));
3823 -- The profile of the new entity denotes the base type (s) of
3824 -- the types given in the specification. For access parameters
3825 -- there are no subtypes involved.
3827 Rewrite (Parameter_Type (Param_Spec),
3828 New_Occurrence_Of
3829 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
3830 end if;
3832 if No (Expr_List) then
3833 Expr_List := New_List;
3834 end if;
3836 Append_To (Expr_List,
3837 Make_Identifier (Loc,
3838 Chars => Chars (Defining_Identifier (Param_Spec))));
3840 -- The expressions in the attribute reference are not freeze
3841 -- points. Neither is the attribute as a whole, see below.
3843 Set_Must_Not_Freeze (Last (Expr_List));
3844 Next (Param_Spec);
3845 end loop;
3846 end if;
3848 -- Immediate error if too many formals. Other mismatches in number or
3849 -- types of parameters are detected when we analyze the body of the
3850 -- subprogram that we construct.
3852 if Form_Num > 2 then
3853 Error_Msg_N ("too many formals for attribute", N);
3855 -- Error if the attribute reference has expressions that look like
3856 -- formal parameters.
3858 elsif Present (Expressions (Nam)) then
3859 Error_Msg_N ("illegal expressions in attribute reference", Nam);
3861 elsif
3862 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
3863 Name_Pos, Name_Round, Name_Scaling,
3864 Name_Val)
3865 then
3866 if Nkind (N) = N_Subprogram_Renaming_Declaration
3867 and then Present (Corresponding_Formal_Spec (N))
3868 then
3869 Error_Msg_N
3870 ("generic actual cannot be attribute involving universal type",
3871 Nam);
3872 else
3873 Error_Msg_N
3874 ("attribute involving a universal type cannot be renamed",
3875 Nam);
3876 end if;
3877 end if;
3879 -- Rewrite attribute node to have a list of expressions corresponding to
3880 -- the subprogram formals. A renaming declaration is not a freeze point,
3881 -- and the analysis of the attribute reference should not freeze the
3882 -- type of the prefix. We use the original node in the renaming so that
3883 -- its source location is preserved, and checks on stream attributes are
3884 -- properly applied.
3886 Attr_Node := Relocate_Node (Nam);
3887 Set_Expressions (Attr_Node, Expr_List);
3889 Set_Must_Not_Freeze (Attr_Node);
3890 Set_Must_Not_Freeze (Prefix (Nam));
3892 -- Case of renaming a function
3894 if Nkind (Spec) = N_Function_Specification then
3895 if Is_Procedure_Attribute_Name (Aname) then
3896 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
3897 return;
3898 end if;
3900 Find_Type (Result_Definition (Spec));
3901 Rewrite (Result_Definition (Spec),
3902 New_Occurrence_Of
3903 (Base_Type (Entity (Result_Definition (Spec))), Loc));
3905 Body_Node :=
3906 Make_Subprogram_Body (Loc,
3907 Specification => Spec,
3908 Declarations => New_List,
3909 Handled_Statement_Sequence =>
3910 Make_Handled_Sequence_Of_Statements (Loc,
3911 Statements => New_List (
3912 Make_Simple_Return_Statement (Loc,
3913 Expression => Attr_Node))));
3915 -- Case of renaming a procedure
3917 else
3918 if not Is_Procedure_Attribute_Name (Aname) then
3919 Error_Msg_N ("attribute can only be renamed as function", Nam);
3920 return;
3921 end if;
3923 Body_Node :=
3924 Make_Subprogram_Body (Loc,
3925 Specification => Spec,
3926 Declarations => New_List,
3927 Handled_Statement_Sequence =>
3928 Make_Handled_Sequence_Of_Statements (Loc,
3929 Statements => New_List (Attr_Node)));
3930 end if;
3932 -- In case of tagged types we add the body of the generated function to
3933 -- the freezing actions of the type (because in the general case such
3934 -- type is still not frozen). We exclude from this processing generic
3935 -- formal subprograms found in instantiations.
3937 -- We must exclude VM targets and restricted run-time libraries because
3938 -- entity AST_Handler is defined in package System.Aux_Dec which is not
3939 -- available in those platforms. Note that we cannot use the function
3940 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
3941 -- the ZFP run-time library is not defined as a profile, and we do not
3942 -- want to deal with AST_Handler in ZFP mode.
3944 if VM_Target = No_VM
3945 and then not Configurable_Run_Time_Mode
3946 and then not Present (Corresponding_Formal_Spec (N))
3947 and then Etype (Nam) /= RTE (RE_AST_Handler)
3948 then
3949 declare
3950 P : constant Node_Id := Prefix (Nam);
3952 begin
3953 -- The prefix of 'Img is an object that is evaluated for each call
3954 -- of the function that renames it.
3956 if Aname = Name_Img then
3957 Preanalyze_And_Resolve (P);
3959 -- For all other attribute renamings, the prefix is a subtype
3961 else
3962 Find_Type (P);
3963 end if;
3965 -- If the target type is not yet frozen, add the body to the
3966 -- actions to be elaborated at freeze time.
3968 if Is_Tagged_Type (Etype (P))
3969 and then In_Open_Scopes (Scope (Etype (P)))
3970 then
3971 Ensure_Freeze_Node (Etype (P));
3972 Append_Freeze_Action (Etype (P), Body_Node);
3973 else
3974 Rewrite (N, Body_Node);
3975 Analyze (N);
3976 Set_Etype (New_S, Base_Type (Etype (New_S)));
3977 end if;
3978 end;
3980 -- Generic formal subprograms or AST_Handler renaming
3982 else
3983 Rewrite (N, Body_Node);
3984 Analyze (N);
3985 Set_Etype (New_S, Base_Type (Etype (New_S)));
3986 end if;
3988 if Is_Compilation_Unit (New_S) then
3989 Error_Msg_N
3990 ("a library unit can only rename another library unit", N);
3991 end if;
3993 -- We suppress elaboration warnings for the resulting entity, since
3994 -- clearly they are not needed, and more particularly, in the case
3995 -- of a generic formal subprogram, the resulting entity can appear
3996 -- after the instantiation itself, and thus look like a bogus case
3997 -- of access before elaboration.
3999 Set_Suppress_Elaboration_Warnings (New_S);
4001 end Attribute_Renaming;
4003 ----------------------
4004 -- Chain_Use_Clause --
4005 ----------------------
4007 procedure Chain_Use_Clause (N : Node_Id) is
4008 Pack : Entity_Id;
4009 Level : Int := Scope_Stack.Last;
4011 begin
4012 if not Is_Compilation_Unit (Current_Scope)
4013 or else not Is_Child_Unit (Current_Scope)
4014 then
4015 null; -- Common case
4017 elsif Defining_Entity (Parent (N)) = Current_Scope then
4018 null; -- Common case for compilation unit
4020 else
4021 -- If declaration appears in some other scope, it must be in some
4022 -- parent unit when compiling a child.
4024 Pack := Defining_Entity (Parent (N));
4025 if not In_Open_Scopes (Pack) then
4026 null; -- default as well
4028 else
4029 -- Find entry for parent unit in scope stack
4031 while Scope_Stack.Table (Level).Entity /= Pack loop
4032 Level := Level - 1;
4033 end loop;
4034 end if;
4035 end if;
4037 Set_Next_Use_Clause (N,
4038 Scope_Stack.Table (Level).First_Use_Clause);
4039 Scope_Stack.Table (Level).First_Use_Clause := N;
4040 end Chain_Use_Clause;
4042 ---------------------------
4043 -- Check_Frozen_Renaming --
4044 ---------------------------
4046 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4047 B_Node : Node_Id;
4048 Old_S : Entity_Id;
4050 begin
4051 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4052 B_Node :=
4053 Build_Renamed_Body
4054 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4056 if Is_Entity_Name (Name (N)) then
4057 Old_S := Entity (Name (N));
4059 if not Is_Frozen (Old_S)
4060 and then Operating_Mode /= Check_Semantics
4061 then
4062 Append_Freeze_Action (Old_S, B_Node);
4063 else
4064 Insert_After (N, B_Node);
4065 Analyze (B_Node);
4066 end if;
4068 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
4069 Error_Msg_N
4070 ("subprogram used in renaming_as_body cannot be intrinsic",
4071 Name (N));
4072 end if;
4074 else
4075 Insert_After (N, B_Node);
4076 Analyze (B_Node);
4077 end if;
4078 end if;
4079 end Check_Frozen_Renaming;
4081 -------------------------------
4082 -- Set_Entity_Or_Discriminal --
4083 -------------------------------
4085 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4086 P : Node_Id;
4088 begin
4089 -- If the entity is not a discriminant, or else expansion is disabled,
4090 -- simply set the entity.
4092 if not In_Spec_Expression
4093 or else Ekind (E) /= E_Discriminant
4094 or else Inside_A_Generic
4095 then
4096 Set_Entity_With_Checks (N, E);
4098 -- The replacement of a discriminant by the corresponding discriminal
4099 -- is not done for a task discriminant that appears in a default
4100 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4101 -- for details on their handling.
4103 elsif Is_Concurrent_Type (Scope (E)) then
4104 P := Parent (N);
4105 while Present (P)
4106 and then not Nkind_In (P, N_Parameter_Specification,
4107 N_Component_Declaration)
4108 loop
4109 P := Parent (P);
4110 end loop;
4112 if Present (P)
4113 and then Nkind (P) = N_Parameter_Specification
4114 then
4115 null;
4117 else
4118 Set_Entity (N, Discriminal (E));
4119 end if;
4121 -- Otherwise, this is a discriminant in a context in which
4122 -- it is a reference to the corresponding parameter of the
4123 -- init proc for the enclosing type.
4125 else
4126 Set_Entity (N, Discriminal (E));
4127 end if;
4128 end Set_Entity_Or_Discriminal;
4130 -----------------------------------
4131 -- Check_In_Previous_With_Clause --
4132 -----------------------------------
4134 procedure Check_In_Previous_With_Clause
4135 (N : Node_Id;
4136 Nam : Entity_Id)
4138 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4139 Item : Node_Id;
4140 Par : Node_Id;
4142 begin
4143 Item := First (Context_Items (Parent (N)));
4144 while Present (Item) and then Item /= N loop
4145 if Nkind (Item) = N_With_Clause
4147 -- Protect the frontend against previous critical errors
4149 and then Nkind (Name (Item)) /= N_Selected_Component
4150 and then Entity (Name (Item)) = Pack
4151 then
4152 Par := Nam;
4154 -- Find root library unit in with_clause
4156 while Nkind (Par) = N_Expanded_Name loop
4157 Par := Prefix (Par);
4158 end loop;
4160 if Is_Child_Unit (Entity (Original_Node (Par))) then
4161 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4162 else
4163 return;
4164 end if;
4165 end if;
4167 Next (Item);
4168 end loop;
4170 -- On exit, package is not mentioned in a previous with_clause.
4171 -- Check if its prefix is.
4173 if Nkind (Nam) = N_Expanded_Name then
4174 Check_In_Previous_With_Clause (N, Prefix (Nam));
4176 elsif Pack /= Any_Id then
4177 Error_Msg_NE ("& is not visible", Nam, Pack);
4178 end if;
4179 end Check_In_Previous_With_Clause;
4181 ---------------------------------
4182 -- Check_Library_Unit_Renaming --
4183 ---------------------------------
4185 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4186 New_E : Entity_Id;
4188 begin
4189 if Nkind (Parent (N)) /= N_Compilation_Unit then
4190 return;
4192 -- Check for library unit. Note that we used to check for the scope
4193 -- being Standard here, but that was wrong for Standard itself.
4195 elsif not Is_Compilation_Unit (Old_E)
4196 and then not Is_Child_Unit (Old_E)
4197 then
4198 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4200 -- Entities defined in Standard (operators and boolean literals) cannot
4201 -- be renamed as library units.
4203 elsif Scope (Old_E) = Standard_Standard
4204 and then Sloc (Old_E) = Standard_Location
4205 then
4206 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4208 elsif Present (Parent_Spec (N))
4209 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4210 and then not Is_Child_Unit (Old_E)
4211 then
4212 Error_Msg_N
4213 ("renamed unit must be a child unit of generic parent", Name (N));
4215 elsif Nkind (N) in N_Generic_Renaming_Declaration
4216 and then Nkind (Name (N)) = N_Expanded_Name
4217 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4218 and then Is_Generic_Unit (Old_E)
4219 then
4220 Error_Msg_N
4221 ("renamed generic unit must be a library unit", Name (N));
4223 elsif Is_Package_Or_Generic_Package (Old_E) then
4225 -- Inherit categorization flags
4227 New_E := Defining_Entity (N);
4228 Set_Is_Pure (New_E, Is_Pure (Old_E));
4229 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4230 Set_Is_Remote_Call_Interface (New_E,
4231 Is_Remote_Call_Interface (Old_E));
4232 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4233 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4234 end if;
4235 end Check_Library_Unit_Renaming;
4237 ------------------------
4238 -- Enclosing_Instance --
4239 ------------------------
4241 function Enclosing_Instance return Entity_Id is
4242 S : Entity_Id;
4244 begin
4245 if not Is_Generic_Instance (Current_Scope) then
4246 return Empty;
4247 end if;
4249 S := Scope (Current_Scope);
4250 while S /= Standard_Standard loop
4251 if Is_Generic_Instance (S) then
4252 return S;
4253 end if;
4255 S := Scope (S);
4256 end loop;
4258 return Empty;
4259 end Enclosing_Instance;
4261 ---------------
4262 -- End_Scope --
4263 ---------------
4265 procedure End_Scope is
4266 Id : Entity_Id;
4267 Prev : Entity_Id;
4268 Outer : Entity_Id;
4270 begin
4271 Id := First_Entity (Current_Scope);
4272 while Present (Id) loop
4273 -- An entity in the current scope is not necessarily the first one
4274 -- on its homonym chain. Find its predecessor if any,
4275 -- If it is an internal entity, it will not be in the visibility
4276 -- chain altogether, and there is nothing to unchain.
4278 if Id /= Current_Entity (Id) then
4279 Prev := Current_Entity (Id);
4280 while Present (Prev)
4281 and then Present (Homonym (Prev))
4282 and then Homonym (Prev) /= Id
4283 loop
4284 Prev := Homonym (Prev);
4285 end loop;
4287 -- Skip to end of loop if Id is not in the visibility chain
4289 if No (Prev) or else Homonym (Prev) /= Id then
4290 goto Next_Ent;
4291 end if;
4293 else
4294 Prev := Empty;
4295 end if;
4297 Set_Is_Immediately_Visible (Id, False);
4299 Outer := Homonym (Id);
4300 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4301 Outer := Homonym (Outer);
4302 end loop;
4304 -- Reset homonym link of other entities, but do not modify link
4305 -- between entities in current scope, so that the back-end can have
4306 -- a proper count of local overloadings.
4308 if No (Prev) then
4309 Set_Name_Entity_Id (Chars (Id), Outer);
4311 elsif Scope (Prev) /= Scope (Id) then
4312 Set_Homonym (Prev, Outer);
4313 end if;
4315 <<Next_Ent>>
4316 Next_Entity (Id);
4317 end loop;
4319 -- If the scope generated freeze actions, place them before the
4320 -- current declaration and analyze them. Type declarations and
4321 -- the bodies of initialization procedures can generate such nodes.
4322 -- We follow the parent chain until we reach a list node, which is
4323 -- the enclosing list of declarations. If the list appears within
4324 -- a protected definition, move freeze nodes outside the protected
4325 -- type altogether.
4327 if Present
4328 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4329 then
4330 declare
4331 Decl : Node_Id;
4332 L : constant List_Id := Scope_Stack.Table
4333 (Scope_Stack.Last).Pending_Freeze_Actions;
4335 begin
4336 if Is_Itype (Current_Scope) then
4337 Decl := Associated_Node_For_Itype (Current_Scope);
4338 else
4339 Decl := Parent (Current_Scope);
4340 end if;
4342 Pop_Scope;
4344 while not (Is_List_Member (Decl))
4345 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4346 N_Task_Definition)
4347 loop
4348 Decl := Parent (Decl);
4349 end loop;
4351 Insert_List_Before_And_Analyze (Decl, L);
4352 end;
4354 else
4355 Pop_Scope;
4356 end if;
4357 end End_Scope;
4359 ---------------------
4360 -- End_Use_Clauses --
4361 ---------------------
4363 procedure End_Use_Clauses (Clause : Node_Id) is
4364 U : Node_Id;
4366 begin
4367 -- Remove Use_Type clauses first, because they affect the
4368 -- visibility of operators in subsequent used packages.
4370 U := Clause;
4371 while Present (U) loop
4372 if Nkind (U) = N_Use_Type_Clause then
4373 End_Use_Type (U);
4374 end if;
4376 Next_Use_Clause (U);
4377 end loop;
4379 U := Clause;
4380 while Present (U) loop
4381 if Nkind (U) = N_Use_Package_Clause then
4382 End_Use_Package (U);
4383 end if;
4385 Next_Use_Clause (U);
4386 end loop;
4387 end End_Use_Clauses;
4389 ---------------------
4390 -- End_Use_Package --
4391 ---------------------
4393 procedure End_Use_Package (N : Node_Id) is
4394 Pack_Name : Node_Id;
4395 Pack : Entity_Id;
4396 Id : Entity_Id;
4397 Elmt : Elmt_Id;
4399 function Is_Primitive_Operator_In_Use
4400 (Op : Entity_Id;
4401 F : Entity_Id) return Boolean;
4402 -- Check whether Op is a primitive operator of a use-visible type
4404 ----------------------------------
4405 -- Is_Primitive_Operator_In_Use --
4406 ----------------------------------
4408 function Is_Primitive_Operator_In_Use
4409 (Op : Entity_Id;
4410 F : Entity_Id) return Boolean
4412 T : constant Entity_Id := Base_Type (Etype (F));
4413 begin
4414 return In_Use (T) and then Scope (T) = Scope (Op);
4415 end Is_Primitive_Operator_In_Use;
4417 -- Start of processing for End_Use_Package
4419 begin
4420 Pack_Name := First (Names (N));
4421 while Present (Pack_Name) loop
4423 -- Test that Pack_Name actually denotes a package before processing
4425 if Is_Entity_Name (Pack_Name)
4426 and then Ekind (Entity (Pack_Name)) = E_Package
4427 then
4428 Pack := Entity (Pack_Name);
4430 if In_Open_Scopes (Pack) then
4431 null;
4433 elsif not Redundant_Use (Pack_Name) then
4434 Set_In_Use (Pack, False);
4435 Set_Current_Use_Clause (Pack, Empty);
4437 Id := First_Entity (Pack);
4438 while Present (Id) loop
4440 -- Preserve use-visibility of operators that are primitive
4441 -- operators of a type that is use-visible through an active
4442 -- use_type clause.
4444 if Nkind (Id) = N_Defining_Operator_Symbol
4445 and then
4446 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4447 or else
4448 (Present (Next_Formal (First_Formal (Id)))
4449 and then
4450 Is_Primitive_Operator_In_Use
4451 (Id, Next_Formal (First_Formal (Id)))))
4452 then
4453 null;
4454 else
4455 Set_Is_Potentially_Use_Visible (Id, False);
4456 end if;
4458 if Is_Private_Type (Id)
4459 and then Present (Full_View (Id))
4460 then
4461 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4462 end if;
4464 Next_Entity (Id);
4465 end loop;
4467 if Present (Renamed_Object (Pack)) then
4468 Set_In_Use (Renamed_Object (Pack), False);
4469 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4470 end if;
4472 if Chars (Pack) = Name_System
4473 and then Scope (Pack) = Standard_Standard
4474 and then Present_System_Aux
4475 then
4476 Id := First_Entity (System_Aux_Id);
4477 while Present (Id) loop
4478 Set_Is_Potentially_Use_Visible (Id, False);
4480 if Is_Private_Type (Id)
4481 and then Present (Full_View (Id))
4482 then
4483 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4484 end if;
4486 Next_Entity (Id);
4487 end loop;
4489 Set_In_Use (System_Aux_Id, False);
4490 end if;
4492 else
4493 Set_Redundant_Use (Pack_Name, False);
4494 end if;
4495 end if;
4497 Next (Pack_Name);
4498 end loop;
4500 if Present (Hidden_By_Use_Clause (N)) then
4501 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4502 while Present (Elmt) loop
4503 declare
4504 E : constant Entity_Id := Node (Elmt);
4506 begin
4507 -- Reset either Use_Visibility or Direct_Visibility, depending
4508 -- on how the entity was hidden by the use clause.
4510 if In_Use (Scope (E))
4511 and then Used_As_Generic_Actual (Scope (E))
4512 then
4513 Set_Is_Potentially_Use_Visible (Node (Elmt));
4514 else
4515 Set_Is_Immediately_Visible (Node (Elmt));
4516 end if;
4518 Next_Elmt (Elmt);
4519 end;
4520 end loop;
4522 Set_Hidden_By_Use_Clause (N, No_Elist);
4523 end if;
4524 end End_Use_Package;
4526 ------------------
4527 -- End_Use_Type --
4528 ------------------
4530 procedure End_Use_Type (N : Node_Id) is
4531 Elmt : Elmt_Id;
4532 Id : Entity_Id;
4533 T : Entity_Id;
4535 -- Start of processing for End_Use_Type
4537 begin
4538 Id := First (Subtype_Marks (N));
4539 while Present (Id) loop
4541 -- A call to Rtsfind may occur while analyzing a use_type clause,
4542 -- in which case the type marks are not resolved yet, and there is
4543 -- nothing to remove.
4545 if not Is_Entity_Name (Id) or else No (Entity (Id)) then
4546 goto Continue;
4547 end if;
4549 T := Entity (Id);
4551 if T = Any_Type or else From_Limited_With (T) then
4552 null;
4554 -- Note that the use_type clause may mention a subtype of the type
4555 -- whose primitive operations have been made visible. Here as
4556 -- elsewhere, it is the base type that matters for visibility.
4558 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4559 null;
4561 elsif not Redundant_Use (Id) then
4562 Set_In_Use (T, False);
4563 Set_In_Use (Base_Type (T), False);
4564 Set_Current_Use_Clause (T, Empty);
4565 Set_Current_Use_Clause (Base_Type (T), Empty);
4566 end if;
4568 <<Continue>>
4569 Next (Id);
4570 end loop;
4572 if Is_Empty_Elmt_List (Used_Operations (N)) then
4573 return;
4575 else
4576 Elmt := First_Elmt (Used_Operations (N));
4577 while Present (Elmt) loop
4578 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4579 Next_Elmt (Elmt);
4580 end loop;
4581 end if;
4582 end End_Use_Type;
4584 ----------------------
4585 -- Find_Direct_Name --
4586 ----------------------
4588 procedure Find_Direct_Name (N : Node_Id) is
4589 E : Entity_Id;
4590 E2 : Entity_Id;
4591 Msg : Boolean;
4593 Inst : Entity_Id := Empty;
4594 -- Enclosing instance, if any
4596 Homonyms : Entity_Id;
4597 -- Saves start of homonym chain
4599 Nvis_Entity : Boolean;
4600 -- Set True to indicate that there is at least one entity on the homonym
4601 -- chain which, while not visible, is visible enough from the user point
4602 -- of view to warrant an error message of "not visible" rather than
4603 -- undefined.
4605 Nvis_Is_Private_Subprg : Boolean := False;
4606 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4607 -- effect concerning library subprograms has been detected. Used to
4608 -- generate the precise error message.
4610 function From_Actual_Package (E : Entity_Id) return Boolean;
4611 -- Returns true if the entity is an actual for a package that is itself
4612 -- an actual for a formal package of the current instance. Such an
4613 -- entity requires special handling because it may be use-visible but
4614 -- hides directly visible entities defined outside the instance, because
4615 -- the corresponding formal did so in the generic.
4617 function Is_Actual_Parameter return Boolean;
4618 -- This function checks if the node N is an identifier that is an actual
4619 -- parameter of a procedure call. If so it returns True, otherwise it
4620 -- return False. The reason for this check is that at this stage we do
4621 -- not know what procedure is being called if the procedure might be
4622 -- overloaded, so it is premature to go setting referenced flags or
4623 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4624 -- for that processing
4626 function Known_But_Invisible (E : Entity_Id) return Boolean;
4627 -- This function determines whether a reference to the entity E, which
4628 -- is not visible, can reasonably be considered to be known to the
4629 -- writer of the reference. This is a heuristic test, used only for
4630 -- the purposes of figuring out whether we prefer to complain that an
4631 -- entity is undefined or invisible (and identify the declaration of
4632 -- the invisible entity in the latter case). The point here is that we
4633 -- don't want to complain that something is invisible and then point to
4634 -- something entirely mysterious to the writer.
4636 procedure Nvis_Messages;
4637 -- Called if there are no visible entries for N, but there is at least
4638 -- one non-directly visible, or hidden declaration. This procedure
4639 -- outputs an appropriate set of error messages.
4641 procedure Undefined (Nvis : Boolean);
4642 -- This function is called if the current node has no corresponding
4643 -- visible entity or entities. The value set in Msg indicates whether
4644 -- an error message was generated (multiple error messages for the
4645 -- same variable are generally suppressed, see body for details).
4646 -- Msg is True if an error message was generated, False if not. This
4647 -- value is used by the caller to determine whether or not to output
4648 -- additional messages where appropriate. The parameter is set False
4649 -- to get the message "X is undefined", and True to get the message
4650 -- "X is not visible".
4652 -------------------------
4653 -- From_Actual_Package --
4654 -------------------------
4656 function From_Actual_Package (E : Entity_Id) return Boolean is
4657 Scop : constant Entity_Id := Scope (E);
4658 -- Declared scope of candidate entity
4660 Act : Entity_Id;
4662 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4663 -- Recursive function that does the work and examines actuals of
4664 -- actual packages of current instance.
4666 ------------------------
4667 -- Declared_In_Actual --
4668 ------------------------
4670 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4671 Act : Entity_Id;
4673 begin
4674 if No (Associated_Formal_Package (Pack)) then
4675 return False;
4677 else
4678 Act := First_Entity (Pack);
4679 while Present (Act) loop
4680 if Renamed_Object (Pack) = Scop then
4681 return True;
4683 -- Check for end of list of actuals.
4685 elsif Ekind (Act) = E_Package
4686 and then Renamed_Object (Act) = Pack
4687 then
4688 return False;
4690 elsif Ekind (Act) = E_Package
4691 and then Declared_In_Actual (Act)
4692 then
4693 return True;
4694 end if;
4696 Next_Entity (Act);
4697 end loop;
4699 return False;
4700 end if;
4701 end Declared_In_Actual;
4703 -- Start of processing for From_Actual_Package
4705 begin
4706 if not In_Instance then
4707 return False;
4709 else
4710 Inst := Current_Scope;
4711 while Present (Inst)
4712 and then Ekind (Inst) /= E_Package
4713 and then not Is_Generic_Instance (Inst)
4714 loop
4715 Inst := Scope (Inst);
4716 end loop;
4718 if No (Inst) then
4719 return False;
4720 end if;
4722 Act := First_Entity (Inst);
4723 while Present (Act) loop
4724 if Ekind (Act) = E_Package
4725 and then Declared_In_Actual (Act)
4726 then
4727 return True;
4728 end if;
4730 Next_Entity (Act);
4731 end loop;
4733 return False;
4734 end if;
4735 end From_Actual_Package;
4737 -------------------------
4738 -- Is_Actual_Parameter --
4739 -------------------------
4741 function Is_Actual_Parameter return Boolean is
4742 begin
4743 return
4744 Nkind (N) = N_Identifier
4745 and then
4746 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4747 or else
4748 (Nkind (Parent (N)) = N_Parameter_Association
4749 and then N = Explicit_Actual_Parameter (Parent (N))
4750 and then Nkind (Parent (Parent (N))) =
4751 N_Procedure_Call_Statement));
4752 end Is_Actual_Parameter;
4754 -------------------------
4755 -- Known_But_Invisible --
4756 -------------------------
4758 function Known_But_Invisible (E : Entity_Id) return Boolean is
4759 Fname : File_Name_Type;
4761 begin
4762 -- Entities in Standard are always considered to be known
4764 if Sloc (E) <= Standard_Location then
4765 return True;
4767 -- An entity that does not come from source is always considered
4768 -- to be unknown, since it is an artifact of code expansion.
4770 elsif not Comes_From_Source (E) then
4771 return False;
4773 -- In gnat internal mode, we consider all entities known. The
4774 -- historical reason behind this discrepancy is not known??? But the
4775 -- only effect is to modify the error message given, so it is not
4776 -- critical. Since it only affects the exact wording of error
4777 -- messages in illegal programs, we do not mention this as an
4778 -- effect of -gnatg, since it is not a language modification.
4780 elsif GNAT_Mode then
4781 return True;
4782 end if;
4784 -- Here we have an entity that is not from package Standard, and
4785 -- which comes from Source. See if it comes from an internal file.
4787 Fname := Unit_File_Name (Get_Source_Unit (E));
4789 -- Case of from internal file
4791 if Is_Internal_File_Name (Fname) then
4793 -- Private part entities in internal files are never considered
4794 -- to be known to the writer of normal application code.
4796 if Is_Hidden (E) then
4797 return False;
4798 end if;
4800 -- Entities from System packages other than System and
4801 -- System.Storage_Elements are not considered to be known.
4802 -- System.Auxxxx files are also considered known to the user.
4804 -- Should refine this at some point to generally distinguish
4805 -- between known and unknown internal files ???
4807 Get_Name_String (Fname);
4809 return
4810 Name_Len < 2
4811 or else
4812 Name_Buffer (1 .. 2) /= "s-"
4813 or else
4814 Name_Buffer (3 .. 8) = "stoele"
4815 or else
4816 Name_Buffer (3 .. 5) = "aux";
4818 -- If not an internal file, then entity is definitely known,
4819 -- even if it is in a private part (the message generated will
4820 -- note that it is in a private part)
4822 else
4823 return True;
4824 end if;
4825 end Known_But_Invisible;
4827 -------------------
4828 -- Nvis_Messages --
4829 -------------------
4831 procedure Nvis_Messages is
4832 Comp_Unit : Node_Id;
4833 Ent : Entity_Id;
4834 Found : Boolean := False;
4835 Hidden : Boolean := False;
4836 Item : Node_Id;
4838 begin
4839 -- Ada 2005 (AI-262): Generate a precise error concerning the
4840 -- Beaujolais effect that was previously detected
4842 if Nvis_Is_Private_Subprg then
4844 pragma Assert (Nkind (E2) = N_Defining_Identifier
4845 and then Ekind (E2) = E_Function
4846 and then Scope (E2) = Standard_Standard
4847 and then Has_Private_With (E2));
4849 -- Find the sloc corresponding to the private with'ed unit
4851 Comp_Unit := Cunit (Current_Sem_Unit);
4852 Error_Msg_Sloc := No_Location;
4854 Item := First (Context_Items (Comp_Unit));
4855 while Present (Item) loop
4856 if Nkind (Item) = N_With_Clause
4857 and then Private_Present (Item)
4858 and then Entity (Name (Item)) = E2
4859 then
4860 Error_Msg_Sloc := Sloc (Item);
4861 exit;
4862 end if;
4864 Next (Item);
4865 end loop;
4867 pragma Assert (Error_Msg_Sloc /= No_Location);
4869 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
4870 return;
4871 end if;
4873 Undefined (Nvis => True);
4875 if Msg then
4877 -- First loop does hidden declarations
4879 Ent := Homonyms;
4880 while Present (Ent) loop
4881 if Is_Potentially_Use_Visible (Ent) then
4882 if not Hidden then
4883 Error_Msg_N -- CODEFIX
4884 ("multiple use clauses cause hiding!", N);
4885 Hidden := True;
4886 end if;
4888 Error_Msg_Sloc := Sloc (Ent);
4889 Error_Msg_N -- CODEFIX
4890 ("hidden declaration#!", N);
4891 end if;
4893 Ent := Homonym (Ent);
4894 end loop;
4896 -- If we found hidden declarations, then that's enough, don't
4897 -- bother looking for non-visible declarations as well.
4899 if Hidden then
4900 return;
4901 end if;
4903 -- Second loop does non-directly visible declarations
4905 Ent := Homonyms;
4906 while Present (Ent) loop
4907 if not Is_Potentially_Use_Visible (Ent) then
4909 -- Do not bother the user with unknown entities
4911 if not Known_But_Invisible (Ent) then
4912 goto Continue;
4913 end if;
4915 Error_Msg_Sloc := Sloc (Ent);
4917 -- Output message noting that there is a non-visible
4918 -- declaration, distinguishing the private part case.
4920 if Is_Hidden (Ent) then
4921 Error_Msg_N ("non-visible (private) declaration#!", N);
4923 -- If the entity is declared in a generic package, it
4924 -- cannot be visible, so there is no point in adding it
4925 -- to the list of candidates if another homograph from a
4926 -- non-generic package has been seen.
4928 elsif Ekind (Scope (Ent)) = E_Generic_Package
4929 and then Found
4930 then
4931 null;
4933 else
4934 Error_Msg_N -- CODEFIX
4935 ("non-visible declaration#!", N);
4937 if Ekind (Scope (Ent)) /= E_Generic_Package then
4938 Found := True;
4939 end if;
4941 if Is_Compilation_Unit (Ent)
4942 and then
4943 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
4944 then
4945 Error_Msg_Qual_Level := 99;
4946 Error_Msg_NE -- CODEFIX
4947 ("\\missing `WITH &;`", N, Ent);
4948 Error_Msg_Qual_Level := 0;
4949 end if;
4951 if Ekind (Ent) = E_Discriminant
4952 and then Present (Corresponding_Discriminant (Ent))
4953 and then Scope (Corresponding_Discriminant (Ent)) =
4954 Etype (Scope (Ent))
4955 then
4956 Error_Msg_N
4957 ("inherited discriminant not allowed here" &
4958 " (RM 3.8 (12), 3.8.1 (6))!", N);
4959 end if;
4960 end if;
4962 -- Set entity and its containing package as referenced. We
4963 -- can't be sure of this, but this seems a better choice
4964 -- to avoid unused entity messages.
4966 if Comes_From_Source (Ent) then
4967 Set_Referenced (Ent);
4968 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
4969 end if;
4970 end if;
4972 <<Continue>>
4973 Ent := Homonym (Ent);
4974 end loop;
4975 end if;
4976 end Nvis_Messages;
4978 ---------------
4979 -- Undefined --
4980 ---------------
4982 procedure Undefined (Nvis : Boolean) is
4983 Emsg : Error_Msg_Id;
4985 begin
4986 -- We should never find an undefined internal name. If we do, then
4987 -- see if we have previous errors. If so, ignore on the grounds that
4988 -- it is probably a cascaded message (e.g. a block label from a badly
4989 -- formed block). If no previous errors, then we have a real internal
4990 -- error of some kind so raise an exception.
4992 if Is_Internal_Name (Chars (N)) then
4993 if Total_Errors_Detected /= 0 then
4994 return;
4995 else
4996 raise Program_Error;
4997 end if;
4998 end if;
5000 -- A very specialized error check, if the undefined variable is
5001 -- a case tag, and the case type is an enumeration type, check
5002 -- for a possible misspelling, and if so, modify the identifier
5004 -- Named aggregate should also be handled similarly ???
5006 if Nkind (N) = N_Identifier
5007 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5008 then
5009 declare
5010 Case_Stm : constant Node_Id := Parent (Parent (N));
5011 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5013 Lit : Node_Id;
5015 begin
5016 if Is_Enumeration_Type (Case_Typ)
5017 and then not Is_Standard_Character_Type (Case_Typ)
5018 then
5019 Lit := First_Literal (Case_Typ);
5020 Get_Name_String (Chars (Lit));
5022 if Chars (Lit) /= Chars (N)
5023 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5024 then
5025 Error_Msg_Node_2 := Lit;
5026 Error_Msg_N -- CODEFIX
5027 ("& is undefined, assume misspelling of &", N);
5028 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5029 return;
5030 end if;
5032 Lit := Next_Literal (Lit);
5033 end if;
5034 end;
5035 end if;
5037 -- Normal processing
5039 Set_Entity (N, Any_Id);
5040 Set_Etype (N, Any_Type);
5042 -- We use the table Urefs to keep track of entities for which we
5043 -- have issued errors for undefined references. Multiple errors
5044 -- for a single name are normally suppressed, however we modify
5045 -- the error message to alert the programmer to this effect.
5047 for J in Urefs.First .. Urefs.Last loop
5048 if Chars (N) = Chars (Urefs.Table (J).Node) then
5049 if Urefs.Table (J).Err /= No_Error_Msg
5050 and then Sloc (N) /= Urefs.Table (J).Loc
5051 then
5052 Error_Msg_Node_1 := Urefs.Table (J).Node;
5054 if Urefs.Table (J).Nvis then
5055 Change_Error_Text (Urefs.Table (J).Err,
5056 "& is not visible (more references follow)");
5057 else
5058 Change_Error_Text (Urefs.Table (J).Err,
5059 "& is undefined (more references follow)");
5060 end if;
5062 Urefs.Table (J).Err := No_Error_Msg;
5063 end if;
5065 -- Although we will set Msg False, and thus suppress the
5066 -- message, we also set Error_Posted True, to avoid any
5067 -- cascaded messages resulting from the undefined reference.
5069 Msg := False;
5070 Set_Error_Posted (N, True);
5071 return;
5072 end if;
5073 end loop;
5075 -- If entry not found, this is first undefined occurrence
5077 if Nvis then
5078 Error_Msg_N ("& is not visible!", N);
5079 Emsg := Get_Msg_Id;
5081 else
5082 Error_Msg_N ("& is undefined!", N);
5083 Emsg := Get_Msg_Id;
5085 -- A very bizarre special check, if the undefined identifier
5086 -- is put or put_line, then add a special error message (since
5087 -- this is a very common error for beginners to make).
5089 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5090 Error_Msg_N -- CODEFIX
5091 ("\\possible missing `WITH Ada.Text_'I'O; " &
5092 "USE Ada.Text_'I'O`!", N);
5094 -- Another special check if N is the prefix of a selected
5095 -- component which is a known unit, add message complaining
5096 -- about missing with for this unit.
5098 elsif Nkind (Parent (N)) = N_Selected_Component
5099 and then N = Prefix (Parent (N))
5100 and then Is_Known_Unit (Parent (N))
5101 then
5102 Error_Msg_Node_2 := Selector_Name (Parent (N));
5103 Error_Msg_N -- CODEFIX
5104 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5105 end if;
5107 -- Now check for possible misspellings
5109 declare
5110 E : Entity_Id;
5111 Ematch : Entity_Id := Empty;
5113 Last_Name_Id : constant Name_Id :=
5114 Name_Id (Nat (First_Name_Id) +
5115 Name_Entries_Count - 1);
5117 begin
5118 for Nam in First_Name_Id .. Last_Name_Id loop
5119 E := Get_Name_Entity_Id (Nam);
5121 if Present (E)
5122 and then (Is_Immediately_Visible (E)
5123 or else
5124 Is_Potentially_Use_Visible (E))
5125 then
5126 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5127 Ematch := E;
5128 exit;
5129 end if;
5130 end if;
5131 end loop;
5133 if Present (Ematch) then
5134 Error_Msg_NE -- CODEFIX
5135 ("\possible misspelling of&", N, Ematch);
5136 end if;
5137 end;
5138 end if;
5140 -- Make entry in undefined references table unless the full errors
5141 -- switch is set, in which case by refraining from generating the
5142 -- table entry, we guarantee that we get an error message for every
5143 -- undefined reference.
5145 if not All_Errors_Mode then
5146 Urefs.Append (
5147 (Node => N,
5148 Err => Emsg,
5149 Nvis => Nvis,
5150 Loc => Sloc (N)));
5151 end if;
5153 Msg := True;
5154 end Undefined;
5156 -- Start of processing for Find_Direct_Name
5158 begin
5159 -- If the entity pointer is already set, this is an internal node, or
5160 -- a node that is analyzed more than once, after a tree modification.
5161 -- In such a case there is no resolution to perform, just set the type.
5163 if Present (Entity (N)) then
5164 if Is_Type (Entity (N)) then
5165 Set_Etype (N, Entity (N));
5167 else
5168 declare
5169 Entyp : constant Entity_Id := Etype (Entity (N));
5171 begin
5172 -- One special case here. If the Etype field is already set,
5173 -- and references the packed array type corresponding to the
5174 -- etype of the referenced entity, then leave it alone. This
5175 -- happens for trees generated from Exp_Pakd, where expressions
5176 -- can be deliberately "mis-typed" to the packed array type.
5178 if Is_Array_Type (Entyp)
5179 and then Is_Packed (Entyp)
5180 and then Present (Etype (N))
5181 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5182 then
5183 null;
5185 -- If not that special case, then just reset the Etype
5187 else
5188 Set_Etype (N, Etype (Entity (N)));
5189 end if;
5190 end;
5191 end if;
5193 return;
5194 end if;
5196 -- Here if Entity pointer was not set, we need full visibility analysis
5197 -- First we generate debugging output if the debug E flag is set.
5199 if Debug_Flag_E then
5200 Write_Str ("Looking for ");
5201 Write_Name (Chars (N));
5202 Write_Eol;
5203 end if;
5205 Homonyms := Current_Entity (N);
5206 Nvis_Entity := False;
5208 E := Homonyms;
5209 while Present (E) loop
5211 -- If entity is immediately visible or potentially use visible, then
5212 -- process the entity and we are done.
5214 if Is_Immediately_Visible (E) then
5215 goto Immediately_Visible_Entity;
5217 elsif Is_Potentially_Use_Visible (E) then
5218 goto Potentially_Use_Visible_Entity;
5220 -- Note if a known but invisible entity encountered
5222 elsif Known_But_Invisible (E) then
5223 Nvis_Entity := True;
5224 end if;
5226 -- Move to next entity in chain and continue search
5228 E := Homonym (E);
5229 end loop;
5231 -- If no entries on homonym chain that were potentially visible,
5232 -- and no entities reasonably considered as non-visible, then
5233 -- we have a plain undefined reference, with no additional
5234 -- explanation required.
5236 if not Nvis_Entity then
5237 Undefined (Nvis => False);
5239 -- Otherwise there is at least one entry on the homonym chain that
5240 -- is reasonably considered as being known and non-visible.
5242 else
5243 Nvis_Messages;
5244 end if;
5246 goto Done;
5248 -- Processing for a potentially use visible entry found. We must search
5249 -- the rest of the homonym chain for two reasons. First, if there is a
5250 -- directly visible entry, then none of the potentially use-visible
5251 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5252 -- for the case of multiple potentially use-visible entries hiding one
5253 -- another and as a result being non-directly visible (RM 8.4(11)).
5255 <<Potentially_Use_Visible_Entity>> declare
5256 Only_One_Visible : Boolean := True;
5257 All_Overloadable : Boolean := Is_Overloadable (E);
5259 begin
5260 E2 := Homonym (E);
5261 while Present (E2) loop
5262 if Is_Immediately_Visible (E2) then
5264 -- If the use-visible entity comes from the actual for a
5265 -- formal package, it hides a directly visible entity from
5266 -- outside the instance.
5268 if From_Actual_Package (E)
5269 and then Scope_Depth (E2) < Scope_Depth (Inst)
5270 then
5271 goto Found;
5272 else
5273 E := E2;
5274 goto Immediately_Visible_Entity;
5275 end if;
5277 elsif Is_Potentially_Use_Visible (E2) then
5278 Only_One_Visible := False;
5279 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5281 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5282 -- that can occur in private_with clauses. Example:
5284 -- with A;
5285 -- private with B; package A is
5286 -- package C is function B return Integer;
5287 -- use A; end A;
5288 -- V1 : Integer := B;
5289 -- private function B return Integer;
5290 -- V2 : Integer := B;
5291 -- end C;
5293 -- V1 resolves to A.B, but V2 resolves to library unit B
5295 elsif Ekind (E2) = E_Function
5296 and then Scope (E2) = Standard_Standard
5297 and then Has_Private_With (E2)
5298 then
5299 Only_One_Visible := False;
5300 All_Overloadable := False;
5301 Nvis_Is_Private_Subprg := True;
5302 exit;
5303 end if;
5305 E2 := Homonym (E2);
5306 end loop;
5308 -- On falling through this loop, we have checked that there are no
5309 -- immediately visible entities. Only_One_Visible is set if exactly
5310 -- one potentially use visible entity exists. All_Overloadable is
5311 -- set if all the potentially use visible entities are overloadable.
5312 -- The condition for legality is that either there is one potentially
5313 -- use visible entity, or if there is more than one, then all of them
5314 -- are overloadable.
5316 if Only_One_Visible or All_Overloadable then
5317 goto Found;
5319 -- If there is more than one potentially use-visible entity and at
5320 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5321 -- Note that E points to the first such entity on the homonym list.
5322 -- Special case: if one of the entities is declared in an actual
5323 -- package, it was visible in the generic, and takes precedence over
5324 -- other entities that are potentially use-visible. Same if it is
5325 -- declared in a local instantiation of the current instance.
5327 else
5328 if In_Instance then
5330 -- Find current instance
5332 Inst := Current_Scope;
5333 while Present (Inst) and then Inst /= Standard_Standard loop
5334 if Is_Generic_Instance (Inst) then
5335 exit;
5336 end if;
5338 Inst := Scope (Inst);
5339 end loop;
5341 E2 := E;
5342 while Present (E2) loop
5343 if From_Actual_Package (E2)
5344 or else
5345 (Is_Generic_Instance (Scope (E2))
5346 and then Scope_Depth (Scope (E2)) > Scope_Depth (Inst))
5347 then
5348 E := E2;
5349 goto Found;
5350 end if;
5352 E2 := Homonym (E2);
5353 end loop;
5355 Nvis_Messages;
5356 goto Done;
5358 elsif
5359 Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
5360 then
5361 -- A use-clause in the body of a system file creates conflict
5362 -- with some entity in a user scope, while rtsfind is active.
5363 -- Keep only the entity coming from another predefined unit.
5365 E2 := E;
5366 while Present (E2) loop
5367 if Is_Predefined_File_Name
5368 (Unit_File_Name (Get_Source_Unit (Sloc (E2))))
5369 then
5370 E := E2;
5371 goto Found;
5372 end if;
5374 E2 := Homonym (E2);
5375 end loop;
5377 -- Entity must exist because predefined unit is correct
5379 raise Program_Error;
5381 else
5382 Nvis_Messages;
5383 goto Done;
5384 end if;
5385 end if;
5386 end;
5388 -- Come here with E set to the first immediately visible entity on
5389 -- the homonym chain. This is the one we want unless there is another
5390 -- immediately visible entity further on in the chain for an inner
5391 -- scope (RM 8.3(8)).
5393 <<Immediately_Visible_Entity>> declare
5394 Level : Int;
5395 Scop : Entity_Id;
5397 begin
5398 -- Find scope level of initial entity. When compiling through
5399 -- Rtsfind, the previous context is not completely invisible, and
5400 -- an outer entity may appear on the chain, whose scope is below
5401 -- the entry for Standard that delimits the current scope stack.
5402 -- Indicate that the level for this spurious entry is outside of
5403 -- the current scope stack.
5405 Level := Scope_Stack.Last;
5406 loop
5407 Scop := Scope_Stack.Table (Level).Entity;
5408 exit when Scop = Scope (E);
5409 Level := Level - 1;
5410 exit when Scop = Standard_Standard;
5411 end loop;
5413 -- Now search remainder of homonym chain for more inner entry
5414 -- If the entity is Standard itself, it has no scope, and we
5415 -- compare it with the stack entry directly.
5417 E2 := Homonym (E);
5418 while Present (E2) loop
5419 if Is_Immediately_Visible (E2) then
5421 -- If a generic package contains a local declaration that
5422 -- has the same name as the generic, there may be a visibility
5423 -- conflict in an instance, where the local declaration must
5424 -- also hide the name of the corresponding package renaming.
5425 -- We check explicitly for a package declared by a renaming,
5426 -- whose renamed entity is an instance that is on the scope
5427 -- stack, and that contains a homonym in the same scope. Once
5428 -- we have found it, we know that the package renaming is not
5429 -- immediately visible, and that the identifier denotes the
5430 -- other entity (and its homonyms if overloaded).
5432 if Scope (E) = Scope (E2)
5433 and then Ekind (E) = E_Package
5434 and then Present (Renamed_Object (E))
5435 and then Is_Generic_Instance (Renamed_Object (E))
5436 and then In_Open_Scopes (Renamed_Object (E))
5437 and then Comes_From_Source (N)
5438 then
5439 Set_Is_Immediately_Visible (E, False);
5440 E := E2;
5442 else
5443 for J in Level + 1 .. Scope_Stack.Last loop
5444 if Scope_Stack.Table (J).Entity = Scope (E2)
5445 or else Scope_Stack.Table (J).Entity = E2
5446 then
5447 Level := J;
5448 E := E2;
5449 exit;
5450 end if;
5451 end loop;
5452 end if;
5453 end if;
5455 E2 := Homonym (E2);
5456 end loop;
5458 -- At the end of that loop, E is the innermost immediately
5459 -- visible entity, so we are all set.
5460 end;
5462 -- Come here with entity found, and stored in E
5464 <<Found>> begin
5466 -- Check violation of No_Wide_Characters restriction
5468 Check_Wide_Character_Restriction (E, N);
5470 -- When distribution features are available (Get_PCS_Name /=
5471 -- Name_No_DSA), a remote access-to-subprogram type is converted
5472 -- into a record type holding whatever information is needed to
5473 -- perform a remote call on an RCI subprogram. In that case we
5474 -- rewrite any occurrence of the RAS type into the equivalent record
5475 -- type here. 'Access attribute references and RAS dereferences are
5476 -- then implemented using specific TSSs. However when distribution is
5477 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5478 -- generation of these TSSs, and we must keep the RAS type in its
5479 -- original access-to-subprogram form (since all calls through a
5480 -- value of such type will be local anyway in the absence of a PCS).
5482 if Comes_From_Source (N)
5483 and then Is_Remote_Access_To_Subprogram_Type (E)
5484 and then Ekind (E) = E_Access_Subprogram_Type
5485 and then Expander_Active
5486 and then Get_PCS_Name /= Name_No_DSA
5487 then
5488 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5489 goto Done;
5490 end if;
5492 -- Set the entity. Note that the reason we call Set_Entity for the
5493 -- overloadable case, as opposed to Set_Entity_With_Checks is
5494 -- that in the overloaded case, the initial call can set the wrong
5495 -- homonym. The call that sets the right homonym is in Sem_Res and
5496 -- that call does use Set_Entity_With_Checks, so we don't miss
5497 -- a style check.
5499 if Is_Overloadable (E) then
5500 Set_Entity (N, E);
5501 else
5502 Set_Entity_With_Checks (N, E);
5503 end if;
5505 if Is_Type (E) then
5506 Set_Etype (N, E);
5507 else
5508 Set_Etype (N, Get_Full_View (Etype (E)));
5509 end if;
5511 if Debug_Flag_E then
5512 Write_Str (" found ");
5513 Write_Entity_Info (E, " ");
5514 end if;
5516 -- If the Ekind of the entity is Void, it means that all homonyms
5517 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5518 -- test is skipped if the current scope is a record and the name is
5519 -- a pragma argument expression (case of Atomic and Volatile pragmas
5520 -- and possibly other similar pragmas added later, which are allowed
5521 -- to reference components in the current record).
5523 if Ekind (E) = E_Void
5524 and then
5525 (not Is_Record_Type (Current_Scope)
5526 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5527 then
5528 Premature_Usage (N);
5530 -- If the entity is overloadable, collect all interpretations of the
5531 -- name for subsequent overload resolution. We optimize a bit here to
5532 -- do this only if we have an overloadable entity that is not on its
5533 -- own on the homonym chain.
5535 elsif Is_Overloadable (E)
5536 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5537 then
5538 Collect_Interps (N);
5540 -- If no homonyms were visible, the entity is unambiguous
5542 if not Is_Overloaded (N) then
5543 if not Is_Actual_Parameter then
5544 Generate_Reference (E, N);
5545 end if;
5546 end if;
5548 -- Case of non-overloadable entity, set the entity providing that
5549 -- we do not have the case of a discriminant reference within a
5550 -- default expression. Such references are replaced with the
5551 -- corresponding discriminal, which is the formal corresponding to
5552 -- to the discriminant in the initialization procedure.
5554 else
5555 -- Entity is unambiguous, indicate that it is referenced here
5557 -- For a renaming of an object, always generate simple reference,
5558 -- we don't try to keep track of assignments in this case, except
5559 -- in SPARK mode where renamings are traversed for generating
5560 -- local effects of subprograms.
5562 if Is_Object (E)
5563 and then Present (Renamed_Object (E))
5564 and then not GNATprove_Mode
5565 then
5566 Generate_Reference (E, N);
5568 -- If the renamed entity is a private protected component,
5569 -- reference the original component as well. This needs to be
5570 -- done because the private renamings are installed before any
5571 -- analysis has occurred. Reference to a private component will
5572 -- resolve to the renaming and the original component will be
5573 -- left unreferenced, hence the following.
5575 if Is_Prival (E) then
5576 Generate_Reference (Prival_Link (E), N);
5577 end if;
5579 -- One odd case is that we do not want to set the Referenced flag
5580 -- if the entity is a label, and the identifier is the label in
5581 -- the source, since this is not a reference from the point of
5582 -- view of the user.
5584 elsif Nkind (Parent (N)) = N_Label then
5585 declare
5586 R : constant Boolean := Referenced (E);
5588 begin
5589 -- Generate reference unless this is an actual parameter
5590 -- (see comment below)
5592 if Is_Actual_Parameter then
5593 Generate_Reference (E, N);
5594 Set_Referenced (E, R);
5595 end if;
5596 end;
5598 -- Normal case, not a label: generate reference
5600 else
5601 if not Is_Actual_Parameter then
5603 -- Package or generic package is always a simple reference
5605 if Ekind_In (E, E_Package, E_Generic_Package) then
5606 Generate_Reference (E, N, 'r');
5608 -- Else see if we have a left hand side
5610 else
5611 case Is_LHS (N) is
5612 when Yes =>
5613 Generate_Reference (E, N, 'm');
5615 when No =>
5616 Generate_Reference (E, N, 'r');
5618 -- If we don't know now, generate reference later
5620 when Unknown =>
5621 Deferred_References.Append ((E, N));
5622 end case;
5623 end if;
5624 end if;
5626 Check_Nested_Access (E);
5627 end if;
5629 Set_Entity_Or_Discriminal (N, E);
5631 -- The name may designate a generalized reference, in which case
5632 -- the dereference interpretation will be included.
5634 if Ada_Version >= Ada_2012
5635 and then
5636 (Nkind (Parent (N)) in N_Subexpr
5637 or else Nkind_In (Parent (N), N_Object_Declaration,
5638 N_Assignment_Statement))
5639 then
5640 Check_Implicit_Dereference (N, Etype (E));
5641 end if;
5642 end if;
5643 end;
5645 -- Come here with entity set
5647 <<Done>>
5648 Check_Restriction_No_Use_Of_Entity (N);
5649 end Find_Direct_Name;
5651 ------------------------
5652 -- Find_Expanded_Name --
5653 ------------------------
5655 -- This routine searches the homonym chain of the entity until it finds
5656 -- an entity declared in the scope denoted by the prefix. If the entity
5657 -- is private, it may nevertheless be immediately visible, if we are in
5658 -- the scope of its declaration.
5660 procedure Find_Expanded_Name (N : Node_Id) is
5661 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean;
5662 -- Determine whether an arbitrary node N appears in pragmas [Refined_]
5663 -- Depends or [Refined_]Global.
5665 ----------------------------------
5666 -- In_Pragmas_Depends_Or_Global --
5667 ----------------------------------
5669 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean is
5670 Par : Node_Id;
5672 begin
5673 -- Climb the parent chain looking for a pragma
5675 Par := N;
5676 while Present (Par) loop
5677 if Nkind (Par) = N_Pragma
5678 and then Nam_In (Pragma_Name (Par), Name_Depends,
5679 Name_Global,
5680 Name_Refined_Depends,
5681 Name_Refined_Global)
5682 then
5683 return True;
5685 -- Prevent the search from going too far
5687 elsif Is_Body_Or_Package_Declaration (Par) then
5688 return False;
5689 end if;
5691 Par := Parent (Par);
5692 end loop;
5694 return False;
5695 end In_Pragmas_Depends_Or_Global;
5697 -- Local variables
5699 Selector : constant Node_Id := Selector_Name (N);
5700 Candidate : Entity_Id := Empty;
5701 P_Name : Entity_Id;
5702 Id : Entity_Id;
5704 -- Start of processing for Find_Expanded_Name
5706 begin
5707 P_Name := Entity (Prefix (N));
5709 -- If the prefix is a renamed package, look for the entity in the
5710 -- original package.
5712 if Ekind (P_Name) = E_Package
5713 and then Present (Renamed_Object (P_Name))
5714 then
5715 P_Name := Renamed_Object (P_Name);
5717 -- Rewrite node with entity field pointing to renamed object
5719 Rewrite (Prefix (N), New_Copy (Prefix (N)));
5720 Set_Entity (Prefix (N), P_Name);
5722 -- If the prefix is an object of a concurrent type, look for
5723 -- the entity in the associated task or protected type.
5725 elsif Is_Concurrent_Type (Etype (P_Name)) then
5726 P_Name := Etype (P_Name);
5727 end if;
5729 Id := Current_Entity (Selector);
5731 declare
5732 Is_New_Candidate : Boolean;
5734 begin
5735 while Present (Id) loop
5736 if Scope (Id) = P_Name then
5737 Candidate := Id;
5738 Is_New_Candidate := True;
5740 -- Handle abstract views of states and variables. These are
5741 -- acceptable only when the reference to the view appears in
5742 -- pragmas [Refined_]Depends and [Refined_]Global.
5744 if Ekind (Id) = E_Abstract_State
5745 and then From_Limited_With (Id)
5746 and then Present (Non_Limited_View (Id))
5747 then
5748 if In_Pragmas_Depends_Or_Global (N) then
5749 Candidate := Non_Limited_View (Id);
5750 Is_New_Candidate := True;
5752 -- Hide candidate because it is not used in a proper context
5754 else
5755 Candidate := Empty;
5756 Is_New_Candidate := False;
5757 end if;
5758 end if;
5760 -- Ada 2005 (AI-217): Handle shadow entities associated with types
5761 -- declared in limited-withed nested packages. We don't need to
5762 -- handle E_Incomplete_Subtype entities because the entities in
5763 -- the limited view are always E_Incomplete_Type entities (see
5764 -- Build_Limited_Views). Regarding the expression used to evaluate
5765 -- the scope, it is important to note that the limited view also
5766 -- has shadow entities associated nested packages. For this reason
5767 -- the correct scope of the entity is the scope of the real entity
5768 -- The non-limited view may itself be incomplete, in which case
5769 -- get the full view if available.
5771 elsif Ekind (Id) = E_Incomplete_Type
5772 and then From_Limited_With (Id)
5773 and then Present (Non_Limited_View (Id))
5774 and then Scope (Non_Limited_View (Id)) = P_Name
5775 then
5776 Candidate := Get_Full_View (Non_Limited_View (Id));
5777 Is_New_Candidate := True;
5779 else
5780 Is_New_Candidate := False;
5781 end if;
5783 if Is_New_Candidate then
5784 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
5785 exit when Is_Visible_Lib_Unit (Id);
5786 else
5787 exit when not Is_Hidden (Id);
5788 end if;
5790 exit when Is_Immediately_Visible (Id);
5791 end if;
5793 Id := Homonym (Id);
5794 end loop;
5795 end;
5797 if No (Id)
5798 and then Ekind_In (P_Name, E_Procedure, E_Function)
5799 and then Is_Generic_Instance (P_Name)
5800 then
5801 -- Expanded name denotes entity in (instance of) generic subprogram.
5802 -- The entity may be in the subprogram instance, or may denote one of
5803 -- the formals, which is declared in the enclosing wrapper package.
5805 P_Name := Scope (P_Name);
5807 Id := Current_Entity (Selector);
5808 while Present (Id) loop
5809 exit when Scope (Id) = P_Name;
5810 Id := Homonym (Id);
5811 end loop;
5812 end if;
5814 if No (Id) or else Chars (Id) /= Chars (Selector) then
5815 Set_Etype (N, Any_Type);
5817 -- If we are looking for an entity defined in System, try to find it
5818 -- in the child package that may have been provided as an extension
5819 -- to System. The Extend_System pragma will have supplied the name of
5820 -- the extension, which may have to be loaded.
5822 if Chars (P_Name) = Name_System
5823 and then Scope (P_Name) = Standard_Standard
5824 and then Present (System_Extend_Unit)
5825 and then Present_System_Aux (N)
5826 then
5827 Set_Entity (Prefix (N), System_Aux_Id);
5828 Find_Expanded_Name (N);
5829 return;
5831 elsif Nkind (Selector) = N_Operator_Symbol
5832 and then Has_Implicit_Operator (N)
5833 then
5834 -- There is an implicit instance of the predefined operator in
5835 -- the given scope. The operator entity is defined in Standard.
5836 -- Has_Implicit_Operator makes the node into an Expanded_Name.
5838 return;
5840 elsif Nkind (Selector) = N_Character_Literal
5841 and then Has_Implicit_Character_Literal (N)
5842 then
5843 -- If there is no literal defined in the scope denoted by the
5844 -- prefix, the literal may belong to (a type derived from)
5845 -- Standard_Character, for which we have no explicit literals.
5847 return;
5849 else
5850 -- If the prefix is a single concurrent object, use its name in
5851 -- the error message, rather than that of the anonymous type.
5853 if Is_Concurrent_Type (P_Name)
5854 and then Is_Internal_Name (Chars (P_Name))
5855 then
5856 Error_Msg_Node_2 := Entity (Prefix (N));
5857 else
5858 Error_Msg_Node_2 := P_Name;
5859 end if;
5861 if P_Name = System_Aux_Id then
5862 P_Name := Scope (P_Name);
5863 Set_Entity (Prefix (N), P_Name);
5864 end if;
5866 if Present (Candidate) then
5868 -- If we know that the unit is a child unit we can give a more
5869 -- accurate error message.
5871 if Is_Child_Unit (Candidate) then
5873 -- If the candidate is a private child unit and we are in
5874 -- the visible part of a public unit, specialize the error
5875 -- message. There might be a private with_clause for it,
5876 -- but it is not currently active.
5878 if Is_Private_Descendant (Candidate)
5879 and then Ekind (Current_Scope) = E_Package
5880 and then not In_Private_Part (Current_Scope)
5881 and then not Is_Private_Descendant (Current_Scope)
5882 then
5883 Error_Msg_N ("private child unit& is not visible here",
5884 Selector);
5886 -- Normal case where we have a missing with for a child unit
5888 else
5889 Error_Msg_Qual_Level := 99;
5890 Error_Msg_NE -- CODEFIX
5891 ("missing `WITH &;`", Selector, Candidate);
5892 Error_Msg_Qual_Level := 0;
5893 end if;
5895 -- Here we don't know that this is a child unit
5897 else
5898 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
5899 end if;
5901 else
5902 -- Within the instantiation of a child unit, the prefix may
5903 -- denote the parent instance, but the selector has the name
5904 -- of the original child. That is to say, when A.B appears
5905 -- within an instantiation of generic child unit B, the scope
5906 -- stack includes an instance of A (P_Name) and an instance
5907 -- of B under some other name. We scan the scope to find this
5908 -- child instance, which is the desired entity.
5909 -- Note that the parent may itself be a child instance, if
5910 -- the reference is of the form A.B.C, in which case A.B has
5911 -- already been rewritten with the proper entity.
5913 if In_Open_Scopes (P_Name)
5914 and then Is_Generic_Instance (P_Name)
5915 then
5916 declare
5917 Gen_Par : constant Entity_Id :=
5918 Generic_Parent (Specification
5919 (Unit_Declaration_Node (P_Name)));
5920 S : Entity_Id := Current_Scope;
5921 P : Entity_Id;
5923 begin
5924 for J in reverse 0 .. Scope_Stack.Last loop
5925 S := Scope_Stack.Table (J).Entity;
5927 exit when S = Standard_Standard;
5929 if Ekind_In (S, E_Function,
5930 E_Package,
5931 E_Procedure)
5932 then
5933 P := Generic_Parent (Specification
5934 (Unit_Declaration_Node (S)));
5936 -- Check that P is a generic child of the generic
5937 -- parent of the prefix.
5939 if Present (P)
5940 and then Chars (P) = Chars (Selector)
5941 and then Scope (P) = Gen_Par
5942 then
5943 Id := S;
5944 goto Found;
5945 end if;
5946 end if;
5948 end loop;
5949 end;
5950 end if;
5952 -- If this is a selection from Ada, System or Interfaces, then
5953 -- we assume a missing with for the corresponding package.
5955 if Is_Known_Unit (N) then
5956 if not Error_Posted (N) then
5957 Error_Msg_Node_2 := Selector;
5958 Error_Msg_N -- CODEFIX
5959 ("missing `WITH &.&;`", Prefix (N));
5960 end if;
5962 -- If this is a selection from a dummy package, then suppress
5963 -- the error message, of course the entity is missing if the
5964 -- package is missing.
5966 elsif Sloc (Error_Msg_Node_2) = No_Location then
5967 null;
5969 -- Here we have the case of an undefined component
5971 else
5973 -- The prefix may hide a homonym in the context that
5974 -- declares the desired entity. This error can use a
5975 -- specialized message.
5977 if In_Open_Scopes (P_Name) then
5978 declare
5979 H : constant Entity_Id := Homonym (P_Name);
5981 begin
5982 if Present (H)
5983 and then Is_Compilation_Unit (H)
5984 and then
5985 (Is_Immediately_Visible (H)
5986 or else Is_Visible_Lib_Unit (H))
5987 then
5988 Id := First_Entity (H);
5989 while Present (Id) loop
5990 if Chars (Id) = Chars (Selector) then
5991 Error_Msg_Qual_Level := 99;
5992 Error_Msg_Name_1 := Chars (Selector);
5993 Error_Msg_NE
5994 ("% not declared in&", N, P_Name);
5995 Error_Msg_NE
5996 ("\use fully qualified name starting with "
5997 & "Standard to make& visible", N, H);
5998 Error_Msg_Qual_Level := 0;
5999 goto Done;
6000 end if;
6002 Next_Entity (Id);
6003 end loop;
6004 end if;
6006 -- If not found, standard error message
6008 Error_Msg_NE ("& not declared in&", N, Selector);
6010 <<Done>> null;
6011 end;
6013 else
6014 Error_Msg_NE ("& not declared in&", N, Selector);
6015 end if;
6017 -- Check for misspelling of some entity in prefix
6019 Id := First_Entity (P_Name);
6020 while Present (Id) loop
6021 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6022 and then not Is_Internal_Name (Chars (Id))
6023 then
6024 Error_Msg_NE -- CODEFIX
6025 ("possible misspelling of&", Selector, Id);
6026 exit;
6027 end if;
6029 Next_Entity (Id);
6030 end loop;
6032 -- Specialize the message if this may be an instantiation
6033 -- of a child unit that was not mentioned in the context.
6035 if Nkind (Parent (N)) = N_Package_Instantiation
6036 and then Is_Generic_Instance (Entity (Prefix (N)))
6037 and then Is_Compilation_Unit
6038 (Generic_Parent (Parent (Entity (Prefix (N)))))
6039 then
6040 Error_Msg_Node_2 := Selector;
6041 Error_Msg_N -- CODEFIX
6042 ("\missing `WITH &.&;`", Prefix (N));
6043 end if;
6044 end if;
6045 end if;
6047 Id := Any_Id;
6048 end if;
6049 end if;
6051 <<Found>>
6052 if Comes_From_Source (N)
6053 and then Is_Remote_Access_To_Subprogram_Type (Id)
6054 and then Ekind (Id) = E_Access_Subprogram_Type
6055 and then Present (Equivalent_Type (Id))
6056 then
6057 -- If we are not actually generating distribution code (i.e. the
6058 -- current PCS is the dummy non-distributed version), then the
6059 -- Equivalent_Type will be missing, and Id should be treated as
6060 -- a regular access-to-subprogram type.
6062 Id := Equivalent_Type (Id);
6063 Set_Chars (Selector, Chars (Id));
6064 end if;
6066 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6068 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6069 if From_Limited_With (Id)
6070 or else Is_Type (Id)
6071 or else Ekind (Id) = E_Package
6072 then
6073 null;
6074 else
6075 Error_Msg_N
6076 ("limited withed package can only be used to access "
6077 & "incomplete types", N);
6078 end if;
6079 end if;
6081 if Is_Task_Type (P_Name)
6082 and then ((Ekind (Id) = E_Entry
6083 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6084 or else
6085 (Ekind (Id) = E_Entry_Family
6086 and then
6087 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6088 then
6089 -- If both the task type and the entry are in scope, this may still
6090 -- be the expanded name of an entry formal.
6092 if In_Open_Scopes (Id)
6093 and then Nkind (Parent (N)) = N_Selected_Component
6094 then
6095 null;
6097 else
6098 -- It is an entry call after all, either to the current task
6099 -- (which will deadlock) or to an enclosing task.
6101 Analyze_Selected_Component (N);
6102 return;
6103 end if;
6104 end if;
6106 Change_Selected_Component_To_Expanded_Name (N);
6108 -- Set appropriate type
6110 if Is_Type (Id) then
6111 Set_Etype (N, Id);
6112 else
6113 Set_Etype (N, Get_Full_View (Etype (Id)));
6114 end if;
6116 -- Do style check and generate reference, but skip both steps if this
6117 -- entity has homonyms, since we may not have the right homonym set yet.
6118 -- The proper homonym will be set during the resolve phase.
6120 if Has_Homonym (Id) then
6121 Set_Entity (N, Id);
6123 else
6124 Set_Entity_Or_Discriminal (N, Id);
6126 case Is_LHS (N) is
6127 when Yes =>
6128 Generate_Reference (Id, N, 'm');
6129 when No =>
6130 Generate_Reference (Id, N, 'r');
6131 when Unknown =>
6132 Deferred_References.Append ((Id, N));
6133 end case;
6134 end if;
6136 -- Check for violation of No_Wide_Characters
6138 Check_Wide_Character_Restriction (Id, N);
6140 -- If the Ekind of the entity is Void, it means that all homonyms are
6141 -- hidden from all visibility (RM 8.3(5,14-20)).
6143 if Ekind (Id) = E_Void then
6144 Premature_Usage (N);
6146 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6147 declare
6148 H : Entity_Id := Homonym (Id);
6150 begin
6151 while Present (H) loop
6152 if Scope (H) = Scope (Id)
6153 and then (not Is_Hidden (H)
6154 or else Is_Immediately_Visible (H))
6155 then
6156 Collect_Interps (N);
6157 exit;
6158 end if;
6160 H := Homonym (H);
6161 end loop;
6163 -- If an extension of System is present, collect possible explicit
6164 -- overloadings declared in the extension.
6166 if Chars (P_Name) = Name_System
6167 and then Scope (P_Name) = Standard_Standard
6168 and then Present (System_Extend_Unit)
6169 and then Present_System_Aux (N)
6170 then
6171 H := Current_Entity (Id);
6173 while Present (H) loop
6174 if Scope (H) = System_Aux_Id then
6175 Add_One_Interp (N, H, Etype (H));
6176 end if;
6178 H := Homonym (H);
6179 end loop;
6180 end if;
6181 end;
6182 end if;
6184 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6185 and then Scope (Id) /= Standard_Standard
6186 then
6187 -- In addition to user-defined operators in the given scope, there
6188 -- may be an implicit instance of the predefined operator. The
6189 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6190 -- and added to the interpretations. Procedure Add_One_Interp will
6191 -- determine which hides which.
6193 if Has_Implicit_Operator (N) then
6194 null;
6195 end if;
6196 end if;
6198 -- If there is a single interpretation for N we can generate a
6199 -- reference to the unique entity found.
6201 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6202 Generate_Reference (Id, N);
6203 end if;
6204 end Find_Expanded_Name;
6206 -------------------------
6207 -- Find_Renamed_Entity --
6208 -------------------------
6210 function Find_Renamed_Entity
6211 (N : Node_Id;
6212 Nam : Node_Id;
6213 New_S : Entity_Id;
6214 Is_Actual : Boolean := False) return Entity_Id
6216 Ind : Interp_Index;
6217 I1 : Interp_Index := 0; -- Suppress junk warnings
6218 It : Interp;
6219 It1 : Interp;
6220 Old_S : Entity_Id;
6221 Inst : Entity_Id;
6223 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6224 -- If the renamed entity is an implicit operator, check whether it is
6225 -- visible because its operand type is properly visible. This check
6226 -- applies to explicit renamed entities that appear in the source in a
6227 -- renaming declaration or a formal subprogram instance, but not to
6228 -- default generic actuals with a name.
6230 function Report_Overload return Entity_Id;
6231 -- List possible interpretations, and specialize message in the
6232 -- case of a generic actual.
6234 function Within (Inner, Outer : Entity_Id) return Boolean;
6235 -- Determine whether a candidate subprogram is defined within the
6236 -- enclosing instance. If yes, it has precedence over outer candidates.
6238 --------------------------
6239 -- Is_Visible_Operation --
6240 --------------------------
6242 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6243 Scop : Entity_Id;
6244 Typ : Entity_Id;
6245 Btyp : Entity_Id;
6247 begin
6248 if Ekind (Op) /= E_Operator
6249 or else Scope (Op) /= Standard_Standard
6250 or else (In_Instance
6251 and then (not Is_Actual
6252 or else Present (Enclosing_Instance)))
6253 then
6254 return True;
6256 else
6257 -- For a fixed point type operator, check the resulting type,
6258 -- because it may be a mixed mode integer * fixed operation.
6260 if Present (Next_Formal (First_Formal (New_S)))
6261 and then Is_Fixed_Point_Type (Etype (New_S))
6262 then
6263 Typ := Etype (New_S);
6264 else
6265 Typ := Etype (First_Formal (New_S));
6266 end if;
6268 Btyp := Base_Type (Typ);
6270 if Nkind (Nam) /= N_Expanded_Name then
6271 return (In_Open_Scopes (Scope (Btyp))
6272 or else Is_Potentially_Use_Visible (Btyp)
6273 or else In_Use (Btyp)
6274 or else In_Use (Scope (Btyp)));
6276 else
6277 Scop := Entity (Prefix (Nam));
6279 if Ekind (Scop) = E_Package
6280 and then Present (Renamed_Object (Scop))
6281 then
6282 Scop := Renamed_Object (Scop);
6283 end if;
6285 -- Operator is visible if prefix of expanded name denotes
6286 -- scope of type, or else type is defined in System_Aux
6287 -- and the prefix denotes System.
6289 return Scope (Btyp) = Scop
6290 or else (Scope (Btyp) = System_Aux_Id
6291 and then Scope (Scope (Btyp)) = Scop);
6292 end if;
6293 end if;
6294 end Is_Visible_Operation;
6296 ------------
6297 -- Within --
6298 ------------
6300 function Within (Inner, Outer : Entity_Id) return Boolean is
6301 Sc : Entity_Id;
6303 begin
6304 Sc := Scope (Inner);
6305 while Sc /= Standard_Standard loop
6306 if Sc = Outer then
6307 return True;
6308 else
6309 Sc := Scope (Sc);
6310 end if;
6311 end loop;
6313 return False;
6314 end Within;
6316 ---------------------
6317 -- Report_Overload --
6318 ---------------------
6320 function Report_Overload return Entity_Id is
6321 begin
6322 if Is_Actual then
6323 Error_Msg_NE -- CODEFIX
6324 ("ambiguous actual subprogram&, " &
6325 "possible interpretations:", N, Nam);
6326 else
6327 Error_Msg_N -- CODEFIX
6328 ("ambiguous subprogram, " &
6329 "possible interpretations:", N);
6330 end if;
6332 List_Interps (Nam, N);
6333 return Old_S;
6334 end Report_Overload;
6336 -- Start of processing for Find_Renamed_Entity
6338 begin
6339 Old_S := Any_Id;
6340 Candidate_Renaming := Empty;
6342 if Is_Overloaded (Nam) then
6343 Get_First_Interp (Nam, Ind, It);
6344 while Present (It.Nam) loop
6345 if Entity_Matches_Spec (It.Nam, New_S)
6346 and then Is_Visible_Operation (It.Nam)
6347 then
6348 if Old_S /= Any_Id then
6350 -- Note: The call to Disambiguate only happens if a
6351 -- previous interpretation was found, in which case I1
6352 -- has received a value.
6354 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6356 if It1 = No_Interp then
6357 Inst := Enclosing_Instance;
6359 if Present (Inst) then
6360 if Within (It.Nam, Inst) then
6361 if Within (Old_S, Inst) then
6363 -- Choose the innermost subprogram, which would
6364 -- have hidden the outer one in the generic.
6366 if Scope_Depth (It.Nam) <
6367 Scope_Depth (Old_S)
6368 then
6369 return Old_S;
6370 else
6371 return It.Nam;
6372 end if;
6373 end if;
6375 elsif Within (Old_S, Inst) then
6376 return (Old_S);
6378 else
6379 return Report_Overload;
6380 end if;
6382 -- If not within an instance, ambiguity is real
6384 else
6385 return Report_Overload;
6386 end if;
6388 else
6389 Old_S := It1.Nam;
6390 exit;
6391 end if;
6393 else
6394 I1 := Ind;
6395 Old_S := It.Nam;
6396 end if;
6398 elsif
6399 Present (First_Formal (It.Nam))
6400 and then Present (First_Formal (New_S))
6401 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6402 Base_Type (Etype (First_Formal (New_S))))
6403 then
6404 Candidate_Renaming := It.Nam;
6405 end if;
6407 Get_Next_Interp (Ind, It);
6408 end loop;
6410 Set_Entity (Nam, Old_S);
6412 if Old_S /= Any_Id then
6413 Set_Is_Overloaded (Nam, False);
6414 end if;
6416 -- Non-overloaded case
6418 else
6419 if Is_Actual and then Present (Enclosing_Instance) then
6420 Old_S := Entity (Nam);
6422 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6423 Candidate_Renaming := New_S;
6425 if Is_Visible_Operation (Entity (Nam)) then
6426 Old_S := Entity (Nam);
6427 end if;
6429 elsif Present (First_Formal (Entity (Nam)))
6430 and then Present (First_Formal (New_S))
6431 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6432 Base_Type (Etype (First_Formal (New_S))))
6433 then
6434 Candidate_Renaming := Entity (Nam);
6435 end if;
6436 end if;
6438 return Old_S;
6439 end Find_Renamed_Entity;
6441 -----------------------------
6442 -- Find_Selected_Component --
6443 -----------------------------
6445 procedure Find_Selected_Component (N : Node_Id) is
6446 P : constant Node_Id := Prefix (N);
6448 P_Name : Entity_Id;
6449 -- Entity denoted by prefix
6451 P_Type : Entity_Id;
6452 -- and its type
6454 Nam : Node_Id;
6456 function Available_Subtype return Boolean;
6457 -- A small optimization: if the prefix is constrained and the component
6458 -- is an array type we may already have a usable subtype for it, so we
6459 -- can use it rather than generating a new one, because the bounds
6460 -- will be the values of the discriminants and not discriminant refs.
6461 -- This simplifies value tracing in GNATProve. For consistency, both
6462 -- the entity name and the subtype come from the constrained component.
6464 function Is_Reference_In_Subunit return Boolean;
6465 -- In a subunit, the scope depth is not a proper measure of hiding,
6466 -- because the context of the proper body may itself hide entities in
6467 -- parent units. This rare case requires inspecting the tree directly
6468 -- because the proper body is inserted in the main unit and its context
6469 -- is simply added to that of the parent.
6471 -----------------------
6472 -- Available_Subtype --
6473 -----------------------
6475 function Available_Subtype return Boolean is
6476 Comp : Entity_Id;
6478 begin
6479 Comp := First_Entity (Etype (P));
6480 while Present (Comp) loop
6481 if Chars (Comp) = Chars (Selector_Name (N)) then
6482 Set_Etype (N, Etype (Comp));
6483 Set_Entity (Selector_Name (N), Comp);
6484 Set_Etype (Selector_Name (N), Etype (Comp));
6485 return True;
6486 end if;
6488 Next_Component (Comp);
6489 end loop;
6491 return False;
6492 end Available_Subtype;
6494 -----------------------------
6495 -- Is_Reference_In_Subunit --
6496 -----------------------------
6498 function Is_Reference_In_Subunit return Boolean is
6499 Clause : Node_Id;
6500 Comp_Unit : Node_Id;
6502 begin
6503 Comp_Unit := N;
6504 while Present (Comp_Unit)
6505 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6506 loop
6507 Comp_Unit := Parent (Comp_Unit);
6508 end loop;
6510 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6511 return False;
6512 end if;
6514 -- Now check whether the package is in the context of the subunit
6516 Clause := First (Context_Items (Comp_Unit));
6517 while Present (Clause) loop
6518 if Nkind (Clause) = N_With_Clause
6519 and then Entity (Name (Clause)) = P_Name
6520 then
6521 return True;
6522 end if;
6524 Clause := Next (Clause);
6525 end loop;
6527 return False;
6528 end Is_Reference_In_Subunit;
6530 -- Start of processing for Find_Selected_Component
6532 begin
6533 Analyze (P);
6535 if Nkind (P) = N_Error then
6536 return;
6537 end if;
6539 -- Selector name cannot be a character literal or an operator symbol in
6540 -- SPARK, except for the operator symbol in a renaming.
6542 if Restriction_Check_Required (SPARK_05) then
6543 if Nkind (Selector_Name (N)) = N_Character_Literal then
6544 Check_SPARK_05_Restriction
6545 ("character literal cannot be prefixed", N);
6546 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6547 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6548 then
6549 Check_SPARK_05_Restriction
6550 ("operator symbol cannot be prefixed", N);
6551 end if;
6552 end if;
6554 -- If the selector already has an entity, the node has been constructed
6555 -- in the course of expansion, and is known to be valid. Do not verify
6556 -- that it is defined for the type (it may be a private component used
6557 -- in the expansion of record equality).
6559 if Present (Entity (Selector_Name (N))) then
6560 if No (Etype (N)) or else Etype (N) = Any_Type then
6561 declare
6562 Sel_Name : constant Node_Id := Selector_Name (N);
6563 Selector : constant Entity_Id := Entity (Sel_Name);
6564 C_Etype : Node_Id;
6566 begin
6567 Set_Etype (Sel_Name, Etype (Selector));
6569 if not Is_Entity_Name (P) then
6570 Resolve (P);
6571 end if;
6573 -- Build an actual subtype except for the first parameter
6574 -- of an init proc, where this actual subtype is by
6575 -- definition incorrect, since the object is uninitialized
6576 -- (and does not even have defined discriminants etc.)
6578 if Is_Entity_Name (P)
6579 and then Ekind (Entity (P)) = E_Function
6580 then
6581 Nam := New_Copy (P);
6583 if Is_Overloaded (P) then
6584 Save_Interps (P, Nam);
6585 end if;
6587 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
6588 Analyze_Call (P);
6589 Analyze_Selected_Component (N);
6590 return;
6592 elsif Ekind (Selector) = E_Component
6593 and then (not Is_Entity_Name (P)
6594 or else Chars (Entity (P)) /= Name_uInit)
6595 then
6596 if Ekind (Etype (P)) = E_Record_Subtype
6597 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
6598 and then Is_Array_Type (Etype (Selector))
6599 and then not Is_Packed (Etype (Selector))
6600 and then Available_Subtype
6601 then
6602 return;
6604 -- Do not build the subtype when referencing components of
6605 -- dispatch table wrappers. Required to avoid generating
6606 -- elaboration code with HI runtimes. JVM and .NET use a
6607 -- modified version of Ada.Tags which does not contain RE_
6608 -- Dispatch_Table_Wrapper and RE_No_Dispatch_Table_Wrapper.
6609 -- Avoid raising RE_Not_Available exception in those cases.
6611 elsif VM_Target = No_VM
6612 and then RTU_Loaded (Ada_Tags)
6613 and then
6614 ((RTE_Available (RE_Dispatch_Table_Wrapper)
6615 and then Scope (Selector) =
6616 RTE (RE_Dispatch_Table_Wrapper))
6617 or else
6618 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
6619 and then Scope (Selector) =
6620 RTE (RE_No_Dispatch_Table_Wrapper)))
6621 then
6622 C_Etype := Empty;
6623 else
6624 C_Etype :=
6625 Build_Actual_Subtype_Of_Component
6626 (Etype (Selector), N);
6627 end if;
6629 else
6630 C_Etype := Empty;
6631 end if;
6633 if No (C_Etype) then
6634 C_Etype := Etype (Selector);
6635 else
6636 Insert_Action (N, C_Etype);
6637 C_Etype := Defining_Identifier (C_Etype);
6638 end if;
6640 Set_Etype (N, C_Etype);
6641 end;
6643 -- If this is the name of an entry or protected operation, and
6644 -- the prefix is an access type, insert an explicit dereference,
6645 -- so that entry calls are treated uniformly.
6647 if Is_Access_Type (Etype (P))
6648 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
6649 then
6650 declare
6651 New_P : constant Node_Id :=
6652 Make_Explicit_Dereference (Sloc (P),
6653 Prefix => Relocate_Node (P));
6654 begin
6655 Rewrite (P, New_P);
6656 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
6657 end;
6658 end if;
6660 -- If the selected component appears within a default expression
6661 -- and it has an actual subtype, the pre-analysis has not yet
6662 -- completed its analysis, because Insert_Actions is disabled in
6663 -- that context. Within the init proc of the enclosing type we
6664 -- must complete this analysis, if an actual subtype was created.
6666 elsif Inside_Init_Proc then
6667 declare
6668 Typ : constant Entity_Id := Etype (N);
6669 Decl : constant Node_Id := Declaration_Node (Typ);
6670 begin
6671 if Nkind (Decl) = N_Subtype_Declaration
6672 and then not Analyzed (Decl)
6673 and then Is_List_Member (Decl)
6674 and then No (Parent (Decl))
6675 then
6676 Remove (Decl);
6677 Insert_Action (N, Decl);
6678 end if;
6679 end;
6680 end if;
6682 return;
6684 elsif Is_Entity_Name (P) then
6685 P_Name := Entity (P);
6687 -- The prefix may denote an enclosing type which is the completion
6688 -- of an incomplete type declaration.
6690 if Is_Type (P_Name) then
6691 Set_Entity (P, Get_Full_View (P_Name));
6692 Set_Etype (P, Entity (P));
6693 P_Name := Entity (P);
6694 end if;
6696 P_Type := Base_Type (Etype (P));
6698 if Debug_Flag_E then
6699 Write_Str ("Found prefix type to be ");
6700 Write_Entity_Info (P_Type, " "); Write_Eol;
6701 end if;
6703 -- The designated type may be a limited view with no components.
6704 -- Check whether the non-limited view is available, because in some
6705 -- cases this will not be set when instlling the context.
6707 if Is_Access_Type (P_Type) then
6708 declare
6709 D : constant Entity_Id := Directly_Designated_Type (P_Type);
6710 begin
6711 if Is_Incomplete_Type (D)
6712 and then not Is_Class_Wide_Type (D)
6713 and then From_Limited_With (D)
6714 and then Present (Non_Limited_View (D))
6715 and then not Is_Class_Wide_Type (Non_Limited_View (D))
6716 then
6717 Set_Directly_Designated_Type (P_Type, Non_Limited_View (D));
6718 end if;
6719 end;
6720 end if;
6722 -- First check for components of a record object (not the
6723 -- result of a call, which is handled below).
6725 if Is_Appropriate_For_Record (P_Type)
6726 and then not Is_Overloadable (P_Name)
6727 and then not Is_Type (P_Name)
6728 then
6729 -- Selected component of record. Type checking will validate
6730 -- name of selector.
6732 -- ??? Could we rewrite an implicit dereference into an explicit
6733 -- one here?
6735 Analyze_Selected_Component (N);
6737 -- Reference to type name in predicate/invariant expression
6739 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
6740 and then not In_Open_Scopes (P_Name)
6741 and then (not Is_Concurrent_Type (Etype (P_Name))
6742 or else not In_Open_Scopes (Etype (P_Name)))
6743 then
6744 -- Call to protected operation or entry. Type checking is
6745 -- needed on the prefix.
6747 Analyze_Selected_Component (N);
6749 elsif (In_Open_Scopes (P_Name)
6750 and then Ekind (P_Name) /= E_Void
6751 and then not Is_Overloadable (P_Name))
6752 or else (Is_Concurrent_Type (Etype (P_Name))
6753 and then In_Open_Scopes (Etype (P_Name)))
6754 then
6755 -- Prefix denotes an enclosing loop, block, or task, i.e. an
6756 -- enclosing construct that is not a subprogram or accept.
6758 Find_Expanded_Name (N);
6760 elsif Ekind (P_Name) = E_Package then
6761 Find_Expanded_Name (N);
6763 elsif Is_Overloadable (P_Name) then
6765 -- The subprogram may be a renaming (of an enclosing scope) as
6766 -- in the case of the name of the generic within an instantiation.
6768 if Ekind_In (P_Name, E_Procedure, E_Function)
6769 and then Present (Alias (P_Name))
6770 and then Is_Generic_Instance (Alias (P_Name))
6771 then
6772 P_Name := Alias (P_Name);
6773 end if;
6775 if Is_Overloaded (P) then
6777 -- The prefix must resolve to a unique enclosing construct
6779 declare
6780 Found : Boolean := False;
6781 Ind : Interp_Index;
6782 It : Interp;
6784 begin
6785 Get_First_Interp (P, Ind, It);
6786 while Present (It.Nam) loop
6787 if In_Open_Scopes (It.Nam) then
6788 if Found then
6789 Error_Msg_N (
6790 "prefix must be unique enclosing scope", N);
6791 Set_Entity (N, Any_Id);
6792 Set_Etype (N, Any_Type);
6793 return;
6795 else
6796 Found := True;
6797 P_Name := It.Nam;
6798 end if;
6799 end if;
6801 Get_Next_Interp (Ind, It);
6802 end loop;
6803 end;
6804 end if;
6806 if In_Open_Scopes (P_Name) then
6807 Set_Entity (P, P_Name);
6808 Set_Is_Overloaded (P, False);
6809 Find_Expanded_Name (N);
6811 else
6812 -- If no interpretation as an expanded name is possible, it
6813 -- must be a selected component of a record returned by a
6814 -- function call. Reformat prefix as a function call, the rest
6815 -- is done by type resolution.
6817 -- Error if the prefix is procedure or entry, as is P.X
6819 if Ekind (P_Name) /= E_Function
6820 and then
6821 (not Is_Overloaded (P)
6822 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
6823 then
6824 -- Prefix may mention a package that is hidden by a local
6825 -- declaration: let the user know. Scan the full homonym
6826 -- chain, the candidate package may be anywhere on it.
6828 if Present (Homonym (Current_Entity (P_Name))) then
6829 P_Name := Current_Entity (P_Name);
6831 while Present (P_Name) loop
6832 exit when Ekind (P_Name) = E_Package;
6833 P_Name := Homonym (P_Name);
6834 end loop;
6836 if Present (P_Name) then
6837 if not Is_Reference_In_Subunit then
6838 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
6839 Error_Msg_NE
6840 ("package& is hidden by declaration#", N, P_Name);
6841 end if;
6843 Set_Entity (Prefix (N), P_Name);
6844 Find_Expanded_Name (N);
6845 return;
6847 else
6848 P_Name := Entity (Prefix (N));
6849 end if;
6850 end if;
6852 Error_Msg_NE
6853 ("invalid prefix in selected component&", N, P_Name);
6854 Change_Selected_Component_To_Expanded_Name (N);
6855 Set_Entity (N, Any_Id);
6856 Set_Etype (N, Any_Type);
6858 -- Here we have a function call, so do the reformatting
6860 else
6861 Nam := New_Copy (P);
6862 Save_Interps (P, Nam);
6864 -- We use Replace here because this is one of those cases
6865 -- where the parser has missclassified the node, and we
6866 -- fix things up and then do the semantic analysis on the
6867 -- fixed up node. Normally we do this using one of the
6868 -- Sinfo.CN routines, but this is too tricky for that.
6870 -- Note that using Rewrite would be wrong, because we
6871 -- would have a tree where the original node is unanalyzed,
6872 -- and this violates the required interface for ASIS.
6874 Replace (P,
6875 Make_Function_Call (Sloc (P), Name => Nam));
6877 -- Now analyze the reformatted node
6879 Analyze_Call (P);
6880 Analyze_Selected_Component (N);
6881 end if;
6882 end if;
6884 -- Remaining cases generate various error messages
6886 else
6887 -- Format node as expanded name, to avoid cascaded errors
6889 Change_Selected_Component_To_Expanded_Name (N);
6890 Set_Entity (N, Any_Id);
6891 Set_Etype (N, Any_Type);
6893 -- Issue error message, but avoid this if error issued already.
6894 -- Use identifier of prefix if one is available.
6896 if P_Name = Any_Id then
6897 null;
6899 elsif Ekind (P_Name) = E_Void then
6900 Premature_Usage (P);
6902 elsif Nkind (P) /= N_Attribute_Reference then
6904 -- This may have been meant as a prefixed call to a primitive
6905 -- of an untagged type.
6907 declare
6908 F : constant Entity_Id :=
6909 Current_Entity (Selector_Name (N));
6910 begin
6911 if Present (F)
6912 and then Is_Overloadable (F)
6913 and then Present (First_Entity (F))
6914 and then Etype (First_Entity (F)) = Etype (P)
6915 and then not Is_Tagged_Type (Etype (P))
6916 then
6917 Error_Msg_N
6918 ("prefixed call is only allowed for objects "
6919 & "of a tagged type", N);
6920 end if;
6921 end;
6923 Error_Msg_N ("invalid prefix in selected component&", P);
6925 if Is_Access_Type (P_Type)
6926 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
6927 then
6928 Error_Msg_N
6929 ("\dereference must not be of an incomplete type "
6930 & "(RM 3.10.1)", P);
6931 end if;
6933 else
6934 Error_Msg_N ("invalid prefix in selected component", P);
6935 end if;
6936 end if;
6938 -- Selector name is restricted in SPARK
6940 if Nkind (N) = N_Expanded_Name
6941 and then Restriction_Check_Required (SPARK_05)
6942 then
6943 if Is_Subprogram (P_Name) then
6944 Check_SPARK_05_Restriction
6945 ("prefix of expanded name cannot be a subprogram", P);
6946 elsif Ekind (P_Name) = E_Loop then
6947 Check_SPARK_05_Restriction
6948 ("prefix of expanded name cannot be a loop statement", P);
6949 end if;
6950 end if;
6952 else
6953 -- If prefix is not the name of an entity, it must be an expression,
6954 -- whose type is appropriate for a record. This is determined by
6955 -- type resolution.
6957 Analyze_Selected_Component (N);
6958 end if;
6960 Analyze_Dimension (N);
6961 end Find_Selected_Component;
6963 ---------------
6964 -- Find_Type --
6965 ---------------
6967 procedure Find_Type (N : Node_Id) is
6968 C : Entity_Id;
6969 Typ : Entity_Id;
6970 T : Entity_Id;
6971 T_Name : Entity_Id;
6973 begin
6974 if N = Error then
6975 return;
6977 elsif Nkind (N) = N_Attribute_Reference then
6979 -- Class attribute. This is not valid in Ada 83 mode, but we do not
6980 -- need to enforce that at this point, since the declaration of the
6981 -- tagged type in the prefix would have been flagged already.
6983 if Attribute_Name (N) = Name_Class then
6984 Check_Restriction (No_Dispatch, N);
6985 Find_Type (Prefix (N));
6987 -- Propagate error from bad prefix
6989 if Etype (Prefix (N)) = Any_Type then
6990 Set_Entity (N, Any_Type);
6991 Set_Etype (N, Any_Type);
6992 return;
6993 end if;
6995 T := Base_Type (Entity (Prefix (N)));
6997 -- Case where type is not known to be tagged. Its appearance in
6998 -- the prefix of the 'Class attribute indicates that the full view
6999 -- will be tagged.
7001 if not Is_Tagged_Type (T) then
7002 if Ekind (T) = E_Incomplete_Type then
7004 -- It is legal to denote the class type of an incomplete
7005 -- type. The full type will have to be tagged, of course.
7006 -- In Ada 2005 this usage is declared obsolescent, so we
7007 -- warn accordingly. This usage is only legal if the type
7008 -- is completed in the current scope, and not for a limited
7009 -- view of a type.
7011 if Ada_Version >= Ada_2005 then
7013 -- Test whether the Available_View of a limited type view
7014 -- is tagged, since the limited view may not be marked as
7015 -- tagged if the type itself has an untagged incomplete
7016 -- type view in its package.
7018 if From_Limited_With (T)
7019 and then not Is_Tagged_Type (Available_View (T))
7020 then
7021 Error_Msg_N
7022 ("prefix of Class attribute must be tagged", N);
7023 Set_Etype (N, Any_Type);
7024 Set_Entity (N, Any_Type);
7025 return;
7027 -- ??? This test is temporarily disabled (always
7028 -- False) because it causes an unwanted warning on
7029 -- GNAT sources (built with -gnatg, which includes
7030 -- Warn_On_Obsolescent_ Feature). Once this issue
7031 -- is cleared in the sources, it can be enabled.
7033 elsif Warn_On_Obsolescent_Feature and then False then
7034 Error_Msg_N
7035 ("applying 'Class to an untagged incomplete type"
7036 & " is an obsolescent feature (RM J.11)?r?", N);
7037 end if;
7038 end if;
7040 Set_Is_Tagged_Type (T);
7041 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7042 Make_Class_Wide_Type (T);
7043 Set_Entity (N, Class_Wide_Type (T));
7044 Set_Etype (N, Class_Wide_Type (T));
7046 elsif Ekind (T) = E_Private_Type
7047 and then not Is_Generic_Type (T)
7048 and then In_Private_Part (Scope (T))
7049 then
7050 -- The Class attribute can be applied to an untagged private
7051 -- type fulfilled by a tagged type prior to the full type
7052 -- declaration (but only within the parent package's private
7053 -- part). Create the class-wide type now and check that the
7054 -- full type is tagged later during its analysis. Note that
7055 -- we do not mark the private type as tagged, unlike the
7056 -- case of incomplete types, because the type must still
7057 -- appear untagged to outside units.
7059 if No (Class_Wide_Type (T)) then
7060 Make_Class_Wide_Type (T);
7061 end if;
7063 Set_Entity (N, Class_Wide_Type (T));
7064 Set_Etype (N, Class_Wide_Type (T));
7066 else
7067 -- Should we introduce a type Any_Tagged and use Wrong_Type
7068 -- here, it would be a bit more consistent???
7070 Error_Msg_NE
7071 ("tagged type required, found}",
7072 Prefix (N), First_Subtype (T));
7073 Set_Entity (N, Any_Type);
7074 return;
7075 end if;
7077 -- Case of tagged type
7079 else
7080 if Is_Concurrent_Type (T) then
7081 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7083 -- Previous error. Use current type, which at least
7084 -- provides some operations.
7086 C := Entity (Prefix (N));
7088 else
7089 C := Class_Wide_Type
7090 (Corresponding_Record_Type (Entity (Prefix (N))));
7091 end if;
7093 else
7094 C := Class_Wide_Type (Entity (Prefix (N)));
7095 end if;
7097 Set_Entity_With_Checks (N, C);
7098 Generate_Reference (C, N);
7099 Set_Etype (N, C);
7100 end if;
7102 -- Base attribute, not allowed in Ada 83
7104 elsif Attribute_Name (N) = Name_Base then
7105 Error_Msg_Name_1 := Name_Base;
7106 Check_SPARK_05_Restriction
7107 ("attribute% is only allowed as prefix of another attribute", N);
7109 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7110 Error_Msg_N
7111 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7113 else
7114 Find_Type (Prefix (N));
7115 Typ := Entity (Prefix (N));
7117 if Ada_Version >= Ada_95
7118 and then not Is_Scalar_Type (Typ)
7119 and then not Is_Generic_Type (Typ)
7120 then
7121 Error_Msg_N
7122 ("prefix of Base attribute must be scalar type",
7123 Prefix (N));
7125 elsif Warn_On_Redundant_Constructs
7126 and then Base_Type (Typ) = Typ
7127 then
7128 Error_Msg_NE -- CODEFIX
7129 ("redundant attribute, & is its own base type?r?", N, Typ);
7130 end if;
7132 T := Base_Type (Typ);
7134 -- Rewrite attribute reference with type itself (see similar
7135 -- processing in Analyze_Attribute, case Base). Preserve prefix
7136 -- if present, for other legality checks.
7138 if Nkind (Prefix (N)) = N_Expanded_Name then
7139 Rewrite (N,
7140 Make_Expanded_Name (Sloc (N),
7141 Chars => Chars (T),
7142 Prefix => New_Copy (Prefix (Prefix (N))),
7143 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7145 else
7146 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7147 end if;
7149 Set_Entity (N, T);
7150 Set_Etype (N, T);
7151 end if;
7153 elsif Attribute_Name (N) = Name_Stub_Type then
7155 -- This is handled in Analyze_Attribute
7157 Analyze (N);
7159 -- All other attributes are invalid in a subtype mark
7161 else
7162 Error_Msg_N ("invalid attribute in subtype mark", N);
7163 end if;
7165 else
7166 Analyze (N);
7168 if Is_Entity_Name (N) then
7169 T_Name := Entity (N);
7170 else
7171 Error_Msg_N ("subtype mark required in this context", N);
7172 Set_Etype (N, Any_Type);
7173 return;
7174 end if;
7176 if T_Name = Any_Id or else Etype (N) = Any_Type then
7178 -- Undefined id. Make it into a valid type
7180 Set_Entity (N, Any_Type);
7182 elsif not Is_Type (T_Name)
7183 and then T_Name /= Standard_Void_Type
7184 then
7185 Error_Msg_Sloc := Sloc (T_Name);
7186 Error_Msg_N ("subtype mark required in this context", N);
7187 Error_Msg_NE ("\\found & declared#", N, T_Name);
7188 Set_Entity (N, Any_Type);
7190 else
7191 -- If the type is an incomplete type created to handle
7192 -- anonymous access components of a record type, then the
7193 -- incomplete type is the visible entity and subsequent
7194 -- references will point to it. Mark the original full
7195 -- type as referenced, to prevent spurious warnings.
7197 if Is_Incomplete_Type (T_Name)
7198 and then Present (Full_View (T_Name))
7199 and then not Comes_From_Source (T_Name)
7200 then
7201 Set_Referenced (Full_View (T_Name));
7202 end if;
7204 T_Name := Get_Full_View (T_Name);
7206 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7207 -- limited-with clauses
7209 if From_Limited_With (T_Name)
7210 and then Ekind (T_Name) in Incomplete_Kind
7211 and then Present (Non_Limited_View (T_Name))
7212 and then Is_Interface (Non_Limited_View (T_Name))
7213 then
7214 T_Name := Non_Limited_View (T_Name);
7215 end if;
7217 if In_Open_Scopes (T_Name) then
7218 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7220 -- In Ada 2005, a task name can be used in an access
7221 -- definition within its own body. It cannot be used
7222 -- in the discriminant part of the task declaration,
7223 -- nor anywhere else in the declaration because entries
7224 -- cannot have access parameters.
7226 if Ada_Version >= Ada_2005
7227 and then Nkind (Parent (N)) = N_Access_Definition
7228 then
7229 Set_Entity (N, T_Name);
7230 Set_Etype (N, T_Name);
7232 if Has_Completion (T_Name) then
7233 return;
7235 else
7236 Error_Msg_N
7237 ("task type cannot be used as type mark " &
7238 "within its own declaration", N);
7239 end if;
7241 else
7242 Error_Msg_N
7243 ("task type cannot be used as type mark " &
7244 "within its own spec or body", N);
7245 end if;
7247 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7249 -- In Ada 2005, a protected name can be used in an access
7250 -- definition within its own body.
7252 if Ada_Version >= Ada_2005
7253 and then Nkind (Parent (N)) = N_Access_Definition
7254 then
7255 Set_Entity (N, T_Name);
7256 Set_Etype (N, T_Name);
7257 return;
7259 else
7260 Error_Msg_N
7261 ("protected type cannot be used as type mark " &
7262 "within its own spec or body", N);
7263 end if;
7265 else
7266 Error_Msg_N ("type declaration cannot refer to itself", N);
7267 end if;
7269 Set_Etype (N, Any_Type);
7270 Set_Entity (N, Any_Type);
7271 Set_Error_Posted (T_Name);
7272 return;
7273 end if;
7275 Set_Entity (N, T_Name);
7276 Set_Etype (N, T_Name);
7277 end if;
7278 end if;
7280 if Present (Etype (N)) and then Comes_From_Source (N) then
7281 if Is_Fixed_Point_Type (Etype (N)) then
7282 Check_Restriction (No_Fixed_Point, N);
7283 elsif Is_Floating_Point_Type (Etype (N)) then
7284 Check_Restriction (No_Floating_Point, N);
7285 end if;
7287 -- A Ghost type must appear in a specific context
7289 if Is_Ghost_Entity (Etype (N)) then
7290 Check_Ghost_Context (Etype (N), N);
7291 end if;
7292 end if;
7293 end Find_Type;
7295 ------------------------------------
7296 -- Has_Implicit_Character_Literal --
7297 ------------------------------------
7299 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7300 Id : Entity_Id;
7301 Found : Boolean := False;
7302 P : constant Entity_Id := Entity (Prefix (N));
7303 Priv_Id : Entity_Id := Empty;
7305 begin
7306 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7307 Priv_Id := First_Private_Entity (P);
7308 end if;
7310 if P = Standard_Standard then
7311 Change_Selected_Component_To_Expanded_Name (N);
7312 Rewrite (N, Selector_Name (N));
7313 Analyze (N);
7314 Set_Etype (Original_Node (N), Standard_Character);
7315 return True;
7316 end if;
7318 Id := First_Entity (P);
7319 while Present (Id) and then Id /= Priv_Id loop
7320 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7322 -- We replace the node with the literal itself, resolve as a
7323 -- character, and set the type correctly.
7325 if not Found then
7326 Change_Selected_Component_To_Expanded_Name (N);
7327 Rewrite (N, Selector_Name (N));
7328 Analyze (N);
7329 Set_Etype (N, Id);
7330 Set_Etype (Original_Node (N), Id);
7331 Found := True;
7333 else
7334 -- More than one type derived from Character in given scope.
7335 -- Collect all possible interpretations.
7337 Add_One_Interp (N, Id, Id);
7338 end if;
7339 end if;
7341 Next_Entity (Id);
7342 end loop;
7344 return Found;
7345 end Has_Implicit_Character_Literal;
7347 ----------------------
7348 -- Has_Private_With --
7349 ----------------------
7351 function Has_Private_With (E : Entity_Id) return Boolean is
7352 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7353 Item : Node_Id;
7355 begin
7356 Item := First (Context_Items (Comp_Unit));
7357 while Present (Item) loop
7358 if Nkind (Item) = N_With_Clause
7359 and then Private_Present (Item)
7360 and then Entity (Name (Item)) = E
7361 then
7362 return True;
7363 end if;
7365 Next (Item);
7366 end loop;
7368 return False;
7369 end Has_Private_With;
7371 ---------------------------
7372 -- Has_Implicit_Operator --
7373 ---------------------------
7375 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7376 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7377 P : constant Entity_Id := Entity (Prefix (N));
7378 Id : Entity_Id;
7379 Priv_Id : Entity_Id := Empty;
7381 procedure Add_Implicit_Operator
7382 (T : Entity_Id;
7383 Op_Type : Entity_Id := Empty);
7384 -- Add implicit interpretation to node N, using the type for which a
7385 -- predefined operator exists. If the operator yields a boolean type,
7386 -- the Operand_Type is implicitly referenced by the operator, and a
7387 -- reference to it must be generated.
7389 ---------------------------
7390 -- Add_Implicit_Operator --
7391 ---------------------------
7393 procedure Add_Implicit_Operator
7394 (T : Entity_Id;
7395 Op_Type : Entity_Id := Empty)
7397 Predef_Op : Entity_Id;
7399 begin
7400 Predef_Op := Current_Entity (Selector_Name (N));
7401 while Present (Predef_Op)
7402 and then Scope (Predef_Op) /= Standard_Standard
7403 loop
7404 Predef_Op := Homonym (Predef_Op);
7405 end loop;
7407 if Nkind (N) = N_Selected_Component then
7408 Change_Selected_Component_To_Expanded_Name (N);
7409 end if;
7411 -- If the context is an unanalyzed function call, determine whether
7412 -- a binary or unary interpretation is required.
7414 if Nkind (Parent (N)) = N_Indexed_Component then
7415 declare
7416 Is_Binary_Call : constant Boolean :=
7417 Present
7418 (Next (First (Expressions (Parent (N)))));
7419 Is_Binary_Op : constant Boolean :=
7420 First_Entity
7421 (Predef_Op) /= Last_Entity (Predef_Op);
7422 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7424 begin
7425 if Is_Binary_Call then
7426 if Is_Binary_Op then
7427 Add_One_Interp (N, Predef_Op, T);
7428 else
7429 Add_One_Interp (N, Predef_Op2, T);
7430 end if;
7432 else
7433 if not Is_Binary_Op then
7434 Add_One_Interp (N, Predef_Op, T);
7435 else
7436 Add_One_Interp (N, Predef_Op2, T);
7437 end if;
7438 end if;
7439 end;
7441 else
7442 Add_One_Interp (N, Predef_Op, T);
7444 -- For operators with unary and binary interpretations, if
7445 -- context is not a call, add both
7447 if Present (Homonym (Predef_Op)) then
7448 Add_One_Interp (N, Homonym (Predef_Op), T);
7449 end if;
7450 end if;
7452 -- The node is a reference to a predefined operator, and
7453 -- an implicit reference to the type of its operands.
7455 if Present (Op_Type) then
7456 Generate_Operator_Reference (N, Op_Type);
7457 else
7458 Generate_Operator_Reference (N, T);
7459 end if;
7460 end Add_Implicit_Operator;
7462 -- Start of processing for Has_Implicit_Operator
7464 begin
7465 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7466 Priv_Id := First_Private_Entity (P);
7467 end if;
7469 Id := First_Entity (P);
7471 case Op_Id is
7473 -- Boolean operators: an implicit declaration exists if the scope
7474 -- contains a declaration for a derived Boolean type, or for an
7475 -- array of Boolean type.
7477 when Name_Op_And | Name_Op_Not | Name_Op_Or | Name_Op_Xor =>
7478 while Id /= Priv_Id loop
7479 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7480 Add_Implicit_Operator (Id);
7481 return True;
7482 end if;
7484 Next_Entity (Id);
7485 end loop;
7487 -- Equality: look for any non-limited type (result is Boolean)
7489 when Name_Op_Eq | Name_Op_Ne =>
7490 while Id /= Priv_Id loop
7491 if Is_Type (Id)
7492 and then not Is_Limited_Type (Id)
7493 and then Is_Base_Type (Id)
7494 then
7495 Add_Implicit_Operator (Standard_Boolean, Id);
7496 return True;
7497 end if;
7499 Next_Entity (Id);
7500 end loop;
7502 -- Comparison operators: scalar type, or array of scalar
7504 when Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge =>
7505 while Id /= Priv_Id loop
7506 if (Is_Scalar_Type (Id)
7507 or else (Is_Array_Type (Id)
7508 and then Is_Scalar_Type (Component_Type (Id))))
7509 and then Is_Base_Type (Id)
7510 then
7511 Add_Implicit_Operator (Standard_Boolean, Id);
7512 return True;
7513 end if;
7515 Next_Entity (Id);
7516 end loop;
7518 -- Arithmetic operators: any numeric type
7520 when Name_Op_Abs |
7521 Name_Op_Add |
7522 Name_Op_Mod |
7523 Name_Op_Rem |
7524 Name_Op_Subtract |
7525 Name_Op_Multiply |
7526 Name_Op_Divide |
7527 Name_Op_Expon =>
7528 while Id /= Priv_Id loop
7529 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
7530 Add_Implicit_Operator (Id);
7531 return True;
7532 end if;
7534 Next_Entity (Id);
7535 end loop;
7537 -- Concatenation: any one-dimensional array type
7539 when Name_Op_Concat =>
7540 while Id /= Priv_Id loop
7541 if Is_Array_Type (Id)
7542 and then Number_Dimensions (Id) = 1
7543 and then Is_Base_Type (Id)
7544 then
7545 Add_Implicit_Operator (Id);
7546 return True;
7547 end if;
7549 Next_Entity (Id);
7550 end loop;
7552 -- What is the others condition here? Should we be using a
7553 -- subtype of Name_Id that would restrict to operators ???
7555 when others => null;
7556 end case;
7558 -- If we fall through, then we do not have an implicit operator
7560 return False;
7562 end Has_Implicit_Operator;
7564 -----------------------------------
7565 -- Has_Loop_In_Inner_Open_Scopes --
7566 -----------------------------------
7568 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
7569 begin
7570 -- Several scope stacks are maintained by Scope_Stack. The base of the
7571 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7572 -- flag in the scope stack entry. Note that the scope stacks used to
7573 -- simply be delimited implicitly by the presence of Standard_Standard
7574 -- at their base, but there now are cases where this is not sufficient
7575 -- because Standard_Standard actually may appear in the middle of the
7576 -- active set of scopes.
7578 for J in reverse 0 .. Scope_Stack.Last loop
7580 -- S was reached without seing a loop scope first
7582 if Scope_Stack.Table (J).Entity = S then
7583 return False;
7585 -- S was not yet reached, so it contains at least one inner loop
7587 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
7588 return True;
7589 end if;
7591 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7592 -- cases where Standard_Standard appears in the middle of the active
7593 -- set of scopes. This affects the declaration and overriding of
7594 -- private inherited operations in instantiations of generic child
7595 -- units.
7597 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
7598 end loop;
7600 raise Program_Error; -- unreachable
7601 end Has_Loop_In_Inner_Open_Scopes;
7603 --------------------
7604 -- In_Open_Scopes --
7605 --------------------
7607 function In_Open_Scopes (S : Entity_Id) return Boolean is
7608 begin
7609 -- Several scope stacks are maintained by Scope_Stack. The base of the
7610 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7611 -- flag in the scope stack entry. Note that the scope stacks used to
7612 -- simply be delimited implicitly by the presence of Standard_Standard
7613 -- at their base, but there now are cases where this is not sufficient
7614 -- because Standard_Standard actually may appear in the middle of the
7615 -- active set of scopes.
7617 for J in reverse 0 .. Scope_Stack.Last loop
7618 if Scope_Stack.Table (J).Entity = S then
7619 return True;
7620 end if;
7622 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7623 -- cases where Standard_Standard appears in the middle of the active
7624 -- set of scopes. This affects the declaration and overriding of
7625 -- private inherited operations in instantiations of generic child
7626 -- units.
7628 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
7629 end loop;
7631 return False;
7632 end In_Open_Scopes;
7634 -----------------------------
7635 -- Inherit_Renamed_Profile --
7636 -----------------------------
7638 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
7639 New_F : Entity_Id;
7640 Old_F : Entity_Id;
7641 Old_T : Entity_Id;
7642 New_T : Entity_Id;
7644 begin
7645 if Ekind (Old_S) = E_Operator then
7646 New_F := First_Formal (New_S);
7648 while Present (New_F) loop
7649 Set_Etype (New_F, Base_Type (Etype (New_F)));
7650 Next_Formal (New_F);
7651 end loop;
7653 Set_Etype (New_S, Base_Type (Etype (New_S)));
7655 else
7656 New_F := First_Formal (New_S);
7657 Old_F := First_Formal (Old_S);
7659 while Present (New_F) loop
7660 New_T := Etype (New_F);
7661 Old_T := Etype (Old_F);
7663 -- If the new type is a renaming of the old one, as is the
7664 -- case for actuals in instances, retain its name, to simplify
7665 -- later disambiguation.
7667 if Nkind (Parent (New_T)) = N_Subtype_Declaration
7668 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
7669 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
7670 then
7671 null;
7672 else
7673 Set_Etype (New_F, Old_T);
7674 end if;
7676 Next_Formal (New_F);
7677 Next_Formal (Old_F);
7678 end loop;
7680 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
7681 Set_Etype (New_S, Etype (Old_S));
7682 end if;
7683 end if;
7684 end Inherit_Renamed_Profile;
7686 ----------------
7687 -- Initialize --
7688 ----------------
7690 procedure Initialize is
7691 begin
7692 Urefs.Init;
7693 end Initialize;
7695 -------------------------
7696 -- Install_Use_Clauses --
7697 -------------------------
7699 procedure Install_Use_Clauses
7700 (Clause : Node_Id;
7701 Force_Installation : Boolean := False)
7703 U : Node_Id;
7704 P : Node_Id;
7705 Id : Entity_Id;
7707 begin
7708 U := Clause;
7709 while Present (U) loop
7711 -- Case of USE package
7713 if Nkind (U) = N_Use_Package_Clause then
7714 P := First (Names (U));
7715 while Present (P) loop
7716 Id := Entity (P);
7718 if Ekind (Id) = E_Package then
7719 if In_Use (Id) then
7720 Note_Redundant_Use (P);
7722 elsif Present (Renamed_Object (Id))
7723 and then In_Use (Renamed_Object (Id))
7724 then
7725 Note_Redundant_Use (P);
7727 elsif Force_Installation or else Applicable_Use (P) then
7728 Use_One_Package (Id, U);
7730 end if;
7731 end if;
7733 Next (P);
7734 end loop;
7736 -- Case of USE TYPE
7738 else
7739 P := First (Subtype_Marks (U));
7740 while Present (P) loop
7741 if not Is_Entity_Name (P)
7742 or else No (Entity (P))
7743 then
7744 null;
7746 elsif Entity (P) /= Any_Type then
7747 Use_One_Type (P);
7748 end if;
7750 Next (P);
7751 end loop;
7752 end if;
7754 Next_Use_Clause (U);
7755 end loop;
7756 end Install_Use_Clauses;
7758 -------------------------------------
7759 -- Is_Appropriate_For_Entry_Prefix --
7760 -------------------------------------
7762 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
7763 P_Type : Entity_Id := T;
7765 begin
7766 if Is_Access_Type (P_Type) then
7767 P_Type := Designated_Type (P_Type);
7768 end if;
7770 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
7771 end Is_Appropriate_For_Entry_Prefix;
7773 -------------------------------
7774 -- Is_Appropriate_For_Record --
7775 -------------------------------
7777 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
7779 function Has_Components (T1 : Entity_Id) return Boolean;
7780 -- Determine if given type has components (i.e. is either a record
7781 -- type or a type that has discriminants).
7783 --------------------
7784 -- Has_Components --
7785 --------------------
7787 function Has_Components (T1 : Entity_Id) return Boolean is
7788 begin
7789 return Is_Record_Type (T1)
7790 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
7791 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
7792 or else (Is_Incomplete_Type (T1)
7793 and then From_Limited_With (T1)
7794 and then Present (Non_Limited_View (T1))
7795 and then Is_Record_Type
7796 (Get_Full_View (Non_Limited_View (T1))));
7797 end Has_Components;
7799 -- Start of processing for Is_Appropriate_For_Record
7801 begin
7802 return
7803 Present (T)
7804 and then (Has_Components (T)
7805 or else (Is_Access_Type (T)
7806 and then Has_Components (Designated_Type (T))));
7807 end Is_Appropriate_For_Record;
7809 ------------------------
7810 -- Note_Redundant_Use --
7811 ------------------------
7813 procedure Note_Redundant_Use (Clause : Node_Id) is
7814 Pack_Name : constant Entity_Id := Entity (Clause);
7815 Cur_Use : constant Node_Id := Current_Use_Clause (Pack_Name);
7816 Decl : constant Node_Id := Parent (Clause);
7818 Prev_Use : Node_Id := Empty;
7819 Redundant : Node_Id := Empty;
7820 -- The Use_Clause which is actually redundant. In the simplest case it
7821 -- is Pack itself, but when we compile a body we install its context
7822 -- before that of its spec, in which case it is the use_clause in the
7823 -- spec that will appear to be redundant, and we want the warning to be
7824 -- placed on the body. Similar complications appear when the redundancy
7825 -- is between a child unit and one of its ancestors.
7827 begin
7828 Set_Redundant_Use (Clause, True);
7830 if not Comes_From_Source (Clause)
7831 or else In_Instance
7832 or else not Warn_On_Redundant_Constructs
7833 then
7834 return;
7835 end if;
7837 if not Is_Compilation_Unit (Current_Scope) then
7839 -- If the use_clause is in an inner scope, it is made redundant by
7840 -- some clause in the current context, with one exception: If we're
7841 -- compiling a nested package body, and the use_clause comes from the
7842 -- corresponding spec, the clause is not necessarily fully redundant,
7843 -- so we should not warn. If a warning was warranted, it would have
7844 -- been given when the spec was processed.
7846 if Nkind (Parent (Decl)) = N_Package_Specification then
7847 declare
7848 Package_Spec_Entity : constant Entity_Id :=
7849 Defining_Unit_Name (Parent (Decl));
7850 begin
7851 if In_Package_Body (Package_Spec_Entity) then
7852 return;
7853 end if;
7854 end;
7855 end if;
7857 Redundant := Clause;
7858 Prev_Use := Cur_Use;
7860 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
7861 declare
7862 Cur_Unit : constant Unit_Number_Type := Get_Source_Unit (Cur_Use);
7863 New_Unit : constant Unit_Number_Type := Get_Source_Unit (Clause);
7864 Scop : Entity_Id;
7866 begin
7867 if Cur_Unit = New_Unit then
7869 -- Redundant clause in same body
7871 Redundant := Clause;
7872 Prev_Use := Cur_Use;
7874 elsif Cur_Unit = Current_Sem_Unit then
7876 -- If the new clause is not in the current unit it has been
7877 -- analyzed first, and it makes the other one redundant.
7878 -- However, if the new clause appears in a subunit, Cur_Unit
7879 -- is still the parent, and in that case the redundant one
7880 -- is the one appearing in the subunit.
7882 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
7883 Redundant := Clause;
7884 Prev_Use := Cur_Use;
7886 -- Most common case: redundant clause in body,
7887 -- original clause in spec. Current scope is spec entity.
7889 elsif
7890 Current_Scope =
7891 Defining_Entity (
7892 Unit (Library_Unit (Cunit (Current_Sem_Unit))))
7893 then
7894 Redundant := Cur_Use;
7895 Prev_Use := Clause;
7897 else
7898 -- The new clause may appear in an unrelated unit, when
7899 -- the parents of a generic are being installed prior to
7900 -- instantiation. In this case there must be no warning.
7901 -- We detect this case by checking whether the current top
7902 -- of the stack is related to the current compilation.
7904 Scop := Current_Scope;
7905 while Present (Scop) and then Scop /= Standard_Standard loop
7906 if Is_Compilation_Unit (Scop)
7907 and then not Is_Child_Unit (Scop)
7908 then
7909 return;
7911 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
7912 exit;
7913 end if;
7915 Scop := Scope (Scop);
7916 end loop;
7918 Redundant := Cur_Use;
7919 Prev_Use := Clause;
7920 end if;
7922 elsif New_Unit = Current_Sem_Unit then
7923 Redundant := Clause;
7924 Prev_Use := Cur_Use;
7926 else
7927 -- Neither is the current unit, so they appear in parent or
7928 -- sibling units. Warning will be emitted elsewhere.
7930 return;
7931 end if;
7932 end;
7934 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
7935 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
7936 then
7937 -- Use_clause is in child unit of current unit, and the child unit
7938 -- appears in the context of the body of the parent, so it has been
7939 -- installed first, even though it is the redundant one. Depending on
7940 -- their placement in the context, the visible or the private parts
7941 -- of the two units, either might appear as redundant, but the
7942 -- message has to be on the current unit.
7944 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
7945 Redundant := Cur_Use;
7946 Prev_Use := Clause;
7947 else
7948 Redundant := Clause;
7949 Prev_Use := Cur_Use;
7950 end if;
7952 -- If the new use clause appears in the private part of a parent unit
7953 -- it may appear to be redundant w.r.t. a use clause in a child unit,
7954 -- but the previous use clause was needed in the visible part of the
7955 -- child, and no warning should be emitted.
7957 if Nkind (Parent (Decl)) = N_Package_Specification
7958 and then
7959 List_Containing (Decl) = Private_Declarations (Parent (Decl))
7960 then
7961 declare
7962 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
7963 Spec : constant Node_Id :=
7964 Specification (Unit (Cunit (Current_Sem_Unit)));
7966 begin
7967 if Is_Compilation_Unit (Par)
7968 and then Par /= Cunit_Entity (Current_Sem_Unit)
7969 and then Parent (Cur_Use) = Spec
7970 and then
7971 List_Containing (Cur_Use) = Visible_Declarations (Spec)
7972 then
7973 return;
7974 end if;
7975 end;
7976 end if;
7978 -- Finally, if the current use clause is in the context then
7979 -- the clause is redundant when it is nested within the unit.
7981 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
7982 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
7983 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
7984 then
7985 Redundant := Clause;
7986 Prev_Use := Cur_Use;
7988 else
7989 null;
7990 end if;
7992 if Present (Redundant) then
7993 Error_Msg_Sloc := Sloc (Prev_Use);
7994 Error_Msg_NE -- CODEFIX
7995 ("& is already use-visible through previous use clause #??",
7996 Redundant, Pack_Name);
7997 end if;
7998 end Note_Redundant_Use;
8000 ---------------
8001 -- Pop_Scope --
8002 ---------------
8004 procedure Pop_Scope is
8005 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8006 S : constant Entity_Id := SST.Entity;
8008 begin
8009 if Debug_Flag_E then
8010 Write_Info;
8011 end if;
8013 -- Set Default_Storage_Pool field of the library unit if necessary
8015 if Ekind_In (S, E_Package, E_Generic_Package)
8016 and then
8017 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8018 then
8019 declare
8020 Aux : constant Node_Id :=
8021 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8022 begin
8023 if No (Default_Storage_Pool (Aux)) then
8024 Set_Default_Storage_Pool (Aux, Default_Pool);
8025 end if;
8026 end;
8027 end if;
8029 Scope_Suppress := SST.Save_Scope_Suppress;
8030 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8031 Check_Policy_List := SST.Save_Check_Policy_List;
8032 Default_Pool := SST.Save_Default_Storage_Pool;
8033 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8034 SPARK_Mode := SST.Save_SPARK_Mode;
8035 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8036 Default_SSO := SST.Save_Default_SSO;
8037 Uneval_Old := SST.Save_Uneval_Old;
8039 if Debug_Flag_W then
8040 Write_Str ("<-- exiting scope: ");
8041 Write_Name (Chars (Current_Scope));
8042 Write_Str (", Depth=");
8043 Write_Int (Int (Scope_Stack.Last));
8044 Write_Eol;
8045 end if;
8047 End_Use_Clauses (SST.First_Use_Clause);
8049 -- If the actions to be wrapped are still there they will get lost
8050 -- causing incomplete code to be generated. It is better to abort in
8051 -- this case (and we do the abort even with assertions off since the
8052 -- penalty is incorrect code generation).
8054 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8055 raise Program_Error;
8056 end if;
8058 -- Free last subprogram name if allocated, and pop scope
8060 Free (SST.Last_Subprogram_Name);
8061 Scope_Stack.Decrement_Last;
8062 end Pop_Scope;
8064 ---------------
8065 -- Push_Scope --
8066 ---------------
8068 procedure Push_Scope (S : Entity_Id) is
8069 E : constant Entity_Id := Scope (S);
8071 begin
8072 if Ekind (S) = E_Void then
8073 null;
8075 -- Set scope depth if not a non-concurrent type, and we have not yet set
8076 -- the scope depth. This means that we have the first occurrence of the
8077 -- scope, and this is where the depth is set.
8079 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8080 and then not Scope_Depth_Set (S)
8081 then
8082 if S = Standard_Standard then
8083 Set_Scope_Depth_Value (S, Uint_0);
8085 elsif Is_Child_Unit (S) then
8086 Set_Scope_Depth_Value (S, Uint_1);
8088 elsif not Is_Record_Type (Current_Scope) then
8089 if Ekind (S) = E_Loop then
8090 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8091 else
8092 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8093 end if;
8094 end if;
8095 end if;
8097 Scope_Stack.Increment_Last;
8099 declare
8100 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8102 begin
8103 SST.Entity := S;
8104 SST.Save_Scope_Suppress := Scope_Suppress;
8105 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8106 SST.Save_Check_Policy_List := Check_Policy_List;
8107 SST.Save_Default_Storage_Pool := Default_Pool;
8108 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8109 SST.Save_SPARK_Mode := SPARK_Mode;
8110 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8111 SST.Save_Default_SSO := Default_SSO;
8112 SST.Save_Uneval_Old := Uneval_Old;
8114 if Scope_Stack.Last > Scope_Stack.First then
8115 SST.Component_Alignment_Default := Scope_Stack.Table
8116 (Scope_Stack.Last - 1).
8117 Component_Alignment_Default;
8118 end if;
8120 SST.Last_Subprogram_Name := null;
8121 SST.Is_Transient := False;
8122 SST.Node_To_Be_Wrapped := Empty;
8123 SST.Pending_Freeze_Actions := No_List;
8124 SST.Actions_To_Be_Wrapped := (others => No_List);
8125 SST.First_Use_Clause := Empty;
8126 SST.Is_Active_Stack_Base := False;
8127 SST.Previous_Visibility := False;
8128 SST.Locked_Shared_Objects := No_Elist;
8129 end;
8131 if Debug_Flag_W then
8132 Write_Str ("--> new scope: ");
8133 Write_Name (Chars (Current_Scope));
8134 Write_Str (", Id=");
8135 Write_Int (Int (Current_Scope));
8136 Write_Str (", Depth=");
8137 Write_Int (Int (Scope_Stack.Last));
8138 Write_Eol;
8139 end if;
8141 -- Deal with copying flags from the previous scope to this one. This is
8142 -- not necessary if either scope is standard, or if the new scope is a
8143 -- child unit.
8145 if S /= Standard_Standard
8146 and then Scope (S) /= Standard_Standard
8147 and then not Is_Child_Unit (S)
8148 then
8149 if Nkind (E) not in N_Entity then
8150 return;
8151 end if;
8153 -- Copy categorization flags from Scope (S) to S, this is not done
8154 -- when Scope (S) is Standard_Standard since propagation is from
8155 -- library unit entity inwards. Copy other relevant attributes as
8156 -- well (Discard_Names in particular).
8158 -- We only propagate inwards for library level entities,
8159 -- inner level subprograms do not inherit the categorization.
8161 if Is_Library_Level_Entity (S) then
8162 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8163 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8164 Set_Discard_Names (S, Discard_Names (E));
8165 Set_Suppress_Value_Tracking_On_Call
8166 (S, Suppress_Value_Tracking_On_Call (E));
8167 Set_Categorization_From_Scope (E => S, Scop => E);
8168 end if;
8169 end if;
8171 if Is_Child_Unit (S)
8172 and then Present (E)
8173 and then Ekind_In (E, E_Package, E_Generic_Package)
8174 and then
8175 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8176 then
8177 declare
8178 Aux : constant Node_Id :=
8179 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8180 begin
8181 if Present (Default_Storage_Pool (Aux)) then
8182 Default_Pool := Default_Storage_Pool (Aux);
8183 end if;
8184 end;
8185 end if;
8186 end Push_Scope;
8188 ---------------------
8189 -- Premature_Usage --
8190 ---------------------
8192 procedure Premature_Usage (N : Node_Id) is
8193 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8194 E : Entity_Id := Entity (N);
8196 begin
8197 -- Within an instance, the analysis of the actual for a formal object
8198 -- does not see the name of the object itself. This is significant only
8199 -- if the object is an aggregate, where its analysis does not do any
8200 -- name resolution on component associations. (see 4717-008). In such a
8201 -- case, look for the visible homonym on the chain.
8203 if In_Instance and then Present (Homonym (E)) then
8204 E := Homonym (E);
8205 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8206 E := Homonym (E);
8207 end loop;
8209 if Present (E) then
8210 Set_Entity (N, E);
8211 Set_Etype (N, Etype (E));
8212 return;
8213 end if;
8214 end if;
8216 if Kind = N_Component_Declaration then
8217 Error_Msg_N
8218 ("component&! cannot be used before end of record declaration", N);
8220 elsif Kind = N_Parameter_Specification then
8221 Error_Msg_N
8222 ("formal parameter&! cannot be used before end of specification",
8225 elsif Kind = N_Discriminant_Specification then
8226 Error_Msg_N
8227 ("discriminant&! cannot be used before end of discriminant part",
8230 elsif Kind = N_Procedure_Specification
8231 or else Kind = N_Function_Specification
8232 then
8233 Error_Msg_N
8234 ("subprogram&! cannot be used before end of its declaration",
8237 elsif Kind = N_Full_Type_Declaration then
8238 Error_Msg_N
8239 ("type& cannot be used before end of its declaration!", N);
8241 else
8242 Error_Msg_N
8243 ("object& cannot be used before end of its declaration!", N);
8244 end if;
8245 end Premature_Usage;
8247 ------------------------
8248 -- Present_System_Aux --
8249 ------------------------
8251 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8252 Loc : Source_Ptr;
8253 Aux_Name : Unit_Name_Type;
8254 Unum : Unit_Number_Type;
8255 Withn : Node_Id;
8256 With_Sys : Node_Id;
8257 The_Unit : Node_Id;
8259 function Find_System (C_Unit : Node_Id) return Entity_Id;
8260 -- Scan context clause of compilation unit to find with_clause
8261 -- for System.
8263 -----------------
8264 -- Find_System --
8265 -----------------
8267 function Find_System (C_Unit : Node_Id) return Entity_Id is
8268 With_Clause : Node_Id;
8270 begin
8271 With_Clause := First (Context_Items (C_Unit));
8272 while Present (With_Clause) loop
8273 if (Nkind (With_Clause) = N_With_Clause
8274 and then Chars (Name (With_Clause)) = Name_System)
8275 and then Comes_From_Source (With_Clause)
8276 then
8277 return With_Clause;
8278 end if;
8280 Next (With_Clause);
8281 end loop;
8283 return Empty;
8284 end Find_System;
8286 -- Start of processing for Present_System_Aux
8288 begin
8289 -- The child unit may have been loaded and analyzed already
8291 if Present (System_Aux_Id) then
8292 return True;
8294 -- If no previous pragma for System.Aux, nothing to load
8296 elsif No (System_Extend_Unit) then
8297 return False;
8299 -- Use the unit name given in the pragma to retrieve the unit.
8300 -- Verify that System itself appears in the context clause of the
8301 -- current compilation. If System is not present, an error will
8302 -- have been reported already.
8304 else
8305 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8307 The_Unit := Unit (Cunit (Current_Sem_Unit));
8309 if No (With_Sys)
8310 and then
8311 (Nkind (The_Unit) = N_Package_Body
8312 or else (Nkind (The_Unit) = N_Subprogram_Body
8313 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8314 then
8315 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8316 end if;
8318 if No (With_Sys) and then Present (N) then
8320 -- If we are compiling a subunit, we need to examine its
8321 -- context as well (Current_Sem_Unit is the parent unit);
8323 The_Unit := Parent (N);
8324 while Nkind (The_Unit) /= N_Compilation_Unit loop
8325 The_Unit := Parent (The_Unit);
8326 end loop;
8328 if Nkind (Unit (The_Unit)) = N_Subunit then
8329 With_Sys := Find_System (The_Unit);
8330 end if;
8331 end if;
8333 if No (With_Sys) then
8334 return False;
8335 end if;
8337 Loc := Sloc (With_Sys);
8338 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8339 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8340 Name_Buffer (1 .. 7) := "system.";
8341 Name_Buffer (Name_Len + 8) := '%';
8342 Name_Buffer (Name_Len + 9) := 's';
8343 Name_Len := Name_Len + 9;
8344 Aux_Name := Name_Find;
8346 Unum :=
8347 Load_Unit
8348 (Load_Name => Aux_Name,
8349 Required => False,
8350 Subunit => False,
8351 Error_Node => With_Sys);
8353 if Unum /= No_Unit then
8354 Semantics (Cunit (Unum));
8355 System_Aux_Id :=
8356 Defining_Entity (Specification (Unit (Cunit (Unum))));
8358 Withn :=
8359 Make_With_Clause (Loc,
8360 Name =>
8361 Make_Expanded_Name (Loc,
8362 Chars => Chars (System_Aux_Id),
8363 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8364 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8366 Set_Entity (Name (Withn), System_Aux_Id);
8368 Set_Library_Unit (Withn, Cunit (Unum));
8369 Set_Corresponding_Spec (Withn, System_Aux_Id);
8370 Set_First_Name (Withn, True);
8371 Set_Implicit_With (Withn, True);
8373 Insert_After (With_Sys, Withn);
8374 Mark_Rewrite_Insertion (Withn);
8375 Set_Context_Installed (Withn);
8377 return True;
8379 -- Here if unit load failed
8381 else
8382 Error_Msg_Name_1 := Name_System;
8383 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8384 Error_Msg_N
8385 ("extension package `%.%` does not exist",
8386 Opt.System_Extend_Unit);
8387 return False;
8388 end if;
8389 end if;
8390 end Present_System_Aux;
8392 -------------------------
8393 -- Restore_Scope_Stack --
8394 -------------------------
8396 procedure Restore_Scope_Stack
8397 (List : Elist_Id;
8398 Handle_Use : Boolean := True)
8400 SS_Last : constant Int := Scope_Stack.Last;
8401 Elmt : Elmt_Id;
8403 begin
8404 -- Restore visibility of previous scope stack, if any, using the list
8405 -- we saved (we use Remove, since this list will not be used again).
8407 loop
8408 Elmt := Last_Elmt (List);
8409 exit when Elmt = No_Elmt;
8410 Set_Is_Immediately_Visible (Node (Elmt));
8411 Remove_Last_Elmt (List);
8412 end loop;
8414 -- Restore use clauses
8416 if SS_Last >= Scope_Stack.First
8417 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8418 and then Handle_Use
8419 then
8420 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8421 end if;
8422 end Restore_Scope_Stack;
8424 ----------------------
8425 -- Save_Scope_Stack --
8426 ----------------------
8428 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8429 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8430 -- from immediate visibility entities and Restore_Scope_Stack took care
8431 -- of restoring their visibility analyzing the context of each entity. The
8432 -- problem of such approach is that it was fragile and caused unexpected
8433 -- visibility problems, and indeed one test was found where there was a
8434 -- real problem.
8436 -- Furthermore, the following experiment was carried out:
8438 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8439 -- entities whose attribute Is_Immediately_Visible is modified
8440 -- from True to False.
8442 -- - Restore_Scope_Stack was modified to store in another Elist2
8443 -- all the entities whose attribute Is_Immediately_Visible is
8444 -- modified from False to True.
8446 -- - Extra code was added to verify that all the elements of Elist1
8447 -- are found in Elist2
8449 -- This test shows that there may be more occurrences of this problem which
8450 -- have not yet been detected. As a result, we replaced that approach by
8451 -- the current one in which Save_Scope_Stack returns the list of entities
8452 -- whose visibility is changed, and that list is passed to Restore_Scope_
8453 -- Stack to undo that change. This approach is simpler and safer, although
8454 -- it consumes more memory.
8456 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8457 Result : constant Elist_Id := New_Elmt_List;
8458 E : Entity_Id;
8459 S : Entity_Id;
8460 SS_Last : constant Int := Scope_Stack.Last;
8462 procedure Remove_From_Visibility (E : Entity_Id);
8463 -- If E is immediately visible then append it to the result and remove
8464 -- it temporarily from visibility.
8466 ----------------------------
8467 -- Remove_From_Visibility --
8468 ----------------------------
8470 procedure Remove_From_Visibility (E : Entity_Id) is
8471 begin
8472 if Is_Immediately_Visible (E) then
8473 Append_Elmt (E, Result);
8474 Set_Is_Immediately_Visible (E, False);
8475 end if;
8476 end Remove_From_Visibility;
8478 -- Start of processing for Save_Scope_Stack
8480 begin
8481 if SS_Last >= Scope_Stack.First
8482 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8483 then
8484 if Handle_Use then
8485 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8486 end if;
8488 -- If the call is from within a compilation unit, as when called from
8489 -- Rtsfind, make current entries in scope stack invisible while we
8490 -- analyze the new unit.
8492 for J in reverse 0 .. SS_Last loop
8493 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8494 or else No (Scope_Stack.Table (J).Entity);
8496 S := Scope_Stack.Table (J).Entity;
8498 Remove_From_Visibility (S);
8500 E := First_Entity (S);
8501 while Present (E) loop
8502 Remove_From_Visibility (E);
8503 Next_Entity (E);
8504 end loop;
8505 end loop;
8507 end if;
8509 return Result;
8510 end Save_Scope_Stack;
8512 -------------
8513 -- Set_Use --
8514 -------------
8516 procedure Set_Use (L : List_Id) is
8517 Decl : Node_Id;
8518 Pack_Name : Node_Id;
8519 Pack : Entity_Id;
8520 Id : Entity_Id;
8522 begin
8523 if Present (L) then
8524 Decl := First (L);
8525 while Present (Decl) loop
8526 if Nkind (Decl) = N_Use_Package_Clause then
8527 Chain_Use_Clause (Decl);
8529 Pack_Name := First (Names (Decl));
8530 while Present (Pack_Name) loop
8531 Pack := Entity (Pack_Name);
8533 if Ekind (Pack) = E_Package
8534 and then Applicable_Use (Pack_Name)
8535 then
8536 Use_One_Package (Pack, Decl);
8537 end if;
8539 Next (Pack_Name);
8540 end loop;
8542 elsif Nkind (Decl) = N_Use_Type_Clause then
8543 Chain_Use_Clause (Decl);
8545 Id := First (Subtype_Marks (Decl));
8546 while Present (Id) loop
8547 if Entity (Id) /= Any_Type then
8548 Use_One_Type (Id);
8549 end if;
8551 Next (Id);
8552 end loop;
8553 end if;
8555 Next (Decl);
8556 end loop;
8557 end if;
8558 end Set_Use;
8560 ---------------------
8561 -- Use_One_Package --
8562 ---------------------
8564 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8565 Id : Entity_Id;
8566 Prev : Entity_Id;
8567 Current_Instance : Entity_Id := Empty;
8568 Real_P : Entity_Id;
8569 Private_With_OK : Boolean := False;
8571 begin
8572 if Ekind (P) /= E_Package then
8573 return;
8574 end if;
8576 Set_In_Use (P);
8577 Set_Current_Use_Clause (P, N);
8579 -- Ada 2005 (AI-50217): Check restriction
8581 if From_Limited_With (P) then
8582 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8583 end if;
8585 -- Find enclosing instance, if any
8587 if In_Instance then
8588 Current_Instance := Current_Scope;
8589 while not Is_Generic_Instance (Current_Instance) loop
8590 Current_Instance := Scope (Current_Instance);
8591 end loop;
8593 if No (Hidden_By_Use_Clause (N)) then
8594 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8595 end if;
8596 end if;
8598 -- If unit is a package renaming, indicate that the renamed
8599 -- package is also in use (the flags on both entities must
8600 -- remain consistent, and a subsequent use of either of them
8601 -- should be recognized as redundant).
8603 if Present (Renamed_Object (P)) then
8604 Set_In_Use (Renamed_Object (P));
8605 Set_Current_Use_Clause (Renamed_Object (P), N);
8606 Real_P := Renamed_Object (P);
8607 else
8608 Real_P := P;
8609 end if;
8611 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8612 -- found in the private part of a package specification
8614 if In_Private_Part (Current_Scope)
8615 and then Has_Private_With (P)
8616 and then Is_Child_Unit (Current_Scope)
8617 and then Is_Child_Unit (P)
8618 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8619 then
8620 Private_With_OK := True;
8621 end if;
8623 -- Loop through entities in one package making them potentially
8624 -- use-visible.
8626 Id := First_Entity (P);
8627 while Present (Id)
8628 and then (Id /= First_Private_Entity (P)
8629 or else Private_With_OK) -- Ada 2005 (AI-262)
8630 loop
8631 Prev := Current_Entity (Id);
8632 while Present (Prev) loop
8633 if Is_Immediately_Visible (Prev)
8634 and then (not Is_Overloadable (Prev)
8635 or else not Is_Overloadable (Id)
8636 or else (Type_Conformant (Id, Prev)))
8637 then
8638 if No (Current_Instance) then
8640 -- Potentially use-visible entity remains hidden
8642 goto Next_Usable_Entity;
8644 -- A use clause within an instance hides outer global entities,
8645 -- which are not used to resolve local entities in the
8646 -- instance. Note that the predefined entities in Standard
8647 -- could not have been hidden in the generic by a use clause,
8648 -- and therefore remain visible. Other compilation units whose
8649 -- entities appear in Standard must be hidden in an instance.
8651 -- To determine whether an entity is external to the instance
8652 -- we compare the scope depth of its scope with that of the
8653 -- current instance. However, a generic actual of a subprogram
8654 -- instance is declared in the wrapper package but will not be
8655 -- hidden by a use-visible entity. similarly, an entity that is
8656 -- declared in an enclosing instance will not be hidden by an
8657 -- an entity declared in a generic actual, which can only have
8658 -- been use-visible in the generic and will not have hidden the
8659 -- entity in the generic parent.
8661 -- If Id is called Standard, the predefined package with the
8662 -- same name is in the homonym chain. It has to be ignored
8663 -- because it has no defined scope (being the only entity in
8664 -- the system with this mandated behavior).
8666 elsif not Is_Hidden (Id)
8667 and then Present (Scope (Prev))
8668 and then not Is_Wrapper_Package (Scope (Prev))
8669 and then Scope_Depth (Scope (Prev)) <
8670 Scope_Depth (Current_Instance)
8671 and then (Scope (Prev) /= Standard_Standard
8672 or else Sloc (Prev) > Standard_Location)
8673 then
8674 if In_Open_Scopes (Scope (Prev))
8675 and then Is_Generic_Instance (Scope (Prev))
8676 and then Present (Associated_Formal_Package (P))
8677 then
8678 null;
8680 else
8681 Set_Is_Potentially_Use_Visible (Id);
8682 Set_Is_Immediately_Visible (Prev, False);
8683 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8684 end if;
8685 end if;
8687 -- A user-defined operator is not use-visible if the predefined
8688 -- operator for the type is immediately visible, which is the case
8689 -- if the type of the operand is in an open scope. This does not
8690 -- apply to user-defined operators that have operands of different
8691 -- types, because the predefined mixed mode operations (multiply
8692 -- and divide) apply to universal types and do not hide anything.
8694 elsif Ekind (Prev) = E_Operator
8695 and then Operator_Matches_Spec (Prev, Id)
8696 and then In_Open_Scopes
8697 (Scope (Base_Type (Etype (First_Formal (Id)))))
8698 and then (No (Next_Formal (First_Formal (Id)))
8699 or else Etype (First_Formal (Id)) =
8700 Etype (Next_Formal (First_Formal (Id)))
8701 or else Chars (Prev) = Name_Op_Expon)
8702 then
8703 goto Next_Usable_Entity;
8705 -- In an instance, two homonyms may become use_visible through the
8706 -- actuals of distinct formal packages. In the generic, only the
8707 -- current one would have been visible, so make the other one
8708 -- not use_visible.
8710 elsif Present (Current_Instance)
8711 and then Is_Potentially_Use_Visible (Prev)
8712 and then not Is_Overloadable (Prev)
8713 and then Scope (Id) /= Scope (Prev)
8714 and then Used_As_Generic_Actual (Scope (Prev))
8715 and then Used_As_Generic_Actual (Scope (Id))
8716 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
8717 Current_Use_Clause (Scope (Id)))
8718 then
8719 Set_Is_Potentially_Use_Visible (Prev, False);
8720 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8721 end if;
8723 Prev := Homonym (Prev);
8724 end loop;
8726 -- On exit, we know entity is not hidden, unless it is private
8728 if not Is_Hidden (Id)
8729 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
8730 then
8731 Set_Is_Potentially_Use_Visible (Id);
8733 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
8734 Set_Is_Potentially_Use_Visible (Full_View (Id));
8735 end if;
8736 end if;
8738 <<Next_Usable_Entity>>
8739 Next_Entity (Id);
8740 end loop;
8742 -- Child units are also made use-visible by a use clause, but they may
8743 -- appear after all visible declarations in the parent entity list.
8745 while Present (Id) loop
8746 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
8747 Set_Is_Potentially_Use_Visible (Id);
8748 end if;
8750 Next_Entity (Id);
8751 end loop;
8753 if Chars (Real_P) = Name_System
8754 and then Scope (Real_P) = Standard_Standard
8755 and then Present_System_Aux (N)
8756 then
8757 Use_One_Package (System_Aux_Id, N);
8758 end if;
8760 end Use_One_Package;
8762 ------------------
8763 -- Use_One_Type --
8764 ------------------
8766 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
8767 Elmt : Elmt_Id;
8768 Is_Known_Used : Boolean;
8769 Op_List : Elist_Id;
8770 T : Entity_Id;
8772 function Spec_Reloaded_For_Body return Boolean;
8773 -- Determine whether the compilation unit is a package body and the use
8774 -- type clause is in the spec of the same package. Even though the spec
8775 -- was analyzed first, its context is reloaded when analysing the body.
8777 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
8778 -- AI05-150: if the use_type_clause carries the "all" qualifier,
8779 -- class-wide operations of ancestor types are use-visible if the
8780 -- ancestor type is visible.
8782 ----------------------------
8783 -- Spec_Reloaded_For_Body --
8784 ----------------------------
8786 function Spec_Reloaded_For_Body return Boolean is
8787 begin
8788 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8789 declare
8790 Spec : constant Node_Id :=
8791 Parent (List_Containing (Parent (Id)));
8793 begin
8794 -- Check whether type is declared in a package specification,
8795 -- and current unit is the corresponding package body. The
8796 -- use clauses themselves may be within a nested package.
8798 return
8799 Nkind (Spec) = N_Package_Specification
8800 and then
8801 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
8802 Cunit_Entity (Current_Sem_Unit));
8803 end;
8804 end if;
8806 return False;
8807 end Spec_Reloaded_For_Body;
8809 -------------------------------
8810 -- Use_Class_Wide_Operations --
8811 -------------------------------
8813 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
8814 Scop : Entity_Id;
8815 Ent : Entity_Id;
8817 function Is_Class_Wide_Operation_Of
8818 (Op : Entity_Id;
8819 T : Entity_Id) return Boolean;
8820 -- Determine whether a subprogram has a class-wide parameter or
8821 -- result that is T'Class.
8823 ---------------------------------
8824 -- Is_Class_Wide_Operation_Of --
8825 ---------------------------------
8827 function Is_Class_Wide_Operation_Of
8828 (Op : Entity_Id;
8829 T : Entity_Id) return Boolean
8831 Formal : Entity_Id;
8833 begin
8834 Formal := First_Formal (Op);
8835 while Present (Formal) loop
8836 if Etype (Formal) = Class_Wide_Type (T) then
8837 return True;
8838 end if;
8839 Next_Formal (Formal);
8840 end loop;
8842 if Etype (Op) = Class_Wide_Type (T) then
8843 return True;
8844 end if;
8846 return False;
8847 end Is_Class_Wide_Operation_Of;
8849 -- Start of processing for Use_Class_Wide_Operations
8851 begin
8852 Scop := Scope (Typ);
8853 if not Is_Hidden (Scop) then
8854 Ent := First_Entity (Scop);
8855 while Present (Ent) loop
8856 if Is_Overloadable (Ent)
8857 and then Is_Class_Wide_Operation_Of (Ent, Typ)
8858 and then not Is_Potentially_Use_Visible (Ent)
8859 then
8860 Set_Is_Potentially_Use_Visible (Ent);
8861 Append_Elmt (Ent, Used_Operations (Parent (Id)));
8862 end if;
8864 Next_Entity (Ent);
8865 end loop;
8866 end if;
8868 if Is_Derived_Type (Typ) then
8869 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
8870 end if;
8871 end Use_Class_Wide_Operations;
8873 -- Start of processing for Use_One_Type
8875 begin
8876 -- It is the type determined by the subtype mark (8.4(8)) whose
8877 -- operations become potentially use-visible.
8879 T := Base_Type (Entity (Id));
8881 -- Either the type itself is used, the package where it is declared
8882 -- is in use or the entity is declared in the current package, thus
8883 -- use-visible.
8885 Is_Known_Used :=
8886 In_Use (T)
8887 or else In_Use (Scope (T))
8888 or else Scope (T) = Current_Scope;
8890 Set_Redundant_Use (Id,
8891 Is_Known_Used or else Is_Potentially_Use_Visible (T));
8893 if Ekind (T) = E_Incomplete_Type then
8894 Error_Msg_N ("premature usage of incomplete type", Id);
8896 elsif In_Open_Scopes (Scope (T)) then
8897 null;
8899 -- A limited view cannot appear in a use_type clause. However, an access
8900 -- type whose designated type is limited has the flag but is not itself
8901 -- a limited view unless we only have a limited view of its enclosing
8902 -- package.
8904 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
8905 Error_Msg_N
8906 ("incomplete type from limited view "
8907 & "cannot appear in use clause", Id);
8909 -- If the subtype mark designates a subtype in a different package,
8910 -- we have to check that the parent type is visible, otherwise the
8911 -- use type clause is a noop. Not clear how to do that???
8913 elsif not Redundant_Use (Id) then
8914 Set_In_Use (T);
8916 -- If T is tagged, primitive operators on class-wide operands
8917 -- are also available.
8919 if Is_Tagged_Type (T) then
8920 Set_In_Use (Class_Wide_Type (T));
8921 end if;
8923 Set_Current_Use_Clause (T, Parent (Id));
8925 -- Iterate over primitive operations of the type. If an operation is
8926 -- already use_visible, it is the result of a previous use_clause,
8927 -- and already appears on the corresponding entity chain. If the
8928 -- clause is being reinstalled, operations are already use-visible.
8930 if Installed then
8931 null;
8933 else
8934 Op_List := Collect_Primitive_Operations (T);
8935 Elmt := First_Elmt (Op_List);
8936 while Present (Elmt) loop
8937 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
8938 or else Chars (Node (Elmt)) in Any_Operator_Name)
8939 and then not Is_Hidden (Node (Elmt))
8940 and then not Is_Potentially_Use_Visible (Node (Elmt))
8941 then
8942 Set_Is_Potentially_Use_Visible (Node (Elmt));
8943 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8945 elsif Ada_Version >= Ada_2012
8946 and then All_Present (Parent (Id))
8947 and then not Is_Hidden (Node (Elmt))
8948 and then not Is_Potentially_Use_Visible (Node (Elmt))
8949 then
8950 Set_Is_Potentially_Use_Visible (Node (Elmt));
8951 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8952 end if;
8954 Next_Elmt (Elmt);
8955 end loop;
8956 end if;
8958 if Ada_Version >= Ada_2012
8959 and then All_Present (Parent (Id))
8960 and then Is_Tagged_Type (T)
8961 then
8962 Use_Class_Wide_Operations (T);
8963 end if;
8964 end if;
8966 -- If warning on redundant constructs, check for unnecessary WITH
8968 if Warn_On_Redundant_Constructs
8969 and then Is_Known_Used
8971 -- with P; with P; use P;
8972 -- package P is package X is package body X is
8973 -- type T ... use P.T;
8975 -- The compilation unit is the body of X. GNAT first compiles the
8976 -- spec of X, then proceeds to the body. At that point P is marked
8977 -- as use visible. The analysis then reinstalls the spec along with
8978 -- its context. The use clause P.T is now recognized as redundant,
8979 -- but in the wrong context. Do not emit a warning in such cases.
8980 -- Do not emit a warning either if we are in an instance, there is
8981 -- no redundancy between an outer use_clause and one that appears
8982 -- within the generic.
8984 and then not Spec_Reloaded_For_Body
8985 and then not In_Instance
8986 then
8987 -- The type already has a use clause
8989 if In_Use (T) then
8991 -- Case where we know the current use clause for the type
8993 if Present (Current_Use_Clause (T)) then
8994 Use_Clause_Known : declare
8995 Clause1 : constant Node_Id := Parent (Id);
8996 Clause2 : constant Node_Id := Current_Use_Clause (T);
8997 Ent1 : Entity_Id;
8998 Ent2 : Entity_Id;
8999 Err_No : Node_Id;
9000 Unit1 : Node_Id;
9001 Unit2 : Node_Id;
9003 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
9004 -- Return the appropriate entity for determining which unit
9005 -- has a deeper scope: the defining entity for U, unless U
9006 -- is a package instance, in which case we retrieve the
9007 -- entity of the instance spec.
9009 --------------------
9010 -- Entity_Of_Unit --
9011 --------------------
9013 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
9014 begin
9015 if Nkind (U) = N_Package_Instantiation
9016 and then Analyzed (U)
9017 then
9018 return Defining_Entity (Instance_Spec (U));
9019 else
9020 return Defining_Entity (U);
9021 end if;
9022 end Entity_Of_Unit;
9024 -- Start of processing for Use_Clause_Known
9026 begin
9027 -- If both current use type clause and the use type clause
9028 -- for the type are at the compilation unit level, one of
9029 -- the units must be an ancestor of the other, and the
9030 -- warning belongs on the descendant.
9032 if Nkind (Parent (Clause1)) = N_Compilation_Unit
9033 and then
9034 Nkind (Parent (Clause2)) = N_Compilation_Unit
9035 then
9036 -- If the unit is a subprogram body that acts as spec,
9037 -- the context clause is shared with the constructed
9038 -- subprogram spec. Clearly there is no redundancy.
9040 if Clause1 = Clause2 then
9041 return;
9042 end if;
9044 Unit1 := Unit (Parent (Clause1));
9045 Unit2 := Unit (Parent (Clause2));
9047 -- If both clauses are on same unit, or one is the body
9048 -- of the other, or one of them is in a subunit, report
9049 -- redundancy on the later one.
9051 if Unit1 = Unit2 then
9052 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9053 Error_Msg_NE -- CODEFIX
9054 ("& is already use-visible through previous "
9055 & "use_type_clause #??", Clause1, T);
9056 return;
9058 elsif Nkind (Unit1) = N_Subunit then
9059 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9060 Error_Msg_NE -- CODEFIX
9061 ("& is already use-visible through previous "
9062 & "use_type_clause #??", Clause1, T);
9063 return;
9065 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
9066 and then Nkind (Unit1) /= Nkind (Unit2)
9067 and then Nkind (Unit1) /= N_Subunit
9068 then
9069 Error_Msg_Sloc := Sloc (Clause1);
9070 Error_Msg_NE -- CODEFIX
9071 ("& is already use-visible through previous "
9072 & "use_type_clause #??", Current_Use_Clause (T), T);
9073 return;
9074 end if;
9076 -- There is a redundant use type clause in a child unit.
9077 -- Determine which of the units is more deeply nested.
9078 -- If a unit is a package instance, retrieve the entity
9079 -- and its scope from the instance spec.
9081 Ent1 := Entity_Of_Unit (Unit1);
9082 Ent2 := Entity_Of_Unit (Unit2);
9084 if Scope (Ent2) = Standard_Standard then
9085 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9086 Err_No := Clause1;
9088 elsif Scope (Ent1) = Standard_Standard then
9089 Error_Msg_Sloc := Sloc (Id);
9090 Err_No := Clause2;
9092 -- If both units are child units, we determine which one
9093 -- is the descendant by the scope distance to the
9094 -- ultimate parent unit.
9096 else
9097 declare
9098 S1, S2 : Entity_Id;
9100 begin
9101 S1 := Scope (Ent1);
9102 S2 := Scope (Ent2);
9103 while Present (S1)
9104 and then Present (S2)
9105 and then S1 /= Standard_Standard
9106 and then S2 /= Standard_Standard
9107 loop
9108 S1 := Scope (S1);
9109 S2 := Scope (S2);
9110 end loop;
9112 if S1 = Standard_Standard then
9113 Error_Msg_Sloc := Sloc (Id);
9114 Err_No := Clause2;
9115 else
9116 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9117 Err_No := Clause1;
9118 end if;
9119 end;
9120 end if;
9122 Error_Msg_NE -- CODEFIX
9123 ("& is already use-visible through previous "
9124 & "use_type_clause #??", Err_No, Id);
9126 -- Case where current use type clause and the use type
9127 -- clause for the type are not both at the compilation unit
9128 -- level. In this case we don't have location information.
9130 else
9131 Error_Msg_NE -- CODEFIX
9132 ("& is already use-visible through previous "
9133 & "use type clause??", Id, T);
9134 end if;
9135 end Use_Clause_Known;
9137 -- Here if Current_Use_Clause is not set for T, another case
9138 -- where we do not have the location information available.
9140 else
9141 Error_Msg_NE -- CODEFIX
9142 ("& is already use-visible through previous "
9143 & "use type clause??", Id, T);
9144 end if;
9146 -- The package where T is declared is already used
9148 elsif In_Use (Scope (T)) then
9149 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
9150 Error_Msg_NE -- CODEFIX
9151 ("& is already use-visible through package use clause #??",
9152 Id, T);
9154 -- The current scope is the package where T is declared
9156 else
9157 Error_Msg_Node_2 := Scope (T);
9158 Error_Msg_NE -- CODEFIX
9159 ("& is already use-visible inside package &??", Id, T);
9160 end if;
9161 end if;
9162 end Use_One_Type;
9164 ----------------
9165 -- Write_Info --
9166 ----------------
9168 procedure Write_Info is
9169 Id : Entity_Id := First_Entity (Current_Scope);
9171 begin
9172 -- No point in dumping standard entities
9174 if Current_Scope = Standard_Standard then
9175 return;
9176 end if;
9178 Write_Str ("========================================================");
9179 Write_Eol;
9180 Write_Str (" Defined Entities in ");
9181 Write_Name (Chars (Current_Scope));
9182 Write_Eol;
9183 Write_Str ("========================================================");
9184 Write_Eol;
9186 if No (Id) then
9187 Write_Str ("-- none --");
9188 Write_Eol;
9190 else
9191 while Present (Id) loop
9192 Write_Entity_Info (Id, " ");
9193 Next_Entity (Id);
9194 end loop;
9195 end if;
9197 if Scope (Current_Scope) = Standard_Standard then
9199 -- Print information on the current unit itself
9201 Write_Entity_Info (Current_Scope, " ");
9202 end if;
9204 Write_Eol;
9205 end Write_Info;
9207 --------
9208 -- ws --
9209 --------
9211 procedure ws is
9212 S : Entity_Id;
9213 begin
9214 for J in reverse 1 .. Scope_Stack.Last loop
9215 S := Scope_Stack.Table (J).Entity;
9216 Write_Int (Int (S));
9217 Write_Str (" === ");
9218 Write_Name (Chars (S));
9219 Write_Eol;
9220 end loop;
9221 end ws;
9223 --------
9224 -- we --
9225 --------
9227 procedure we (S : Entity_Id) is
9228 E : Entity_Id;
9229 begin
9230 E := First_Entity (S);
9231 while Present (E) loop
9232 Write_Int (Int (E));
9233 Write_Str (" === ");
9234 Write_Name (Chars (E));
9235 Write_Eol;
9236 Next_Entity (E);
9237 end loop;
9238 end we;
9239 end Sem_Ch8;