2015-03-02 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / checks.adb
blobe869605c2de5a9eea2598ff56afaedeeec377eb9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Casing; use Casing;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Eval_Fat; use Eval_Fat;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Ch2; use Exp_Ch2;
34 with Exp_Ch4; use Exp_Ch4;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Expander; use Expander;
38 with Freeze; use Freeze;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Output; use Output;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Eval; use Sem_Eval;
52 with Sem_Res; use Sem_Res;
53 with Sem_Util; use Sem_Util;
54 with Sem_Warn; use Sem_Warn;
55 with Sinfo; use Sinfo;
56 with Sinput; use Sinput;
57 with Snames; use Snames;
58 with Sprint; use Sprint;
59 with Stand; use Stand;
60 with Stringt; use Stringt;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Ttypes; use Ttypes;
64 with Validsw; use Validsw;
66 package body Checks is
68 -- General note: many of these routines are concerned with generating
69 -- checking code to make sure that constraint error is raised at runtime.
70 -- Clearly this code is only needed if the expander is active, since
71 -- otherwise we will not be generating code or going into the runtime
72 -- execution anyway.
74 -- We therefore disconnect most of these checks if the expander is
75 -- inactive. This has the additional benefit that we do not need to
76 -- worry about the tree being messed up by previous errors (since errors
77 -- turn off expansion anyway).
79 -- There are a few exceptions to the above rule. For instance routines
80 -- such as Apply_Scalar_Range_Check that do not insert any code can be
81 -- safely called even when the Expander is inactive (but Errors_Detected
82 -- is 0). The benefit of executing this code when expansion is off, is
83 -- the ability to emit constraint error warning for static expressions
84 -- even when we are not generating code.
86 -- The above is modified in gnatprove mode to ensure that proper check
87 -- flags are always placed, even if expansion is off.
89 -------------------------------------
90 -- Suppression of Redundant Checks --
91 -------------------------------------
93 -- This unit implements a limited circuit for removal of redundant
94 -- checks. The processing is based on a tracing of simple sequential
95 -- flow. For any sequence of statements, we save expressions that are
96 -- marked to be checked, and then if the same expression appears later
97 -- with the same check, then under certain circumstances, the second
98 -- check can be suppressed.
100 -- Basically, we can suppress the check if we know for certain that
101 -- the previous expression has been elaborated (together with its
102 -- check), and we know that the exception frame is the same, and that
103 -- nothing has happened to change the result of the exception.
105 -- Let us examine each of these three conditions in turn to describe
106 -- how we ensure that this condition is met.
108 -- First, we need to know for certain that the previous expression has
109 -- been executed. This is done principally by the mechanism of calling
110 -- Conditional_Statements_Begin at the start of any statement sequence
111 -- and Conditional_Statements_End at the end. The End call causes all
112 -- checks remembered since the Begin call to be discarded. This does
113 -- miss a few cases, notably the case of a nested BEGIN-END block with
114 -- no exception handlers. But the important thing is to be conservative.
115 -- The other protection is that all checks are discarded if a label
116 -- is encountered, since then the assumption of sequential execution
117 -- is violated, and we don't know enough about the flow.
119 -- Second, we need to know that the exception frame is the same. We
120 -- do this by killing all remembered checks when we enter a new frame.
121 -- Again, that's over-conservative, but generally the cases we can help
122 -- with are pretty local anyway (like the body of a loop for example).
124 -- Third, we must be sure to forget any checks which are no longer valid.
125 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
126 -- used to note any changes to local variables. We only attempt to deal
127 -- with checks involving local variables, so we do not need to worry
128 -- about global variables. Second, a call to any non-global procedure
129 -- causes us to abandon all stored checks, since such a all may affect
130 -- the values of any local variables.
132 -- The following define the data structures used to deal with remembering
133 -- checks so that redundant checks can be eliminated as described above.
135 -- Right now, the only expressions that we deal with are of the form of
136 -- simple local objects (either declared locally, or IN parameters) or
137 -- such objects plus/minus a compile time known constant. We can do
138 -- more later on if it seems worthwhile, but this catches many simple
139 -- cases in practice.
141 -- The following record type reflects a single saved check. An entry
142 -- is made in the stack of saved checks if and only if the expression
143 -- has been elaborated with the indicated checks.
145 type Saved_Check is record
146 Killed : Boolean;
147 -- Set True if entry is killed by Kill_Checks
149 Entity : Entity_Id;
150 -- The entity involved in the expression that is checked
152 Offset : Uint;
153 -- A compile time value indicating the result of adding or
154 -- subtracting a compile time value. This value is to be
155 -- added to the value of the Entity. A value of zero is
156 -- used for the case of a simple entity reference.
158 Check_Type : Character;
159 -- This is set to 'R' for a range check (in which case Target_Type
160 -- is set to the target type for the range check) or to 'O' for an
161 -- overflow check (in which case Target_Type is set to Empty).
163 Target_Type : Entity_Id;
164 -- Used only if Do_Range_Check is set. Records the target type for
165 -- the check. We need this, because a check is a duplicate only if
166 -- it has the same target type (or more accurately one with a
167 -- range that is smaller or equal to the stored target type of a
168 -- saved check).
169 end record;
171 -- The following table keeps track of saved checks. Rather than use an
172 -- extensible table. We just use a table of fixed size, and we discard
173 -- any saved checks that do not fit. That's very unlikely to happen and
174 -- this is only an optimization in any case.
176 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
177 -- Array of saved checks
179 Num_Saved_Checks : Nat := 0;
180 -- Number of saved checks
182 -- The following stack keeps track of statement ranges. It is treated
183 -- as a stack. When Conditional_Statements_Begin is called, an entry
184 -- is pushed onto this stack containing the value of Num_Saved_Checks
185 -- at the time of the call. Then when Conditional_Statements_End is
186 -- called, this value is popped off and used to reset Num_Saved_Checks.
188 -- Note: again, this is a fixed length stack with a size that should
189 -- always be fine. If the value of the stack pointer goes above the
190 -- limit, then we just forget all saved checks.
192 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
193 Saved_Checks_TOS : Nat := 0;
195 -----------------------
196 -- Local Subprograms --
197 -----------------------
199 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
200 -- Used to apply arithmetic overflow checks for all cases except operators
201 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
202 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
203 -- signed integer arithmetic operator (but not an if or case expression).
204 -- It is also called for types other than signed integers.
206 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
207 -- Used to apply arithmetic overflow checks for the case where the overflow
208 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
209 -- arithmetic op (which includes the case of if and case expressions). Note
210 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
211 -- we have work to do even if overflow checking is suppressed.
213 procedure Apply_Division_Check
214 (N : Node_Id;
215 Rlo : Uint;
216 Rhi : Uint;
217 ROK : Boolean);
218 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
219 -- division checks as required if the Do_Division_Check flag is set.
220 -- Rlo and Rhi give the possible range of the right operand, these values
221 -- can be referenced and trusted only if ROK is set True.
223 procedure Apply_Float_Conversion_Check
224 (Ck_Node : Node_Id;
225 Target_Typ : Entity_Id);
226 -- The checks on a conversion from a floating-point type to an integer
227 -- type are delicate. They have to be performed before conversion, they
228 -- have to raise an exception when the operand is a NaN, and rounding must
229 -- be taken into account to determine the safe bounds of the operand.
231 procedure Apply_Selected_Length_Checks
232 (Ck_Node : Node_Id;
233 Target_Typ : Entity_Id;
234 Source_Typ : Entity_Id;
235 Do_Static : Boolean);
236 -- This is the subprogram that does all the work for Apply_Length_Check
237 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
238 -- described for the above routines. The Do_Static flag indicates that
239 -- only a static check is to be done.
241 procedure Apply_Selected_Range_Checks
242 (Ck_Node : Node_Id;
243 Target_Typ : Entity_Id;
244 Source_Typ : Entity_Id;
245 Do_Static : Boolean);
246 -- This is the subprogram that does all the work for Apply_Range_Check.
247 -- Expr, Target_Typ and Source_Typ are as described for the above
248 -- routine. The Do_Static flag indicates that only a static check is
249 -- to be done.
251 type Check_Type is new Check_Id range Access_Check .. Division_Check;
252 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
253 -- This function is used to see if an access or division by zero check is
254 -- needed. The check is to be applied to a single variable appearing in the
255 -- source, and N is the node for the reference. If N is not of this form,
256 -- True is returned with no further processing. If N is of the right form,
257 -- then further processing determines if the given Check is needed.
259 -- The particular circuit is to see if we have the case of a check that is
260 -- not needed because it appears in the right operand of a short circuited
261 -- conditional where the left operand guards the check. For example:
263 -- if Var = 0 or else Q / Var > 12 then
264 -- ...
265 -- end if;
267 -- In this example, the division check is not required. At the same time
268 -- we can issue warnings for suspicious use of non-short-circuited forms,
269 -- such as:
271 -- if Var = 0 or Q / Var > 12 then
272 -- ...
273 -- end if;
275 procedure Find_Check
276 (Expr : Node_Id;
277 Check_Type : Character;
278 Target_Type : Entity_Id;
279 Entry_OK : out Boolean;
280 Check_Num : out Nat;
281 Ent : out Entity_Id;
282 Ofs : out Uint);
283 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
284 -- to see if a check is of the form for optimization, and if so, to see
285 -- if it has already been performed. Expr is the expression to check,
286 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
287 -- Target_Type is the target type for a range check, and Empty for an
288 -- overflow check. If the entry is not of the form for optimization,
289 -- then Entry_OK is set to False, and the remaining out parameters
290 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
291 -- entity and offset from the expression. Check_Num is the number of
292 -- a matching saved entry in Saved_Checks, or zero if no such entry
293 -- is located.
295 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
296 -- If a discriminal is used in constraining a prival, Return reference
297 -- to the discriminal of the protected body (which renames the parameter
298 -- of the enclosing protected operation). This clumsy transformation is
299 -- needed because privals are created too late and their actual subtypes
300 -- are not available when analysing the bodies of the protected operations.
301 -- This function is called whenever the bound is an entity and the scope
302 -- indicates a protected operation. If the bound is an in-parameter of
303 -- a protected operation that is not a prival, the function returns the
304 -- bound itself.
305 -- To be cleaned up???
307 function Guard_Access
308 (Cond : Node_Id;
309 Loc : Source_Ptr;
310 Ck_Node : Node_Id) return Node_Id;
311 -- In the access type case, guard the test with a test to ensure
312 -- that the access value is non-null, since the checks do not
313 -- not apply to null access values.
315 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
316 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
317 -- Constraint_Error node.
319 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
320 -- Returns True if node N is for an arithmetic operation with signed
321 -- integer operands. This includes unary and binary operators, and also
322 -- if and case expression nodes where the dependent expressions are of
323 -- a signed integer type. These are the kinds of nodes for which special
324 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
326 function Range_Or_Validity_Checks_Suppressed
327 (Expr : Node_Id) return Boolean;
328 -- Returns True if either range or validity checks or both are suppressed
329 -- for the type of the given expression, or, if the expression is the name
330 -- of an entity, if these checks are suppressed for the entity.
332 function Selected_Length_Checks
333 (Ck_Node : Node_Id;
334 Target_Typ : Entity_Id;
335 Source_Typ : Entity_Id;
336 Warn_Node : Node_Id) return Check_Result;
337 -- Like Apply_Selected_Length_Checks, except it doesn't modify
338 -- anything, just returns a list of nodes as described in the spec of
339 -- this package for the Range_Check function.
341 function Selected_Range_Checks
342 (Ck_Node : Node_Id;
343 Target_Typ : Entity_Id;
344 Source_Typ : Entity_Id;
345 Warn_Node : Node_Id) return Check_Result;
346 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
347 -- just returns a list of nodes as described in the spec of this package
348 -- for the Range_Check function.
350 ------------------------------
351 -- Access_Checks_Suppressed --
352 ------------------------------
354 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
355 begin
356 if Present (E) and then Checks_May_Be_Suppressed (E) then
357 return Is_Check_Suppressed (E, Access_Check);
358 else
359 return Scope_Suppress.Suppress (Access_Check);
360 end if;
361 end Access_Checks_Suppressed;
363 -------------------------------------
364 -- Accessibility_Checks_Suppressed --
365 -------------------------------------
367 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
368 begin
369 if Present (E) and then Checks_May_Be_Suppressed (E) then
370 return Is_Check_Suppressed (E, Accessibility_Check);
371 else
372 return Scope_Suppress.Suppress (Accessibility_Check);
373 end if;
374 end Accessibility_Checks_Suppressed;
376 -----------------------------
377 -- Activate_Division_Check --
378 -----------------------------
380 procedure Activate_Division_Check (N : Node_Id) is
381 begin
382 Set_Do_Division_Check (N, True);
383 Possible_Local_Raise (N, Standard_Constraint_Error);
384 end Activate_Division_Check;
386 -----------------------------
387 -- Activate_Overflow_Check --
388 -----------------------------
390 procedure Activate_Overflow_Check (N : Node_Id) is
391 Typ : constant Entity_Id := Etype (N);
393 begin
394 -- Floating-point case. If Etype is not set (this can happen when we
395 -- activate a check on a node that has not yet been analyzed), then
396 -- we assume we do not have a floating-point type (as per our spec).
398 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
400 -- Ignore call if we have no automatic overflow checks on the target
401 -- and Check_Float_Overflow mode is not set. These are the cases in
402 -- which we expect to generate infinities and NaN's with no check.
404 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
405 return;
407 -- Ignore for unary operations ("+", "-", abs) since these can never
408 -- result in overflow for floating-point cases.
410 elsif Nkind (N) in N_Unary_Op then
411 return;
413 -- Otherwise we will set the flag
415 else
416 null;
417 end if;
419 -- Discrete case
421 else
422 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
423 -- for zero-divide is a divide check, not an overflow check).
425 if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
426 return;
427 end if;
428 end if;
430 -- Fall through for cases where we do set the flag
432 Set_Do_Overflow_Check (N, True);
433 Possible_Local_Raise (N, Standard_Constraint_Error);
434 end Activate_Overflow_Check;
436 --------------------------
437 -- Activate_Range_Check --
438 --------------------------
440 procedure Activate_Range_Check (N : Node_Id) is
441 begin
442 Set_Do_Range_Check (N, True);
443 Possible_Local_Raise (N, Standard_Constraint_Error);
444 end Activate_Range_Check;
446 ---------------------------------
447 -- Alignment_Checks_Suppressed --
448 ---------------------------------
450 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
451 begin
452 if Present (E) and then Checks_May_Be_Suppressed (E) then
453 return Is_Check_Suppressed (E, Alignment_Check);
454 else
455 return Scope_Suppress.Suppress (Alignment_Check);
456 end if;
457 end Alignment_Checks_Suppressed;
459 ----------------------------------
460 -- Allocation_Checks_Suppressed --
461 ----------------------------------
463 -- Note: at the current time there are no calls to this function, because
464 -- the relevant check is in the run-time, so it is not a check that the
465 -- compiler can suppress anyway, but we still have to recognize the check
466 -- name Allocation_Check since it is part of the standard.
468 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
469 begin
470 if Present (E) and then Checks_May_Be_Suppressed (E) then
471 return Is_Check_Suppressed (E, Allocation_Check);
472 else
473 return Scope_Suppress.Suppress (Allocation_Check);
474 end if;
475 end Allocation_Checks_Suppressed;
477 -------------------------
478 -- Append_Range_Checks --
479 -------------------------
481 procedure Append_Range_Checks
482 (Checks : Check_Result;
483 Stmts : List_Id;
484 Suppress_Typ : Entity_Id;
485 Static_Sloc : Source_Ptr;
486 Flag_Node : Node_Id)
488 Internal_Flag_Node : constant Node_Id := Flag_Node;
489 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
491 Checks_On : constant Boolean :=
492 (not Index_Checks_Suppressed (Suppress_Typ))
493 or else (not Range_Checks_Suppressed (Suppress_Typ));
495 begin
496 -- For now we just return if Checks_On is false, however this should
497 -- be enhanced to check for an always True value in the condition
498 -- and to generate a compilation warning???
500 if not Checks_On then
501 return;
502 end if;
504 for J in 1 .. 2 loop
505 exit when No (Checks (J));
507 if Nkind (Checks (J)) = N_Raise_Constraint_Error
508 and then Present (Condition (Checks (J)))
509 then
510 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
511 Append_To (Stmts, Checks (J));
512 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
513 end if;
515 else
516 Append_To
517 (Stmts,
518 Make_Raise_Constraint_Error (Internal_Static_Sloc,
519 Reason => CE_Range_Check_Failed));
520 end if;
521 end loop;
522 end Append_Range_Checks;
524 ------------------------
525 -- Apply_Access_Check --
526 ------------------------
528 procedure Apply_Access_Check (N : Node_Id) is
529 P : constant Node_Id := Prefix (N);
531 begin
532 -- We do not need checks if we are not generating code (i.e. the
533 -- expander is not active). This is not just an optimization, there
534 -- are cases (e.g. with pragma Debug) where generating the checks
535 -- can cause real trouble).
537 if not Expander_Active then
538 return;
539 end if;
541 -- No check if short circuiting makes check unnecessary
543 if not Check_Needed (P, Access_Check) then
544 return;
545 end if;
547 -- No check if accessing the Offset_To_Top component of a dispatch
548 -- table. They are safe by construction.
550 if Tagged_Type_Expansion
551 and then Present (Etype (P))
552 and then RTU_Loaded (Ada_Tags)
553 and then RTE_Available (RE_Offset_To_Top_Ptr)
554 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
555 then
556 return;
557 end if;
559 -- Otherwise go ahead and install the check
561 Install_Null_Excluding_Check (P);
562 end Apply_Access_Check;
564 -------------------------------
565 -- Apply_Accessibility_Check --
566 -------------------------------
568 procedure Apply_Accessibility_Check
569 (N : Node_Id;
570 Typ : Entity_Id;
571 Insert_Node : Node_Id)
573 Loc : constant Source_Ptr := Sloc (N);
574 Param_Ent : Entity_Id := Param_Entity (N);
575 Param_Level : Node_Id;
576 Type_Level : Node_Id;
578 begin
579 if Ada_Version >= Ada_2012
580 and then not Present (Param_Ent)
581 and then Is_Entity_Name (N)
582 and then Ekind_In (Entity (N), E_Constant, E_Variable)
583 and then Present (Effective_Extra_Accessibility (Entity (N)))
584 then
585 Param_Ent := Entity (N);
586 while Present (Renamed_Object (Param_Ent)) loop
588 -- Renamed_Object must return an Entity_Name here
589 -- because of preceding "Present (E_E_A (...))" test.
591 Param_Ent := Entity (Renamed_Object (Param_Ent));
592 end loop;
593 end if;
595 if Inside_A_Generic then
596 return;
598 -- Only apply the run-time check if the access parameter has an
599 -- associated extra access level parameter and when the level of the
600 -- type is less deep than the level of the access parameter, and
601 -- accessibility checks are not suppressed.
603 elsif Present (Param_Ent)
604 and then Present (Extra_Accessibility (Param_Ent))
605 and then UI_Gt (Object_Access_Level (N),
606 Deepest_Type_Access_Level (Typ))
607 and then not Accessibility_Checks_Suppressed (Param_Ent)
608 and then not Accessibility_Checks_Suppressed (Typ)
609 then
610 Param_Level :=
611 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
613 Type_Level :=
614 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
616 -- Raise Program_Error if the accessibility level of the access
617 -- parameter is deeper than the level of the target access type.
619 Insert_Action (Insert_Node,
620 Make_Raise_Program_Error (Loc,
621 Condition =>
622 Make_Op_Gt (Loc,
623 Left_Opnd => Param_Level,
624 Right_Opnd => Type_Level),
625 Reason => PE_Accessibility_Check_Failed));
627 Analyze_And_Resolve (N);
628 end if;
629 end Apply_Accessibility_Check;
631 --------------------------------
632 -- Apply_Address_Clause_Check --
633 --------------------------------
635 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
636 pragma Assert (Nkind (N) = N_Freeze_Entity);
638 AC : constant Node_Id := Address_Clause (E);
639 Loc : constant Source_Ptr := Sloc (AC);
640 Typ : constant Entity_Id := Etype (E);
641 Aexp : constant Node_Id := Expression (AC);
643 Expr : Node_Id;
644 -- Address expression (not necessarily the same as Aexp, for example
645 -- when Aexp is a reference to a constant, in which case Expr gets
646 -- reset to reference the value expression of the constant).
648 procedure Compile_Time_Bad_Alignment;
649 -- Post error warnings when alignment is known to be incompatible. Note
650 -- that we do not go as far as inserting a raise of Program_Error since
651 -- this is an erroneous case, and it may happen that we are lucky and an
652 -- underaligned address turns out to be OK after all.
654 --------------------------------
655 -- Compile_Time_Bad_Alignment --
656 --------------------------------
658 procedure Compile_Time_Bad_Alignment is
659 begin
660 if Address_Clause_Overlay_Warnings then
661 Error_Msg_FE
662 ("?o?specified address for& may be inconsistent with alignment",
663 Aexp, E);
664 Error_Msg_FE
665 ("\?o?program execution may be erroneous (RM 13.3(27))",
666 Aexp, E);
667 Set_Address_Warning_Posted (AC);
668 end if;
669 end Compile_Time_Bad_Alignment;
671 -- Start of processing for Apply_Address_Clause_Check
673 begin
674 -- See if alignment check needed. Note that we never need a check if the
675 -- maximum alignment is one, since the check will always succeed.
677 -- Note: we do not check for checks suppressed here, since that check
678 -- was done in Sem_Ch13 when the address clause was processed. We are
679 -- only called if checks were not suppressed. The reason for this is
680 -- that we have to delay the call to Apply_Alignment_Check till freeze
681 -- time (so that all types etc are elaborated), but we have to check
682 -- the status of check suppressing at the point of the address clause.
684 if No (AC)
685 or else not Check_Address_Alignment (AC)
686 or else Maximum_Alignment = 1
687 then
688 return;
689 end if;
691 -- Obtain expression from address clause
693 Expr := Expression (AC);
695 -- The following loop digs for the real expression to use in the check
697 loop
698 -- For constant, get constant expression
700 if Is_Entity_Name (Expr)
701 and then Ekind (Entity (Expr)) = E_Constant
702 then
703 Expr := Constant_Value (Entity (Expr));
705 -- For unchecked conversion, get result to convert
707 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
708 Expr := Expression (Expr);
710 -- For (common case) of To_Address call, get argument
712 elsif Nkind (Expr) = N_Function_Call
713 and then Is_Entity_Name (Name (Expr))
714 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
715 then
716 Expr := First (Parameter_Associations (Expr));
718 if Nkind (Expr) = N_Parameter_Association then
719 Expr := Explicit_Actual_Parameter (Expr);
720 end if;
722 -- We finally have the real expression
724 else
725 exit;
726 end if;
727 end loop;
729 -- See if we know that Expr has a bad alignment at compile time
731 if Compile_Time_Known_Value (Expr)
732 and then (Known_Alignment (E) or else Known_Alignment (Typ))
733 then
734 declare
735 AL : Uint := Alignment (Typ);
737 begin
738 -- The object alignment might be more restrictive than the
739 -- type alignment.
741 if Known_Alignment (E) then
742 AL := Alignment (E);
743 end if;
745 if Expr_Value (Expr) mod AL /= 0 then
746 Compile_Time_Bad_Alignment;
747 else
748 return;
749 end if;
750 end;
752 -- If the expression has the form X'Address, then we can find out if
753 -- the object X has an alignment that is compatible with the object E.
754 -- If it hasn't or we don't know, we defer issuing the warning until
755 -- the end of the compilation to take into account back end annotations.
757 elsif Nkind (Expr) = N_Attribute_Reference
758 and then Attribute_Name (Expr) = Name_Address
759 and then Has_Compatible_Alignment (E, Prefix (Expr)) = Known_Compatible
760 then
761 return;
762 end if;
764 -- Here we do not know if the value is acceptable. Strictly we don't
765 -- have to do anything, since if the alignment is bad, we have an
766 -- erroneous program. However we are allowed to check for erroneous
767 -- conditions and we decide to do this by default if the check is not
768 -- suppressed.
770 -- However, don't do the check if elaboration code is unwanted
772 if Restriction_Active (No_Elaboration_Code) then
773 return;
775 -- Generate a check to raise PE if alignment may be inappropriate
777 else
778 -- If the original expression is a non-static constant, use the
779 -- name of the constant itself rather than duplicating its
780 -- defining expression, which was extracted above.
782 -- Note: Expr is empty if the address-clause is applied to in-mode
783 -- actuals (allowed by 13.1(22)).
785 if not Present (Expr)
786 or else
787 (Is_Entity_Name (Expression (AC))
788 and then Ekind (Entity (Expression (AC))) = E_Constant
789 and then Nkind (Parent (Entity (Expression (AC))))
790 = N_Object_Declaration)
791 then
792 Expr := New_Copy_Tree (Expression (AC));
793 else
794 Remove_Side_Effects (Expr);
795 end if;
797 if No (Actions (N)) then
798 Set_Actions (N, New_List);
799 end if;
801 Prepend_To (Actions (N),
802 Make_Raise_Program_Error (Loc,
803 Condition =>
804 Make_Op_Ne (Loc,
805 Left_Opnd =>
806 Make_Op_Mod (Loc,
807 Left_Opnd =>
808 Unchecked_Convert_To
809 (RTE (RE_Integer_Address), Expr),
810 Right_Opnd =>
811 Make_Attribute_Reference (Loc,
812 Prefix => New_Occurrence_Of (E, Loc),
813 Attribute_Name => Name_Alignment)),
814 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
815 Reason => PE_Misaligned_Address_Value));
817 Warning_Msg := No_Error_Msg;
818 Analyze (First (Actions (N)), Suppress => All_Checks);
820 -- If the address clause generated a warning message (for example,
821 -- from Warn_On_Non_Local_Exception mode with the active restriction
822 -- No_Exception_Propagation).
824 if Warning_Msg /= No_Error_Msg then
826 -- If the expression has a known at compile time value, then
827 -- once we know the alignment of the type, we can check if the
828 -- exception will be raised or not, and if not, we don't need
829 -- the warning so we will kill the warning later on.
831 if Compile_Time_Known_Value (Expr) then
832 Alignment_Warnings.Append
833 ((E => E, A => Expr_Value (Expr), W => Warning_Msg));
834 end if;
836 -- Add explanation of the warning that is generated by the check
838 Error_Msg_N
839 ("\address value may be incompatible with alignment "
840 & "of object?X?", AC);
841 end if;
843 return;
844 end if;
846 exception
847 -- If we have some missing run time component in configurable run time
848 -- mode then just skip the check (it is not required in any case).
850 when RE_Not_Available =>
851 return;
852 end Apply_Address_Clause_Check;
854 -------------------------------------
855 -- Apply_Arithmetic_Overflow_Check --
856 -------------------------------------
858 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
859 begin
860 -- Use old routine in almost all cases (the only case we are treating
861 -- specially is the case of a signed integer arithmetic op with the
862 -- overflow checking mode set to MINIMIZED or ELIMINATED).
864 if Overflow_Check_Mode = Strict
865 or else not Is_Signed_Integer_Arithmetic_Op (N)
866 then
867 Apply_Arithmetic_Overflow_Strict (N);
869 -- Otherwise use the new routine for the case of a signed integer
870 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
871 -- mode is MINIMIZED or ELIMINATED.
873 else
874 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
875 end if;
876 end Apply_Arithmetic_Overflow_Check;
878 --------------------------------------
879 -- Apply_Arithmetic_Overflow_Strict --
880 --------------------------------------
882 -- This routine is called only if the type is an integer type, and a
883 -- software arithmetic overflow check may be needed for op (add, subtract,
884 -- or multiply). This check is performed only if Software_Overflow_Checking
885 -- is enabled and Do_Overflow_Check is set. In this case we expand the
886 -- operation into a more complex sequence of tests that ensures that
887 -- overflow is properly caught.
889 -- This is used in CHECKED modes. It is identical to the code for this
890 -- cases before the big overflow earthquake, thus ensuring that in this
891 -- modes we have compatible behavior (and reliability) to what was there
892 -- before. It is also called for types other than signed integers, and if
893 -- the Do_Overflow_Check flag is off.
895 -- Note: we also call this routine if we decide in the MINIMIZED case
896 -- to give up and just generate an overflow check without any fuss.
898 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
899 Loc : constant Source_Ptr := Sloc (N);
900 Typ : constant Entity_Id := Etype (N);
901 Rtyp : constant Entity_Id := Root_Type (Typ);
903 begin
904 -- Nothing to do if Do_Overflow_Check not set or overflow checks
905 -- suppressed.
907 if not Do_Overflow_Check (N) then
908 return;
909 end if;
911 -- An interesting special case. If the arithmetic operation appears as
912 -- the operand of a type conversion:
914 -- type1 (x op y)
916 -- and all the following conditions apply:
918 -- arithmetic operation is for a signed integer type
919 -- target type type1 is a static integer subtype
920 -- range of x and y are both included in the range of type1
921 -- range of x op y is included in the range of type1
922 -- size of type1 is at least twice the result size of op
924 -- then we don't do an overflow check in any case, instead we transform
925 -- the operation so that we end up with:
927 -- type1 (type1 (x) op type1 (y))
929 -- This avoids intermediate overflow before the conversion. It is
930 -- explicitly permitted by RM 3.5.4(24):
932 -- For the execution of a predefined operation of a signed integer
933 -- type, the implementation need not raise Constraint_Error if the
934 -- result is outside the base range of the type, so long as the
935 -- correct result is produced.
937 -- It's hard to imagine that any programmer counts on the exception
938 -- being raised in this case, and in any case it's wrong coding to
939 -- have this expectation, given the RM permission. Furthermore, other
940 -- Ada compilers do allow such out of range results.
942 -- Note that we do this transformation even if overflow checking is
943 -- off, since this is precisely about giving the "right" result and
944 -- avoiding the need for an overflow check.
946 -- Note: this circuit is partially redundant with respect to the similar
947 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
948 -- with cases that do not come through here. We still need the following
949 -- processing even with the Exp_Ch4 code in place, since we want to be
950 -- sure not to generate the arithmetic overflow check in these cases
951 -- (Exp_Ch4 would have a hard time removing them once generated).
953 if Is_Signed_Integer_Type (Typ)
954 and then Nkind (Parent (N)) = N_Type_Conversion
955 then
956 Conversion_Optimization : declare
957 Target_Type : constant Entity_Id :=
958 Base_Type (Entity (Subtype_Mark (Parent (N))));
960 Llo, Lhi : Uint;
961 Rlo, Rhi : Uint;
962 LOK, ROK : Boolean;
964 Vlo : Uint;
965 Vhi : Uint;
966 VOK : Boolean;
968 Tlo : Uint;
969 Thi : Uint;
971 begin
972 if Is_Integer_Type (Target_Type)
973 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
974 then
975 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
976 Thi := Expr_Value (Type_High_Bound (Target_Type));
978 Determine_Range
979 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
980 Determine_Range
981 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
983 if (LOK and ROK)
984 and then Tlo <= Llo and then Lhi <= Thi
985 and then Tlo <= Rlo and then Rhi <= Thi
986 then
987 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
989 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
990 Rewrite (Left_Opnd (N),
991 Make_Type_Conversion (Loc,
992 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
993 Expression => Relocate_Node (Left_Opnd (N))));
995 Rewrite (Right_Opnd (N),
996 Make_Type_Conversion (Loc,
997 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
998 Expression => Relocate_Node (Right_Opnd (N))));
1000 -- Rewrite the conversion operand so that the original
1001 -- node is retained, in order to avoid the warning for
1002 -- redundant conversions in Resolve_Type_Conversion.
1004 Rewrite (N, Relocate_Node (N));
1006 Set_Etype (N, Target_Type);
1008 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
1009 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
1011 -- Given that the target type is twice the size of the
1012 -- source type, overflow is now impossible, so we can
1013 -- safely kill the overflow check and return.
1015 Set_Do_Overflow_Check (N, False);
1016 return;
1017 end if;
1018 end if;
1019 end if;
1020 end Conversion_Optimization;
1021 end if;
1023 -- Now see if an overflow check is required
1025 declare
1026 Siz : constant Int := UI_To_Int (Esize (Rtyp));
1027 Dsiz : constant Int := Siz * 2;
1028 Opnod : Node_Id;
1029 Ctyp : Entity_Id;
1030 Opnd : Node_Id;
1031 Cent : RE_Id;
1033 begin
1034 -- Skip check if back end does overflow checks, or the overflow flag
1035 -- is not set anyway, or we are not doing code expansion, or the
1036 -- parent node is a type conversion whose operand is an arithmetic
1037 -- operation on signed integers on which the expander can promote
1038 -- later the operands to type Integer (see Expand_N_Type_Conversion).
1040 -- Special case CLI target, where arithmetic overflow checks can be
1041 -- performed for integer and long_integer
1043 if Backend_Overflow_Checks_On_Target
1044 or else not Do_Overflow_Check (N)
1045 or else not Expander_Active
1046 or else (Present (Parent (N))
1047 and then Nkind (Parent (N)) = N_Type_Conversion
1048 and then Integer_Promotion_Possible (Parent (N)))
1049 or else
1050 (VM_Target = CLI_Target and then Siz >= Standard_Integer_Size)
1051 then
1052 return;
1053 end if;
1055 -- Otherwise, generate the full general code for front end overflow
1056 -- detection, which works by doing arithmetic in a larger type:
1058 -- x op y
1060 -- is expanded into
1062 -- Typ (Checktyp (x) op Checktyp (y));
1064 -- where Typ is the type of the original expression, and Checktyp is
1065 -- an integer type of sufficient length to hold the largest possible
1066 -- result.
1068 -- If the size of check type exceeds the size of Long_Long_Integer,
1069 -- we use a different approach, expanding to:
1071 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
1073 -- where xxx is Add, Multiply or Subtract as appropriate
1075 -- Find check type if one exists
1077 if Dsiz <= Standard_Integer_Size then
1078 Ctyp := Standard_Integer;
1080 elsif Dsiz <= Standard_Long_Long_Integer_Size then
1081 Ctyp := Standard_Long_Long_Integer;
1083 -- No check type exists, use runtime call
1085 else
1086 if Nkind (N) = N_Op_Add then
1087 Cent := RE_Add_With_Ovflo_Check;
1089 elsif Nkind (N) = N_Op_Multiply then
1090 Cent := RE_Multiply_With_Ovflo_Check;
1092 else
1093 pragma Assert (Nkind (N) = N_Op_Subtract);
1094 Cent := RE_Subtract_With_Ovflo_Check;
1095 end if;
1097 Rewrite (N,
1098 OK_Convert_To (Typ,
1099 Make_Function_Call (Loc,
1100 Name => New_Occurrence_Of (RTE (Cent), Loc),
1101 Parameter_Associations => New_List (
1102 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1103 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
1105 Analyze_And_Resolve (N, Typ);
1106 return;
1107 end if;
1109 -- If we fall through, we have the case where we do the arithmetic
1110 -- in the next higher type and get the check by conversion. In these
1111 -- cases Ctyp is set to the type to be used as the check type.
1113 Opnod := Relocate_Node (N);
1115 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1117 Analyze (Opnd);
1118 Set_Etype (Opnd, Ctyp);
1119 Set_Analyzed (Opnd, True);
1120 Set_Left_Opnd (Opnod, Opnd);
1122 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1124 Analyze (Opnd);
1125 Set_Etype (Opnd, Ctyp);
1126 Set_Analyzed (Opnd, True);
1127 Set_Right_Opnd (Opnod, Opnd);
1129 -- The type of the operation changes to the base type of the check
1130 -- type, and we reset the overflow check indication, since clearly no
1131 -- overflow is possible now that we are using a double length type.
1132 -- We also set the Analyzed flag to avoid a recursive attempt to
1133 -- expand the node.
1135 Set_Etype (Opnod, Base_Type (Ctyp));
1136 Set_Do_Overflow_Check (Opnod, False);
1137 Set_Analyzed (Opnod, True);
1139 -- Now build the outer conversion
1141 Opnd := OK_Convert_To (Typ, Opnod);
1142 Analyze (Opnd);
1143 Set_Etype (Opnd, Typ);
1145 -- In the discrete type case, we directly generate the range check
1146 -- for the outer operand. This range check will implement the
1147 -- required overflow check.
1149 if Is_Discrete_Type (Typ) then
1150 Rewrite (N, Opnd);
1151 Generate_Range_Check
1152 (Expression (N), Typ, CE_Overflow_Check_Failed);
1154 -- For other types, we enable overflow checking on the conversion,
1155 -- after setting the node as analyzed to prevent recursive attempts
1156 -- to expand the conversion node.
1158 else
1159 Set_Analyzed (Opnd, True);
1160 Enable_Overflow_Check (Opnd);
1161 Rewrite (N, Opnd);
1162 end if;
1164 exception
1165 when RE_Not_Available =>
1166 return;
1167 end;
1168 end Apply_Arithmetic_Overflow_Strict;
1170 ----------------------------------------------------
1171 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1172 ----------------------------------------------------
1174 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1175 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1177 Loc : constant Source_Ptr := Sloc (Op);
1178 P : constant Node_Id := Parent (Op);
1180 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1181 -- Operands and results are of this type when we convert
1183 Result_Type : constant Entity_Id := Etype (Op);
1184 -- Original result type
1186 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1187 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1189 Lo, Hi : Uint;
1190 -- Ranges of values for result
1192 begin
1193 -- Nothing to do if our parent is one of the following:
1195 -- Another signed integer arithmetic op
1196 -- A membership operation
1197 -- A comparison operation
1199 -- In all these cases, we will process at the higher level (and then
1200 -- this node will be processed during the downwards recursion that
1201 -- is part of the processing in Minimize_Eliminate_Overflows).
1203 if Is_Signed_Integer_Arithmetic_Op (P)
1204 or else Nkind (P) in N_Membership_Test
1205 or else Nkind (P) in N_Op_Compare
1207 -- This is also true for an alternative in a case expression
1209 or else Nkind (P) = N_Case_Expression_Alternative
1211 -- This is also true for a range operand in a membership test
1213 or else (Nkind (P) = N_Range
1214 and then Nkind (Parent (P)) in N_Membership_Test)
1215 then
1216 return;
1217 end if;
1219 -- Otherwise, we have a top level arithmetic operation node, and this
1220 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1221 -- modes. This is the case where we tell the machinery not to move into
1222 -- Bignum mode at this top level (of course the top level operation
1223 -- will still be in Bignum mode if either of its operands are of type
1224 -- Bignum).
1226 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1228 -- That call may but does not necessarily change the result type of Op.
1229 -- It is the job of this routine to undo such changes, so that at the
1230 -- top level, we have the proper type. This "undoing" is a point at
1231 -- which a final overflow check may be applied.
1233 -- If the result type was not fiddled we are all set. We go to base
1234 -- types here because things may have been rewritten to generate the
1235 -- base type of the operand types.
1237 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1238 return;
1240 -- Bignum case
1242 elsif Is_RTE (Etype (Op), RE_Bignum) then
1244 -- We need a sequence that looks like:
1246 -- Rnn : Result_Type;
1248 -- declare
1249 -- M : Mark_Id := SS_Mark;
1250 -- begin
1251 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1252 -- SS_Release (M);
1253 -- end;
1255 -- This block is inserted (using Insert_Actions), and then the node
1256 -- is replaced with a reference to Rnn.
1258 -- A special case arises if our parent is a conversion node. In this
1259 -- case no point in generating a conversion to Result_Type, we will
1260 -- let the parent handle this. Note that this special case is not
1261 -- just about optimization. Consider
1263 -- A,B,C : Integer;
1264 -- ...
1265 -- X := Long_Long_Integer'Base (A * (B ** C));
1267 -- Now the product may fit in Long_Long_Integer but not in Integer.
1268 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1269 -- overflow exception for this intermediate value.
1271 declare
1272 Blk : constant Node_Id := Make_Bignum_Block (Loc);
1273 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1274 RHS : Node_Id;
1276 Rtype : Entity_Id;
1278 begin
1279 RHS := Convert_From_Bignum (Op);
1281 if Nkind (P) /= N_Type_Conversion then
1282 Convert_To_And_Rewrite (Result_Type, RHS);
1283 Rtype := Result_Type;
1285 -- Interesting question, do we need a check on that conversion
1286 -- operation. Answer, not if we know the result is in range.
1287 -- At the moment we are not taking advantage of this. To be
1288 -- looked at later ???
1290 else
1291 Rtype := LLIB;
1292 end if;
1294 Insert_Before
1295 (First (Statements (Handled_Statement_Sequence (Blk))),
1296 Make_Assignment_Statement (Loc,
1297 Name => New_Occurrence_Of (Rnn, Loc),
1298 Expression => RHS));
1300 Insert_Actions (Op, New_List (
1301 Make_Object_Declaration (Loc,
1302 Defining_Identifier => Rnn,
1303 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1304 Blk));
1306 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1307 Analyze_And_Resolve (Op);
1308 end;
1310 -- Here we know the result is Long_Long_Integer'Base, of that it has
1311 -- been rewritten because the parent operation is a conversion. See
1312 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1314 else
1315 pragma Assert
1316 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1318 -- All we need to do here is to convert the result to the proper
1319 -- result type. As explained above for the Bignum case, we can
1320 -- omit this if our parent is a type conversion.
1322 if Nkind (P) /= N_Type_Conversion then
1323 Convert_To_And_Rewrite (Result_Type, Op);
1324 end if;
1326 Analyze_And_Resolve (Op);
1327 end if;
1328 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1330 ----------------------------
1331 -- Apply_Constraint_Check --
1332 ----------------------------
1334 procedure Apply_Constraint_Check
1335 (N : Node_Id;
1336 Typ : Entity_Id;
1337 No_Sliding : Boolean := False)
1339 Desig_Typ : Entity_Id;
1341 begin
1342 -- No checks inside a generic (check the instantiations)
1344 if Inside_A_Generic then
1345 return;
1346 end if;
1348 -- Apply required constraint checks
1350 if Is_Scalar_Type (Typ) then
1351 Apply_Scalar_Range_Check (N, Typ);
1353 elsif Is_Array_Type (Typ) then
1355 -- A useful optimization: an aggregate with only an others clause
1356 -- always has the right bounds.
1358 if Nkind (N) = N_Aggregate
1359 and then No (Expressions (N))
1360 and then Nkind
1361 (First (Choices (First (Component_Associations (N)))))
1362 = N_Others_Choice
1363 then
1364 return;
1365 end if;
1367 if Is_Constrained (Typ) then
1368 Apply_Length_Check (N, Typ);
1370 if No_Sliding then
1371 Apply_Range_Check (N, Typ);
1372 end if;
1373 else
1374 Apply_Range_Check (N, Typ);
1375 end if;
1377 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1378 and then Has_Discriminants (Base_Type (Typ))
1379 and then Is_Constrained (Typ)
1380 then
1381 Apply_Discriminant_Check (N, Typ);
1383 elsif Is_Access_Type (Typ) then
1385 Desig_Typ := Designated_Type (Typ);
1387 -- No checks necessary if expression statically null
1389 if Known_Null (N) then
1390 if Can_Never_Be_Null (Typ) then
1391 Install_Null_Excluding_Check (N);
1392 end if;
1394 -- No sliding possible on access to arrays
1396 elsif Is_Array_Type (Desig_Typ) then
1397 if Is_Constrained (Desig_Typ) then
1398 Apply_Length_Check (N, Typ);
1399 end if;
1401 Apply_Range_Check (N, Typ);
1403 elsif Has_Discriminants (Base_Type (Desig_Typ))
1404 and then Is_Constrained (Desig_Typ)
1405 then
1406 Apply_Discriminant_Check (N, Typ);
1407 end if;
1409 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1410 -- this check if the constraint node is illegal, as shown by having
1411 -- an error posted. This additional guard prevents cascaded errors
1412 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1414 if Can_Never_Be_Null (Typ)
1415 and then not Can_Never_Be_Null (Etype (N))
1416 and then not Error_Posted (N)
1417 then
1418 Install_Null_Excluding_Check (N);
1419 end if;
1420 end if;
1421 end Apply_Constraint_Check;
1423 ------------------------------
1424 -- Apply_Discriminant_Check --
1425 ------------------------------
1427 procedure Apply_Discriminant_Check
1428 (N : Node_Id;
1429 Typ : Entity_Id;
1430 Lhs : Node_Id := Empty)
1432 Loc : constant Source_Ptr := Sloc (N);
1433 Do_Access : constant Boolean := Is_Access_Type (Typ);
1434 S_Typ : Entity_Id := Etype (N);
1435 Cond : Node_Id;
1436 T_Typ : Entity_Id;
1438 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1439 -- A heap object with an indefinite subtype is constrained by its
1440 -- initial value, and assigning to it requires a constraint_check.
1441 -- The target may be an explicit dereference, or a renaming of one.
1443 function Is_Aliased_Unconstrained_Component return Boolean;
1444 -- It is possible for an aliased component to have a nominal
1445 -- unconstrained subtype (through instantiation). If this is a
1446 -- discriminated component assigned in the expansion of an aggregate
1447 -- in an initialization, the check must be suppressed. This unusual
1448 -- situation requires a predicate of its own.
1450 ----------------------------------
1451 -- Denotes_Explicit_Dereference --
1452 ----------------------------------
1454 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1455 begin
1456 return
1457 Nkind (Obj) = N_Explicit_Dereference
1458 or else
1459 (Is_Entity_Name (Obj)
1460 and then Present (Renamed_Object (Entity (Obj)))
1461 and then Nkind (Renamed_Object (Entity (Obj))) =
1462 N_Explicit_Dereference);
1463 end Denotes_Explicit_Dereference;
1465 ----------------------------------------
1466 -- Is_Aliased_Unconstrained_Component --
1467 ----------------------------------------
1469 function Is_Aliased_Unconstrained_Component return Boolean is
1470 Comp : Entity_Id;
1471 Pref : Node_Id;
1473 begin
1474 if Nkind (Lhs) /= N_Selected_Component then
1475 return False;
1476 else
1477 Comp := Entity (Selector_Name (Lhs));
1478 Pref := Prefix (Lhs);
1479 end if;
1481 if Ekind (Comp) /= E_Component
1482 or else not Is_Aliased (Comp)
1483 then
1484 return False;
1485 end if;
1487 return not Comes_From_Source (Pref)
1488 and then In_Instance
1489 and then not Is_Constrained (Etype (Comp));
1490 end Is_Aliased_Unconstrained_Component;
1492 -- Start of processing for Apply_Discriminant_Check
1494 begin
1495 if Do_Access then
1496 T_Typ := Designated_Type (Typ);
1497 else
1498 T_Typ := Typ;
1499 end if;
1501 -- Nothing to do if discriminant checks are suppressed or else no code
1502 -- is to be generated
1504 if not Expander_Active
1505 or else Discriminant_Checks_Suppressed (T_Typ)
1506 then
1507 return;
1508 end if;
1510 -- No discriminant checks necessary for an access when expression is
1511 -- statically Null. This is not only an optimization, it is fundamental
1512 -- because otherwise discriminant checks may be generated in init procs
1513 -- for types containing an access to a not-yet-frozen record, causing a
1514 -- deadly forward reference.
1516 -- Also, if the expression is of an access type whose designated type is
1517 -- incomplete, then the access value must be null and we suppress the
1518 -- check.
1520 if Known_Null (N) then
1521 return;
1523 elsif Is_Access_Type (S_Typ) then
1524 S_Typ := Designated_Type (S_Typ);
1526 if Ekind (S_Typ) = E_Incomplete_Type then
1527 return;
1528 end if;
1529 end if;
1531 -- If an assignment target is present, then we need to generate the
1532 -- actual subtype if the target is a parameter or aliased object with
1533 -- an unconstrained nominal subtype.
1535 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1536 -- subtype to the parameter and dereference cases, since other aliased
1537 -- objects are unconstrained (unless the nominal subtype is explicitly
1538 -- constrained).
1540 if Present (Lhs)
1541 and then (Present (Param_Entity (Lhs))
1542 or else (Ada_Version < Ada_2005
1543 and then not Is_Constrained (T_Typ)
1544 and then Is_Aliased_View (Lhs)
1545 and then not Is_Aliased_Unconstrained_Component)
1546 or else (Ada_Version >= Ada_2005
1547 and then not Is_Constrained (T_Typ)
1548 and then Denotes_Explicit_Dereference (Lhs)
1549 and then Nkind (Original_Node (Lhs)) /=
1550 N_Function_Call))
1551 then
1552 T_Typ := Get_Actual_Subtype (Lhs);
1553 end if;
1555 -- Nothing to do if the type is unconstrained (this is the case where
1556 -- the actual subtype in the RM sense of N is unconstrained and no check
1557 -- is required).
1559 if not Is_Constrained (T_Typ) then
1560 return;
1562 -- Ada 2005: nothing to do if the type is one for which there is a
1563 -- partial view that is constrained.
1565 elsif Ada_Version >= Ada_2005
1566 and then Object_Type_Has_Constrained_Partial_View
1567 (Typ => Base_Type (T_Typ),
1568 Scop => Current_Scope)
1569 then
1570 return;
1571 end if;
1573 -- Nothing to do if the type is an Unchecked_Union
1575 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1576 return;
1577 end if;
1579 -- Suppress checks if the subtypes are the same. The check must be
1580 -- preserved in an assignment to a formal, because the constraint is
1581 -- given by the actual.
1583 if Nkind (Original_Node (N)) /= N_Allocator
1584 and then (No (Lhs)
1585 or else not Is_Entity_Name (Lhs)
1586 or else No (Param_Entity (Lhs)))
1587 then
1588 if (Etype (N) = Typ
1589 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1590 and then not Is_Aliased_View (Lhs)
1591 then
1592 return;
1593 end if;
1595 -- We can also eliminate checks on allocators with a subtype mark that
1596 -- coincides with the context type. The context type may be a subtype
1597 -- without a constraint (common case, a generic actual).
1599 elsif Nkind (Original_Node (N)) = N_Allocator
1600 and then Is_Entity_Name (Expression (Original_Node (N)))
1601 then
1602 declare
1603 Alloc_Typ : constant Entity_Id :=
1604 Entity (Expression (Original_Node (N)));
1606 begin
1607 if Alloc_Typ = T_Typ
1608 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1609 and then Is_Entity_Name (
1610 Subtype_Indication (Parent (T_Typ)))
1611 and then Alloc_Typ = Base_Type (T_Typ))
1613 then
1614 return;
1615 end if;
1616 end;
1617 end if;
1619 -- See if we have a case where the types are both constrained, and all
1620 -- the constraints are constants. In this case, we can do the check
1621 -- successfully at compile time.
1623 -- We skip this check for the case where the node is rewritten as
1624 -- an allocator, because it already carries the context subtype,
1625 -- and extracting the discriminants from the aggregate is messy.
1627 if Is_Constrained (S_Typ)
1628 and then Nkind (Original_Node (N)) /= N_Allocator
1629 then
1630 declare
1631 DconT : Elmt_Id;
1632 Discr : Entity_Id;
1633 DconS : Elmt_Id;
1634 ItemS : Node_Id;
1635 ItemT : Node_Id;
1637 begin
1638 -- S_Typ may not have discriminants in the case where it is a
1639 -- private type completed by a default discriminated type. In that
1640 -- case, we need to get the constraints from the underlying type.
1641 -- If the underlying type is unconstrained (i.e. has no default
1642 -- discriminants) no check is needed.
1644 if Has_Discriminants (S_Typ) then
1645 Discr := First_Discriminant (S_Typ);
1646 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1648 else
1649 Discr := First_Discriminant (Underlying_Type (S_Typ));
1650 DconS :=
1651 First_Elmt
1652 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1654 if No (DconS) then
1655 return;
1656 end if;
1658 -- A further optimization: if T_Typ is derived from S_Typ
1659 -- without imposing a constraint, no check is needed.
1661 if Nkind (Original_Node (Parent (T_Typ))) =
1662 N_Full_Type_Declaration
1663 then
1664 declare
1665 Type_Def : constant Node_Id :=
1666 Type_Definition (Original_Node (Parent (T_Typ)));
1667 begin
1668 if Nkind (Type_Def) = N_Derived_Type_Definition
1669 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1670 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1671 then
1672 return;
1673 end if;
1674 end;
1675 end if;
1676 end if;
1678 -- Constraint may appear in full view of type
1680 if Ekind (T_Typ) = E_Private_Subtype
1681 and then Present (Full_View (T_Typ))
1682 then
1683 DconT :=
1684 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1685 else
1686 DconT :=
1687 First_Elmt (Discriminant_Constraint (T_Typ));
1688 end if;
1690 while Present (Discr) loop
1691 ItemS := Node (DconS);
1692 ItemT := Node (DconT);
1694 -- For a discriminated component type constrained by the
1695 -- current instance of an enclosing type, there is no
1696 -- applicable discriminant check.
1698 if Nkind (ItemT) = N_Attribute_Reference
1699 and then Is_Access_Type (Etype (ItemT))
1700 and then Is_Entity_Name (Prefix (ItemT))
1701 and then Is_Type (Entity (Prefix (ItemT)))
1702 then
1703 return;
1704 end if;
1706 -- If the expressions for the discriminants are identical
1707 -- and it is side-effect free (for now just an entity),
1708 -- this may be a shared constraint, e.g. from a subtype
1709 -- without a constraint introduced as a generic actual.
1710 -- Examine other discriminants if any.
1712 if ItemS = ItemT
1713 and then Is_Entity_Name (ItemS)
1714 then
1715 null;
1717 elsif not Is_OK_Static_Expression (ItemS)
1718 or else not Is_OK_Static_Expression (ItemT)
1719 then
1720 exit;
1722 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1723 if Do_Access then -- needs run-time check.
1724 exit;
1725 else
1726 Apply_Compile_Time_Constraint_Error
1727 (N, "incorrect value for discriminant&??",
1728 CE_Discriminant_Check_Failed, Ent => Discr);
1729 return;
1730 end if;
1731 end if;
1733 Next_Elmt (DconS);
1734 Next_Elmt (DconT);
1735 Next_Discriminant (Discr);
1736 end loop;
1738 if No (Discr) then
1739 return;
1740 end if;
1741 end;
1742 end if;
1744 -- Here we need a discriminant check. First build the expression
1745 -- for the comparisons of the discriminants:
1747 -- (n.disc1 /= typ.disc1) or else
1748 -- (n.disc2 /= typ.disc2) or else
1749 -- ...
1750 -- (n.discn /= typ.discn)
1752 Cond := Build_Discriminant_Checks (N, T_Typ);
1754 -- If Lhs is set and is a parameter, then the condition is guarded by:
1755 -- lhs'constrained and then (condition built above)
1757 if Present (Param_Entity (Lhs)) then
1758 Cond :=
1759 Make_And_Then (Loc,
1760 Left_Opnd =>
1761 Make_Attribute_Reference (Loc,
1762 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1763 Attribute_Name => Name_Constrained),
1764 Right_Opnd => Cond);
1765 end if;
1767 if Do_Access then
1768 Cond := Guard_Access (Cond, Loc, N);
1769 end if;
1771 Insert_Action (N,
1772 Make_Raise_Constraint_Error (Loc,
1773 Condition => Cond,
1774 Reason => CE_Discriminant_Check_Failed));
1775 end Apply_Discriminant_Check;
1777 -------------------------
1778 -- Apply_Divide_Checks --
1779 -------------------------
1781 procedure Apply_Divide_Checks (N : Node_Id) is
1782 Loc : constant Source_Ptr := Sloc (N);
1783 Typ : constant Entity_Id := Etype (N);
1784 Left : constant Node_Id := Left_Opnd (N);
1785 Right : constant Node_Id := Right_Opnd (N);
1787 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1788 -- Current overflow checking mode
1790 LLB : Uint;
1791 Llo : Uint;
1792 Lhi : Uint;
1793 LOK : Boolean;
1794 Rlo : Uint;
1795 Rhi : Uint;
1796 ROK : Boolean;
1798 pragma Warnings (Off, Lhi);
1799 -- Don't actually use this value
1801 begin
1802 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1803 -- operating on signed integer types, then the only thing this routine
1804 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1805 -- procedure will (possibly later on during recursive downward calls),
1806 -- ensure that any needed overflow/division checks are properly applied.
1808 if Mode in Minimized_Or_Eliminated
1809 and then Is_Signed_Integer_Type (Typ)
1810 then
1811 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1812 return;
1813 end if;
1815 -- Proceed here in SUPPRESSED or CHECKED modes
1817 if Expander_Active
1818 and then not Backend_Divide_Checks_On_Target
1819 and then Check_Needed (Right, Division_Check)
1820 then
1821 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1823 -- Deal with division check
1825 if Do_Division_Check (N)
1826 and then not Division_Checks_Suppressed (Typ)
1827 then
1828 Apply_Division_Check (N, Rlo, Rhi, ROK);
1829 end if;
1831 -- Deal with overflow check
1833 if Do_Overflow_Check (N)
1834 and then not Overflow_Checks_Suppressed (Etype (N))
1835 then
1836 Set_Do_Overflow_Check (N, False);
1838 -- Test for extremely annoying case of xxx'First divided by -1
1839 -- for division of signed integer types (only overflow case).
1841 if Nkind (N) = N_Op_Divide
1842 and then Is_Signed_Integer_Type (Typ)
1843 then
1844 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1845 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1847 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1848 and then
1849 ((not LOK) or else (Llo = LLB))
1850 then
1851 Insert_Action (N,
1852 Make_Raise_Constraint_Error (Loc,
1853 Condition =>
1854 Make_And_Then (Loc,
1855 Left_Opnd =>
1856 Make_Op_Eq (Loc,
1857 Left_Opnd =>
1858 Duplicate_Subexpr_Move_Checks (Left),
1859 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1861 Right_Opnd =>
1862 Make_Op_Eq (Loc,
1863 Left_Opnd => Duplicate_Subexpr (Right),
1864 Right_Opnd => Make_Integer_Literal (Loc, -1))),
1866 Reason => CE_Overflow_Check_Failed));
1867 end if;
1868 end if;
1869 end if;
1870 end if;
1871 end Apply_Divide_Checks;
1873 --------------------------
1874 -- Apply_Division_Check --
1875 --------------------------
1877 procedure Apply_Division_Check
1878 (N : Node_Id;
1879 Rlo : Uint;
1880 Rhi : Uint;
1881 ROK : Boolean)
1883 pragma Assert (Do_Division_Check (N));
1885 Loc : constant Source_Ptr := Sloc (N);
1886 Right : constant Node_Id := Right_Opnd (N);
1888 begin
1889 if Expander_Active
1890 and then not Backend_Divide_Checks_On_Target
1891 and then Check_Needed (Right, Division_Check)
1892 then
1893 -- See if division by zero possible, and if so generate test. This
1894 -- part of the test is not controlled by the -gnato switch, since
1895 -- it is a Division_Check and not an Overflow_Check.
1897 if Do_Division_Check (N) then
1898 Set_Do_Division_Check (N, False);
1900 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1901 Insert_Action (N,
1902 Make_Raise_Constraint_Error (Loc,
1903 Condition =>
1904 Make_Op_Eq (Loc,
1905 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1906 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1907 Reason => CE_Divide_By_Zero));
1908 end if;
1909 end if;
1910 end if;
1911 end Apply_Division_Check;
1913 ----------------------------------
1914 -- Apply_Float_Conversion_Check --
1915 ----------------------------------
1917 -- Let F and I be the source and target types of the conversion. The RM
1918 -- specifies that a floating-point value X is rounded to the nearest
1919 -- integer, with halfway cases being rounded away from zero. The rounded
1920 -- value of X is checked against I'Range.
1922 -- The catch in the above paragraph is that there is no good way to know
1923 -- whether the round-to-integer operation resulted in overflow. A remedy is
1924 -- to perform a range check in the floating-point domain instead, however:
1926 -- (1) The bounds may not be known at compile time
1927 -- (2) The check must take into account rounding or truncation.
1928 -- (3) The range of type I may not be exactly representable in F.
1929 -- (4) For the rounding case, The end-points I'First - 0.5 and
1930 -- I'Last + 0.5 may or may not be in range, depending on the
1931 -- sign of I'First and I'Last.
1932 -- (5) X may be a NaN, which will fail any comparison
1934 -- The following steps correctly convert X with rounding:
1936 -- (1) If either I'First or I'Last is not known at compile time, use
1937 -- I'Base instead of I in the next three steps and perform a
1938 -- regular range check against I'Range after conversion.
1939 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1940 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1941 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1942 -- In other words, take one of the closest floating-point numbers
1943 -- (which is an integer value) to I'First, and see if it is in
1944 -- range or not.
1945 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1946 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1947 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1948 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1949 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1951 -- For the truncating case, replace steps (2) and (3) as follows:
1952 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1953 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1954 -- Lo_OK be True.
1955 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1956 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1957 -- Hi_OK be True.
1959 procedure Apply_Float_Conversion_Check
1960 (Ck_Node : Node_Id;
1961 Target_Typ : Entity_Id)
1963 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1964 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1965 Loc : constant Source_Ptr := Sloc (Ck_Node);
1966 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1967 Target_Base : constant Entity_Id :=
1968 Implementation_Base_Type (Target_Typ);
1970 Par : constant Node_Id := Parent (Ck_Node);
1971 pragma Assert (Nkind (Par) = N_Type_Conversion);
1972 -- Parent of check node, must be a type conversion
1974 Truncate : constant Boolean := Float_Truncate (Par);
1975 Max_Bound : constant Uint :=
1976 UI_Expon
1977 (Machine_Radix_Value (Expr_Type),
1978 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1980 -- Largest bound, so bound plus or minus half is a machine number of F
1982 Ifirst, Ilast : Uint;
1983 -- Bounds of integer type
1985 Lo, Hi : Ureal;
1986 -- Bounds to check in floating-point domain
1988 Lo_OK, Hi_OK : Boolean;
1989 -- True iff Lo resp. Hi belongs to I'Range
1991 Lo_Chk, Hi_Chk : Node_Id;
1992 -- Expressions that are False iff check fails
1994 Reason : RT_Exception_Code;
1996 begin
1997 -- We do not need checks if we are not generating code (i.e. the full
1998 -- expander is not active). In SPARK mode, we specifically don't want
1999 -- the frontend to expand these checks, which are dealt with directly
2000 -- in the formal verification backend.
2002 if not Expander_Active then
2003 return;
2004 end if;
2006 if not Compile_Time_Known_Value (LB)
2007 or not Compile_Time_Known_Value (HB)
2008 then
2009 declare
2010 -- First check that the value falls in the range of the base type,
2011 -- to prevent overflow during conversion and then perform a
2012 -- regular range check against the (dynamic) bounds.
2014 pragma Assert (Target_Base /= Target_Typ);
2016 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
2018 begin
2019 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
2020 Set_Etype (Temp, Target_Base);
2022 Insert_Action (Parent (Par),
2023 Make_Object_Declaration (Loc,
2024 Defining_Identifier => Temp,
2025 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2026 Expression => New_Copy_Tree (Par)),
2027 Suppress => All_Checks);
2029 Insert_Action (Par,
2030 Make_Raise_Constraint_Error (Loc,
2031 Condition =>
2032 Make_Not_In (Loc,
2033 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2034 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2035 Reason => CE_Range_Check_Failed));
2036 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2038 return;
2039 end;
2040 end if;
2042 -- Get the (static) bounds of the target type
2044 Ifirst := Expr_Value (LB);
2045 Ilast := Expr_Value (HB);
2047 -- A simple optimization: if the expression is a universal literal,
2048 -- we can do the comparison with the bounds and the conversion to
2049 -- an integer type statically. The range checks are unchanged.
2051 if Nkind (Ck_Node) = N_Real_Literal
2052 and then Etype (Ck_Node) = Universal_Real
2053 and then Is_Integer_Type (Target_Typ)
2054 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
2055 then
2056 declare
2057 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2059 begin
2060 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2062 -- Conversion is safe
2064 Rewrite (Parent (Ck_Node),
2065 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2066 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2067 return;
2068 end if;
2069 end;
2070 end if;
2072 -- Check against lower bound
2074 if Truncate and then Ifirst > 0 then
2075 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2076 Lo_OK := False;
2078 elsif Truncate then
2079 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2080 Lo_OK := True;
2082 elsif abs (Ifirst) < Max_Bound then
2083 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2084 Lo_OK := (Ifirst > 0);
2086 else
2087 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2088 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2089 end if;
2091 if Lo_OK then
2093 -- Lo_Chk := (X >= Lo)
2095 Lo_Chk := Make_Op_Ge (Loc,
2096 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2097 Right_Opnd => Make_Real_Literal (Loc, Lo));
2099 else
2100 -- Lo_Chk := (X > Lo)
2102 Lo_Chk := Make_Op_Gt (Loc,
2103 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2104 Right_Opnd => Make_Real_Literal (Loc, Lo));
2105 end if;
2107 -- Check against higher bound
2109 if Truncate and then Ilast < 0 then
2110 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2111 Hi_OK := False;
2113 elsif Truncate then
2114 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2115 Hi_OK := True;
2117 elsif abs (Ilast) < Max_Bound then
2118 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2119 Hi_OK := (Ilast < 0);
2120 else
2121 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2122 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2123 end if;
2125 if Hi_OK then
2127 -- Hi_Chk := (X <= Hi)
2129 Hi_Chk := Make_Op_Le (Loc,
2130 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2131 Right_Opnd => Make_Real_Literal (Loc, Hi));
2133 else
2134 -- Hi_Chk := (X < Hi)
2136 Hi_Chk := Make_Op_Lt (Loc,
2137 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2138 Right_Opnd => Make_Real_Literal (Loc, Hi));
2139 end if;
2141 -- If the bounds of the target type are the same as those of the base
2142 -- type, the check is an overflow check as a range check is not
2143 -- performed in these cases.
2145 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2146 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2147 then
2148 Reason := CE_Overflow_Check_Failed;
2149 else
2150 Reason := CE_Range_Check_Failed;
2151 end if;
2153 -- Raise CE if either conditions does not hold
2155 Insert_Action (Ck_Node,
2156 Make_Raise_Constraint_Error (Loc,
2157 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2158 Reason => Reason));
2159 end Apply_Float_Conversion_Check;
2161 ------------------------
2162 -- Apply_Length_Check --
2163 ------------------------
2165 procedure Apply_Length_Check
2166 (Ck_Node : Node_Id;
2167 Target_Typ : Entity_Id;
2168 Source_Typ : Entity_Id := Empty)
2170 begin
2171 Apply_Selected_Length_Checks
2172 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2173 end Apply_Length_Check;
2175 -------------------------------------
2176 -- Apply_Parameter_Aliasing_Checks --
2177 -------------------------------------
2179 procedure Apply_Parameter_Aliasing_Checks
2180 (Call : Node_Id;
2181 Subp : Entity_Id)
2183 Loc : constant Source_Ptr := Sloc (Call);
2185 function May_Cause_Aliasing
2186 (Formal_1 : Entity_Id;
2187 Formal_2 : Entity_Id) return Boolean;
2188 -- Determine whether two formal parameters can alias each other
2189 -- depending on their modes.
2191 function Original_Actual (N : Node_Id) return Node_Id;
2192 -- The expander may replace an actual with a temporary for the sake of
2193 -- side effect removal. The temporary may hide a potential aliasing as
2194 -- it does not share the address of the actual. This routine attempts
2195 -- to retrieve the original actual.
2197 procedure Overlap_Check
2198 (Actual_1 : Node_Id;
2199 Actual_2 : Node_Id;
2200 Formal_1 : Entity_Id;
2201 Formal_2 : Entity_Id;
2202 Check : in out Node_Id);
2203 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2204 -- If detailed exception messages are enabled, the check is augmented to
2205 -- provide information about the names of the corresponding formals. See
2206 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2207 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2208 -- Check contains all and-ed simple tests generated so far or remains
2209 -- unchanged in the case of detailed exception messaged.
2211 ------------------------
2212 -- May_Cause_Aliasing --
2213 ------------------------
2215 function May_Cause_Aliasing
2216 (Formal_1 : Entity_Id;
2217 Formal_2 : Entity_Id) return Boolean
2219 begin
2220 -- The following combination cannot lead to aliasing
2222 -- Formal 1 Formal 2
2223 -- IN IN
2225 if Ekind (Formal_1) = E_In_Parameter
2226 and then
2227 Ekind (Formal_2) = E_In_Parameter
2228 then
2229 return False;
2231 -- The following combinations may lead to aliasing
2233 -- Formal 1 Formal 2
2234 -- IN OUT
2235 -- IN IN OUT
2236 -- OUT IN
2237 -- OUT IN OUT
2238 -- OUT OUT
2240 else
2241 return True;
2242 end if;
2243 end May_Cause_Aliasing;
2245 ---------------------
2246 -- Original_Actual --
2247 ---------------------
2249 function Original_Actual (N : Node_Id) return Node_Id is
2250 begin
2251 if Nkind (N) = N_Type_Conversion then
2252 return Expression (N);
2254 -- The expander created a temporary to capture the result of a type
2255 -- conversion where the expression is the real actual.
2257 elsif Nkind (N) = N_Identifier
2258 and then Present (Original_Node (N))
2259 and then Nkind (Original_Node (N)) = N_Type_Conversion
2260 then
2261 return Expression (Original_Node (N));
2262 end if;
2264 return N;
2265 end Original_Actual;
2267 -------------------
2268 -- Overlap_Check --
2269 -------------------
2271 procedure Overlap_Check
2272 (Actual_1 : Node_Id;
2273 Actual_2 : Node_Id;
2274 Formal_1 : Entity_Id;
2275 Formal_2 : Entity_Id;
2276 Check : in out Node_Id)
2278 Cond : Node_Id;
2279 ID_Casing : constant Casing_Type :=
2280 Identifier_Casing (Source_Index (Current_Sem_Unit));
2282 begin
2283 -- Generate:
2284 -- Actual_1'Overlaps_Storage (Actual_2)
2286 Cond :=
2287 Make_Attribute_Reference (Loc,
2288 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2289 Attribute_Name => Name_Overlaps_Storage,
2290 Expressions =>
2291 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2293 -- Generate the following check when detailed exception messages are
2294 -- enabled:
2296 -- if Actual_1'Overlaps_Storage (Actual_2) then
2297 -- raise Program_Error with <detailed message>;
2298 -- end if;
2300 if Exception_Extra_Info then
2301 Start_String;
2303 -- Do not generate location information for internal calls
2305 if Comes_From_Source (Call) then
2306 Store_String_Chars (Build_Location_String (Loc));
2307 Store_String_Char (' ');
2308 end if;
2310 Store_String_Chars ("aliased parameters, actuals for """);
2312 Get_Name_String (Chars (Formal_1));
2313 Set_Casing (ID_Casing);
2314 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2316 Store_String_Chars (""" and """);
2318 Get_Name_String (Chars (Formal_2));
2319 Set_Casing (ID_Casing);
2320 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2322 Store_String_Chars (""" overlap");
2324 Insert_Action (Call,
2325 Make_If_Statement (Loc,
2326 Condition => Cond,
2327 Then_Statements => New_List (
2328 Make_Raise_Statement (Loc,
2329 Name =>
2330 New_Occurrence_Of (Standard_Program_Error, Loc),
2331 Expression => Make_String_Literal (Loc, End_String)))));
2333 -- Create a sequence of overlapping checks by and-ing them all
2334 -- together.
2336 else
2337 if No (Check) then
2338 Check := Cond;
2339 else
2340 Check :=
2341 Make_And_Then (Loc,
2342 Left_Opnd => Check,
2343 Right_Opnd => Cond);
2344 end if;
2345 end if;
2346 end Overlap_Check;
2348 -- Local variables
2350 Actual_1 : Node_Id;
2351 Actual_2 : Node_Id;
2352 Check : Node_Id;
2353 Formal_1 : Entity_Id;
2354 Formal_2 : Entity_Id;
2356 -- Start of processing for Apply_Parameter_Aliasing_Checks
2358 begin
2359 Check := Empty;
2361 Actual_1 := First_Actual (Call);
2362 Formal_1 := First_Formal (Subp);
2363 while Present (Actual_1) and then Present (Formal_1) loop
2365 -- Ensure that the actual is an object that is not passed by value.
2366 -- Elementary types are always passed by value, therefore actuals of
2367 -- such types cannot lead to aliasing.
2369 if Is_Object_Reference (Original_Actual (Actual_1))
2370 and then not Is_Elementary_Type (Etype (Original_Actual (Actual_1)))
2371 then
2372 Actual_2 := Next_Actual (Actual_1);
2373 Formal_2 := Next_Formal (Formal_1);
2374 while Present (Actual_2) and then Present (Formal_2) loop
2376 -- The other actual we are testing against must also denote
2377 -- a non pass-by-value object. Generate the check only when
2378 -- the mode of the two formals may lead to aliasing.
2380 if Is_Object_Reference (Original_Actual (Actual_2))
2381 and then not
2382 Is_Elementary_Type (Etype (Original_Actual (Actual_2)))
2383 and then May_Cause_Aliasing (Formal_1, Formal_2)
2384 then
2385 Overlap_Check
2386 (Actual_1 => Actual_1,
2387 Actual_2 => Actual_2,
2388 Formal_1 => Formal_1,
2389 Formal_2 => Formal_2,
2390 Check => Check);
2391 end if;
2393 Next_Actual (Actual_2);
2394 Next_Formal (Formal_2);
2395 end loop;
2396 end if;
2398 Next_Actual (Actual_1);
2399 Next_Formal (Formal_1);
2400 end loop;
2402 -- Place a simple check right before the call
2404 if Present (Check) and then not Exception_Extra_Info then
2405 Insert_Action (Call,
2406 Make_Raise_Program_Error (Loc,
2407 Condition => Check,
2408 Reason => PE_Aliased_Parameters));
2409 end if;
2410 end Apply_Parameter_Aliasing_Checks;
2412 -------------------------------------
2413 -- Apply_Parameter_Validity_Checks --
2414 -------------------------------------
2416 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2417 Subp_Decl : Node_Id;
2419 procedure Add_Validity_Check
2420 (Formal : Entity_Id;
2421 Prag_Nam : Name_Id;
2422 For_Result : Boolean := False);
2423 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2424 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
2425 -- Set flag For_Result when to verify the result of a function.
2427 ------------------------
2428 -- Add_Validity_Check --
2429 ------------------------
2431 procedure Add_Validity_Check
2432 (Formal : Entity_Id;
2433 Prag_Nam : Name_Id;
2434 For_Result : Boolean := False)
2436 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2437 -- Create a pre/postcondition pragma that tests expression Expr
2439 ------------------------------
2440 -- Build_Pre_Post_Condition --
2441 ------------------------------
2443 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2444 Loc : constant Source_Ptr := Sloc (Subp);
2445 Decls : List_Id;
2446 Prag : Node_Id;
2448 begin
2449 Prag :=
2450 Make_Pragma (Loc,
2451 Pragma_Identifier =>
2452 Make_Identifier (Loc, Prag_Nam),
2453 Pragma_Argument_Associations => New_List (
2454 Make_Pragma_Argument_Association (Loc,
2455 Chars => Name_Check,
2456 Expression => Expr)));
2458 -- Add a message unless exception messages are suppressed
2460 if not Exception_Locations_Suppressed then
2461 Append_To (Pragma_Argument_Associations (Prag),
2462 Make_Pragma_Argument_Association (Loc,
2463 Chars => Name_Message,
2464 Expression =>
2465 Make_String_Literal (Loc,
2466 Strval => "failed "
2467 & Get_Name_String (Prag_Nam)
2468 & " from "
2469 & Build_Location_String (Loc))));
2470 end if;
2472 -- Insert the pragma in the tree
2474 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2475 Add_Global_Declaration (Prag);
2476 Analyze (Prag);
2478 -- PPC pragmas associated with subprogram bodies must be inserted
2479 -- in the declarative part of the body.
2481 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2482 Decls := Declarations (Subp_Decl);
2484 if No (Decls) then
2485 Decls := New_List;
2486 Set_Declarations (Subp_Decl, Decls);
2487 end if;
2489 Prepend_To (Decls, Prag);
2490 Analyze (Prag);
2492 -- For subprogram declarations insert the PPC pragma right after
2493 -- the declarative node.
2495 else
2496 Insert_After_And_Analyze (Subp_Decl, Prag);
2497 end if;
2498 end Build_Pre_Post_Condition;
2500 -- Local variables
2502 Loc : constant Source_Ptr := Sloc (Subp);
2503 Typ : constant Entity_Id := Etype (Formal);
2504 Check : Node_Id;
2505 Nam : Name_Id;
2507 -- Start of processing for Add_Validity_Check
2509 begin
2510 -- For scalars, generate 'Valid test
2512 if Is_Scalar_Type (Typ) then
2513 Nam := Name_Valid;
2515 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2517 elsif Scalar_Part_Present (Typ) then
2518 Nam := Name_Valid_Scalars;
2520 -- No test needed for other cases (no scalars to test)
2522 else
2523 return;
2524 end if;
2526 -- Step 1: Create the expression to verify the validity of the
2527 -- context.
2529 Check := New_Occurrence_Of (Formal, Loc);
2531 -- When processing a function result, use 'Result. Generate
2532 -- Context'Result
2534 if For_Result then
2535 Check :=
2536 Make_Attribute_Reference (Loc,
2537 Prefix => Check,
2538 Attribute_Name => Name_Result);
2539 end if;
2541 -- Generate:
2542 -- Context['Result]'Valid[_Scalars]
2544 Check :=
2545 Make_Attribute_Reference (Loc,
2546 Prefix => Check,
2547 Attribute_Name => Nam);
2549 -- Step 2: Create a pre or post condition pragma
2551 Build_Pre_Post_Condition (Check);
2552 end Add_Validity_Check;
2554 -- Local variables
2556 Formal : Entity_Id;
2557 Subp_Spec : Node_Id;
2559 -- Start of processing for Apply_Parameter_Validity_Checks
2561 begin
2562 -- Extract the subprogram specification and declaration nodes
2564 Subp_Spec := Parent (Subp);
2566 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2567 Subp_Spec := Parent (Subp_Spec);
2568 end if;
2570 Subp_Decl := Parent (Subp_Spec);
2572 if not Comes_From_Source (Subp)
2574 -- Do not process formal subprograms because the corresponding actual
2575 -- will receive the proper checks when the instance is analyzed.
2577 or else Is_Formal_Subprogram (Subp)
2579 -- Do not process imported subprograms since pre and postconditions
2580 -- are never verified on routines coming from a different language.
2582 or else Is_Imported (Subp)
2583 or else Is_Intrinsic_Subprogram (Subp)
2585 -- The PPC pragmas generated by this routine do not correspond to
2586 -- source aspects, therefore they cannot be applied to abstract
2587 -- subprograms.
2589 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2591 -- Do not consider subprogram renaminds because the renamed entity
2592 -- already has the proper PPC pragmas.
2594 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2596 -- Do not process null procedures because there is no benefit of
2597 -- adding the checks to a no action routine.
2599 or else (Nkind (Subp_Spec) = N_Procedure_Specification
2600 and then Null_Present (Subp_Spec))
2601 then
2602 return;
2603 end if;
2605 -- Inspect all the formals applying aliasing and scalar initialization
2606 -- checks where applicable.
2608 Formal := First_Formal (Subp);
2609 while Present (Formal) loop
2611 -- Generate the following scalar initialization checks for each
2612 -- formal parameter:
2614 -- mode IN - Pre => Formal'Valid[_Scalars]
2615 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2616 -- mode OUT - Post => Formal'Valid[_Scalars]
2618 if Check_Validity_Of_Parameters then
2619 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2620 Add_Validity_Check (Formal, Name_Precondition, False);
2621 end if;
2623 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2624 Add_Validity_Check (Formal, Name_Postcondition, False);
2625 end if;
2626 end if;
2628 Next_Formal (Formal);
2629 end loop;
2631 -- Generate following scalar initialization check for function result:
2633 -- Post => Subp'Result'Valid[_Scalars]
2635 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
2636 Add_Validity_Check (Subp, Name_Postcondition, True);
2637 end if;
2638 end Apply_Parameter_Validity_Checks;
2640 ---------------------------
2641 -- Apply_Predicate_Check --
2642 ---------------------------
2644 procedure Apply_Predicate_Check (N : Node_Id; Typ : Entity_Id) is
2645 S : Entity_Id;
2647 begin
2648 if Present (Predicate_Function (Typ)) then
2650 S := Current_Scope;
2651 while Present (S) and then not Is_Subprogram (S) loop
2652 S := Scope (S);
2653 end loop;
2655 -- A predicate check does not apply within internally generated
2656 -- subprograms, such as TSS functions.
2658 if Within_Internal_Subprogram then
2659 return;
2661 -- If the check appears within the predicate function itself, it
2662 -- means that the user specified a check whose formal is the
2663 -- predicated subtype itself, rather than some covering type. This
2664 -- is likely to be a common error, and thus deserves a warning.
2666 elsif Present (S) and then S = Predicate_Function (Typ) then
2667 Error_Msg_N
2668 ("predicate check includes a function call that "
2669 & "requires a predicate check??", Parent (N));
2670 Error_Msg_N
2671 ("\this will result in infinite recursion??", Parent (N));
2672 Insert_Action (N,
2673 Make_Raise_Storage_Error (Sloc (N),
2674 Reason => SE_Infinite_Recursion));
2676 -- Here for normal case of predicate active
2678 else
2679 -- If the type has a static predicate and the expression is known
2680 -- at compile time, see if the expression satisfies the predicate.
2682 Check_Expression_Against_Static_Predicate (N, Typ);
2684 Insert_Action (N,
2685 Make_Predicate_Check (Typ, Duplicate_Subexpr (N)));
2686 end if;
2687 end if;
2688 end Apply_Predicate_Check;
2690 -----------------------
2691 -- Apply_Range_Check --
2692 -----------------------
2694 procedure Apply_Range_Check
2695 (Ck_Node : Node_Id;
2696 Target_Typ : Entity_Id;
2697 Source_Typ : Entity_Id := Empty)
2699 begin
2700 Apply_Selected_Range_Checks
2701 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2702 end Apply_Range_Check;
2704 ------------------------------
2705 -- Apply_Scalar_Range_Check --
2706 ------------------------------
2708 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2709 -- off if it is already set on.
2711 procedure Apply_Scalar_Range_Check
2712 (Expr : Node_Id;
2713 Target_Typ : Entity_Id;
2714 Source_Typ : Entity_Id := Empty;
2715 Fixed_Int : Boolean := False)
2717 Parnt : constant Node_Id := Parent (Expr);
2718 S_Typ : Entity_Id;
2719 Arr : Node_Id := Empty; -- initialize to prevent warning
2720 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
2721 OK : Boolean;
2723 Is_Subscr_Ref : Boolean;
2724 -- Set true if Expr is a subscript
2726 Is_Unconstrained_Subscr_Ref : Boolean;
2727 -- Set true if Expr is a subscript of an unconstrained array. In this
2728 -- case we do not attempt to do an analysis of the value against the
2729 -- range of the subscript, since we don't know the actual subtype.
2731 Int_Real : Boolean;
2732 -- Set to True if Expr should be regarded as a real value even though
2733 -- the type of Expr might be discrete.
2735 procedure Bad_Value;
2736 -- Procedure called if value is determined to be out of range
2738 ---------------
2739 -- Bad_Value --
2740 ---------------
2742 procedure Bad_Value is
2743 begin
2744 Apply_Compile_Time_Constraint_Error
2745 (Expr, "value not in range of}??", CE_Range_Check_Failed,
2746 Ent => Target_Typ,
2747 Typ => Target_Typ);
2748 end Bad_Value;
2750 -- Start of processing for Apply_Scalar_Range_Check
2752 begin
2753 -- Return if check obviously not needed
2756 -- Not needed inside generic
2758 Inside_A_Generic
2760 -- Not needed if previous error
2762 or else Target_Typ = Any_Type
2763 or else Nkind (Expr) = N_Error
2765 -- Not needed for non-scalar type
2767 or else not Is_Scalar_Type (Target_Typ)
2769 -- Not needed if we know node raises CE already
2771 or else Raises_Constraint_Error (Expr)
2772 then
2773 return;
2774 end if;
2776 -- Now, see if checks are suppressed
2778 Is_Subscr_Ref :=
2779 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2781 if Is_Subscr_Ref then
2782 Arr := Prefix (Parnt);
2783 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
2785 if Is_Access_Type (Arr_Typ) then
2786 Arr_Typ := Designated_Type (Arr_Typ);
2787 end if;
2788 end if;
2790 if not Do_Range_Check (Expr) then
2792 -- Subscript reference. Check for Index_Checks suppressed
2794 if Is_Subscr_Ref then
2796 -- Check array type and its base type
2798 if Index_Checks_Suppressed (Arr_Typ)
2799 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
2800 then
2801 return;
2803 -- Check array itself if it is an entity name
2805 elsif Is_Entity_Name (Arr)
2806 and then Index_Checks_Suppressed (Entity (Arr))
2807 then
2808 return;
2810 -- Check expression itself if it is an entity name
2812 elsif Is_Entity_Name (Expr)
2813 and then Index_Checks_Suppressed (Entity (Expr))
2814 then
2815 return;
2816 end if;
2818 -- All other cases, check for Range_Checks suppressed
2820 else
2821 -- Check target type and its base type
2823 if Range_Checks_Suppressed (Target_Typ)
2824 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
2825 then
2826 return;
2828 -- Check expression itself if it is an entity name
2830 elsif Is_Entity_Name (Expr)
2831 and then Range_Checks_Suppressed (Entity (Expr))
2832 then
2833 return;
2835 -- If Expr is part of an assignment statement, then check left
2836 -- side of assignment if it is an entity name.
2838 elsif Nkind (Parnt) = N_Assignment_Statement
2839 and then Is_Entity_Name (Name (Parnt))
2840 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
2841 then
2842 return;
2843 end if;
2844 end if;
2845 end if;
2847 -- Do not set range checks if they are killed
2849 if Nkind (Expr) = N_Unchecked_Type_Conversion
2850 and then Kill_Range_Check (Expr)
2851 then
2852 return;
2853 end if;
2855 -- Do not set range checks for any values from System.Scalar_Values
2856 -- since the whole idea of such values is to avoid checking them.
2858 if Is_Entity_Name (Expr)
2859 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2860 then
2861 return;
2862 end if;
2864 -- Now see if we need a check
2866 if No (Source_Typ) then
2867 S_Typ := Etype (Expr);
2868 else
2869 S_Typ := Source_Typ;
2870 end if;
2872 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2873 return;
2874 end if;
2876 Is_Unconstrained_Subscr_Ref :=
2877 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2879 -- Special checks for floating-point type
2881 if Is_Floating_Point_Type (S_Typ) then
2883 -- Always do a range check if the source type includes infinities and
2884 -- the target type does not include infinities. We do not do this if
2885 -- range checks are killed.
2887 if Has_Infinities (S_Typ)
2888 and then not Has_Infinities (Target_Typ)
2889 then
2890 Enable_Range_Check (Expr);
2891 end if;
2892 end if;
2894 -- Return if we know expression is definitely in the range of the target
2895 -- type as determined by Determine_Range. Right now we only do this for
2896 -- discrete types, and not fixed-point or floating-point types.
2898 -- The additional less-precise tests below catch these cases
2900 -- Note: skip this if we are given a source_typ, since the point of
2901 -- supplying a Source_Typ is to stop us looking at the expression.
2902 -- We could sharpen this test to be out parameters only ???
2904 if Is_Discrete_Type (Target_Typ)
2905 and then Is_Discrete_Type (Etype (Expr))
2906 and then not Is_Unconstrained_Subscr_Ref
2907 and then No (Source_Typ)
2908 then
2909 declare
2910 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2911 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2912 Lo : Uint;
2913 Hi : Uint;
2915 begin
2916 if Compile_Time_Known_Value (Tlo)
2917 and then Compile_Time_Known_Value (Thi)
2918 then
2919 declare
2920 Lov : constant Uint := Expr_Value (Tlo);
2921 Hiv : constant Uint := Expr_Value (Thi);
2923 begin
2924 -- If range is null, we for sure have a constraint error
2925 -- (we don't even need to look at the value involved,
2926 -- since all possible values will raise CE).
2928 if Lov > Hiv then
2930 -- In GNATprove mode, do not issue a message in that case
2931 -- (which would be an error stopping analysis), as this
2932 -- likely corresponds to deactivated code based on a
2933 -- given configuration (say, dead code inside a loop over
2934 -- the empty range). Instead, we enable the range check
2935 -- so that GNATprove will issue a message if it cannot be
2936 -- proved.
2938 if GNATprove_Mode then
2939 Enable_Range_Check (Expr);
2940 else
2941 Bad_Value;
2942 end if;
2944 return;
2945 end if;
2947 -- Otherwise determine range of value
2949 Determine_Range (Expr, OK, Lo, Hi, Assume_Valid => True);
2951 if OK then
2953 -- If definitely in range, all OK
2955 if Lo >= Lov and then Hi <= Hiv then
2956 return;
2958 -- If definitely not in range, warn
2960 elsif Lov > Hi or else Hiv < Lo then
2961 Bad_Value;
2962 return;
2964 -- Otherwise we don't know
2966 else
2967 null;
2968 end if;
2969 end if;
2970 end;
2971 end if;
2972 end;
2973 end if;
2975 Int_Real :=
2976 Is_Floating_Point_Type (S_Typ)
2977 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
2979 -- Check if we can determine at compile time whether Expr is in the
2980 -- range of the target type. Note that if S_Typ is within the bounds
2981 -- of Target_Typ then this must be the case. This check is meaningful
2982 -- only if this is not a conversion between integer and real types.
2984 if not Is_Unconstrained_Subscr_Ref
2985 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
2986 and then
2987 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
2989 -- Also check if the expression itself is in the range of the
2990 -- target type if it is a known at compile time value. We skip
2991 -- this test if S_Typ is set since for OUT and IN OUT parameters
2992 -- the Expr itself is not relevant to the checking.
2994 or else
2995 (No (Source_Typ)
2996 and then Is_In_Range (Expr, Target_Typ,
2997 Assume_Valid => True,
2998 Fixed_Int => Fixed_Int,
2999 Int_Real => Int_Real)))
3000 then
3001 return;
3003 elsif Is_Out_Of_Range (Expr, Target_Typ,
3004 Assume_Valid => True,
3005 Fixed_Int => Fixed_Int,
3006 Int_Real => Int_Real)
3007 then
3008 Bad_Value;
3009 return;
3011 -- Floating-point case
3012 -- In the floating-point case, we only do range checks if the type is
3013 -- constrained. We definitely do NOT want range checks for unconstrained
3014 -- types, since we want to have infinities
3016 elsif Is_Floating_Point_Type (S_Typ) then
3018 -- Normally, we only do range checks if the type is constrained. We do
3019 -- NOT want range checks for unconstrained types, since we want to have
3020 -- infinities.
3022 if Is_Constrained (S_Typ) then
3023 Enable_Range_Check (Expr);
3024 end if;
3026 -- For all other cases we enable a range check unconditionally
3028 else
3029 Enable_Range_Check (Expr);
3030 return;
3031 end if;
3032 end Apply_Scalar_Range_Check;
3034 ----------------------------------
3035 -- Apply_Selected_Length_Checks --
3036 ----------------------------------
3038 procedure Apply_Selected_Length_Checks
3039 (Ck_Node : Node_Id;
3040 Target_Typ : Entity_Id;
3041 Source_Typ : Entity_Id;
3042 Do_Static : Boolean)
3044 Cond : Node_Id;
3045 R_Result : Check_Result;
3046 R_Cno : Node_Id;
3048 Loc : constant Source_Ptr := Sloc (Ck_Node);
3049 Checks_On : constant Boolean :=
3050 (not Index_Checks_Suppressed (Target_Typ))
3051 or else (not Length_Checks_Suppressed (Target_Typ));
3053 begin
3054 -- Note: this means that we lose some useful warnings if the expander
3055 -- is not active, and we also lose these warnings in SPARK mode ???
3057 if not Expander_Active then
3058 return;
3059 end if;
3061 R_Result :=
3062 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3064 for J in 1 .. 2 loop
3065 R_Cno := R_Result (J);
3066 exit when No (R_Cno);
3068 -- A length check may mention an Itype which is attached to a
3069 -- subsequent node. At the top level in a package this can cause
3070 -- an order-of-elaboration problem, so we make sure that the itype
3071 -- is referenced now.
3073 if Ekind (Current_Scope) = E_Package
3074 and then Is_Compilation_Unit (Current_Scope)
3075 then
3076 Ensure_Defined (Target_Typ, Ck_Node);
3078 if Present (Source_Typ) then
3079 Ensure_Defined (Source_Typ, Ck_Node);
3081 elsif Is_Itype (Etype (Ck_Node)) then
3082 Ensure_Defined (Etype (Ck_Node), Ck_Node);
3083 end if;
3084 end if;
3086 -- If the item is a conditional raise of constraint error, then have
3087 -- a look at what check is being performed and ???
3089 if Nkind (R_Cno) = N_Raise_Constraint_Error
3090 and then Present (Condition (R_Cno))
3091 then
3092 Cond := Condition (R_Cno);
3094 -- Case where node does not now have a dynamic check
3096 if not Has_Dynamic_Length_Check (Ck_Node) then
3098 -- If checks are on, just insert the check
3100 if Checks_On then
3101 Insert_Action (Ck_Node, R_Cno);
3103 if not Do_Static then
3104 Set_Has_Dynamic_Length_Check (Ck_Node);
3105 end if;
3107 -- If checks are off, then analyze the length check after
3108 -- temporarily attaching it to the tree in case the relevant
3109 -- condition can be evaluated at compile time. We still want a
3110 -- compile time warning in this case.
3112 else
3113 Set_Parent (R_Cno, Ck_Node);
3114 Analyze (R_Cno);
3115 end if;
3116 end if;
3118 -- Output a warning if the condition is known to be True
3120 if Is_Entity_Name (Cond)
3121 and then Entity (Cond) = Standard_True
3122 then
3123 Apply_Compile_Time_Constraint_Error
3124 (Ck_Node, "wrong length for array of}??",
3125 CE_Length_Check_Failed,
3126 Ent => Target_Typ,
3127 Typ => Target_Typ);
3129 -- If we were only doing a static check, or if checks are not
3130 -- on, then we want to delete the check, since it is not needed.
3131 -- We do this by replacing the if statement by a null statement
3133 elsif Do_Static or else not Checks_On then
3134 Remove_Warning_Messages (R_Cno);
3135 Rewrite (R_Cno, Make_Null_Statement (Loc));
3136 end if;
3138 else
3139 Install_Static_Check (R_Cno, Loc);
3140 end if;
3141 end loop;
3142 end Apply_Selected_Length_Checks;
3144 ---------------------------------
3145 -- Apply_Selected_Range_Checks --
3146 ---------------------------------
3148 procedure Apply_Selected_Range_Checks
3149 (Ck_Node : Node_Id;
3150 Target_Typ : Entity_Id;
3151 Source_Typ : Entity_Id;
3152 Do_Static : Boolean)
3154 Loc : constant Source_Ptr := Sloc (Ck_Node);
3155 Checks_On : constant Boolean :=
3156 not Index_Checks_Suppressed (Target_Typ)
3157 or else
3158 not Range_Checks_Suppressed (Target_Typ);
3160 Cond : Node_Id;
3161 R_Cno : Node_Id;
3162 R_Result : Check_Result;
3164 begin
3165 if not Expander_Active or not Checks_On then
3166 return;
3167 end if;
3169 R_Result :=
3170 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3172 for J in 1 .. 2 loop
3173 R_Cno := R_Result (J);
3174 exit when No (R_Cno);
3176 -- The range check requires runtime evaluation. Depending on what its
3177 -- triggering condition is, the check may be converted into a compile
3178 -- time constraint check.
3180 if Nkind (R_Cno) = N_Raise_Constraint_Error
3181 and then Present (Condition (R_Cno))
3182 then
3183 Cond := Condition (R_Cno);
3185 -- Insert the range check before the related context. Note that
3186 -- this action analyses the triggering condition.
3188 Insert_Action (Ck_Node, R_Cno);
3190 -- This old code doesn't make sense, why is the context flagged as
3191 -- requiring dynamic range checks now in the middle of generating
3192 -- them ???
3194 if not Do_Static then
3195 Set_Has_Dynamic_Range_Check (Ck_Node);
3196 end if;
3198 -- The triggering condition evaluates to True, the range check
3199 -- can be converted into a compile time constraint check.
3201 if Is_Entity_Name (Cond)
3202 and then Entity (Cond) = Standard_True
3203 then
3204 -- Since an N_Range is technically not an expression, we have
3205 -- to set one of the bounds to C_E and then just flag the
3206 -- N_Range. The warning message will point to the lower bound
3207 -- and complain about a range, which seems OK.
3209 if Nkind (Ck_Node) = N_Range then
3210 Apply_Compile_Time_Constraint_Error
3211 (Low_Bound (Ck_Node),
3212 "static range out of bounds of}??",
3213 CE_Range_Check_Failed,
3214 Ent => Target_Typ,
3215 Typ => Target_Typ);
3217 Set_Raises_Constraint_Error (Ck_Node);
3219 else
3220 Apply_Compile_Time_Constraint_Error
3221 (Ck_Node,
3222 "static value out of range of}??",
3223 CE_Range_Check_Failed,
3224 Ent => Target_Typ,
3225 Typ => Target_Typ);
3226 end if;
3228 -- If we were only doing a static check, or if checks are not
3229 -- on, then we want to delete the check, since it is not needed.
3230 -- We do this by replacing the if statement by a null statement
3232 -- Why are we even generating checks if checks are turned off ???
3234 elsif Do_Static or else not Checks_On then
3235 Remove_Warning_Messages (R_Cno);
3236 Rewrite (R_Cno, Make_Null_Statement (Loc));
3237 end if;
3239 -- The range check raises Constrant_Error explicitly
3241 else
3242 Install_Static_Check (R_Cno, Loc);
3243 end if;
3244 end loop;
3245 end Apply_Selected_Range_Checks;
3247 -------------------------------
3248 -- Apply_Static_Length_Check --
3249 -------------------------------
3251 procedure Apply_Static_Length_Check
3252 (Expr : Node_Id;
3253 Target_Typ : Entity_Id;
3254 Source_Typ : Entity_Id := Empty)
3256 begin
3257 Apply_Selected_Length_Checks
3258 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3259 end Apply_Static_Length_Check;
3261 -------------------------------------
3262 -- Apply_Subscript_Validity_Checks --
3263 -------------------------------------
3265 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3266 Sub : Node_Id;
3268 begin
3269 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3271 -- Loop through subscripts
3273 Sub := First (Expressions (Expr));
3274 while Present (Sub) loop
3276 -- Check one subscript. Note that we do not worry about enumeration
3277 -- type with holes, since we will convert the value to a Pos value
3278 -- for the subscript, and that convert will do the necessary validity
3279 -- check.
3281 Ensure_Valid (Sub, Holes_OK => True);
3283 -- Move to next subscript
3285 Sub := Next (Sub);
3286 end loop;
3287 end Apply_Subscript_Validity_Checks;
3289 ----------------------------------
3290 -- Apply_Type_Conversion_Checks --
3291 ----------------------------------
3293 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3294 Target_Type : constant Entity_Id := Etype (N);
3295 Target_Base : constant Entity_Id := Base_Type (Target_Type);
3296 Expr : constant Node_Id := Expression (N);
3298 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3299 -- Note: if Etype (Expr) is a private type without discriminants, its
3300 -- full view might have discriminants with defaults, so we need the
3301 -- full view here to retrieve the constraints.
3303 begin
3304 if Inside_A_Generic then
3305 return;
3307 -- Skip these checks if serious errors detected, there are some nasty
3308 -- situations of incomplete trees that blow things up.
3310 elsif Serious_Errors_Detected > 0 then
3311 return;
3313 -- Never generate discriminant checks for Unchecked_Union types
3315 elsif Present (Expr_Type)
3316 and then Is_Unchecked_Union (Expr_Type)
3317 then
3318 return;
3320 -- Scalar type conversions of the form Target_Type (Expr) require a
3321 -- range check if we cannot be sure that Expr is in the base type of
3322 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3323 -- are not quite the same condition from an implementation point of
3324 -- view, but clearly the second includes the first.
3326 elsif Is_Scalar_Type (Target_Type) then
3327 declare
3328 Conv_OK : constant Boolean := Conversion_OK (N);
3329 -- If the Conversion_OK flag on the type conversion is set and no
3330 -- floating-point type is involved in the type conversion then
3331 -- fixed-point values must be read as integral values.
3333 Float_To_Int : constant Boolean :=
3334 Is_Floating_Point_Type (Expr_Type)
3335 and then Is_Integer_Type (Target_Type);
3337 begin
3338 if not Overflow_Checks_Suppressed (Target_Base)
3339 and then not Overflow_Checks_Suppressed (Target_Type)
3340 and then not
3341 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3342 and then not Float_To_Int
3343 then
3344 Activate_Overflow_Check (N);
3345 end if;
3347 if not Range_Checks_Suppressed (Target_Type)
3348 and then not Range_Checks_Suppressed (Expr_Type)
3349 then
3350 if Float_To_Int then
3351 Apply_Float_Conversion_Check (Expr, Target_Type);
3352 else
3353 Apply_Scalar_Range_Check
3354 (Expr, Target_Type, Fixed_Int => Conv_OK);
3356 -- If the target type has predicates, we need to indicate
3357 -- the need for a check, even if Determine_Range finds that
3358 -- the value is within bounds. This may be the case e.g for
3359 -- a division with a constant denominator.
3361 if Has_Predicates (Target_Type) then
3362 Enable_Range_Check (Expr);
3363 end if;
3364 end if;
3365 end if;
3366 end;
3368 elsif Comes_From_Source (N)
3369 and then not Discriminant_Checks_Suppressed (Target_Type)
3370 and then Is_Record_Type (Target_Type)
3371 and then Is_Derived_Type (Target_Type)
3372 and then not Is_Tagged_Type (Target_Type)
3373 and then not Is_Constrained (Target_Type)
3374 and then Present (Stored_Constraint (Target_Type))
3375 then
3376 -- An unconstrained derived type may have inherited discriminant.
3377 -- Build an actual discriminant constraint list using the stored
3378 -- constraint, to verify that the expression of the parent type
3379 -- satisfies the constraints imposed by the (unconstrained) derived
3380 -- type. This applies to value conversions, not to view conversions
3381 -- of tagged types.
3383 declare
3384 Loc : constant Source_Ptr := Sloc (N);
3385 Cond : Node_Id;
3386 Constraint : Elmt_Id;
3387 Discr_Value : Node_Id;
3388 Discr : Entity_Id;
3390 New_Constraints : constant Elist_Id := New_Elmt_List;
3391 Old_Constraints : constant Elist_Id :=
3392 Discriminant_Constraint (Expr_Type);
3394 begin
3395 Constraint := First_Elmt (Stored_Constraint (Target_Type));
3396 while Present (Constraint) loop
3397 Discr_Value := Node (Constraint);
3399 if Is_Entity_Name (Discr_Value)
3400 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3401 then
3402 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3404 if Present (Discr)
3405 and then Scope (Discr) = Base_Type (Expr_Type)
3406 then
3407 -- Parent is constrained by new discriminant. Obtain
3408 -- Value of original discriminant in expression. If the
3409 -- new discriminant has been used to constrain more than
3410 -- one of the stored discriminants, this will provide the
3411 -- required consistency check.
3413 Append_Elmt
3414 (Make_Selected_Component (Loc,
3415 Prefix =>
3416 Duplicate_Subexpr_No_Checks
3417 (Expr, Name_Req => True),
3418 Selector_Name =>
3419 Make_Identifier (Loc, Chars (Discr))),
3420 New_Constraints);
3422 else
3423 -- Discriminant of more remote ancestor ???
3425 return;
3426 end if;
3428 -- Derived type definition has an explicit value for this
3429 -- stored discriminant.
3431 else
3432 Append_Elmt
3433 (Duplicate_Subexpr_No_Checks (Discr_Value),
3434 New_Constraints);
3435 end if;
3437 Next_Elmt (Constraint);
3438 end loop;
3440 -- Use the unconstrained expression type to retrieve the
3441 -- discriminants of the parent, and apply momentarily the
3442 -- discriminant constraint synthesized above.
3444 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3445 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3446 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3448 Insert_Action (N,
3449 Make_Raise_Constraint_Error (Loc,
3450 Condition => Cond,
3451 Reason => CE_Discriminant_Check_Failed));
3452 end;
3454 -- For arrays, checks are set now, but conversions are applied during
3455 -- expansion, to take into accounts changes of representation. The
3456 -- checks become range checks on the base type or length checks on the
3457 -- subtype, depending on whether the target type is unconstrained or
3458 -- constrained. Note that the range check is put on the expression of a
3459 -- type conversion, while the length check is put on the type conversion
3460 -- itself.
3462 elsif Is_Array_Type (Target_Type) then
3463 if Is_Constrained (Target_Type) then
3464 Set_Do_Length_Check (N);
3465 else
3466 Set_Do_Range_Check (Expr);
3467 end if;
3468 end if;
3469 end Apply_Type_Conversion_Checks;
3471 ----------------------------------------------
3472 -- Apply_Universal_Integer_Attribute_Checks --
3473 ----------------------------------------------
3475 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3476 Loc : constant Source_Ptr := Sloc (N);
3477 Typ : constant Entity_Id := Etype (N);
3479 begin
3480 if Inside_A_Generic then
3481 return;
3483 -- Nothing to do if checks are suppressed
3485 elsif Range_Checks_Suppressed (Typ)
3486 and then Overflow_Checks_Suppressed (Typ)
3487 then
3488 return;
3490 -- Nothing to do if the attribute does not come from source. The
3491 -- internal attributes we generate of this type do not need checks,
3492 -- and furthermore the attempt to check them causes some circular
3493 -- elaboration orders when dealing with packed types.
3495 elsif not Comes_From_Source (N) then
3496 return;
3498 -- If the prefix is a selected component that depends on a discriminant
3499 -- the check may improperly expose a discriminant instead of using
3500 -- the bounds of the object itself. Set the type of the attribute to
3501 -- the base type of the context, so that a check will be imposed when
3502 -- needed (e.g. if the node appears as an index).
3504 elsif Nkind (Prefix (N)) = N_Selected_Component
3505 and then Ekind (Typ) = E_Signed_Integer_Subtype
3506 and then Depends_On_Discriminant (Scalar_Range (Typ))
3507 then
3508 Set_Etype (N, Base_Type (Typ));
3510 -- Otherwise, replace the attribute node with a type conversion node
3511 -- whose expression is the attribute, retyped to universal integer, and
3512 -- whose subtype mark is the target type. The call to analyze this
3513 -- conversion will set range and overflow checks as required for proper
3514 -- detection of an out of range value.
3516 else
3517 Set_Etype (N, Universal_Integer);
3518 Set_Analyzed (N, True);
3520 Rewrite (N,
3521 Make_Type_Conversion (Loc,
3522 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3523 Expression => Relocate_Node (N)));
3525 Analyze_And_Resolve (N, Typ);
3526 return;
3527 end if;
3528 end Apply_Universal_Integer_Attribute_Checks;
3530 -------------------------------------
3531 -- Atomic_Synchronization_Disabled --
3532 -------------------------------------
3534 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3535 -- using a bogus check called Atomic_Synchronization. This is to make it
3536 -- more convenient to get exactly the same semantics as [Un]Suppress.
3538 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3539 begin
3540 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3541 -- looks enabled, since it is never disabled.
3543 if Debug_Flag_Dot_E then
3544 return False;
3546 -- If debug flag d.d is set then always return True, i.e. all atomic
3547 -- sync looks disabled, since it always tests True.
3549 elsif Debug_Flag_Dot_D then
3550 return True;
3552 -- If entity present, then check result for that entity
3554 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3555 return Is_Check_Suppressed (E, Atomic_Synchronization);
3557 -- Otherwise result depends on current scope setting
3559 else
3560 return Scope_Suppress.Suppress (Atomic_Synchronization);
3561 end if;
3562 end Atomic_Synchronization_Disabled;
3564 -------------------------------
3565 -- Build_Discriminant_Checks --
3566 -------------------------------
3568 function Build_Discriminant_Checks
3569 (N : Node_Id;
3570 T_Typ : Entity_Id) return Node_Id
3572 Loc : constant Source_Ptr := Sloc (N);
3573 Cond : Node_Id;
3574 Disc : Elmt_Id;
3575 Disc_Ent : Entity_Id;
3576 Dref : Node_Id;
3577 Dval : Node_Id;
3579 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3581 ----------------------------------
3582 -- Aggregate_Discriminant_Value --
3583 ----------------------------------
3585 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3586 Assoc : Node_Id;
3588 begin
3589 -- The aggregate has been normalized with named associations. We use
3590 -- the Chars field to locate the discriminant to take into account
3591 -- discriminants in derived types, which carry the same name as those
3592 -- in the parent.
3594 Assoc := First (Component_Associations (N));
3595 while Present (Assoc) loop
3596 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3597 return Expression (Assoc);
3598 else
3599 Next (Assoc);
3600 end if;
3601 end loop;
3603 -- Discriminant must have been found in the loop above
3605 raise Program_Error;
3606 end Aggregate_Discriminant_Val;
3608 -- Start of processing for Build_Discriminant_Checks
3610 begin
3611 -- Loop through discriminants evolving the condition
3613 Cond := Empty;
3614 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3616 -- For a fully private type, use the discriminants of the parent type
3618 if Is_Private_Type (T_Typ)
3619 and then No (Full_View (T_Typ))
3620 then
3621 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3622 else
3623 Disc_Ent := First_Discriminant (T_Typ);
3624 end if;
3626 while Present (Disc) loop
3627 Dval := Node (Disc);
3629 if Nkind (Dval) = N_Identifier
3630 and then Ekind (Entity (Dval)) = E_Discriminant
3631 then
3632 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3633 else
3634 Dval := Duplicate_Subexpr_No_Checks (Dval);
3635 end if;
3637 -- If we have an Unchecked_Union node, we can infer the discriminants
3638 -- of the node.
3640 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3641 Dref := New_Copy (
3642 Get_Discriminant_Value (
3643 First_Discriminant (T_Typ),
3644 T_Typ,
3645 Stored_Constraint (T_Typ)));
3647 elsif Nkind (N) = N_Aggregate then
3648 Dref :=
3649 Duplicate_Subexpr_No_Checks
3650 (Aggregate_Discriminant_Val (Disc_Ent));
3652 else
3653 Dref :=
3654 Make_Selected_Component (Loc,
3655 Prefix =>
3656 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
3657 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
3659 Set_Is_In_Discriminant_Check (Dref);
3660 end if;
3662 Evolve_Or_Else (Cond,
3663 Make_Op_Ne (Loc,
3664 Left_Opnd => Dref,
3665 Right_Opnd => Dval));
3667 Next_Elmt (Disc);
3668 Next_Discriminant (Disc_Ent);
3669 end loop;
3671 return Cond;
3672 end Build_Discriminant_Checks;
3674 ------------------
3675 -- Check_Needed --
3676 ------------------
3678 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3679 N : Node_Id;
3680 P : Node_Id;
3681 K : Node_Kind;
3682 L : Node_Id;
3683 R : Node_Id;
3685 function Left_Expression (Op : Node_Id) return Node_Id;
3686 -- Return the relevant expression from the left operand of the given
3687 -- short circuit form: this is LO itself, except if LO is a qualified
3688 -- expression, a type conversion, or an expression with actions, in
3689 -- which case this is Left_Expression (Expression (LO)).
3691 ---------------------
3692 -- Left_Expression --
3693 ---------------------
3695 function Left_Expression (Op : Node_Id) return Node_Id is
3696 LE : Node_Id := Left_Opnd (Op);
3697 begin
3698 while Nkind_In (LE, N_Qualified_Expression,
3699 N_Type_Conversion,
3700 N_Expression_With_Actions)
3701 loop
3702 LE := Expression (LE);
3703 end loop;
3705 return LE;
3706 end Left_Expression;
3708 -- Start of processing for Check_Needed
3710 begin
3711 -- Always check if not simple entity
3713 if Nkind (Nod) not in N_Has_Entity
3714 or else not Comes_From_Source (Nod)
3715 then
3716 return True;
3717 end if;
3719 -- Look up tree for short circuit
3721 N := Nod;
3722 loop
3723 P := Parent (N);
3724 K := Nkind (P);
3726 -- Done if out of subexpression (note that we allow generated stuff
3727 -- such as itype declarations in this context, to keep the loop going
3728 -- since we may well have generated such stuff in complex situations.
3729 -- Also done if no parent (probably an error condition, but no point
3730 -- in behaving nasty if we find it).
3732 if No (P)
3733 or else (K not in N_Subexpr and then Comes_From_Source (P))
3734 then
3735 return True;
3737 -- Or/Or Else case, where test is part of the right operand, or is
3738 -- part of one of the actions associated with the right operand, and
3739 -- the left operand is an equality test.
3741 elsif K = N_Op_Or then
3742 exit when N = Right_Opnd (P)
3743 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3745 elsif K = N_Or_Else then
3746 exit when (N = Right_Opnd (P)
3747 or else
3748 (Is_List_Member (N)
3749 and then List_Containing (N) = Actions (P)))
3750 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3752 -- Similar test for the And/And then case, where the left operand
3753 -- is an inequality test.
3755 elsif K = N_Op_And then
3756 exit when N = Right_Opnd (P)
3757 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3759 elsif K = N_And_Then then
3760 exit when (N = Right_Opnd (P)
3761 or else
3762 (Is_List_Member (N)
3763 and then List_Containing (N) = Actions (P)))
3764 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3765 end if;
3767 N := P;
3768 end loop;
3770 -- If we fall through the loop, then we have a conditional with an
3771 -- appropriate test as its left operand, so look further.
3773 L := Left_Expression (P);
3775 -- L is an "=" or "/=" operator: extract its operands
3777 R := Right_Opnd (L);
3778 L := Left_Opnd (L);
3780 -- Left operand of test must match original variable
3782 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
3783 return True;
3784 end if;
3786 -- Right operand of test must be key value (zero or null)
3788 case Check is
3789 when Access_Check =>
3790 if not Known_Null (R) then
3791 return True;
3792 end if;
3794 when Division_Check =>
3795 if not Compile_Time_Known_Value (R)
3796 or else Expr_Value (R) /= Uint_0
3797 then
3798 return True;
3799 end if;
3801 when others =>
3802 raise Program_Error;
3803 end case;
3805 -- Here we have the optimizable case, warn if not short-circuited
3807 if K = N_Op_And or else K = N_Op_Or then
3808 Error_Msg_Warn := SPARK_Mode /= On;
3810 case Check is
3811 when Access_Check =>
3812 if GNATprove_Mode then
3813 Error_Msg_N
3814 ("Constraint_Error might have been raised (access check)",
3815 Parent (Nod));
3816 else
3817 Error_Msg_N
3818 ("Constraint_Error may be raised (access check)??",
3819 Parent (Nod));
3820 end if;
3822 when Division_Check =>
3823 if GNATprove_Mode then
3824 Error_Msg_N
3825 ("Constraint_Error might have been raised (zero divide)",
3826 Parent (Nod));
3827 else
3828 Error_Msg_N
3829 ("Constraint_Error may be raised (zero divide)??",
3830 Parent (Nod));
3831 end if;
3833 when others =>
3834 raise Program_Error;
3835 end case;
3837 if K = N_Op_And then
3838 Error_Msg_N -- CODEFIX
3839 ("use `AND THEN` instead of AND??", P);
3840 else
3841 Error_Msg_N -- CODEFIX
3842 ("use `OR ELSE` instead of OR??", P);
3843 end if;
3845 -- If not short-circuited, we need the check
3847 return True;
3849 -- If short-circuited, we can omit the check
3851 else
3852 return False;
3853 end if;
3854 end Check_Needed;
3856 -----------------------------------
3857 -- Check_Valid_Lvalue_Subscripts --
3858 -----------------------------------
3860 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
3861 begin
3862 -- Skip this if range checks are suppressed
3864 if Range_Checks_Suppressed (Etype (Expr)) then
3865 return;
3867 -- Only do this check for expressions that come from source. We assume
3868 -- that expander generated assignments explicitly include any necessary
3869 -- checks. Note that this is not just an optimization, it avoids
3870 -- infinite recursions.
3872 elsif not Comes_From_Source (Expr) then
3873 return;
3875 -- For a selected component, check the prefix
3877 elsif Nkind (Expr) = N_Selected_Component then
3878 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3879 return;
3881 -- Case of indexed component
3883 elsif Nkind (Expr) = N_Indexed_Component then
3884 Apply_Subscript_Validity_Checks (Expr);
3886 -- Prefix may itself be or contain an indexed component, and these
3887 -- subscripts need checking as well.
3889 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3890 end if;
3891 end Check_Valid_Lvalue_Subscripts;
3893 ----------------------------------
3894 -- Null_Exclusion_Static_Checks --
3895 ----------------------------------
3897 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
3898 Error_Node : Node_Id;
3899 Expr : Node_Id;
3900 Has_Null : constant Boolean := Has_Null_Exclusion (N);
3901 K : constant Node_Kind := Nkind (N);
3902 Typ : Entity_Id;
3904 begin
3905 pragma Assert
3906 (Nkind_In (K, N_Component_Declaration,
3907 N_Discriminant_Specification,
3908 N_Function_Specification,
3909 N_Object_Declaration,
3910 N_Parameter_Specification));
3912 if K = N_Function_Specification then
3913 Typ := Etype (Defining_Entity (N));
3914 else
3915 Typ := Etype (Defining_Identifier (N));
3916 end if;
3918 case K is
3919 when N_Component_Declaration =>
3920 if Present (Access_Definition (Component_Definition (N))) then
3921 Error_Node := Component_Definition (N);
3922 else
3923 Error_Node := Subtype_Indication (Component_Definition (N));
3924 end if;
3926 when N_Discriminant_Specification =>
3927 Error_Node := Discriminant_Type (N);
3929 when N_Function_Specification =>
3930 Error_Node := Result_Definition (N);
3932 when N_Object_Declaration =>
3933 Error_Node := Object_Definition (N);
3935 when N_Parameter_Specification =>
3936 Error_Node := Parameter_Type (N);
3938 when others =>
3939 raise Program_Error;
3940 end case;
3942 if Has_Null then
3944 -- Enforce legality rule 3.10 (13): A null exclusion can only be
3945 -- applied to an access [sub]type.
3947 if not Is_Access_Type (Typ) then
3948 Error_Msg_N
3949 ("`NOT NULL` allowed only for an access type", Error_Node);
3951 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
3952 -- be applied to a [sub]type that does not exclude null already.
3954 elsif Can_Never_Be_Null (Typ)
3955 and then Comes_From_Source (Typ)
3956 then
3957 Error_Msg_NE
3958 ("`NOT NULL` not allowed (& already excludes null)",
3959 Error_Node, Typ);
3960 end if;
3961 end if;
3963 -- Check that null-excluding objects are always initialized, except for
3964 -- deferred constants, for which the expression will appear in the full
3965 -- declaration.
3967 if K = N_Object_Declaration
3968 and then No (Expression (N))
3969 and then not Constant_Present (N)
3970 and then not No_Initialization (N)
3971 then
3972 -- Add an expression that assigns null. This node is needed by
3973 -- Apply_Compile_Time_Constraint_Error, which will replace this with
3974 -- a Constraint_Error node.
3976 Set_Expression (N, Make_Null (Sloc (N)));
3977 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
3979 Apply_Compile_Time_Constraint_Error
3980 (N => Expression (N),
3981 Msg =>
3982 "(Ada 2005) null-excluding objects must be initialized??",
3983 Reason => CE_Null_Not_Allowed);
3984 end if;
3986 -- Check that a null-excluding component, formal or object is not being
3987 -- assigned a null value. Otherwise generate a warning message and
3988 -- replace Expression (N) by an N_Constraint_Error node.
3990 if K /= N_Function_Specification then
3991 Expr := Expression (N);
3993 if Present (Expr) and then Known_Null (Expr) then
3994 case K is
3995 when N_Component_Declaration |
3996 N_Discriminant_Specification =>
3997 Apply_Compile_Time_Constraint_Error
3998 (N => Expr,
3999 Msg => "(Ada 2005) null not allowed "
4000 & "in null-excluding components??",
4001 Reason => CE_Null_Not_Allowed);
4003 when N_Object_Declaration =>
4004 Apply_Compile_Time_Constraint_Error
4005 (N => Expr,
4006 Msg => "(Ada 2005) null not allowed "
4007 & "in null-excluding objects??",
4008 Reason => CE_Null_Not_Allowed);
4010 when N_Parameter_Specification =>
4011 Apply_Compile_Time_Constraint_Error
4012 (N => Expr,
4013 Msg => "(Ada 2005) null not allowed "
4014 & "in null-excluding formals??",
4015 Reason => CE_Null_Not_Allowed);
4017 when others =>
4018 null;
4019 end case;
4020 end if;
4021 end if;
4022 end Null_Exclusion_Static_Checks;
4024 ----------------------------------
4025 -- Conditional_Statements_Begin --
4026 ----------------------------------
4028 procedure Conditional_Statements_Begin is
4029 begin
4030 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4032 -- If stack overflows, kill all checks, that way we know to simply reset
4033 -- the number of saved checks to zero on return. This should never occur
4034 -- in practice.
4036 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4037 Kill_All_Checks;
4039 -- In the normal case, we just make a new stack entry saving the current
4040 -- number of saved checks for a later restore.
4042 else
4043 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4045 if Debug_Flag_CC then
4046 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4047 Num_Saved_Checks);
4048 end if;
4049 end if;
4050 end Conditional_Statements_Begin;
4052 --------------------------------
4053 -- Conditional_Statements_End --
4054 --------------------------------
4056 procedure Conditional_Statements_End is
4057 begin
4058 pragma Assert (Saved_Checks_TOS > 0);
4060 -- If the saved checks stack overflowed, then we killed all checks, so
4061 -- setting the number of saved checks back to zero is correct. This
4062 -- should never occur in practice.
4064 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4065 Num_Saved_Checks := 0;
4067 -- In the normal case, restore the number of saved checks from the top
4068 -- stack entry.
4070 else
4071 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
4073 if Debug_Flag_CC then
4074 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4075 Num_Saved_Checks);
4076 end if;
4077 end if;
4079 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4080 end Conditional_Statements_End;
4082 -------------------------
4083 -- Convert_From_Bignum --
4084 -------------------------
4086 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4087 Loc : constant Source_Ptr := Sloc (N);
4089 begin
4090 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4092 -- Construct call From Bignum
4094 return
4095 Make_Function_Call (Loc,
4096 Name =>
4097 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4098 Parameter_Associations => New_List (Relocate_Node (N)));
4099 end Convert_From_Bignum;
4101 -----------------------
4102 -- Convert_To_Bignum --
4103 -----------------------
4105 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4106 Loc : constant Source_Ptr := Sloc (N);
4108 begin
4109 -- Nothing to do if Bignum already except call Relocate_Node
4111 if Is_RTE (Etype (N), RE_Bignum) then
4112 return Relocate_Node (N);
4114 -- Otherwise construct call to To_Bignum, converting the operand to the
4115 -- required Long_Long_Integer form.
4117 else
4118 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4119 return
4120 Make_Function_Call (Loc,
4121 Name =>
4122 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4123 Parameter_Associations => New_List (
4124 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4125 end if;
4126 end Convert_To_Bignum;
4128 ---------------------
4129 -- Determine_Range --
4130 ---------------------
4132 Cache_Size : constant := 2 ** 10;
4133 type Cache_Index is range 0 .. Cache_Size - 1;
4134 -- Determine size of below cache (power of 2 is more efficient)
4136 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4137 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4138 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4139 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4140 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4141 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
4142 -- The above arrays are used to implement a small direct cache for
4143 -- Determine_Range and Determine_Range_R calls. Because of the way these
4144 -- subprograms recursively traces subexpressions, and because overflow
4145 -- checking calls the routine on the way up the tree, a quadratic behavior
4146 -- can otherwise be encountered in large expressions. The cache entry for
4147 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4148 -- by checking the actual node value stored there. The Range_Cache_V array
4149 -- records the setting of Assume_Valid for the cache entry.
4151 procedure Determine_Range
4152 (N : Node_Id;
4153 OK : out Boolean;
4154 Lo : out Uint;
4155 Hi : out Uint;
4156 Assume_Valid : Boolean := False)
4158 Typ : Entity_Id := Etype (N);
4159 -- Type to use, may get reset to base type for possibly invalid entity
4161 Lo_Left : Uint;
4162 Hi_Left : Uint;
4163 -- Lo and Hi bounds of left operand
4165 Lo_Right : Uint;
4166 Hi_Right : Uint;
4167 -- Lo and Hi bounds of right (or only) operand
4169 Bound : Node_Id;
4170 -- Temp variable used to hold a bound node
4172 Hbound : Uint;
4173 -- High bound of base type of expression
4175 Lor : Uint;
4176 Hir : Uint;
4177 -- Refined values for low and high bounds, after tightening
4179 OK1 : Boolean;
4180 -- Used in lower level calls to indicate if call succeeded
4182 Cindex : Cache_Index;
4183 -- Used to search cache
4185 Btyp : Entity_Id;
4186 -- Base type
4188 function OK_Operands return Boolean;
4189 -- Used for binary operators. Determines the ranges of the left and
4190 -- right operands, and if they are both OK, returns True, and puts
4191 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4193 -----------------
4194 -- OK_Operands --
4195 -----------------
4197 function OK_Operands return Boolean is
4198 begin
4199 Determine_Range
4200 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4202 if not OK1 then
4203 return False;
4204 end if;
4206 Determine_Range
4207 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4208 return OK1;
4209 end OK_Operands;
4211 -- Start of processing for Determine_Range
4213 begin
4214 -- Prevent junk warnings by initializing range variables
4216 Lo := No_Uint;
4217 Hi := No_Uint;
4218 Lor := No_Uint;
4219 Hir := No_Uint;
4221 -- For temporary constants internally generated to remove side effects
4222 -- we must use the corresponding expression to determine the range of
4223 -- the expression. But note that the expander can also generate
4224 -- constants in other cases, including deferred constants.
4226 if Is_Entity_Name (N)
4227 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4228 and then Ekind (Entity (N)) = E_Constant
4229 and then Is_Internal_Name (Chars (Entity (N)))
4230 then
4231 if Present (Expression (Parent (Entity (N)))) then
4232 Determine_Range
4233 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4235 elsif Present (Full_View (Entity (N))) then
4236 Determine_Range
4237 (Expression (Parent (Full_View (Entity (N)))),
4238 OK, Lo, Hi, Assume_Valid);
4240 else
4241 OK := False;
4242 end if;
4243 return;
4244 end if;
4246 -- If type is not defined, we can't determine its range
4248 if No (Typ)
4250 -- We don't deal with anything except discrete types
4252 or else not Is_Discrete_Type (Typ)
4254 -- Ignore type for which an error has been posted, since range in
4255 -- this case may well be a bogosity deriving from the error. Also
4256 -- ignore if error posted on the reference node.
4258 or else Error_Posted (N) or else Error_Posted (Typ)
4259 then
4260 OK := False;
4261 return;
4262 end if;
4264 -- For all other cases, we can determine the range
4266 OK := True;
4268 -- If value is compile time known, then the possible range is the one
4269 -- value that we know this expression definitely has.
4271 if Compile_Time_Known_Value (N) then
4272 Lo := Expr_Value (N);
4273 Hi := Lo;
4274 return;
4275 end if;
4277 -- Return if already in the cache
4279 Cindex := Cache_Index (N mod Cache_Size);
4281 if Determine_Range_Cache_N (Cindex) = N
4282 and then
4283 Determine_Range_Cache_V (Cindex) = Assume_Valid
4284 then
4285 Lo := Determine_Range_Cache_Lo (Cindex);
4286 Hi := Determine_Range_Cache_Hi (Cindex);
4287 return;
4288 end if;
4290 -- Otherwise, start by finding the bounds of the type of the expression,
4291 -- the value cannot be outside this range (if it is, then we have an
4292 -- overflow situation, which is a separate check, we are talking here
4293 -- only about the expression value).
4295 -- First a check, never try to find the bounds of a generic type, since
4296 -- these bounds are always junk values, and it is only valid to look at
4297 -- the bounds in an instance.
4299 if Is_Generic_Type (Typ) then
4300 OK := False;
4301 return;
4302 end if;
4304 -- First step, change to use base type unless we know the value is valid
4306 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4307 or else Assume_No_Invalid_Values
4308 or else Assume_Valid
4309 then
4310 null;
4311 else
4312 Typ := Underlying_Type (Base_Type (Typ));
4313 end if;
4315 -- Retrieve the base type. Handle the case where the base type is a
4316 -- private enumeration type.
4318 Btyp := Base_Type (Typ);
4320 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4321 Btyp := Full_View (Btyp);
4322 end if;
4324 -- We use the actual bound unless it is dynamic, in which case use the
4325 -- corresponding base type bound if possible. If we can't get a bound
4326 -- then we figure we can't determine the range (a peculiar case, that
4327 -- perhaps cannot happen, but there is no point in bombing in this
4328 -- optimization circuit.
4330 -- First the low bound
4332 Bound := Type_Low_Bound (Typ);
4334 if Compile_Time_Known_Value (Bound) then
4335 Lo := Expr_Value (Bound);
4337 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4338 Lo := Expr_Value (Type_Low_Bound (Btyp));
4340 else
4341 OK := False;
4342 return;
4343 end if;
4345 -- Now the high bound
4347 Bound := Type_High_Bound (Typ);
4349 -- We need the high bound of the base type later on, and this should
4350 -- always be compile time known. Again, it is not clear that this
4351 -- can ever be false, but no point in bombing.
4353 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4354 Hbound := Expr_Value (Type_High_Bound (Btyp));
4355 Hi := Hbound;
4357 else
4358 OK := False;
4359 return;
4360 end if;
4362 -- If we have a static subtype, then that may have a tighter bound so
4363 -- use the upper bound of the subtype instead in this case.
4365 if Compile_Time_Known_Value (Bound) then
4366 Hi := Expr_Value (Bound);
4367 end if;
4369 -- We may be able to refine this value in certain situations. If any
4370 -- refinement is possible, then Lor and Hir are set to possibly tighter
4371 -- bounds, and OK1 is set to True.
4373 case Nkind (N) is
4375 -- For unary plus, result is limited by range of operand
4377 when N_Op_Plus =>
4378 Determine_Range
4379 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4381 -- For unary minus, determine range of operand, and negate it
4383 when N_Op_Minus =>
4384 Determine_Range
4385 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4387 if OK1 then
4388 Lor := -Hi_Right;
4389 Hir := -Lo_Right;
4390 end if;
4392 -- For binary addition, get range of each operand and do the
4393 -- addition to get the result range.
4395 when N_Op_Add =>
4396 if OK_Operands then
4397 Lor := Lo_Left + Lo_Right;
4398 Hir := Hi_Left + Hi_Right;
4399 end if;
4401 -- Division is tricky. The only case we consider is where the right
4402 -- operand is a positive constant, and in this case we simply divide
4403 -- the bounds of the left operand
4405 when N_Op_Divide =>
4406 if OK_Operands then
4407 if Lo_Right = Hi_Right
4408 and then Lo_Right > 0
4409 then
4410 Lor := Lo_Left / Lo_Right;
4411 Hir := Hi_Left / Lo_Right;
4412 else
4413 OK1 := False;
4414 end if;
4415 end if;
4417 -- For binary subtraction, get range of each operand and do the worst
4418 -- case subtraction to get the result range.
4420 when N_Op_Subtract =>
4421 if OK_Operands then
4422 Lor := Lo_Left - Hi_Right;
4423 Hir := Hi_Left - Lo_Right;
4424 end if;
4426 -- For MOD, if right operand is a positive constant, then result must
4427 -- be in the allowable range of mod results.
4429 when N_Op_Mod =>
4430 if OK_Operands then
4431 if Lo_Right = Hi_Right
4432 and then Lo_Right /= 0
4433 then
4434 if Lo_Right > 0 then
4435 Lor := Uint_0;
4436 Hir := Lo_Right - 1;
4438 else -- Lo_Right < 0
4439 Lor := Lo_Right + 1;
4440 Hir := Uint_0;
4441 end if;
4443 else
4444 OK1 := False;
4445 end if;
4446 end if;
4448 -- For REM, if right operand is a positive constant, then result must
4449 -- be in the allowable range of mod results.
4451 when N_Op_Rem =>
4452 if OK_Operands then
4453 if Lo_Right = Hi_Right
4454 and then Lo_Right /= 0
4455 then
4456 declare
4457 Dval : constant Uint := (abs Lo_Right) - 1;
4459 begin
4460 -- The sign of the result depends on the sign of the
4461 -- dividend (but not on the sign of the divisor, hence
4462 -- the abs operation above).
4464 if Lo_Left < 0 then
4465 Lor := -Dval;
4466 else
4467 Lor := Uint_0;
4468 end if;
4470 if Hi_Left < 0 then
4471 Hir := Uint_0;
4472 else
4473 Hir := Dval;
4474 end if;
4475 end;
4477 else
4478 OK1 := False;
4479 end if;
4480 end if;
4482 -- Attribute reference cases
4484 when N_Attribute_Reference =>
4485 case Attribute_Name (N) is
4487 -- For Pos/Val attributes, we can refine the range using the
4488 -- possible range of values of the attribute expression.
4490 when Name_Pos | Name_Val =>
4491 Determine_Range
4492 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
4494 -- For Length attribute, use the bounds of the corresponding
4495 -- index type to refine the range.
4497 when Name_Length =>
4498 declare
4499 Atyp : Entity_Id := Etype (Prefix (N));
4500 Inum : Nat;
4501 Indx : Node_Id;
4503 LL, LU : Uint;
4504 UL, UU : Uint;
4506 begin
4507 if Is_Access_Type (Atyp) then
4508 Atyp := Designated_Type (Atyp);
4509 end if;
4511 -- For string literal, we know exact value
4513 if Ekind (Atyp) = E_String_Literal_Subtype then
4514 OK := True;
4515 Lo := String_Literal_Length (Atyp);
4516 Hi := String_Literal_Length (Atyp);
4517 return;
4518 end if;
4520 -- Otherwise check for expression given
4522 if No (Expressions (N)) then
4523 Inum := 1;
4524 else
4525 Inum :=
4526 UI_To_Int (Expr_Value (First (Expressions (N))));
4527 end if;
4529 Indx := First_Index (Atyp);
4530 for J in 2 .. Inum loop
4531 Indx := Next_Index (Indx);
4532 end loop;
4534 -- If the index type is a formal type or derived from
4535 -- one, the bounds are not static.
4537 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4538 OK := False;
4539 return;
4540 end if;
4542 Determine_Range
4543 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4544 Assume_Valid);
4546 if OK1 then
4547 Determine_Range
4548 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4549 Assume_Valid);
4551 if OK1 then
4553 -- The maximum value for Length is the biggest
4554 -- possible gap between the values of the bounds.
4555 -- But of course, this value cannot be negative.
4557 Hir := UI_Max (Uint_0, UU - LL + 1);
4559 -- For constrained arrays, the minimum value for
4560 -- Length is taken from the actual value of the
4561 -- bounds, since the index will be exactly of this
4562 -- subtype.
4564 if Is_Constrained (Atyp) then
4565 Lor := UI_Max (Uint_0, UL - LU + 1);
4567 -- For an unconstrained array, the minimum value
4568 -- for length is always zero.
4570 else
4571 Lor := Uint_0;
4572 end if;
4573 end if;
4574 end if;
4575 end;
4577 -- No special handling for other attributes
4578 -- Probably more opportunities exist here???
4580 when others =>
4581 OK1 := False;
4583 end case;
4585 -- For type conversion from one discrete type to another, we can
4586 -- refine the range using the converted value.
4588 when N_Type_Conversion =>
4589 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4591 -- Nothing special to do for all other expression kinds
4593 when others =>
4594 OK1 := False;
4595 Lor := No_Uint;
4596 Hir := No_Uint;
4597 end case;
4599 -- At this stage, if OK1 is true, then we know that the actual result of
4600 -- the computed expression is in the range Lor .. Hir. We can use this
4601 -- to restrict the possible range of results.
4603 if OK1 then
4605 -- If the refined value of the low bound is greater than the type
4606 -- low bound, then reset it to the more restrictive value. However,
4607 -- we do NOT do this for the case of a modular type where the
4608 -- possible upper bound on the value is above the base type high
4609 -- bound, because that means the result could wrap.
4611 if Lor > Lo
4612 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
4613 then
4614 Lo := Lor;
4615 end if;
4617 -- Similarly, if the refined value of the high bound is less than the
4618 -- value so far, then reset it to the more restrictive value. Again,
4619 -- we do not do this if the refined low bound is negative for a
4620 -- modular type, since this would wrap.
4622 if Hir < Hi
4623 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
4624 then
4625 Hi := Hir;
4626 end if;
4627 end if;
4629 -- Set cache entry for future call and we are all done
4631 Determine_Range_Cache_N (Cindex) := N;
4632 Determine_Range_Cache_V (Cindex) := Assume_Valid;
4633 Determine_Range_Cache_Lo (Cindex) := Lo;
4634 Determine_Range_Cache_Hi (Cindex) := Hi;
4635 return;
4637 -- If any exception occurs, it means that we have some bug in the compiler,
4638 -- possibly triggered by a previous error, or by some unforeseen peculiar
4639 -- occurrence. However, this is only an optimization attempt, so there is
4640 -- really no point in crashing the compiler. Instead we just decide, too
4641 -- bad, we can't figure out a range in this case after all.
4643 exception
4644 when others =>
4646 -- Debug flag K disables this behavior (useful for debugging)
4648 if Debug_Flag_K then
4649 raise;
4650 else
4651 OK := False;
4652 Lo := No_Uint;
4653 Hi := No_Uint;
4654 return;
4655 end if;
4656 end Determine_Range;
4658 -----------------------
4659 -- Determine_Range_R --
4660 -----------------------
4662 procedure Determine_Range_R
4663 (N : Node_Id;
4664 OK : out Boolean;
4665 Lo : out Ureal;
4666 Hi : out Ureal;
4667 Assume_Valid : Boolean := False)
4669 Typ : Entity_Id := Etype (N);
4670 -- Type to use, may get reset to base type for possibly invalid entity
4672 Lo_Left : Ureal;
4673 Hi_Left : Ureal;
4674 -- Lo and Hi bounds of left operand
4676 Lo_Right : Ureal;
4677 Hi_Right : Ureal;
4678 -- Lo and Hi bounds of right (or only) operand
4680 Bound : Node_Id;
4681 -- Temp variable used to hold a bound node
4683 Hbound : Ureal;
4684 -- High bound of base type of expression
4686 Lor : Ureal;
4687 Hir : Ureal;
4688 -- Refined values for low and high bounds, after tightening
4690 OK1 : Boolean;
4691 -- Used in lower level calls to indicate if call succeeded
4693 Cindex : Cache_Index;
4694 -- Used to search cache
4696 Btyp : Entity_Id;
4697 -- Base type
4699 function OK_Operands return Boolean;
4700 -- Used for binary operators. Determines the ranges of the left and
4701 -- right operands, and if they are both OK, returns True, and puts
4702 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4704 function Round_Machine (B : Ureal) return Ureal;
4705 -- B is a real bound. Round it using mode Round_Even.
4707 -----------------
4708 -- OK_Operands --
4709 -----------------
4711 function OK_Operands return Boolean is
4712 begin
4713 Determine_Range_R
4714 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4716 if not OK1 then
4717 return False;
4718 end if;
4720 Determine_Range_R
4721 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4722 return OK1;
4723 end OK_Operands;
4725 -------------------
4726 -- Round_Machine --
4727 -------------------
4729 function Round_Machine (B : Ureal) return Ureal is
4730 begin
4731 return Machine (Typ, B, Round_Even, N);
4732 end Round_Machine;
4734 -- Start of processing for Determine_Range_R
4736 begin
4737 -- Prevent junk warnings by initializing range variables
4739 Lo := No_Ureal;
4740 Hi := No_Ureal;
4741 Lor := No_Ureal;
4742 Hir := No_Ureal;
4744 -- For temporary constants internally generated to remove side effects
4745 -- we must use the corresponding expression to determine the range of
4746 -- the expression. But note that the expander can also generate
4747 -- constants in other cases, including deferred constants.
4749 if Is_Entity_Name (N)
4750 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4751 and then Ekind (Entity (N)) = E_Constant
4752 and then Is_Internal_Name (Chars (Entity (N)))
4753 then
4754 if Present (Expression (Parent (Entity (N)))) then
4755 Determine_Range_R
4756 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4758 elsif Present (Full_View (Entity (N))) then
4759 Determine_Range_R
4760 (Expression (Parent (Full_View (Entity (N)))),
4761 OK, Lo, Hi, Assume_Valid);
4763 else
4764 OK := False;
4765 end if;
4767 return;
4768 end if;
4770 -- If type is not defined, we can't determine its range
4772 if No (Typ)
4774 -- We don't deal with anything except IEEE floating-point types
4776 or else not Is_Floating_Point_Type (Typ)
4777 or else Float_Rep (Typ) /= IEEE_Binary
4779 -- Ignore type for which an error has been posted, since range in
4780 -- this case may well be a bogosity deriving from the error. Also
4781 -- ignore if error posted on the reference node.
4783 or else Error_Posted (N) or else Error_Posted (Typ)
4784 then
4785 OK := False;
4786 return;
4787 end if;
4789 -- For all other cases, we can determine the range
4791 OK := True;
4793 -- If value is compile time known, then the possible range is the one
4794 -- value that we know this expression definitely has.
4796 if Compile_Time_Known_Value (N) then
4797 Lo := Expr_Value_R (N);
4798 Hi := Lo;
4799 return;
4800 end if;
4802 -- Return if already in the cache
4804 Cindex := Cache_Index (N mod Cache_Size);
4806 if Determine_Range_Cache_N (Cindex) = N
4807 and then
4808 Determine_Range_Cache_V (Cindex) = Assume_Valid
4809 then
4810 Lo := Determine_Range_Cache_Lo_R (Cindex);
4811 Hi := Determine_Range_Cache_Hi_R (Cindex);
4812 return;
4813 end if;
4815 -- Otherwise, start by finding the bounds of the type of the expression,
4816 -- the value cannot be outside this range (if it is, then we have an
4817 -- overflow situation, which is a separate check, we are talking here
4818 -- only about the expression value).
4820 -- First a check, never try to find the bounds of a generic type, since
4821 -- these bounds are always junk values, and it is only valid to look at
4822 -- the bounds in an instance.
4824 if Is_Generic_Type (Typ) then
4825 OK := False;
4826 return;
4827 end if;
4829 -- First step, change to use base type unless we know the value is valid
4831 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4832 or else Assume_No_Invalid_Values
4833 or else Assume_Valid
4834 then
4835 null;
4836 else
4837 Typ := Underlying_Type (Base_Type (Typ));
4838 end if;
4840 -- Retrieve the base type. Handle the case where the base type is a
4841 -- private type.
4843 Btyp := Base_Type (Typ);
4845 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4846 Btyp := Full_View (Btyp);
4847 end if;
4849 -- We use the actual bound unless it is dynamic, in which case use the
4850 -- corresponding base type bound if possible. If we can't get a bound
4851 -- then we figure we can't determine the range (a peculiar case, that
4852 -- perhaps cannot happen, but there is no point in bombing in this
4853 -- optimization circuit).
4855 -- First the low bound
4857 Bound := Type_Low_Bound (Typ);
4859 if Compile_Time_Known_Value (Bound) then
4860 Lo := Expr_Value_R (Bound);
4862 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4863 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
4865 else
4866 OK := False;
4867 return;
4868 end if;
4870 -- Now the high bound
4872 Bound := Type_High_Bound (Typ);
4874 -- We need the high bound of the base type later on, and this should
4875 -- always be compile time known. Again, it is not clear that this
4876 -- can ever be false, but no point in bombing.
4878 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4879 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
4880 Hi := Hbound;
4882 else
4883 OK := False;
4884 return;
4885 end if;
4887 -- If we have a static subtype, then that may have a tighter bound so
4888 -- use the upper bound of the subtype instead in this case.
4890 if Compile_Time_Known_Value (Bound) then
4891 Hi := Expr_Value_R (Bound);
4892 end if;
4894 -- We may be able to refine this value in certain situations. If any
4895 -- refinement is possible, then Lor and Hir are set to possibly tighter
4896 -- bounds, and OK1 is set to True.
4898 case Nkind (N) is
4900 -- For unary plus, result is limited by range of operand
4902 when N_Op_Plus =>
4903 Determine_Range_R
4904 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4906 -- For unary minus, determine range of operand, and negate it
4908 when N_Op_Minus =>
4909 Determine_Range_R
4910 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4912 if OK1 then
4913 Lor := -Hi_Right;
4914 Hir := -Lo_Right;
4915 end if;
4917 -- For binary addition, get range of each operand and do the
4918 -- addition to get the result range.
4920 when N_Op_Add =>
4921 if OK_Operands then
4922 Lor := Round_Machine (Lo_Left + Lo_Right);
4923 Hir := Round_Machine (Hi_Left + Hi_Right);
4924 end if;
4926 -- For binary subtraction, get range of each operand and do the worst
4927 -- case subtraction to get the result range.
4929 when N_Op_Subtract =>
4930 if OK_Operands then
4931 Lor := Round_Machine (Lo_Left - Hi_Right);
4932 Hir := Round_Machine (Hi_Left - Lo_Right);
4933 end if;
4935 -- For multiplication, get range of each operand and do the
4936 -- four multiplications to get the result range.
4938 when N_Op_Multiply =>
4939 if OK_Operands then
4940 declare
4941 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
4942 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
4943 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
4944 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
4945 begin
4946 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
4947 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
4948 end;
4949 end if;
4951 -- For division, consider separately the cases where the right
4952 -- operand is positive or negative. Otherwise, the right operand
4953 -- can be arbitrarily close to zero, so the result is likely to
4954 -- be unbounded in one direction, do not attempt to compute it.
4956 when N_Op_Divide =>
4957 if OK_Operands then
4959 -- Right operand is positive
4961 if Lo_Right > Ureal_0 then
4963 -- If the low bound of the left operand is negative, obtain
4964 -- the overall low bound by dividing it by the smallest
4965 -- value of the right operand, and otherwise by the largest
4966 -- value of the right operand.
4968 if Lo_Left < Ureal_0 then
4969 Lor := Round_Machine (Lo_Left / Lo_Right);
4970 else
4971 Lor := Round_Machine (Lo_Left / Hi_Right);
4972 end if;
4974 -- If the high bound of the left operand is negative, obtain
4975 -- the overall high bound by dividing it by the largest
4976 -- value of the right operand, and otherwise by the
4977 -- smallest value of the right operand.
4979 if Hi_Left < Ureal_0 then
4980 Hir := Round_Machine (Hi_Left / Hi_Right);
4981 else
4982 Hir := Round_Machine (Hi_Left / Lo_Right);
4983 end if;
4985 -- Right operand is negative
4987 elsif Hi_Right < Ureal_0 then
4989 -- If the low bound of the left operand is negative, obtain
4990 -- the overall low bound by dividing it by the largest
4991 -- value of the right operand, and otherwise by the smallest
4992 -- value of the right operand.
4994 if Lo_Left < Ureal_0 then
4995 Lor := Round_Machine (Lo_Left / Hi_Right);
4996 else
4997 Lor := Round_Machine (Lo_Left / Lo_Right);
4998 end if;
5000 -- If the high bound of the left operand is negative, obtain
5001 -- the overall high bound by dividing it by the smallest
5002 -- value of the right operand, and otherwise by the
5003 -- largest value of the right operand.
5005 if Hi_Left < Ureal_0 then
5006 Hir := Round_Machine (Hi_Left / Lo_Right);
5007 else
5008 Hir := Round_Machine (Hi_Left / Hi_Right);
5009 end if;
5011 else
5012 OK1 := False;
5013 end if;
5014 end if;
5016 -- For type conversion from one floating-point type to another, we
5017 -- can refine the range using the converted value.
5019 when N_Type_Conversion =>
5020 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5022 -- Nothing special to do for all other expression kinds
5024 when others =>
5025 OK1 := False;
5026 Lor := No_Ureal;
5027 Hir := No_Ureal;
5028 end case;
5030 -- At this stage, if OK1 is true, then we know that the actual result of
5031 -- the computed expression is in the range Lor .. Hir. We can use this
5032 -- to restrict the possible range of results.
5034 if OK1 then
5036 -- If the refined value of the low bound is greater than the type
5037 -- low bound, then reset it to the more restrictive value.
5039 if Lor > Lo then
5040 Lo := Lor;
5041 end if;
5043 -- Similarly, if the refined value of the high bound is less than the
5044 -- value so far, then reset it to the more restrictive value.
5046 if Hir < Hi then
5047 Hi := Hir;
5048 end if;
5049 end if;
5051 -- Set cache entry for future call and we are all done
5053 Determine_Range_Cache_N (Cindex) := N;
5054 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5055 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5056 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5057 return;
5059 -- If any exception occurs, it means that we have some bug in the compiler,
5060 -- possibly triggered by a previous error, or by some unforeseen peculiar
5061 -- occurrence. However, this is only an optimization attempt, so there is
5062 -- really no point in crashing the compiler. Instead we just decide, too
5063 -- bad, we can't figure out a range in this case after all.
5065 exception
5066 when others =>
5068 -- Debug flag K disables this behavior (useful for debugging)
5070 if Debug_Flag_K then
5071 raise;
5072 else
5073 OK := False;
5074 Lo := No_Ureal;
5075 Hi := No_Ureal;
5076 return;
5077 end if;
5078 end Determine_Range_R;
5080 ------------------------------------
5081 -- Discriminant_Checks_Suppressed --
5082 ------------------------------------
5084 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5085 begin
5086 if Present (E) then
5087 if Is_Unchecked_Union (E) then
5088 return True;
5089 elsif Checks_May_Be_Suppressed (E) then
5090 return Is_Check_Suppressed (E, Discriminant_Check);
5091 end if;
5092 end if;
5094 return Scope_Suppress.Suppress (Discriminant_Check);
5095 end Discriminant_Checks_Suppressed;
5097 --------------------------------
5098 -- Division_Checks_Suppressed --
5099 --------------------------------
5101 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5102 begin
5103 if Present (E) and then Checks_May_Be_Suppressed (E) then
5104 return Is_Check_Suppressed (E, Division_Check);
5105 else
5106 return Scope_Suppress.Suppress (Division_Check);
5107 end if;
5108 end Division_Checks_Suppressed;
5110 --------------------------------------
5111 -- Duplicated_Tag_Checks_Suppressed --
5112 --------------------------------------
5114 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5115 begin
5116 if Present (E) and then Checks_May_Be_Suppressed (E) then
5117 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5118 else
5119 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5120 end if;
5121 end Duplicated_Tag_Checks_Suppressed;
5123 -----------------------------------
5124 -- Elaboration_Checks_Suppressed --
5125 -----------------------------------
5127 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5128 begin
5129 -- The complication in this routine is that if we are in the dynamic
5130 -- model of elaboration, we also check All_Checks, since All_Checks
5131 -- does not set Elaboration_Check explicitly.
5133 if Present (E) then
5134 if Kill_Elaboration_Checks (E) then
5135 return True;
5137 elsif Checks_May_Be_Suppressed (E) then
5138 if Is_Check_Suppressed (E, Elaboration_Check) then
5139 return True;
5140 elsif Dynamic_Elaboration_Checks then
5141 return Is_Check_Suppressed (E, All_Checks);
5142 else
5143 return False;
5144 end if;
5145 end if;
5146 end if;
5148 if Scope_Suppress.Suppress (Elaboration_Check) then
5149 return True;
5150 elsif Dynamic_Elaboration_Checks then
5151 return Scope_Suppress.Suppress (All_Checks);
5152 else
5153 return False;
5154 end if;
5155 end Elaboration_Checks_Suppressed;
5157 ---------------------------
5158 -- Enable_Overflow_Check --
5159 ---------------------------
5161 procedure Enable_Overflow_Check (N : Node_Id) is
5162 Typ : constant Entity_Id := Base_Type (Etype (N));
5163 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
5164 Chk : Nat;
5165 OK : Boolean;
5166 Ent : Entity_Id;
5167 Ofs : Uint;
5168 Lo : Uint;
5169 Hi : Uint;
5171 Do_Ovflow_Check : Boolean;
5173 begin
5174 if Debug_Flag_CC then
5175 w ("Enable_Overflow_Check for node ", Int (N));
5176 Write_Str (" Source location = ");
5177 wl (Sloc (N));
5178 pg (Union_Id (N));
5179 end if;
5181 -- No check if overflow checks suppressed for type of node
5183 if Overflow_Checks_Suppressed (Etype (N)) then
5184 return;
5186 -- Nothing to do for unsigned integer types, which do not overflow
5188 elsif Is_Modular_Integer_Type (Typ) then
5189 return;
5190 end if;
5192 -- This is the point at which processing for STRICT mode diverges
5193 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5194 -- probably more extreme that it needs to be, but what is going on here
5195 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
5196 -- to leave the processing for STRICT mode untouched. There were
5197 -- two reasons for this. First it avoided any incompatible change of
5198 -- behavior. Second, it guaranteed that STRICT mode continued to be
5199 -- legacy reliable.
5201 -- The big difference is that in STRICT mode there is a fair amount of
5202 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5203 -- know that no check is needed. We skip all that in the two new modes,
5204 -- since really overflow checking happens over a whole subtree, and we
5205 -- do the corresponding optimizations later on when applying the checks.
5207 if Mode in Minimized_Or_Eliminated then
5208 if not (Overflow_Checks_Suppressed (Etype (N)))
5209 and then not (Is_Entity_Name (N)
5210 and then Overflow_Checks_Suppressed (Entity (N)))
5211 then
5212 Activate_Overflow_Check (N);
5213 end if;
5215 if Debug_Flag_CC then
5216 w ("Minimized/Eliminated mode");
5217 end if;
5219 return;
5220 end if;
5222 -- Remainder of processing is for STRICT case, and is unchanged from
5223 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
5225 -- Nothing to do if the range of the result is known OK. We skip this
5226 -- for conversions, since the caller already did the check, and in any
5227 -- case the condition for deleting the check for a type conversion is
5228 -- different.
5230 if Nkind (N) /= N_Type_Conversion then
5231 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
5233 -- Note in the test below that we assume that the range is not OK
5234 -- if a bound of the range is equal to that of the type. That's not
5235 -- quite accurate but we do this for the following reasons:
5237 -- a) The way that Determine_Range works, it will typically report
5238 -- the bounds of the value as being equal to the bounds of the
5239 -- type, because it either can't tell anything more precise, or
5240 -- does not think it is worth the effort to be more precise.
5242 -- b) It is very unusual to have a situation in which this would
5243 -- generate an unnecessary overflow check (an example would be
5244 -- a subtype with a range 0 .. Integer'Last - 1 to which the
5245 -- literal value one is added).
5247 -- c) The alternative is a lot of special casing in this routine
5248 -- which would partially duplicate Determine_Range processing.
5250 if OK then
5251 Do_Ovflow_Check := True;
5253 -- Note that the following checks are quite deliberately > and <
5254 -- rather than >= and <= as explained above.
5256 if Lo > Expr_Value (Type_Low_Bound (Typ))
5257 and then
5258 Hi < Expr_Value (Type_High_Bound (Typ))
5259 then
5260 Do_Ovflow_Check := False;
5262 -- Despite the comments above, it is worth dealing specially with
5263 -- division specially. The only case where integer division can
5264 -- overflow is (largest negative number) / (-1). So we will do
5265 -- an extra range analysis to see if this is possible.
5267 elsif Nkind (N) = N_Op_Divide then
5268 Determine_Range
5269 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5271 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5272 Do_Ovflow_Check := False;
5274 else
5275 Determine_Range
5276 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5278 if OK and then (Lo > Uint_Minus_1
5279 or else
5280 Hi < Uint_Minus_1)
5281 then
5282 Do_Ovflow_Check := False;
5283 end if;
5284 end if;
5285 end if;
5287 -- If no overflow check required, we are done
5289 if not Do_Ovflow_Check then
5290 if Debug_Flag_CC then
5291 w ("No overflow check required");
5292 end if;
5294 return;
5295 end if;
5296 end if;
5297 end if;
5299 -- If not in optimizing mode, set flag and we are done. We are also done
5300 -- (and just set the flag) if the type is not a discrete type, since it
5301 -- is not worth the effort to eliminate checks for other than discrete
5302 -- types. In addition, we take this same path if we have stored the
5303 -- maximum number of checks possible already (a very unlikely situation,
5304 -- but we do not want to blow up).
5306 if Optimization_Level = 0
5307 or else not Is_Discrete_Type (Etype (N))
5308 or else Num_Saved_Checks = Saved_Checks'Last
5309 then
5310 Activate_Overflow_Check (N);
5312 if Debug_Flag_CC then
5313 w ("Optimization off");
5314 end if;
5316 return;
5317 end if;
5319 -- Otherwise evaluate and check the expression
5321 Find_Check
5322 (Expr => N,
5323 Check_Type => 'O',
5324 Target_Type => Empty,
5325 Entry_OK => OK,
5326 Check_Num => Chk,
5327 Ent => Ent,
5328 Ofs => Ofs);
5330 if Debug_Flag_CC then
5331 w ("Called Find_Check");
5332 w (" OK = ", OK);
5334 if OK then
5335 w (" Check_Num = ", Chk);
5336 w (" Ent = ", Int (Ent));
5337 Write_Str (" Ofs = ");
5338 pid (Ofs);
5339 end if;
5340 end if;
5342 -- If check is not of form to optimize, then set flag and we are done
5344 if not OK then
5345 Activate_Overflow_Check (N);
5346 return;
5347 end if;
5349 -- If check is already performed, then return without setting flag
5351 if Chk /= 0 then
5352 if Debug_Flag_CC then
5353 w ("Check suppressed!");
5354 end if;
5356 return;
5357 end if;
5359 -- Here we will make a new entry for the new check
5361 Activate_Overflow_Check (N);
5362 Num_Saved_Checks := Num_Saved_Checks + 1;
5363 Saved_Checks (Num_Saved_Checks) :=
5364 (Killed => False,
5365 Entity => Ent,
5366 Offset => Ofs,
5367 Check_Type => 'O',
5368 Target_Type => Empty);
5370 if Debug_Flag_CC then
5371 w ("Make new entry, check number = ", Num_Saved_Checks);
5372 w (" Entity = ", Int (Ent));
5373 Write_Str (" Offset = ");
5374 pid (Ofs);
5375 w (" Check_Type = O");
5376 w (" Target_Type = Empty");
5377 end if;
5379 -- If we get an exception, then something went wrong, probably because of
5380 -- an error in the structure of the tree due to an incorrect program. Or
5381 -- it may be a bug in the optimization circuit. In either case the safest
5382 -- thing is simply to set the check flag unconditionally.
5384 exception
5385 when others =>
5386 Activate_Overflow_Check (N);
5388 if Debug_Flag_CC then
5389 w (" exception occurred, overflow flag set");
5390 end if;
5392 return;
5393 end Enable_Overflow_Check;
5395 ------------------------
5396 -- Enable_Range_Check --
5397 ------------------------
5399 procedure Enable_Range_Check (N : Node_Id) is
5400 Chk : Nat;
5401 OK : Boolean;
5402 Ent : Entity_Id;
5403 Ofs : Uint;
5404 Ttyp : Entity_Id;
5405 P : Node_Id;
5407 begin
5408 -- Return if unchecked type conversion with range check killed. In this
5409 -- case we never set the flag (that's what Kill_Range_Check is about).
5411 if Nkind (N) = N_Unchecked_Type_Conversion
5412 and then Kill_Range_Check (N)
5413 then
5414 return;
5415 end if;
5417 -- Do not set range check flag if parent is assignment statement or
5418 -- object declaration with Suppress_Assignment_Checks flag set
5420 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5421 and then Suppress_Assignment_Checks (Parent (N))
5422 then
5423 return;
5424 end if;
5426 -- Check for various cases where we should suppress the range check
5428 -- No check if range checks suppressed for type of node
5430 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
5431 return;
5433 -- No check if node is an entity name, and range checks are suppressed
5434 -- for this entity, or for the type of this entity.
5436 elsif Is_Entity_Name (N)
5437 and then (Range_Checks_Suppressed (Entity (N))
5438 or else Range_Checks_Suppressed (Etype (Entity (N))))
5439 then
5440 return;
5442 -- No checks if index of array, and index checks are suppressed for
5443 -- the array object or the type of the array.
5445 elsif Nkind (Parent (N)) = N_Indexed_Component then
5446 declare
5447 Pref : constant Node_Id := Prefix (Parent (N));
5448 begin
5449 if Is_Entity_Name (Pref)
5450 and then Index_Checks_Suppressed (Entity (Pref))
5451 then
5452 return;
5453 elsif Index_Checks_Suppressed (Etype (Pref)) then
5454 return;
5455 end if;
5456 end;
5457 end if;
5459 -- Debug trace output
5461 if Debug_Flag_CC then
5462 w ("Enable_Range_Check for node ", Int (N));
5463 Write_Str (" Source location = ");
5464 wl (Sloc (N));
5465 pg (Union_Id (N));
5466 end if;
5468 -- If not in optimizing mode, set flag and we are done. We are also done
5469 -- (and just set the flag) if the type is not a discrete type, since it
5470 -- is not worth the effort to eliminate checks for other than discrete
5471 -- types. In addition, we take this same path if we have stored the
5472 -- maximum number of checks possible already (a very unlikely situation,
5473 -- but we do not want to blow up).
5475 if Optimization_Level = 0
5476 or else No (Etype (N))
5477 or else not Is_Discrete_Type (Etype (N))
5478 or else Num_Saved_Checks = Saved_Checks'Last
5479 then
5480 Activate_Range_Check (N);
5482 if Debug_Flag_CC then
5483 w ("Optimization off");
5484 end if;
5486 return;
5487 end if;
5489 -- Otherwise find out the target type
5491 P := Parent (N);
5493 -- For assignment, use left side subtype
5495 if Nkind (P) = N_Assignment_Statement
5496 and then Expression (P) = N
5497 then
5498 Ttyp := Etype (Name (P));
5500 -- For indexed component, use subscript subtype
5502 elsif Nkind (P) = N_Indexed_Component then
5503 declare
5504 Atyp : Entity_Id;
5505 Indx : Node_Id;
5506 Subs : Node_Id;
5508 begin
5509 Atyp := Etype (Prefix (P));
5511 if Is_Access_Type (Atyp) then
5512 Atyp := Designated_Type (Atyp);
5514 -- If the prefix is an access to an unconstrained array,
5515 -- perform check unconditionally: it depends on the bounds of
5516 -- an object and we cannot currently recognize whether the test
5517 -- may be redundant.
5519 if not Is_Constrained (Atyp) then
5520 Activate_Range_Check (N);
5521 return;
5522 end if;
5524 -- Ditto if prefix is simply an unconstrained array. We used
5525 -- to think this case was OK, if the prefix was not an explicit
5526 -- dereference, but we have now seen a case where this is not
5527 -- true, so it is safer to just suppress the optimization in this
5528 -- case. The back end is getting better at eliminating redundant
5529 -- checks in any case, so the loss won't be important.
5531 elsif Is_Array_Type (Atyp)
5532 and then not Is_Constrained (Atyp)
5533 then
5534 Activate_Range_Check (N);
5535 return;
5536 end if;
5538 Indx := First_Index (Atyp);
5539 Subs := First (Expressions (P));
5540 loop
5541 if Subs = N then
5542 Ttyp := Etype (Indx);
5543 exit;
5544 end if;
5546 Next_Index (Indx);
5547 Next (Subs);
5548 end loop;
5549 end;
5551 -- For now, ignore all other cases, they are not so interesting
5553 else
5554 if Debug_Flag_CC then
5555 w (" target type not found, flag set");
5556 end if;
5558 Activate_Range_Check (N);
5559 return;
5560 end if;
5562 -- Evaluate and check the expression
5564 Find_Check
5565 (Expr => N,
5566 Check_Type => 'R',
5567 Target_Type => Ttyp,
5568 Entry_OK => OK,
5569 Check_Num => Chk,
5570 Ent => Ent,
5571 Ofs => Ofs);
5573 if Debug_Flag_CC then
5574 w ("Called Find_Check");
5575 w ("Target_Typ = ", Int (Ttyp));
5576 w (" OK = ", OK);
5578 if OK then
5579 w (" Check_Num = ", Chk);
5580 w (" Ent = ", Int (Ent));
5581 Write_Str (" Ofs = ");
5582 pid (Ofs);
5583 end if;
5584 end if;
5586 -- If check is not of form to optimize, then set flag and we are done
5588 if not OK then
5589 if Debug_Flag_CC then
5590 w (" expression not of optimizable type, flag set");
5591 end if;
5593 Activate_Range_Check (N);
5594 return;
5595 end if;
5597 -- If check is already performed, then return without setting flag
5599 if Chk /= 0 then
5600 if Debug_Flag_CC then
5601 w ("Check suppressed!");
5602 end if;
5604 return;
5605 end if;
5607 -- Here we will make a new entry for the new check
5609 Activate_Range_Check (N);
5610 Num_Saved_Checks := Num_Saved_Checks + 1;
5611 Saved_Checks (Num_Saved_Checks) :=
5612 (Killed => False,
5613 Entity => Ent,
5614 Offset => Ofs,
5615 Check_Type => 'R',
5616 Target_Type => Ttyp);
5618 if Debug_Flag_CC then
5619 w ("Make new entry, check number = ", Num_Saved_Checks);
5620 w (" Entity = ", Int (Ent));
5621 Write_Str (" Offset = ");
5622 pid (Ofs);
5623 w (" Check_Type = R");
5624 w (" Target_Type = ", Int (Ttyp));
5625 pg (Union_Id (Ttyp));
5626 end if;
5628 -- If we get an exception, then something went wrong, probably because of
5629 -- an error in the structure of the tree due to an incorrect program. Or
5630 -- it may be a bug in the optimization circuit. In either case the safest
5631 -- thing is simply to set the check flag unconditionally.
5633 exception
5634 when others =>
5635 Activate_Range_Check (N);
5637 if Debug_Flag_CC then
5638 w (" exception occurred, range flag set");
5639 end if;
5641 return;
5642 end Enable_Range_Check;
5644 ------------------
5645 -- Ensure_Valid --
5646 ------------------
5648 procedure Ensure_Valid
5649 (Expr : Node_Id;
5650 Holes_OK : Boolean := False;
5651 Related_Id : Entity_Id := Empty;
5652 Is_Low_Bound : Boolean := False;
5653 Is_High_Bound : Boolean := False)
5655 Typ : constant Entity_Id := Etype (Expr);
5657 begin
5658 -- Ignore call if we are not doing any validity checking
5660 if not Validity_Checks_On then
5661 return;
5663 -- Ignore call if range or validity checks suppressed on entity or type
5665 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
5666 return;
5668 -- No check required if expression is from the expander, we assume the
5669 -- expander will generate whatever checks are needed. Note that this is
5670 -- not just an optimization, it avoids infinite recursions.
5672 -- Unchecked conversions must be checked, unless they are initialized
5673 -- scalar values, as in a component assignment in an init proc.
5675 -- In addition, we force a check if Force_Validity_Checks is set
5677 elsif not Comes_From_Source (Expr)
5678 and then not Force_Validity_Checks
5679 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
5680 or else Kill_Range_Check (Expr))
5681 then
5682 return;
5684 -- No check required if expression is known to have valid value
5686 elsif Expr_Known_Valid (Expr) then
5687 return;
5689 -- Ignore case of enumeration with holes where the flag is set not to
5690 -- worry about holes, since no special validity check is needed
5692 elsif Is_Enumeration_Type (Typ)
5693 and then Has_Non_Standard_Rep (Typ)
5694 and then Holes_OK
5695 then
5696 return;
5698 -- No check required on the left-hand side of an assignment
5700 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
5701 and then Expr = Name (Parent (Expr))
5702 then
5703 return;
5705 -- No check on a universal real constant. The context will eventually
5706 -- convert it to a machine number for some target type, or report an
5707 -- illegality.
5709 elsif Nkind (Expr) = N_Real_Literal
5710 and then Etype (Expr) = Universal_Real
5711 then
5712 return;
5714 -- If the expression denotes a component of a packed boolean array,
5715 -- no possible check applies. We ignore the old ACATS chestnuts that
5716 -- involve Boolean range True..True.
5718 -- Note: validity checks are generated for expressions that yield a
5719 -- scalar type, when it is possible to create a value that is outside of
5720 -- the type. If this is a one-bit boolean no such value exists. This is
5721 -- an optimization, and it also prevents compiler blowing up during the
5722 -- elaboration of improperly expanded packed array references.
5724 elsif Nkind (Expr) = N_Indexed_Component
5725 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
5726 and then Root_Type (Etype (Expr)) = Standard_Boolean
5727 then
5728 return;
5730 -- For an expression with actions, we want to insert the validity check
5731 -- on the final Expression.
5733 elsif Nkind (Expr) = N_Expression_With_Actions then
5734 Ensure_Valid (Expression (Expr));
5735 return;
5737 -- An annoying special case. If this is an out parameter of a scalar
5738 -- type, then the value is not going to be accessed, therefore it is
5739 -- inappropriate to do any validity check at the call site.
5741 else
5742 -- Only need to worry about scalar types
5744 if Is_Scalar_Type (Typ) then
5745 declare
5746 P : Node_Id;
5747 N : Node_Id;
5748 E : Entity_Id;
5749 F : Entity_Id;
5750 A : Node_Id;
5751 L : List_Id;
5753 begin
5754 -- Find actual argument (which may be a parameter association)
5755 -- and the parent of the actual argument (the call statement)
5757 N := Expr;
5758 P := Parent (Expr);
5760 if Nkind (P) = N_Parameter_Association then
5761 N := P;
5762 P := Parent (N);
5763 end if;
5765 -- Only need to worry if we are argument of a procedure call
5766 -- since functions don't have out parameters. If this is an
5767 -- indirect or dispatching call, get signature from the
5768 -- subprogram type.
5770 if Nkind (P) = N_Procedure_Call_Statement then
5771 L := Parameter_Associations (P);
5773 if Is_Entity_Name (Name (P)) then
5774 E := Entity (Name (P));
5775 else
5776 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
5777 E := Etype (Name (P));
5778 end if;
5780 -- Only need to worry if there are indeed actuals, and if
5781 -- this could be a procedure call, otherwise we cannot get a
5782 -- match (either we are not an argument, or the mode of the
5783 -- formal is not OUT). This test also filters out the
5784 -- generic case.
5786 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
5788 -- This is the loop through parameters, looking for an
5789 -- OUT parameter for which we are the argument.
5791 F := First_Formal (E);
5792 A := First (L);
5793 while Present (F) loop
5794 if Ekind (F) = E_Out_Parameter and then A = N then
5795 return;
5796 end if;
5798 Next_Formal (F);
5799 Next (A);
5800 end loop;
5801 end if;
5802 end if;
5803 end;
5804 end if;
5805 end if;
5807 -- If this is a boolean expression, only its elementary operands need
5808 -- checking: if they are valid, a boolean or short-circuit operation
5809 -- with them will be valid as well.
5811 if Base_Type (Typ) = Standard_Boolean
5812 and then
5813 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
5814 then
5815 return;
5816 end if;
5818 -- If we fall through, a validity check is required
5820 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
5822 if Is_Entity_Name (Expr)
5823 and then Safe_To_Capture_Value (Expr, Entity (Expr))
5824 then
5825 Set_Is_Known_Valid (Entity (Expr));
5826 end if;
5827 end Ensure_Valid;
5829 ----------------------
5830 -- Expr_Known_Valid --
5831 ----------------------
5833 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
5834 Typ : constant Entity_Id := Etype (Expr);
5836 begin
5837 -- Non-scalar types are always considered valid, since they never give
5838 -- rise to the issues of erroneous or bounded error behavior that are
5839 -- the concern. In formal reference manual terms the notion of validity
5840 -- only applies to scalar types. Note that even when packed arrays are
5841 -- represented using modular types, they are still arrays semantically,
5842 -- so they are also always valid (in particular, the unused bits can be
5843 -- random rubbish without affecting the validity of the array value).
5845 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
5846 return True;
5848 -- If no validity checking, then everything is considered valid
5850 elsif not Validity_Checks_On then
5851 return True;
5853 -- Floating-point types are considered valid unless floating-point
5854 -- validity checks have been specifically turned on.
5856 elsif Is_Floating_Point_Type (Typ)
5857 and then not Validity_Check_Floating_Point
5858 then
5859 return True;
5861 -- If the expression is the value of an object that is known to be
5862 -- valid, then clearly the expression value itself is valid.
5864 elsif Is_Entity_Name (Expr)
5865 and then Is_Known_Valid (Entity (Expr))
5867 -- Exclude volatile variables
5869 and then not Treat_As_Volatile (Entity (Expr))
5870 then
5871 return True;
5873 -- References to discriminants are always considered valid. The value
5874 -- of a discriminant gets checked when the object is built. Within the
5875 -- record, we consider it valid, and it is important to do so, since
5876 -- otherwise we can try to generate bogus validity checks which
5877 -- reference discriminants out of scope. Discriminants of concurrent
5878 -- types are excluded for the same reason.
5880 elsif Is_Entity_Name (Expr)
5881 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
5882 then
5883 return True;
5885 -- If the type is one for which all values are known valid, then we are
5886 -- sure that the value is valid except in the slightly odd case where
5887 -- the expression is a reference to a variable whose size has been
5888 -- explicitly set to a value greater than the object size.
5890 elsif Is_Known_Valid (Typ) then
5891 if Is_Entity_Name (Expr)
5892 and then Ekind (Entity (Expr)) = E_Variable
5893 and then Esize (Entity (Expr)) > Esize (Typ)
5894 then
5895 return False;
5896 else
5897 return True;
5898 end if;
5900 -- Integer and character literals always have valid values, where
5901 -- appropriate these will be range checked in any case.
5903 elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
5904 return True;
5906 -- Real literals are assumed to be valid in VM targets
5908 elsif VM_Target /= No_VM and then Nkind (Expr) = N_Real_Literal then
5909 return True;
5911 -- If we have a type conversion or a qualification of a known valid
5912 -- value, then the result will always be valid.
5914 elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
5915 return Expr_Known_Valid (Expression (Expr));
5917 -- Case of expression is a non-floating-point operator. In this case we
5918 -- can assume the result is valid the generated code for the operator
5919 -- will include whatever checks are needed (e.g. range checks) to ensure
5920 -- validity. This assumption does not hold for the floating-point case,
5921 -- since floating-point operators can generate Infinite or NaN results
5922 -- which are considered invalid.
5924 -- Historical note: in older versions, the exemption of floating-point
5925 -- types from this assumption was done only in cases where the parent
5926 -- was an assignment, function call or parameter association. Presumably
5927 -- the idea was that in other contexts, the result would be checked
5928 -- elsewhere, but this list of cases was missing tests (at least the
5929 -- N_Object_Declaration case, as shown by a reported missing validity
5930 -- check), and it is not clear why function calls but not procedure
5931 -- calls were tested for. It really seems more accurate and much
5932 -- safer to recognize that expressions which are the result of a
5933 -- floating-point operator can never be assumed to be valid.
5935 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
5936 return True;
5938 -- The result of a membership test is always valid, since it is true or
5939 -- false, there are no other possibilities.
5941 elsif Nkind (Expr) in N_Membership_Test then
5942 return True;
5944 -- For all other cases, we do not know the expression is valid
5946 else
5947 return False;
5948 end if;
5949 end Expr_Known_Valid;
5951 ----------------
5952 -- Find_Check --
5953 ----------------
5955 procedure Find_Check
5956 (Expr : Node_Id;
5957 Check_Type : Character;
5958 Target_Type : Entity_Id;
5959 Entry_OK : out Boolean;
5960 Check_Num : out Nat;
5961 Ent : out Entity_Id;
5962 Ofs : out Uint)
5964 function Within_Range_Of
5965 (Target_Type : Entity_Id;
5966 Check_Type : Entity_Id) return Boolean;
5967 -- Given a requirement for checking a range against Target_Type, and
5968 -- and a range Check_Type against which a check has already been made,
5969 -- determines if the check against check type is sufficient to ensure
5970 -- that no check against Target_Type is required.
5972 ---------------------
5973 -- Within_Range_Of --
5974 ---------------------
5976 function Within_Range_Of
5977 (Target_Type : Entity_Id;
5978 Check_Type : Entity_Id) return Boolean
5980 begin
5981 if Target_Type = Check_Type then
5982 return True;
5984 else
5985 declare
5986 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
5987 Thi : constant Node_Id := Type_High_Bound (Target_Type);
5988 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
5989 Chi : constant Node_Id := Type_High_Bound (Check_Type);
5991 begin
5992 if (Tlo = Clo
5993 or else (Compile_Time_Known_Value (Tlo)
5994 and then
5995 Compile_Time_Known_Value (Clo)
5996 and then
5997 Expr_Value (Clo) >= Expr_Value (Tlo)))
5998 and then
5999 (Thi = Chi
6000 or else (Compile_Time_Known_Value (Thi)
6001 and then
6002 Compile_Time_Known_Value (Chi)
6003 and then
6004 Expr_Value (Chi) <= Expr_Value (Clo)))
6005 then
6006 return True;
6007 else
6008 return False;
6009 end if;
6010 end;
6011 end if;
6012 end Within_Range_Of;
6014 -- Start of processing for Find_Check
6016 begin
6017 -- Establish default, in case no entry is found
6019 Check_Num := 0;
6021 -- Case of expression is simple entity reference
6023 if Is_Entity_Name (Expr) then
6024 Ent := Entity (Expr);
6025 Ofs := Uint_0;
6027 -- Case of expression is entity + known constant
6029 elsif Nkind (Expr) = N_Op_Add
6030 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6031 and then Is_Entity_Name (Left_Opnd (Expr))
6032 then
6033 Ent := Entity (Left_Opnd (Expr));
6034 Ofs := Expr_Value (Right_Opnd (Expr));
6036 -- Case of expression is entity - known constant
6038 elsif Nkind (Expr) = N_Op_Subtract
6039 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6040 and then Is_Entity_Name (Left_Opnd (Expr))
6041 then
6042 Ent := Entity (Left_Opnd (Expr));
6043 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6045 -- Any other expression is not of the right form
6047 else
6048 Ent := Empty;
6049 Ofs := Uint_0;
6050 Entry_OK := False;
6051 return;
6052 end if;
6054 -- Come here with expression of appropriate form, check if entity is an
6055 -- appropriate one for our purposes.
6057 if (Ekind (Ent) = E_Variable
6058 or else Is_Constant_Object (Ent))
6059 and then not Is_Library_Level_Entity (Ent)
6060 then
6061 Entry_OK := True;
6062 else
6063 Entry_OK := False;
6064 return;
6065 end if;
6067 -- See if there is matching check already
6069 for J in reverse 1 .. Num_Saved_Checks loop
6070 declare
6071 SC : Saved_Check renames Saved_Checks (J);
6072 begin
6073 if SC.Killed = False
6074 and then SC.Entity = Ent
6075 and then SC.Offset = Ofs
6076 and then SC.Check_Type = Check_Type
6077 and then Within_Range_Of (Target_Type, SC.Target_Type)
6078 then
6079 Check_Num := J;
6080 return;
6081 end if;
6082 end;
6083 end loop;
6085 -- If we fall through entry was not found
6087 return;
6088 end Find_Check;
6090 ---------------------------------
6091 -- Generate_Discriminant_Check --
6092 ---------------------------------
6094 -- Note: the code for this procedure is derived from the
6095 -- Emit_Discriminant_Check Routine in trans.c.
6097 procedure Generate_Discriminant_Check (N : Node_Id) is
6098 Loc : constant Source_Ptr := Sloc (N);
6099 Pref : constant Node_Id := Prefix (N);
6100 Sel : constant Node_Id := Selector_Name (N);
6102 Orig_Comp : constant Entity_Id :=
6103 Original_Record_Component (Entity (Sel));
6104 -- The original component to be checked
6106 Discr_Fct : constant Entity_Id :=
6107 Discriminant_Checking_Func (Orig_Comp);
6108 -- The discriminant checking function
6110 Discr : Entity_Id;
6111 -- One discriminant to be checked in the type
6113 Real_Discr : Entity_Id;
6114 -- Actual discriminant in the call
6116 Pref_Type : Entity_Id;
6117 -- Type of relevant prefix (ignoring private/access stuff)
6119 Args : List_Id;
6120 -- List of arguments for function call
6122 Formal : Entity_Id;
6123 -- Keep track of the formal corresponding to the actual we build for
6124 -- each discriminant, in order to be able to perform the necessary type
6125 -- conversions.
6127 Scomp : Node_Id;
6128 -- Selected component reference for checking function argument
6130 begin
6131 Pref_Type := Etype (Pref);
6133 -- Force evaluation of the prefix, so that it does not get evaluated
6134 -- twice (once for the check, once for the actual reference). Such a
6135 -- double evaluation is always a potential source of inefficiency, and
6136 -- is functionally incorrect in the volatile case, or when the prefix
6137 -- may have side-effects. A non-volatile entity or a component of a
6138 -- non-volatile entity requires no evaluation.
6140 if Is_Entity_Name (Pref) then
6141 if Treat_As_Volatile (Entity (Pref)) then
6142 Force_Evaluation (Pref, Name_Req => True);
6143 end if;
6145 elsif Treat_As_Volatile (Etype (Pref)) then
6146 Force_Evaluation (Pref, Name_Req => True);
6148 elsif Nkind (Pref) = N_Selected_Component
6149 and then Is_Entity_Name (Prefix (Pref))
6150 then
6151 null;
6153 else
6154 Force_Evaluation (Pref, Name_Req => True);
6155 end if;
6157 -- For a tagged type, use the scope of the original component to
6158 -- obtain the type, because ???
6160 if Is_Tagged_Type (Scope (Orig_Comp)) then
6161 Pref_Type := Scope (Orig_Comp);
6163 -- For an untagged derived type, use the discriminants of the parent
6164 -- which have been renamed in the derivation, possibly by a one-to-many
6165 -- discriminant constraint. For untagged type, initially get the Etype
6166 -- of the prefix
6168 else
6169 if Is_Derived_Type (Pref_Type)
6170 and then Number_Discriminants (Pref_Type) /=
6171 Number_Discriminants (Etype (Base_Type (Pref_Type)))
6172 then
6173 Pref_Type := Etype (Base_Type (Pref_Type));
6174 end if;
6175 end if;
6177 -- We definitely should have a checking function, This routine should
6178 -- not be called if no discriminant checking function is present.
6180 pragma Assert (Present (Discr_Fct));
6182 -- Create the list of the actual parameters for the call. This list
6183 -- is the list of the discriminant fields of the record expression to
6184 -- be discriminant checked.
6186 Args := New_List;
6187 Formal := First_Formal (Discr_Fct);
6188 Discr := First_Discriminant (Pref_Type);
6189 while Present (Discr) loop
6191 -- If we have a corresponding discriminant field, and a parent
6192 -- subtype is present, then we want to use the corresponding
6193 -- discriminant since this is the one with the useful value.
6195 if Present (Corresponding_Discriminant (Discr))
6196 and then Ekind (Pref_Type) = E_Record_Type
6197 and then Present (Parent_Subtype (Pref_Type))
6198 then
6199 Real_Discr := Corresponding_Discriminant (Discr);
6200 else
6201 Real_Discr := Discr;
6202 end if;
6204 -- Construct the reference to the discriminant
6206 Scomp :=
6207 Make_Selected_Component (Loc,
6208 Prefix =>
6209 Unchecked_Convert_To (Pref_Type,
6210 Duplicate_Subexpr (Pref)),
6211 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6213 -- Manually analyze and resolve this selected component. We really
6214 -- want it just as it appears above, and do not want the expander
6215 -- playing discriminal games etc with this reference. Then we append
6216 -- the argument to the list we are gathering.
6218 Set_Etype (Scomp, Etype (Real_Discr));
6219 Set_Analyzed (Scomp, True);
6220 Append_To (Args, Convert_To (Etype (Formal), Scomp));
6222 Next_Formal_With_Extras (Formal);
6223 Next_Discriminant (Discr);
6224 end loop;
6226 -- Now build and insert the call
6228 Insert_Action (N,
6229 Make_Raise_Constraint_Error (Loc,
6230 Condition =>
6231 Make_Function_Call (Loc,
6232 Name => New_Occurrence_Of (Discr_Fct, Loc),
6233 Parameter_Associations => Args),
6234 Reason => CE_Discriminant_Check_Failed));
6235 end Generate_Discriminant_Check;
6237 ---------------------------
6238 -- Generate_Index_Checks --
6239 ---------------------------
6241 procedure Generate_Index_Checks (N : Node_Id) is
6243 function Entity_Of_Prefix return Entity_Id;
6244 -- Returns the entity of the prefix of N (or Empty if not found)
6246 ----------------------
6247 -- Entity_Of_Prefix --
6248 ----------------------
6250 function Entity_Of_Prefix return Entity_Id is
6251 P : Node_Id;
6253 begin
6254 P := Prefix (N);
6255 while not Is_Entity_Name (P) loop
6256 if not Nkind_In (P, N_Selected_Component,
6257 N_Indexed_Component)
6258 then
6259 return Empty;
6260 end if;
6262 P := Prefix (P);
6263 end loop;
6265 return Entity (P);
6266 end Entity_Of_Prefix;
6268 -- Local variables
6270 Loc : constant Source_Ptr := Sloc (N);
6271 A : constant Node_Id := Prefix (N);
6272 A_Ent : constant Entity_Id := Entity_Of_Prefix;
6273 Sub : Node_Id;
6275 -- Start of processing for Generate_Index_Checks
6277 begin
6278 -- Ignore call if the prefix is not an array since we have a serious
6279 -- error in the sources. Ignore it also if index checks are suppressed
6280 -- for array object or type.
6282 if not Is_Array_Type (Etype (A))
6283 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
6284 or else Index_Checks_Suppressed (Etype (A))
6285 then
6286 return;
6288 -- The indexed component we are dealing with contains 'Loop_Entry in its
6289 -- prefix. This case arises when analysis has determined that constructs
6290 -- such as
6292 -- Prefix'Loop_Entry (Expr)
6293 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6295 -- require rewriting for error detection purposes. A side effect of this
6296 -- action is the generation of index checks that mention 'Loop_Entry.
6297 -- Delay the generation of the check until 'Loop_Entry has been properly
6298 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6300 elsif Nkind (Prefix (N)) = N_Attribute_Reference
6301 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6302 then
6303 return;
6304 end if;
6306 -- Generate a raise of constraint error with the appropriate reason and
6307 -- a condition of the form:
6309 -- Base_Type (Sub) not in Array'Range (Subscript)
6311 -- Note that the reason we generate the conversion to the base type here
6312 -- is that we definitely want the range check to take place, even if it
6313 -- looks like the subtype is OK. Optimization considerations that allow
6314 -- us to omit the check have already been taken into account in the
6315 -- setting of the Do_Range_Check flag earlier on.
6317 Sub := First (Expressions (N));
6319 -- Handle string literals
6321 if Ekind (Etype (A)) = E_String_Literal_Subtype then
6322 if Do_Range_Check (Sub) then
6323 Set_Do_Range_Check (Sub, False);
6325 -- For string literals we obtain the bounds of the string from the
6326 -- associated subtype.
6328 Insert_Action (N,
6329 Make_Raise_Constraint_Error (Loc,
6330 Condition =>
6331 Make_Not_In (Loc,
6332 Left_Opnd =>
6333 Convert_To (Base_Type (Etype (Sub)),
6334 Duplicate_Subexpr_Move_Checks (Sub)),
6335 Right_Opnd =>
6336 Make_Attribute_Reference (Loc,
6337 Prefix => New_Occurrence_Of (Etype (A), Loc),
6338 Attribute_Name => Name_Range)),
6339 Reason => CE_Index_Check_Failed));
6340 end if;
6342 -- General case
6344 else
6345 declare
6346 A_Idx : Node_Id := Empty;
6347 A_Range : Node_Id;
6348 Ind : Nat;
6349 Num : List_Id;
6350 Range_N : Node_Id;
6352 begin
6353 A_Idx := First_Index (Etype (A));
6354 Ind := 1;
6355 while Present (Sub) loop
6356 if Do_Range_Check (Sub) then
6357 Set_Do_Range_Check (Sub, False);
6359 -- Force evaluation except for the case of a simple name of
6360 -- a non-volatile entity.
6362 if not Is_Entity_Name (Sub)
6363 or else Treat_As_Volatile (Entity (Sub))
6364 then
6365 Force_Evaluation (Sub);
6366 end if;
6368 if Nkind (A_Idx) = N_Range then
6369 A_Range := A_Idx;
6371 elsif Nkind (A_Idx) = N_Identifier
6372 or else Nkind (A_Idx) = N_Expanded_Name
6373 then
6374 A_Range := Scalar_Range (Entity (A_Idx));
6376 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6377 A_Range := Range_Expression (Constraint (A_Idx));
6378 end if;
6380 -- For array objects with constant bounds we can generate
6381 -- the index check using the bounds of the type of the index
6383 if Present (A_Ent)
6384 and then Ekind (A_Ent) = E_Variable
6385 and then Is_Constant_Bound (Low_Bound (A_Range))
6386 and then Is_Constant_Bound (High_Bound (A_Range))
6387 then
6388 Range_N :=
6389 Make_Attribute_Reference (Loc,
6390 Prefix =>
6391 New_Occurrence_Of (Etype (A_Idx), Loc),
6392 Attribute_Name => Name_Range);
6394 -- For arrays with non-constant bounds we cannot generate
6395 -- the index check using the bounds of the type of the index
6396 -- since it may reference discriminants of some enclosing
6397 -- type. We obtain the bounds directly from the prefix
6398 -- object.
6400 else
6401 if Ind = 1 then
6402 Num := No_List;
6403 else
6404 Num := New_List (Make_Integer_Literal (Loc, Ind));
6405 end if;
6407 Range_N :=
6408 Make_Attribute_Reference (Loc,
6409 Prefix =>
6410 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6411 Attribute_Name => Name_Range,
6412 Expressions => Num);
6413 end if;
6415 Insert_Action (N,
6416 Make_Raise_Constraint_Error (Loc,
6417 Condition =>
6418 Make_Not_In (Loc,
6419 Left_Opnd =>
6420 Convert_To (Base_Type (Etype (Sub)),
6421 Duplicate_Subexpr_Move_Checks (Sub)),
6422 Right_Opnd => Range_N),
6423 Reason => CE_Index_Check_Failed));
6424 end if;
6426 A_Idx := Next_Index (A_Idx);
6427 Ind := Ind + 1;
6428 Next (Sub);
6429 end loop;
6430 end;
6431 end if;
6432 end Generate_Index_Checks;
6434 --------------------------
6435 -- Generate_Range_Check --
6436 --------------------------
6438 procedure Generate_Range_Check
6439 (N : Node_Id;
6440 Target_Type : Entity_Id;
6441 Reason : RT_Exception_Code)
6443 Loc : constant Source_Ptr := Sloc (N);
6444 Source_Type : constant Entity_Id := Etype (N);
6445 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
6446 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
6448 procedure Convert_And_Check_Range;
6449 -- Convert the conversion operand to the target base type and save in
6450 -- a temporary. Then check the converted value against the range of the
6451 -- target subtype.
6453 -----------------------------
6454 -- Convert_And_Check_Range --
6455 -----------------------------
6457 procedure Convert_And_Check_Range is
6458 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6460 begin
6461 -- We make a temporary to hold the value of the converted value
6462 -- (converted to the base type), and then do the test against this
6463 -- temporary. The conversion itself is replaced by an occurrence of
6464 -- Tnn and followed by the explicit range check. Note that checks
6465 -- are suppressed for this code, since we don't want a recursive
6466 -- range check popping up.
6468 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6469 -- [constraint_error when Tnn not in Target_Type]
6471 Insert_Actions (N, New_List (
6472 Make_Object_Declaration (Loc,
6473 Defining_Identifier => Tnn,
6474 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
6475 Constant_Present => True,
6476 Expression =>
6477 Make_Type_Conversion (Loc,
6478 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
6479 Expression => Duplicate_Subexpr (N))),
6481 Make_Raise_Constraint_Error (Loc,
6482 Condition =>
6483 Make_Not_In (Loc,
6484 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6485 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6486 Reason => Reason)),
6487 Suppress => All_Checks);
6489 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6491 -- Set the type of N, because the declaration for Tnn might not
6492 -- be analyzed yet, as is the case if N appears within a record
6493 -- declaration, as a discriminant constraint or expression.
6495 Set_Etype (N, Target_Base_Type);
6496 end Convert_And_Check_Range;
6498 -- Start of processing for Generate_Range_Check
6500 begin
6501 -- First special case, if the source type is already within the range
6502 -- of the target type, then no check is needed (probably we should have
6503 -- stopped Do_Range_Check from being set in the first place, but better
6504 -- late than never in preventing junk code and junk flag settings.
6506 if In_Subrange_Of (Source_Type, Target_Type)
6508 -- We do NOT apply this if the source node is a literal, since in this
6509 -- case the literal has already been labeled as having the subtype of
6510 -- the target.
6512 and then not
6513 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
6514 or else
6515 (Is_Entity_Name (N)
6516 and then Ekind (Entity (N)) = E_Enumeration_Literal))
6517 then
6518 Set_Do_Range_Check (N, False);
6519 return;
6520 end if;
6522 -- Here a check is needed. If the expander is not active, or if we are
6523 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6524 -- are done. In both these cases, we just want to see the range check
6525 -- flag set, we do not want to generate the explicit range check code.
6527 if GNATprove_Mode or else not Expander_Active then
6528 Set_Do_Range_Check (N, True);
6529 return;
6530 end if;
6532 -- Here we will generate an explicit range check, so we don't want to
6533 -- set the Do_Range check flag, since the range check is taken care of
6534 -- by the code we will generate.
6536 Set_Do_Range_Check (N, False);
6538 -- Force evaluation of the node, so that it does not get evaluated twice
6539 -- (once for the check, once for the actual reference). Such a double
6540 -- evaluation is always a potential source of inefficiency, and is
6541 -- functionally incorrect in the volatile case.
6543 if not Is_Entity_Name (N) or else Treat_As_Volatile (Entity (N)) then
6544 Force_Evaluation (N);
6545 end if;
6547 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6548 -- the same since in this case we can simply do a direct check of the
6549 -- value of N against the bounds of Target_Type.
6551 -- [constraint_error when N not in Target_Type]
6553 -- Note: this is by far the most common case, for example all cases of
6554 -- checks on the RHS of assignments are in this category, but not all
6555 -- cases are like this. Notably conversions can involve two types.
6557 if Source_Base_Type = Target_Base_Type then
6559 -- Insert the explicit range check. Note that we suppress checks for
6560 -- this code, since we don't want a recursive range check popping up.
6562 Insert_Action (N,
6563 Make_Raise_Constraint_Error (Loc,
6564 Condition =>
6565 Make_Not_In (Loc,
6566 Left_Opnd => Duplicate_Subexpr (N),
6567 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6568 Reason => Reason),
6569 Suppress => All_Checks);
6571 -- Next test for the case where the target type is within the bounds
6572 -- of the base type of the source type, since in this case we can
6573 -- simply convert these bounds to the base type of T to do the test.
6575 -- [constraint_error when N not in
6576 -- Source_Base_Type (Target_Type'First)
6577 -- ..
6578 -- Source_Base_Type(Target_Type'Last))]
6580 -- The conversions will always work and need no check
6582 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6583 -- of converting from an enumeration value to an integer type, such as
6584 -- occurs for the case of generating a range check on Enum'Val(Exp)
6585 -- (which used to be handled by gigi). This is OK, since the conversion
6586 -- itself does not require a check.
6588 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
6590 -- Insert the explicit range check. Note that we suppress checks for
6591 -- this code, since we don't want a recursive range check popping up.
6593 if Is_Discrete_Type (Source_Base_Type)
6594 and then
6595 Is_Discrete_Type (Target_Base_Type)
6596 then
6597 Insert_Action (N,
6598 Make_Raise_Constraint_Error (Loc,
6599 Condition =>
6600 Make_Not_In (Loc,
6601 Left_Opnd => Duplicate_Subexpr (N),
6603 Right_Opnd =>
6604 Make_Range (Loc,
6605 Low_Bound =>
6606 Unchecked_Convert_To (Source_Base_Type,
6607 Make_Attribute_Reference (Loc,
6608 Prefix =>
6609 New_Occurrence_Of (Target_Type, Loc),
6610 Attribute_Name => Name_First)),
6612 High_Bound =>
6613 Unchecked_Convert_To (Source_Base_Type,
6614 Make_Attribute_Reference (Loc,
6615 Prefix =>
6616 New_Occurrence_Of (Target_Type, Loc),
6617 Attribute_Name => Name_Last)))),
6618 Reason => Reason),
6619 Suppress => All_Checks);
6621 -- For conversions involving at least one type that is not discrete,
6622 -- first convert to target type and then generate the range check.
6623 -- This avoids problems with values that are close to a bound of the
6624 -- target type that would fail a range check when done in a larger
6625 -- source type before converting but would pass if converted with
6626 -- rounding and then checked (such as in float-to-float conversions).
6628 else
6629 Convert_And_Check_Range;
6630 end if;
6632 -- Note that at this stage we now that the Target_Base_Type is not in
6633 -- the range of the Source_Base_Type (since even the Target_Type itself
6634 -- is not in this range). It could still be the case that Source_Type is
6635 -- in range of the target base type since we have not checked that case.
6637 -- If that is the case, we can freely convert the source to the target,
6638 -- and then test the target result against the bounds.
6640 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
6641 Convert_And_Check_Range;
6643 -- At this stage, we know that we have two scalar types, which are
6644 -- directly convertible, and where neither scalar type has a base
6645 -- range that is in the range of the other scalar type.
6647 -- The only way this can happen is with a signed and unsigned type.
6648 -- So test for these two cases:
6650 else
6651 -- Case of the source is unsigned and the target is signed
6653 if Is_Unsigned_Type (Source_Base_Type)
6654 and then not Is_Unsigned_Type (Target_Base_Type)
6655 then
6656 -- If the source is unsigned and the target is signed, then we
6657 -- know that the source is not shorter than the target (otherwise
6658 -- the source base type would be in the target base type range).
6660 -- In other words, the unsigned type is either the same size as
6661 -- the target, or it is larger. It cannot be smaller.
6663 pragma Assert
6664 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
6666 -- We only need to check the low bound if the low bound of the
6667 -- target type is non-negative. If the low bound of the target
6668 -- type is negative, then we know that we will fit fine.
6670 -- If the high bound of the target type is negative, then we
6671 -- know we have a constraint error, since we can't possibly
6672 -- have a negative source.
6674 -- With these two checks out of the way, we can do the check
6675 -- using the source type safely
6677 -- This is definitely the most annoying case.
6679 -- [constraint_error
6680 -- when (Target_Type'First >= 0
6681 -- and then
6682 -- N < Source_Base_Type (Target_Type'First))
6683 -- or else Target_Type'Last < 0
6684 -- or else N > Source_Base_Type (Target_Type'Last)];
6686 -- We turn off all checks since we know that the conversions
6687 -- will work fine, given the guards for negative values.
6689 Insert_Action (N,
6690 Make_Raise_Constraint_Error (Loc,
6691 Condition =>
6692 Make_Or_Else (Loc,
6693 Make_Or_Else (Loc,
6694 Left_Opnd =>
6695 Make_And_Then (Loc,
6696 Left_Opnd => Make_Op_Ge (Loc,
6697 Left_Opnd =>
6698 Make_Attribute_Reference (Loc,
6699 Prefix =>
6700 New_Occurrence_Of (Target_Type, Loc),
6701 Attribute_Name => Name_First),
6702 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
6704 Right_Opnd =>
6705 Make_Op_Lt (Loc,
6706 Left_Opnd => Duplicate_Subexpr (N),
6707 Right_Opnd =>
6708 Convert_To (Source_Base_Type,
6709 Make_Attribute_Reference (Loc,
6710 Prefix =>
6711 New_Occurrence_Of (Target_Type, Loc),
6712 Attribute_Name => Name_First)))),
6714 Right_Opnd =>
6715 Make_Op_Lt (Loc,
6716 Left_Opnd =>
6717 Make_Attribute_Reference (Loc,
6718 Prefix => New_Occurrence_Of (Target_Type, Loc),
6719 Attribute_Name => Name_Last),
6720 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
6722 Right_Opnd =>
6723 Make_Op_Gt (Loc,
6724 Left_Opnd => Duplicate_Subexpr (N),
6725 Right_Opnd =>
6726 Convert_To (Source_Base_Type,
6727 Make_Attribute_Reference (Loc,
6728 Prefix => New_Occurrence_Of (Target_Type, Loc),
6729 Attribute_Name => Name_Last)))),
6731 Reason => Reason),
6732 Suppress => All_Checks);
6734 -- Only remaining possibility is that the source is signed and
6735 -- the target is unsigned.
6737 else
6738 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
6739 and then Is_Unsigned_Type (Target_Base_Type));
6741 -- If the source is signed and the target is unsigned, then we
6742 -- know that the target is not shorter than the source (otherwise
6743 -- the target base type would be in the source base type range).
6745 -- In other words, the unsigned type is either the same size as
6746 -- the target, or it is larger. It cannot be smaller.
6748 -- Clearly we have an error if the source value is negative since
6749 -- no unsigned type can have negative values. If the source type
6750 -- is non-negative, then the check can be done using the target
6751 -- type.
6753 -- Tnn : constant Target_Base_Type (N) := Target_Type;
6755 -- [constraint_error
6756 -- when N < 0 or else Tnn not in Target_Type];
6758 -- We turn off all checks for the conversion of N to the target
6759 -- base type, since we generate the explicit check to ensure that
6760 -- the value is non-negative
6762 declare
6763 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6765 begin
6766 Insert_Actions (N, New_List (
6767 Make_Object_Declaration (Loc,
6768 Defining_Identifier => Tnn,
6769 Object_Definition =>
6770 New_Occurrence_Of (Target_Base_Type, Loc),
6771 Constant_Present => True,
6772 Expression =>
6773 Make_Unchecked_Type_Conversion (Loc,
6774 Subtype_Mark =>
6775 New_Occurrence_Of (Target_Base_Type, Loc),
6776 Expression => Duplicate_Subexpr (N))),
6778 Make_Raise_Constraint_Error (Loc,
6779 Condition =>
6780 Make_Or_Else (Loc,
6781 Left_Opnd =>
6782 Make_Op_Lt (Loc,
6783 Left_Opnd => Duplicate_Subexpr (N),
6784 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
6786 Right_Opnd =>
6787 Make_Not_In (Loc,
6788 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6789 Right_Opnd =>
6790 New_Occurrence_Of (Target_Type, Loc))),
6792 Reason => Reason)),
6793 Suppress => All_Checks);
6795 -- Set the Etype explicitly, because Insert_Actions may have
6796 -- placed the declaration in the freeze list for an enclosing
6797 -- construct, and thus it is not analyzed yet.
6799 Set_Etype (Tnn, Target_Base_Type);
6800 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6801 end;
6802 end if;
6803 end if;
6804 end Generate_Range_Check;
6806 ------------------
6807 -- Get_Check_Id --
6808 ------------------
6810 function Get_Check_Id (N : Name_Id) return Check_Id is
6811 begin
6812 -- For standard check name, we can do a direct computation
6814 if N in First_Check_Name .. Last_Check_Name then
6815 return Check_Id (N - (First_Check_Name - 1));
6817 -- For non-standard names added by pragma Check_Name, search table
6819 else
6820 for J in All_Checks + 1 .. Check_Names.Last loop
6821 if Check_Names.Table (J) = N then
6822 return J;
6823 end if;
6824 end loop;
6825 end if;
6827 -- No matching name found
6829 return No_Check_Id;
6830 end Get_Check_Id;
6832 ---------------------
6833 -- Get_Discriminal --
6834 ---------------------
6836 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
6837 Loc : constant Source_Ptr := Sloc (E);
6838 D : Entity_Id;
6839 Sc : Entity_Id;
6841 begin
6842 -- The bound can be a bona fide parameter of a protected operation,
6843 -- rather than a prival encoded as an in-parameter.
6845 if No (Discriminal_Link (Entity (Bound))) then
6846 return Bound;
6847 end if;
6849 -- Climb the scope stack looking for an enclosing protected type. If
6850 -- we run out of scopes, return the bound itself.
6852 Sc := Scope (E);
6853 while Present (Sc) loop
6854 if Sc = Standard_Standard then
6855 return Bound;
6856 elsif Ekind (Sc) = E_Protected_Type then
6857 exit;
6858 end if;
6860 Sc := Scope (Sc);
6861 end loop;
6863 D := First_Discriminant (Sc);
6864 while Present (D) loop
6865 if Chars (D) = Chars (Bound) then
6866 return New_Occurrence_Of (Discriminal (D), Loc);
6867 end if;
6869 Next_Discriminant (D);
6870 end loop;
6872 return Bound;
6873 end Get_Discriminal;
6875 ----------------------
6876 -- Get_Range_Checks --
6877 ----------------------
6879 function Get_Range_Checks
6880 (Ck_Node : Node_Id;
6881 Target_Typ : Entity_Id;
6882 Source_Typ : Entity_Id := Empty;
6883 Warn_Node : Node_Id := Empty) return Check_Result
6885 begin
6886 return
6887 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
6888 end Get_Range_Checks;
6890 ------------------
6891 -- Guard_Access --
6892 ------------------
6894 function Guard_Access
6895 (Cond : Node_Id;
6896 Loc : Source_Ptr;
6897 Ck_Node : Node_Id) return Node_Id
6899 begin
6900 if Nkind (Cond) = N_Or_Else then
6901 Set_Paren_Count (Cond, 1);
6902 end if;
6904 if Nkind (Ck_Node) = N_Allocator then
6905 return Cond;
6907 else
6908 return
6909 Make_And_Then (Loc,
6910 Left_Opnd =>
6911 Make_Op_Ne (Loc,
6912 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
6913 Right_Opnd => Make_Null (Loc)),
6914 Right_Opnd => Cond);
6915 end if;
6916 end Guard_Access;
6918 -----------------------------
6919 -- Index_Checks_Suppressed --
6920 -----------------------------
6922 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
6923 begin
6924 if Present (E) and then Checks_May_Be_Suppressed (E) then
6925 return Is_Check_Suppressed (E, Index_Check);
6926 else
6927 return Scope_Suppress.Suppress (Index_Check);
6928 end if;
6929 end Index_Checks_Suppressed;
6931 ----------------
6932 -- Initialize --
6933 ----------------
6935 procedure Initialize is
6936 begin
6937 for J in Determine_Range_Cache_N'Range loop
6938 Determine_Range_Cache_N (J) := Empty;
6939 end loop;
6941 Check_Names.Init;
6943 for J in Int range 1 .. All_Checks loop
6944 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
6945 end loop;
6946 end Initialize;
6948 -------------------------
6949 -- Insert_Range_Checks --
6950 -------------------------
6952 procedure Insert_Range_Checks
6953 (Checks : Check_Result;
6954 Node : Node_Id;
6955 Suppress_Typ : Entity_Id;
6956 Static_Sloc : Source_Ptr := No_Location;
6957 Flag_Node : Node_Id := Empty;
6958 Do_Before : Boolean := False)
6960 Internal_Flag_Node : Node_Id := Flag_Node;
6961 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
6963 Check_Node : Node_Id;
6964 Checks_On : constant Boolean :=
6965 (not Index_Checks_Suppressed (Suppress_Typ))
6966 or else (not Range_Checks_Suppressed (Suppress_Typ));
6968 begin
6969 -- For now we just return if Checks_On is false, however this should be
6970 -- enhanced to check for an always True value in the condition and to
6971 -- generate a compilation warning???
6973 if not Expander_Active or not Checks_On then
6974 return;
6975 end if;
6977 if Static_Sloc = No_Location then
6978 Internal_Static_Sloc := Sloc (Node);
6979 end if;
6981 if No (Flag_Node) then
6982 Internal_Flag_Node := Node;
6983 end if;
6985 for J in 1 .. 2 loop
6986 exit when No (Checks (J));
6988 if Nkind (Checks (J)) = N_Raise_Constraint_Error
6989 and then Present (Condition (Checks (J)))
6990 then
6991 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
6992 Check_Node := Checks (J);
6993 Mark_Rewrite_Insertion (Check_Node);
6995 if Do_Before then
6996 Insert_Before_And_Analyze (Node, Check_Node);
6997 else
6998 Insert_After_And_Analyze (Node, Check_Node);
6999 end if;
7001 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
7002 end if;
7004 else
7005 Check_Node :=
7006 Make_Raise_Constraint_Error (Internal_Static_Sloc,
7007 Reason => CE_Range_Check_Failed);
7008 Mark_Rewrite_Insertion (Check_Node);
7010 if Do_Before then
7011 Insert_Before_And_Analyze (Node, Check_Node);
7012 else
7013 Insert_After_And_Analyze (Node, Check_Node);
7014 end if;
7015 end if;
7016 end loop;
7017 end Insert_Range_Checks;
7019 ------------------------
7020 -- Insert_Valid_Check --
7021 ------------------------
7023 procedure Insert_Valid_Check
7024 (Expr : Node_Id;
7025 Related_Id : Entity_Id := Empty;
7026 Is_Low_Bound : Boolean := False;
7027 Is_High_Bound : Boolean := False)
7029 Loc : constant Source_Ptr := Sloc (Expr);
7030 Typ : constant Entity_Id := Etype (Expr);
7031 Exp : Node_Id;
7033 begin
7034 -- Do not insert if checks off, or if not checking validity or if
7035 -- expression is known to be valid.
7037 if not Validity_Checks_On
7038 or else Range_Or_Validity_Checks_Suppressed (Expr)
7039 or else Expr_Known_Valid (Expr)
7040 then
7041 return;
7042 end if;
7044 -- Do not insert checks within a predicate function. This will arise
7045 -- if the current unit and the predicate function are being compiled
7046 -- with validity checks enabled.
7048 if Present (Predicate_Function (Typ))
7049 and then Current_Scope = Predicate_Function (Typ)
7050 then
7051 return;
7052 end if;
7054 -- If the expression is a packed component of a modular type of the
7055 -- right size, the data is always valid.
7057 if Nkind (Expr) = N_Selected_Component
7058 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
7059 and then Is_Modular_Integer_Type (Typ)
7060 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
7061 then
7062 return;
7063 end if;
7065 -- If we have a checked conversion, then validity check applies to
7066 -- the expression inside the conversion, not the result, since if
7067 -- the expression inside is valid, then so is the conversion result.
7069 Exp := Expr;
7070 while Nkind (Exp) = N_Type_Conversion loop
7071 Exp := Expression (Exp);
7072 end loop;
7074 -- We are about to insert the validity check for Exp. We save and
7075 -- reset the Do_Range_Check flag over this validity check, and then
7076 -- put it back for the final original reference (Exp may be rewritten).
7078 declare
7079 DRC : constant Boolean := Do_Range_Check (Exp);
7080 PV : Node_Id;
7081 CE : Node_Id;
7083 begin
7084 Set_Do_Range_Check (Exp, False);
7086 -- Force evaluation to avoid multiple reads for atomic/volatile
7088 -- Note: we set Name_Req to False. We used to set it to True, with
7089 -- the thinking that a name is required as the prefix of the 'Valid
7090 -- call, but in fact the check that the prefix of an attribute is
7091 -- a name is in the parser, and we just don't require it here.
7092 -- Moreover, when we set Name_Req to True, that interfered with the
7093 -- checking for Volatile, since we couldn't just capture the value.
7095 if Is_Entity_Name (Exp)
7096 and then Is_Volatile (Entity (Exp))
7097 then
7098 -- Same reasoning as above for setting Name_Req to False
7100 Force_Evaluation (Exp, Name_Req => False);
7101 end if;
7103 -- Build the prefix for the 'Valid call
7105 PV :=
7106 Duplicate_Subexpr_No_Checks
7107 (Exp => Exp,
7108 Name_Req => False,
7109 Related_Id => Related_Id,
7110 Is_Low_Bound => Is_Low_Bound,
7111 Is_High_Bound => Is_High_Bound);
7113 -- A rather specialized test. If PV is an analyzed expression which
7114 -- is an indexed component of a packed array that has not been
7115 -- properly expanded, turn off its Analyzed flag to make sure it
7116 -- gets properly reexpanded. If the prefix is an access value,
7117 -- the dereference will be added later.
7119 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7120 -- an analyze with the old parent pointer. This may point e.g. to
7121 -- a subprogram call, which deactivates this expansion.
7123 if Analyzed (PV)
7124 and then Nkind (PV) = N_Indexed_Component
7125 and then Is_Array_Type (Etype (Prefix (PV)))
7126 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
7127 then
7128 Set_Analyzed (PV, False);
7129 end if;
7131 -- Build the raise CE node to check for validity. We build a type
7132 -- qualification for the prefix, since it may not be of the form of
7133 -- a name, and we don't care in this context!
7135 CE :=
7136 Make_Raise_Constraint_Error (Loc,
7137 Condition =>
7138 Make_Op_Not (Loc,
7139 Right_Opnd =>
7140 Make_Attribute_Reference (Loc,
7141 Prefix => PV,
7142 Attribute_Name => Name_Valid)),
7143 Reason => CE_Invalid_Data);
7145 -- Insert the validity check. Note that we do this with validity
7146 -- checks turned off, to avoid recursion, we do not want validity
7147 -- checks on the validity checking code itself.
7149 Insert_Action (Expr, CE, Suppress => Validity_Check);
7151 -- If the expression is a reference to an element of a bit-packed
7152 -- array, then it is rewritten as a renaming declaration. If the
7153 -- expression is an actual in a call, it has not been expanded,
7154 -- waiting for the proper point at which to do it. The same happens
7155 -- with renamings, so that we have to force the expansion now. This
7156 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7157 -- and exp_ch6.adb.
7159 if Is_Entity_Name (Exp)
7160 and then Nkind (Parent (Entity (Exp))) =
7161 N_Object_Renaming_Declaration
7162 then
7163 declare
7164 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7165 begin
7166 if Nkind (Old_Exp) = N_Indexed_Component
7167 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7168 then
7169 Expand_Packed_Element_Reference (Old_Exp);
7170 end if;
7171 end;
7172 end if;
7174 -- Put back the Do_Range_Check flag on the resulting (possibly
7175 -- rewritten) expression.
7177 -- Note: it might be thought that a validity check is not required
7178 -- when a range check is present, but that's not the case, because
7179 -- the back end is allowed to assume for the range check that the
7180 -- operand is within its declared range (an assumption that validity
7181 -- checking is all about NOT assuming).
7183 -- Note: no need to worry about Possible_Local_Raise here, it will
7184 -- already have been called if original node has Do_Range_Check set.
7186 Set_Do_Range_Check (Exp, DRC);
7187 end;
7188 end Insert_Valid_Check;
7190 -------------------------------------
7191 -- Is_Signed_Integer_Arithmetic_Op --
7192 -------------------------------------
7194 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7195 begin
7196 case Nkind (N) is
7197 when N_Op_Abs | N_Op_Add | N_Op_Divide | N_Op_Expon |
7198 N_Op_Minus | N_Op_Mod | N_Op_Multiply | N_Op_Plus |
7199 N_Op_Rem | N_Op_Subtract =>
7200 return Is_Signed_Integer_Type (Etype (N));
7202 when N_If_Expression | N_Case_Expression =>
7203 return Is_Signed_Integer_Type (Etype (N));
7205 when others =>
7206 return False;
7207 end case;
7208 end Is_Signed_Integer_Arithmetic_Op;
7210 ----------------------------------
7211 -- Install_Null_Excluding_Check --
7212 ----------------------------------
7214 procedure Install_Null_Excluding_Check (N : Node_Id) is
7215 Loc : constant Source_Ptr := Sloc (Parent (N));
7216 Typ : constant Entity_Id := Etype (N);
7218 function Safe_To_Capture_In_Parameter_Value return Boolean;
7219 -- Determines if it is safe to capture Known_Non_Null status for an
7220 -- the entity referenced by node N. The caller ensures that N is indeed
7221 -- an entity name. It is safe to capture the non-null status for an IN
7222 -- parameter when the reference occurs within a declaration that is sure
7223 -- to be executed as part of the declarative region.
7225 procedure Mark_Non_Null;
7226 -- After installation of check, if the node in question is an entity
7227 -- name, then mark this entity as non-null if possible.
7229 function Safe_To_Capture_In_Parameter_Value return Boolean is
7230 E : constant Entity_Id := Entity (N);
7231 S : constant Entity_Id := Current_Scope;
7232 S_Par : Node_Id;
7234 begin
7235 if Ekind (E) /= E_In_Parameter then
7236 return False;
7237 end if;
7239 -- Two initial context checks. We must be inside a subprogram body
7240 -- with declarations and reference must not appear in nested scopes.
7242 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7243 or else Scope (E) /= S
7244 then
7245 return False;
7246 end if;
7248 S_Par := Parent (Parent (S));
7250 if Nkind (S_Par) /= N_Subprogram_Body
7251 or else No (Declarations (S_Par))
7252 then
7253 return False;
7254 end if;
7256 declare
7257 N_Decl : Node_Id;
7258 P : Node_Id;
7260 begin
7261 -- Retrieve the declaration node of N (if any). Note that N
7262 -- may be a part of a complex initialization expression.
7264 P := Parent (N);
7265 N_Decl := Empty;
7266 while Present (P) loop
7268 -- If we have a short circuit form, and we are within the right
7269 -- hand expression, we return false, since the right hand side
7270 -- is not guaranteed to be elaborated.
7272 if Nkind (P) in N_Short_Circuit
7273 and then N = Right_Opnd (P)
7274 then
7275 return False;
7276 end if;
7278 -- Similarly, if we are in an if expression and not part of the
7279 -- condition, then we return False, since neither the THEN or
7280 -- ELSE dependent expressions will always be elaborated.
7282 if Nkind (P) = N_If_Expression
7283 and then N /= First (Expressions (P))
7284 then
7285 return False;
7286 end if;
7288 -- If within a case expression, and not part of the expression,
7289 -- then return False, since a particular dependent expression
7290 -- may not always be elaborated
7292 if Nkind (P) = N_Case_Expression
7293 and then N /= Expression (P)
7294 then
7295 return False;
7296 end if;
7298 -- While traversing the parent chain, if node N belongs to a
7299 -- statement, then it may never appear in a declarative region.
7301 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7302 or else Nkind (P) = N_Procedure_Call_Statement
7303 then
7304 return False;
7305 end if;
7307 -- If we are at a declaration, record it and exit
7309 if Nkind (P) in N_Declaration
7310 and then Nkind (P) not in N_Subprogram_Specification
7311 then
7312 N_Decl := P;
7313 exit;
7314 end if;
7316 P := Parent (P);
7317 end loop;
7319 if No (N_Decl) then
7320 return False;
7321 end if;
7323 return List_Containing (N_Decl) = Declarations (S_Par);
7324 end;
7325 end Safe_To_Capture_In_Parameter_Value;
7327 -------------------
7328 -- Mark_Non_Null --
7329 -------------------
7331 procedure Mark_Non_Null is
7332 begin
7333 -- Only case of interest is if node N is an entity name
7335 if Is_Entity_Name (N) then
7337 -- For sure, we want to clear an indication that this is known to
7338 -- be null, since if we get past this check, it definitely is not.
7340 Set_Is_Known_Null (Entity (N), False);
7342 -- We can mark the entity as known to be non-null if either it is
7343 -- safe to capture the value, or in the case of an IN parameter,
7344 -- which is a constant, if the check we just installed is in the
7345 -- declarative region of the subprogram body. In this latter case,
7346 -- a check is decisive for the rest of the body if the expression
7347 -- is sure to be elaborated, since we know we have to elaborate
7348 -- all declarations before executing the body.
7350 -- Couldn't this always be part of Safe_To_Capture_Value ???
7352 if Safe_To_Capture_Value (N, Entity (N))
7353 or else Safe_To_Capture_In_Parameter_Value
7354 then
7355 Set_Is_Known_Non_Null (Entity (N));
7356 end if;
7357 end if;
7358 end Mark_Non_Null;
7360 -- Start of processing for Install_Null_Excluding_Check
7362 begin
7363 pragma Assert (Is_Access_Type (Typ));
7365 -- No check inside a generic, check will be emitted in instance
7367 if Inside_A_Generic then
7368 return;
7369 end if;
7371 -- No check needed if known to be non-null
7373 if Known_Non_Null (N) then
7374 return;
7375 end if;
7377 -- If known to be null, here is where we generate a compile time check
7379 if Known_Null (N) then
7381 -- Avoid generating warning message inside init procs. In SPARK mode
7382 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
7383 -- since it will be turned into an error in any case.
7385 if (not Inside_Init_Proc or else SPARK_Mode = On)
7387 -- Do not emit the warning within a conditional expression,
7388 -- where the expression might not be evaluated, and the warning
7389 -- appear as extraneous noise.
7391 and then not Within_Case_Or_If_Expression (N)
7392 then
7393 Apply_Compile_Time_Constraint_Error
7394 (N, "null value not allowed here??", CE_Access_Check_Failed);
7396 -- Remaining cases, where we silently insert the raise
7398 else
7399 Insert_Action (N,
7400 Make_Raise_Constraint_Error (Loc,
7401 Reason => CE_Access_Check_Failed));
7402 end if;
7404 Mark_Non_Null;
7405 return;
7406 end if;
7408 -- If entity is never assigned, for sure a warning is appropriate
7410 if Is_Entity_Name (N) then
7411 Check_Unset_Reference (N);
7412 end if;
7414 -- No check needed if checks are suppressed on the range. Note that we
7415 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7416 -- so, since the program is erroneous, but we don't like to casually
7417 -- propagate such conclusions from erroneosity).
7419 if Access_Checks_Suppressed (Typ) then
7420 return;
7421 end if;
7423 -- No check needed for access to concurrent record types generated by
7424 -- the expander. This is not just an optimization (though it does indeed
7425 -- remove junk checks). It also avoids generation of junk warnings.
7427 if Nkind (N) in N_Has_Chars
7428 and then Chars (N) = Name_uObject
7429 and then Is_Concurrent_Record_Type
7430 (Directly_Designated_Type (Etype (N)))
7431 then
7432 return;
7433 end if;
7435 -- No check needed in interface thunks since the runtime check is
7436 -- already performed at the caller side.
7438 if Is_Thunk (Current_Scope) then
7439 return;
7440 end if;
7442 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7443 -- the expander within exception handlers, since we know that the value
7444 -- can never be null.
7446 -- Is this really the right way to do this? Normally we generate such
7447 -- code in the expander with checks off, and that's how we suppress this
7448 -- kind of junk check ???
7450 if Nkind (N) = N_Function_Call
7451 and then Nkind (Name (N)) = N_Explicit_Dereference
7452 and then Nkind (Prefix (Name (N))) = N_Identifier
7453 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7454 then
7455 return;
7456 end if;
7458 -- Otherwise install access check
7460 Insert_Action (N,
7461 Make_Raise_Constraint_Error (Loc,
7462 Condition =>
7463 Make_Op_Eq (Loc,
7464 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
7465 Right_Opnd => Make_Null (Loc)),
7466 Reason => CE_Access_Check_Failed));
7468 Mark_Non_Null;
7469 end Install_Null_Excluding_Check;
7471 --------------------------
7472 -- Install_Static_Check --
7473 --------------------------
7475 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
7476 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
7477 Typ : constant Entity_Id := Etype (R_Cno);
7479 begin
7480 Rewrite (R_Cno,
7481 Make_Raise_Constraint_Error (Loc,
7482 Reason => CE_Range_Check_Failed));
7483 Set_Analyzed (R_Cno);
7484 Set_Etype (R_Cno, Typ);
7485 Set_Raises_Constraint_Error (R_Cno);
7486 Set_Is_Static_Expression (R_Cno, Stat);
7488 -- Now deal with possible local raise handling
7490 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
7491 end Install_Static_Check;
7493 -------------------------
7494 -- Is_Check_Suppressed --
7495 -------------------------
7497 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
7498 Ptr : Suppress_Stack_Entry_Ptr;
7500 begin
7501 -- First search the local entity suppress stack. We search this from the
7502 -- top of the stack down so that we get the innermost entry that applies
7503 -- to this case if there are nested entries.
7505 Ptr := Local_Suppress_Stack_Top;
7506 while Ptr /= null loop
7507 if (Ptr.Entity = Empty or else Ptr.Entity = E)
7508 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
7509 then
7510 return Ptr.Suppress;
7511 end if;
7513 Ptr := Ptr.Prev;
7514 end loop;
7516 -- Now search the global entity suppress table for a matching entry.
7517 -- We also search this from the top down so that if there are multiple
7518 -- pragmas for the same entity, the last one applies (not clear what
7519 -- or whether the RM specifies this handling, but it seems reasonable).
7521 Ptr := Global_Suppress_Stack_Top;
7522 while Ptr /= null loop
7523 if (Ptr.Entity = Empty or else Ptr.Entity = E)
7524 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
7525 then
7526 return Ptr.Suppress;
7527 end if;
7529 Ptr := Ptr.Prev;
7530 end loop;
7532 -- If we did not find a matching entry, then use the normal scope
7533 -- suppress value after all (actually this will be the global setting
7534 -- since it clearly was not overridden at any point). For a predefined
7535 -- check, we test the specific flag. For a user defined check, we check
7536 -- the All_Checks flag. The Overflow flag requires special handling to
7537 -- deal with the General vs Assertion case
7539 if C = Overflow_Check then
7540 return Overflow_Checks_Suppressed (Empty);
7541 elsif C in Predefined_Check_Id then
7542 return Scope_Suppress.Suppress (C);
7543 else
7544 return Scope_Suppress.Suppress (All_Checks);
7545 end if;
7546 end Is_Check_Suppressed;
7548 ---------------------
7549 -- Kill_All_Checks --
7550 ---------------------
7552 procedure Kill_All_Checks is
7553 begin
7554 if Debug_Flag_CC then
7555 w ("Kill_All_Checks");
7556 end if;
7558 -- We reset the number of saved checks to zero, and also modify all
7559 -- stack entries for statement ranges to indicate that the number of
7560 -- checks at each level is now zero.
7562 Num_Saved_Checks := 0;
7564 -- Note: the Int'Min here avoids any possibility of J being out of
7565 -- range when called from e.g. Conditional_Statements_Begin.
7567 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
7568 Saved_Checks_Stack (J) := 0;
7569 end loop;
7570 end Kill_All_Checks;
7572 -----------------
7573 -- Kill_Checks --
7574 -----------------
7576 procedure Kill_Checks (V : Entity_Id) is
7577 begin
7578 if Debug_Flag_CC then
7579 w ("Kill_Checks for entity", Int (V));
7580 end if;
7582 for J in 1 .. Num_Saved_Checks loop
7583 if Saved_Checks (J).Entity = V then
7584 if Debug_Flag_CC then
7585 w (" Checks killed for saved check ", J);
7586 end if;
7588 Saved_Checks (J).Killed := True;
7589 end if;
7590 end loop;
7591 end Kill_Checks;
7593 ------------------------------
7594 -- Length_Checks_Suppressed --
7595 ------------------------------
7597 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
7598 begin
7599 if Present (E) and then Checks_May_Be_Suppressed (E) then
7600 return Is_Check_Suppressed (E, Length_Check);
7601 else
7602 return Scope_Suppress.Suppress (Length_Check);
7603 end if;
7604 end Length_Checks_Suppressed;
7606 -----------------------
7607 -- Make_Bignum_Block --
7608 -----------------------
7610 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
7611 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
7612 begin
7613 return
7614 Make_Block_Statement (Loc,
7615 Declarations =>
7616 New_List (Build_SS_Mark_Call (Loc, M)),
7617 Handled_Statement_Sequence =>
7618 Make_Handled_Sequence_Of_Statements (Loc,
7619 Statements => New_List (Build_SS_Release_Call (Loc, M))));
7620 end Make_Bignum_Block;
7622 ----------------------------------
7623 -- Minimize_Eliminate_Overflows --
7624 ----------------------------------
7626 -- This is a recursive routine that is called at the top of an expression
7627 -- tree to properly process overflow checking for a whole subtree by making
7628 -- recursive calls to process operands. This processing may involve the use
7629 -- of bignum or long long integer arithmetic, which will change the types
7630 -- of operands and results. That's why we can't do this bottom up (since
7631 -- it would interfere with semantic analysis).
7633 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
7634 -- the operator expansion routines, as well as the expansion routines for
7635 -- if/case expression, do nothing (for the moment) except call the routine
7636 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
7637 -- routine does nothing for non top-level nodes, so at the point where the
7638 -- call is made for the top level node, the entire expression subtree has
7639 -- not been expanded, or processed for overflow. All that has to happen as
7640 -- a result of the top level call to this routine.
7642 -- As noted above, the overflow processing works by making recursive calls
7643 -- for the operands, and figuring out what to do, based on the processing
7644 -- of these operands (e.g. if a bignum operand appears, the parent op has
7645 -- to be done in bignum mode), and the determined ranges of the operands.
7647 -- After possible rewriting of a constituent subexpression node, a call is
7648 -- made to either reexpand the node (if nothing has changed) or reanalyze
7649 -- the node (if it has been modified by the overflow check processing). The
7650 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
7651 -- a recursive call into the whole overflow apparatus, an important rule
7652 -- for this call is that the overflow handling mode must be temporarily set
7653 -- to STRICT.
7655 procedure Minimize_Eliminate_Overflows
7656 (N : Node_Id;
7657 Lo : out Uint;
7658 Hi : out Uint;
7659 Top_Level : Boolean)
7661 Rtyp : constant Entity_Id := Etype (N);
7662 pragma Assert (Is_Signed_Integer_Type (Rtyp));
7663 -- Result type, must be a signed integer type
7665 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
7666 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
7668 Loc : constant Source_Ptr := Sloc (N);
7670 Rlo, Rhi : Uint;
7671 -- Ranges of values for right operand (operator case)
7673 Llo, Lhi : Uint;
7674 -- Ranges of values for left operand (operator case)
7676 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
7677 -- Operands and results are of this type when we convert
7679 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
7680 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
7681 -- Bounds of Long_Long_Integer
7683 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
7684 -- Indicates binary operator case
7686 OK : Boolean;
7687 -- Used in call to Determine_Range
7689 Bignum_Operands : Boolean;
7690 -- Set True if one or more operands is already of type Bignum, meaning
7691 -- that for sure (regardless of Top_Level setting) we are committed to
7692 -- doing the operation in Bignum mode (or in the case of a case or if
7693 -- expression, converting all the dependent expressions to Bignum).
7695 Long_Long_Integer_Operands : Boolean;
7696 -- Set True if one or more operands is already of type Long_Long_Integer
7697 -- which means that if the result is known to be in the result type
7698 -- range, then we must convert such operands back to the result type.
7700 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
7701 -- This is called when we have modified the node and we therefore need
7702 -- to reanalyze it. It is important that we reset the mode to STRICT for
7703 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
7704 -- we would reenter this routine recursively which would not be good.
7705 -- The argument Suppress is set True if we also want to suppress
7706 -- overflow checking for the reexpansion (this is set when we know
7707 -- overflow is not possible). Typ is the type for the reanalysis.
7709 procedure Reexpand (Suppress : Boolean := False);
7710 -- This is like Reanalyze, but does not do the Analyze step, it only
7711 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
7712 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
7713 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
7714 -- Note that skipping reanalysis is not just an optimization, testing
7715 -- has showed up several complex cases in which reanalyzing an already
7716 -- analyzed node causes incorrect behavior.
7718 function In_Result_Range return Boolean;
7719 -- Returns True iff Lo .. Hi are within range of the result type
7721 procedure Max (A : in out Uint; B : Uint);
7722 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
7724 procedure Min (A : in out Uint; B : Uint);
7725 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
7727 ---------------------
7728 -- In_Result_Range --
7729 ---------------------
7731 function In_Result_Range return Boolean is
7732 begin
7733 if Lo = No_Uint or else Hi = No_Uint then
7734 return False;
7736 elsif Is_OK_Static_Subtype (Etype (N)) then
7737 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
7738 and then
7739 Hi <= Expr_Value (Type_High_Bound (Rtyp));
7741 else
7742 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
7743 and then
7744 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
7745 end if;
7746 end In_Result_Range;
7748 ---------
7749 -- Max --
7750 ---------
7752 procedure Max (A : in out Uint; B : Uint) is
7753 begin
7754 if A = No_Uint or else B > A then
7755 A := B;
7756 end if;
7757 end Max;
7759 ---------
7760 -- Min --
7761 ---------
7763 procedure Min (A : in out Uint; B : Uint) is
7764 begin
7765 if A = No_Uint or else B < A then
7766 A := B;
7767 end if;
7768 end Min;
7770 ---------------
7771 -- Reanalyze --
7772 ---------------
7774 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
7775 Svg : constant Overflow_Mode_Type :=
7776 Scope_Suppress.Overflow_Mode_General;
7777 Sva : constant Overflow_Mode_Type :=
7778 Scope_Suppress.Overflow_Mode_Assertions;
7779 Svo : constant Boolean :=
7780 Scope_Suppress.Suppress (Overflow_Check);
7782 begin
7783 Scope_Suppress.Overflow_Mode_General := Strict;
7784 Scope_Suppress.Overflow_Mode_Assertions := Strict;
7786 if Suppress then
7787 Scope_Suppress.Suppress (Overflow_Check) := True;
7788 end if;
7790 Analyze_And_Resolve (N, Typ);
7792 Scope_Suppress.Suppress (Overflow_Check) := Svo;
7793 Scope_Suppress.Overflow_Mode_General := Svg;
7794 Scope_Suppress.Overflow_Mode_Assertions := Sva;
7795 end Reanalyze;
7797 --------------
7798 -- Reexpand --
7799 --------------
7801 procedure Reexpand (Suppress : Boolean := False) is
7802 Svg : constant Overflow_Mode_Type :=
7803 Scope_Suppress.Overflow_Mode_General;
7804 Sva : constant Overflow_Mode_Type :=
7805 Scope_Suppress.Overflow_Mode_Assertions;
7806 Svo : constant Boolean :=
7807 Scope_Suppress.Suppress (Overflow_Check);
7809 begin
7810 Scope_Suppress.Overflow_Mode_General := Strict;
7811 Scope_Suppress.Overflow_Mode_Assertions := Strict;
7812 Set_Analyzed (N, False);
7814 if Suppress then
7815 Scope_Suppress.Suppress (Overflow_Check) := True;
7816 end if;
7818 Expand (N);
7820 Scope_Suppress.Suppress (Overflow_Check) := Svo;
7821 Scope_Suppress.Overflow_Mode_General := Svg;
7822 Scope_Suppress.Overflow_Mode_Assertions := Sva;
7823 end Reexpand;
7825 -- Start of processing for Minimize_Eliminate_Overflows
7827 begin
7828 -- Case where we do not have a signed integer arithmetic operation
7830 if not Is_Signed_Integer_Arithmetic_Op (N) then
7832 -- Use the normal Determine_Range routine to get the range. We
7833 -- don't require operands to be valid, invalid values may result in
7834 -- rubbish results where the result has not been properly checked for
7835 -- overflow, that's fine.
7837 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
7839 -- If Determine_Range did not work (can this in fact happen? Not
7840 -- clear but might as well protect), use type bounds.
7842 if not OK then
7843 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
7844 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
7845 end if;
7847 -- If we don't have a binary operator, all we have to do is to set
7848 -- the Hi/Lo range, so we are done.
7850 return;
7852 -- Processing for if expression
7854 elsif Nkind (N) = N_If_Expression then
7855 declare
7856 Then_DE : constant Node_Id := Next (First (Expressions (N)));
7857 Else_DE : constant Node_Id := Next (Then_DE);
7859 begin
7860 Bignum_Operands := False;
7862 Minimize_Eliminate_Overflows
7863 (Then_DE, Lo, Hi, Top_Level => False);
7865 if Lo = No_Uint then
7866 Bignum_Operands := True;
7867 end if;
7869 Minimize_Eliminate_Overflows
7870 (Else_DE, Rlo, Rhi, Top_Level => False);
7872 if Rlo = No_Uint then
7873 Bignum_Operands := True;
7874 else
7875 Long_Long_Integer_Operands :=
7876 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
7878 Min (Lo, Rlo);
7879 Max (Hi, Rhi);
7880 end if;
7882 -- If at least one of our operands is now Bignum, we must rebuild
7883 -- the if expression to use Bignum operands. We will analyze the
7884 -- rebuilt if expression with overflow checks off, since once we
7885 -- are in bignum mode, we are all done with overflow checks.
7887 if Bignum_Operands then
7888 Rewrite (N,
7889 Make_If_Expression (Loc,
7890 Expressions => New_List (
7891 Remove_Head (Expressions (N)),
7892 Convert_To_Bignum (Then_DE),
7893 Convert_To_Bignum (Else_DE)),
7894 Is_Elsif => Is_Elsif (N)));
7896 Reanalyze (RTE (RE_Bignum), Suppress => True);
7898 -- If we have no Long_Long_Integer operands, then we are in result
7899 -- range, since it means that none of our operands felt the need
7900 -- to worry about overflow (otherwise it would have already been
7901 -- converted to long long integer or bignum). We reexpand to
7902 -- complete the expansion of the if expression (but we do not
7903 -- need to reanalyze).
7905 elsif not Long_Long_Integer_Operands then
7906 Set_Do_Overflow_Check (N, False);
7907 Reexpand;
7909 -- Otherwise convert us to long long integer mode. Note that we
7910 -- don't need any further overflow checking at this level.
7912 else
7913 Convert_To_And_Rewrite (LLIB, Then_DE);
7914 Convert_To_And_Rewrite (LLIB, Else_DE);
7915 Set_Etype (N, LLIB);
7917 -- Now reanalyze with overflow checks off
7919 Set_Do_Overflow_Check (N, False);
7920 Reanalyze (LLIB, Suppress => True);
7921 end if;
7922 end;
7924 return;
7926 -- Here for case expression
7928 elsif Nkind (N) = N_Case_Expression then
7929 Bignum_Operands := False;
7930 Long_Long_Integer_Operands := False;
7932 declare
7933 Alt : Node_Id;
7935 begin
7936 -- Loop through expressions applying recursive call
7938 Alt := First (Alternatives (N));
7939 while Present (Alt) loop
7940 declare
7941 Aexp : constant Node_Id := Expression (Alt);
7943 begin
7944 Minimize_Eliminate_Overflows
7945 (Aexp, Lo, Hi, Top_Level => False);
7947 if Lo = No_Uint then
7948 Bignum_Operands := True;
7949 elsif Etype (Aexp) = LLIB then
7950 Long_Long_Integer_Operands := True;
7951 end if;
7952 end;
7954 Next (Alt);
7955 end loop;
7957 -- If we have no bignum or long long integer operands, it means
7958 -- that none of our dependent expressions could raise overflow.
7959 -- In this case, we simply return with no changes except for
7960 -- resetting the overflow flag, since we are done with overflow
7961 -- checks for this node. We will reexpand to get the needed
7962 -- expansion for the case expression, but we do not need to
7963 -- reanalyze, since nothing has changed.
7965 if not (Bignum_Operands or Long_Long_Integer_Operands) then
7966 Set_Do_Overflow_Check (N, False);
7967 Reexpand (Suppress => True);
7969 -- Otherwise we are going to rebuild the case expression using
7970 -- either bignum or long long integer operands throughout.
7972 else
7973 declare
7974 Rtype : Entity_Id;
7975 New_Alts : List_Id;
7976 New_Exp : Node_Id;
7978 begin
7979 New_Alts := New_List;
7980 Alt := First (Alternatives (N));
7981 while Present (Alt) loop
7982 if Bignum_Operands then
7983 New_Exp := Convert_To_Bignum (Expression (Alt));
7984 Rtype := RTE (RE_Bignum);
7985 else
7986 New_Exp := Convert_To (LLIB, Expression (Alt));
7987 Rtype := LLIB;
7988 end if;
7990 Append_To (New_Alts,
7991 Make_Case_Expression_Alternative (Sloc (Alt),
7992 Actions => No_List,
7993 Discrete_Choices => Discrete_Choices (Alt),
7994 Expression => New_Exp));
7996 Next (Alt);
7997 end loop;
7999 Rewrite (N,
8000 Make_Case_Expression (Loc,
8001 Expression => Expression (N),
8002 Alternatives => New_Alts));
8004 Reanalyze (Rtype, Suppress => True);
8005 end;
8006 end if;
8007 end;
8009 return;
8010 end if;
8012 -- If we have an arithmetic operator we make recursive calls on the
8013 -- operands to get the ranges (and to properly process the subtree
8014 -- that lies below us).
8016 Minimize_Eliminate_Overflows
8017 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
8019 if Binary then
8020 Minimize_Eliminate_Overflows
8021 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
8022 end if;
8024 -- Record if we have Long_Long_Integer operands
8026 Long_Long_Integer_Operands :=
8027 Etype (Right_Opnd (N)) = LLIB
8028 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
8030 -- If either operand is a bignum, then result will be a bignum and we
8031 -- don't need to do any range analysis. As previously discussed we could
8032 -- do range analysis in such cases, but it could mean working with giant
8033 -- numbers at compile time for very little gain (the number of cases
8034 -- in which we could slip back from bignum mode is small).
8036 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
8037 Lo := No_Uint;
8038 Hi := No_Uint;
8039 Bignum_Operands := True;
8041 -- Otherwise compute result range
8043 else
8044 Bignum_Operands := False;
8046 case Nkind (N) is
8048 -- Absolute value
8050 when N_Op_Abs =>
8051 Lo := Uint_0;
8052 Hi := UI_Max (abs Rlo, abs Rhi);
8054 -- Addition
8056 when N_Op_Add =>
8057 Lo := Llo + Rlo;
8058 Hi := Lhi + Rhi;
8060 -- Division
8062 when N_Op_Divide =>
8064 -- If the right operand can only be zero, set 0..0
8066 if Rlo = 0 and then Rhi = 0 then
8067 Lo := Uint_0;
8068 Hi := Uint_0;
8070 -- Possible bounds of division must come from dividing end
8071 -- values of the input ranges (four possibilities), provided
8072 -- zero is not included in the possible values of the right
8073 -- operand.
8075 -- Otherwise, we just consider two intervals of values for
8076 -- the right operand: the interval of negative values (up to
8077 -- -1) and the interval of positive values (starting at 1).
8078 -- Since division by 1 is the identity, and division by -1
8079 -- is negation, we get all possible bounds of division in that
8080 -- case by considering:
8081 -- - all values from the division of end values of input
8082 -- ranges;
8083 -- - the end values of the left operand;
8084 -- - the negation of the end values of the left operand.
8086 else
8087 declare
8088 Mrk : constant Uintp.Save_Mark := Mark;
8089 -- Mark so we can release the RR and Ev values
8091 Ev1 : Uint;
8092 Ev2 : Uint;
8093 Ev3 : Uint;
8094 Ev4 : Uint;
8096 begin
8097 -- Discard extreme values of zero for the divisor, since
8098 -- they will simply result in an exception in any case.
8100 if Rlo = 0 then
8101 Rlo := Uint_1;
8102 elsif Rhi = 0 then
8103 Rhi := -Uint_1;
8104 end if;
8106 -- Compute possible bounds coming from dividing end
8107 -- values of the input ranges.
8109 Ev1 := Llo / Rlo;
8110 Ev2 := Llo / Rhi;
8111 Ev3 := Lhi / Rlo;
8112 Ev4 := Lhi / Rhi;
8114 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8115 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8117 -- If the right operand can be both negative or positive,
8118 -- include the end values of the left operand in the
8119 -- extreme values, as well as their negation.
8121 if Rlo < 0 and then Rhi > 0 then
8122 Ev1 := Llo;
8123 Ev2 := -Llo;
8124 Ev3 := Lhi;
8125 Ev4 := -Lhi;
8127 Min (Lo,
8128 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8129 Max (Hi,
8130 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
8131 end if;
8133 -- Release the RR and Ev values
8135 Release_And_Save (Mrk, Lo, Hi);
8136 end;
8137 end if;
8139 -- Exponentiation
8141 when N_Op_Expon =>
8143 -- Discard negative values for the exponent, since they will
8144 -- simply result in an exception in any case.
8146 if Rhi < 0 then
8147 Rhi := Uint_0;
8148 elsif Rlo < 0 then
8149 Rlo := Uint_0;
8150 end if;
8152 -- Estimate number of bits in result before we go computing
8153 -- giant useless bounds. Basically the number of bits in the
8154 -- result is the number of bits in the base multiplied by the
8155 -- value of the exponent. If this is big enough that the result
8156 -- definitely won't fit in Long_Long_Integer, switch to bignum
8157 -- mode immediately, and avoid computing giant bounds.
8159 -- The comparison here is approximate, but conservative, it
8160 -- only clicks on cases that are sure to exceed the bounds.
8162 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8163 Lo := No_Uint;
8164 Hi := No_Uint;
8166 -- If right operand is zero then result is 1
8168 elsif Rhi = 0 then
8169 Lo := Uint_1;
8170 Hi := Uint_1;
8172 else
8173 -- High bound comes either from exponentiation of largest
8174 -- positive value to largest exponent value, or from
8175 -- the exponentiation of most negative value to an
8176 -- even exponent.
8178 declare
8179 Hi1, Hi2 : Uint;
8181 begin
8182 if Lhi > 0 then
8183 Hi1 := Lhi ** Rhi;
8184 else
8185 Hi1 := Uint_0;
8186 end if;
8188 if Llo < 0 then
8189 if Rhi mod 2 = 0 then
8190 Hi2 := Llo ** Rhi;
8191 else
8192 Hi2 := Llo ** (Rhi - 1);
8193 end if;
8194 else
8195 Hi2 := Uint_0;
8196 end if;
8198 Hi := UI_Max (Hi1, Hi2);
8199 end;
8201 -- Result can only be negative if base can be negative
8203 if Llo < 0 then
8204 if Rhi mod 2 = 0 then
8205 Lo := Llo ** (Rhi - 1);
8206 else
8207 Lo := Llo ** Rhi;
8208 end if;
8210 -- Otherwise low bound is minimum ** minimum
8212 else
8213 Lo := Llo ** Rlo;
8214 end if;
8215 end if;
8217 -- Negation
8219 when N_Op_Minus =>
8220 Lo := -Rhi;
8221 Hi := -Rlo;
8223 -- Mod
8225 when N_Op_Mod =>
8226 declare
8227 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8228 -- This is the maximum absolute value of the result
8230 begin
8231 Lo := Uint_0;
8232 Hi := Uint_0;
8234 -- The result depends only on the sign and magnitude of
8235 -- the right operand, it does not depend on the sign or
8236 -- magnitude of the left operand.
8238 if Rlo < 0 then
8239 Lo := -Maxabs;
8240 end if;
8242 if Rhi > 0 then
8243 Hi := Maxabs;
8244 end if;
8245 end;
8247 -- Multiplication
8249 when N_Op_Multiply =>
8251 -- Possible bounds of multiplication must come from multiplying
8252 -- end values of the input ranges (four possibilities).
8254 declare
8255 Mrk : constant Uintp.Save_Mark := Mark;
8256 -- Mark so we can release the Ev values
8258 Ev1 : constant Uint := Llo * Rlo;
8259 Ev2 : constant Uint := Llo * Rhi;
8260 Ev3 : constant Uint := Lhi * Rlo;
8261 Ev4 : constant Uint := Lhi * Rhi;
8263 begin
8264 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8265 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8267 -- Release the Ev values
8269 Release_And_Save (Mrk, Lo, Hi);
8270 end;
8272 -- Plus operator (affirmation)
8274 when N_Op_Plus =>
8275 Lo := Rlo;
8276 Hi := Rhi;
8278 -- Remainder
8280 when N_Op_Rem =>
8281 declare
8282 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8283 -- This is the maximum absolute value of the result. Note
8284 -- that the result range does not depend on the sign of the
8285 -- right operand.
8287 begin
8288 Lo := Uint_0;
8289 Hi := Uint_0;
8291 -- Case of left operand negative, which results in a range
8292 -- of -Maxabs .. 0 for those negative values. If there are
8293 -- no negative values then Lo value of result is always 0.
8295 if Llo < 0 then
8296 Lo := -Maxabs;
8297 end if;
8299 -- Case of left operand positive
8301 if Lhi > 0 then
8302 Hi := Maxabs;
8303 end if;
8304 end;
8306 -- Subtract
8308 when N_Op_Subtract =>
8309 Lo := Llo - Rhi;
8310 Hi := Lhi - Rlo;
8312 -- Nothing else should be possible
8314 when others =>
8315 raise Program_Error;
8316 end case;
8317 end if;
8319 -- Here for the case where we have not rewritten anything (no bignum
8320 -- operands or long long integer operands), and we know the result.
8321 -- If we know we are in the result range, and we do not have Bignum
8322 -- operands or Long_Long_Integer operands, we can just reexpand with
8323 -- overflow checks turned off (since we know we cannot have overflow).
8324 -- As always the reexpansion is required to complete expansion of the
8325 -- operator, but we do not need to reanalyze, and we prevent recursion
8326 -- by suppressing the check.
8328 if not (Bignum_Operands or Long_Long_Integer_Operands)
8329 and then In_Result_Range
8330 then
8331 Set_Do_Overflow_Check (N, False);
8332 Reexpand (Suppress => True);
8333 return;
8335 -- Here we know that we are not in the result range, and in the general
8336 -- case we will move into either the Bignum or Long_Long_Integer domain
8337 -- to compute the result. However, there is one exception. If we are
8338 -- at the top level, and we do not have Bignum or Long_Long_Integer
8339 -- operands, we will have to immediately convert the result back to
8340 -- the result type, so there is no point in Bignum/Long_Long_Integer
8341 -- fiddling.
8343 elsif Top_Level
8344 and then not (Bignum_Operands or Long_Long_Integer_Operands)
8346 -- One further refinement. If we are at the top level, but our parent
8347 -- is a type conversion, then go into bignum or long long integer node
8348 -- since the result will be converted to that type directly without
8349 -- going through the result type, and we may avoid an overflow. This
8350 -- is the case for example of Long_Long_Integer (A ** 4), where A is
8351 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
8352 -- but does not fit in Integer.
8354 and then Nkind (Parent (N)) /= N_Type_Conversion
8355 then
8356 -- Here keep original types, but we need to complete analysis
8358 -- One subtlety. We can't just go ahead and do an analyze operation
8359 -- here because it will cause recursion into the whole MINIMIZED/
8360 -- ELIMINATED overflow processing which is not what we want. Here
8361 -- we are at the top level, and we need a check against the result
8362 -- mode (i.e. we want to use STRICT mode). So do exactly that.
8363 -- Also, we have not modified the node, so this is a case where
8364 -- we need to reexpand, but not reanalyze.
8366 Reexpand;
8367 return;
8369 -- Cases where we do the operation in Bignum mode. This happens either
8370 -- because one of our operands is in Bignum mode already, or because
8371 -- the computed bounds are outside the bounds of Long_Long_Integer,
8372 -- which in some cases can be indicated by Hi and Lo being No_Uint.
8374 -- Note: we could do better here and in some cases switch back from
8375 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
8376 -- 0 .. 1, but the cases are rare and it is not worth the effort.
8377 -- Failing to do this switching back is only an efficiency issue.
8379 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
8381 -- OK, we are definitely outside the range of Long_Long_Integer. The
8382 -- question is whether to move to Bignum mode, or stay in the domain
8383 -- of Long_Long_Integer, signalling that an overflow check is needed.
8385 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
8386 -- the Bignum business. In ELIMINATED mode, we will normally move
8387 -- into Bignum mode, but there is an exception if neither of our
8388 -- operands is Bignum now, and we are at the top level (Top_Level
8389 -- set True). In this case, there is no point in moving into Bignum
8390 -- mode to prevent overflow if the caller will immediately convert
8391 -- the Bignum value back to LLI with an overflow check. It's more
8392 -- efficient to stay in LLI mode with an overflow check (if needed)
8394 if Check_Mode = Minimized
8395 or else (Top_Level and not Bignum_Operands)
8396 then
8397 if Do_Overflow_Check (N) then
8398 Enable_Overflow_Check (N);
8399 end if;
8401 -- The result now has to be in Long_Long_Integer mode, so adjust
8402 -- the possible range to reflect this. Note these calls also
8403 -- change No_Uint values from the top level case to LLI bounds.
8405 Max (Lo, LLLo);
8406 Min (Hi, LLHi);
8408 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
8410 else
8411 pragma Assert (Check_Mode = Eliminated);
8413 declare
8414 Fent : Entity_Id;
8415 Args : List_Id;
8417 begin
8418 case Nkind (N) is
8419 when N_Op_Abs =>
8420 Fent := RTE (RE_Big_Abs);
8422 when N_Op_Add =>
8423 Fent := RTE (RE_Big_Add);
8425 when N_Op_Divide =>
8426 Fent := RTE (RE_Big_Div);
8428 when N_Op_Expon =>
8429 Fent := RTE (RE_Big_Exp);
8431 when N_Op_Minus =>
8432 Fent := RTE (RE_Big_Neg);
8434 when N_Op_Mod =>
8435 Fent := RTE (RE_Big_Mod);
8437 when N_Op_Multiply =>
8438 Fent := RTE (RE_Big_Mul);
8440 when N_Op_Rem =>
8441 Fent := RTE (RE_Big_Rem);
8443 when N_Op_Subtract =>
8444 Fent := RTE (RE_Big_Sub);
8446 -- Anything else is an internal error, this includes the
8447 -- N_Op_Plus case, since how can plus cause the result
8448 -- to be out of range if the operand is in range?
8450 when others =>
8451 raise Program_Error;
8452 end case;
8454 -- Construct argument list for Bignum call, converting our
8455 -- operands to Bignum form if they are not already there.
8457 Args := New_List;
8459 if Binary then
8460 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
8461 end if;
8463 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
8465 -- Now rewrite the arithmetic operator with a call to the
8466 -- corresponding bignum function.
8468 Rewrite (N,
8469 Make_Function_Call (Loc,
8470 Name => New_Occurrence_Of (Fent, Loc),
8471 Parameter_Associations => Args));
8472 Reanalyze (RTE (RE_Bignum), Suppress => True);
8474 -- Indicate result is Bignum mode
8476 Lo := No_Uint;
8477 Hi := No_Uint;
8478 return;
8479 end;
8480 end if;
8482 -- Otherwise we are in range of Long_Long_Integer, so no overflow
8483 -- check is required, at least not yet.
8485 else
8486 Set_Do_Overflow_Check (N, False);
8487 end if;
8489 -- Here we are not in Bignum territory, but we may have long long
8490 -- integer operands that need special handling. First a special check:
8491 -- If an exponentiation operator exponent is of type Long_Long_Integer,
8492 -- it means we converted it to prevent overflow, but exponentiation
8493 -- requires a Natural right operand, so convert it back to Natural.
8494 -- This conversion may raise an exception which is fine.
8496 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
8497 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
8498 end if;
8500 -- Here we will do the operation in Long_Long_Integer. We do this even
8501 -- if we know an overflow check is required, better to do this in long
8502 -- long integer mode, since we are less likely to overflow.
8504 -- Convert right or only operand to Long_Long_Integer, except that
8505 -- we do not touch the exponentiation right operand.
8507 if Nkind (N) /= N_Op_Expon then
8508 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
8509 end if;
8511 -- Convert left operand to Long_Long_Integer for binary case
8513 if Binary then
8514 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
8515 end if;
8517 -- Reset node to unanalyzed
8519 Set_Analyzed (N, False);
8520 Set_Etype (N, Empty);
8521 Set_Entity (N, Empty);
8523 -- Now analyze this new node. This reanalysis will complete processing
8524 -- for the node. In particular we will complete the expansion of an
8525 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
8526 -- we will complete any division checks (since we have not changed the
8527 -- setting of the Do_Division_Check flag).
8529 -- We do this reanalysis in STRICT mode to avoid recursion into the
8530 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
8532 declare
8533 SG : constant Overflow_Mode_Type :=
8534 Scope_Suppress.Overflow_Mode_General;
8535 SA : constant Overflow_Mode_Type :=
8536 Scope_Suppress.Overflow_Mode_Assertions;
8538 begin
8539 Scope_Suppress.Overflow_Mode_General := Strict;
8540 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8542 if not Do_Overflow_Check (N) then
8543 Reanalyze (LLIB, Suppress => True);
8544 else
8545 Reanalyze (LLIB);
8546 end if;
8548 Scope_Suppress.Overflow_Mode_General := SG;
8549 Scope_Suppress.Overflow_Mode_Assertions := SA;
8550 end;
8551 end Minimize_Eliminate_Overflows;
8553 -------------------------
8554 -- Overflow_Check_Mode --
8555 -------------------------
8557 function Overflow_Check_Mode return Overflow_Mode_Type is
8558 begin
8559 if In_Assertion_Expr = 0 then
8560 return Scope_Suppress.Overflow_Mode_General;
8561 else
8562 return Scope_Suppress.Overflow_Mode_Assertions;
8563 end if;
8564 end Overflow_Check_Mode;
8566 --------------------------------
8567 -- Overflow_Checks_Suppressed --
8568 --------------------------------
8570 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
8571 begin
8572 if Present (E) and then Checks_May_Be_Suppressed (E) then
8573 return Is_Check_Suppressed (E, Overflow_Check);
8574 else
8575 return Scope_Suppress.Suppress (Overflow_Check);
8576 end if;
8577 end Overflow_Checks_Suppressed;
8579 ---------------------------------
8580 -- Predicate_Checks_Suppressed --
8581 ---------------------------------
8583 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
8584 begin
8585 if Present (E) and then Checks_May_Be_Suppressed (E) then
8586 return Is_Check_Suppressed (E, Predicate_Check);
8587 else
8588 return Scope_Suppress.Suppress (Predicate_Check);
8589 end if;
8590 end Predicate_Checks_Suppressed;
8592 -----------------------------
8593 -- Range_Checks_Suppressed --
8594 -----------------------------
8596 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
8597 begin
8598 if Present (E) then
8599 if Kill_Range_Checks (E) then
8600 return True;
8602 elsif Checks_May_Be_Suppressed (E) then
8603 return Is_Check_Suppressed (E, Range_Check);
8604 end if;
8605 end if;
8607 return Scope_Suppress.Suppress (Range_Check);
8608 end Range_Checks_Suppressed;
8610 -----------------------------------------
8611 -- Range_Or_Validity_Checks_Suppressed --
8612 -----------------------------------------
8614 -- Note: the coding would be simpler here if we simply made appropriate
8615 -- calls to Range/Validity_Checks_Suppressed, but that would result in
8616 -- duplicated checks which we prefer to avoid.
8618 function Range_Or_Validity_Checks_Suppressed
8619 (Expr : Node_Id) return Boolean
8621 begin
8622 -- Immediate return if scope checks suppressed for either check
8624 if Scope_Suppress.Suppress (Range_Check)
8626 Scope_Suppress.Suppress (Validity_Check)
8627 then
8628 return True;
8629 end if;
8631 -- If no expression, that's odd, decide that checks are suppressed,
8632 -- since we don't want anyone trying to do checks in this case, which
8633 -- is most likely the result of some other error.
8635 if No (Expr) then
8636 return True;
8637 end if;
8639 -- Expression is present, so perform suppress checks on type
8641 declare
8642 Typ : constant Entity_Id := Etype (Expr);
8643 begin
8644 if Checks_May_Be_Suppressed (Typ)
8645 and then (Is_Check_Suppressed (Typ, Range_Check)
8646 or else
8647 Is_Check_Suppressed (Typ, Validity_Check))
8648 then
8649 return True;
8650 end if;
8651 end;
8653 -- If expression is an entity name, perform checks on this entity
8655 if Is_Entity_Name (Expr) then
8656 declare
8657 Ent : constant Entity_Id := Entity (Expr);
8658 begin
8659 if Checks_May_Be_Suppressed (Ent) then
8660 return Is_Check_Suppressed (Ent, Range_Check)
8661 or else Is_Check_Suppressed (Ent, Validity_Check);
8662 end if;
8663 end;
8664 end if;
8666 -- If we fall through, no checks suppressed
8668 return False;
8669 end Range_Or_Validity_Checks_Suppressed;
8671 -------------------
8672 -- Remove_Checks --
8673 -------------------
8675 procedure Remove_Checks (Expr : Node_Id) is
8676 function Process (N : Node_Id) return Traverse_Result;
8677 -- Process a single node during the traversal
8679 procedure Traverse is new Traverse_Proc (Process);
8680 -- The traversal procedure itself
8682 -------------
8683 -- Process --
8684 -------------
8686 function Process (N : Node_Id) return Traverse_Result is
8687 begin
8688 if Nkind (N) not in N_Subexpr then
8689 return Skip;
8690 end if;
8692 Set_Do_Range_Check (N, False);
8694 case Nkind (N) is
8695 when N_And_Then =>
8696 Traverse (Left_Opnd (N));
8697 return Skip;
8699 when N_Attribute_Reference =>
8700 Set_Do_Overflow_Check (N, False);
8702 when N_Function_Call =>
8703 Set_Do_Tag_Check (N, False);
8705 when N_Op =>
8706 Set_Do_Overflow_Check (N, False);
8708 case Nkind (N) is
8709 when N_Op_Divide =>
8710 Set_Do_Division_Check (N, False);
8712 when N_Op_And =>
8713 Set_Do_Length_Check (N, False);
8715 when N_Op_Mod =>
8716 Set_Do_Division_Check (N, False);
8718 when N_Op_Or =>
8719 Set_Do_Length_Check (N, False);
8721 when N_Op_Rem =>
8722 Set_Do_Division_Check (N, False);
8724 when N_Op_Xor =>
8725 Set_Do_Length_Check (N, False);
8727 when others =>
8728 null;
8729 end case;
8731 when N_Or_Else =>
8732 Traverse (Left_Opnd (N));
8733 return Skip;
8735 when N_Selected_Component =>
8736 Set_Do_Discriminant_Check (N, False);
8738 when N_Type_Conversion =>
8739 Set_Do_Length_Check (N, False);
8740 Set_Do_Tag_Check (N, False);
8741 Set_Do_Overflow_Check (N, False);
8743 when others =>
8744 null;
8745 end case;
8747 return OK;
8748 end Process;
8750 -- Start of processing for Remove_Checks
8752 begin
8753 Traverse (Expr);
8754 end Remove_Checks;
8756 ----------------------------
8757 -- Selected_Length_Checks --
8758 ----------------------------
8760 function Selected_Length_Checks
8761 (Ck_Node : Node_Id;
8762 Target_Typ : Entity_Id;
8763 Source_Typ : Entity_Id;
8764 Warn_Node : Node_Id) return Check_Result
8766 Loc : constant Source_Ptr := Sloc (Ck_Node);
8767 S_Typ : Entity_Id;
8768 T_Typ : Entity_Id;
8769 Expr_Actual : Node_Id;
8770 Exptyp : Entity_Id;
8771 Cond : Node_Id := Empty;
8772 Do_Access : Boolean := False;
8773 Wnode : Node_Id := Warn_Node;
8774 Ret_Result : Check_Result := (Empty, Empty);
8775 Num_Checks : Natural := 0;
8777 procedure Add_Check (N : Node_Id);
8778 -- Adds the action given to Ret_Result if N is non-Empty
8780 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
8781 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
8782 -- Comments required ???
8784 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
8785 -- True for equal literals and for nodes that denote the same constant
8786 -- entity, even if its value is not a static constant. This includes the
8787 -- case of a discriminal reference within an init proc. Removes some
8788 -- obviously superfluous checks.
8790 function Length_E_Cond
8791 (Exptyp : Entity_Id;
8792 Typ : Entity_Id;
8793 Indx : Nat) return Node_Id;
8794 -- Returns expression to compute:
8795 -- Typ'Length /= Exptyp'Length
8797 function Length_N_Cond
8798 (Expr : Node_Id;
8799 Typ : Entity_Id;
8800 Indx : Nat) return Node_Id;
8801 -- Returns expression to compute:
8802 -- Typ'Length /= Expr'Length
8804 ---------------
8805 -- Add_Check --
8806 ---------------
8808 procedure Add_Check (N : Node_Id) is
8809 begin
8810 if Present (N) then
8812 -- For now, ignore attempt to place more than two checks ???
8813 -- This is really worrisome, are we really discarding checks ???
8815 if Num_Checks = 2 then
8816 return;
8817 end if;
8819 pragma Assert (Num_Checks <= 1);
8820 Num_Checks := Num_Checks + 1;
8821 Ret_Result (Num_Checks) := N;
8822 end if;
8823 end Add_Check;
8825 ------------------
8826 -- Get_E_Length --
8827 ------------------
8829 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
8830 SE : constant Entity_Id := Scope (E);
8831 N : Node_Id;
8832 E1 : Entity_Id := E;
8834 begin
8835 if Ekind (Scope (E)) = E_Record_Type
8836 and then Has_Discriminants (Scope (E))
8837 then
8838 N := Build_Discriminal_Subtype_Of_Component (E);
8840 if Present (N) then
8841 Insert_Action (Ck_Node, N);
8842 E1 := Defining_Identifier (N);
8843 end if;
8844 end if;
8846 if Ekind (E1) = E_String_Literal_Subtype then
8847 return
8848 Make_Integer_Literal (Loc,
8849 Intval => String_Literal_Length (E1));
8851 elsif SE /= Standard_Standard
8852 and then Ekind (Scope (SE)) = E_Protected_Type
8853 and then Has_Discriminants (Scope (SE))
8854 and then Has_Completion (Scope (SE))
8855 and then not Inside_Init_Proc
8856 then
8857 -- If the type whose length is needed is a private component
8858 -- constrained by a discriminant, we must expand the 'Length
8859 -- attribute into an explicit computation, using the discriminal
8860 -- of the current protected operation. This is because the actual
8861 -- type of the prival is constructed after the protected opera-
8862 -- tion has been fully expanded.
8864 declare
8865 Indx_Type : Node_Id;
8866 Lo : Node_Id;
8867 Hi : Node_Id;
8868 Do_Expand : Boolean := False;
8870 begin
8871 Indx_Type := First_Index (E);
8873 for J in 1 .. Indx - 1 loop
8874 Next_Index (Indx_Type);
8875 end loop;
8877 Get_Index_Bounds (Indx_Type, Lo, Hi);
8879 if Nkind (Lo) = N_Identifier
8880 and then Ekind (Entity (Lo)) = E_In_Parameter
8881 then
8882 Lo := Get_Discriminal (E, Lo);
8883 Do_Expand := True;
8884 end if;
8886 if Nkind (Hi) = N_Identifier
8887 and then Ekind (Entity (Hi)) = E_In_Parameter
8888 then
8889 Hi := Get_Discriminal (E, Hi);
8890 Do_Expand := True;
8891 end if;
8893 if Do_Expand then
8894 if not Is_Entity_Name (Lo) then
8895 Lo := Duplicate_Subexpr_No_Checks (Lo);
8896 end if;
8898 if not Is_Entity_Name (Hi) then
8899 Lo := Duplicate_Subexpr_No_Checks (Hi);
8900 end if;
8902 N :=
8903 Make_Op_Add (Loc,
8904 Left_Opnd =>
8905 Make_Op_Subtract (Loc,
8906 Left_Opnd => Hi,
8907 Right_Opnd => Lo),
8909 Right_Opnd => Make_Integer_Literal (Loc, 1));
8910 return N;
8912 else
8913 N :=
8914 Make_Attribute_Reference (Loc,
8915 Attribute_Name => Name_Length,
8916 Prefix =>
8917 New_Occurrence_Of (E1, Loc));
8919 if Indx > 1 then
8920 Set_Expressions (N, New_List (
8921 Make_Integer_Literal (Loc, Indx)));
8922 end if;
8924 return N;
8925 end if;
8926 end;
8928 else
8929 N :=
8930 Make_Attribute_Reference (Loc,
8931 Attribute_Name => Name_Length,
8932 Prefix =>
8933 New_Occurrence_Of (E1, Loc));
8935 if Indx > 1 then
8936 Set_Expressions (N, New_List (
8937 Make_Integer_Literal (Loc, Indx)));
8938 end if;
8940 return N;
8941 end if;
8942 end Get_E_Length;
8944 ------------------
8945 -- Get_N_Length --
8946 ------------------
8948 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
8949 begin
8950 return
8951 Make_Attribute_Reference (Loc,
8952 Attribute_Name => Name_Length,
8953 Prefix =>
8954 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
8955 Expressions => New_List (
8956 Make_Integer_Literal (Loc, Indx)));
8957 end Get_N_Length;
8959 -------------------
8960 -- Length_E_Cond --
8961 -------------------
8963 function Length_E_Cond
8964 (Exptyp : Entity_Id;
8965 Typ : Entity_Id;
8966 Indx : Nat) return Node_Id
8968 begin
8969 return
8970 Make_Op_Ne (Loc,
8971 Left_Opnd => Get_E_Length (Typ, Indx),
8972 Right_Opnd => Get_E_Length (Exptyp, Indx));
8973 end Length_E_Cond;
8975 -------------------
8976 -- Length_N_Cond --
8977 -------------------
8979 function Length_N_Cond
8980 (Expr : Node_Id;
8981 Typ : Entity_Id;
8982 Indx : Nat) return Node_Id
8984 begin
8985 return
8986 Make_Op_Ne (Loc,
8987 Left_Opnd => Get_E_Length (Typ, Indx),
8988 Right_Opnd => Get_N_Length (Expr, Indx));
8989 end Length_N_Cond;
8991 -----------------
8992 -- Same_Bounds --
8993 -----------------
8995 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
8996 begin
8997 return
8998 (Nkind (L) = N_Integer_Literal
8999 and then Nkind (R) = N_Integer_Literal
9000 and then Intval (L) = Intval (R))
9002 or else
9003 (Is_Entity_Name (L)
9004 and then Ekind (Entity (L)) = E_Constant
9005 and then ((Is_Entity_Name (R)
9006 and then Entity (L) = Entity (R))
9007 or else
9008 (Nkind (R) = N_Type_Conversion
9009 and then Is_Entity_Name (Expression (R))
9010 and then Entity (L) = Entity (Expression (R)))))
9012 or else
9013 (Is_Entity_Name (R)
9014 and then Ekind (Entity (R)) = E_Constant
9015 and then Nkind (L) = N_Type_Conversion
9016 and then Is_Entity_Name (Expression (L))
9017 and then Entity (R) = Entity (Expression (L)))
9019 or else
9020 (Is_Entity_Name (L)
9021 and then Is_Entity_Name (R)
9022 and then Entity (L) = Entity (R)
9023 and then Ekind (Entity (L)) = E_In_Parameter
9024 and then Inside_Init_Proc);
9025 end Same_Bounds;
9027 -- Start of processing for Selected_Length_Checks
9029 begin
9030 if not Expander_Active then
9031 return Ret_Result;
9032 end if;
9034 if Target_Typ = Any_Type
9035 or else Target_Typ = Any_Composite
9036 or else Raises_Constraint_Error (Ck_Node)
9037 then
9038 return Ret_Result;
9039 end if;
9041 if No (Wnode) then
9042 Wnode := Ck_Node;
9043 end if;
9045 T_Typ := Target_Typ;
9047 if No (Source_Typ) then
9048 S_Typ := Etype (Ck_Node);
9049 else
9050 S_Typ := Source_Typ;
9051 end if;
9053 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9054 return Ret_Result;
9055 end if;
9057 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9058 S_Typ := Designated_Type (S_Typ);
9059 T_Typ := Designated_Type (T_Typ);
9060 Do_Access := True;
9062 -- A simple optimization for the null case
9064 if Known_Null (Ck_Node) then
9065 return Ret_Result;
9066 end if;
9067 end if;
9069 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9070 if Is_Constrained (T_Typ) then
9072 -- The checking code to be generated will freeze the corresponding
9073 -- array type. However, we must freeze the type now, so that the
9074 -- freeze node does not appear within the generated if expression,
9075 -- but ahead of it.
9077 Freeze_Before (Ck_Node, T_Typ);
9079 Expr_Actual := Get_Referenced_Object (Ck_Node);
9080 Exptyp := Get_Actual_Subtype (Ck_Node);
9082 if Is_Access_Type (Exptyp) then
9083 Exptyp := Designated_Type (Exptyp);
9084 end if;
9086 -- String_Literal case. This needs to be handled specially be-
9087 -- cause no index types are available for string literals. The
9088 -- condition is simply:
9090 -- T_Typ'Length = string-literal-length
9092 if Nkind (Expr_Actual) = N_String_Literal
9093 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9094 then
9095 Cond :=
9096 Make_Op_Ne (Loc,
9097 Left_Opnd => Get_E_Length (T_Typ, 1),
9098 Right_Opnd =>
9099 Make_Integer_Literal (Loc,
9100 Intval =>
9101 String_Literal_Length (Etype (Expr_Actual))));
9103 -- General array case. Here we have a usable actual subtype for
9104 -- the expression, and the condition is built from the two types
9105 -- (Do_Length):
9107 -- T_Typ'Length /= Exptyp'Length or else
9108 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9109 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9110 -- ...
9112 elsif Is_Constrained (Exptyp) then
9113 declare
9114 Ndims : constant Nat := Number_Dimensions (T_Typ);
9116 L_Index : Node_Id;
9117 R_Index : Node_Id;
9118 L_Low : Node_Id;
9119 L_High : Node_Id;
9120 R_Low : Node_Id;
9121 R_High : Node_Id;
9122 L_Length : Uint;
9123 R_Length : Uint;
9124 Ref_Node : Node_Id;
9126 begin
9127 -- At the library level, we need to ensure that the type of
9128 -- the object is elaborated before the check itself is
9129 -- emitted. This is only done if the object is in the
9130 -- current compilation unit, otherwise the type is frozen
9131 -- and elaborated in its unit.
9133 if Is_Itype (Exptyp)
9134 and then
9135 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9136 and then
9137 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
9138 and then In_Open_Scopes (Scope (Exptyp))
9139 then
9140 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9141 Set_Itype (Ref_Node, Exptyp);
9142 Insert_Action (Ck_Node, Ref_Node);
9143 end if;
9145 L_Index := First_Index (T_Typ);
9146 R_Index := First_Index (Exptyp);
9148 for Indx in 1 .. Ndims loop
9149 if not (Nkind (L_Index) = N_Raise_Constraint_Error
9150 or else
9151 Nkind (R_Index) = N_Raise_Constraint_Error)
9152 then
9153 Get_Index_Bounds (L_Index, L_Low, L_High);
9154 Get_Index_Bounds (R_Index, R_Low, R_High);
9156 -- Deal with compile time length check. Note that we
9157 -- skip this in the access case, because the access
9158 -- value may be null, so we cannot know statically.
9160 if not Do_Access
9161 and then Compile_Time_Known_Value (L_Low)
9162 and then Compile_Time_Known_Value (L_High)
9163 and then Compile_Time_Known_Value (R_Low)
9164 and then Compile_Time_Known_Value (R_High)
9165 then
9166 if Expr_Value (L_High) >= Expr_Value (L_Low) then
9167 L_Length := Expr_Value (L_High) -
9168 Expr_Value (L_Low) + 1;
9169 else
9170 L_Length := UI_From_Int (0);
9171 end if;
9173 if Expr_Value (R_High) >= Expr_Value (R_Low) then
9174 R_Length := Expr_Value (R_High) -
9175 Expr_Value (R_Low) + 1;
9176 else
9177 R_Length := UI_From_Int (0);
9178 end if;
9180 if L_Length > R_Length then
9181 Add_Check
9182 (Compile_Time_Constraint_Error
9183 (Wnode, "too few elements for}??", T_Typ));
9185 elsif L_Length < R_Length then
9186 Add_Check
9187 (Compile_Time_Constraint_Error
9188 (Wnode, "too many elements for}??", T_Typ));
9189 end if;
9191 -- The comparison for an individual index subtype
9192 -- is omitted if the corresponding index subtypes
9193 -- statically match, since the result is known to
9194 -- be true. Note that this test is worth while even
9195 -- though we do static evaluation, because non-static
9196 -- subtypes can statically match.
9198 elsif not
9199 Subtypes_Statically_Match
9200 (Etype (L_Index), Etype (R_Index))
9202 and then not
9203 (Same_Bounds (L_Low, R_Low)
9204 and then Same_Bounds (L_High, R_High))
9205 then
9206 Evolve_Or_Else
9207 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
9208 end if;
9210 Next (L_Index);
9211 Next (R_Index);
9212 end if;
9213 end loop;
9214 end;
9216 -- Handle cases where we do not get a usable actual subtype that
9217 -- is constrained. This happens for example in the function call
9218 -- and explicit dereference cases. In these cases, we have to get
9219 -- the length or range from the expression itself, making sure we
9220 -- do not evaluate it more than once.
9222 -- Here Ck_Node is the original expression, or more properly the
9223 -- result of applying Duplicate_Expr to the original tree, forcing
9224 -- the result to be a name.
9226 else
9227 declare
9228 Ndims : constant Nat := Number_Dimensions (T_Typ);
9230 begin
9231 -- Build the condition for the explicit dereference case
9233 for Indx in 1 .. Ndims loop
9234 Evolve_Or_Else
9235 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
9236 end loop;
9237 end;
9238 end if;
9239 end if;
9240 end if;
9242 -- Construct the test and insert into the tree
9244 if Present (Cond) then
9245 if Do_Access then
9246 Cond := Guard_Access (Cond, Loc, Ck_Node);
9247 end if;
9249 Add_Check
9250 (Make_Raise_Constraint_Error (Loc,
9251 Condition => Cond,
9252 Reason => CE_Length_Check_Failed));
9253 end if;
9255 return Ret_Result;
9256 end Selected_Length_Checks;
9258 ---------------------------
9259 -- Selected_Range_Checks --
9260 ---------------------------
9262 function Selected_Range_Checks
9263 (Ck_Node : Node_Id;
9264 Target_Typ : Entity_Id;
9265 Source_Typ : Entity_Id;
9266 Warn_Node : Node_Id) return Check_Result
9268 Loc : constant Source_Ptr := Sloc (Ck_Node);
9269 S_Typ : Entity_Id;
9270 T_Typ : Entity_Id;
9271 Expr_Actual : Node_Id;
9272 Exptyp : Entity_Id;
9273 Cond : Node_Id := Empty;
9274 Do_Access : Boolean := False;
9275 Wnode : Node_Id := Warn_Node;
9276 Ret_Result : Check_Result := (Empty, Empty);
9277 Num_Checks : Integer := 0;
9279 procedure Add_Check (N : Node_Id);
9280 -- Adds the action given to Ret_Result if N is non-Empty
9282 function Discrete_Range_Cond
9283 (Expr : Node_Id;
9284 Typ : Entity_Id) return Node_Id;
9285 -- Returns expression to compute:
9286 -- Low_Bound (Expr) < Typ'First
9287 -- or else
9288 -- High_Bound (Expr) > Typ'Last
9290 function Discrete_Expr_Cond
9291 (Expr : Node_Id;
9292 Typ : Entity_Id) return Node_Id;
9293 -- Returns expression to compute:
9294 -- Expr < Typ'First
9295 -- or else
9296 -- Expr > Typ'Last
9298 function Get_E_First_Or_Last
9299 (Loc : Source_Ptr;
9300 E : Entity_Id;
9301 Indx : Nat;
9302 Nam : Name_Id) return Node_Id;
9303 -- Returns an attribute reference
9304 -- E'First or E'Last
9305 -- with a source location of Loc.
9307 -- Nam is Name_First or Name_Last, according to which attribute is
9308 -- desired. If Indx is non-zero, it is passed as a literal in the
9309 -- Expressions of the attribute reference (identifying the desired
9310 -- array dimension).
9312 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
9313 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
9314 -- Returns expression to compute:
9315 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
9317 function Range_E_Cond
9318 (Exptyp : Entity_Id;
9319 Typ : Entity_Id;
9320 Indx : Nat)
9321 return Node_Id;
9322 -- Returns expression to compute:
9323 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9325 function Range_Equal_E_Cond
9326 (Exptyp : Entity_Id;
9327 Typ : Entity_Id;
9328 Indx : Nat) return Node_Id;
9329 -- Returns expression to compute:
9330 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9332 function Range_N_Cond
9333 (Expr : Node_Id;
9334 Typ : Entity_Id;
9335 Indx : Nat) return Node_Id;
9336 -- Return expression to compute:
9337 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9339 ---------------
9340 -- Add_Check --
9341 ---------------
9343 procedure Add_Check (N : Node_Id) is
9344 begin
9345 if Present (N) then
9347 -- For now, ignore attempt to place more than 2 checks ???
9349 if Num_Checks = 2 then
9350 return;
9351 end if;
9353 pragma Assert (Num_Checks <= 1);
9354 Num_Checks := Num_Checks + 1;
9355 Ret_Result (Num_Checks) := N;
9356 end if;
9357 end Add_Check;
9359 -------------------------
9360 -- Discrete_Expr_Cond --
9361 -------------------------
9363 function Discrete_Expr_Cond
9364 (Expr : Node_Id;
9365 Typ : Entity_Id) return Node_Id
9367 begin
9368 return
9369 Make_Or_Else (Loc,
9370 Left_Opnd =>
9371 Make_Op_Lt (Loc,
9372 Left_Opnd =>
9373 Convert_To (Base_Type (Typ),
9374 Duplicate_Subexpr_No_Checks (Expr)),
9375 Right_Opnd =>
9376 Convert_To (Base_Type (Typ),
9377 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
9379 Right_Opnd =>
9380 Make_Op_Gt (Loc,
9381 Left_Opnd =>
9382 Convert_To (Base_Type (Typ),
9383 Duplicate_Subexpr_No_Checks (Expr)),
9384 Right_Opnd =>
9385 Convert_To
9386 (Base_Type (Typ),
9387 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
9388 end Discrete_Expr_Cond;
9390 -------------------------
9391 -- Discrete_Range_Cond --
9392 -------------------------
9394 function Discrete_Range_Cond
9395 (Expr : Node_Id;
9396 Typ : Entity_Id) return Node_Id
9398 LB : Node_Id := Low_Bound (Expr);
9399 HB : Node_Id := High_Bound (Expr);
9401 Left_Opnd : Node_Id;
9402 Right_Opnd : Node_Id;
9404 begin
9405 if Nkind (LB) = N_Identifier
9406 and then Ekind (Entity (LB)) = E_Discriminant
9407 then
9408 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
9409 end if;
9411 Left_Opnd :=
9412 Make_Op_Lt (Loc,
9413 Left_Opnd =>
9414 Convert_To
9415 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
9417 Right_Opnd =>
9418 Convert_To
9419 (Base_Type (Typ),
9420 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
9422 if Nkind (HB) = N_Identifier
9423 and then Ekind (Entity (HB)) = E_Discriminant
9424 then
9425 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
9426 end if;
9428 Right_Opnd :=
9429 Make_Op_Gt (Loc,
9430 Left_Opnd =>
9431 Convert_To
9432 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
9434 Right_Opnd =>
9435 Convert_To
9436 (Base_Type (Typ),
9437 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
9439 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
9440 end Discrete_Range_Cond;
9442 -------------------------
9443 -- Get_E_First_Or_Last --
9444 -------------------------
9446 function Get_E_First_Or_Last
9447 (Loc : Source_Ptr;
9448 E : Entity_Id;
9449 Indx : Nat;
9450 Nam : Name_Id) return Node_Id
9452 Exprs : List_Id;
9453 begin
9454 if Indx > 0 then
9455 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
9456 else
9457 Exprs := No_List;
9458 end if;
9460 return Make_Attribute_Reference (Loc,
9461 Prefix => New_Occurrence_Of (E, Loc),
9462 Attribute_Name => Nam,
9463 Expressions => Exprs);
9464 end Get_E_First_Or_Last;
9466 -----------------
9467 -- Get_N_First --
9468 -----------------
9470 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
9471 begin
9472 return
9473 Make_Attribute_Reference (Loc,
9474 Attribute_Name => Name_First,
9475 Prefix =>
9476 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9477 Expressions => New_List (
9478 Make_Integer_Literal (Loc, Indx)));
9479 end Get_N_First;
9481 ----------------
9482 -- Get_N_Last --
9483 ----------------
9485 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
9486 begin
9487 return
9488 Make_Attribute_Reference (Loc,
9489 Attribute_Name => Name_Last,
9490 Prefix =>
9491 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9492 Expressions => New_List (
9493 Make_Integer_Literal (Loc, Indx)));
9494 end Get_N_Last;
9496 ------------------
9497 -- Range_E_Cond --
9498 ------------------
9500 function Range_E_Cond
9501 (Exptyp : Entity_Id;
9502 Typ : Entity_Id;
9503 Indx : Nat) return Node_Id
9505 begin
9506 return
9507 Make_Or_Else (Loc,
9508 Left_Opnd =>
9509 Make_Op_Lt (Loc,
9510 Left_Opnd =>
9511 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
9512 Right_Opnd =>
9513 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
9515 Right_Opnd =>
9516 Make_Op_Gt (Loc,
9517 Left_Opnd =>
9518 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
9519 Right_Opnd =>
9520 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
9521 end Range_E_Cond;
9523 ------------------------
9524 -- Range_Equal_E_Cond --
9525 ------------------------
9527 function Range_Equal_E_Cond
9528 (Exptyp : Entity_Id;
9529 Typ : Entity_Id;
9530 Indx : Nat) return Node_Id
9532 begin
9533 return
9534 Make_Or_Else (Loc,
9535 Left_Opnd =>
9536 Make_Op_Ne (Loc,
9537 Left_Opnd =>
9538 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
9539 Right_Opnd =>
9540 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
9542 Right_Opnd =>
9543 Make_Op_Ne (Loc,
9544 Left_Opnd =>
9545 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
9546 Right_Opnd =>
9547 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
9548 end Range_Equal_E_Cond;
9550 ------------------
9551 -- Range_N_Cond --
9552 ------------------
9554 function Range_N_Cond
9555 (Expr : Node_Id;
9556 Typ : Entity_Id;
9557 Indx : Nat) return Node_Id
9559 begin
9560 return
9561 Make_Or_Else (Loc,
9562 Left_Opnd =>
9563 Make_Op_Lt (Loc,
9564 Left_Opnd =>
9565 Get_N_First (Expr, Indx),
9566 Right_Opnd =>
9567 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
9569 Right_Opnd =>
9570 Make_Op_Gt (Loc,
9571 Left_Opnd =>
9572 Get_N_Last (Expr, Indx),
9573 Right_Opnd =>
9574 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
9575 end Range_N_Cond;
9577 -- Start of processing for Selected_Range_Checks
9579 begin
9580 if not Expander_Active then
9581 return Ret_Result;
9582 end if;
9584 if Target_Typ = Any_Type
9585 or else Target_Typ = Any_Composite
9586 or else Raises_Constraint_Error (Ck_Node)
9587 then
9588 return Ret_Result;
9589 end if;
9591 if No (Wnode) then
9592 Wnode := Ck_Node;
9593 end if;
9595 T_Typ := Target_Typ;
9597 if No (Source_Typ) then
9598 S_Typ := Etype (Ck_Node);
9599 else
9600 S_Typ := Source_Typ;
9601 end if;
9603 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9604 return Ret_Result;
9605 end if;
9607 -- The order of evaluating T_Typ before S_Typ seems to be critical
9608 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
9609 -- in, and since Node can be an N_Range node, it might be invalid.
9610 -- Should there be an assert check somewhere for taking the Etype of
9611 -- an N_Range node ???
9613 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9614 S_Typ := Designated_Type (S_Typ);
9615 T_Typ := Designated_Type (T_Typ);
9616 Do_Access := True;
9618 -- A simple optimization for the null case
9620 if Known_Null (Ck_Node) then
9621 return Ret_Result;
9622 end if;
9623 end if;
9625 -- For an N_Range Node, check for a null range and then if not
9626 -- null generate a range check action.
9628 if Nkind (Ck_Node) = N_Range then
9630 -- There's no point in checking a range against itself
9632 if Ck_Node = Scalar_Range (T_Typ) then
9633 return Ret_Result;
9634 end if;
9636 declare
9637 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
9638 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
9639 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
9640 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
9642 LB : Node_Id := Low_Bound (Ck_Node);
9643 HB : Node_Id := High_Bound (Ck_Node);
9644 Known_LB : Boolean;
9645 Known_HB : Boolean;
9647 Null_Range : Boolean;
9648 Out_Of_Range_L : Boolean;
9649 Out_Of_Range_H : Boolean;
9651 begin
9652 -- Compute what is known at compile time
9654 if Known_T_LB and Known_T_HB then
9655 if Compile_Time_Known_Value (LB) then
9656 Known_LB := True;
9658 -- There's no point in checking that a bound is within its
9659 -- own range so pretend that it is known in this case. First
9660 -- deal with low bound.
9662 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
9663 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
9664 then
9665 LB := T_LB;
9666 Known_LB := True;
9668 else
9669 Known_LB := False;
9670 end if;
9672 -- Likewise for the high bound
9674 if Compile_Time_Known_Value (HB) then
9675 Known_HB := True;
9677 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
9678 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
9679 then
9680 HB := T_HB;
9681 Known_HB := True;
9682 else
9683 Known_HB := False;
9684 end if;
9685 end if;
9687 -- Check for case where everything is static and we can do the
9688 -- check at compile time. This is skipped if we have an access
9689 -- type, since the access value may be null.
9691 -- ??? This code can be improved since you only need to know that
9692 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
9693 -- compile time to emit pertinent messages.
9695 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
9696 and not Do_Access
9697 then
9698 -- Floating-point case
9700 if Is_Floating_Point_Type (S_Typ) then
9701 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
9702 Out_Of_Range_L :=
9703 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
9704 or else
9705 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
9707 Out_Of_Range_H :=
9708 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
9709 or else
9710 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
9712 -- Fixed or discrete type case
9714 else
9715 Null_Range := Expr_Value (HB) < Expr_Value (LB);
9716 Out_Of_Range_L :=
9717 (Expr_Value (LB) < Expr_Value (T_LB))
9718 or else
9719 (Expr_Value (LB) > Expr_Value (T_HB));
9721 Out_Of_Range_H :=
9722 (Expr_Value (HB) > Expr_Value (T_HB))
9723 or else
9724 (Expr_Value (HB) < Expr_Value (T_LB));
9725 end if;
9727 if not Null_Range then
9728 if Out_Of_Range_L then
9729 if No (Warn_Node) then
9730 Add_Check
9731 (Compile_Time_Constraint_Error
9732 (Low_Bound (Ck_Node),
9733 "static value out of range of}??", T_Typ));
9735 else
9736 Add_Check
9737 (Compile_Time_Constraint_Error
9738 (Wnode,
9739 "static range out of bounds of}??", T_Typ));
9740 end if;
9741 end if;
9743 if Out_Of_Range_H then
9744 if No (Warn_Node) then
9745 Add_Check
9746 (Compile_Time_Constraint_Error
9747 (High_Bound (Ck_Node),
9748 "static value out of range of}??", T_Typ));
9750 else
9751 Add_Check
9752 (Compile_Time_Constraint_Error
9753 (Wnode,
9754 "static range out of bounds of}??", T_Typ));
9755 end if;
9756 end if;
9757 end if;
9759 else
9760 declare
9761 LB : Node_Id := Low_Bound (Ck_Node);
9762 HB : Node_Id := High_Bound (Ck_Node);
9764 begin
9765 -- If either bound is a discriminant and we are within the
9766 -- record declaration, it is a use of the discriminant in a
9767 -- constraint of a component, and nothing can be checked
9768 -- here. The check will be emitted within the init proc.
9769 -- Before then, the discriminal has no real meaning.
9770 -- Similarly, if the entity is a discriminal, there is no
9771 -- check to perform yet.
9773 -- The same holds within a discriminated synchronized type,
9774 -- where the discriminant may constrain a component or an
9775 -- entry family.
9777 if Nkind (LB) = N_Identifier
9778 and then Denotes_Discriminant (LB, True)
9779 then
9780 if Current_Scope = Scope (Entity (LB))
9781 or else Is_Concurrent_Type (Current_Scope)
9782 or else Ekind (Entity (LB)) /= E_Discriminant
9783 then
9784 return Ret_Result;
9785 else
9786 LB :=
9787 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
9788 end if;
9789 end if;
9791 if Nkind (HB) = N_Identifier
9792 and then Denotes_Discriminant (HB, True)
9793 then
9794 if Current_Scope = Scope (Entity (HB))
9795 or else Is_Concurrent_Type (Current_Scope)
9796 or else Ekind (Entity (HB)) /= E_Discriminant
9797 then
9798 return Ret_Result;
9799 else
9800 HB :=
9801 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
9802 end if;
9803 end if;
9805 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
9806 Set_Paren_Count (Cond, 1);
9808 Cond :=
9809 Make_And_Then (Loc,
9810 Left_Opnd =>
9811 Make_Op_Ge (Loc,
9812 Left_Opnd =>
9813 Convert_To (Base_Type (Etype (HB)),
9814 Duplicate_Subexpr_No_Checks (HB)),
9815 Right_Opnd =>
9816 Convert_To (Base_Type (Etype (LB)),
9817 Duplicate_Subexpr_No_Checks (LB))),
9818 Right_Opnd => Cond);
9819 end;
9820 end if;
9821 end;
9823 elsif Is_Scalar_Type (S_Typ) then
9825 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
9826 -- except the above simply sets a flag in the node and lets
9827 -- gigi generate the check base on the Etype of the expression.
9828 -- Sometimes, however we want to do a dynamic check against an
9829 -- arbitrary target type, so we do that here.
9831 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
9832 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9834 -- For literals, we can tell if the constraint error will be
9835 -- raised at compile time, so we never need a dynamic check, but
9836 -- if the exception will be raised, then post the usual warning,
9837 -- and replace the literal with a raise constraint error
9838 -- expression. As usual, skip this for access types
9840 elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
9841 declare
9842 LB : constant Node_Id := Type_Low_Bound (T_Typ);
9843 UB : constant Node_Id := Type_High_Bound (T_Typ);
9845 Out_Of_Range : Boolean;
9846 Static_Bounds : constant Boolean :=
9847 Compile_Time_Known_Value (LB)
9848 and Compile_Time_Known_Value (UB);
9850 begin
9851 -- Following range tests should use Sem_Eval routine ???
9853 if Static_Bounds then
9854 if Is_Floating_Point_Type (S_Typ) then
9855 Out_Of_Range :=
9856 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
9857 or else
9858 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
9860 -- Fixed or discrete type
9862 else
9863 Out_Of_Range :=
9864 Expr_Value (Ck_Node) < Expr_Value (LB)
9865 or else
9866 Expr_Value (Ck_Node) > Expr_Value (UB);
9867 end if;
9869 -- Bounds of the type are static and the literal is out of
9870 -- range so output a warning message.
9872 if Out_Of_Range then
9873 if No (Warn_Node) then
9874 Add_Check
9875 (Compile_Time_Constraint_Error
9876 (Ck_Node,
9877 "static value out of range of}??", T_Typ));
9879 else
9880 Add_Check
9881 (Compile_Time_Constraint_Error
9882 (Wnode,
9883 "static value out of range of}??", T_Typ));
9884 end if;
9885 end if;
9887 else
9888 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9889 end if;
9890 end;
9892 -- Here for the case of a non-static expression, we need a runtime
9893 -- check unless the source type range is guaranteed to be in the
9894 -- range of the target type.
9896 else
9897 if not In_Subrange_Of (S_Typ, T_Typ) then
9898 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9899 end if;
9900 end if;
9901 end if;
9903 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9904 if Is_Constrained (T_Typ) then
9906 Expr_Actual := Get_Referenced_Object (Ck_Node);
9907 Exptyp := Get_Actual_Subtype (Expr_Actual);
9909 if Is_Access_Type (Exptyp) then
9910 Exptyp := Designated_Type (Exptyp);
9911 end if;
9913 -- String_Literal case. This needs to be handled specially be-
9914 -- cause no index types are available for string literals. The
9915 -- condition is simply:
9917 -- T_Typ'Length = string-literal-length
9919 if Nkind (Expr_Actual) = N_String_Literal then
9920 null;
9922 -- General array case. Here we have a usable actual subtype for
9923 -- the expression, and the condition is built from the two types
9925 -- T_Typ'First < Exptyp'First or else
9926 -- T_Typ'Last > Exptyp'Last or else
9927 -- T_Typ'First(1) < Exptyp'First(1) or else
9928 -- T_Typ'Last(1) > Exptyp'Last(1) or else
9929 -- ...
9931 elsif Is_Constrained (Exptyp) then
9932 declare
9933 Ndims : constant Nat := Number_Dimensions (T_Typ);
9935 L_Index : Node_Id;
9936 R_Index : Node_Id;
9938 begin
9939 L_Index := First_Index (T_Typ);
9940 R_Index := First_Index (Exptyp);
9942 for Indx in 1 .. Ndims loop
9943 if not (Nkind (L_Index) = N_Raise_Constraint_Error
9944 or else
9945 Nkind (R_Index) = N_Raise_Constraint_Error)
9946 then
9947 -- Deal with compile time length check. Note that we
9948 -- skip this in the access case, because the access
9949 -- value may be null, so we cannot know statically.
9951 if not
9952 Subtypes_Statically_Match
9953 (Etype (L_Index), Etype (R_Index))
9954 then
9955 -- If the target type is constrained then we
9956 -- have to check for exact equality of bounds
9957 -- (required for qualified expressions).
9959 if Is_Constrained (T_Typ) then
9960 Evolve_Or_Else
9961 (Cond,
9962 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
9963 else
9964 Evolve_Or_Else
9965 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
9966 end if;
9967 end if;
9969 Next (L_Index);
9970 Next (R_Index);
9971 end if;
9972 end loop;
9973 end;
9975 -- Handle cases where we do not get a usable actual subtype that
9976 -- is constrained. This happens for example in the function call
9977 -- and explicit dereference cases. In these cases, we have to get
9978 -- the length or range from the expression itself, making sure we
9979 -- do not evaluate it more than once.
9981 -- Here Ck_Node is the original expression, or more properly the
9982 -- result of applying Duplicate_Expr to the original tree,
9983 -- forcing the result to be a name.
9985 else
9986 declare
9987 Ndims : constant Nat := Number_Dimensions (T_Typ);
9989 begin
9990 -- Build the condition for the explicit dereference case
9992 for Indx in 1 .. Ndims loop
9993 Evolve_Or_Else
9994 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
9995 end loop;
9996 end;
9997 end if;
9999 else
10000 -- For a conversion to an unconstrained array type, generate an
10001 -- Action to check that the bounds of the source value are within
10002 -- the constraints imposed by the target type (RM 4.6(38)). No
10003 -- check is needed for a conversion to an access to unconstrained
10004 -- array type, as 4.6(24.15/2) requires the designated subtypes
10005 -- of the two access types to statically match.
10007 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
10008 and then not Do_Access
10009 then
10010 declare
10011 Opnd_Index : Node_Id;
10012 Targ_Index : Node_Id;
10013 Opnd_Range : Node_Id;
10015 begin
10016 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
10017 Targ_Index := First_Index (T_Typ);
10018 while Present (Opnd_Index) loop
10020 -- If the index is a range, use its bounds. If it is an
10021 -- entity (as will be the case if it is a named subtype
10022 -- or an itype created for a slice) retrieve its range.
10024 if Is_Entity_Name (Opnd_Index)
10025 and then Is_Type (Entity (Opnd_Index))
10026 then
10027 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
10028 else
10029 Opnd_Range := Opnd_Index;
10030 end if;
10032 if Nkind (Opnd_Range) = N_Range then
10033 if Is_In_Range
10034 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10035 Assume_Valid => True)
10036 and then
10037 Is_In_Range
10038 (High_Bound (Opnd_Range), Etype (Targ_Index),
10039 Assume_Valid => True)
10040 then
10041 null;
10043 -- If null range, no check needed
10045 elsif
10046 Compile_Time_Known_Value (High_Bound (Opnd_Range))
10047 and then
10048 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
10049 and then
10050 Expr_Value (High_Bound (Opnd_Range)) <
10051 Expr_Value (Low_Bound (Opnd_Range))
10052 then
10053 null;
10055 elsif Is_Out_Of_Range
10056 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10057 Assume_Valid => True)
10058 or else
10059 Is_Out_Of_Range
10060 (High_Bound (Opnd_Range), Etype (Targ_Index),
10061 Assume_Valid => True)
10062 then
10063 Add_Check
10064 (Compile_Time_Constraint_Error
10065 (Wnode, "value out of range of}??", T_Typ));
10067 else
10068 Evolve_Or_Else
10069 (Cond,
10070 Discrete_Range_Cond
10071 (Opnd_Range, Etype (Targ_Index)));
10072 end if;
10073 end if;
10075 Next_Index (Opnd_Index);
10076 Next_Index (Targ_Index);
10077 end loop;
10078 end;
10079 end if;
10080 end if;
10081 end if;
10083 -- Construct the test and insert into the tree
10085 if Present (Cond) then
10086 if Do_Access then
10087 Cond := Guard_Access (Cond, Loc, Ck_Node);
10088 end if;
10090 Add_Check
10091 (Make_Raise_Constraint_Error (Loc,
10092 Condition => Cond,
10093 Reason => CE_Range_Check_Failed));
10094 end if;
10096 return Ret_Result;
10097 end Selected_Range_Checks;
10099 -------------------------------
10100 -- Storage_Checks_Suppressed --
10101 -------------------------------
10103 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10104 begin
10105 if Present (E) and then Checks_May_Be_Suppressed (E) then
10106 return Is_Check_Suppressed (E, Storage_Check);
10107 else
10108 return Scope_Suppress.Suppress (Storage_Check);
10109 end if;
10110 end Storage_Checks_Suppressed;
10112 ---------------------------
10113 -- Tag_Checks_Suppressed --
10114 ---------------------------
10116 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10117 begin
10118 if Present (E)
10119 and then Checks_May_Be_Suppressed (E)
10120 then
10121 return Is_Check_Suppressed (E, Tag_Check);
10122 else
10123 return Scope_Suppress.Suppress (Tag_Check);
10124 end if;
10125 end Tag_Checks_Suppressed;
10127 ---------------------------------------
10128 -- Validate_Alignment_Check_Warnings --
10129 ---------------------------------------
10131 procedure Validate_Alignment_Check_Warnings is
10132 begin
10133 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10134 declare
10135 AWR : Alignment_Warnings_Record
10136 renames Alignment_Warnings.Table (J);
10137 begin
10138 if Known_Alignment (AWR.E)
10139 and then AWR.A mod Alignment (AWR.E) = 0
10140 then
10141 Delete_Warning_And_Continuations (AWR.W);
10142 end if;
10143 end;
10144 end loop;
10145 end Validate_Alignment_Check_Warnings;
10147 --------------------------
10148 -- Validity_Check_Range --
10149 --------------------------
10151 procedure Validity_Check_Range
10152 (N : Node_Id;
10153 Related_Id : Entity_Id := Empty)
10155 begin
10156 if Validity_Checks_On and Validity_Check_Operands then
10157 if Nkind (N) = N_Range then
10158 Ensure_Valid
10159 (Expr => Low_Bound (N),
10160 Related_Id => Related_Id,
10161 Is_Low_Bound => True);
10163 Ensure_Valid
10164 (Expr => High_Bound (N),
10165 Related_Id => Related_Id,
10166 Is_High_Bound => True);
10167 end if;
10168 end if;
10169 end Validity_Check_Range;
10171 --------------------------------
10172 -- Validity_Checks_Suppressed --
10173 --------------------------------
10175 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10176 begin
10177 if Present (E) and then Checks_May_Be_Suppressed (E) then
10178 return Is_Check_Suppressed (E, Validity_Check);
10179 else
10180 return Scope_Suppress.Suppress (Validity_Check);
10181 end if;
10182 end Validity_Checks_Suppressed;
10184 end Checks;