Missing copyright for mem-stats header files.
[official-gcc.git] / gcc / postreload.c
blob66f691b88d944ba3d301f4c6f3eb7502c7bef38d
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "optabs.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfgbuild.h"
37 #include "cfgcleanup.h"
38 #include "reload.h"
39 #include "cselib.h"
40 #include "tree-pass.h"
41 #include "dbgcnt.h"
43 #ifndef LOAD_EXTEND_OP
44 #define LOAD_EXTEND_OP(M) UNKNOWN
45 #endif
47 static int reload_cse_noop_set_p (rtx);
48 static bool reload_cse_simplify (rtx_insn *, rtx);
49 static void reload_cse_regs_1 (void);
50 static int reload_cse_simplify_set (rtx, rtx_insn *);
51 static int reload_cse_simplify_operands (rtx_insn *, rtx);
53 static void reload_combine (void);
54 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
55 static void reload_combine_note_store (rtx, const_rtx, void *);
57 static bool reload_cse_move2add (rtx_insn *);
58 static void move2add_note_store (rtx, const_rtx, void *);
60 /* Call cse / combine like post-reload optimization phases.
61 FIRST is the first instruction. */
63 static void
64 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
66 bool moves_converted;
67 reload_cse_regs_1 ();
68 reload_combine ();
69 moves_converted = reload_cse_move2add (first);
70 if (flag_expensive_optimizations)
72 if (moves_converted)
73 reload_combine ();
74 reload_cse_regs_1 ();
78 /* See whether a single set SET is a noop. */
79 static int
80 reload_cse_noop_set_p (rtx set)
82 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
83 return 0;
85 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
88 /* Try to simplify INSN. Return true if the CFG may have changed. */
89 static bool
90 reload_cse_simplify (rtx_insn *insn, rtx testreg)
92 rtx body = PATTERN (insn);
93 basic_block insn_bb = BLOCK_FOR_INSN (insn);
94 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
96 if (GET_CODE (body) == SET)
98 int count = 0;
100 /* Simplify even if we may think it is a no-op.
101 We may think a memory load of a value smaller than WORD_SIZE
102 is redundant because we haven't taken into account possible
103 implicit extension. reload_cse_simplify_set() will bring
104 this out, so it's safer to simplify before we delete. */
105 count += reload_cse_simplify_set (body, insn);
107 if (!count && reload_cse_noop_set_p (body))
109 if (check_for_inc_dec (insn))
110 delete_insn_and_edges (insn);
111 /* We're done with this insn. */
112 goto done;
115 if (count > 0)
116 apply_change_group ();
117 else
118 reload_cse_simplify_operands (insn, testreg);
120 else if (GET_CODE (body) == PARALLEL)
122 int i;
123 int count = 0;
124 rtx value = NULL_RTX;
126 /* Registers mentioned in the clobber list for an asm cannot be reused
127 within the body of the asm. Invalidate those registers now so that
128 we don't try to substitute values for them. */
129 if (asm_noperands (body) >= 0)
131 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
133 rtx part = XVECEXP (body, 0, i);
134 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
135 cselib_invalidate_rtx (XEXP (part, 0));
139 /* If every action in a PARALLEL is a noop, we can delete
140 the entire PARALLEL. */
141 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
143 rtx part = XVECEXP (body, 0, i);
144 if (GET_CODE (part) == SET)
146 if (! reload_cse_noop_set_p (part))
147 break;
148 if (REG_P (SET_DEST (part))
149 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
151 if (value)
152 break;
153 value = SET_DEST (part);
156 else if (GET_CODE (part) != CLOBBER)
157 break;
160 if (i < 0)
162 if (check_for_inc_dec (insn))
163 delete_insn_and_edges (insn);
164 /* We're done with this insn. */
165 goto done;
168 /* It's not a no-op, but we can try to simplify it. */
169 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
170 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
171 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
173 if (count > 0)
174 apply_change_group ();
175 else
176 reload_cse_simplify_operands (insn, testreg);
179 done:
180 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
183 /* Do a very simple CSE pass over the hard registers.
185 This function detects no-op moves where we happened to assign two
186 different pseudo-registers to the same hard register, and then
187 copied one to the other. Reload will generate a useless
188 instruction copying a register to itself.
190 This function also detects cases where we load a value from memory
191 into two different registers, and (if memory is more expensive than
192 registers) changes it to simply copy the first register into the
193 second register.
195 Another optimization is performed that scans the operands of each
196 instruction to see whether the value is already available in a
197 hard register. It then replaces the operand with the hard register
198 if possible, much like an optional reload would. */
200 static void
201 reload_cse_regs_1 (void)
203 bool cfg_changed = false;
204 basic_block bb;
205 rtx_insn *insn;
206 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
208 cselib_init (CSELIB_RECORD_MEMORY);
209 init_alias_analysis ();
211 FOR_EACH_BB_FN (bb, cfun)
212 FOR_BB_INSNS (bb, insn)
214 if (INSN_P (insn))
215 cfg_changed |= reload_cse_simplify (insn, testreg);
217 cselib_process_insn (insn);
220 /* Clean up. */
221 end_alias_analysis ();
222 cselib_finish ();
223 if (cfg_changed)
224 cleanup_cfg (0);
227 /* Try to simplify a single SET instruction. SET is the set pattern.
228 INSN is the instruction it came from.
229 This function only handles one case: if we set a register to a value
230 which is not a register, we try to find that value in some other register
231 and change the set into a register copy. */
233 static int
234 reload_cse_simplify_set (rtx set, rtx_insn *insn)
236 int did_change = 0;
237 int dreg;
238 rtx src;
239 reg_class_t dclass;
240 int old_cost;
241 cselib_val *val;
242 struct elt_loc_list *l;
243 enum rtx_code extend_op = UNKNOWN;
244 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
246 dreg = true_regnum (SET_DEST (set));
247 if (dreg < 0)
248 return 0;
250 src = SET_SRC (set);
251 if (side_effects_p (src) || true_regnum (src) >= 0)
252 return 0;
254 dclass = REGNO_REG_CLASS (dreg);
256 /* When replacing a memory with a register, we need to honor assumptions
257 that combine made wrt the contents of sign bits. We'll do this by
258 generating an extend instruction instead of a reg->reg copy. Thus
259 the destination must be a register that we can widen. */
260 if (MEM_P (src)
261 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
262 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
263 && !REG_P (SET_DEST (set)))
264 return 0;
266 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
267 if (! val)
268 return 0;
270 /* If memory loads are cheaper than register copies, don't change them. */
271 if (MEM_P (src))
272 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
273 else if (REG_P (src))
274 old_cost = register_move_cost (GET_MODE (src),
275 REGNO_REG_CLASS (REGNO (src)), dclass);
276 else
277 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
279 for (l = val->locs; l; l = l->next)
281 rtx this_rtx = l->loc;
282 int this_cost;
284 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
286 if (extend_op != UNKNOWN)
288 wide_int result;
290 if (!CONST_SCALAR_INT_P (this_rtx))
291 continue;
293 switch (extend_op)
295 case ZERO_EXTEND:
296 result = wide_int::from (std::make_pair (this_rtx,
297 GET_MODE (src)),
298 BITS_PER_WORD, UNSIGNED);
299 break;
300 case SIGN_EXTEND:
301 result = wide_int::from (std::make_pair (this_rtx,
302 GET_MODE (src)),
303 BITS_PER_WORD, SIGNED);
304 break;
305 default:
306 gcc_unreachable ();
308 this_rtx = immed_wide_int_const (result, word_mode);
311 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
313 else if (REG_P (this_rtx))
315 if (extend_op != UNKNOWN)
317 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
318 this_cost = set_src_cost (this_rtx, word_mode, speed);
320 else
321 this_cost = register_move_cost (GET_MODE (this_rtx),
322 REGNO_REG_CLASS (REGNO (this_rtx)),
323 dclass);
325 else
326 continue;
328 /* If equal costs, prefer registers over anything else. That
329 tends to lead to smaller instructions on some machines. */
330 if (this_cost < old_cost
331 || (this_cost == old_cost
332 && REG_P (this_rtx)
333 && !REG_P (SET_SRC (set))))
335 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
336 && extend_op != UNKNOWN
337 #ifdef CANNOT_CHANGE_MODE_CLASS
338 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
339 word_mode,
340 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
341 #endif
344 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
345 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
346 validate_change (insn, &SET_DEST (set), wide_dest, 1);
349 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
350 old_cost = this_cost, did_change = 1;
354 return did_change;
357 /* Try to replace operands in INSN with equivalent values that are already
358 in registers. This can be viewed as optional reloading.
360 For each non-register operand in the insn, see if any hard regs are
361 known to be equivalent to that operand. Record the alternatives which
362 can accept these hard registers. Among all alternatives, select the
363 ones which are better or equal to the one currently matching, where
364 "better" is in terms of '?' and '!' constraints. Among the remaining
365 alternatives, select the one which replaces most operands with
366 hard registers. */
368 static int
369 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
371 int i, j;
373 /* For each operand, all registers that are equivalent to it. */
374 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
376 const char *constraints[MAX_RECOG_OPERANDS];
378 /* Vector recording how bad an alternative is. */
379 int *alternative_reject;
380 /* Vector recording how many registers can be introduced by choosing
381 this alternative. */
382 int *alternative_nregs;
383 /* Array of vectors recording, for each operand and each alternative,
384 which hard register to substitute, or -1 if the operand should be
385 left as it is. */
386 int *op_alt_regno[MAX_RECOG_OPERANDS];
387 /* Array of alternatives, sorted in order of decreasing desirability. */
388 int *alternative_order;
390 extract_constrain_insn (insn);
392 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
393 return 0;
395 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
396 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
397 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
398 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
399 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
401 /* For each operand, find out which regs are equivalent. */
402 for (i = 0; i < recog_data.n_operands; i++)
404 cselib_val *v;
405 struct elt_loc_list *l;
406 rtx op;
408 CLEAR_HARD_REG_SET (equiv_regs[i]);
410 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
411 right, so avoid the problem here. Likewise if we have a constant
412 and the insn pattern doesn't tell us the mode we need. */
413 if (LABEL_P (recog_data.operand[i])
414 || (CONSTANT_P (recog_data.operand[i])
415 && recog_data.operand_mode[i] == VOIDmode))
416 continue;
418 op = recog_data.operand[i];
419 if (MEM_P (op)
420 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
421 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
423 rtx set = single_set (insn);
425 /* We might have multiple sets, some of which do implicit
426 extension. Punt on this for now. */
427 if (! set)
428 continue;
429 /* If the destination is also a MEM or a STRICT_LOW_PART, no
430 extension applies.
431 Also, if there is an explicit extension, we don't have to
432 worry about an implicit one. */
433 else if (MEM_P (SET_DEST (set))
434 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
435 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
436 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
437 ; /* Continue ordinary processing. */
438 #ifdef CANNOT_CHANGE_MODE_CLASS
439 /* If the register cannot change mode to word_mode, it follows that
440 it cannot have been used in word_mode. */
441 else if (REG_P (SET_DEST (set))
442 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
443 word_mode,
444 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
445 ; /* Continue ordinary processing. */
446 #endif
447 /* If this is a straight load, make the extension explicit. */
448 else if (REG_P (SET_DEST (set))
449 && recog_data.n_operands == 2
450 && SET_SRC (set) == op
451 && SET_DEST (set) == recog_data.operand[1-i])
453 validate_change (insn, recog_data.operand_loc[i],
454 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
455 word_mode, op),
457 validate_change (insn, recog_data.operand_loc[1-i],
458 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
460 if (! apply_change_group ())
461 return 0;
462 return reload_cse_simplify_operands (insn, testreg);
464 else
465 /* ??? There might be arithmetic operations with memory that are
466 safe to optimize, but is it worth the trouble? */
467 continue;
470 if (side_effects_p (op))
471 continue;
472 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
473 if (! v)
474 continue;
476 for (l = v->locs; l; l = l->next)
477 if (REG_P (l->loc))
478 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
481 alternative_mask preferred = get_preferred_alternatives (insn);
482 for (i = 0; i < recog_data.n_operands; i++)
484 machine_mode mode;
485 int regno;
486 const char *p;
488 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
489 for (j = 0; j < recog_data.n_alternatives; j++)
490 op_alt_regno[i][j] = -1;
492 p = constraints[i] = recog_data.constraints[i];
493 mode = recog_data.operand_mode[i];
495 /* Add the reject values for each alternative given by the constraints
496 for this operand. */
497 j = 0;
498 while (*p != '\0')
500 char c = *p++;
501 if (c == ',')
502 j++;
503 else if (c == '?')
504 alternative_reject[j] += 3;
505 else if (c == '!')
506 alternative_reject[j] += 300;
509 /* We won't change operands which are already registers. We
510 also don't want to modify output operands. */
511 regno = true_regnum (recog_data.operand[i]);
512 if (regno >= 0
513 || constraints[i][0] == '='
514 || constraints[i][0] == '+')
515 continue;
517 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
519 enum reg_class rclass = NO_REGS;
521 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
522 continue;
524 set_mode_and_regno (testreg, mode, regno);
526 /* We found a register equal to this operand. Now look for all
527 alternatives that can accept this register and have not been
528 assigned a register they can use yet. */
529 j = 0;
530 p = constraints[i];
531 for (;;)
533 char c = *p;
535 switch (c)
537 case 'g':
538 rclass = reg_class_subunion[rclass][GENERAL_REGS];
539 break;
541 default:
542 rclass
543 = (reg_class_subunion
544 [rclass]
545 [reg_class_for_constraint (lookup_constraint (p))]);
546 break;
548 case ',': case '\0':
549 /* See if REGNO fits this alternative, and set it up as the
550 replacement register if we don't have one for this
551 alternative yet and the operand being replaced is not
552 a cheap CONST_INT. */
553 if (op_alt_regno[i][j] == -1
554 && TEST_BIT (preferred, j)
555 && reg_fits_class_p (testreg, rclass, 0, mode)
556 && (!CONST_INT_P (recog_data.operand[i])
557 || (set_src_cost (recog_data.operand[i], mode,
558 optimize_bb_for_speed_p
559 (BLOCK_FOR_INSN (insn)))
560 > set_src_cost (testreg, mode,
561 optimize_bb_for_speed_p
562 (BLOCK_FOR_INSN (insn))))))
564 alternative_nregs[j]++;
565 op_alt_regno[i][j] = regno;
567 j++;
568 rclass = NO_REGS;
569 break;
571 p += CONSTRAINT_LEN (c, p);
573 if (c == '\0')
574 break;
579 /* Record all alternatives which are better or equal to the currently
580 matching one in the alternative_order array. */
581 for (i = j = 0; i < recog_data.n_alternatives; i++)
582 if (alternative_reject[i] <= alternative_reject[which_alternative])
583 alternative_order[j++] = i;
584 recog_data.n_alternatives = j;
586 /* Sort it. Given a small number of alternatives, a dumb algorithm
587 won't hurt too much. */
588 for (i = 0; i < recog_data.n_alternatives - 1; i++)
590 int best = i;
591 int best_reject = alternative_reject[alternative_order[i]];
592 int best_nregs = alternative_nregs[alternative_order[i]];
594 for (j = i + 1; j < recog_data.n_alternatives; j++)
596 int this_reject = alternative_reject[alternative_order[j]];
597 int this_nregs = alternative_nregs[alternative_order[j]];
599 if (this_reject < best_reject
600 || (this_reject == best_reject && this_nregs > best_nregs))
602 best = j;
603 best_reject = this_reject;
604 best_nregs = this_nregs;
608 std::swap (alternative_order[best], alternative_order[i]);
611 /* Substitute the operands as determined by op_alt_regno for the best
612 alternative. */
613 j = alternative_order[0];
615 for (i = 0; i < recog_data.n_operands; i++)
617 machine_mode mode = recog_data.operand_mode[i];
618 if (op_alt_regno[i][j] == -1)
619 continue;
621 validate_change (insn, recog_data.operand_loc[i],
622 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
625 for (i = recog_data.n_dups - 1; i >= 0; i--)
627 int op = recog_data.dup_num[i];
628 machine_mode mode = recog_data.operand_mode[op];
630 if (op_alt_regno[op][j] == -1)
631 continue;
633 validate_change (insn, recog_data.dup_loc[i],
634 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
637 return apply_change_group ();
640 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
641 addressing now.
642 This code might also be useful when reload gave up on reg+reg addressing
643 because of clashes between the return register and INDEX_REG_CLASS. */
645 /* The maximum number of uses of a register we can keep track of to
646 replace them with reg+reg addressing. */
647 #define RELOAD_COMBINE_MAX_USES 16
649 /* Describes a recorded use of a register. */
650 struct reg_use
652 /* The insn where a register has been used. */
653 rtx_insn *insn;
654 /* Points to the memory reference enclosing the use, if any, NULL_RTX
655 otherwise. */
656 rtx containing_mem;
657 /* Location of the register within INSN. */
658 rtx *usep;
659 /* The reverse uid of the insn. */
660 int ruid;
663 /* If the register is used in some unknown fashion, USE_INDEX is negative.
664 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
665 indicates where it is first set or clobbered.
666 Otherwise, USE_INDEX is the index of the last encountered use of the
667 register (which is first among these we have seen since we scan backwards).
668 USE_RUID indicates the first encountered, i.e. last, of these uses.
669 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
670 with a constant offset; OFFSET contains this constant in that case.
671 STORE_RUID is always meaningful if we only want to use a value in a
672 register in a different place: it denotes the next insn in the insn
673 stream (i.e. the last encountered) that sets or clobbers the register.
674 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
675 static struct
677 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
678 rtx offset;
679 int use_index;
680 int store_ruid;
681 int real_store_ruid;
682 int use_ruid;
683 bool all_offsets_match;
684 } reg_state[FIRST_PSEUDO_REGISTER];
686 /* Reverse linear uid. This is increased in reload_combine while scanning
687 the instructions from last to first. It is used to set last_label_ruid
688 and the store_ruid / use_ruid fields in reg_state. */
689 static int reload_combine_ruid;
691 /* The RUID of the last label we encountered in reload_combine. */
692 static int last_label_ruid;
694 /* The RUID of the last jump we encountered in reload_combine. */
695 static int last_jump_ruid;
697 /* The register numbers of the first and last index register. A value of
698 -1 in LAST_INDEX_REG indicates that we've previously computed these
699 values and found no suitable index registers. */
700 static int first_index_reg = -1;
701 static int last_index_reg;
703 #define LABEL_LIVE(LABEL) \
704 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
706 /* Subroutine of reload_combine_split_ruids, called to fix up a single
707 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
709 static inline void
710 reload_combine_split_one_ruid (int *pruid, int split_ruid)
712 if (*pruid > split_ruid)
713 (*pruid)++;
716 /* Called when we insert a new insn in a position we've already passed in
717 the scan. Examine all our state, increasing all ruids that are higher
718 than SPLIT_RUID by one in order to make room for a new insn. */
720 static void
721 reload_combine_split_ruids (int split_ruid)
723 unsigned i;
725 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
726 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
727 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
729 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
731 int j, idx = reg_state[i].use_index;
732 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
733 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
734 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
735 split_ruid);
736 if (idx < 0)
737 continue;
738 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
740 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
741 split_ruid);
746 /* Called when we are about to rescan a previously encountered insn with
747 reload_combine_note_use after modifying some part of it. This clears all
748 information about uses in that particular insn. */
750 static void
751 reload_combine_purge_insn_uses (rtx_insn *insn)
753 unsigned i;
755 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
757 int j, k, idx = reg_state[i].use_index;
758 if (idx < 0)
759 continue;
760 j = k = RELOAD_COMBINE_MAX_USES;
761 while (j-- > idx)
763 if (reg_state[i].reg_use[j].insn != insn)
765 k--;
766 if (k != j)
767 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
770 reg_state[i].use_index = k;
774 /* Called when we need to forget about all uses of REGNO after an insn
775 which is identified by RUID. */
777 static void
778 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
780 int j, k, idx = reg_state[regno].use_index;
781 if (idx < 0)
782 return;
783 j = k = RELOAD_COMBINE_MAX_USES;
784 while (j-- > idx)
786 if (reg_state[regno].reg_use[j].ruid >= ruid)
788 k--;
789 if (k != j)
790 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
793 reg_state[regno].use_index = k;
796 /* Find the use of REGNO with the ruid that is highest among those
797 lower than RUID_LIMIT, and return it if it is the only use of this
798 reg in the insn. Return NULL otherwise. */
800 static struct reg_use *
801 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
803 int i, best_ruid = 0;
804 int use_idx = reg_state[regno].use_index;
805 struct reg_use *retval;
807 if (use_idx < 0)
808 return NULL;
809 retval = NULL;
810 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
812 struct reg_use *use = reg_state[regno].reg_use + i;
813 int this_ruid = use->ruid;
814 if (this_ruid >= ruid_limit)
815 continue;
816 if (this_ruid > best_ruid)
818 best_ruid = this_ruid;
819 retval = use;
821 else if (this_ruid == best_ruid)
822 retval = NULL;
824 if (last_label_ruid >= best_ruid)
825 return NULL;
826 return retval;
829 /* After we've moved an add insn, fix up any debug insns that occur
830 between the old location of the add and the new location. REG is
831 the destination register of the add insn; REPLACEMENT is the
832 SET_SRC of the add. FROM and TO specify the range in which we
833 should make this change on debug insns. */
835 static void
836 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
838 rtx_insn *insn;
839 for (insn = from; insn != to; insn = NEXT_INSN (insn))
841 rtx t;
843 if (!DEBUG_INSN_P (insn))
844 continue;
846 t = INSN_VAR_LOCATION_LOC (insn);
847 t = simplify_replace_rtx (t, reg, replacement);
848 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
852 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
853 with SRC in the insn described by USE, taking costs into account. Return
854 true if we made the replacement. */
856 static bool
857 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
859 rtx_insn *use_insn = use->insn;
860 rtx mem = use->containing_mem;
861 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
863 if (mem != NULL_RTX)
865 addr_space_t as = MEM_ADDR_SPACE (mem);
866 rtx oldaddr = XEXP (mem, 0);
867 rtx newaddr = NULL_RTX;
868 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
869 int new_cost;
871 newaddr = simplify_replace_rtx (oldaddr, reg, src);
872 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
874 XEXP (mem, 0) = newaddr;
875 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
876 XEXP (mem, 0) = oldaddr;
877 if (new_cost <= old_cost
878 && validate_change (use_insn,
879 &XEXP (mem, 0), newaddr, 0))
880 return true;
883 else
885 rtx new_set = single_set (use_insn);
886 if (new_set
887 && REG_P (SET_DEST (new_set))
888 && GET_CODE (SET_SRC (new_set)) == PLUS
889 && REG_P (XEXP (SET_SRC (new_set), 0))
890 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
892 rtx new_src;
893 machine_mode mode = GET_MODE (SET_DEST (new_set));
894 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
896 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
897 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
899 if (set_src_cost (new_src, mode, speed) <= old_cost
900 && validate_change (use_insn, &SET_SRC (new_set),
901 new_src, 0))
902 return true;
905 return false;
908 /* Called by reload_combine when scanning INSN. This function tries to detect
909 patterns where a constant is added to a register, and the result is used
910 in an address.
911 Return true if no further processing is needed on INSN; false if it wasn't
912 recognized and should be handled normally. */
914 static bool
915 reload_combine_recognize_const_pattern (rtx_insn *insn)
917 int from_ruid = reload_combine_ruid;
918 rtx set, pat, reg, src, addreg;
919 unsigned int regno;
920 struct reg_use *use;
921 bool must_move_add;
922 rtx_insn *add_moved_after_insn = NULL;
923 int add_moved_after_ruid = 0;
924 int clobbered_regno = -1;
926 set = single_set (insn);
927 if (set == NULL_RTX)
928 return false;
930 reg = SET_DEST (set);
931 src = SET_SRC (set);
932 if (!REG_P (reg)
933 || REG_NREGS (reg) != 1
934 || GET_MODE (reg) != Pmode
935 || reg == stack_pointer_rtx)
936 return false;
938 regno = REGNO (reg);
940 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
941 uses of REG1 inside an address, or inside another add insn. If
942 possible and profitable, merge the addition into subsequent
943 uses. */
944 if (GET_CODE (src) != PLUS
945 || !REG_P (XEXP (src, 0))
946 || !CONSTANT_P (XEXP (src, 1)))
947 return false;
949 addreg = XEXP (src, 0);
950 must_move_add = rtx_equal_p (reg, addreg);
952 pat = PATTERN (insn);
953 if (must_move_add && set != pat)
955 /* We have to be careful when moving the add; apart from the
956 single_set there may also be clobbers. Recognize one special
957 case, that of one clobber alongside the set (likely a clobber
958 of the CC register). */
959 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
960 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
961 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
962 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
963 return false;
964 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
969 use = reload_combine_closest_single_use (regno, from_ruid);
971 if (use)
972 /* Start the search for the next use from here. */
973 from_ruid = use->ruid;
975 if (use && GET_MODE (*use->usep) == Pmode)
977 bool delete_add = false;
978 rtx_insn *use_insn = use->insn;
979 int use_ruid = use->ruid;
981 /* Avoid moving the add insn past a jump. */
982 if (must_move_add && use_ruid <= last_jump_ruid)
983 break;
985 /* If the add clobbers another hard reg in parallel, don't move
986 it past a real set of this hard reg. */
987 if (must_move_add && clobbered_regno >= 0
988 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
989 break;
991 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
992 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
993 break;
995 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
996 /* Avoid moving a use of ADDREG past a point where it is stored. */
997 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
998 break;
1000 /* We also must not move the addition past an insn that sets
1001 the same register, unless we can combine two add insns. */
1002 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1004 if (use->containing_mem == NULL_RTX)
1005 delete_add = true;
1006 else
1007 break;
1010 if (try_replace_in_use (use, reg, src))
1012 reload_combine_purge_insn_uses (use_insn);
1013 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1014 use_ruid, NULL_RTX);
1016 if (delete_add)
1018 fixup_debug_insns (reg, src, insn, use_insn);
1019 delete_insn (insn);
1020 return true;
1022 if (must_move_add)
1024 add_moved_after_insn = use_insn;
1025 add_moved_after_ruid = use_ruid;
1027 continue;
1030 /* If we get here, we couldn't handle this use. */
1031 if (must_move_add)
1032 break;
1034 while (use);
1036 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1037 /* Process the add normally. */
1038 return false;
1040 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1042 reorder_insns (insn, insn, add_moved_after_insn);
1043 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1044 reload_combine_split_ruids (add_moved_after_ruid - 1);
1045 reload_combine_note_use (&PATTERN (insn), insn,
1046 add_moved_after_ruid, NULL_RTX);
1047 reg_state[regno].store_ruid = add_moved_after_ruid;
1049 return true;
1052 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1053 can handle and improve. Return true if no further processing is needed on
1054 INSN; false if it wasn't recognized and should be handled normally. */
1056 static bool
1057 reload_combine_recognize_pattern (rtx_insn *insn)
1059 rtx set, reg, src;
1060 unsigned int regno;
1062 set = single_set (insn);
1063 if (set == NULL_RTX)
1064 return false;
1066 reg = SET_DEST (set);
1067 src = SET_SRC (set);
1068 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1069 return false;
1071 regno = REGNO (reg);
1073 /* Look for (set (REGX) (CONST_INT))
1074 (set (REGX) (PLUS (REGX) (REGY)))
1076 ... (MEM (REGX)) ...
1077 and convert it to
1078 (set (REGZ) (CONST_INT))
1080 ... (MEM (PLUS (REGZ) (REGY)))... .
1082 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1083 and that we know all uses of REGX before it dies.
1084 Also, explicitly check that REGX != REGY; our life information
1085 does not yet show whether REGY changes in this insn. */
1087 if (GET_CODE (src) == PLUS
1088 && reg_state[regno].all_offsets_match
1089 && last_index_reg != -1
1090 && REG_P (XEXP (src, 1))
1091 && rtx_equal_p (XEXP (src, 0), reg)
1092 && !rtx_equal_p (XEXP (src, 1), reg)
1093 && reg_state[regno].use_index >= 0
1094 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1095 && last_label_ruid < reg_state[regno].use_ruid)
1097 rtx base = XEXP (src, 1);
1098 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1099 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1100 rtx index_reg = NULL_RTX;
1101 rtx reg_sum = NULL_RTX;
1102 int i;
1104 /* Now we need to set INDEX_REG to an index register (denoted as
1105 REGZ in the illustration above) and REG_SUM to the expression
1106 register+register that we want to use to substitute uses of REG
1107 (typically in MEMs) with. First check REG and BASE for being
1108 index registers; we can use them even if they are not dead. */
1109 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1110 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1111 REGNO (base)))
1113 index_reg = reg;
1114 reg_sum = src;
1116 else
1118 /* Otherwise, look for a free index register. Since we have
1119 checked above that neither REG nor BASE are index registers,
1120 if we find anything at all, it will be different from these
1121 two registers. */
1122 for (i = first_index_reg; i <= last_index_reg; i++)
1124 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1125 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1126 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1127 && (call_used_regs[i] || df_regs_ever_live_p (i))
1128 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1129 && !fixed_regs[i] && !global_regs[i]
1130 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1131 && targetm.hard_regno_scratch_ok (i))
1133 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1134 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1135 break;
1140 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1141 (REGY), i.e. BASE, is not clobbered before the last use we'll
1142 create. */
1143 if (reg_sum
1144 && prev_set
1145 && CONST_INT_P (SET_SRC (prev_set))
1146 && rtx_equal_p (SET_DEST (prev_set), reg)
1147 && (reg_state[REGNO (base)].store_ruid
1148 <= reg_state[regno].use_ruid))
1150 /* Change destination register and, if necessary, the constant
1151 value in PREV, the constant loading instruction. */
1152 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1153 if (reg_state[regno].offset != const0_rtx)
1154 validate_change (prev,
1155 &SET_SRC (prev_set),
1156 GEN_INT (INTVAL (SET_SRC (prev_set))
1157 + INTVAL (reg_state[regno].offset)),
1160 /* Now for every use of REG that we have recorded, replace REG
1161 with REG_SUM. */
1162 for (i = reg_state[regno].use_index;
1163 i < RELOAD_COMBINE_MAX_USES; i++)
1164 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1165 reg_state[regno].reg_use[i].usep,
1166 /* Each change must have its own
1167 replacement. */
1168 reg_sum, 1);
1170 if (apply_change_group ())
1172 struct reg_use *lowest_ruid = NULL;
1174 /* For every new use of REG_SUM, we have to record the use
1175 of BASE therein, i.e. operand 1. */
1176 for (i = reg_state[regno].use_index;
1177 i < RELOAD_COMBINE_MAX_USES; i++)
1179 struct reg_use *use = reg_state[regno].reg_use + i;
1180 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1181 use->ruid, use->containing_mem);
1182 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1183 lowest_ruid = use;
1186 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1188 /* Delete the reg-reg addition. */
1189 delete_insn (insn);
1191 if (reg_state[regno].offset != const0_rtx)
1192 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1193 are now invalid. */
1194 remove_reg_equal_equiv_notes (prev);
1196 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1197 return true;
1201 return false;
1204 static void
1205 reload_combine (void)
1207 rtx_insn *insn, *prev;
1208 basic_block bb;
1209 unsigned int r;
1210 int min_labelno, n_labels;
1211 HARD_REG_SET ever_live_at_start, *label_live;
1213 /* To avoid wasting too much time later searching for an index register,
1214 determine the minimum and maximum index register numbers. */
1215 if (INDEX_REG_CLASS == NO_REGS)
1216 last_index_reg = -1;
1217 else if (first_index_reg == -1 && last_index_reg == 0)
1219 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1220 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1222 if (first_index_reg == -1)
1223 first_index_reg = r;
1225 last_index_reg = r;
1228 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1229 to -1 so we'll know to quit early the next time we get here. */
1230 if (first_index_reg == -1)
1232 last_index_reg = -1;
1233 return;
1237 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1238 information is a bit fuzzy immediately after reload, but it's
1239 still good enough to determine which registers are live at a jump
1240 destination. */
1241 min_labelno = get_first_label_num ();
1242 n_labels = max_label_num () - min_labelno;
1243 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1244 CLEAR_HARD_REG_SET (ever_live_at_start);
1246 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1248 insn = BB_HEAD (bb);
1249 if (LABEL_P (insn))
1251 HARD_REG_SET live;
1252 bitmap live_in = df_get_live_in (bb);
1254 REG_SET_TO_HARD_REG_SET (live, live_in);
1255 compute_use_by_pseudos (&live, live_in);
1256 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1257 IOR_HARD_REG_SET (ever_live_at_start, live);
1261 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1262 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1263 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1265 reg_state[r].store_ruid = 0;
1266 reg_state[r].real_store_ruid = 0;
1267 if (fixed_regs[r])
1268 reg_state[r].use_index = -1;
1269 else
1270 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1273 for (insn = get_last_insn (); insn; insn = prev)
1275 bool control_flow_insn;
1276 rtx note;
1278 prev = PREV_INSN (insn);
1280 /* We cannot do our optimization across labels. Invalidating all the use
1281 information we have would be costly, so we just note where the label
1282 is and then later disable any optimization that would cross it. */
1283 if (LABEL_P (insn))
1284 last_label_ruid = reload_combine_ruid;
1285 else if (BARRIER_P (insn))
1287 /* Crossing a barrier resets all the use information. */
1288 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1289 if (! fixed_regs[r])
1290 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1292 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1293 /* Optimizations across insns being marked as volatile must be
1294 prevented. All the usage information is invalidated
1295 here. */
1296 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1297 if (! fixed_regs[r]
1298 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1299 reg_state[r].use_index = -1;
1301 if (! NONDEBUG_INSN_P (insn))
1302 continue;
1304 reload_combine_ruid++;
1306 control_flow_insn = control_flow_insn_p (insn);
1307 if (control_flow_insn)
1308 last_jump_ruid = reload_combine_ruid;
1310 if (reload_combine_recognize_const_pattern (insn)
1311 || reload_combine_recognize_pattern (insn))
1312 continue;
1314 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1316 if (CALL_P (insn))
1318 rtx link;
1319 HARD_REG_SET used_regs;
1321 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
1323 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1324 if (TEST_HARD_REG_BIT (used_regs, r))
1326 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1327 reg_state[r].store_ruid = reload_combine_ruid;
1330 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1331 link = XEXP (link, 1))
1333 rtx setuse = XEXP (link, 0);
1334 rtx usage_rtx = XEXP (setuse, 0);
1335 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1336 && REG_P (usage_rtx))
1338 unsigned int end_regno = END_REGNO (usage_rtx);
1339 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1340 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1342 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1343 reg_state[i].store_ruid = reload_combine_ruid;
1345 else
1346 reg_state[i].use_index = -1;
1351 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1353 /* Non-spill registers might be used at the call destination in
1354 some unknown fashion, so we have to mark the unknown use. */
1355 HARD_REG_SET *live;
1357 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1358 && JUMP_LABEL (insn))
1360 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1361 live = NULL;
1362 else
1363 live = &LABEL_LIVE (JUMP_LABEL (insn));
1365 else
1366 live = &ever_live_at_start;
1368 if (live)
1369 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1370 if (TEST_HARD_REG_BIT (*live, r))
1371 reg_state[r].use_index = -1;
1374 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1375 NULL_RTX);
1377 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1379 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1381 int regno = REGNO (XEXP (note, 0));
1382 reg_state[regno].store_ruid = reload_combine_ruid;
1383 reg_state[regno].real_store_ruid = reload_combine_ruid;
1384 reg_state[regno].use_index = -1;
1389 free (label_live);
1392 /* Check if DST is a register or a subreg of a register; if it is,
1393 update store_ruid, real_store_ruid and use_index in the reg_state
1394 structure accordingly. Called via note_stores from reload_combine. */
1396 static void
1397 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1399 int regno = 0;
1400 int i;
1401 machine_mode mode = GET_MODE (dst);
1403 if (GET_CODE (dst) == SUBREG)
1405 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1406 GET_MODE (SUBREG_REG (dst)),
1407 SUBREG_BYTE (dst),
1408 GET_MODE (dst));
1409 dst = SUBREG_REG (dst);
1412 /* Some targets do argument pushes without adding REG_INC notes. */
1414 if (MEM_P (dst))
1416 dst = XEXP (dst, 0);
1417 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1418 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1419 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1421 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1422 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1424 /* We could probably do better, but for now mark the register
1425 as used in an unknown fashion and set/clobbered at this
1426 insn. */
1427 reg_state[i].use_index = -1;
1428 reg_state[i].store_ruid = reload_combine_ruid;
1429 reg_state[i].real_store_ruid = reload_combine_ruid;
1432 else
1433 return;
1436 if (!REG_P (dst))
1437 return;
1438 regno += REGNO (dst);
1440 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1441 careful with registers / register parts that are not full words.
1442 Similarly for ZERO_EXTRACT. */
1443 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1444 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1446 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1448 reg_state[i].use_index = -1;
1449 reg_state[i].store_ruid = reload_combine_ruid;
1450 reg_state[i].real_store_ruid = reload_combine_ruid;
1453 else
1455 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1457 reg_state[i].store_ruid = reload_combine_ruid;
1458 if (GET_CODE (set) == SET)
1459 reg_state[i].real_store_ruid = reload_combine_ruid;
1460 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1465 /* XP points to a piece of rtl that has to be checked for any uses of
1466 registers.
1467 *XP is the pattern of INSN, or a part of it.
1468 Called from reload_combine, and recursively by itself. */
1469 static void
1470 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1472 rtx x = *xp;
1473 enum rtx_code code = x->code;
1474 const char *fmt;
1475 int i, j;
1476 rtx offset = const0_rtx; /* For the REG case below. */
1478 switch (code)
1480 case SET:
1481 if (REG_P (SET_DEST (x)))
1483 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1484 return;
1486 break;
1488 case USE:
1489 /* If this is the USE of a return value, we can't change it. */
1490 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1492 /* Mark the return register as used in an unknown fashion. */
1493 rtx reg = XEXP (x, 0);
1494 unsigned int end_regno = END_REGNO (reg);
1495 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1496 reg_state[regno].use_index = -1;
1497 return;
1499 break;
1501 case CLOBBER:
1502 if (REG_P (SET_DEST (x)))
1504 /* No spurious CLOBBERs of pseudo registers may remain. */
1505 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1506 return;
1508 break;
1510 case PLUS:
1511 /* We are interested in (plus (reg) (const_int)) . */
1512 if (!REG_P (XEXP (x, 0))
1513 || !CONST_INT_P (XEXP (x, 1)))
1514 break;
1515 offset = XEXP (x, 1);
1516 x = XEXP (x, 0);
1517 /* Fall through. */
1518 case REG:
1520 int regno = REGNO (x);
1521 int use_index;
1522 int nregs;
1524 /* No spurious USEs of pseudo registers may remain. */
1525 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1527 nregs = REG_NREGS (x);
1529 /* We can't substitute into multi-hard-reg uses. */
1530 if (nregs > 1)
1532 while (--nregs >= 0)
1533 reg_state[regno + nregs].use_index = -1;
1534 return;
1537 /* We may be called to update uses in previously seen insns.
1538 Don't add uses beyond the last store we saw. */
1539 if (ruid < reg_state[regno].store_ruid)
1540 return;
1542 /* If this register is already used in some unknown fashion, we
1543 can't do anything.
1544 If we decrement the index from zero to -1, we can't store more
1545 uses, so this register becomes used in an unknown fashion. */
1546 use_index = --reg_state[regno].use_index;
1547 if (use_index < 0)
1548 return;
1550 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1552 /* This is the first use of this register we have seen since we
1553 marked it as dead. */
1554 reg_state[regno].offset = offset;
1555 reg_state[regno].all_offsets_match = true;
1556 reg_state[regno].use_ruid = ruid;
1558 else
1560 if (reg_state[regno].use_ruid > ruid)
1561 reg_state[regno].use_ruid = ruid;
1563 if (! rtx_equal_p (offset, reg_state[regno].offset))
1564 reg_state[regno].all_offsets_match = false;
1567 reg_state[regno].reg_use[use_index].insn = insn;
1568 reg_state[regno].reg_use[use_index].ruid = ruid;
1569 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1570 reg_state[regno].reg_use[use_index].usep = xp;
1571 return;
1574 case MEM:
1575 containing_mem = x;
1576 break;
1578 default:
1579 break;
1582 /* Recursively process the components of X. */
1583 fmt = GET_RTX_FORMAT (code);
1584 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1586 if (fmt[i] == 'e')
1587 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1588 else if (fmt[i] == 'E')
1590 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1591 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1592 containing_mem);
1597 /* See if we can reduce the cost of a constant by replacing a move
1598 with an add. We track situations in which a register is set to a
1599 constant or to a register plus a constant. */
1600 /* We cannot do our optimization across labels. Invalidating all the
1601 information about register contents we have would be costly, so we
1602 use move2add_last_label_luid to note where the label is and then
1603 later disable any optimization that would cross it.
1604 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1605 are only valid if reg_set_luid[n] is greater than
1606 move2add_last_label_luid.
1607 For a set that established a new (potential) base register with
1608 non-constant value, we use move2add_luid from the place where the
1609 setting insn is encountered; registers based off that base then
1610 get the same reg_set_luid. Constants all get
1611 move2add_last_label_luid + 1 as their reg_set_luid. */
1612 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1614 /* If reg_base_reg[n] is negative, register n has been set to
1615 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1616 If reg_base_reg[n] is non-negative, register n has been set to the
1617 sum of reg_offset[n] and the value of register reg_base_reg[n]
1618 before reg_set_luid[n], calculated in mode reg_mode[n] .
1619 For multi-hard-register registers, all but the first one are
1620 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1621 marks it as invalid. */
1622 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1623 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1624 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1625 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1627 /* move2add_luid is linearly increased while scanning the instructions
1628 from first to last. It is used to set reg_set_luid in
1629 reload_cse_move2add and move2add_note_store. */
1630 static int move2add_luid;
1632 /* move2add_last_label_luid is set whenever a label is found. Labels
1633 invalidate all previously collected reg_offset data. */
1634 static int move2add_last_label_luid;
1636 /* ??? We don't know how zero / sign extension is handled, hence we
1637 can't go from a narrower to a wider mode. */
1638 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1639 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1640 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1641 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1643 /* Record that REG is being set to a value with the mode of REG. */
1645 static void
1646 move2add_record_mode (rtx reg)
1648 int regno, nregs;
1649 machine_mode mode = GET_MODE (reg);
1651 if (GET_CODE (reg) == SUBREG)
1653 regno = subreg_regno (reg);
1654 nregs = subreg_nregs (reg);
1656 else if (REG_P (reg))
1658 regno = REGNO (reg);
1659 nregs = REG_NREGS (reg);
1661 else
1662 gcc_unreachable ();
1663 for (int i = nregs - 1; i > 0; i--)
1664 reg_mode[regno + i] = BLKmode;
1665 reg_mode[regno] = mode;
1668 /* Record that REG is being set to the sum of SYM and OFF. */
1670 static void
1671 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1673 int regno = REGNO (reg);
1675 move2add_record_mode (reg);
1676 reg_set_luid[regno] = move2add_luid;
1677 reg_base_reg[regno] = -1;
1678 reg_symbol_ref[regno] = sym;
1679 reg_offset[regno] = INTVAL (off);
1682 /* Check if REGNO contains a valid value in MODE. */
1684 static bool
1685 move2add_valid_value_p (int regno, machine_mode mode)
1687 if (reg_set_luid[regno] <= move2add_last_label_luid)
1688 return false;
1690 if (mode != reg_mode[regno])
1692 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1693 return false;
1694 /* The value loaded into regno in reg_mode[regno] is also valid in
1695 mode after truncation only if (REG:mode regno) is the lowpart of
1696 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1697 regno of the lowpart might be different. */
1698 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1699 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1700 if (s_off != 0)
1701 /* We could in principle adjust regno, check reg_mode[regno] to be
1702 BLKmode, and return s_off to the caller (vs. -1 for failure),
1703 but we currently have no callers that could make use of this
1704 information. */
1705 return false;
1708 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1709 if (reg_mode[regno + i] != BLKmode)
1710 return false;
1711 return true;
1714 /* This function is called with INSN that sets REG to (SYM + OFF),
1715 while REG is known to already have value (SYM + offset).
1716 This function tries to change INSN into an add instruction
1717 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1718 It also updates the information about REG's known value.
1719 Return true if we made a change. */
1721 static bool
1722 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1724 rtx pat = PATTERN (insn);
1725 rtx src = SET_SRC (pat);
1726 int regno = REGNO (reg);
1727 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1728 GET_MODE (reg));
1729 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1730 bool changed = false;
1732 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1733 use (set (reg) (reg)) instead.
1734 We don't delete this insn, nor do we convert it into a
1735 note, to avoid losing register notes or the return
1736 value flag. jump2 already knows how to get rid of
1737 no-op moves. */
1738 if (new_src == const0_rtx)
1740 /* If the constants are different, this is a
1741 truncation, that, if turned into (set (reg)
1742 (reg)), would be discarded. Maybe we should
1743 try a truncMN pattern? */
1744 if (INTVAL (off) == reg_offset [regno])
1745 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1747 else
1749 struct full_rtx_costs oldcst, newcst;
1750 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1752 get_full_set_rtx_cost (pat, &oldcst);
1753 SET_SRC (pat) = tem;
1754 get_full_set_rtx_cost (pat, &newcst);
1755 SET_SRC (pat) = src;
1757 if (costs_lt_p (&newcst, &oldcst, speed)
1758 && have_add2_insn (reg, new_src))
1759 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1760 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1762 machine_mode narrow_mode;
1763 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1764 narrow_mode != VOIDmode
1765 && narrow_mode != GET_MODE (reg);
1766 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1768 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1769 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1770 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1772 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1773 rtx narrow_src = gen_int_mode (INTVAL (off),
1774 narrow_mode);
1775 rtx new_set
1776 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1777 narrow_reg),
1778 narrow_src);
1779 get_full_set_rtx_cost (new_set, &newcst);
1780 if (costs_lt_p (&newcst, &oldcst, speed))
1782 changed = validate_change (insn, &PATTERN (insn),
1783 new_set, 0);
1784 if (changed)
1785 break;
1791 move2add_record_sym_value (reg, sym, off);
1792 return changed;
1796 /* This function is called with INSN that sets REG to (SYM + OFF),
1797 but REG doesn't have known value (SYM + offset). This function
1798 tries to find another register which is known to already have
1799 value (SYM + offset) and change INSN into an add instruction
1800 (set (REG) (plus (the found register) (OFF - offset))) if such
1801 a register is found. It also updates the information about
1802 REG's known value.
1803 Return true iff we made a change. */
1805 static bool
1806 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1808 rtx pat = PATTERN (insn);
1809 rtx src = SET_SRC (pat);
1810 int regno = REGNO (reg);
1811 int min_regno = 0;
1812 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1813 int i;
1814 bool changed = false;
1815 struct full_rtx_costs oldcst, newcst, mincst;
1816 rtx plus_expr;
1818 init_costs_to_max (&mincst);
1819 get_full_set_rtx_cost (pat, &oldcst);
1821 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1822 SET_SRC (pat) = plus_expr;
1824 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1825 if (move2add_valid_value_p (i, GET_MODE (reg))
1826 && reg_base_reg[i] < 0
1827 && reg_symbol_ref[i] != NULL_RTX
1828 && rtx_equal_p (sym, reg_symbol_ref[i]))
1830 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1831 GET_MODE (reg));
1832 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1833 use (set (reg) (reg)) instead.
1834 We don't delete this insn, nor do we convert it into a
1835 note, to avoid losing register notes or the return
1836 value flag. jump2 already knows how to get rid of
1837 no-op moves. */
1838 if (new_src == const0_rtx)
1840 init_costs_to_zero (&mincst);
1841 min_regno = i;
1842 break;
1844 else
1846 XEXP (plus_expr, 1) = new_src;
1847 get_full_set_rtx_cost (pat, &newcst);
1849 if (costs_lt_p (&newcst, &mincst, speed))
1851 mincst = newcst;
1852 min_regno = i;
1856 SET_SRC (pat) = src;
1858 if (costs_lt_p (&mincst, &oldcst, speed))
1860 rtx tem;
1862 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1863 if (i != min_regno)
1865 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1866 GET_MODE (reg));
1867 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1869 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1870 changed = true;
1872 reg_set_luid[regno] = move2add_luid;
1873 move2add_record_sym_value (reg, sym, off);
1874 return changed;
1877 /* Convert move insns with constant inputs to additions if they are cheaper.
1878 Return true if any changes were made. */
1879 static bool
1880 reload_cse_move2add (rtx_insn *first)
1882 int i;
1883 rtx_insn *insn;
1884 bool changed = false;
1886 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1888 reg_set_luid[i] = 0;
1889 reg_offset[i] = 0;
1890 reg_base_reg[i] = 0;
1891 reg_symbol_ref[i] = NULL_RTX;
1892 reg_mode[i] = VOIDmode;
1895 move2add_last_label_luid = 0;
1896 move2add_luid = 2;
1897 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1899 rtx pat, note;
1901 if (LABEL_P (insn))
1903 move2add_last_label_luid = move2add_luid;
1904 /* We're going to increment move2add_luid twice after a
1905 label, so that we can use move2add_last_label_luid + 1 as
1906 the luid for constants. */
1907 move2add_luid++;
1908 continue;
1910 if (! INSN_P (insn))
1911 continue;
1912 pat = PATTERN (insn);
1913 /* For simplicity, we only perform this optimization on
1914 straightforward SETs. */
1915 if (GET_CODE (pat) == SET
1916 && REG_P (SET_DEST (pat)))
1918 rtx reg = SET_DEST (pat);
1919 int regno = REGNO (reg);
1920 rtx src = SET_SRC (pat);
1922 /* Check if we have valid information on the contents of this
1923 register in the mode of REG. */
1924 if (move2add_valid_value_p (regno, GET_MODE (reg))
1925 && dbg_cnt (cse2_move2add))
1927 /* Try to transform (set (REGX) (CONST_INT A))
1929 (set (REGX) (CONST_INT B))
1931 (set (REGX) (CONST_INT A))
1933 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1935 (set (REGX) (CONST_INT A))
1937 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1940 if (CONST_INT_P (src)
1941 && reg_base_reg[regno] < 0
1942 && reg_symbol_ref[regno] == NULL_RTX)
1944 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1945 continue;
1948 /* Try to transform (set (REGX) (REGY))
1949 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1951 (set (REGX) (REGY))
1952 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1954 (set (REGX) (REGY))
1955 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1957 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1958 else if (REG_P (src)
1959 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1960 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1961 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
1963 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1964 rtx set = NULL_RTX;
1965 if (next)
1966 set = single_set (next);
1967 if (set
1968 && SET_DEST (set) == reg
1969 && GET_CODE (SET_SRC (set)) == PLUS
1970 && XEXP (SET_SRC (set), 0) == reg
1971 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1973 rtx src3 = XEXP (SET_SRC (set), 1);
1974 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1975 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1976 HOST_WIDE_INT regno_offset = reg_offset[regno];
1977 rtx new_src =
1978 gen_int_mode (added_offset
1979 + base_offset
1980 - regno_offset,
1981 GET_MODE (reg));
1982 bool success = false;
1983 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1985 if (new_src == const0_rtx)
1986 /* See above why we create (set (reg) (reg)) here. */
1987 success
1988 = validate_change (next, &SET_SRC (set), reg, 0);
1989 else
1991 rtx old_src = SET_SRC (set);
1992 struct full_rtx_costs oldcst, newcst;
1993 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1995 get_full_set_rtx_cost (set, &oldcst);
1996 SET_SRC (set) = tem;
1997 get_full_set_src_cost (tem, GET_MODE (reg), &newcst);
1998 SET_SRC (set) = old_src;
1999 costs_add_n_insns (&oldcst, 1);
2001 if (costs_lt_p (&newcst, &oldcst, speed)
2002 && have_add2_insn (reg, new_src))
2004 rtx newpat = gen_rtx_SET (reg, tem);
2005 success
2006 = validate_change (next, &PATTERN (next),
2007 newpat, 0);
2010 if (success)
2011 delete_insn (insn);
2012 changed |= success;
2013 insn = next;
2014 move2add_record_mode (reg);
2015 reg_offset[regno]
2016 = trunc_int_for_mode (added_offset + base_offset,
2017 GET_MODE (reg));
2018 continue;
2023 /* Try to transform
2024 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2026 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2028 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2030 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2031 if ((GET_CODE (src) == SYMBOL_REF
2032 || (GET_CODE (src) == CONST
2033 && GET_CODE (XEXP (src, 0)) == PLUS
2034 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2035 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2036 && dbg_cnt (cse2_move2add))
2038 rtx sym, off;
2040 if (GET_CODE (src) == SYMBOL_REF)
2042 sym = src;
2043 off = const0_rtx;
2045 else
2047 sym = XEXP (XEXP (src, 0), 0);
2048 off = XEXP (XEXP (src, 0), 1);
2051 /* If the reg already contains the value which is sum of
2052 sym and some constant value, we can use an add2 insn. */
2053 if (move2add_valid_value_p (regno, GET_MODE (reg))
2054 && reg_base_reg[regno] < 0
2055 && reg_symbol_ref[regno] != NULL_RTX
2056 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2057 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2059 /* Otherwise, we have to find a register whose value is sum
2060 of sym and some constant value. */
2061 else
2062 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2064 continue;
2068 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2070 if (REG_NOTE_KIND (note) == REG_INC
2071 && REG_P (XEXP (note, 0)))
2073 /* Reset the information about this register. */
2074 int regno = REGNO (XEXP (note, 0));
2075 if (regno < FIRST_PSEUDO_REGISTER)
2077 move2add_record_mode (XEXP (note, 0));
2078 reg_mode[regno] = VOIDmode;
2082 note_stores (PATTERN (insn), move2add_note_store, insn);
2084 /* If INSN is a conditional branch, we try to extract an
2085 implicit set out of it. */
2086 if (any_condjump_p (insn))
2088 rtx cnd = fis_get_condition (insn);
2090 if (cnd != NULL_RTX
2091 && GET_CODE (cnd) == NE
2092 && REG_P (XEXP (cnd, 0))
2093 && !reg_set_p (XEXP (cnd, 0), insn)
2094 /* The following two checks, which are also in
2095 move2add_note_store, are intended to reduce the
2096 number of calls to gen_rtx_SET to avoid memory
2097 allocation if possible. */
2098 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2099 && REG_NREGS (XEXP (cnd, 0)) == 1
2100 && CONST_INT_P (XEXP (cnd, 1)))
2102 rtx implicit_set =
2103 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2104 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2108 /* If this is a CALL_INSN, all call used registers are stored with
2109 unknown values. */
2110 if (CALL_P (insn))
2112 rtx link;
2114 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2116 if (call_used_regs[i])
2117 /* Reset the information about this register. */
2118 reg_mode[i] = VOIDmode;
2121 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2122 link = XEXP (link, 1))
2124 rtx setuse = XEXP (link, 0);
2125 rtx usage_rtx = XEXP (setuse, 0);
2126 if (GET_CODE (setuse) == CLOBBER
2127 && REG_P (usage_rtx))
2129 unsigned int end_regno = END_REGNO (usage_rtx);
2130 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2131 /* Reset the information about this register. */
2132 reg_mode[r] = VOIDmode;
2137 return changed;
2140 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2141 contains SET.
2142 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2143 Called from reload_cse_move2add via note_stores. */
2145 static void
2146 move2add_note_store (rtx dst, const_rtx set, void *data)
2148 rtx_insn *insn = (rtx_insn *) data;
2149 unsigned int regno = 0;
2150 machine_mode mode = GET_MODE (dst);
2152 /* Some targets do argument pushes without adding REG_INC notes. */
2154 if (MEM_P (dst))
2156 dst = XEXP (dst, 0);
2157 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2158 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2159 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2160 return;
2163 if (GET_CODE (dst) == SUBREG)
2164 regno = subreg_regno (dst);
2165 else if (REG_P (dst))
2166 regno = REGNO (dst);
2167 else
2168 return;
2170 if (SCALAR_INT_MODE_P (mode)
2171 && GET_CODE (set) == SET)
2173 rtx note, sym = NULL_RTX;
2174 rtx off;
2176 note = find_reg_equal_equiv_note (insn);
2177 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2179 sym = XEXP (note, 0);
2180 off = const0_rtx;
2182 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2183 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2184 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2185 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2187 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2188 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2191 if (sym != NULL_RTX)
2193 move2add_record_sym_value (dst, sym, off);
2194 return;
2198 if (SCALAR_INT_MODE_P (mode)
2199 && GET_CODE (set) == SET
2200 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2201 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2203 rtx src = SET_SRC (set);
2204 rtx base_reg;
2205 unsigned HOST_WIDE_INT offset;
2206 int base_regno;
2208 switch (GET_CODE (src))
2210 case PLUS:
2211 if (REG_P (XEXP (src, 0)))
2213 base_reg = XEXP (src, 0);
2215 if (CONST_INT_P (XEXP (src, 1)))
2216 offset = UINTVAL (XEXP (src, 1));
2217 else if (REG_P (XEXP (src, 1))
2218 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2220 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2221 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2222 offset = reg_offset[REGNO (XEXP (src, 1))];
2223 /* Maybe the first register is known to be a
2224 constant. */
2225 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2226 && reg_base_reg[REGNO (base_reg)] < 0
2227 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2229 offset = reg_offset[REGNO (base_reg)];
2230 base_reg = XEXP (src, 1);
2232 else
2233 goto invalidate;
2235 else
2236 goto invalidate;
2238 break;
2241 goto invalidate;
2243 case REG:
2244 base_reg = src;
2245 offset = 0;
2246 break;
2248 case CONST_INT:
2249 /* Start tracking the register as a constant. */
2250 reg_base_reg[regno] = -1;
2251 reg_symbol_ref[regno] = NULL_RTX;
2252 reg_offset[regno] = INTVAL (SET_SRC (set));
2253 /* We assign the same luid to all registers set to constants. */
2254 reg_set_luid[regno] = move2add_last_label_luid + 1;
2255 move2add_record_mode (dst);
2256 return;
2258 default:
2259 goto invalidate;
2262 base_regno = REGNO (base_reg);
2263 /* If information about the base register is not valid, set it
2264 up as a new base register, pretending its value is known
2265 starting from the current insn. */
2266 if (!move2add_valid_value_p (base_regno, mode))
2268 reg_base_reg[base_regno] = base_regno;
2269 reg_symbol_ref[base_regno] = NULL_RTX;
2270 reg_offset[base_regno] = 0;
2271 reg_set_luid[base_regno] = move2add_luid;
2272 gcc_assert (GET_MODE (base_reg) == mode);
2273 move2add_record_mode (base_reg);
2276 /* Copy base information from our base register. */
2277 reg_set_luid[regno] = reg_set_luid[base_regno];
2278 reg_base_reg[regno] = reg_base_reg[base_regno];
2279 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2281 /* Compute the sum of the offsets or constants. */
2282 reg_offset[regno]
2283 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2285 move2add_record_mode (dst);
2287 else
2289 invalidate:
2290 /* Invalidate the contents of the register. */
2291 move2add_record_mode (dst);
2292 reg_mode[regno] = VOIDmode;
2296 namespace {
2298 const pass_data pass_data_postreload_cse =
2300 RTL_PASS, /* type */
2301 "postreload", /* name */
2302 OPTGROUP_NONE, /* optinfo_flags */
2303 TV_RELOAD_CSE_REGS, /* tv_id */
2304 0, /* properties_required */
2305 0, /* properties_provided */
2306 0, /* properties_destroyed */
2307 0, /* todo_flags_start */
2308 TODO_df_finish, /* todo_flags_finish */
2311 class pass_postreload_cse : public rtl_opt_pass
2313 public:
2314 pass_postreload_cse (gcc::context *ctxt)
2315 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2318 /* opt_pass methods: */
2319 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2321 virtual unsigned int execute (function *);
2323 }; // class pass_postreload_cse
2325 unsigned int
2326 pass_postreload_cse::execute (function *fun)
2328 if (!dbg_cnt (postreload_cse))
2329 return 0;
2331 /* Do a very simple CSE pass over just the hard registers. */
2332 reload_cse_regs (get_insns ());
2333 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2334 Remove any EH edges associated with them. */
2335 if (fun->can_throw_non_call_exceptions
2336 && purge_all_dead_edges ())
2337 cleanup_cfg (0);
2339 return 0;
2342 } // anon namespace
2344 rtl_opt_pass *
2345 make_pass_postreload_cse (gcc::context *ctxt)
2347 return new pass_postreload_cse (ctxt);