re PR middle-end/91603 (Unaligned access in expand_assignment)
[official-gcc.git] / gcc / tree-switch-conversion.c
blobb7149039ae4310ae70dd5237fe977c0cec4ec7c0
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2019 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "insn-codes.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "cfghooks.h"
34 #include "tree-pass.h"
35 #include "ssa.h"
36 #include "optabs-tree.h"
37 #include "cgraph.h"
38 #include "gimple-pretty-print.h"
39 #include "params.h"
40 #include "fold-const.h"
41 #include "varasm.h"
42 #include "stor-layout.h"
43 #include "cfganal.h"
44 #include "gimplify.h"
45 #include "gimple-iterator.h"
46 #include "gimplify-me.h"
47 #include "gimple-fold.h"
48 #include "tree-cfg.h"
49 #include "cfgloop.h"
50 #include "alloc-pool.h"
51 #include "target.h"
52 #include "tree-into-ssa.h"
53 #include "omp-general.h"
55 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
56 type in the GIMPLE type system that is language-independent? */
57 #include "langhooks.h"
59 #include "tree-switch-conversion.h"
61 using namespace tree_switch_conversion;
63 /* Constructor. */
65 switch_conversion::switch_conversion (): m_final_bb (NULL), m_other_count (),
66 m_constructors (NULL), m_default_values (NULL),
67 m_arr_ref_first (NULL), m_arr_ref_last (NULL),
68 m_reason (NULL), m_default_case_nonstandard (false), m_cfg_altered (false)
72 /* Collection information about SWTCH statement. */
74 void
75 switch_conversion::collect (gswitch *swtch)
77 unsigned int branch_num = gimple_switch_num_labels (swtch);
78 tree min_case, max_case;
79 unsigned int i;
80 edge e, e_default, e_first;
81 edge_iterator ei;
83 m_switch = swtch;
85 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
86 is a default label which is the first in the vector.
87 Collect the bits we can deduce from the CFG. */
88 m_index_expr = gimple_switch_index (swtch);
89 m_switch_bb = gimple_bb (swtch);
90 e_default = gimple_switch_default_edge (cfun, swtch);
91 m_default_bb = e_default->dest;
92 m_default_prob = e_default->probability;
93 m_default_count = e_default->count ();
94 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
95 if (e != e_default)
96 m_other_count += e->count ();
98 /* Get upper and lower bounds of case values, and the covered range. */
99 min_case = gimple_switch_label (swtch, 1);
100 max_case = gimple_switch_label (swtch, branch_num - 1);
102 m_range_min = CASE_LOW (min_case);
103 if (CASE_HIGH (max_case) != NULL_TREE)
104 m_range_max = CASE_HIGH (max_case);
105 else
106 m_range_max = CASE_LOW (max_case);
108 m_contiguous_range = true;
109 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : m_range_min;
110 for (i = 2; i < branch_num; i++)
112 tree elt = gimple_switch_label (swtch, i);
113 if (wi::to_wide (last) + 1 != wi::to_wide (CASE_LOW (elt)))
115 m_contiguous_range = false;
116 break;
118 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
121 if (m_contiguous_range)
122 e_first = gimple_switch_edge (cfun, swtch, 1);
123 else
124 e_first = e_default;
126 /* See if there is one common successor block for all branch
127 targets. If it exists, record it in FINAL_BB.
128 Start with the destination of the first non-default case
129 if the range is contiguous and default case otherwise as
130 guess or its destination in case it is a forwarder block. */
131 if (! single_pred_p (e_first->dest))
132 m_final_bb = e_first->dest;
133 else if (single_succ_p (e_first->dest)
134 && ! single_pred_p (single_succ (e_first->dest)))
135 m_final_bb = single_succ (e_first->dest);
136 /* Require that all switch destinations are either that common
137 FINAL_BB or a forwarder to it, except for the default
138 case if contiguous range. */
139 if (m_final_bb)
140 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
142 if (e->dest == m_final_bb)
143 continue;
145 if (single_pred_p (e->dest)
146 && single_succ_p (e->dest)
147 && single_succ (e->dest) == m_final_bb)
148 continue;
150 if (e == e_default && m_contiguous_range)
152 m_default_case_nonstandard = true;
153 continue;
156 m_final_bb = NULL;
157 break;
160 m_range_size
161 = int_const_binop (MINUS_EXPR, m_range_max, m_range_min);
163 /* Get a count of the number of case labels. Single-valued case labels
164 simply count as one, but a case range counts double, since it may
165 require two compares if it gets lowered as a branching tree. */
166 m_count = 0;
167 for (i = 1; i < branch_num; i++)
169 tree elt = gimple_switch_label (swtch, i);
170 m_count++;
171 if (CASE_HIGH (elt)
172 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
173 m_count++;
176 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
177 block. Assume a CFG cleanup would have already removed degenerate
178 switch statements, this allows us to just use EDGE_COUNT. */
179 m_uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
182 /* Checks whether the range given by individual case statements of the switch
183 switch statement isn't too big and whether the number of branches actually
184 satisfies the size of the new array. */
186 bool
187 switch_conversion::check_range ()
189 gcc_assert (m_range_size);
190 if (!tree_fits_uhwi_p (m_range_size))
192 m_reason = "index range way too large or otherwise unusable";
193 return false;
196 if (tree_to_uhwi (m_range_size)
197 > ((unsigned) m_count * SWITCH_CONVERSION_BRANCH_RATIO))
199 m_reason = "the maximum range-branch ratio exceeded";
200 return false;
203 return true;
206 /* Checks whether all but the final BB basic blocks are empty. */
208 bool
209 switch_conversion::check_all_empty_except_final ()
211 edge e, e_default = find_edge (m_switch_bb, m_default_bb);
212 edge_iterator ei;
214 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
216 if (e->dest == m_final_bb)
217 continue;
219 if (!empty_block_p (e->dest))
221 if (m_contiguous_range && e == e_default)
223 m_default_case_nonstandard = true;
224 continue;
227 m_reason = "bad case - a non-final BB not empty";
228 return false;
232 return true;
235 /* This function checks whether all required values in phi nodes in final_bb
236 are constants. Required values are those that correspond to a basic block
237 which is a part of the examined switch statement. It returns true if the
238 phi nodes are OK, otherwise false. */
240 bool
241 switch_conversion::check_final_bb ()
243 gphi_iterator gsi;
245 m_phi_count = 0;
246 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
248 gphi *phi = gsi.phi ();
249 unsigned int i;
251 if (virtual_operand_p (gimple_phi_result (phi)))
252 continue;
254 m_phi_count++;
256 for (i = 0; i < gimple_phi_num_args (phi); i++)
258 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
260 if (bb == m_switch_bb
261 || (single_pred_p (bb)
262 && single_pred (bb) == m_switch_bb
263 && (!m_default_case_nonstandard
264 || empty_block_p (bb))))
266 tree reloc, val;
267 const char *reason = NULL;
269 val = gimple_phi_arg_def (phi, i);
270 if (!is_gimple_ip_invariant (val))
271 reason = "non-invariant value from a case";
272 else
274 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
275 if ((flag_pic && reloc != null_pointer_node)
276 || (!flag_pic && reloc == NULL_TREE))
278 if (reloc)
279 reason
280 = "value from a case would need runtime relocations";
281 else
282 reason
283 = "value from a case is not a valid initializer";
286 if (reason)
288 /* For contiguous range, we can allow non-constant
289 or one that needs relocation, as long as it is
290 only reachable from the default case. */
291 if (bb == m_switch_bb)
292 bb = m_final_bb;
293 if (!m_contiguous_range || bb != m_default_bb)
295 m_reason = reason;
296 return false;
299 unsigned int branch_num = gimple_switch_num_labels (m_switch);
300 for (unsigned int i = 1; i < branch_num; i++)
302 if (gimple_switch_label_bb (cfun, m_switch, i) == bb)
304 m_reason = reason;
305 return false;
308 m_default_case_nonstandard = true;
314 return true;
317 /* The following function allocates default_values, target_{in,out}_names and
318 constructors arrays. The last one is also populated with pointers to
319 vectors that will become constructors of new arrays. */
321 void
322 switch_conversion::create_temp_arrays ()
324 int i;
326 m_default_values = XCNEWVEC (tree, m_phi_count * 3);
327 /* ??? Macros do not support multi argument templates in their
328 argument list. We create a typedef to work around that problem. */
329 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
330 m_constructors = XCNEWVEC (vec_constructor_elt_gc, m_phi_count);
331 m_target_inbound_names = m_default_values + m_phi_count;
332 m_target_outbound_names = m_target_inbound_names + m_phi_count;
333 for (i = 0; i < m_phi_count; i++)
334 vec_alloc (m_constructors[i], tree_to_uhwi (m_range_size) + 1);
337 /* Populate the array of default values in the order of phi nodes.
338 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
339 if the range is non-contiguous or the default case has standard
340 structure, otherwise it is the first non-default case instead. */
342 void
343 switch_conversion::gather_default_values (tree default_case)
345 gphi_iterator gsi;
346 basic_block bb = label_to_block (cfun, CASE_LABEL (default_case));
347 edge e;
348 int i = 0;
350 gcc_assert (CASE_LOW (default_case) == NULL_TREE
351 || m_default_case_nonstandard);
353 if (bb == m_final_bb)
354 e = find_edge (m_switch_bb, bb);
355 else
356 e = single_succ_edge (bb);
358 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
360 gphi *phi = gsi.phi ();
361 if (virtual_operand_p (gimple_phi_result (phi)))
362 continue;
363 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
364 gcc_assert (val);
365 m_default_values[i++] = val;
369 /* The following function populates the vectors in the constructors array with
370 future contents of the static arrays. The vectors are populated in the
371 order of phi nodes. */
373 void
374 switch_conversion::build_constructors ()
376 unsigned i, branch_num = gimple_switch_num_labels (m_switch);
377 tree pos = m_range_min;
378 tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
380 for (i = 1; i < branch_num; i++)
382 tree cs = gimple_switch_label (m_switch, i);
383 basic_block bb = label_to_block (cfun, CASE_LABEL (cs));
384 edge e;
385 tree high;
386 gphi_iterator gsi;
387 int j;
389 if (bb == m_final_bb)
390 e = find_edge (m_switch_bb, bb);
391 else
392 e = single_succ_edge (bb);
393 gcc_assert (e);
395 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
397 int k;
398 for (k = 0; k < m_phi_count; k++)
400 constructor_elt elt;
402 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
403 elt.value
404 = unshare_expr_without_location (m_default_values[k]);
405 m_constructors[k]->quick_push (elt);
408 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
410 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
412 j = 0;
413 if (CASE_HIGH (cs))
414 high = CASE_HIGH (cs);
415 else
416 high = CASE_LOW (cs);
417 for (gsi = gsi_start_phis (m_final_bb);
418 !gsi_end_p (gsi); gsi_next (&gsi))
420 gphi *phi = gsi.phi ();
421 if (virtual_operand_p (gimple_phi_result (phi)))
422 continue;
423 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
424 tree low = CASE_LOW (cs);
425 pos = CASE_LOW (cs);
429 constructor_elt elt;
431 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
432 elt.value = unshare_expr_without_location (val);
433 m_constructors[j]->quick_push (elt);
435 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
436 } while (!tree_int_cst_lt (high, pos)
437 && tree_int_cst_lt (low, pos));
438 j++;
443 /* If all values in the constructor vector are products of a linear function
444 a * x + b, then return true. When true, COEFF_A and COEFF_B and
445 coefficients of the linear function. Note that equal values are special
446 case of a linear function with a and b equal to zero. */
448 bool
449 switch_conversion::contains_linear_function_p (vec<constructor_elt, va_gc> *vec,
450 wide_int *coeff_a,
451 wide_int *coeff_b)
453 unsigned int i;
454 constructor_elt *elt;
456 gcc_assert (vec->length () >= 2);
458 /* Let's try to find any linear function a * x + y that can apply to
459 given values. 'a' can be calculated as follows:
461 a = (y2 - y1) / (x2 - x1) where x2 - x1 = 1 (consecutive case indices)
462 a = y2 - y1
466 b = y2 - a * x2
470 tree elt0 = (*vec)[0].value;
471 tree elt1 = (*vec)[1].value;
473 if (TREE_CODE (elt0) != INTEGER_CST || TREE_CODE (elt1) != INTEGER_CST)
474 return false;
476 wide_int range_min
477 = wide_int::from (wi::to_wide (m_range_min),
478 TYPE_PRECISION (TREE_TYPE (elt0)),
479 TYPE_SIGN (TREE_TYPE (m_range_min)));
480 wide_int y1 = wi::to_wide (elt0);
481 wide_int y2 = wi::to_wide (elt1);
482 wide_int a = y2 - y1;
483 wide_int b = y2 - a * (range_min + 1);
485 /* Verify that all values fulfill the linear function. */
486 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
488 if (TREE_CODE (elt->value) != INTEGER_CST)
489 return false;
491 wide_int value = wi::to_wide (elt->value);
492 if (a * range_min + b != value)
493 return false;
495 ++range_min;
498 *coeff_a = a;
499 *coeff_b = b;
501 return true;
504 /* Return type which should be used for array elements, either TYPE's
505 main variant or, for integral types, some smaller integral type
506 that can still hold all the constants. */
508 tree
509 switch_conversion::array_value_type (tree type, int num)
511 unsigned int i, len = vec_safe_length (m_constructors[num]);
512 constructor_elt *elt;
513 int sign = 0;
514 tree smaller_type;
516 /* Types with alignments greater than their size can reach here, e.g. out of
517 SRA. We couldn't use these as an array component type so get back to the
518 main variant first, which, for our purposes, is fine for other types as
519 well. */
521 type = TYPE_MAIN_VARIANT (type);
523 if (!INTEGRAL_TYPE_P (type))
524 return type;
526 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
527 scalar_int_mode mode = get_narrowest_mode (type_mode);
528 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
529 return type;
531 if (len < (optimize_bb_for_size_p (gimple_bb (m_switch)) ? 2 : 32))
532 return type;
534 FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt)
536 wide_int cst;
538 if (TREE_CODE (elt->value) != INTEGER_CST)
539 return type;
541 cst = wi::to_wide (elt->value);
542 while (1)
544 unsigned int prec = GET_MODE_BITSIZE (mode);
545 if (prec > HOST_BITS_PER_WIDE_INT)
546 return type;
548 if (sign >= 0 && cst == wi::zext (cst, prec))
550 if (sign == 0 && cst == wi::sext (cst, prec))
551 break;
552 sign = 1;
553 break;
555 if (sign <= 0 && cst == wi::sext (cst, prec))
557 sign = -1;
558 break;
561 if (sign == 1)
562 sign = 0;
564 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
565 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
566 return type;
570 if (sign == 0)
571 sign = TYPE_UNSIGNED (type) ? 1 : -1;
572 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
573 if (GET_MODE_SIZE (type_mode)
574 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type)))
575 return type;
577 return smaller_type;
580 /* Create an appropriate array type and declaration and assemble a static
581 array variable. Also create a load statement that initializes
582 the variable in question with a value from the static array. SWTCH is
583 the switch statement being converted, NUM is the index to
584 arrays of constructors, default values and target SSA names
585 for this particular array. ARR_INDEX_TYPE is the type of the index
586 of the new array, PHI is the phi node of the final BB that corresponds
587 to the value that will be loaded from the created array. TIDX
588 is an ssa name of a temporary variable holding the index for loads from the
589 new array. */
591 void
592 switch_conversion::build_one_array (int num, tree arr_index_type,
593 gphi *phi, tree tidx)
595 tree name;
596 gimple *load;
597 gimple_stmt_iterator gsi = gsi_for_stmt (m_switch);
598 location_t loc = gimple_location (m_switch);
600 gcc_assert (m_default_values[num]);
602 name = copy_ssa_name (PHI_RESULT (phi));
603 m_target_inbound_names[num] = name;
605 vec<constructor_elt, va_gc> *constructor = m_constructors[num];
606 wide_int coeff_a, coeff_b;
607 bool linear_p = contains_linear_function_p (constructor, &coeff_a, &coeff_b);
608 tree type;
609 if (linear_p
610 && (type = range_check_type (TREE_TYPE ((*constructor)[0].value))))
612 if (dump_file && coeff_a.to_uhwi () > 0)
613 fprintf (dump_file, "Linear transformation with A = %" PRId64
614 " and B = %" PRId64 "\n", coeff_a.to_shwi (),
615 coeff_b.to_shwi ());
617 /* We must use type of constructor values. */
618 gimple_seq seq = NULL;
619 tree tmp = gimple_convert (&seq, type, m_index_expr);
620 tree tmp2 = gimple_build (&seq, MULT_EXPR, type,
621 wide_int_to_tree (type, coeff_a), tmp);
622 tree tmp3 = gimple_build (&seq, PLUS_EXPR, type, tmp2,
623 wide_int_to_tree (type, coeff_b));
624 tree tmp4 = gimple_convert (&seq, TREE_TYPE (name), tmp3);
625 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
626 load = gimple_build_assign (name, tmp4);
628 else
630 tree array_type, ctor, decl, value_type, fetch, default_type;
632 default_type = TREE_TYPE (m_default_values[num]);
633 value_type = array_value_type (default_type, num);
634 array_type = build_array_type (value_type, arr_index_type);
635 if (default_type != value_type)
637 unsigned int i;
638 constructor_elt *elt;
640 FOR_EACH_VEC_SAFE_ELT (constructor, i, elt)
641 elt->value = fold_convert (value_type, elt->value);
643 ctor = build_constructor (array_type, constructor);
644 TREE_CONSTANT (ctor) = true;
645 TREE_STATIC (ctor) = true;
647 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
648 TREE_STATIC (decl) = 1;
649 DECL_INITIAL (decl) = ctor;
651 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
652 DECL_ARTIFICIAL (decl) = 1;
653 DECL_IGNORED_P (decl) = 1;
654 TREE_CONSTANT (decl) = 1;
655 TREE_READONLY (decl) = 1;
656 DECL_IGNORED_P (decl) = 1;
657 if (offloading_function_p (cfun->decl))
658 DECL_ATTRIBUTES (decl)
659 = tree_cons (get_identifier ("omp declare target"), NULL_TREE,
660 NULL_TREE);
661 varpool_node::finalize_decl (decl);
663 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
664 NULL_TREE);
665 if (default_type != value_type)
667 fetch = fold_convert (default_type, fetch);
668 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
669 true, GSI_SAME_STMT);
671 load = gimple_build_assign (name, fetch);
674 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
675 update_stmt (load);
676 m_arr_ref_last = load;
679 /* Builds and initializes static arrays initialized with values gathered from
680 the switch statement. Also creates statements that load values from
681 them. */
683 void
684 switch_conversion::build_arrays ()
686 tree arr_index_type;
687 tree tidx, sub, utype;
688 gimple *stmt;
689 gimple_stmt_iterator gsi;
690 gphi_iterator gpi;
691 int i;
692 location_t loc = gimple_location (m_switch);
694 gsi = gsi_for_stmt (m_switch);
696 /* Make sure we do not generate arithmetics in a subrange. */
697 utype = TREE_TYPE (m_index_expr);
698 if (TREE_TYPE (utype))
699 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
700 else
701 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
703 arr_index_type = build_index_type (m_range_size);
704 tidx = make_ssa_name (utype);
705 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
706 fold_convert_loc (loc, utype, m_index_expr),
707 fold_convert_loc (loc, utype, m_range_min));
708 sub = force_gimple_operand_gsi (&gsi, sub,
709 false, NULL, true, GSI_SAME_STMT);
710 stmt = gimple_build_assign (tidx, sub);
712 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
713 update_stmt (stmt);
714 m_arr_ref_first = stmt;
716 for (gpi = gsi_start_phis (m_final_bb), i = 0;
717 !gsi_end_p (gpi); gsi_next (&gpi))
719 gphi *phi = gpi.phi ();
720 if (!virtual_operand_p (gimple_phi_result (phi)))
721 build_one_array (i++, arr_index_type, phi, tidx);
722 else
724 edge e;
725 edge_iterator ei;
726 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
728 if (e->dest == m_final_bb)
729 break;
730 if (!m_default_case_nonstandard
731 || e->dest != m_default_bb)
733 e = single_succ_edge (e->dest);
734 break;
737 gcc_assert (e && e->dest == m_final_bb);
738 m_target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
743 /* Generates and appropriately inserts loads of default values at the position
744 given by GSI. Returns the last inserted statement. */
746 gassign *
747 switch_conversion::gen_def_assigns (gimple_stmt_iterator *gsi)
749 int i;
750 gassign *assign = NULL;
752 for (i = 0; i < m_phi_count; i++)
754 tree name = copy_ssa_name (m_target_inbound_names[i]);
755 m_target_outbound_names[i] = name;
756 assign = gimple_build_assign (name, m_default_values[i]);
757 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
758 update_stmt (assign);
760 return assign;
763 /* Deletes the unused bbs and edges that now contain the switch statement and
764 its empty branch bbs. BBD is the now dead BB containing
765 the original switch statement, FINAL is the last BB of the converted
766 switch statement (in terms of succession). */
768 void
769 switch_conversion::prune_bbs (basic_block bbd, basic_block final,
770 basic_block default_bb)
772 edge_iterator ei;
773 edge e;
775 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
777 basic_block bb;
778 bb = e->dest;
779 remove_edge (e);
780 if (bb != final && bb != default_bb)
781 delete_basic_block (bb);
783 delete_basic_block (bbd);
786 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
787 from the basic block loading values from an array and E2F from the basic
788 block loading default values. BBF is the last switch basic block (see the
789 bbf description in the comment below). */
791 void
792 switch_conversion::fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
794 gphi_iterator gsi;
795 int i;
797 for (gsi = gsi_start_phis (bbf), i = 0;
798 !gsi_end_p (gsi); gsi_next (&gsi))
800 gphi *phi = gsi.phi ();
801 tree inbound, outbound;
802 if (virtual_operand_p (gimple_phi_result (phi)))
803 inbound = outbound = m_target_vop;
804 else
806 inbound = m_target_inbound_names[i];
807 outbound = m_target_outbound_names[i++];
809 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
810 if (!m_default_case_nonstandard)
811 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
815 /* Creates a check whether the switch expression value actually falls into the
816 range given by all the cases. If it does not, the temporaries are loaded
817 with default values instead. */
819 void
820 switch_conversion::gen_inbound_check ()
822 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
823 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
824 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
825 glabel *label1, *label2, *label3;
826 tree utype, tidx;
827 tree bound;
829 gcond *cond_stmt;
831 gassign *last_assign = NULL;
832 gimple_stmt_iterator gsi;
833 basic_block bb0, bb1, bb2, bbf, bbd;
834 edge e01 = NULL, e02, e21, e1d, e1f, e2f;
835 location_t loc = gimple_location (m_switch);
837 gcc_assert (m_default_values);
839 bb0 = gimple_bb (m_switch);
841 tidx = gimple_assign_lhs (m_arr_ref_first);
842 utype = TREE_TYPE (tidx);
844 /* (end of) block 0 */
845 gsi = gsi_for_stmt (m_arr_ref_first);
846 gsi_next (&gsi);
848 bound = fold_convert_loc (loc, utype, m_range_size);
849 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
850 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
851 update_stmt (cond_stmt);
853 /* block 2 */
854 if (!m_default_case_nonstandard)
856 label2 = gimple_build_label (label_decl2);
857 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
858 last_assign = gen_def_assigns (&gsi);
861 /* block 1 */
862 label1 = gimple_build_label (label_decl1);
863 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
865 /* block F */
866 gsi = gsi_start_bb (m_final_bb);
867 label3 = gimple_build_label (label_decl3);
868 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
870 /* cfg fix */
871 e02 = split_block (bb0, cond_stmt);
872 bb2 = e02->dest;
874 if (m_default_case_nonstandard)
876 bb1 = bb2;
877 bb2 = m_default_bb;
878 e01 = e02;
879 e01->flags = EDGE_TRUE_VALUE;
880 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
881 edge e_default = find_edge (bb1, bb2);
882 for (gphi_iterator gsi = gsi_start_phis (bb2);
883 !gsi_end_p (gsi); gsi_next (&gsi))
885 gphi *phi = gsi.phi ();
886 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
887 add_phi_arg (phi, arg, e02,
888 gimple_phi_arg_location_from_edge (phi, e_default));
890 /* Partially fix the dominator tree, if it is available. */
891 if (dom_info_available_p (CDI_DOMINATORS))
892 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
894 else
896 e21 = split_block (bb2, last_assign);
897 bb1 = e21->dest;
898 remove_edge (e21);
901 e1d = split_block (bb1, m_arr_ref_last);
902 bbd = e1d->dest;
903 remove_edge (e1d);
905 /* Flags and profiles of the edge for in-range values. */
906 if (!m_default_case_nonstandard)
907 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
908 e01->probability = m_default_prob.invert ();
910 /* Flags and profiles of the edge taking care of out-of-range values. */
911 e02->flags &= ~EDGE_FALLTHRU;
912 e02->flags |= EDGE_FALSE_VALUE;
913 e02->probability = m_default_prob;
915 bbf = m_final_bb;
917 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
918 e1f->probability = profile_probability::always ();
920 if (m_default_case_nonstandard)
921 e2f = NULL;
922 else
924 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
925 e2f->probability = profile_probability::always ();
928 /* frequencies of the new BBs */
929 bb1->count = e01->count ();
930 bb2->count = e02->count ();
931 if (!m_default_case_nonstandard)
932 bbf->count = e1f->count () + e2f->count ();
934 /* Tidy blocks that have become unreachable. */
935 prune_bbs (bbd, m_final_bb,
936 m_default_case_nonstandard ? m_default_bb : NULL);
938 /* Fixup the PHI nodes in bbF. */
939 fix_phi_nodes (e1f, e2f, bbf);
941 /* Fix the dominator tree, if it is available. */
942 if (dom_info_available_p (CDI_DOMINATORS))
944 vec<basic_block> bbs_to_fix_dom;
946 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
947 if (!m_default_case_nonstandard)
948 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
949 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
950 /* If bbD was the immediate dominator ... */
951 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
953 bbs_to_fix_dom.create (3 + (bb2 != bbf));
954 bbs_to_fix_dom.quick_push (bb0);
955 bbs_to_fix_dom.quick_push (bb1);
956 if (bb2 != bbf)
957 bbs_to_fix_dom.quick_push (bb2);
958 bbs_to_fix_dom.quick_push (bbf);
960 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
961 bbs_to_fix_dom.release ();
965 /* The following function is invoked on every switch statement (the current
966 one is given in SWTCH) and runs the individual phases of switch
967 conversion on it one after another until one fails or the conversion
968 is completed. On success, NULL is in m_reason, otherwise points
969 to a string with the reason why the conversion failed. */
971 void
972 switch_conversion::expand (gswitch *swtch)
974 /* Group case labels so that we get the right results from the heuristics
975 that decide on the code generation approach for this switch. */
976 m_cfg_altered |= group_case_labels_stmt (swtch);
978 /* If this switch is now a degenerate case with only a default label,
979 there is nothing left for us to do. */
980 if (gimple_switch_num_labels (swtch) < 2)
982 m_reason = "switch is a degenerate case";
983 return;
986 collect (swtch);
988 /* No error markers should reach here (they should be filtered out
989 during gimplification). */
990 gcc_checking_assert (TREE_TYPE (m_index_expr) != error_mark_node);
992 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
993 gcc_checking_assert (!TREE_CONSTANT (m_index_expr));
995 /* Prefer bit test if possible. */
996 if (tree_fits_uhwi_p (m_range_size)
997 && bit_test_cluster::can_be_handled (tree_to_uhwi (m_range_size), m_uniq)
998 && bit_test_cluster::is_beneficial (m_count, m_uniq))
1000 m_reason = "expanding as bit test is preferable";
1001 return;
1004 if (m_uniq <= 2)
1006 /* This will be expanded as a decision tree . */
1007 m_reason = "expanding as jumps is preferable";
1008 return;
1011 /* If there is no common successor, we cannot do the transformation. */
1012 if (!m_final_bb)
1014 m_reason = "no common successor to all case label target blocks found";
1015 return;
1018 /* Check the case label values are within reasonable range: */
1019 if (!check_range ())
1021 gcc_assert (m_reason);
1022 return;
1025 /* For all the cases, see whether they are empty, the assignments they
1026 represent constant and so on... */
1027 if (!check_all_empty_except_final ())
1029 gcc_assert (m_reason);
1030 return;
1032 if (!check_final_bb ())
1034 gcc_assert (m_reason);
1035 return;
1038 /* At this point all checks have passed and we can proceed with the
1039 transformation. */
1041 create_temp_arrays ();
1042 gather_default_values (m_default_case_nonstandard
1043 ? gimple_switch_label (swtch, 1)
1044 : gimple_switch_default_label (swtch));
1045 build_constructors ();
1047 build_arrays (); /* Build the static arrays and assignments. */
1048 gen_inbound_check (); /* Build the bounds check. */
1050 m_cfg_altered = true;
1053 /* Destructor. */
1055 switch_conversion::~switch_conversion ()
1057 XDELETEVEC (m_constructors);
1058 XDELETEVEC (m_default_values);
1061 /* Constructor. */
1063 group_cluster::group_cluster (vec<cluster *> &clusters,
1064 unsigned start, unsigned end)
1066 gcc_checking_assert (end - start + 1 >= 1);
1067 m_prob = profile_probability::never ();
1068 m_cases.create (end - start + 1);
1069 for (unsigned i = start; i <= end; i++)
1071 m_cases.quick_push (static_cast<simple_cluster *> (clusters[i]));
1072 m_prob += clusters[i]->m_prob;
1074 m_subtree_prob = m_prob;
1077 /* Destructor. */
1079 group_cluster::~group_cluster ()
1081 for (unsigned i = 0; i < m_cases.length (); i++)
1082 delete m_cases[i];
1084 m_cases.release ();
1087 /* Dump content of a cluster. */
1089 void
1090 group_cluster::dump (FILE *f, bool details)
1092 unsigned total_values = 0;
1093 for (unsigned i = 0; i < m_cases.length (); i++)
1094 total_values += m_cases[i]->get_range (m_cases[i]->get_low (),
1095 m_cases[i]->get_high ());
1097 unsigned comparison_count = 0;
1098 for (unsigned i = 0; i < m_cases.length (); i++)
1100 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1101 comparison_count += sc->m_range_p ? 2 : 1;
1104 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1105 fprintf (f, "%s", get_type () == JUMP_TABLE ? "JT" : "BT");
1107 if (details)
1108 fprintf (f, "(values:%d comparisons:%d range:" HOST_WIDE_INT_PRINT_DEC
1109 " density: %.2f%%)", total_values, comparison_count, range,
1110 100.0f * comparison_count / range);
1112 fprintf (f, ":");
1113 PRINT_CASE (f, get_low ());
1114 fprintf (f, "-");
1115 PRINT_CASE (f, get_high ());
1116 fprintf (f, " ");
1119 /* Emit GIMPLE code to handle the cluster. */
1121 void
1122 jump_table_cluster::emit (tree index_expr, tree,
1123 tree default_label_expr, basic_block default_bb)
1125 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1126 unsigned HOST_WIDE_INT nondefault_range = 0;
1128 /* For jump table we just emit a new gswitch statement that will
1129 be latter lowered to jump table. */
1130 auto_vec <tree> labels;
1131 labels.create (m_cases.length ());
1133 make_edge (m_case_bb, default_bb, 0);
1134 for (unsigned i = 0; i < m_cases.length (); i++)
1136 labels.quick_push (unshare_expr (m_cases[i]->m_case_label_expr));
1137 make_edge (m_case_bb, m_cases[i]->m_case_bb, 0);
1140 gswitch *s = gimple_build_switch (index_expr,
1141 unshare_expr (default_label_expr), labels);
1142 gimple_stmt_iterator gsi = gsi_start_bb (m_case_bb);
1143 gsi_insert_after (&gsi, s, GSI_NEW_STMT);
1145 /* Set up even probabilities for all cases. */
1146 for (unsigned i = 0; i < m_cases.length (); i++)
1148 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1149 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1150 unsigned HOST_WIDE_INT case_range
1151 = sc->get_range (sc->get_low (), sc->get_high ());
1152 nondefault_range += case_range;
1154 /* case_edge->aux is number of values in a jump-table that are covered
1155 by the case_edge. */
1156 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + case_range);
1159 edge default_edge = gimple_switch_default_edge (cfun, s);
1160 default_edge->probability = profile_probability::never ();
1162 for (unsigned i = 0; i < m_cases.length (); i++)
1164 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1165 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1166 case_edge->probability
1167 = profile_probability::always ().apply_scale ((intptr_t)case_edge->aux,
1168 range);
1171 /* Number of non-default values is probability of default edge. */
1172 default_edge->probability
1173 += profile_probability::always ().apply_scale (nondefault_range,
1174 range).invert ();
1176 switch_decision_tree::reset_out_edges_aux (s);
1179 /* Find jump tables of given CLUSTERS, where all members of the vector
1180 are of type simple_cluster. New clusters are returned. */
1182 vec<cluster *>
1183 jump_table_cluster::find_jump_tables (vec<cluster *> &clusters)
1185 if (!is_enabled ())
1186 return clusters.copy ();
1188 unsigned l = clusters.length ();
1189 auto_vec<min_cluster_item> min;
1190 min.reserve (l + 1);
1192 min.quick_push (min_cluster_item (0, 0, 0));
1194 for (unsigned i = 1; i <= l; i++)
1196 /* Set minimal # of clusters with i-th item to infinite. */
1197 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1199 for (unsigned j = 0; j < i; j++)
1201 unsigned HOST_WIDE_INT s = min[j].m_non_jt_cases;
1202 if (i - j < case_values_threshold ())
1203 s += i - j;
1205 /* Prefer clusters with smaller number of numbers covered. */
1206 if ((min[j].m_count + 1 < min[i].m_count
1207 || (min[j].m_count + 1 == min[i].m_count
1208 && s < min[i].m_non_jt_cases))
1209 && can_be_handled (clusters, j, i - 1))
1210 min[i] = min_cluster_item (min[j].m_count + 1, j, s);
1213 gcc_checking_assert (min[i].m_count != INT_MAX);
1216 /* No result. */
1217 if (min[l].m_count == l)
1218 return clusters.copy ();
1220 vec<cluster *> output;
1221 output.create (4);
1223 /* Find and build the clusters. */
1224 for (unsigned int end = l;;)
1226 int start = min[end].m_start;
1228 /* Do not allow clusters with small number of cases. */
1229 if (is_beneficial (clusters, start, end - 1))
1230 output.safe_push (new jump_table_cluster (clusters, start, end - 1));
1231 else
1232 for (int i = end - 1; i >= start; i--)
1233 output.safe_push (clusters[i]);
1235 end = start;
1237 if (start <= 0)
1238 break;
1241 output.reverse ();
1242 return output;
1245 /* Return true when cluster starting at START and ending at END (inclusive)
1246 can build a jump-table. */
1248 bool
1249 jump_table_cluster::can_be_handled (const vec<cluster *> &clusters,
1250 unsigned start, unsigned end)
1252 /* If the switch is relatively small such that the cost of one
1253 indirect jump on the target are higher than the cost of a
1254 decision tree, go with the decision tree.
1256 If range of values is much bigger than number of values,
1257 or if it is too large to represent in a HOST_WIDE_INT,
1258 make a sequence of conditional branches instead of a dispatch.
1260 The definition of "much bigger" depends on whether we are
1261 optimizing for size or for speed.
1263 For algorithm correctness, jump table for a single case must return
1264 true. We bail out in is_beneficial if it's called just for
1265 a single case. */
1266 if (start == end)
1267 return true;
1269 unsigned HOST_WIDE_INT max_ratio
1270 = (optimize_insn_for_size_p ()
1271 ? PARAM_VALUE (PARAM_JUMP_TABLE_MAX_GROWTH_RATIO_FOR_SIZE)
1272 : PARAM_VALUE (PARAM_JUMP_TABLE_MAX_GROWTH_RATIO_FOR_SPEED));
1273 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1274 clusters[end]->get_high ());
1275 /* Check overflow. */
1276 if (range == 0)
1277 return false;
1279 unsigned HOST_WIDE_INT comparison_count = 0;
1280 for (unsigned i = start; i <= end; i++)
1282 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1283 comparison_count += sc->m_range_p ? 2 : 1;
1286 unsigned HOST_WIDE_INT lhs = 100 * range;
1287 if (lhs < range)
1288 return false;
1290 return lhs <= max_ratio * comparison_count;
1293 /* Return true if cluster starting at START and ending at END (inclusive)
1294 is profitable transformation. */
1296 bool
1297 jump_table_cluster::is_beneficial (const vec<cluster *> &,
1298 unsigned start, unsigned end)
1300 /* Single case bail out. */
1301 if (start == end)
1302 return false;
1304 return end - start + 1 >= case_values_threshold ();
1307 /* Find bit tests of given CLUSTERS, where all members of the vector
1308 are of type simple_cluster. New clusters are returned. */
1310 vec<cluster *>
1311 bit_test_cluster::find_bit_tests (vec<cluster *> &clusters)
1313 unsigned l = clusters.length ();
1314 auto_vec<min_cluster_item> min;
1315 min.reserve (l + 1);
1317 min.quick_push (min_cluster_item (0, 0, 0));
1319 for (unsigned i = 1; i <= l; i++)
1321 /* Set minimal # of clusters with i-th item to infinite. */
1322 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1324 for (unsigned j = 0; j < i; j++)
1326 if (min[j].m_count + 1 < min[i].m_count
1327 && can_be_handled (clusters, j, i - 1))
1328 min[i] = min_cluster_item (min[j].m_count + 1, j, INT_MAX);
1331 gcc_checking_assert (min[i].m_count != INT_MAX);
1334 /* No result. */
1335 if (min[l].m_count == l)
1336 return clusters.copy ();
1338 vec<cluster *> output;
1339 output.create (4);
1341 /* Find and build the clusters. */
1342 for (unsigned end = l;;)
1344 int start = min[end].m_start;
1346 if (is_beneficial (clusters, start, end - 1))
1348 bool entire = start == 0 && end == clusters.length ();
1349 output.safe_push (new bit_test_cluster (clusters, start, end - 1,
1350 entire));
1352 else
1353 for (int i = end - 1; i >= start; i--)
1354 output.safe_push (clusters[i]);
1356 end = start;
1358 if (start <= 0)
1359 break;
1362 output.reverse ();
1363 return output;
1366 /* Return true when RANGE of case values with UNIQ labels
1367 can build a bit test. */
1369 bool
1370 bit_test_cluster::can_be_handled (unsigned HOST_WIDE_INT range,
1371 unsigned int uniq)
1373 /* Check overflow. */
1374 if (range == 0)
1375 return 0;
1377 if (range >= GET_MODE_BITSIZE (word_mode))
1378 return false;
1380 return uniq <= 3;
1383 /* Return true when cluster starting at START and ending at END (inclusive)
1384 can build a bit test. */
1386 bool
1387 bit_test_cluster::can_be_handled (const vec<cluster *> &clusters,
1388 unsigned start, unsigned end)
1390 /* For algorithm correctness, bit test for a single case must return
1391 true. We bail out in is_beneficial if it's called just for
1392 a single case. */
1393 if (start == end)
1394 return true;
1396 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1397 clusters[end]->get_high ());
1398 auto_bitmap dest_bbs;
1400 for (unsigned i = start; i <= end; i++)
1402 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1403 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
1406 return can_be_handled (range, bitmap_count_bits (dest_bbs));
1409 /* Return true when COUNT of cases of UNIQ labels is beneficial for bit test
1410 transformation. */
1412 bool
1413 bit_test_cluster::is_beneficial (unsigned count, unsigned uniq)
1415 return (((uniq == 1 && count >= 3)
1416 || (uniq == 2 && count >= 5)
1417 || (uniq == 3 && count >= 6)));
1420 /* Return true if cluster starting at START and ending at END (inclusive)
1421 is profitable transformation. */
1423 bool
1424 bit_test_cluster::is_beneficial (const vec<cluster *> &clusters,
1425 unsigned start, unsigned end)
1427 /* Single case bail out. */
1428 if (start == end)
1429 return false;
1431 auto_bitmap dest_bbs;
1433 for (unsigned i = start; i <= end; i++)
1435 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1436 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
1439 unsigned uniq = bitmap_count_bits (dest_bbs);
1440 unsigned count = end - start + 1;
1441 return is_beneficial (count, uniq);
1444 /* Comparison function for qsort to order bit tests by decreasing
1445 probability of execution. */
1448 case_bit_test::cmp (const void *p1, const void *p2)
1450 const case_bit_test *const d1 = (const case_bit_test *) p1;
1451 const case_bit_test *const d2 = (const case_bit_test *) p2;
1453 if (d2->bits != d1->bits)
1454 return d2->bits - d1->bits;
1456 /* Stabilize the sort. */
1457 return (LABEL_DECL_UID (CASE_LABEL (d2->label))
1458 - LABEL_DECL_UID (CASE_LABEL (d1->label)));
1461 /* Expand a switch statement by a short sequence of bit-wise
1462 comparisons. "switch(x)" is effectively converted into
1463 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
1464 integer constants.
1466 INDEX_EXPR is the value being switched on.
1468 MINVAL is the lowest case value of in the case nodes,
1469 and RANGE is highest value minus MINVAL. MINVAL and RANGE
1470 are not guaranteed to be of the same type as INDEX_EXPR
1471 (the gimplifier doesn't change the type of case label values,
1472 and MINVAL and RANGE are derived from those values).
1473 MAXVAL is MINVAL + RANGE.
1475 There *MUST* be max_case_bit_tests or less unique case
1476 node targets. */
1478 void
1479 bit_test_cluster::emit (tree index_expr, tree index_type,
1480 tree, basic_block default_bb)
1482 case_bit_test test[m_max_case_bit_tests] = { {} };
1483 unsigned int i, j, k;
1484 unsigned int count;
1486 tree unsigned_index_type = range_check_type (index_type);
1488 gimple_stmt_iterator gsi;
1489 gassign *shift_stmt;
1491 tree idx, tmp, csui;
1492 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
1493 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
1494 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
1495 int prec = TYPE_PRECISION (word_type_node);
1496 wide_int wone = wi::one (prec);
1498 tree minval = get_low ();
1499 tree maxval = get_high ();
1500 tree range = int_const_binop (MINUS_EXPR, maxval, minval);
1501 unsigned HOST_WIDE_INT bt_range = get_range (minval, maxval);
1503 /* Go through all case labels, and collect the case labels, profile
1504 counts, and other information we need to build the branch tests. */
1505 count = 0;
1506 for (i = 0; i < m_cases.length (); i++)
1508 unsigned int lo, hi;
1509 simple_cluster *n = static_cast<simple_cluster *> (m_cases[i]);
1510 for (k = 0; k < count; k++)
1511 if (n->m_case_bb == test[k].target_bb)
1512 break;
1514 if (k == count)
1516 gcc_checking_assert (count < m_max_case_bit_tests);
1517 test[k].mask = wi::zero (prec);
1518 test[k].target_bb = n->m_case_bb;
1519 test[k].label = n->m_case_label_expr;
1520 test[k].bits = 0;
1521 count++;
1524 test[k].bits += n->get_range (n->get_low (), n->get_high ());
1526 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_low (), minval));
1527 if (n->get_high () == NULL_TREE)
1528 hi = lo;
1529 else
1530 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_high (),
1531 minval));
1533 for (j = lo; j <= hi; j++)
1534 test[k].mask |= wi::lshift (wone, j);
1537 qsort (test, count, sizeof (*test), case_bit_test::cmp);
1539 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
1540 the minval subtractions, but it might make the mask constants more
1541 expensive. So, compare the costs. */
1542 if (compare_tree_int (minval, 0) > 0
1543 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
1545 int cost_diff;
1546 HOST_WIDE_INT m = tree_to_uhwi (minval);
1547 rtx reg = gen_raw_REG (word_mode, 10000);
1548 bool speed_p = optimize_insn_for_speed_p ();
1549 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
1550 GEN_INT (-m)), speed_p);
1551 for (i = 0; i < count; i++)
1553 rtx r = immed_wide_int_const (test[i].mask, word_mode);
1554 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
1555 word_mode, speed_p);
1556 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
1557 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
1558 word_mode, speed_p);
1560 if (cost_diff > 0)
1562 for (i = 0; i < count; i++)
1563 test[i].mask = wi::lshift (test[i].mask, m);
1564 minval = build_zero_cst (TREE_TYPE (minval));
1565 range = maxval;
1569 /* Now build the test-and-branch code. */
1571 gsi = gsi_last_bb (m_case_bb);
1573 /* idx = (unsigned)x - minval. */
1574 idx = fold_convert (unsigned_index_type, index_expr);
1575 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
1576 fold_convert (unsigned_index_type, minval));
1577 idx = force_gimple_operand_gsi (&gsi, idx,
1578 /*simple=*/true, NULL_TREE,
1579 /*before=*/true, GSI_SAME_STMT);
1581 if (m_handles_entire_switch)
1583 /* if (idx > range) goto default */
1584 range
1585 = force_gimple_operand_gsi (&gsi,
1586 fold_convert (unsigned_index_type, range),
1587 /*simple=*/true, NULL_TREE,
1588 /*before=*/true, GSI_SAME_STMT);
1589 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
1590 basic_block new_bb
1591 = hoist_edge_and_branch_if_true (&gsi, tmp, default_bb,
1592 profile_probability::unlikely ());
1593 gsi = gsi_last_bb (new_bb);
1596 /* csui = (1 << (word_mode) idx) */
1597 csui = make_ssa_name (word_type_node);
1598 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
1599 fold_convert (word_type_node, idx));
1600 tmp = force_gimple_operand_gsi (&gsi, tmp,
1601 /*simple=*/false, NULL_TREE,
1602 /*before=*/true, GSI_SAME_STMT);
1603 shift_stmt = gimple_build_assign (csui, tmp);
1604 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
1605 update_stmt (shift_stmt);
1607 profile_probability prob = profile_probability::always ();
1609 /* for each unique set of cases:
1610 if (const & csui) goto target */
1611 for (k = 0; k < count; k++)
1613 prob = profile_probability::always ().apply_scale (test[k].bits,
1614 bt_range);
1615 bt_range -= test[k].bits;
1616 tmp = wide_int_to_tree (word_type_node, test[k].mask);
1617 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
1618 tmp = force_gimple_operand_gsi (&gsi, tmp,
1619 /*simple=*/true, NULL_TREE,
1620 /*before=*/true, GSI_SAME_STMT);
1621 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
1622 basic_block new_bb
1623 = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_bb, prob);
1624 gsi = gsi_last_bb (new_bb);
1627 /* We should have removed all edges now. */
1628 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
1630 /* If nothing matched, go to the default label. */
1631 edge e = make_edge (gsi_bb (gsi), default_bb, EDGE_FALLTHRU);
1632 e->probability = profile_probability::always ();
1635 /* Split the basic block at the statement pointed to by GSIP, and insert
1636 a branch to the target basic block of E_TRUE conditional on tree
1637 expression COND.
1639 It is assumed that there is already an edge from the to-be-split
1640 basic block to E_TRUE->dest block. This edge is removed, and the
1641 profile information on the edge is re-used for the new conditional
1642 jump.
1644 The CFG is updated. The dominator tree will not be valid after
1645 this transformation, but the immediate dominators are updated if
1646 UPDATE_DOMINATORS is true.
1648 Returns the newly created basic block. */
1650 basic_block
1651 bit_test_cluster::hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
1652 tree cond, basic_block case_bb,
1653 profile_probability prob)
1655 tree tmp;
1656 gcond *cond_stmt;
1657 edge e_false;
1658 basic_block new_bb, split_bb = gsi_bb (*gsip);
1660 edge e_true = make_edge (split_bb, case_bb, EDGE_TRUE_VALUE);
1661 e_true->probability = prob;
1662 gcc_assert (e_true->src == split_bb);
1664 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
1665 /*before=*/true, GSI_SAME_STMT);
1666 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
1667 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
1669 e_false = split_block (split_bb, cond_stmt);
1670 new_bb = e_false->dest;
1671 redirect_edge_pred (e_true, split_bb);
1673 e_false->flags &= ~EDGE_FALLTHRU;
1674 e_false->flags |= EDGE_FALSE_VALUE;
1675 e_false->probability = e_true->probability.invert ();
1676 new_bb->count = e_false->count ();
1678 return new_bb;
1681 /* Compute the number of case labels that correspond to each outgoing edge of
1682 switch statement. Record this information in the aux field of the edge. */
1684 void
1685 switch_decision_tree::compute_cases_per_edge ()
1687 reset_out_edges_aux (m_switch);
1688 int ncases = gimple_switch_num_labels (m_switch);
1689 for (int i = ncases - 1; i >= 1; --i)
1691 edge case_edge = gimple_switch_edge (cfun, m_switch, i);
1692 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
1696 /* Analyze switch statement and return true when the statement is expanded
1697 as decision tree. */
1699 bool
1700 switch_decision_tree::analyze_switch_statement ()
1702 unsigned l = gimple_switch_num_labels (m_switch);
1703 basic_block bb = gimple_bb (m_switch);
1704 auto_vec<cluster *> clusters;
1705 clusters.create (l - 1);
1707 basic_block default_bb = gimple_switch_default_bb (cfun, m_switch);
1708 m_case_bbs.reserve (l);
1709 m_case_bbs.quick_push (default_bb);
1711 compute_cases_per_edge ();
1713 for (unsigned i = 1; i < l; i++)
1715 tree elt = gimple_switch_label (m_switch, i);
1716 tree lab = CASE_LABEL (elt);
1717 basic_block case_bb = label_to_block (cfun, lab);
1718 edge case_edge = find_edge (bb, case_bb);
1719 tree low = CASE_LOW (elt);
1720 tree high = CASE_HIGH (elt);
1722 profile_probability p
1723 = case_edge->probability.apply_scale (1, (intptr_t) (case_edge->aux));
1724 clusters.quick_push (new simple_cluster (low, high, elt, case_edge->dest,
1725 p));
1726 m_case_bbs.quick_push (case_edge->dest);
1729 reset_out_edges_aux (m_switch);
1731 /* Find jump table clusters. */
1732 vec<cluster *> output = jump_table_cluster::find_jump_tables (clusters);
1734 /* Find bit test clusters. */
1735 vec<cluster *> output2;
1736 auto_vec<cluster *> tmp;
1737 output2.create (1);
1738 tmp.create (1);
1740 for (unsigned i = 0; i < output.length (); i++)
1742 cluster *c = output[i];
1743 if (c->get_type () != SIMPLE_CASE)
1745 if (!tmp.is_empty ())
1747 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1748 output2.safe_splice (n);
1749 n.release ();
1750 tmp.truncate (0);
1752 output2.safe_push (c);
1754 else
1755 tmp.safe_push (c);
1758 /* We still can have a temporary vector to test. */
1759 if (!tmp.is_empty ())
1761 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1762 output2.safe_splice (n);
1763 n.release ();
1766 if (dump_file)
1768 fprintf (dump_file, ";; GIMPLE switch case clusters: ");
1769 for (unsigned i = 0; i < output2.length (); i++)
1770 output2[i]->dump (dump_file, dump_flags & TDF_DETAILS);
1771 fprintf (dump_file, "\n");
1774 output.release ();
1776 bool expanded = try_switch_expansion (output2);
1778 for (unsigned i = 0; i < output2.length (); i++)
1779 delete output2[i];
1781 output2.release ();
1783 return expanded;
1786 /* Attempt to expand CLUSTERS as a decision tree. Return true when
1787 expanded. */
1789 bool
1790 switch_decision_tree::try_switch_expansion (vec<cluster *> &clusters)
1792 tree index_expr = gimple_switch_index (m_switch);
1793 tree index_type = TREE_TYPE (index_expr);
1794 basic_block bb = gimple_bb (m_switch);
1796 if (gimple_switch_num_labels (m_switch) == 1
1797 || range_check_type (index_type) == NULL_TREE)
1798 return false;
1800 /* Find the default case target label. */
1801 edge default_edge = gimple_switch_default_edge (cfun, m_switch);
1802 m_default_bb = default_edge->dest;
1804 /* Do the insertion of a case label into m_case_list. The labels are
1805 fed to us in descending order from the sorted vector of case labels used
1806 in the tree part of the middle end. So the list we construct is
1807 sorted in ascending order. */
1809 for (int i = clusters.length () - 1; i >= 0; i--)
1811 case_tree_node *r = m_case_list;
1812 m_case_list = m_case_node_pool.allocate ();
1813 m_case_list->m_right = r;
1814 m_case_list->m_c = clusters[i];
1817 record_phi_operand_mapping ();
1819 /* Split basic block that contains the gswitch statement. */
1820 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1821 edge e;
1822 if (gsi_end_p (gsi))
1823 e = split_block_after_labels (bb);
1824 else
1826 gsi_prev (&gsi);
1827 e = split_block (bb, gsi_stmt (gsi));
1829 bb = split_edge (e);
1831 /* Create new basic blocks for non-case clusters where specific expansion
1832 needs to happen. */
1833 for (unsigned i = 0; i < clusters.length (); i++)
1834 if (clusters[i]->get_type () != SIMPLE_CASE)
1836 clusters[i]->m_case_bb = create_empty_bb (bb);
1837 clusters[i]->m_case_bb->loop_father = bb->loop_father;
1840 /* Do not do an extra work for a single cluster. */
1841 if (clusters.length () == 1
1842 && clusters[0]->get_type () != SIMPLE_CASE)
1844 cluster *c = clusters[0];
1845 c->emit (index_expr, index_type,
1846 gimple_switch_default_label (m_switch), m_default_bb);
1847 redirect_edge_succ (single_succ_edge (bb), c->m_case_bb);
1849 else
1851 emit (bb, index_expr, default_edge->probability, index_type);
1853 /* Emit cluster-specific switch handling. */
1854 for (unsigned i = 0; i < clusters.length (); i++)
1855 if (clusters[i]->get_type () != SIMPLE_CASE)
1856 clusters[i]->emit (index_expr, index_type,
1857 gimple_switch_default_label (m_switch),
1858 m_default_bb);
1861 fix_phi_operands_for_edges ();
1863 return true;
1866 /* Before switch transformation, record all SSA_NAMEs defined in switch BB
1867 and used in a label basic block. */
1869 void
1870 switch_decision_tree::record_phi_operand_mapping ()
1872 basic_block switch_bb = gimple_bb (m_switch);
1873 /* Record all PHI nodes that have to be fixed after conversion. */
1874 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1876 gphi_iterator gsi;
1877 basic_block bb = m_case_bbs[i];
1878 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1880 gphi *phi = gsi.phi ();
1882 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
1884 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
1885 if (phi_src_bb == switch_bb)
1887 tree def = gimple_phi_arg_def (phi, i);
1888 tree result = gimple_phi_result (phi);
1889 m_phi_mapping.put (result, def);
1890 break;
1897 /* Append new operands to PHI statements that were introduced due to
1898 addition of new edges to case labels. */
1900 void
1901 switch_decision_tree::fix_phi_operands_for_edges ()
1903 gphi_iterator gsi;
1905 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1907 basic_block bb = m_case_bbs[i];
1908 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1910 gphi *phi = gsi.phi ();
1911 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
1913 tree def = gimple_phi_arg_def (phi, j);
1914 if (def == NULL_TREE)
1916 edge e = gimple_phi_arg_edge (phi, j);
1917 tree *definition
1918 = m_phi_mapping.get (gimple_phi_result (phi));
1919 gcc_assert (definition);
1920 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
1927 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
1928 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1930 We generate a binary decision tree to select the appropriate target
1931 code. */
1933 void
1934 switch_decision_tree::emit (basic_block bb, tree index_expr,
1935 profile_probability default_prob, tree index_type)
1937 balance_case_nodes (&m_case_list, NULL);
1939 if (dump_file)
1940 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1941 if (dump_file && (dump_flags & TDF_DETAILS))
1943 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
1944 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
1945 gcc_assert (m_case_list != NULL);
1946 dump_case_nodes (dump_file, m_case_list, indent_step, 0);
1949 bb = emit_case_nodes (bb, index_expr, m_case_list, default_prob, index_type,
1950 gimple_location (m_switch));
1952 if (bb)
1953 emit_jump (bb, m_default_bb);
1955 /* Remove all edges and do just an edge that will reach default_bb. */
1956 bb = gimple_bb (m_switch);
1957 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1958 gsi_remove (&gsi, true);
1960 delete_basic_block (bb);
1963 /* Take an ordered list of case nodes
1964 and transform them into a near optimal binary tree,
1965 on the assumption that any target code selection value is as
1966 likely as any other.
1968 The transformation is performed by splitting the ordered
1969 list into two equal sections plus a pivot. The parts are
1970 then attached to the pivot as left and right branches. Each
1971 branch is then transformed recursively. */
1973 void
1974 switch_decision_tree::balance_case_nodes (case_tree_node **head,
1975 case_tree_node *parent)
1977 case_tree_node *np;
1979 np = *head;
1980 if (np)
1982 int i = 0;
1983 int ranges = 0;
1984 case_tree_node **npp;
1985 case_tree_node *left;
1986 profile_probability prob = profile_probability::never ();
1988 /* Count the number of entries on branch. Also count the ranges. */
1990 while (np)
1992 if (!tree_int_cst_equal (np->m_c->get_low (), np->m_c->get_high ()))
1993 ranges++;
1995 i++;
1996 prob += np->m_c->m_prob;
1997 np = np->m_right;
2000 if (i > 2)
2002 /* Split this list if it is long enough for that to help. */
2003 npp = head;
2004 left = *npp;
2005 profile_probability pivot_prob = prob.apply_scale (1, 2);
2007 /* Find the place in the list that bisects the list's total cost,
2008 where ranges count as 2. */
2009 while (1)
2011 /* Skip nodes while their probability does not reach
2012 that amount. */
2013 prob -= (*npp)->m_c->m_prob;
2014 if ((prob.initialized_p () && prob < pivot_prob)
2015 || ! (*npp)->m_right)
2016 break;
2017 npp = &(*npp)->m_right;
2020 np = *npp;
2021 *npp = 0;
2022 *head = np;
2023 np->m_parent = parent;
2024 np->m_left = left == np ? NULL : left;
2026 /* Optimize each of the two split parts. */
2027 balance_case_nodes (&np->m_left, np);
2028 balance_case_nodes (&np->m_right, np);
2029 np->m_c->m_subtree_prob = np->m_c->m_prob;
2030 if (np->m_left)
2031 np->m_c->m_subtree_prob += np->m_left->m_c->m_subtree_prob;
2032 if (np->m_right)
2033 np->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2035 else
2037 /* Else leave this branch as one level,
2038 but fill in `parent' fields. */
2039 np = *head;
2040 np->m_parent = parent;
2041 np->m_c->m_subtree_prob = np->m_c->m_prob;
2042 for (; np->m_right; np = np->m_right)
2044 np->m_right->m_parent = np;
2045 (*head)->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2051 /* Dump ROOT, a list or tree of case nodes, to file. */
2053 void
2054 switch_decision_tree::dump_case_nodes (FILE *f, case_tree_node *root,
2055 int indent_step, int indent_level)
2057 if (root == 0)
2058 return;
2059 indent_level++;
2061 dump_case_nodes (f, root->m_left, indent_step, indent_level);
2063 fputs (";; ", f);
2064 fprintf (f, "%*s", indent_step * indent_level, "");
2065 root->m_c->dump (f);
2066 root->m_c->m_prob.dump (f);
2067 fputs (" subtree: ", f);
2068 root->m_c->m_subtree_prob.dump (f);
2069 fputs (")\n", f);
2071 dump_case_nodes (f, root->m_right, indent_step, indent_level);
2075 /* Add an unconditional jump to CASE_BB that happens in basic block BB. */
2077 void
2078 switch_decision_tree::emit_jump (basic_block bb, basic_block case_bb)
2080 edge e = single_succ_edge (bb);
2081 redirect_edge_succ (e, case_bb);
2084 /* Generate code to compare OP0 with OP1 so that the condition codes are
2085 set and to jump to LABEL_BB if the condition is true.
2086 COMPARISON is the GIMPLE comparison (EQ, NE, GT, etc.).
2087 PROB is the probability of jumping to LABEL_BB. */
2089 basic_block
2090 switch_decision_tree::emit_cmp_and_jump_insns (basic_block bb, tree op0,
2091 tree op1, tree_code comparison,
2092 basic_block label_bb,
2093 profile_probability prob,
2094 location_t loc)
2096 // TODO: it's once called with lhs != index.
2097 op1 = fold_convert (TREE_TYPE (op0), op1);
2099 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
2100 gimple_set_location (cond, loc);
2101 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2102 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
2104 gcc_assert (single_succ_p (bb));
2106 /* Make a new basic block where false branch will take place. */
2107 edge false_edge = split_block (bb, cond);
2108 false_edge->flags = EDGE_FALSE_VALUE;
2109 false_edge->probability = prob.invert ();
2111 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2112 true_edge->probability = prob;
2114 return false_edge->dest;
2117 /* Generate code to jump to LABEL if OP0 and OP1 are equal.
2118 PROB is the probability of jumping to LABEL_BB.
2119 BB is a basic block where the new condition will be placed. */
2121 basic_block
2122 switch_decision_tree::do_jump_if_equal (basic_block bb, tree op0, tree op1,
2123 basic_block label_bb,
2124 profile_probability prob,
2125 location_t loc)
2127 op1 = fold_convert (TREE_TYPE (op0), op1);
2129 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
2130 gimple_set_location (cond, loc);
2131 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2132 gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
2134 gcc_assert (single_succ_p (bb));
2136 /* Make a new basic block where false branch will take place. */
2137 edge false_edge = split_block (bb, cond);
2138 false_edge->flags = EDGE_FALSE_VALUE;
2139 false_edge->probability = prob.invert ();
2141 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2142 true_edge->probability = prob;
2144 return false_edge->dest;
2147 /* Emit step-by-step code to select a case for the value of INDEX.
2148 The thus generated decision tree follows the form of the
2149 case-node binary tree NODE, whose nodes represent test conditions.
2150 DEFAULT_PROB is probability of cases leading to default BB.
2151 INDEX_TYPE is the type of the index of the switch. */
2153 basic_block
2154 switch_decision_tree::emit_case_nodes (basic_block bb, tree index,
2155 case_tree_node *node,
2156 profile_probability default_prob,
2157 tree index_type, location_t loc)
2159 profile_probability p;
2161 /* If node is null, we are done. */
2162 if (node == NULL)
2163 return bb;
2165 /* Single value case. */
2166 if (node->m_c->is_single_value_p ())
2168 /* Node is single valued. First see if the index expression matches
2169 this node and then check our children, if any. */
2170 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2171 bb = do_jump_if_equal (bb, index, node->m_c->get_low (),
2172 node->m_c->m_case_bb, p, loc);
2173 /* Since this case is taken at this point, reduce its weight from
2174 subtree_weight. */
2175 node->m_c->m_subtree_prob -= p;
2177 if (node->m_left != NULL && node->m_right != NULL)
2179 /* 1) the node has both children
2181 If both children are single-valued cases with no
2182 children, finish up all the work. This way, we can save
2183 one ordered comparison. */
2185 if (!node->m_left->has_child ()
2186 && node->m_left->m_c->is_single_value_p ()
2187 && !node->m_right->has_child ()
2188 && node->m_right->m_c->is_single_value_p ())
2190 p = (node->m_right->m_c->m_prob
2191 / (node->m_c->m_subtree_prob + default_prob));
2192 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2193 node->m_right->m_c->m_case_bb, p, loc);
2195 p = (node->m_left->m_c->m_prob
2196 / (node->m_c->m_subtree_prob + default_prob));
2197 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2198 node->m_left->m_c->m_case_bb, p, loc);
2200 else
2202 /* Branch to a label where we will handle it later. */
2203 basic_block test_bb = split_edge (single_succ_edge (bb));
2204 redirect_edge_succ (single_pred_edge (test_bb),
2205 single_succ_edge (bb)->dest);
2207 p = ((node->m_right->m_c->m_subtree_prob
2208 + default_prob.apply_scale (1, 2))
2209 / (node->m_c->m_subtree_prob + default_prob));
2210 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2211 GT_EXPR, test_bb, p, loc);
2212 default_prob = default_prob.apply_scale (1, 2);
2214 /* Handle the left-hand subtree. */
2215 bb = emit_case_nodes (bb, index, node->m_left,
2216 default_prob, index_type, loc);
2218 /* If the left-hand subtree fell through,
2219 don't let it fall into the right-hand subtree. */
2220 if (bb && m_default_bb)
2221 emit_jump (bb, m_default_bb);
2223 bb = emit_case_nodes (test_bb, index, node->m_right,
2224 default_prob, index_type, loc);
2227 else if (node->m_left == NULL && node->m_right != NULL)
2229 /* 2) the node has only right child. */
2231 /* Here we have a right child but no left so we issue a conditional
2232 branch to default and process the right child.
2234 Omit the conditional branch to default if the right child
2235 does not have any children and is single valued; it would
2236 cost too much space to save so little time. */
2238 if (node->m_right->has_child ()
2239 || !node->m_right->m_c->is_single_value_p ())
2241 p = (default_prob.apply_scale (1, 2)
2242 / (node->m_c->m_subtree_prob + default_prob));
2243 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2244 LT_EXPR, m_default_bb, p, loc);
2245 default_prob = default_prob.apply_scale (1, 2);
2247 bb = emit_case_nodes (bb, index, node->m_right, default_prob,
2248 index_type, loc);
2250 else
2252 /* We cannot process node->right normally
2253 since we haven't ruled out the numbers less than
2254 this node's value. So handle node->right explicitly. */
2255 p = (node->m_right->m_c->m_subtree_prob
2256 / (node->m_c->m_subtree_prob + default_prob));
2257 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2258 node->m_right->m_c->m_case_bb, p, loc);
2261 else if (node->m_left != NULL && node->m_right == NULL)
2263 /* 3) just one subtree, on the left. Similar case as previous. */
2265 if (node->m_left->has_child ()
2266 || !node->m_left->m_c->is_single_value_p ())
2268 p = (default_prob.apply_scale (1, 2)
2269 / (node->m_c->m_subtree_prob + default_prob));
2270 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2271 GT_EXPR, m_default_bb, p, loc);
2272 default_prob = default_prob.apply_scale (1, 2);
2274 bb = emit_case_nodes (bb, index, node->m_left, default_prob,
2275 index_type, loc);
2277 else
2279 /* We cannot process node->left normally
2280 since we haven't ruled out the numbers less than
2281 this node's value. So handle node->left explicitly. */
2282 p = (node->m_left->m_c->m_subtree_prob
2283 / (node->m_c->m_subtree_prob + default_prob));
2284 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2285 node->m_left->m_c->m_case_bb, p, loc);
2289 else
2291 /* Node is a range. These cases are very similar to those for a single
2292 value, except that we do not start by testing whether this node
2293 is the one to branch to. */
2294 if (node->has_child () || node->m_c->get_type () != SIMPLE_CASE)
2296 /* Branch to a label where we will handle it later. */
2297 basic_block test_bb = split_edge (single_succ_edge (bb));
2298 redirect_edge_succ (single_pred_edge (test_bb),
2299 single_succ_edge (bb)->dest);
2302 profile_probability right_prob = profile_probability::never ();
2303 if (node->m_right)
2304 right_prob = node->m_right->m_c->m_subtree_prob;
2305 p = ((right_prob + default_prob.apply_scale (1, 2))
2306 / (node->m_c->m_subtree_prob + default_prob));
2308 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2309 GT_EXPR, test_bb, p, loc);
2310 default_prob = default_prob.apply_scale (1, 2);
2312 /* Value belongs to this node or to the left-hand subtree. */
2313 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2314 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2315 GE_EXPR, node->m_c->m_case_bb, p, loc);
2317 /* Handle the left-hand subtree. */
2318 bb = emit_case_nodes (bb, index, node->m_left,
2319 default_prob, index_type, loc);
2321 /* If the left-hand subtree fell through,
2322 don't let it fall into the right-hand subtree. */
2323 if (bb && m_default_bb)
2324 emit_jump (bb, m_default_bb);
2326 bb = emit_case_nodes (test_bb, index, node->m_right,
2327 default_prob, index_type, loc);
2329 else
2331 /* Node has no children so we check low and high bounds to remove
2332 redundant tests. Only one of the bounds can exist,
2333 since otherwise this node is bounded--a case tested already. */
2334 tree lhs, rhs;
2335 generate_range_test (bb, index, node->m_c->get_low (),
2336 node->m_c->get_high (), &lhs, &rhs);
2337 p = default_prob / (node->m_c->m_subtree_prob + default_prob);
2339 bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR,
2340 m_default_bb, p, loc);
2342 emit_jump (bb, node->m_c->m_case_bb);
2343 return NULL;
2347 return bb;
2350 /* The main function of the pass scans statements for switches and invokes
2351 process_switch on them. */
2353 namespace {
2355 const pass_data pass_data_convert_switch =
2357 GIMPLE_PASS, /* type */
2358 "switchconv", /* name */
2359 OPTGROUP_NONE, /* optinfo_flags */
2360 TV_TREE_SWITCH_CONVERSION, /* tv_id */
2361 ( PROP_cfg | PROP_ssa ), /* properties_required */
2362 0, /* properties_provided */
2363 0, /* properties_destroyed */
2364 0, /* todo_flags_start */
2365 TODO_update_ssa, /* todo_flags_finish */
2368 class pass_convert_switch : public gimple_opt_pass
2370 public:
2371 pass_convert_switch (gcc::context *ctxt)
2372 : gimple_opt_pass (pass_data_convert_switch, ctxt)
2375 /* opt_pass methods: */
2376 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
2377 virtual unsigned int execute (function *);
2379 }; // class pass_convert_switch
2381 unsigned int
2382 pass_convert_switch::execute (function *fun)
2384 basic_block bb;
2385 bool cfg_altered = false;
2387 FOR_EACH_BB_FN (bb, fun)
2389 gimple *stmt = last_stmt (bb);
2390 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
2392 if (dump_file)
2394 expanded_location loc = expand_location (gimple_location (stmt));
2396 fprintf (dump_file, "beginning to process the following "
2397 "SWITCH statement (%s:%d) : ------- \n",
2398 loc.file, loc.line);
2399 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2400 putc ('\n', dump_file);
2403 switch_conversion sconv;
2404 sconv.expand (as_a <gswitch *> (stmt));
2405 cfg_altered |= sconv.m_cfg_altered;
2406 if (!sconv.m_reason)
2408 if (dump_file)
2410 fputs ("Switch converted\n", dump_file);
2411 fputs ("--------------------------------\n", dump_file);
2414 /* Make no effort to update the post-dominator tree.
2415 It is actually not that hard for the transformations
2416 we have performed, but it is not supported
2417 by iterate_fix_dominators. */
2418 free_dominance_info (CDI_POST_DOMINATORS);
2420 else
2422 if (dump_file)
2424 fputs ("Bailing out - ", dump_file);
2425 fputs (sconv.m_reason, dump_file);
2426 fputs ("\n--------------------------------\n", dump_file);
2432 return cfg_altered ? TODO_cleanup_cfg : 0;;
2435 } // anon namespace
2437 gimple_opt_pass *
2438 make_pass_convert_switch (gcc::context *ctxt)
2440 return new pass_convert_switch (ctxt);
2443 /* The main function of the pass scans statements for switches and invokes
2444 process_switch on them. */
2446 namespace {
2448 template <bool O0> class pass_lower_switch: public gimple_opt_pass
2450 public:
2451 pass_lower_switch (gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {}
2453 static const pass_data data;
2454 opt_pass *
2455 clone ()
2457 return new pass_lower_switch<O0> (m_ctxt);
2460 virtual bool
2461 gate (function *)
2463 return !O0 || !optimize;
2466 virtual unsigned int execute (function *fun);
2467 }; // class pass_lower_switch
2469 template <bool O0>
2470 const pass_data pass_lower_switch<O0>::data = {
2471 GIMPLE_PASS, /* type */
2472 O0 ? "switchlower_O0" : "switchlower", /* name */
2473 OPTGROUP_NONE, /* optinfo_flags */
2474 TV_TREE_SWITCH_LOWERING, /* tv_id */
2475 ( PROP_cfg | PROP_ssa ), /* properties_required */
2476 0, /* properties_provided */
2477 0, /* properties_destroyed */
2478 0, /* todo_flags_start */
2479 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
2482 template <bool O0>
2483 unsigned int
2484 pass_lower_switch<O0>::execute (function *fun)
2486 basic_block bb;
2487 bool expanded = false;
2489 auto_vec<gimple *> switch_statements;
2490 switch_statements.create (1);
2492 FOR_EACH_BB_FN (bb, fun)
2494 gimple *stmt = last_stmt (bb);
2495 gswitch *swtch;
2496 if (stmt && (swtch = dyn_cast<gswitch *> (stmt)))
2498 if (!O0)
2499 group_case_labels_stmt (swtch);
2500 switch_statements.safe_push (swtch);
2504 for (unsigned i = 0; i < switch_statements.length (); i++)
2506 gimple *stmt = switch_statements[i];
2507 if (dump_file)
2509 expanded_location loc = expand_location (gimple_location (stmt));
2511 fprintf (dump_file, "beginning to process the following "
2512 "SWITCH statement (%s:%d) : ------- \n",
2513 loc.file, loc.line);
2514 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2515 putc ('\n', dump_file);
2518 gswitch *swtch = dyn_cast<gswitch *> (stmt);
2519 if (swtch)
2521 switch_decision_tree dt (swtch);
2522 expanded |= dt.analyze_switch_statement ();
2526 if (expanded)
2528 free_dominance_info (CDI_DOMINATORS);
2529 free_dominance_info (CDI_POST_DOMINATORS);
2530 mark_virtual_operands_for_renaming (cfun);
2533 return 0;
2536 } // anon namespace
2538 gimple_opt_pass *
2539 make_pass_lower_switch_O0 (gcc::context *ctxt)
2541 return new pass_lower_switch<true> (ctxt);
2543 gimple_opt_pass *
2544 make_pass_lower_switch (gcc::context *ctxt)
2546 return new pass_lower_switch<false> (ctxt);