re PR middle-end/91603 (Unaligned access in expand_assignment)
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blobb64bde695f4299393594eda6d20b0b2849ca549b
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "insn-codes.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "gimple-pretty-print.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "cfganal.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "tree-cfg.h"
41 #include "tree-dfa.h"
42 #include "domwalk.h"
43 #include "cfgloop.h"
44 #include "tree-data-ref.h"
45 #include "tree-scalar-evolution.h"
46 #include "tree-inline.h"
47 #include "params.h"
48 #include "case-cfn-macros.h"
50 static unsigned int tree_ssa_phiopt_worker (bool, bool, bool);
51 static bool two_value_replacement (basic_block, basic_block, edge, gphi *,
52 tree, tree);
53 static bool conditional_replacement (basic_block, basic_block,
54 edge, edge, gphi *, tree, tree);
55 static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree,
56 gimple *);
57 static int value_replacement (basic_block, basic_block,
58 edge, edge, gimple *, tree, tree);
59 static bool minmax_replacement (basic_block, basic_block,
60 edge, edge, gimple *, tree, tree);
61 static bool abs_replacement (basic_block, basic_block,
62 edge, edge, gimple *, tree, tree);
63 static bool cond_removal_in_popcount_pattern (basic_block, basic_block,
64 edge, edge, gimple *, tree, tree);
65 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
66 hash_set<tree> *);
67 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
68 static hash_set<tree> * get_non_trapping ();
69 static void replace_phi_edge_with_variable (basic_block, edge, gimple *, tree);
70 static void hoist_adjacent_loads (basic_block, basic_block,
71 basic_block, basic_block);
72 static bool gate_hoist_loads (void);
74 /* This pass tries to transform conditional stores into unconditional
75 ones, enabling further simplifications with the simpler then and else
76 blocks. In particular it replaces this:
78 bb0:
79 if (cond) goto bb2; else goto bb1;
80 bb1:
81 *p = RHS;
82 bb2:
84 with
86 bb0:
87 if (cond) goto bb1; else goto bb2;
88 bb1:
89 condtmp' = *p;
90 bb2:
91 condtmp = PHI <RHS, condtmp'>
92 *p = condtmp;
94 This transformation can only be done under several constraints,
95 documented below. It also replaces:
97 bb0:
98 if (cond) goto bb2; else goto bb1;
99 bb1:
100 *p = RHS1;
101 goto bb3;
102 bb2:
103 *p = RHS2;
104 bb3:
106 with
108 bb0:
109 if (cond) goto bb3; else goto bb1;
110 bb1:
111 bb3:
112 condtmp = PHI <RHS1, RHS2>
113 *p = condtmp; */
115 static unsigned int
116 tree_ssa_cs_elim (void)
118 unsigned todo;
119 /* ??? We are not interested in loop related info, but the following
120 will create it, ICEing as we didn't init loops with pre-headers.
121 An interfacing issue of find_data_references_in_bb. */
122 loop_optimizer_init (LOOPS_NORMAL);
123 scev_initialize ();
124 todo = tree_ssa_phiopt_worker (true, false, false);
125 scev_finalize ();
126 loop_optimizer_finalize ();
127 return todo;
130 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
132 static gphi *
133 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
135 gimple_stmt_iterator i;
136 gphi *phi = NULL;
137 if (gimple_seq_singleton_p (seq))
138 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
139 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
141 gphi *p = as_a <gphi *> (gsi_stmt (i));
142 /* If the PHI arguments are equal then we can skip this PHI. */
143 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
144 gimple_phi_arg_def (p, e1->dest_idx)))
145 continue;
147 /* If we already have a PHI that has the two edge arguments are
148 different, then return it is not a singleton for these PHIs. */
149 if (phi)
150 return NULL;
152 phi = p;
154 return phi;
157 /* The core routine of conditional store replacement and normal
158 phi optimizations. Both share much of the infrastructure in how
159 to match applicable basic block patterns. DO_STORE_ELIM is true
160 when we want to do conditional store replacement, false otherwise.
161 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
162 of diamond control flow patterns, false otherwise. */
163 static unsigned int
164 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads, bool early_p)
166 basic_block bb;
167 basic_block *bb_order;
168 unsigned n, i;
169 bool cfgchanged = false;
170 hash_set<tree> *nontrap = 0;
172 if (do_store_elim)
173 /* Calculate the set of non-trapping memory accesses. */
174 nontrap = get_non_trapping ();
176 /* Search every basic block for COND_EXPR we may be able to optimize.
178 We walk the blocks in order that guarantees that a block with
179 a single predecessor is processed before the predecessor.
180 This ensures that we collapse inner ifs before visiting the
181 outer ones, and also that we do not try to visit a removed
182 block. */
183 bb_order = single_pred_before_succ_order ();
184 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
186 for (i = 0; i < n; i++)
188 gimple *cond_stmt;
189 gphi *phi;
190 basic_block bb1, bb2;
191 edge e1, e2;
192 tree arg0, arg1;
194 bb = bb_order[i];
196 cond_stmt = last_stmt (bb);
197 /* Check to see if the last statement is a GIMPLE_COND. */
198 if (!cond_stmt
199 || gimple_code (cond_stmt) != GIMPLE_COND)
200 continue;
202 e1 = EDGE_SUCC (bb, 0);
203 bb1 = e1->dest;
204 e2 = EDGE_SUCC (bb, 1);
205 bb2 = e2->dest;
207 /* We cannot do the optimization on abnormal edges. */
208 if ((e1->flags & EDGE_ABNORMAL) != 0
209 || (e2->flags & EDGE_ABNORMAL) != 0)
210 continue;
212 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
213 if (EDGE_COUNT (bb1->succs) == 0
214 || bb2 == NULL
215 || EDGE_COUNT (bb2->succs) == 0)
216 continue;
218 /* Find the bb which is the fall through to the other. */
219 if (EDGE_SUCC (bb1, 0)->dest == bb2)
221 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
223 std::swap (bb1, bb2);
224 std::swap (e1, e2);
226 else if (do_store_elim
227 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
229 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
231 if (!single_succ_p (bb1)
232 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
233 || !single_succ_p (bb2)
234 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
235 || EDGE_COUNT (bb3->preds) != 2)
236 continue;
237 if (cond_if_else_store_replacement (bb1, bb2, bb3))
238 cfgchanged = true;
239 continue;
241 else if (do_hoist_loads
242 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
244 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
246 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
247 && single_succ_p (bb1)
248 && single_succ_p (bb2)
249 && single_pred_p (bb1)
250 && single_pred_p (bb2)
251 && EDGE_COUNT (bb->succs) == 2
252 && EDGE_COUNT (bb3->preds) == 2
253 /* If one edge or the other is dominant, a conditional move
254 is likely to perform worse than the well-predicted branch. */
255 && !predictable_edge_p (EDGE_SUCC (bb, 0))
256 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
257 hoist_adjacent_loads (bb, bb1, bb2, bb3);
258 continue;
260 else
261 continue;
263 e1 = EDGE_SUCC (bb1, 0);
265 /* Make sure that bb1 is just a fall through. */
266 if (!single_succ_p (bb1)
267 || (e1->flags & EDGE_FALLTHRU) == 0)
268 continue;
270 /* Also make sure that bb1 only have one predecessor and that it
271 is bb. */
272 if (!single_pred_p (bb1)
273 || single_pred (bb1) != bb)
274 continue;
276 if (do_store_elim)
278 /* bb1 is the middle block, bb2 the join block, bb the split block,
279 e1 the fallthrough edge from bb1 to bb2. We can't do the
280 optimization if the join block has more than two predecessors. */
281 if (EDGE_COUNT (bb2->preds) > 2)
282 continue;
283 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
284 cfgchanged = true;
286 else
288 gimple_seq phis = phi_nodes (bb2);
289 gimple_stmt_iterator gsi;
290 bool candorest = true;
292 /* Value replacement can work with more than one PHI
293 so try that first. */
294 if (!early_p)
295 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
297 phi = as_a <gphi *> (gsi_stmt (gsi));
298 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
299 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
300 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
302 candorest = false;
303 cfgchanged = true;
304 break;
308 if (!candorest)
309 continue;
311 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
312 if (!phi)
313 continue;
315 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
316 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
318 /* Something is wrong if we cannot find the arguments in the PHI
319 node. */
320 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
322 gphi *newphi = factor_out_conditional_conversion (e1, e2, phi,
323 arg0, arg1,
324 cond_stmt);
325 if (newphi != NULL)
327 phi = newphi;
328 /* factor_out_conditional_conversion may create a new PHI in
329 BB2 and eliminate an existing PHI in BB2. Recompute values
330 that may be affected by that change. */
331 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
332 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
333 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
336 /* Do the replacement of conditional if it can be done. */
337 if (two_value_replacement (bb, bb1, e2, phi, arg0, arg1))
338 cfgchanged = true;
339 else if (!early_p
340 && conditional_replacement (bb, bb1, e1, e2, phi,
341 arg0, arg1))
342 cfgchanged = true;
343 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
344 cfgchanged = true;
345 else if (!early_p
346 && cond_removal_in_popcount_pattern (bb, bb1, e1, e2,
347 phi, arg0, arg1))
348 cfgchanged = true;
349 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
350 cfgchanged = true;
354 free (bb_order);
356 if (do_store_elim)
357 delete nontrap;
358 /* If the CFG has changed, we should cleanup the CFG. */
359 if (cfgchanged && do_store_elim)
361 /* In cond-store replacement we have added some loads on edges
362 and new VOPS (as we moved the store, and created a load). */
363 gsi_commit_edge_inserts ();
364 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
366 else if (cfgchanged)
367 return TODO_cleanup_cfg;
368 return 0;
371 /* Replace PHI node element whose edge is E in block BB with variable NEW.
372 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
373 is known to have two edges, one of which must reach BB). */
375 static void
376 replace_phi_edge_with_variable (basic_block cond_block,
377 edge e, gimple *phi, tree new_tree)
379 basic_block bb = gimple_bb (phi);
380 basic_block block_to_remove;
381 gimple_stmt_iterator gsi;
383 /* Change the PHI argument to new. */
384 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
386 /* Remove the empty basic block. */
387 if (EDGE_SUCC (cond_block, 0)->dest == bb)
389 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
390 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
391 EDGE_SUCC (cond_block, 0)->probability = profile_probability::always ();
393 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
395 else
397 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
398 EDGE_SUCC (cond_block, 1)->flags
399 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
400 EDGE_SUCC (cond_block, 1)->probability = profile_probability::always ();
402 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
404 delete_basic_block (block_to_remove);
406 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
407 gsi = gsi_last_bb (cond_block);
408 gsi_remove (&gsi, true);
410 if (dump_file && (dump_flags & TDF_DETAILS))
411 fprintf (dump_file,
412 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
413 cond_block->index,
414 bb->index);
417 /* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
418 stmt are CONVERT_STMT, factor out the conversion and perform the conversion
419 to the result of PHI stmt. COND_STMT is the controlling predicate.
420 Return the newly-created PHI, if any. */
422 static gphi *
423 factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
424 tree arg0, tree arg1, gimple *cond_stmt)
426 gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
427 tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
428 tree temp, result;
429 gphi *newphi;
430 gimple_stmt_iterator gsi, gsi_for_def;
431 location_t locus = gimple_location (phi);
432 enum tree_code convert_code;
434 /* Handle only PHI statements with two arguments. TODO: If all
435 other arguments to PHI are INTEGER_CST or if their defining
436 statement have the same unary operation, we can handle more
437 than two arguments too. */
438 if (gimple_phi_num_args (phi) != 2)
439 return NULL;
441 /* First canonicalize to simplify tests. */
442 if (TREE_CODE (arg0) != SSA_NAME)
444 std::swap (arg0, arg1);
445 std::swap (e0, e1);
448 if (TREE_CODE (arg0) != SSA_NAME
449 || (TREE_CODE (arg1) != SSA_NAME
450 && TREE_CODE (arg1) != INTEGER_CST))
451 return NULL;
453 /* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
454 a conversion. */
455 arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
456 if (!gimple_assign_cast_p (arg0_def_stmt))
457 return NULL;
459 /* Use the RHS as new_arg0. */
460 convert_code = gimple_assign_rhs_code (arg0_def_stmt);
461 new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
462 if (convert_code == VIEW_CONVERT_EXPR)
464 new_arg0 = TREE_OPERAND (new_arg0, 0);
465 if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
466 return NULL;
469 if (TREE_CODE (arg1) == SSA_NAME)
471 /* Check if arg1 is an SSA_NAME and the stmt which defines arg1
472 is a conversion. */
473 arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
474 if (!is_gimple_assign (arg1_def_stmt)
475 || gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
476 return NULL;
478 /* Use the RHS as new_arg1. */
479 new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
480 if (convert_code == VIEW_CONVERT_EXPR)
481 new_arg1 = TREE_OPERAND (new_arg1, 0);
483 else
485 /* If arg1 is an INTEGER_CST, fold it to new type. */
486 if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
487 && int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
489 if (gimple_assign_cast_p (arg0_def_stmt))
491 /* For the INTEGER_CST case, we are just moving the
492 conversion from one place to another, which can often
493 hurt as the conversion moves further away from the
494 statement that computes the value. So, perform this
495 only if new_arg0 is an operand of COND_STMT, or
496 if arg0_def_stmt is the only non-debug stmt in
497 its basic block, because then it is possible this
498 could enable further optimizations (minmax replacement
499 etc.). See PR71016. */
500 if (new_arg0 != gimple_cond_lhs (cond_stmt)
501 && new_arg0 != gimple_cond_rhs (cond_stmt)
502 && gimple_bb (arg0_def_stmt) == e0->src)
504 gsi = gsi_for_stmt (arg0_def_stmt);
505 gsi_prev_nondebug (&gsi);
506 if (!gsi_end_p (gsi))
508 if (gassign *assign
509 = dyn_cast <gassign *> (gsi_stmt (gsi)))
511 tree lhs = gimple_assign_lhs (assign);
512 enum tree_code ass_code
513 = gimple_assign_rhs_code (assign);
514 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
515 return NULL;
516 if (lhs != gimple_assign_rhs1 (arg0_def_stmt))
517 return NULL;
518 gsi_prev_nondebug (&gsi);
519 if (!gsi_end_p (gsi))
520 return NULL;
522 else
523 return NULL;
525 gsi = gsi_for_stmt (arg0_def_stmt);
526 gsi_next_nondebug (&gsi);
527 if (!gsi_end_p (gsi))
528 return NULL;
530 new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
532 else
533 return NULL;
535 else
536 return NULL;
539 /* If arg0/arg1 have > 1 use, then this transformation actually increases
540 the number of expressions evaluated at runtime. */
541 if (!has_single_use (arg0)
542 || (arg1_def_stmt && !has_single_use (arg1)))
543 return NULL;
545 /* If types of new_arg0 and new_arg1 are different bailout. */
546 if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
547 return NULL;
549 /* Create a new PHI stmt. */
550 result = PHI_RESULT (phi);
551 temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
552 newphi = create_phi_node (temp, gimple_bb (phi));
554 if (dump_file && (dump_flags & TDF_DETAILS))
556 fprintf (dump_file, "PHI ");
557 print_generic_expr (dump_file, gimple_phi_result (phi));
558 fprintf (dump_file,
559 " changed to factor conversion out from COND_EXPR.\n");
560 fprintf (dump_file, "New stmt with CAST that defines ");
561 print_generic_expr (dump_file, result);
562 fprintf (dump_file, ".\n");
565 /* Remove the old cast(s) that has single use. */
566 gsi_for_def = gsi_for_stmt (arg0_def_stmt);
567 gsi_remove (&gsi_for_def, true);
568 release_defs (arg0_def_stmt);
570 if (arg1_def_stmt)
572 gsi_for_def = gsi_for_stmt (arg1_def_stmt);
573 gsi_remove (&gsi_for_def, true);
574 release_defs (arg1_def_stmt);
577 add_phi_arg (newphi, new_arg0, e0, locus);
578 add_phi_arg (newphi, new_arg1, e1, locus);
580 /* Create the conversion stmt and insert it. */
581 if (convert_code == VIEW_CONVERT_EXPR)
583 temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
584 new_stmt = gimple_build_assign (result, temp);
586 else
587 new_stmt = gimple_build_assign (result, convert_code, temp);
588 gsi = gsi_after_labels (gimple_bb (phi));
589 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
591 /* Remove the original PHI stmt. */
592 gsi = gsi_for_stmt (phi);
593 gsi_remove (&gsi, true);
594 return newphi;
597 /* Optimize
598 # x_5 in range [cst1, cst2] where cst2 = cst1 + 1
599 if (x_5 op cstN) # where op is == or != and N is 1 or 2
600 goto bb3;
601 else
602 goto bb4;
603 bb3:
604 bb4:
605 # r_6 = PHI<cst3(2), cst4(3)> # where cst3 == cst4 + 1 or cst4 == cst3 + 1
607 to r_6 = x_5 + (min (cst3, cst4) - cst1) or
608 r_6 = (min (cst3, cst4) + cst1) - x_5 depending on op, N and which
609 of cst3 and cst4 is smaller. */
611 static bool
612 two_value_replacement (basic_block cond_bb, basic_block middle_bb,
613 edge e1, gphi *phi, tree arg0, tree arg1)
615 /* Only look for adjacent integer constants. */
616 if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
617 || !INTEGRAL_TYPE_P (TREE_TYPE (arg1))
618 || TREE_CODE (arg0) != INTEGER_CST
619 || TREE_CODE (arg1) != INTEGER_CST
620 || (tree_int_cst_lt (arg0, arg1)
621 ? wi::to_widest (arg0) + 1 != wi::to_widest (arg1)
622 : wi::to_widest (arg1) + 1 != wi::to_widest (arg0)))
623 return false;
625 if (!empty_block_p (middle_bb))
626 return false;
628 gimple *stmt = last_stmt (cond_bb);
629 tree lhs = gimple_cond_lhs (stmt);
630 tree rhs = gimple_cond_rhs (stmt);
632 if (TREE_CODE (lhs) != SSA_NAME
633 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
634 || TREE_CODE (TREE_TYPE (lhs)) == BOOLEAN_TYPE
635 || TREE_CODE (rhs) != INTEGER_CST)
636 return false;
638 switch (gimple_cond_code (stmt))
640 case EQ_EXPR:
641 case NE_EXPR:
642 break;
643 default:
644 return false;
647 wide_int min, max;
648 if (get_range_info (lhs, &min, &max) != VR_RANGE
649 || min + 1 != max
650 || (wi::to_wide (rhs) != min
651 && wi::to_wide (rhs) != max))
652 return false;
654 /* We need to know which is the true edge and which is the false
655 edge so that we know when to invert the condition below. */
656 edge true_edge, false_edge;
657 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
658 if ((gimple_cond_code (stmt) == EQ_EXPR)
659 ^ (wi::to_wide (rhs) == max)
660 ^ (e1 == false_edge))
661 std::swap (arg0, arg1);
663 tree type;
664 if (TYPE_PRECISION (TREE_TYPE (lhs)) == TYPE_PRECISION (TREE_TYPE (arg0)))
666 /* Avoid performing the arithmetics in bool type which has different
667 semantics, otherwise prefer unsigned types from the two with
668 the same precision. */
669 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE
670 || !TYPE_UNSIGNED (TREE_TYPE (arg0)))
671 type = TREE_TYPE (lhs);
672 else
673 type = TREE_TYPE (arg0);
675 else if (TYPE_PRECISION (TREE_TYPE (lhs)) > TYPE_PRECISION (TREE_TYPE (arg0)))
676 type = TREE_TYPE (lhs);
677 else
678 type = TREE_TYPE (arg0);
680 min = wide_int::from (min, TYPE_PRECISION (type),
681 TYPE_SIGN (TREE_TYPE (lhs)));
682 wide_int a = wide_int::from (wi::to_wide (arg0), TYPE_PRECISION (type),
683 TYPE_SIGN (TREE_TYPE (arg0)));
684 enum tree_code code;
685 wi::overflow_type ovf;
686 if (tree_int_cst_lt (arg0, arg1))
688 code = PLUS_EXPR;
689 a -= min;
690 if (!TYPE_UNSIGNED (type))
692 /* lhs is known to be in range [min, min+1] and we want to add a
693 to it. Check if that operation can overflow for those 2 values
694 and if yes, force unsigned type. */
695 wi::add (min + (wi::neg_p (a) ? 0 : 1), a, SIGNED, &ovf);
696 if (ovf)
697 type = unsigned_type_for (type);
700 else
702 code = MINUS_EXPR;
703 a += min;
704 if (!TYPE_UNSIGNED (type))
706 /* lhs is known to be in range [min, min+1] and we want to subtract
707 it from a. Check if that operation can overflow for those 2
708 values and if yes, force unsigned type. */
709 wi::sub (a, min + (wi::neg_p (min) ? 0 : 1), SIGNED, &ovf);
710 if (ovf)
711 type = unsigned_type_for (type);
715 tree arg = wide_int_to_tree (type, a);
716 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
717 if (!useless_type_conversion_p (type, TREE_TYPE (lhs)))
718 lhs = gimplify_build1 (&gsi, NOP_EXPR, type, lhs);
719 tree new_rhs;
720 if (code == PLUS_EXPR)
721 new_rhs = gimplify_build2 (&gsi, PLUS_EXPR, type, lhs, arg);
722 else
723 new_rhs = gimplify_build2 (&gsi, MINUS_EXPR, type, arg, lhs);
724 if (!useless_type_conversion_p (TREE_TYPE (arg0), type))
725 new_rhs = gimplify_build1 (&gsi, NOP_EXPR, TREE_TYPE (arg0), new_rhs);
727 replace_phi_edge_with_variable (cond_bb, e1, phi, new_rhs);
729 /* Note that we optimized this PHI. */
730 return true;
733 /* The function conditional_replacement does the main work of doing the
734 conditional replacement. Return true if the replacement is done.
735 Otherwise return false.
736 BB is the basic block where the replacement is going to be done on. ARG0
737 is argument 0 from PHI. Likewise for ARG1. */
739 static bool
740 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
741 edge e0, edge e1, gphi *phi,
742 tree arg0, tree arg1)
744 tree result;
745 gimple *stmt;
746 gassign *new_stmt;
747 tree cond;
748 gimple_stmt_iterator gsi;
749 edge true_edge, false_edge;
750 tree new_var, new_var2;
751 bool neg;
753 /* FIXME: Gimplification of complex type is too hard for now. */
754 /* We aren't prepared to handle vectors either (and it is a question
755 if it would be worthwhile anyway). */
756 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
757 || POINTER_TYPE_P (TREE_TYPE (arg0)))
758 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
759 || POINTER_TYPE_P (TREE_TYPE (arg1))))
760 return false;
762 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
763 convert it to the conditional. */
764 if ((integer_zerop (arg0) && integer_onep (arg1))
765 || (integer_zerop (arg1) && integer_onep (arg0)))
766 neg = false;
767 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
768 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
769 neg = true;
770 else
771 return false;
773 if (!empty_block_p (middle_bb))
774 return false;
776 /* At this point we know we have a GIMPLE_COND with two successors.
777 One successor is BB, the other successor is an empty block which
778 falls through into BB.
780 There is a single PHI node at the join point (BB) and its arguments
781 are constants (0, 1) or (0, -1).
783 So, given the condition COND, and the two PHI arguments, we can
784 rewrite this PHI into non-branching code:
786 dest = (COND) or dest = COND'
788 We use the condition as-is if the argument associated with the
789 true edge has the value one or the argument associated with the
790 false edge as the value zero. Note that those conditions are not
791 the same since only one of the outgoing edges from the GIMPLE_COND
792 will directly reach BB and thus be associated with an argument. */
794 stmt = last_stmt (cond_bb);
795 result = PHI_RESULT (phi);
797 /* To handle special cases like floating point comparison, it is easier and
798 less error-prone to build a tree and gimplify it on the fly though it is
799 less efficient. */
800 cond = fold_build2_loc (gimple_location (stmt),
801 gimple_cond_code (stmt), boolean_type_node,
802 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
804 /* We need to know which is the true edge and which is the false
805 edge so that we know when to invert the condition below. */
806 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
807 if ((e0 == true_edge && integer_zerop (arg0))
808 || (e0 == false_edge && !integer_zerop (arg0))
809 || (e1 == true_edge && integer_zerop (arg1))
810 || (e1 == false_edge && !integer_zerop (arg1)))
811 cond = fold_build1_loc (gimple_location (stmt),
812 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
814 if (neg)
816 cond = fold_convert_loc (gimple_location (stmt),
817 TREE_TYPE (result), cond);
818 cond = fold_build1_loc (gimple_location (stmt),
819 NEGATE_EXPR, TREE_TYPE (cond), cond);
822 /* Insert our new statements at the end of conditional block before the
823 COND_STMT. */
824 gsi = gsi_for_stmt (stmt);
825 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
826 GSI_SAME_STMT);
828 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
830 location_t locus_0, locus_1;
832 new_var2 = make_ssa_name (TREE_TYPE (result));
833 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
834 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
835 new_var = new_var2;
837 /* Set the locus to the first argument, unless is doesn't have one. */
838 locus_0 = gimple_phi_arg_location (phi, 0);
839 locus_1 = gimple_phi_arg_location (phi, 1);
840 if (locus_0 == UNKNOWN_LOCATION)
841 locus_0 = locus_1;
842 gimple_set_location (new_stmt, locus_0);
845 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
847 /* Note that we optimized this PHI. */
848 return true;
851 /* Update *ARG which is defined in STMT so that it contains the
852 computed value if that seems profitable. Return true if the
853 statement is made dead by that rewriting. */
855 static bool
856 jump_function_from_stmt (tree *arg, gimple *stmt)
858 enum tree_code code = gimple_assign_rhs_code (stmt);
859 if (code == ADDR_EXPR)
861 /* For arg = &p->i transform it to p, if possible. */
862 tree rhs1 = gimple_assign_rhs1 (stmt);
863 poly_int64 offset;
864 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
865 &offset);
866 if (tem
867 && TREE_CODE (tem) == MEM_REF
868 && known_eq (mem_ref_offset (tem) + offset, 0))
870 *arg = TREE_OPERAND (tem, 0);
871 return true;
874 /* TODO: Much like IPA-CP jump-functions we want to handle constant
875 additions symbolically here, and we'd need to update the comparison
876 code that compares the arg + cst tuples in our caller. For now the
877 code above exactly handles the VEC_BASE pattern from vec.h. */
878 return false;
881 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
882 of the form SSA_NAME NE 0.
884 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
885 the two input values of the EQ_EXPR match arg0 and arg1.
887 If so update *code and return TRUE. Otherwise return FALSE. */
889 static bool
890 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
891 enum tree_code *code, const_tree rhs)
893 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
894 statement. */
895 if (TREE_CODE (rhs) == SSA_NAME)
897 gimple *def1 = SSA_NAME_DEF_STMT (rhs);
899 /* Verify the defining statement has an EQ_EXPR on the RHS. */
900 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
902 /* Finally verify the source operands of the EQ_EXPR are equal
903 to arg0 and arg1. */
904 tree op0 = gimple_assign_rhs1 (def1);
905 tree op1 = gimple_assign_rhs2 (def1);
906 if ((operand_equal_for_phi_arg_p (arg0, op0)
907 && operand_equal_for_phi_arg_p (arg1, op1))
908 || (operand_equal_for_phi_arg_p (arg0, op1)
909 && operand_equal_for_phi_arg_p (arg1, op0)))
911 /* We will perform the optimization. */
912 *code = gimple_assign_rhs_code (def1);
913 return true;
917 return false;
920 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
922 Also return TRUE if arg0/arg1 are equal to the source arguments of a
923 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
925 Return FALSE otherwise. */
927 static bool
928 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
929 enum tree_code *code, gimple *cond)
931 gimple *def;
932 tree lhs = gimple_cond_lhs (cond);
933 tree rhs = gimple_cond_rhs (cond);
935 if ((operand_equal_for_phi_arg_p (arg0, lhs)
936 && operand_equal_for_phi_arg_p (arg1, rhs))
937 || (operand_equal_for_phi_arg_p (arg1, lhs)
938 && operand_equal_for_phi_arg_p (arg0, rhs)))
939 return true;
941 /* Now handle more complex case where we have an EQ comparison
942 which feeds a BIT_AND_EXPR which feeds COND.
944 First verify that COND is of the form SSA_NAME NE 0. */
945 if (*code != NE_EXPR || !integer_zerop (rhs)
946 || TREE_CODE (lhs) != SSA_NAME)
947 return false;
949 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
950 def = SSA_NAME_DEF_STMT (lhs);
951 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
952 return false;
954 /* Now verify arg0/arg1 correspond to the source arguments of an
955 EQ comparison feeding the BIT_AND_EXPR. */
957 tree tmp = gimple_assign_rhs1 (def);
958 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
959 return true;
961 tmp = gimple_assign_rhs2 (def);
962 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
963 return true;
965 return false;
968 /* Returns true if ARG is a neutral element for operation CODE
969 on the RIGHT side. */
971 static bool
972 neutral_element_p (tree_code code, tree arg, bool right)
974 switch (code)
976 case PLUS_EXPR:
977 case BIT_IOR_EXPR:
978 case BIT_XOR_EXPR:
979 return integer_zerop (arg);
981 case LROTATE_EXPR:
982 case RROTATE_EXPR:
983 case LSHIFT_EXPR:
984 case RSHIFT_EXPR:
985 case MINUS_EXPR:
986 case POINTER_PLUS_EXPR:
987 return right && integer_zerop (arg);
989 case MULT_EXPR:
990 return integer_onep (arg);
992 case TRUNC_DIV_EXPR:
993 case CEIL_DIV_EXPR:
994 case FLOOR_DIV_EXPR:
995 case ROUND_DIV_EXPR:
996 case EXACT_DIV_EXPR:
997 return right && integer_onep (arg);
999 case BIT_AND_EXPR:
1000 return integer_all_onesp (arg);
1002 default:
1003 return false;
1007 /* Returns true if ARG is an absorbing element for operation CODE. */
1009 static bool
1010 absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
1012 switch (code)
1014 case BIT_IOR_EXPR:
1015 return integer_all_onesp (arg);
1017 case MULT_EXPR:
1018 case BIT_AND_EXPR:
1019 return integer_zerop (arg);
1021 case LSHIFT_EXPR:
1022 case RSHIFT_EXPR:
1023 case LROTATE_EXPR:
1024 case RROTATE_EXPR:
1025 return !right && integer_zerop (arg);
1027 case TRUNC_DIV_EXPR:
1028 case CEIL_DIV_EXPR:
1029 case FLOOR_DIV_EXPR:
1030 case ROUND_DIV_EXPR:
1031 case EXACT_DIV_EXPR:
1032 case TRUNC_MOD_EXPR:
1033 case CEIL_MOD_EXPR:
1034 case FLOOR_MOD_EXPR:
1035 case ROUND_MOD_EXPR:
1036 return (!right
1037 && integer_zerop (arg)
1038 && tree_single_nonzero_warnv_p (rval, NULL));
1040 default:
1041 return false;
1045 /* The function value_replacement does the main work of doing the value
1046 replacement. Return non-zero if the replacement is done. Otherwise return
1047 0. If we remove the middle basic block, return 2.
1048 BB is the basic block where the replacement is going to be done on. ARG0
1049 is argument 0 from the PHI. Likewise for ARG1. */
1051 static int
1052 value_replacement (basic_block cond_bb, basic_block middle_bb,
1053 edge e0, edge e1, gimple *phi,
1054 tree arg0, tree arg1)
1056 gimple_stmt_iterator gsi;
1057 gimple *cond;
1058 edge true_edge, false_edge;
1059 enum tree_code code;
1060 bool emtpy_or_with_defined_p = true;
1062 /* If the type says honor signed zeros we cannot do this
1063 optimization. */
1064 if (HONOR_SIGNED_ZEROS (arg1))
1065 return 0;
1067 /* If there is a statement in MIDDLE_BB that defines one of the PHI
1068 arguments, then adjust arg0 or arg1. */
1069 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
1070 while (!gsi_end_p (gsi))
1072 gimple *stmt = gsi_stmt (gsi);
1073 tree lhs;
1074 gsi_next_nondebug (&gsi);
1075 if (!is_gimple_assign (stmt))
1077 if (gimple_code (stmt) != GIMPLE_PREDICT
1078 && gimple_code (stmt) != GIMPLE_NOP)
1079 emtpy_or_with_defined_p = false;
1080 continue;
1082 /* Now try to adjust arg0 or arg1 according to the computation
1083 in the statement. */
1084 lhs = gimple_assign_lhs (stmt);
1085 if (!(lhs == arg0
1086 && jump_function_from_stmt (&arg0, stmt))
1087 || (lhs == arg1
1088 && jump_function_from_stmt (&arg1, stmt)))
1089 emtpy_or_with_defined_p = false;
1092 cond = last_stmt (cond_bb);
1093 code = gimple_cond_code (cond);
1095 /* This transformation is only valid for equality comparisons. */
1096 if (code != NE_EXPR && code != EQ_EXPR)
1097 return 0;
1099 /* We need to know which is the true edge and which is the false
1100 edge so that we know if have abs or negative abs. */
1101 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1103 /* At this point we know we have a COND_EXPR with two successors.
1104 One successor is BB, the other successor is an empty block which
1105 falls through into BB.
1107 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
1109 There is a single PHI node at the join point (BB) with two arguments.
1111 We now need to verify that the two arguments in the PHI node match
1112 the two arguments to the equality comparison. */
1114 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
1116 edge e;
1117 tree arg;
1119 /* For NE_EXPR, we want to build an assignment result = arg where
1120 arg is the PHI argument associated with the true edge. For
1121 EQ_EXPR we want the PHI argument associated with the false edge. */
1122 e = (code == NE_EXPR ? true_edge : false_edge);
1124 /* Unfortunately, E may not reach BB (it may instead have gone to
1125 OTHER_BLOCK). If that is the case, then we want the single outgoing
1126 edge from OTHER_BLOCK which reaches BB and represents the desired
1127 path from COND_BLOCK. */
1128 if (e->dest == middle_bb)
1129 e = single_succ_edge (e->dest);
1131 /* Now we know the incoming edge to BB that has the argument for the
1132 RHS of our new assignment statement. */
1133 if (e0 == e)
1134 arg = arg0;
1135 else
1136 arg = arg1;
1138 /* If the middle basic block was empty or is defining the
1139 PHI arguments and this is a single phi where the args are different
1140 for the edges e0 and e1 then we can remove the middle basic block. */
1141 if (emtpy_or_with_defined_p
1142 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
1143 e0, e1) == phi)
1145 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
1146 /* Note that we optimized this PHI. */
1147 return 2;
1149 else
1151 /* Replace the PHI arguments with arg. */
1152 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
1153 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
1154 if (dump_file && (dump_flags & TDF_DETAILS))
1156 fprintf (dump_file, "PHI ");
1157 print_generic_expr (dump_file, gimple_phi_result (phi));
1158 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
1159 cond_bb->index);
1160 print_generic_expr (dump_file, arg);
1161 fprintf (dump_file, ".\n");
1163 return 1;
1168 /* Now optimize (x != 0) ? x + y : y to just x + y. */
1169 gsi = gsi_last_nondebug_bb (middle_bb);
1170 if (gsi_end_p (gsi))
1171 return 0;
1173 gimple *assign = gsi_stmt (gsi);
1174 if (!is_gimple_assign (assign)
1175 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
1176 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
1177 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
1178 return 0;
1180 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
1181 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
1182 return 0;
1184 /* Allow up to 2 cheap preparation statements that prepare argument
1185 for assign, e.g.:
1186 if (y_4 != 0)
1187 goto <bb 3>;
1188 else
1189 goto <bb 4>;
1190 <bb 3>:
1191 _1 = (int) y_4;
1192 iftmp.0_6 = x_5(D) r<< _1;
1193 <bb 4>:
1194 # iftmp.0_2 = PHI <iftmp.0_6(3), x_5(D)(2)>
1196 if (y_3(D) == 0)
1197 goto <bb 4>;
1198 else
1199 goto <bb 3>;
1200 <bb 3>:
1201 y_4 = y_3(D) & 31;
1202 _1 = (int) y_4;
1203 _6 = x_5(D) r<< _1;
1204 <bb 4>:
1205 # _2 = PHI <x_5(D)(2), _6(3)> */
1206 gimple *prep_stmt[2] = { NULL, NULL };
1207 int prep_cnt;
1208 for (prep_cnt = 0; ; prep_cnt++)
1210 gsi_prev_nondebug (&gsi);
1211 if (gsi_end_p (gsi))
1212 break;
1214 gimple *g = gsi_stmt (gsi);
1215 if (gimple_code (g) == GIMPLE_LABEL)
1216 break;
1218 if (prep_cnt == 2 || !is_gimple_assign (g))
1219 return 0;
1221 tree lhs = gimple_assign_lhs (g);
1222 tree rhs1 = gimple_assign_rhs1 (g);
1223 use_operand_p use_p;
1224 gimple *use_stmt;
1225 if (TREE_CODE (lhs) != SSA_NAME
1226 || TREE_CODE (rhs1) != SSA_NAME
1227 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1228 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1229 || !single_imm_use (lhs, &use_p, &use_stmt)
1230 || use_stmt != (prep_cnt ? prep_stmt[prep_cnt - 1] : assign))
1231 return 0;
1232 switch (gimple_assign_rhs_code (g))
1234 CASE_CONVERT:
1235 break;
1236 case PLUS_EXPR:
1237 case BIT_AND_EXPR:
1238 case BIT_IOR_EXPR:
1239 case BIT_XOR_EXPR:
1240 if (TREE_CODE (gimple_assign_rhs2 (g)) != INTEGER_CST)
1241 return 0;
1242 break;
1243 default:
1244 return 0;
1246 prep_stmt[prep_cnt] = g;
1249 /* Only transform if it removes the condition. */
1250 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
1251 return 0;
1253 /* Size-wise, this is always profitable. */
1254 if (optimize_bb_for_speed_p (cond_bb)
1255 /* The special case is useless if it has a low probability. */
1256 && profile_status_for_fn (cfun) != PROFILE_ABSENT
1257 && EDGE_PRED (middle_bb, 0)->probability < profile_probability::even ()
1258 /* If assign is cheap, there is no point avoiding it. */
1259 && estimate_num_insns (bb_seq (middle_bb), &eni_time_weights)
1260 >= 3 * estimate_num_insns (cond, &eni_time_weights))
1261 return 0;
1263 tree lhs = gimple_assign_lhs (assign);
1264 tree rhs1 = gimple_assign_rhs1 (assign);
1265 tree rhs2 = gimple_assign_rhs2 (assign);
1266 enum tree_code code_def = gimple_assign_rhs_code (assign);
1267 tree cond_lhs = gimple_cond_lhs (cond);
1268 tree cond_rhs = gimple_cond_rhs (cond);
1270 /* Propagate the cond_rhs constant through preparation stmts,
1271 make sure UB isn't invoked while doing that. */
1272 for (int i = prep_cnt - 1; i >= 0; --i)
1274 gimple *g = prep_stmt[i];
1275 tree grhs1 = gimple_assign_rhs1 (g);
1276 if (!operand_equal_for_phi_arg_p (cond_lhs, grhs1))
1277 return 0;
1278 cond_lhs = gimple_assign_lhs (g);
1279 cond_rhs = fold_convert (TREE_TYPE (grhs1), cond_rhs);
1280 if (TREE_CODE (cond_rhs) != INTEGER_CST
1281 || TREE_OVERFLOW (cond_rhs))
1282 return 0;
1283 if (gimple_assign_rhs_class (g) == GIMPLE_BINARY_RHS)
1285 cond_rhs = int_const_binop (gimple_assign_rhs_code (g), cond_rhs,
1286 gimple_assign_rhs2 (g));
1287 if (TREE_OVERFLOW (cond_rhs))
1288 return 0;
1290 cond_rhs = fold_convert (TREE_TYPE (cond_lhs), cond_rhs);
1291 if (TREE_CODE (cond_rhs) != INTEGER_CST
1292 || TREE_OVERFLOW (cond_rhs))
1293 return 0;
1296 if (((code == NE_EXPR && e1 == false_edge)
1297 || (code == EQ_EXPR && e1 == true_edge))
1298 && arg0 == lhs
1299 && ((arg1 == rhs1
1300 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1301 && neutral_element_p (code_def, cond_rhs, true))
1302 || (arg1 == rhs2
1303 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1304 && neutral_element_p (code_def, cond_rhs, false))
1305 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
1306 && ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1307 && absorbing_element_p (code_def, cond_rhs, true, rhs2))
1308 || (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1309 && absorbing_element_p (code_def,
1310 cond_rhs, false, rhs2))))))
1312 gsi = gsi_for_stmt (cond);
1313 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
1314 def-stmt in:
1315 if (n_5 != 0)
1316 goto <bb 3>;
1317 else
1318 goto <bb 4>;
1320 <bb 3>:
1321 # RANGE [0, 4294967294]
1322 u_6 = n_5 + 4294967295;
1324 <bb 4>:
1325 # u_3 = PHI <u_6(3), 4294967295(2)> */
1326 reset_flow_sensitive_info (lhs);
1327 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
1329 /* If available, we can use VR of phi result at least. */
1330 tree phires = gimple_phi_result (phi);
1331 struct range_info_def *phires_range_info
1332 = SSA_NAME_RANGE_INFO (phires);
1333 if (phires_range_info)
1334 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
1335 phires_range_info);
1337 gimple_stmt_iterator gsi_from;
1338 for (int i = prep_cnt - 1; i >= 0; --i)
1340 tree plhs = gimple_assign_lhs (prep_stmt[i]);
1341 reset_flow_sensitive_info (plhs);
1342 gsi_from = gsi_for_stmt (prep_stmt[i]);
1343 gsi_move_before (&gsi_from, &gsi);
1345 gsi_from = gsi_for_stmt (assign);
1346 gsi_move_before (&gsi_from, &gsi);
1347 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
1348 return 2;
1351 return 0;
1354 /* The function minmax_replacement does the main work of doing the minmax
1355 replacement. Return true if the replacement is done. Otherwise return
1356 false.
1357 BB is the basic block where the replacement is going to be done on. ARG0
1358 is argument 0 from the PHI. Likewise for ARG1. */
1360 static bool
1361 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
1362 edge e0, edge e1, gimple *phi,
1363 tree arg0, tree arg1)
1365 tree result, type, rhs;
1366 gcond *cond;
1367 gassign *new_stmt;
1368 edge true_edge, false_edge;
1369 enum tree_code cmp, minmax, ass_code;
1370 tree smaller, alt_smaller, larger, alt_larger, arg_true, arg_false;
1371 gimple_stmt_iterator gsi, gsi_from;
1373 type = TREE_TYPE (PHI_RESULT (phi));
1375 /* The optimization may be unsafe due to NaNs. */
1376 if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
1377 return false;
1379 cond = as_a <gcond *> (last_stmt (cond_bb));
1380 cmp = gimple_cond_code (cond);
1381 rhs = gimple_cond_rhs (cond);
1383 /* Turn EQ/NE of extreme values to order comparisons. */
1384 if ((cmp == NE_EXPR || cmp == EQ_EXPR)
1385 && TREE_CODE (rhs) == INTEGER_CST)
1387 if (wi::eq_p (wi::to_wide (rhs), wi::min_value (TREE_TYPE (rhs))))
1389 cmp = (cmp == EQ_EXPR) ? LT_EXPR : GE_EXPR;
1390 rhs = wide_int_to_tree (TREE_TYPE (rhs),
1391 wi::min_value (TREE_TYPE (rhs)) + 1);
1393 else if (wi::eq_p (wi::to_wide (rhs), wi::max_value (TREE_TYPE (rhs))))
1395 cmp = (cmp == EQ_EXPR) ? GT_EXPR : LE_EXPR;
1396 rhs = wide_int_to_tree (TREE_TYPE (rhs),
1397 wi::max_value (TREE_TYPE (rhs)) - 1);
1401 /* This transformation is only valid for order comparisons. Record which
1402 operand is smaller/larger if the result of the comparison is true. */
1403 alt_smaller = NULL_TREE;
1404 alt_larger = NULL_TREE;
1405 if (cmp == LT_EXPR || cmp == LE_EXPR)
1407 smaller = gimple_cond_lhs (cond);
1408 larger = rhs;
1409 /* If we have smaller < CST it is equivalent to smaller <= CST-1.
1410 Likewise smaller <= CST is equivalent to smaller < CST+1. */
1411 if (TREE_CODE (larger) == INTEGER_CST)
1413 if (cmp == LT_EXPR)
1415 wi::overflow_type overflow;
1416 wide_int alt = wi::sub (wi::to_wide (larger), 1,
1417 TYPE_SIGN (TREE_TYPE (larger)),
1418 &overflow);
1419 if (! overflow)
1420 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1422 else
1424 wi::overflow_type overflow;
1425 wide_int alt = wi::add (wi::to_wide (larger), 1,
1426 TYPE_SIGN (TREE_TYPE (larger)),
1427 &overflow);
1428 if (! overflow)
1429 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1433 else if (cmp == GT_EXPR || cmp == GE_EXPR)
1435 smaller = rhs;
1436 larger = gimple_cond_lhs (cond);
1437 /* If we have larger > CST it is equivalent to larger >= CST+1.
1438 Likewise larger >= CST is equivalent to larger > CST-1. */
1439 if (TREE_CODE (smaller) == INTEGER_CST)
1441 wi::overflow_type overflow;
1442 if (cmp == GT_EXPR)
1444 wide_int alt = wi::add (wi::to_wide (smaller), 1,
1445 TYPE_SIGN (TREE_TYPE (smaller)),
1446 &overflow);
1447 if (! overflow)
1448 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1450 else
1452 wide_int alt = wi::sub (wi::to_wide (smaller), 1,
1453 TYPE_SIGN (TREE_TYPE (smaller)),
1454 &overflow);
1455 if (! overflow)
1456 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1460 else
1461 return false;
1463 /* We need to know which is the true edge and which is the false
1464 edge so that we know if have abs or negative abs. */
1465 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1467 /* Forward the edges over the middle basic block. */
1468 if (true_edge->dest == middle_bb)
1469 true_edge = EDGE_SUCC (true_edge->dest, 0);
1470 if (false_edge->dest == middle_bb)
1471 false_edge = EDGE_SUCC (false_edge->dest, 0);
1473 if (true_edge == e0)
1475 gcc_assert (false_edge == e1);
1476 arg_true = arg0;
1477 arg_false = arg1;
1479 else
1481 gcc_assert (false_edge == e0);
1482 gcc_assert (true_edge == e1);
1483 arg_true = arg1;
1484 arg_false = arg0;
1487 if (empty_block_p (middle_bb))
1489 if ((operand_equal_for_phi_arg_p (arg_true, smaller)
1490 || (alt_smaller
1491 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1492 && (operand_equal_for_phi_arg_p (arg_false, larger)
1493 || (alt_larger
1494 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1496 /* Case
1498 if (smaller < larger)
1499 rslt = smaller;
1500 else
1501 rslt = larger; */
1502 minmax = MIN_EXPR;
1504 else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
1505 || (alt_smaller
1506 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1507 && (operand_equal_for_phi_arg_p (arg_true, larger)
1508 || (alt_larger
1509 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1510 minmax = MAX_EXPR;
1511 else
1512 return false;
1514 else
1516 /* Recognize the following case, assuming d <= u:
1518 if (a <= u)
1519 b = MAX (a, d);
1520 x = PHI <b, u>
1522 This is equivalent to
1524 b = MAX (a, d);
1525 x = MIN (b, u); */
1527 gimple *assign = last_and_only_stmt (middle_bb);
1528 tree lhs, op0, op1, bound;
1530 if (!assign
1531 || gimple_code (assign) != GIMPLE_ASSIGN)
1532 return false;
1534 lhs = gimple_assign_lhs (assign);
1535 ass_code = gimple_assign_rhs_code (assign);
1536 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1537 return false;
1538 op0 = gimple_assign_rhs1 (assign);
1539 op1 = gimple_assign_rhs2 (assign);
1541 if (true_edge->src == middle_bb)
1543 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1544 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1545 return false;
1547 if (operand_equal_for_phi_arg_p (arg_false, larger)
1548 || (alt_larger
1549 && operand_equal_for_phi_arg_p (arg_false, alt_larger)))
1551 /* Case
1553 if (smaller < larger)
1555 r' = MAX_EXPR (smaller, bound)
1557 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1558 if (ass_code != MAX_EXPR)
1559 return false;
1561 minmax = MIN_EXPR;
1562 if (operand_equal_for_phi_arg_p (op0, smaller)
1563 || (alt_smaller
1564 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1565 bound = op1;
1566 else if (operand_equal_for_phi_arg_p (op1, smaller)
1567 || (alt_smaller
1568 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1569 bound = op0;
1570 else
1571 return false;
1573 /* We need BOUND <= LARGER. */
1574 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1575 bound, larger)))
1576 return false;
1578 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1579 || (alt_smaller
1580 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1582 /* Case
1584 if (smaller < larger)
1586 r' = MIN_EXPR (larger, bound)
1588 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1589 if (ass_code != MIN_EXPR)
1590 return false;
1592 minmax = MAX_EXPR;
1593 if (operand_equal_for_phi_arg_p (op0, larger)
1594 || (alt_larger
1595 && operand_equal_for_phi_arg_p (op0, alt_larger)))
1596 bound = op1;
1597 else if (operand_equal_for_phi_arg_p (op1, larger)
1598 || (alt_larger
1599 && operand_equal_for_phi_arg_p (op1, alt_larger)))
1600 bound = op0;
1601 else
1602 return false;
1604 /* We need BOUND >= SMALLER. */
1605 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1606 bound, smaller)))
1607 return false;
1609 else
1610 return false;
1612 else
1614 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1615 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1616 return false;
1618 if (operand_equal_for_phi_arg_p (arg_true, larger)
1619 || (alt_larger
1620 && operand_equal_for_phi_arg_p (arg_true, alt_larger)))
1622 /* Case
1624 if (smaller > larger)
1626 r' = MIN_EXPR (smaller, bound)
1628 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1629 if (ass_code != MIN_EXPR)
1630 return false;
1632 minmax = MAX_EXPR;
1633 if (operand_equal_for_phi_arg_p (op0, smaller)
1634 || (alt_smaller
1635 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1636 bound = op1;
1637 else if (operand_equal_for_phi_arg_p (op1, smaller)
1638 || (alt_smaller
1639 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1640 bound = op0;
1641 else
1642 return false;
1644 /* We need BOUND >= LARGER. */
1645 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1646 bound, larger)))
1647 return false;
1649 else if (operand_equal_for_phi_arg_p (arg_true, smaller)
1650 || (alt_smaller
1651 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1653 /* Case
1655 if (smaller > larger)
1657 r' = MAX_EXPR (larger, bound)
1659 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1660 if (ass_code != MAX_EXPR)
1661 return false;
1663 minmax = MIN_EXPR;
1664 if (operand_equal_for_phi_arg_p (op0, larger))
1665 bound = op1;
1666 else if (operand_equal_for_phi_arg_p (op1, larger))
1667 bound = op0;
1668 else
1669 return false;
1671 /* We need BOUND <= SMALLER. */
1672 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1673 bound, smaller)))
1674 return false;
1676 else
1677 return false;
1680 /* Move the statement from the middle block. */
1681 gsi = gsi_last_bb (cond_bb);
1682 gsi_from = gsi_last_nondebug_bb (middle_bb);
1683 reset_flow_sensitive_info (SINGLE_SSA_TREE_OPERAND (gsi_stmt (gsi_from),
1684 SSA_OP_DEF));
1685 gsi_move_before (&gsi_from, &gsi);
1688 /* Create an SSA var to hold the min/max result. If we're the only
1689 things setting the target PHI, then we can clone the PHI
1690 variable. Otherwise we must create a new one. */
1691 result = PHI_RESULT (phi);
1692 if (EDGE_COUNT (gimple_bb (phi)->preds) == 2)
1693 result = duplicate_ssa_name (result, NULL);
1694 else
1695 result = make_ssa_name (TREE_TYPE (result));
1697 /* Emit the statement to compute min/max. */
1698 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1699 gsi = gsi_last_bb (cond_bb);
1700 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1702 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1704 return true;
1707 /* Convert
1709 <bb 2>
1710 if (b_4(D) != 0)
1711 goto <bb 3>
1712 else
1713 goto <bb 4>
1715 <bb 3>
1716 _2 = (unsigned long) b_4(D);
1717 _9 = __builtin_popcountl (_2);
1719 _9 = __builtin_popcountl (b_4(D));
1721 <bb 4>
1722 c_12 = PHI <0(2), _9(3)>
1724 Into
1725 <bb 2>
1726 _2 = (unsigned long) b_4(D);
1727 _9 = __builtin_popcountl (_2);
1729 _9 = __builtin_popcountl (b_4(D));
1731 <bb 4>
1732 c_12 = PHI <_9(2)>
1735 static bool
1736 cond_removal_in_popcount_pattern (basic_block cond_bb, basic_block middle_bb,
1737 edge e1, edge e2,
1738 gimple *phi, tree arg0, tree arg1)
1740 gimple *cond;
1741 gimple_stmt_iterator gsi, gsi_from;
1742 gimple *popcount;
1743 gimple *cast = NULL;
1744 tree lhs, arg;
1746 /* Check that
1747 _2 = (unsigned long) b_4(D);
1748 _9 = __builtin_popcountl (_2);
1750 _9 = __builtin_popcountl (b_4(D));
1751 are the only stmts in the middle_bb. */
1753 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
1754 if (gsi_end_p (gsi))
1755 return false;
1756 cast = gsi_stmt (gsi);
1757 gsi_next_nondebug (&gsi);
1758 if (!gsi_end_p (gsi))
1760 popcount = gsi_stmt (gsi);
1761 gsi_next_nondebug (&gsi);
1762 if (!gsi_end_p (gsi))
1763 return false;
1765 else
1767 popcount = cast;
1768 cast = NULL;
1771 /* Check that we have a popcount builtin. */
1772 if (!is_gimple_call (popcount))
1773 return false;
1774 combined_fn cfn = gimple_call_combined_fn (popcount);
1775 switch (cfn)
1777 CASE_CFN_POPCOUNT:
1778 break;
1779 default:
1780 return false;
1783 arg = gimple_call_arg (popcount, 0);
1784 lhs = gimple_get_lhs (popcount);
1786 if (cast)
1788 /* We have a cast stmt feeding popcount builtin. */
1789 /* Check that we have a cast prior to that. */
1790 if (gimple_code (cast) != GIMPLE_ASSIGN
1791 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (cast)))
1792 return false;
1793 /* Result of the cast stmt is the argument to the builtin. */
1794 if (arg != gimple_assign_lhs (cast))
1795 return false;
1796 arg = gimple_assign_rhs1 (cast);
1799 cond = last_stmt (cond_bb);
1801 /* Cond_bb has a check for b_4 [!=|==] 0 before calling the popcount
1802 builtin. */
1803 if (gimple_code (cond) != GIMPLE_COND
1804 || (gimple_cond_code (cond) != NE_EXPR
1805 && gimple_cond_code (cond) != EQ_EXPR)
1806 || !integer_zerop (gimple_cond_rhs (cond))
1807 || arg != gimple_cond_lhs (cond))
1808 return false;
1810 /* Canonicalize. */
1811 if ((e2->flags & EDGE_TRUE_VALUE
1812 && gimple_cond_code (cond) == NE_EXPR)
1813 || (e1->flags & EDGE_TRUE_VALUE
1814 && gimple_cond_code (cond) == EQ_EXPR))
1816 std::swap (arg0, arg1);
1817 std::swap (e1, e2);
1820 /* Check PHI arguments. */
1821 if (lhs != arg0 || !integer_zerop (arg1))
1822 return false;
1824 /* And insert the popcount builtin and cast stmt before the cond_bb. */
1825 gsi = gsi_last_bb (cond_bb);
1826 if (cast)
1828 gsi_from = gsi_for_stmt (cast);
1829 gsi_move_before (&gsi_from, &gsi);
1830 reset_flow_sensitive_info (gimple_get_lhs (cast));
1832 gsi_from = gsi_for_stmt (popcount);
1833 gsi_move_before (&gsi_from, &gsi);
1834 reset_flow_sensitive_info (gimple_get_lhs (popcount));
1836 /* Now update the PHI and remove unneeded bbs. */
1837 replace_phi_edge_with_variable (cond_bb, e2, phi, lhs);
1838 return true;
1841 /* The function absolute_replacement does the main work of doing the absolute
1842 replacement. Return true if the replacement is done. Otherwise return
1843 false.
1844 bb is the basic block where the replacement is going to be done on. arg0
1845 is argument 0 from the phi. Likewise for arg1. */
1847 static bool
1848 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1849 edge e0 ATTRIBUTE_UNUSED, edge e1,
1850 gimple *phi, tree arg0, tree arg1)
1852 tree result;
1853 gassign *new_stmt;
1854 gimple *cond;
1855 gimple_stmt_iterator gsi;
1856 edge true_edge, false_edge;
1857 gimple *assign;
1858 edge e;
1859 tree rhs, lhs;
1860 bool negate;
1861 enum tree_code cond_code;
1863 /* If the type says honor signed zeros we cannot do this
1864 optimization. */
1865 if (HONOR_SIGNED_ZEROS (arg1))
1866 return false;
1868 /* OTHER_BLOCK must have only one executable statement which must have the
1869 form arg0 = -arg1 or arg1 = -arg0. */
1871 assign = last_and_only_stmt (middle_bb);
1872 /* If we did not find the proper negation assignment, then we cannot
1873 optimize. */
1874 if (assign == NULL)
1875 return false;
1877 /* If we got here, then we have found the only executable statement
1878 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1879 arg1 = -arg0, then we cannot optimize. */
1880 if (gimple_code (assign) != GIMPLE_ASSIGN)
1881 return false;
1883 lhs = gimple_assign_lhs (assign);
1885 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1886 return false;
1888 rhs = gimple_assign_rhs1 (assign);
1890 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1891 if (!(lhs == arg0 && rhs == arg1)
1892 && !(lhs == arg1 && rhs == arg0))
1893 return false;
1895 cond = last_stmt (cond_bb);
1896 result = PHI_RESULT (phi);
1898 /* Only relationals comparing arg[01] against zero are interesting. */
1899 cond_code = gimple_cond_code (cond);
1900 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1901 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1902 return false;
1904 /* Make sure the conditional is arg[01] OP y. */
1905 if (gimple_cond_lhs (cond) != rhs)
1906 return false;
1908 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1909 ? real_zerop (gimple_cond_rhs (cond))
1910 : integer_zerop (gimple_cond_rhs (cond)))
1912 else
1913 return false;
1915 /* We need to know which is the true edge and which is the false
1916 edge so that we know if have abs or negative abs. */
1917 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1919 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1920 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1921 the false edge goes to OTHER_BLOCK. */
1922 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1923 e = true_edge;
1924 else
1925 e = false_edge;
1927 if (e->dest == middle_bb)
1928 negate = true;
1929 else
1930 negate = false;
1932 /* If the code negates only iff positive then make sure to not
1933 introduce undefined behavior when negating or computing the absolute.
1934 ??? We could use range info if present to check for arg1 == INT_MIN. */
1935 if (negate
1936 && (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
1937 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
1938 return false;
1940 result = duplicate_ssa_name (result, NULL);
1942 if (negate)
1943 lhs = make_ssa_name (TREE_TYPE (result));
1944 else
1945 lhs = result;
1947 /* Build the modify expression with abs expression. */
1948 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1950 gsi = gsi_last_bb (cond_bb);
1951 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1953 if (negate)
1955 /* Get the right GSI. We want to insert after the recently
1956 added ABS_EXPR statement (which we know is the first statement
1957 in the block. */
1958 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1960 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1963 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1965 /* Note that we optimized this PHI. */
1966 return true;
1969 /* Auxiliary functions to determine the set of memory accesses which
1970 can't trap because they are preceded by accesses to the same memory
1971 portion. We do that for MEM_REFs, so we only need to track
1972 the SSA_NAME of the pointer indirectly referenced. The algorithm
1973 simply is a walk over all instructions in dominator order. When
1974 we see an MEM_REF we determine if we've already seen a same
1975 ref anywhere up to the root of the dominator tree. If we do the
1976 current access can't trap. If we don't see any dominating access
1977 the current access might trap, but might also make later accesses
1978 non-trapping, so we remember it. We need to be careful with loads
1979 or stores, for instance a load might not trap, while a store would,
1980 so if we see a dominating read access this doesn't mean that a later
1981 write access would not trap. Hence we also need to differentiate the
1982 type of access(es) seen.
1984 ??? We currently are very conservative and assume that a load might
1985 trap even if a store doesn't (write-only memory). This probably is
1986 overly conservative. */
1988 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1989 through it was seen, which would constitute a no-trap region for
1990 same accesses. */
1991 struct name_to_bb
1993 unsigned int ssa_name_ver;
1994 unsigned int phase;
1995 bool store;
1996 HOST_WIDE_INT offset, size;
1997 basic_block bb;
2000 /* Hashtable helpers. */
2002 struct ssa_names_hasher : free_ptr_hash <name_to_bb>
2004 static inline hashval_t hash (const name_to_bb *);
2005 static inline bool equal (const name_to_bb *, const name_to_bb *);
2008 /* Used for quick clearing of the hash-table when we see calls.
2009 Hash entries with phase < nt_call_phase are invalid. */
2010 static unsigned int nt_call_phase;
2012 /* The hash function. */
2014 inline hashval_t
2015 ssa_names_hasher::hash (const name_to_bb *n)
2017 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
2018 ^ (n->offset << 6) ^ (n->size << 3);
2021 /* The equality function of *P1 and *P2. */
2023 inline bool
2024 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
2026 return n1->ssa_name_ver == n2->ssa_name_ver
2027 && n1->store == n2->store
2028 && n1->offset == n2->offset
2029 && n1->size == n2->size;
2032 class nontrapping_dom_walker : public dom_walker
2034 public:
2035 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
2036 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
2038 virtual edge before_dom_children (basic_block);
2039 virtual void after_dom_children (basic_block);
2041 private:
2043 /* We see the expression EXP in basic block BB. If it's an interesting
2044 expression (an MEM_REF through an SSA_NAME) possibly insert the
2045 expression into the set NONTRAP or the hash table of seen expressions.
2046 STORE is true if this expression is on the LHS, otherwise it's on
2047 the RHS. */
2048 void add_or_mark_expr (basic_block, tree, bool);
2050 hash_set<tree> *m_nontrapping;
2052 /* The hash table for remembering what we've seen. */
2053 hash_table<ssa_names_hasher> m_seen_ssa_names;
2056 /* Called by walk_dominator_tree, when entering the block BB. */
2057 edge
2058 nontrapping_dom_walker::before_dom_children (basic_block bb)
2060 edge e;
2061 edge_iterator ei;
2062 gimple_stmt_iterator gsi;
2064 /* If we haven't seen all our predecessors, clear the hash-table. */
2065 FOR_EACH_EDGE (e, ei, bb->preds)
2066 if ((((size_t)e->src->aux) & 2) == 0)
2068 nt_call_phase++;
2069 break;
2072 /* Mark this BB as being on the path to dominator root and as visited. */
2073 bb->aux = (void*)(1 | 2);
2075 /* And walk the statements in order. */
2076 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2078 gimple *stmt = gsi_stmt (gsi);
2080 if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
2081 || (is_gimple_call (stmt)
2082 && (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
2083 nt_call_phase++;
2084 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
2086 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
2087 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
2090 return NULL;
2093 /* Called by walk_dominator_tree, when basic block BB is exited. */
2094 void
2095 nontrapping_dom_walker::after_dom_children (basic_block bb)
2097 /* This BB isn't on the path to dominator root anymore. */
2098 bb->aux = (void*)2;
2101 /* We see the expression EXP in basic block BB. If it's an interesting
2102 expression (an MEM_REF through an SSA_NAME) possibly insert the
2103 expression into the set NONTRAP or the hash table of seen expressions.
2104 STORE is true if this expression is on the LHS, otherwise it's on
2105 the RHS. */
2106 void
2107 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
2109 HOST_WIDE_INT size;
2111 if (TREE_CODE (exp) == MEM_REF
2112 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
2113 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
2114 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
2116 tree name = TREE_OPERAND (exp, 0);
2117 struct name_to_bb map;
2118 name_to_bb **slot;
2119 struct name_to_bb *n2bb;
2120 basic_block found_bb = 0;
2122 /* Try to find the last seen MEM_REF through the same
2123 SSA_NAME, which can trap. */
2124 map.ssa_name_ver = SSA_NAME_VERSION (name);
2125 map.phase = 0;
2126 map.bb = 0;
2127 map.store = store;
2128 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
2129 map.size = size;
2131 slot = m_seen_ssa_names.find_slot (&map, INSERT);
2132 n2bb = *slot;
2133 if (n2bb && n2bb->phase >= nt_call_phase)
2134 found_bb = n2bb->bb;
2136 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
2137 (it's in a basic block on the path from us to the dominator root)
2138 then we can't trap. */
2139 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
2141 m_nontrapping->add (exp);
2143 else
2145 /* EXP might trap, so insert it into the hash table. */
2146 if (n2bb)
2148 n2bb->phase = nt_call_phase;
2149 n2bb->bb = bb;
2151 else
2153 n2bb = XNEW (struct name_to_bb);
2154 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
2155 n2bb->phase = nt_call_phase;
2156 n2bb->bb = bb;
2157 n2bb->store = store;
2158 n2bb->offset = map.offset;
2159 n2bb->size = size;
2160 *slot = n2bb;
2166 /* This is the entry point of gathering non trapping memory accesses.
2167 It will do a dominator walk over the whole function, and it will
2168 make use of the bb->aux pointers. It returns a set of trees
2169 (the MEM_REFs itself) which can't trap. */
2170 static hash_set<tree> *
2171 get_non_trapping (void)
2173 nt_call_phase = 0;
2174 hash_set<tree> *nontrap = new hash_set<tree>;
2175 /* We're going to do a dominator walk, so ensure that we have
2176 dominance information. */
2177 calculate_dominance_info (CDI_DOMINATORS);
2179 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
2180 .walk (cfun->cfg->x_entry_block_ptr);
2182 clear_aux_for_blocks ();
2183 return nontrap;
2186 /* Do the main work of conditional store replacement. We already know
2187 that the recognized pattern looks like so:
2189 split:
2190 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
2191 MIDDLE_BB:
2192 something
2193 fallthrough (edge E0)
2194 JOIN_BB:
2195 some more
2197 We check that MIDDLE_BB contains only one store, that that store
2198 doesn't trap (not via NOTRAP, but via checking if an access to the same
2199 memory location dominates us, or the store is to a local addressable
2200 object) and that the store has a "simple" RHS. */
2202 static bool
2203 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
2204 edge e0, edge e1, hash_set<tree> *nontrap)
2206 gimple *assign = last_and_only_stmt (middle_bb);
2207 tree lhs, rhs, name, name2;
2208 gphi *newphi;
2209 gassign *new_stmt;
2210 gimple_stmt_iterator gsi;
2211 location_t locus;
2213 /* Check if middle_bb contains of only one store. */
2214 if (!assign
2215 || !gimple_assign_single_p (assign)
2216 || gimple_has_volatile_ops (assign))
2217 return false;
2219 /* And no PHI nodes so all uses in the single stmt are also
2220 available where we insert to. */
2221 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
2222 return false;
2224 locus = gimple_location (assign);
2225 lhs = gimple_assign_lhs (assign);
2226 rhs = gimple_assign_rhs1 (assign);
2227 if ((TREE_CODE (lhs) != MEM_REF
2228 && TREE_CODE (lhs) != ARRAY_REF
2229 && TREE_CODE (lhs) != COMPONENT_REF)
2230 || !is_gimple_reg_type (TREE_TYPE (lhs)))
2231 return false;
2233 /* Prove that we can move the store down. We could also check
2234 TREE_THIS_NOTRAP here, but in that case we also could move stores,
2235 whose value is not available readily, which we want to avoid. */
2236 if (!nontrap->contains (lhs))
2238 /* If LHS is a local variable without address-taken, we could
2239 always safely move down the store. */
2240 tree base = get_base_address (lhs);
2241 if (!auto_var_p (base) || TREE_ADDRESSABLE (base))
2242 return false;
2245 /* Now we've checked the constraints, so do the transformation:
2246 1) Remove the single store. */
2247 gsi = gsi_for_stmt (assign);
2248 unlink_stmt_vdef (assign);
2249 gsi_remove (&gsi, true);
2250 release_defs (assign);
2252 /* Make both store and load use alias-set zero as we have to
2253 deal with the case of the store being a conditional change
2254 of the dynamic type. */
2255 lhs = unshare_expr (lhs);
2256 tree *basep = &lhs;
2257 while (handled_component_p (*basep))
2258 basep = &TREE_OPERAND (*basep, 0);
2259 if (TREE_CODE (*basep) == MEM_REF
2260 || TREE_CODE (*basep) == TARGET_MEM_REF)
2261 TREE_OPERAND (*basep, 1)
2262 = fold_convert (ptr_type_node, TREE_OPERAND (*basep, 1));
2263 else
2264 *basep = build2 (MEM_REF, TREE_TYPE (*basep),
2265 build_fold_addr_expr (*basep),
2266 build_zero_cst (ptr_type_node));
2268 /* 2) Insert a load from the memory of the store to the temporary
2269 on the edge which did not contain the store. */
2270 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2271 new_stmt = gimple_build_assign (name, lhs);
2272 gimple_set_location (new_stmt, locus);
2273 gsi_insert_on_edge (e1, new_stmt);
2275 /* 3) Create a PHI node at the join block, with one argument
2276 holding the old RHS, and the other holding the temporary
2277 where we stored the old memory contents. */
2278 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2279 newphi = create_phi_node (name2, join_bb);
2280 add_phi_arg (newphi, rhs, e0, locus);
2281 add_phi_arg (newphi, name, e1, locus);
2283 lhs = unshare_expr (lhs);
2284 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
2286 /* 4) Insert that PHI node. */
2287 gsi = gsi_after_labels (join_bb);
2288 if (gsi_end_p (gsi))
2290 gsi = gsi_last_bb (join_bb);
2291 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2293 else
2294 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2296 if (dump_file && (dump_flags & TDF_DETAILS))
2298 fprintf (dump_file, "\nConditional store replacement happened!");
2299 fprintf (dump_file, "\nReplaced the store with a load.");
2300 fprintf (dump_file, "\nInserted a new PHI statement in joint block:\n");
2301 print_gimple_stmt (dump_file, new_stmt, 0, TDF_VOPS|TDF_MEMSYMS);
2304 return true;
2307 /* Do the main work of conditional store replacement. */
2309 static bool
2310 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
2311 basic_block join_bb, gimple *then_assign,
2312 gimple *else_assign)
2314 tree lhs_base, lhs, then_rhs, else_rhs, name;
2315 location_t then_locus, else_locus;
2316 gimple_stmt_iterator gsi;
2317 gphi *newphi;
2318 gassign *new_stmt;
2320 if (then_assign == NULL
2321 || !gimple_assign_single_p (then_assign)
2322 || gimple_clobber_p (then_assign)
2323 || gimple_has_volatile_ops (then_assign)
2324 || else_assign == NULL
2325 || !gimple_assign_single_p (else_assign)
2326 || gimple_clobber_p (else_assign)
2327 || gimple_has_volatile_ops (else_assign))
2328 return false;
2330 lhs = gimple_assign_lhs (then_assign);
2331 if (!is_gimple_reg_type (TREE_TYPE (lhs))
2332 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
2333 return false;
2335 lhs_base = get_base_address (lhs);
2336 if (lhs_base == NULL_TREE
2337 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
2338 return false;
2340 then_rhs = gimple_assign_rhs1 (then_assign);
2341 else_rhs = gimple_assign_rhs1 (else_assign);
2342 then_locus = gimple_location (then_assign);
2343 else_locus = gimple_location (else_assign);
2345 /* Now we've checked the constraints, so do the transformation:
2346 1) Remove the stores. */
2347 gsi = gsi_for_stmt (then_assign);
2348 unlink_stmt_vdef (then_assign);
2349 gsi_remove (&gsi, true);
2350 release_defs (then_assign);
2352 gsi = gsi_for_stmt (else_assign);
2353 unlink_stmt_vdef (else_assign);
2354 gsi_remove (&gsi, true);
2355 release_defs (else_assign);
2357 /* 2) Create a PHI node at the join block, with one argument
2358 holding the old RHS, and the other holding the temporary
2359 where we stored the old memory contents. */
2360 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2361 newphi = create_phi_node (name, join_bb);
2362 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
2363 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
2365 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
2367 /* 3) Insert that PHI node. */
2368 gsi = gsi_after_labels (join_bb);
2369 if (gsi_end_p (gsi))
2371 gsi = gsi_last_bb (join_bb);
2372 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2374 else
2375 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2377 return true;
2380 /* Return the single store in BB with VDEF or NULL if there are
2381 other stores in the BB or loads following the store. */
2383 static gimple *
2384 single_trailing_store_in_bb (basic_block bb, tree vdef)
2386 if (SSA_NAME_IS_DEFAULT_DEF (vdef))
2387 return NULL;
2388 gimple *store = SSA_NAME_DEF_STMT (vdef);
2389 if (gimple_bb (store) != bb
2390 || gimple_code (store) == GIMPLE_PHI)
2391 return NULL;
2393 /* Verify there is no other store in this BB. */
2394 if (!SSA_NAME_IS_DEFAULT_DEF (gimple_vuse (store))
2395 && gimple_bb (SSA_NAME_DEF_STMT (gimple_vuse (store))) == bb
2396 && gimple_code (SSA_NAME_DEF_STMT (gimple_vuse (store))) != GIMPLE_PHI)
2397 return NULL;
2399 /* Verify there is no load or store after the store. */
2400 use_operand_p use_p;
2401 imm_use_iterator imm_iter;
2402 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_vdef (store))
2403 if (USE_STMT (use_p) != store
2404 && gimple_bb (USE_STMT (use_p)) == bb)
2405 return NULL;
2407 return store;
2410 /* Conditional store replacement. We already know
2411 that the recognized pattern looks like so:
2413 split:
2414 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
2415 THEN_BB:
2417 X = Y;
2419 goto JOIN_BB;
2420 ELSE_BB:
2422 X = Z;
2424 fallthrough (edge E0)
2425 JOIN_BB:
2426 some more
2428 We check that it is safe to sink the store to JOIN_BB by verifying that
2429 there are no read-after-write or write-after-write dependencies in
2430 THEN_BB and ELSE_BB. */
2432 static bool
2433 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
2434 basic_block join_bb)
2436 vec<data_reference_p> then_datarefs, else_datarefs;
2437 vec<ddr_p> then_ddrs, else_ddrs;
2438 gimple *then_store, *else_store;
2439 bool found, ok = false, res;
2440 struct data_dependence_relation *ddr;
2441 data_reference_p then_dr, else_dr;
2442 int i, j;
2443 tree then_lhs, else_lhs;
2444 basic_block blocks[3];
2446 /* Handle the case with single store in THEN_BB and ELSE_BB. That is
2447 cheap enough to always handle as it allows us to elide dependence
2448 checking. */
2449 gphi *vphi = NULL;
2450 for (gphi_iterator si = gsi_start_phis (join_bb); !gsi_end_p (si);
2451 gsi_next (&si))
2452 if (virtual_operand_p (gimple_phi_result (si.phi ())))
2454 vphi = si.phi ();
2455 break;
2457 if (!vphi)
2458 return false;
2459 tree then_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (then_bb));
2460 tree else_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (else_bb));
2461 gimple *then_assign = single_trailing_store_in_bb (then_bb, then_vdef);
2462 if (then_assign)
2464 gimple *else_assign = single_trailing_store_in_bb (else_bb, else_vdef);
2465 if (else_assign)
2466 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2467 then_assign, else_assign);
2470 if (MAX_STORES_TO_SINK == 0)
2471 return false;
2473 /* Find data references. */
2474 then_datarefs.create (1);
2475 else_datarefs.create (1);
2476 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
2477 == chrec_dont_know)
2478 || !then_datarefs.length ()
2479 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
2480 == chrec_dont_know)
2481 || !else_datarefs.length ())
2483 free_data_refs (then_datarefs);
2484 free_data_refs (else_datarefs);
2485 return false;
2488 /* Find pairs of stores with equal LHS. */
2489 auto_vec<gimple *, 1> then_stores, else_stores;
2490 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
2492 if (DR_IS_READ (then_dr))
2493 continue;
2495 then_store = DR_STMT (then_dr);
2496 then_lhs = gimple_get_lhs (then_store);
2497 if (then_lhs == NULL_TREE)
2498 continue;
2499 found = false;
2501 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
2503 if (DR_IS_READ (else_dr))
2504 continue;
2506 else_store = DR_STMT (else_dr);
2507 else_lhs = gimple_get_lhs (else_store);
2508 if (else_lhs == NULL_TREE)
2509 continue;
2511 if (operand_equal_p (then_lhs, else_lhs, 0))
2513 found = true;
2514 break;
2518 if (!found)
2519 continue;
2521 then_stores.safe_push (then_store);
2522 else_stores.safe_push (else_store);
2525 /* No pairs of stores found. */
2526 if (!then_stores.length ()
2527 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
2529 free_data_refs (then_datarefs);
2530 free_data_refs (else_datarefs);
2531 return false;
2534 /* Compute and check data dependencies in both basic blocks. */
2535 then_ddrs.create (1);
2536 else_ddrs.create (1);
2537 if (!compute_all_dependences (then_datarefs, &then_ddrs,
2538 vNULL, false)
2539 || !compute_all_dependences (else_datarefs, &else_ddrs,
2540 vNULL, false))
2542 free_dependence_relations (then_ddrs);
2543 free_dependence_relations (else_ddrs);
2544 free_data_refs (then_datarefs);
2545 free_data_refs (else_datarefs);
2546 return false;
2548 blocks[0] = then_bb;
2549 blocks[1] = else_bb;
2550 blocks[2] = join_bb;
2551 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
2553 /* Check that there are no read-after-write or write-after-write dependencies
2554 in THEN_BB. */
2555 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
2557 struct data_reference *dra = DDR_A (ddr);
2558 struct data_reference *drb = DDR_B (ddr);
2560 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2561 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2562 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2563 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2564 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2565 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2567 free_dependence_relations (then_ddrs);
2568 free_dependence_relations (else_ddrs);
2569 free_data_refs (then_datarefs);
2570 free_data_refs (else_datarefs);
2571 return false;
2575 /* Check that there are no read-after-write or write-after-write dependencies
2576 in ELSE_BB. */
2577 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
2579 struct data_reference *dra = DDR_A (ddr);
2580 struct data_reference *drb = DDR_B (ddr);
2582 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2583 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2584 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2585 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2586 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2587 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2589 free_dependence_relations (then_ddrs);
2590 free_dependence_relations (else_ddrs);
2591 free_data_refs (then_datarefs);
2592 free_data_refs (else_datarefs);
2593 return false;
2597 /* Sink stores with same LHS. */
2598 FOR_EACH_VEC_ELT (then_stores, i, then_store)
2600 else_store = else_stores[i];
2601 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2602 then_store, else_store);
2603 ok = ok || res;
2606 free_dependence_relations (then_ddrs);
2607 free_dependence_relations (else_ddrs);
2608 free_data_refs (then_datarefs);
2609 free_data_refs (else_datarefs);
2611 return ok;
2614 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
2616 static bool
2617 local_mem_dependence (gimple *stmt, basic_block bb)
2619 tree vuse = gimple_vuse (stmt);
2620 gimple *def;
2622 if (!vuse)
2623 return false;
2625 def = SSA_NAME_DEF_STMT (vuse);
2626 return (def && gimple_bb (def) == bb);
2629 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
2630 BB1 and BB2 are "then" and "else" blocks dependent on this test,
2631 and BB3 rejoins control flow following BB1 and BB2, look for
2632 opportunities to hoist loads as follows. If BB3 contains a PHI of
2633 two loads, one each occurring in BB1 and BB2, and the loads are
2634 provably of adjacent fields in the same structure, then move both
2635 loads into BB0. Of course this can only be done if there are no
2636 dependencies preventing such motion.
2638 One of the hoisted loads will always be speculative, so the
2639 transformation is currently conservative:
2641 - The fields must be strictly adjacent.
2642 - The two fields must occupy a single memory block that is
2643 guaranteed to not cross a page boundary.
2645 The last is difficult to prove, as such memory blocks should be
2646 aligned on the minimum of the stack alignment boundary and the
2647 alignment guaranteed by heap allocation interfaces. Thus we rely
2648 on a parameter for the alignment value.
2650 Provided a good value is used for the last case, the first
2651 restriction could possibly be relaxed. */
2653 static void
2654 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2655 basic_block bb2, basic_block bb3)
2657 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2658 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
2659 gphi_iterator gsi;
2661 /* Walk the phis in bb3 looking for an opportunity. We are looking
2662 for phis of two SSA names, one each of which is defined in bb1 and
2663 bb2. */
2664 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2666 gphi *phi_stmt = gsi.phi ();
2667 gimple *def1, *def2;
2668 tree arg1, arg2, ref1, ref2, field1, field2;
2669 tree tree_offset1, tree_offset2, tree_size2, next;
2670 int offset1, offset2, size2;
2671 unsigned align1;
2672 gimple_stmt_iterator gsi2;
2673 basic_block bb_for_def1, bb_for_def2;
2675 if (gimple_phi_num_args (phi_stmt) != 2
2676 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2677 continue;
2679 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2680 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2682 if (TREE_CODE (arg1) != SSA_NAME
2683 || TREE_CODE (arg2) != SSA_NAME
2684 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2685 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2686 continue;
2688 def1 = SSA_NAME_DEF_STMT (arg1);
2689 def2 = SSA_NAME_DEF_STMT (arg2);
2691 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2692 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2693 continue;
2695 /* Check the mode of the arguments to be sure a conditional move
2696 can be generated for it. */
2697 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2698 == CODE_FOR_nothing)
2699 continue;
2701 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2702 if (!gimple_assign_single_p (def1)
2703 || !gimple_assign_single_p (def2)
2704 || gimple_has_volatile_ops (def1)
2705 || gimple_has_volatile_ops (def2))
2706 continue;
2708 ref1 = gimple_assign_rhs1 (def1);
2709 ref2 = gimple_assign_rhs1 (def2);
2711 if (TREE_CODE (ref1) != COMPONENT_REF
2712 || TREE_CODE (ref2) != COMPONENT_REF)
2713 continue;
2715 /* The zeroth operand of the two component references must be
2716 identical. It is not sufficient to compare get_base_address of
2717 the two references, because this could allow for different
2718 elements of the same array in the two trees. It is not safe to
2719 assume that the existence of one array element implies the
2720 existence of a different one. */
2721 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2722 continue;
2724 field1 = TREE_OPERAND (ref1, 1);
2725 field2 = TREE_OPERAND (ref2, 1);
2727 /* Check for field adjacency, and ensure field1 comes first. */
2728 for (next = DECL_CHAIN (field1);
2729 next && TREE_CODE (next) != FIELD_DECL;
2730 next = DECL_CHAIN (next))
2733 if (next != field2)
2735 for (next = DECL_CHAIN (field2);
2736 next && TREE_CODE (next) != FIELD_DECL;
2737 next = DECL_CHAIN (next))
2740 if (next != field1)
2741 continue;
2743 std::swap (field1, field2);
2744 std::swap (def1, def2);
2747 bb_for_def1 = gimple_bb (def1);
2748 bb_for_def2 = gimple_bb (def2);
2750 /* Check for proper alignment of the first field. */
2751 tree_offset1 = bit_position (field1);
2752 tree_offset2 = bit_position (field2);
2753 tree_size2 = DECL_SIZE (field2);
2755 if (!tree_fits_uhwi_p (tree_offset1)
2756 || !tree_fits_uhwi_p (tree_offset2)
2757 || !tree_fits_uhwi_p (tree_size2))
2758 continue;
2760 offset1 = tree_to_uhwi (tree_offset1);
2761 offset2 = tree_to_uhwi (tree_offset2);
2762 size2 = tree_to_uhwi (tree_size2);
2763 align1 = DECL_ALIGN (field1) % param_align_bits;
2765 if (offset1 % BITS_PER_UNIT != 0)
2766 continue;
2768 /* For profitability, the two field references should fit within
2769 a single cache line. */
2770 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2771 continue;
2773 /* The two expressions cannot be dependent upon vdefs defined
2774 in bb1/bb2. */
2775 if (local_mem_dependence (def1, bb_for_def1)
2776 || local_mem_dependence (def2, bb_for_def2))
2777 continue;
2779 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2780 bb0. We hoist the first one first so that a cache miss is handled
2781 efficiently regardless of hardware cache-fill policy. */
2782 gsi2 = gsi_for_stmt (def1);
2783 gsi_move_to_bb_end (&gsi2, bb0);
2784 gsi2 = gsi_for_stmt (def2);
2785 gsi_move_to_bb_end (&gsi2, bb0);
2787 if (dump_file && (dump_flags & TDF_DETAILS))
2789 fprintf (dump_file,
2790 "\nHoisting adjacent loads from %d and %d into %d: \n",
2791 bb_for_def1->index, bb_for_def2->index, bb0->index);
2792 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2793 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2798 /* Determine whether we should attempt to hoist adjacent loads out of
2799 diamond patterns in pass_phiopt. Always hoist loads if
2800 -fhoist-adjacent-loads is specified and the target machine has
2801 both a conditional move instruction and a defined cache line size. */
2803 static bool
2804 gate_hoist_loads (void)
2806 return (flag_hoist_adjacent_loads == 1
2807 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2808 && HAVE_conditional_move);
2811 /* This pass tries to replaces an if-then-else block with an
2812 assignment. We have four kinds of transformations. Some of these
2813 transformations are also performed by the ifcvt RTL optimizer.
2815 Conditional Replacement
2816 -----------------------
2818 This transformation, implemented in conditional_replacement,
2819 replaces
2821 bb0:
2822 if (cond) goto bb2; else goto bb1;
2823 bb1:
2824 bb2:
2825 x = PHI <0 (bb1), 1 (bb0), ...>;
2827 with
2829 bb0:
2830 x' = cond;
2831 goto bb2;
2832 bb2:
2833 x = PHI <x' (bb0), ...>;
2835 We remove bb1 as it becomes unreachable. This occurs often due to
2836 gimplification of conditionals.
2838 Value Replacement
2839 -----------------
2841 This transformation, implemented in value_replacement, replaces
2843 bb0:
2844 if (a != b) goto bb2; else goto bb1;
2845 bb1:
2846 bb2:
2847 x = PHI <a (bb1), b (bb0), ...>;
2849 with
2851 bb0:
2852 bb2:
2853 x = PHI <b (bb0), ...>;
2855 This opportunity can sometimes occur as a result of other
2856 optimizations.
2859 Another case caught by value replacement looks like this:
2861 bb0:
2862 t1 = a == CONST;
2863 t2 = b > c;
2864 t3 = t1 & t2;
2865 if (t3 != 0) goto bb1; else goto bb2;
2866 bb1:
2867 bb2:
2868 x = PHI (CONST, a)
2870 Gets replaced with:
2871 bb0:
2872 bb2:
2873 t1 = a == CONST;
2874 t2 = b > c;
2875 t3 = t1 & t2;
2876 x = a;
2878 ABS Replacement
2879 ---------------
2881 This transformation, implemented in abs_replacement, replaces
2883 bb0:
2884 if (a >= 0) goto bb2; else goto bb1;
2885 bb1:
2886 x = -a;
2887 bb2:
2888 x = PHI <x (bb1), a (bb0), ...>;
2890 with
2892 bb0:
2893 x' = ABS_EXPR< a >;
2894 bb2:
2895 x = PHI <x' (bb0), ...>;
2897 MIN/MAX Replacement
2898 -------------------
2900 This transformation, minmax_replacement replaces
2902 bb0:
2903 if (a <= b) goto bb2; else goto bb1;
2904 bb1:
2905 bb2:
2906 x = PHI <b (bb1), a (bb0), ...>;
2908 with
2910 bb0:
2911 x' = MIN_EXPR (a, b)
2912 bb2:
2913 x = PHI <x' (bb0), ...>;
2915 A similar transformation is done for MAX_EXPR.
2918 This pass also performs a fifth transformation of a slightly different
2919 flavor.
2921 Factor conversion in COND_EXPR
2922 ------------------------------
2924 This transformation factors the conversion out of COND_EXPR with
2925 factor_out_conditional_conversion.
2927 For example:
2928 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2929 <bb 3>:
2930 tmp = (int) a;
2931 <bb 4>:
2932 tmp = PHI <tmp, CST>
2934 Into:
2935 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2936 <bb 3>:
2937 <bb 4>:
2938 a = PHI <a, CST>
2939 tmp = (int) a;
2941 Adjacent Load Hoisting
2942 ----------------------
2944 This transformation replaces
2946 bb0:
2947 if (...) goto bb2; else goto bb1;
2948 bb1:
2949 x1 = (<expr>).field1;
2950 goto bb3;
2951 bb2:
2952 x2 = (<expr>).field2;
2953 bb3:
2954 # x = PHI <x1, x2>;
2956 with
2958 bb0:
2959 x1 = (<expr>).field1;
2960 x2 = (<expr>).field2;
2961 if (...) goto bb2; else goto bb1;
2962 bb1:
2963 goto bb3;
2964 bb2:
2965 bb3:
2966 # x = PHI <x1, x2>;
2968 The purpose of this transformation is to enable generation of conditional
2969 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2970 the loads is speculative, the transformation is restricted to very
2971 specific cases to avoid introducing a page fault. We are looking for
2972 the common idiom:
2974 if (...)
2975 x = y->left;
2976 else
2977 x = y->right;
2979 where left and right are typically adjacent pointers in a tree structure. */
2981 namespace {
2983 const pass_data pass_data_phiopt =
2985 GIMPLE_PASS, /* type */
2986 "phiopt", /* name */
2987 OPTGROUP_NONE, /* optinfo_flags */
2988 TV_TREE_PHIOPT, /* tv_id */
2989 ( PROP_cfg | PROP_ssa ), /* properties_required */
2990 0, /* properties_provided */
2991 0, /* properties_destroyed */
2992 0, /* todo_flags_start */
2993 0, /* todo_flags_finish */
2996 class pass_phiopt : public gimple_opt_pass
2998 public:
2999 pass_phiopt (gcc::context *ctxt)
3000 : gimple_opt_pass (pass_data_phiopt, ctxt), early_p (false)
3003 /* opt_pass methods: */
3004 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
3005 void set_pass_param (unsigned n, bool param)
3007 gcc_assert (n == 0);
3008 early_p = param;
3010 virtual bool gate (function *) { return flag_ssa_phiopt; }
3011 virtual unsigned int execute (function *)
3013 return tree_ssa_phiopt_worker (false,
3014 !early_p ? gate_hoist_loads () : false,
3015 early_p);
3018 private:
3019 bool early_p;
3020 }; // class pass_phiopt
3022 } // anon namespace
3024 gimple_opt_pass *
3025 make_pass_phiopt (gcc::context *ctxt)
3027 return new pass_phiopt (ctxt);
3030 namespace {
3032 const pass_data pass_data_cselim =
3034 GIMPLE_PASS, /* type */
3035 "cselim", /* name */
3036 OPTGROUP_NONE, /* optinfo_flags */
3037 TV_TREE_PHIOPT, /* tv_id */
3038 ( PROP_cfg | PROP_ssa ), /* properties_required */
3039 0, /* properties_provided */
3040 0, /* properties_destroyed */
3041 0, /* todo_flags_start */
3042 0, /* todo_flags_finish */
3045 class pass_cselim : public gimple_opt_pass
3047 public:
3048 pass_cselim (gcc::context *ctxt)
3049 : gimple_opt_pass (pass_data_cselim, ctxt)
3052 /* opt_pass methods: */
3053 virtual bool gate (function *) { return flag_tree_cselim; }
3054 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
3056 }; // class pass_cselim
3058 } // anon namespace
3060 gimple_opt_pass *
3061 make_pass_cselim (gcc::context *ctxt)
3063 return new pass_cselim (ctxt);