re PR middle-end/91603 (Unaligned access in expand_assignment)
[official-gcc.git] / gcc / rtlanal.c
blob3c5a64e076189ce4da6266a4201aaaaa6b8697ab
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
38 #include "hard-reg-set.h"
40 /* Forward declarations */
41 static void set_of_1 (rtx, const_rtx, void *);
42 static bool covers_regno_p (const_rtx, unsigned int);
43 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
44 static int computed_jump_p_1 (const_rtx);
45 static void parms_set (rtx, const_rtx, void *);
47 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
48 const_rtx, machine_mode,
49 unsigned HOST_WIDE_INT);
50 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
51 const_rtx, machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
54 const_rtx, machine_mode,
55 unsigned int);
56 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
57 const_rtx, machine_mode,
58 unsigned int);
60 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
61 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
63 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
64 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
65 SIGN_EXTEND then while narrowing we also have to enforce the
66 representation and sign-extend the value to mode DESTINATION_REP.
68 If the value is already sign-extended to DESTINATION_REP mode we
69 can just switch to DESTINATION mode on it. For each pair of
70 integral modes SOURCE and DESTINATION, when truncating from SOURCE
71 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
72 contains the number of high-order bits in SOURCE that have to be
73 copies of the sign-bit so that we can do this mode-switch to
74 DESTINATION. */
76 static unsigned int
77 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
79 /* Store X into index I of ARRAY. ARRAY is known to have at least I
80 elements. Return the new base of ARRAY. */
82 template <typename T>
83 typename T::value_type *
84 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
85 value_type *base,
86 size_t i, value_type x)
88 if (base == array.stack)
90 if (i < LOCAL_ELEMS)
92 base[i] = x;
93 return base;
95 gcc_checking_assert (i == LOCAL_ELEMS);
96 /* A previous iteration might also have moved from the stack to the
97 heap, in which case the heap array will already be big enough. */
98 if (vec_safe_length (array.heap) <= i)
99 vec_safe_grow (array.heap, i + 1);
100 base = array.heap->address ();
101 memcpy (base, array.stack, sizeof (array.stack));
102 base[LOCAL_ELEMS] = x;
103 return base;
105 unsigned int length = array.heap->length ();
106 if (length > i)
108 gcc_checking_assert (base == array.heap->address ());
109 base[i] = x;
110 return base;
112 else
114 gcc_checking_assert (i == length);
115 vec_safe_push (array.heap, x);
116 return array.heap->address ();
120 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
121 number of elements added to the worklist. */
123 template <typename T>
124 size_t
125 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
126 value_type *base,
127 size_t end, rtx_type x)
129 enum rtx_code code = GET_CODE (x);
130 const char *format = GET_RTX_FORMAT (code);
131 size_t orig_end = end;
132 if (__builtin_expect (INSN_P (x), false))
134 /* Put the pattern at the top of the queue, since that's what
135 we're likely to want most. It also allows for the SEQUENCE
136 code below. */
137 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
138 if (format[i] == 'e')
140 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
141 if (__builtin_expect (end < LOCAL_ELEMS, true))
142 base[end++] = subx;
143 else
144 base = add_single_to_queue (array, base, end++, subx);
147 else
148 for (int i = 0; format[i]; ++i)
149 if (format[i] == 'e')
151 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
152 if (__builtin_expect (end < LOCAL_ELEMS, true))
153 base[end++] = subx;
154 else
155 base = add_single_to_queue (array, base, end++, subx);
157 else if (format[i] == 'E')
159 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
160 rtx *vec = x->u.fld[i].rt_rtvec->elem;
161 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
162 for (unsigned int j = 0; j < length; j++)
163 base[end++] = T::get_value (vec[j]);
164 else
165 for (unsigned int j = 0; j < length; j++)
166 base = add_single_to_queue (array, base, end++,
167 T::get_value (vec[j]));
168 if (code == SEQUENCE && end == length)
169 /* If the subrtxes of the sequence fill the entire array then
170 we know that no other parts of a containing insn are queued.
171 The caller is therefore iterating over the sequence as a
172 PATTERN (...), so we also want the patterns of the
173 subinstructions. */
174 for (unsigned int j = 0; j < length; j++)
176 typename T::rtx_type x = T::get_rtx (base[j]);
177 if (INSN_P (x))
178 base[j] = T::get_value (PATTERN (x));
181 return end - orig_end;
184 template <typename T>
185 void
186 generic_subrtx_iterator <T>::free_array (array_type &array)
188 vec_free (array.heap);
191 template <typename T>
192 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
194 template class generic_subrtx_iterator <const_rtx_accessor>;
195 template class generic_subrtx_iterator <rtx_var_accessor>;
196 template class generic_subrtx_iterator <rtx_ptr_accessor>;
198 /* Return 1 if the value of X is unstable
199 (would be different at a different point in the program).
200 The frame pointer, arg pointer, etc. are considered stable
201 (within one function) and so is anything marked `unchanging'. */
204 rtx_unstable_p (const_rtx x)
206 const RTX_CODE code = GET_CODE (x);
207 int i;
208 const char *fmt;
210 switch (code)
212 case MEM:
213 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
215 case CONST:
216 CASE_CONST_ANY:
217 case SYMBOL_REF:
218 case LABEL_REF:
219 return 0;
221 case REG:
222 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
223 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
224 /* The arg pointer varies if it is not a fixed register. */
225 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
226 return 0;
227 /* ??? When call-clobbered, the value is stable modulo the restore
228 that must happen after a call. This currently screws up local-alloc
229 into believing that the restore is not needed. */
230 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
231 return 0;
232 return 1;
234 case ASM_OPERANDS:
235 if (MEM_VOLATILE_P (x))
236 return 1;
238 /* Fall through. */
240 default:
241 break;
244 fmt = GET_RTX_FORMAT (code);
245 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
246 if (fmt[i] == 'e')
248 if (rtx_unstable_p (XEXP (x, i)))
249 return 1;
251 else if (fmt[i] == 'E')
253 int j;
254 for (j = 0; j < XVECLEN (x, i); j++)
255 if (rtx_unstable_p (XVECEXP (x, i, j)))
256 return 1;
259 return 0;
262 /* Return 1 if X has a value that can vary even between two
263 executions of the program. 0 means X can be compared reliably
264 against certain constants or near-constants.
265 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
266 zero, we are slightly more conservative.
267 The frame pointer and the arg pointer are considered constant. */
269 bool
270 rtx_varies_p (const_rtx x, bool for_alias)
272 RTX_CODE code;
273 int i;
274 const char *fmt;
276 if (!x)
277 return 0;
279 code = GET_CODE (x);
280 switch (code)
282 case MEM:
283 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
285 case CONST:
286 CASE_CONST_ANY:
287 case SYMBOL_REF:
288 case LABEL_REF:
289 return 0;
291 case REG:
292 /* Note that we have to test for the actual rtx used for the frame
293 and arg pointers and not just the register number in case we have
294 eliminated the frame and/or arg pointer and are using it
295 for pseudos. */
296 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
297 /* The arg pointer varies if it is not a fixed register. */
298 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
299 return 0;
300 if (x == pic_offset_table_rtx
301 /* ??? When call-clobbered, the value is stable modulo the restore
302 that must happen after a call. This currently screws up
303 local-alloc into believing that the restore is not needed, so we
304 must return 0 only if we are called from alias analysis. */
305 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
306 return 0;
307 return 1;
309 case LO_SUM:
310 /* The operand 0 of a LO_SUM is considered constant
311 (in fact it is related specifically to operand 1)
312 during alias analysis. */
313 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
314 || rtx_varies_p (XEXP (x, 1), for_alias);
316 case ASM_OPERANDS:
317 if (MEM_VOLATILE_P (x))
318 return 1;
320 /* Fall through. */
322 default:
323 break;
326 fmt = GET_RTX_FORMAT (code);
327 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
328 if (fmt[i] == 'e')
330 if (rtx_varies_p (XEXP (x, i), for_alias))
331 return 1;
333 else if (fmt[i] == 'E')
335 int j;
336 for (j = 0; j < XVECLEN (x, i); j++)
337 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
338 return 1;
341 return 0;
344 /* Compute an approximation for the offset between the register
345 FROM and TO for the current function, as it was at the start
346 of the routine. */
348 static poly_int64
349 get_initial_register_offset (int from, int to)
351 static const struct elim_table_t
353 const int from;
354 const int to;
355 } table[] = ELIMINABLE_REGS;
356 poly_int64 offset1, offset2;
357 unsigned int i, j;
359 if (to == from)
360 return 0;
362 /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
363 is completed, but we need to give at least an estimate for the stack
364 pointer based on the frame size. */
365 if (!epilogue_completed)
367 offset1 = crtl->outgoing_args_size + get_frame_size ();
368 #if !STACK_GROWS_DOWNWARD
369 offset1 = - offset1;
370 #endif
371 if (to == STACK_POINTER_REGNUM)
372 return offset1;
373 else if (from == STACK_POINTER_REGNUM)
374 return - offset1;
375 else
376 return 0;
379 for (i = 0; i < ARRAY_SIZE (table); i++)
380 if (table[i].from == from)
382 if (table[i].to == to)
384 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
385 offset1);
386 return offset1;
388 for (j = 0; j < ARRAY_SIZE (table); j++)
390 if (table[j].to == to
391 && table[j].from == table[i].to)
393 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
394 offset1);
395 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
396 offset2);
397 return offset1 + offset2;
399 if (table[j].from == to
400 && table[j].to == table[i].to)
402 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
403 offset1);
404 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
405 offset2);
406 return offset1 - offset2;
410 else if (table[i].to == from)
412 if (table[i].from == to)
414 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
415 offset1);
416 return - offset1;
418 for (j = 0; j < ARRAY_SIZE (table); j++)
420 if (table[j].to == to
421 && table[j].from == table[i].from)
423 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
424 offset1);
425 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
426 offset2);
427 return - offset1 + offset2;
429 if (table[j].from == to
430 && table[j].to == table[i].from)
432 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
433 offset1);
434 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
435 offset2);
436 return - offset1 - offset2;
441 /* If the requested register combination was not found,
442 try a different more simple combination. */
443 if (from == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
445 else if (to == ARG_POINTER_REGNUM)
446 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
447 else if (from == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
449 else if (to == HARD_FRAME_POINTER_REGNUM)
450 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
451 else
452 return 0;
455 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
456 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
457 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
458 references on strict alignment machines. */
460 static int
461 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
462 machine_mode mode, bool unaligned_mems)
464 enum rtx_code code = GET_CODE (x);
465 gcc_checking_assert (mode == BLKmode || known_size_p (size));
466 poly_int64 const_x1;
468 /* The offset must be a multiple of the mode size if we are considering
469 unaligned memory references on strict alignment machines. */
470 if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
472 poly_int64 actual_offset = offset;
474 #ifdef SPARC_STACK_BOUNDARY_HACK
475 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
476 the real alignment of %sp. However, when it does this, the
477 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
478 if (SPARC_STACK_BOUNDARY_HACK
479 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
480 actual_offset -= STACK_POINTER_OFFSET;
481 #endif
483 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
484 return 1;
487 switch (code)
489 case SYMBOL_REF:
490 if (SYMBOL_REF_WEAK (x))
491 return 1;
492 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
494 tree decl;
495 poly_int64 decl_size;
497 if (maybe_lt (offset, 0))
498 return 1;
499 if (!known_size_p (size))
500 return maybe_ne (offset, 0);
502 /* If the size of the access or of the symbol is unknown,
503 assume the worst. */
504 decl = SYMBOL_REF_DECL (x);
506 /* Else check that the access is in bounds. TODO: restructure
507 expr_size/tree_expr_size/int_expr_size and just use the latter. */
508 if (!decl)
509 decl_size = -1;
510 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
512 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
513 decl_size = -1;
515 else if (TREE_CODE (decl) == STRING_CST)
516 decl_size = TREE_STRING_LENGTH (decl);
517 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
518 decl_size = int_size_in_bytes (TREE_TYPE (decl));
519 else
520 decl_size = -1;
522 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
523 ? maybe_ne (offset, 0)
524 : !known_subrange_p (offset, size, 0, decl_size));
527 return 0;
529 case LABEL_REF:
530 return 0;
532 case REG:
533 /* Stack references are assumed not to trap, but we need to deal with
534 nonsensical offsets. */
535 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
536 || x == stack_pointer_rtx
537 /* The arg pointer varies if it is not a fixed register. */
538 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
540 #ifdef RED_ZONE_SIZE
541 poly_int64 red_zone_size = RED_ZONE_SIZE;
542 #else
543 poly_int64 red_zone_size = 0;
544 #endif
545 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
546 poly_int64 low_bound, high_bound;
548 if (!known_size_p (size))
549 return 1;
551 if (x == frame_pointer_rtx)
553 if (FRAME_GROWS_DOWNWARD)
555 high_bound = targetm.starting_frame_offset ();
556 low_bound = high_bound - get_frame_size ();
558 else
560 low_bound = targetm.starting_frame_offset ();
561 high_bound = low_bound + get_frame_size ();
564 else if (x == hard_frame_pointer_rtx)
566 poly_int64 sp_offset
567 = get_initial_register_offset (STACK_POINTER_REGNUM,
568 HARD_FRAME_POINTER_REGNUM);
569 poly_int64 ap_offset
570 = get_initial_register_offset (ARG_POINTER_REGNUM,
571 HARD_FRAME_POINTER_REGNUM);
573 #if STACK_GROWS_DOWNWARD
574 low_bound = sp_offset - red_zone_size - stack_boundary;
575 high_bound = ap_offset
576 + FIRST_PARM_OFFSET (current_function_decl)
577 #if !ARGS_GROW_DOWNWARD
578 + crtl->args.size
579 #endif
580 + stack_boundary;
581 #else
582 high_bound = sp_offset + red_zone_size + stack_boundary;
583 low_bound = ap_offset
584 + FIRST_PARM_OFFSET (current_function_decl)
585 #if ARGS_GROW_DOWNWARD
586 - crtl->args.size
587 #endif
588 - stack_boundary;
589 #endif
591 else if (x == stack_pointer_rtx)
593 poly_int64 ap_offset
594 = get_initial_register_offset (ARG_POINTER_REGNUM,
595 STACK_POINTER_REGNUM);
597 #if STACK_GROWS_DOWNWARD
598 low_bound = - red_zone_size - stack_boundary;
599 high_bound = ap_offset
600 + FIRST_PARM_OFFSET (current_function_decl)
601 #if !ARGS_GROW_DOWNWARD
602 + crtl->args.size
603 #endif
604 + stack_boundary;
605 #else
606 high_bound = red_zone_size + stack_boundary;
607 low_bound = ap_offset
608 + FIRST_PARM_OFFSET (current_function_decl)
609 #if ARGS_GROW_DOWNWARD
610 - crtl->args.size
611 #endif
612 - stack_boundary;
613 #endif
615 else
617 /* We assume that accesses are safe to at least the
618 next stack boundary.
619 Examples are varargs and __builtin_return_address. */
620 #if ARGS_GROW_DOWNWARD
621 high_bound = FIRST_PARM_OFFSET (current_function_decl)
622 + stack_boundary;
623 low_bound = FIRST_PARM_OFFSET (current_function_decl)
624 - crtl->args.size - stack_boundary;
625 #else
626 low_bound = FIRST_PARM_OFFSET (current_function_decl)
627 - stack_boundary;
628 high_bound = FIRST_PARM_OFFSET (current_function_decl)
629 + crtl->args.size + stack_boundary;
630 #endif
633 if (known_ge (offset, low_bound)
634 && known_le (offset, high_bound - size))
635 return 0;
636 return 1;
638 /* All of the virtual frame registers are stack references. */
639 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
640 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
641 return 0;
642 return 1;
644 case CONST:
645 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
646 mode, unaligned_mems);
648 case PLUS:
649 /* An address is assumed not to trap if:
650 - it is the pic register plus a const unspec without offset. */
651 if (XEXP (x, 0) == pic_offset_table_rtx
652 && GET_CODE (XEXP (x, 1)) == CONST
653 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
654 && known_eq (offset, 0))
655 return 0;
657 /* - or it is an address that can't trap plus a constant integer. */
658 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
659 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
660 size, mode, unaligned_mems))
661 return 0;
663 return 1;
665 case LO_SUM:
666 case PRE_MODIFY:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
668 mode, unaligned_mems);
670 case PRE_DEC:
671 case PRE_INC:
672 case POST_DEC:
673 case POST_INC:
674 case POST_MODIFY:
675 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
676 mode, unaligned_mems);
678 default:
679 break;
682 /* If it isn't one of the case above, it can cause a trap. */
683 return 1;
686 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
689 rtx_addr_can_trap_p (const_rtx x)
691 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
694 /* Return true if X contains a MEM subrtx. */
696 bool
697 contains_mem_rtx_p (rtx x)
699 subrtx_iterator::array_type array;
700 FOR_EACH_SUBRTX (iter, array, x, ALL)
701 if (MEM_P (*iter))
702 return true;
704 return false;
707 /* Return true if X is an address that is known to not be zero. */
709 bool
710 nonzero_address_p (const_rtx x)
712 const enum rtx_code code = GET_CODE (x);
714 switch (code)
716 case SYMBOL_REF:
717 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
719 case LABEL_REF:
720 return true;
722 case REG:
723 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
724 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
725 || x == stack_pointer_rtx
726 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
727 return true;
728 /* All of the virtual frame registers are stack references. */
729 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
730 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
731 return true;
732 return false;
734 case CONST:
735 return nonzero_address_p (XEXP (x, 0));
737 case PLUS:
738 /* Handle PIC references. */
739 if (XEXP (x, 0) == pic_offset_table_rtx
740 && CONSTANT_P (XEXP (x, 1)))
741 return true;
742 return false;
744 case PRE_MODIFY:
745 /* Similar to the above; allow positive offsets. Further, since
746 auto-inc is only allowed in memories, the register must be a
747 pointer. */
748 if (CONST_INT_P (XEXP (x, 1))
749 && INTVAL (XEXP (x, 1)) > 0)
750 return true;
751 return nonzero_address_p (XEXP (x, 0));
753 case PRE_INC:
754 /* Similarly. Further, the offset is always positive. */
755 return true;
757 case PRE_DEC:
758 case POST_DEC:
759 case POST_INC:
760 case POST_MODIFY:
761 return nonzero_address_p (XEXP (x, 0));
763 case LO_SUM:
764 return nonzero_address_p (XEXP (x, 1));
766 default:
767 break;
770 /* If it isn't one of the case above, might be zero. */
771 return false;
774 /* Return 1 if X refers to a memory location whose address
775 cannot be compared reliably with constant addresses,
776 or if X refers to a BLKmode memory object.
777 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
778 zero, we are slightly more conservative. */
780 bool
781 rtx_addr_varies_p (const_rtx x, bool for_alias)
783 enum rtx_code code;
784 int i;
785 const char *fmt;
787 if (x == 0)
788 return 0;
790 code = GET_CODE (x);
791 if (code == MEM)
792 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
794 fmt = GET_RTX_FORMAT (code);
795 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
796 if (fmt[i] == 'e')
798 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
799 return 1;
801 else if (fmt[i] == 'E')
803 int j;
804 for (j = 0; j < XVECLEN (x, i); j++)
805 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
806 return 1;
808 return 0;
811 /* Return the CALL in X if there is one. */
814 get_call_rtx_from (rtx x)
816 if (INSN_P (x))
817 x = PATTERN (x);
818 if (GET_CODE (x) == PARALLEL)
819 x = XVECEXP (x, 0, 0);
820 if (GET_CODE (x) == SET)
821 x = SET_SRC (x);
822 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
823 return x;
824 return NULL_RTX;
827 /* Return the value of the integer term in X, if one is apparent;
828 otherwise return 0.
829 Only obvious integer terms are detected.
830 This is used in cse.c with the `related_value' field. */
832 HOST_WIDE_INT
833 get_integer_term (const_rtx x)
835 if (GET_CODE (x) == CONST)
836 x = XEXP (x, 0);
838 if (GET_CODE (x) == MINUS
839 && CONST_INT_P (XEXP (x, 1)))
840 return - INTVAL (XEXP (x, 1));
841 if (GET_CODE (x) == PLUS
842 && CONST_INT_P (XEXP (x, 1)))
843 return INTVAL (XEXP (x, 1));
844 return 0;
847 /* If X is a constant, return the value sans apparent integer term;
848 otherwise return 0.
849 Only obvious integer terms are detected. */
852 get_related_value (const_rtx x)
854 if (GET_CODE (x) != CONST)
855 return 0;
856 x = XEXP (x, 0);
857 if (GET_CODE (x) == PLUS
858 && CONST_INT_P (XEXP (x, 1)))
859 return XEXP (x, 0);
860 else if (GET_CODE (x) == MINUS
861 && CONST_INT_P (XEXP (x, 1)))
862 return XEXP (x, 0);
863 return 0;
866 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
867 to somewhere in the same object or object_block as SYMBOL. */
869 bool
870 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
872 tree decl;
874 if (GET_CODE (symbol) != SYMBOL_REF)
875 return false;
877 if (offset == 0)
878 return true;
880 if (offset > 0)
882 if (CONSTANT_POOL_ADDRESS_P (symbol)
883 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
884 return true;
886 decl = SYMBOL_REF_DECL (symbol);
887 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
888 return true;
891 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
892 && SYMBOL_REF_BLOCK (symbol)
893 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
894 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
895 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
896 return true;
898 return false;
901 /* Split X into a base and a constant offset, storing them in *BASE_OUT
902 and *OFFSET_OUT respectively. */
904 void
905 split_const (rtx x, rtx *base_out, rtx *offset_out)
907 if (GET_CODE (x) == CONST)
909 x = XEXP (x, 0);
910 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
912 *base_out = XEXP (x, 0);
913 *offset_out = XEXP (x, 1);
914 return;
917 *base_out = x;
918 *offset_out = const0_rtx;
921 /* Express integer value X as some value Y plus a polynomial offset,
922 where Y is either const0_rtx, X or something within X (as opposed
923 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
926 strip_offset (rtx x, poly_int64_pod *offset_out)
928 rtx base = const0_rtx;
929 rtx test = x;
930 if (GET_CODE (test) == CONST)
931 test = XEXP (test, 0);
932 if (GET_CODE (test) == PLUS)
934 base = XEXP (test, 0);
935 test = XEXP (test, 1);
937 if (poly_int_rtx_p (test, offset_out))
938 return base;
939 *offset_out = 0;
940 return x;
943 /* Return the argument size in REG_ARGS_SIZE note X. */
945 poly_int64
946 get_args_size (const_rtx x)
948 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
949 return rtx_to_poly_int64 (XEXP (x, 0));
952 /* Return the number of places FIND appears within X. If COUNT_DEST is
953 zero, we do not count occurrences inside the destination of a SET. */
956 count_occurrences (const_rtx x, const_rtx find, int count_dest)
958 int i, j;
959 enum rtx_code code;
960 const char *format_ptr;
961 int count;
963 if (x == find)
964 return 1;
966 code = GET_CODE (x);
968 switch (code)
970 case REG:
971 CASE_CONST_ANY:
972 case SYMBOL_REF:
973 case CODE_LABEL:
974 case PC:
975 case CC0:
976 return 0;
978 case EXPR_LIST:
979 count = count_occurrences (XEXP (x, 0), find, count_dest);
980 if (XEXP (x, 1))
981 count += count_occurrences (XEXP (x, 1), find, count_dest);
982 return count;
984 case MEM:
985 if (MEM_P (find) && rtx_equal_p (x, find))
986 return 1;
987 break;
989 case SET:
990 if (SET_DEST (x) == find && ! count_dest)
991 return count_occurrences (SET_SRC (x), find, count_dest);
992 break;
994 default:
995 break;
998 format_ptr = GET_RTX_FORMAT (code);
999 count = 0;
1001 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1003 switch (*format_ptr++)
1005 case 'e':
1006 count += count_occurrences (XEXP (x, i), find, count_dest);
1007 break;
1009 case 'E':
1010 for (j = 0; j < XVECLEN (x, i); j++)
1011 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1012 break;
1015 return count;
1019 /* Return TRUE if OP is a register or subreg of a register that
1020 holds an unsigned quantity. Otherwise, return FALSE. */
1022 bool
1023 unsigned_reg_p (rtx op)
1025 if (REG_P (op)
1026 && REG_EXPR (op)
1027 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1028 return true;
1030 if (GET_CODE (op) == SUBREG
1031 && SUBREG_PROMOTED_SIGN (op))
1032 return true;
1034 return false;
1038 /* Nonzero if register REG appears somewhere within IN.
1039 Also works if REG is not a register; in this case it checks
1040 for a subexpression of IN that is Lisp "equal" to REG. */
1043 reg_mentioned_p (const_rtx reg, const_rtx in)
1045 const char *fmt;
1046 int i;
1047 enum rtx_code code;
1049 if (in == 0)
1050 return 0;
1052 if (reg == in)
1053 return 1;
1055 if (GET_CODE (in) == LABEL_REF)
1056 return reg == label_ref_label (in);
1058 code = GET_CODE (in);
1060 switch (code)
1062 /* Compare registers by number. */
1063 case REG:
1064 return REG_P (reg) && REGNO (in) == REGNO (reg);
1066 /* These codes have no constituent expressions
1067 and are unique. */
1068 case SCRATCH:
1069 case CC0:
1070 case PC:
1071 return 0;
1073 CASE_CONST_ANY:
1074 /* These are kept unique for a given value. */
1075 return 0;
1077 default:
1078 break;
1081 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1082 return 1;
1084 fmt = GET_RTX_FORMAT (code);
1086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1088 if (fmt[i] == 'E')
1090 int j;
1091 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1092 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1093 return 1;
1095 else if (fmt[i] == 'e'
1096 && reg_mentioned_p (reg, XEXP (in, i)))
1097 return 1;
1099 return 0;
1102 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1103 no CODE_LABEL insn. */
1106 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1108 rtx_insn *p;
1109 if (beg == end)
1110 return 0;
1111 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1112 if (LABEL_P (p))
1113 return 0;
1114 return 1;
1117 /* Nonzero if register REG is used in an insn between
1118 FROM_INSN and TO_INSN (exclusive of those two). */
1121 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1122 const rtx_insn *to_insn)
1124 rtx_insn *insn;
1126 if (from_insn == to_insn)
1127 return 0;
1129 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1130 if (NONDEBUG_INSN_P (insn)
1131 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1132 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1133 return 1;
1134 return 0;
1137 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1138 is entirely replaced by a new value and the only use is as a SET_DEST,
1139 we do not consider it a reference. */
1142 reg_referenced_p (const_rtx x, const_rtx body)
1144 int i;
1146 switch (GET_CODE (body))
1148 case SET:
1149 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1150 return 1;
1152 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1153 of a REG that occupies all of the REG, the insn references X if
1154 it is mentioned in the destination. */
1155 if (GET_CODE (SET_DEST (body)) != CC0
1156 && GET_CODE (SET_DEST (body)) != PC
1157 && !REG_P (SET_DEST (body))
1158 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1159 && REG_P (SUBREG_REG (SET_DEST (body)))
1160 && !read_modify_subreg_p (SET_DEST (body)))
1161 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1162 return 1;
1163 return 0;
1165 case ASM_OPERANDS:
1166 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1167 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1168 return 1;
1169 return 0;
1171 case CALL:
1172 case USE:
1173 case IF_THEN_ELSE:
1174 return reg_overlap_mentioned_p (x, body);
1176 case TRAP_IF:
1177 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1179 case PREFETCH:
1180 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1182 case UNSPEC:
1183 case UNSPEC_VOLATILE:
1184 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1185 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1186 return 1;
1187 return 0;
1189 case PARALLEL:
1190 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1191 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1192 return 1;
1193 return 0;
1195 case CLOBBER:
1196 if (MEM_P (XEXP (body, 0)))
1197 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1198 return 1;
1199 return 0;
1201 case CLOBBER_HIGH:
1202 gcc_assert (REG_P (XEXP (body, 0)));
1203 return 0;
1205 case COND_EXEC:
1206 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1207 return 1;
1208 return reg_referenced_p (x, COND_EXEC_CODE (body));
1210 default:
1211 return 0;
1215 /* Nonzero if register REG is set or clobbered in an insn between
1216 FROM_INSN and TO_INSN (exclusive of those two). */
1219 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1220 const rtx_insn *to_insn)
1222 const rtx_insn *insn;
1224 if (from_insn == to_insn)
1225 return 0;
1227 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1228 if (INSN_P (insn) && reg_set_p (reg, insn))
1229 return 1;
1230 return 0;
1233 /* Return true if REG is set or clobbered inside INSN. */
1236 reg_set_p (const_rtx reg, const_rtx insn)
1238 /* After delay slot handling, call and branch insns might be in a
1239 sequence. Check all the elements there. */
1240 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1242 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1243 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1244 return true;
1246 return false;
1249 /* We can be passed an insn or part of one. If we are passed an insn,
1250 check if a side-effect of the insn clobbers REG. */
1251 if (INSN_P (insn)
1252 && (FIND_REG_INC_NOTE (insn, reg)
1253 || (CALL_P (insn)
1254 && ((REG_P (reg)
1255 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1256 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1257 GET_MODE (reg), REGNO (reg)))
1258 || MEM_P (reg)
1259 || find_reg_fusage (insn, CLOBBER, reg)))))
1260 return true;
1262 /* There are no REG_INC notes for SP autoinc. */
1263 if (reg == stack_pointer_rtx && INSN_P (insn))
1265 subrtx_var_iterator::array_type array;
1266 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1268 rtx mem = *iter;
1269 if (mem
1270 && MEM_P (mem)
1271 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1273 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1274 return true;
1275 iter.skip_subrtxes ();
1280 return set_of (reg, insn) != NULL_RTX;
1283 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1284 only if none of them are modified between START and END. Return 1 if
1285 X contains a MEM; this routine does use memory aliasing. */
1288 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1290 const enum rtx_code code = GET_CODE (x);
1291 const char *fmt;
1292 int i, j;
1293 rtx_insn *insn;
1295 if (start == end)
1296 return 0;
1298 switch (code)
1300 CASE_CONST_ANY:
1301 case CONST:
1302 case SYMBOL_REF:
1303 case LABEL_REF:
1304 return 0;
1306 case PC:
1307 case CC0:
1308 return 1;
1310 case MEM:
1311 if (modified_between_p (XEXP (x, 0), start, end))
1312 return 1;
1313 if (MEM_READONLY_P (x))
1314 return 0;
1315 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1316 if (memory_modified_in_insn_p (x, insn))
1317 return 1;
1318 return 0;
1320 case REG:
1321 return reg_set_between_p (x, start, end);
1323 default:
1324 break;
1327 fmt = GET_RTX_FORMAT (code);
1328 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1330 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1331 return 1;
1333 else if (fmt[i] == 'E')
1334 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1335 if (modified_between_p (XVECEXP (x, i, j), start, end))
1336 return 1;
1339 return 0;
1342 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1343 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1344 does use memory aliasing. */
1347 modified_in_p (const_rtx x, const_rtx insn)
1349 const enum rtx_code code = GET_CODE (x);
1350 const char *fmt;
1351 int i, j;
1353 switch (code)
1355 CASE_CONST_ANY:
1356 case CONST:
1357 case SYMBOL_REF:
1358 case LABEL_REF:
1359 return 0;
1361 case PC:
1362 case CC0:
1363 return 1;
1365 case MEM:
1366 if (modified_in_p (XEXP (x, 0), insn))
1367 return 1;
1368 if (MEM_READONLY_P (x))
1369 return 0;
1370 if (memory_modified_in_insn_p (x, insn))
1371 return 1;
1372 return 0;
1374 case REG:
1375 return reg_set_p (x, insn);
1377 default:
1378 break;
1381 fmt = GET_RTX_FORMAT (code);
1382 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1384 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1385 return 1;
1387 else if (fmt[i] == 'E')
1388 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1389 if (modified_in_p (XVECEXP (x, i, j), insn))
1390 return 1;
1393 return 0;
1396 /* Return true if X is a SUBREG and if storing a value to X would
1397 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1398 target, using a SUBREG to store to one half of a DImode REG would
1399 preserve the other half. */
1401 bool
1402 read_modify_subreg_p (const_rtx x)
1404 if (GET_CODE (x) != SUBREG)
1405 return false;
1406 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1407 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1408 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1409 /* The inner and outer modes of a subreg must be ordered, so that we
1410 can tell whether they're paradoxical or partial. */
1411 gcc_checking_assert (ordered_p (isize, osize));
1412 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1415 /* Helper function for set_of. */
1416 struct set_of_data
1418 const_rtx found;
1419 const_rtx pat;
1422 static void
1423 set_of_1 (rtx x, const_rtx pat, void *data1)
1425 struct set_of_data *const data = (struct set_of_data *) (data1);
1426 if (rtx_equal_p (x, data->pat)
1427 || (GET_CODE (pat) == CLOBBER_HIGH
1428 && REGNO(data->pat) == REGNO(XEXP (pat, 0))
1429 && reg_is_clobbered_by_clobber_high (data->pat, XEXP (pat, 0)))
1430 || (GET_CODE (pat) != CLOBBER_HIGH && !MEM_P (x)
1431 && reg_overlap_mentioned_p (data->pat, x)))
1432 data->found = pat;
1435 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1436 (either directly or via STRICT_LOW_PART and similar modifiers). */
1437 const_rtx
1438 set_of (const_rtx pat, const_rtx insn)
1440 struct set_of_data data;
1441 data.found = NULL_RTX;
1442 data.pat = pat;
1443 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1444 return data.found;
1447 /* Add all hard register in X to *PSET. */
1448 void
1449 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1451 subrtx_iterator::array_type array;
1452 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1454 const_rtx x = *iter;
1455 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1456 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1460 /* This function, called through note_stores, collects sets and
1461 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1462 by DATA. */
1463 void
1464 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1466 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1467 if (REG_P (x) && HARD_REGISTER_P (x))
1468 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1471 /* Examine INSN, and compute the set of hard registers written by it.
1472 Store it in *PSET. Should only be called after reload. */
1473 void
1474 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1476 rtx link;
1478 CLEAR_HARD_REG_SET (*pset);
1479 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1480 if (CALL_P (insn))
1482 if (implicit)
1483 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1485 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1486 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1488 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1489 if (REG_NOTE_KIND (link) == REG_INC)
1490 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1493 /* Like record_hard_reg_sets, but called through note_uses. */
1494 void
1495 record_hard_reg_uses (rtx *px, void *data)
1497 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1500 /* Given an INSN, return a SET expression if this insn has only a single SET.
1501 It may also have CLOBBERs, USEs, or SET whose output
1502 will not be used, which we ignore. */
1505 single_set_2 (const rtx_insn *insn, const_rtx pat)
1507 rtx set = NULL;
1508 int set_verified = 1;
1509 int i;
1511 if (GET_CODE (pat) == PARALLEL)
1513 for (i = 0; i < XVECLEN (pat, 0); i++)
1515 rtx sub = XVECEXP (pat, 0, i);
1516 switch (GET_CODE (sub))
1518 case USE:
1519 case CLOBBER:
1520 case CLOBBER_HIGH:
1521 break;
1523 case SET:
1524 /* We can consider insns having multiple sets, where all
1525 but one are dead as single set insns. In common case
1526 only single set is present in the pattern so we want
1527 to avoid checking for REG_UNUSED notes unless necessary.
1529 When we reach set first time, we just expect this is
1530 the single set we are looking for and only when more
1531 sets are found in the insn, we check them. */
1532 if (!set_verified)
1534 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1535 && !side_effects_p (set))
1536 set = NULL;
1537 else
1538 set_verified = 1;
1540 if (!set)
1541 set = sub, set_verified = 0;
1542 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1543 || side_effects_p (sub))
1544 return NULL_RTX;
1545 break;
1547 default:
1548 return NULL_RTX;
1552 return set;
1555 /* Given an INSN, return nonzero if it has more than one SET, else return
1556 zero. */
1559 multiple_sets (const_rtx insn)
1561 int found;
1562 int i;
1564 /* INSN must be an insn. */
1565 if (! INSN_P (insn))
1566 return 0;
1568 /* Only a PARALLEL can have multiple SETs. */
1569 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1571 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1572 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1574 /* If we have already found a SET, then return now. */
1575 if (found)
1576 return 1;
1577 else
1578 found = 1;
1582 /* Either zero or one SET. */
1583 return 0;
1586 /* Return nonzero if the destination of SET equals the source
1587 and there are no side effects. */
1590 set_noop_p (const_rtx set)
1592 rtx src = SET_SRC (set);
1593 rtx dst = SET_DEST (set);
1595 if (dst == pc_rtx && src == pc_rtx)
1596 return 1;
1598 if (MEM_P (dst) && MEM_P (src))
1599 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1601 if (GET_CODE (dst) == ZERO_EXTRACT)
1602 return rtx_equal_p (XEXP (dst, 0), src)
1603 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1604 && !side_effects_p (src);
1606 if (GET_CODE (dst) == STRICT_LOW_PART)
1607 dst = XEXP (dst, 0);
1609 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1611 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1612 return 0;
1613 src = SUBREG_REG (src);
1614 dst = SUBREG_REG (dst);
1617 /* It is a NOOP if destination overlaps with selected src vector
1618 elements. */
1619 if (GET_CODE (src) == VEC_SELECT
1620 && REG_P (XEXP (src, 0)) && REG_P (dst)
1621 && HARD_REGISTER_P (XEXP (src, 0))
1622 && HARD_REGISTER_P (dst))
1624 int i;
1625 rtx par = XEXP (src, 1);
1626 rtx src0 = XEXP (src, 0);
1627 poly_int64 c0 = rtx_to_poly_int64 (XVECEXP (par, 0, 0));
1628 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1630 for (i = 1; i < XVECLEN (par, 0); i++)
1631 if (maybe_ne (rtx_to_poly_int64 (XVECEXP (par, 0, i)), c0 + i))
1632 return 0;
1633 return
1634 REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1635 && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1636 offset, GET_MODE (dst)) == (int) REGNO (dst);
1639 return (REG_P (src) && REG_P (dst)
1640 && REGNO (src) == REGNO (dst));
1643 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1644 value to itself. */
1647 noop_move_p (const rtx_insn *insn)
1649 rtx pat = PATTERN (insn);
1651 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1652 return 1;
1654 /* Insns carrying these notes are useful later on. */
1655 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1656 return 0;
1658 /* Check the code to be executed for COND_EXEC. */
1659 if (GET_CODE (pat) == COND_EXEC)
1660 pat = COND_EXEC_CODE (pat);
1662 if (GET_CODE (pat) == SET && set_noop_p (pat))
1663 return 1;
1665 if (GET_CODE (pat) == PARALLEL)
1667 int i;
1668 /* If nothing but SETs of registers to themselves,
1669 this insn can also be deleted. */
1670 for (i = 0; i < XVECLEN (pat, 0); i++)
1672 rtx tem = XVECEXP (pat, 0, i);
1674 if (GET_CODE (tem) == USE
1675 || GET_CODE (tem) == CLOBBER
1676 || GET_CODE (tem) == CLOBBER_HIGH)
1677 continue;
1679 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1680 return 0;
1683 return 1;
1685 return 0;
1689 /* Return nonzero if register in range [REGNO, ENDREGNO)
1690 appears either explicitly or implicitly in X
1691 other than being stored into.
1693 References contained within the substructure at LOC do not count.
1694 LOC may be zero, meaning don't ignore anything. */
1696 bool
1697 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1698 rtx *loc)
1700 int i;
1701 unsigned int x_regno;
1702 RTX_CODE code;
1703 const char *fmt;
1705 repeat:
1706 /* The contents of a REG_NONNEG note is always zero, so we must come here
1707 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1708 if (x == 0)
1709 return false;
1711 code = GET_CODE (x);
1713 switch (code)
1715 case REG:
1716 x_regno = REGNO (x);
1718 /* If we modifying the stack, frame, or argument pointer, it will
1719 clobber a virtual register. In fact, we could be more precise,
1720 but it isn't worth it. */
1721 if ((x_regno == STACK_POINTER_REGNUM
1722 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1723 && x_regno == ARG_POINTER_REGNUM)
1724 || x_regno == FRAME_POINTER_REGNUM)
1725 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1726 return true;
1728 return endregno > x_regno && regno < END_REGNO (x);
1730 case SUBREG:
1731 /* If this is a SUBREG of a hard reg, we can see exactly which
1732 registers are being modified. Otherwise, handle normally. */
1733 if (REG_P (SUBREG_REG (x))
1734 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1736 unsigned int inner_regno = subreg_regno (x);
1737 unsigned int inner_endregno
1738 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1739 ? subreg_nregs (x) : 1);
1741 return endregno > inner_regno && regno < inner_endregno;
1743 break;
1745 case CLOBBER:
1746 case SET:
1747 if (&SET_DEST (x) != loc
1748 /* Note setting a SUBREG counts as referring to the REG it is in for
1749 a pseudo but not for hard registers since we can
1750 treat each word individually. */
1751 && ((GET_CODE (SET_DEST (x)) == SUBREG
1752 && loc != &SUBREG_REG (SET_DEST (x))
1753 && REG_P (SUBREG_REG (SET_DEST (x)))
1754 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1755 && refers_to_regno_p (regno, endregno,
1756 SUBREG_REG (SET_DEST (x)), loc))
1757 || (!REG_P (SET_DEST (x))
1758 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1759 return true;
1761 if (code == CLOBBER || loc == &SET_SRC (x))
1762 return false;
1763 x = SET_SRC (x);
1764 goto repeat;
1766 default:
1767 break;
1770 /* X does not match, so try its subexpressions. */
1772 fmt = GET_RTX_FORMAT (code);
1773 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1775 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1777 if (i == 0)
1779 x = XEXP (x, 0);
1780 goto repeat;
1782 else
1783 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1784 return true;
1786 else if (fmt[i] == 'E')
1788 int j;
1789 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1790 if (loc != &XVECEXP (x, i, j)
1791 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1792 return true;
1795 return false;
1798 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1799 we check if any register number in X conflicts with the relevant register
1800 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1801 contains a MEM (we don't bother checking for memory addresses that can't
1802 conflict because we expect this to be a rare case. */
1805 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1807 unsigned int regno, endregno;
1809 /* If either argument is a constant, then modifying X cannot
1810 affect IN. Here we look at IN, we can profitably combine
1811 CONSTANT_P (x) with the switch statement below. */
1812 if (CONSTANT_P (in))
1813 return 0;
1815 recurse:
1816 switch (GET_CODE (x))
1818 case CLOBBER:
1819 case STRICT_LOW_PART:
1820 case ZERO_EXTRACT:
1821 case SIGN_EXTRACT:
1822 /* Overly conservative. */
1823 x = XEXP (x, 0);
1824 goto recurse;
1826 case SUBREG:
1827 regno = REGNO (SUBREG_REG (x));
1828 if (regno < FIRST_PSEUDO_REGISTER)
1829 regno = subreg_regno (x);
1830 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1831 ? subreg_nregs (x) : 1);
1832 goto do_reg;
1834 case REG:
1835 regno = REGNO (x);
1836 endregno = END_REGNO (x);
1837 do_reg:
1838 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1840 case MEM:
1842 const char *fmt;
1843 int i;
1845 if (MEM_P (in))
1846 return 1;
1848 fmt = GET_RTX_FORMAT (GET_CODE (in));
1849 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1850 if (fmt[i] == 'e')
1852 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1853 return 1;
1855 else if (fmt[i] == 'E')
1857 int j;
1858 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1859 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1860 return 1;
1863 return 0;
1866 case SCRATCH:
1867 case PC:
1868 case CC0:
1869 return reg_mentioned_p (x, in);
1871 case PARALLEL:
1873 int i;
1875 /* If any register in here refers to it we return true. */
1876 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1877 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1878 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1879 return 1;
1880 return 0;
1883 default:
1884 gcc_assert (CONSTANT_P (x));
1885 return 0;
1889 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1890 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1891 ignored by note_stores, but passed to FUN.
1893 FUN receives three arguments:
1894 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1895 2. the SET or CLOBBER rtx that does the store,
1896 3. the pointer DATA provided to note_stores.
1898 If the item being stored in or clobbered is a SUBREG of a hard register,
1899 the SUBREG will be passed. */
1901 void
1902 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1904 int i;
1906 if (GET_CODE (x) == COND_EXEC)
1907 x = COND_EXEC_CODE (x);
1909 if (GET_CODE (x) == SET
1910 || GET_CODE (x) == CLOBBER
1911 || GET_CODE (x) == CLOBBER_HIGH)
1913 rtx dest = SET_DEST (x);
1915 while ((GET_CODE (dest) == SUBREG
1916 && (!REG_P (SUBREG_REG (dest))
1917 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1918 || GET_CODE (dest) == ZERO_EXTRACT
1919 || GET_CODE (dest) == STRICT_LOW_PART)
1920 dest = XEXP (dest, 0);
1922 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1923 each of whose first operand is a register. */
1924 if (GET_CODE (dest) == PARALLEL)
1926 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1927 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1928 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1930 else
1931 (*fun) (dest, x, data);
1934 else if (GET_CODE (x) == PARALLEL)
1935 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1936 note_stores (XVECEXP (x, 0, i), fun, data);
1939 /* Like notes_stores, but call FUN for each expression that is being
1940 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1941 FUN for each expression, not any interior subexpressions. FUN receives a
1942 pointer to the expression and the DATA passed to this function.
1944 Note that this is not quite the same test as that done in reg_referenced_p
1945 since that considers something as being referenced if it is being
1946 partially set, while we do not. */
1948 void
1949 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1951 rtx body = *pbody;
1952 int i;
1954 switch (GET_CODE (body))
1956 case COND_EXEC:
1957 (*fun) (&COND_EXEC_TEST (body), data);
1958 note_uses (&COND_EXEC_CODE (body), fun, data);
1959 return;
1961 case PARALLEL:
1962 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1963 note_uses (&XVECEXP (body, 0, i), fun, data);
1964 return;
1966 case SEQUENCE:
1967 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1968 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1969 return;
1971 case USE:
1972 (*fun) (&XEXP (body, 0), data);
1973 return;
1975 case ASM_OPERANDS:
1976 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1977 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1978 return;
1980 case TRAP_IF:
1981 (*fun) (&TRAP_CONDITION (body), data);
1982 return;
1984 case PREFETCH:
1985 (*fun) (&XEXP (body, 0), data);
1986 return;
1988 case UNSPEC:
1989 case UNSPEC_VOLATILE:
1990 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1991 (*fun) (&XVECEXP (body, 0, i), data);
1992 return;
1994 case CLOBBER:
1995 if (MEM_P (XEXP (body, 0)))
1996 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1997 return;
1999 case SET:
2001 rtx dest = SET_DEST (body);
2003 /* For sets we replace everything in source plus registers in memory
2004 expression in store and operands of a ZERO_EXTRACT. */
2005 (*fun) (&SET_SRC (body), data);
2007 if (GET_CODE (dest) == ZERO_EXTRACT)
2009 (*fun) (&XEXP (dest, 1), data);
2010 (*fun) (&XEXP (dest, 2), data);
2013 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2014 dest = XEXP (dest, 0);
2016 if (MEM_P (dest))
2017 (*fun) (&XEXP (dest, 0), data);
2019 return;
2021 default:
2022 /* All the other possibilities never store. */
2023 (*fun) (pbody, data);
2024 return;
2028 /* Return nonzero if X's old contents don't survive after INSN.
2029 This will be true if X is (cc0) or if X is a register and
2030 X dies in INSN or because INSN entirely sets X.
2032 "Entirely set" means set directly and not through a SUBREG, or
2033 ZERO_EXTRACT, so no trace of the old contents remains.
2034 Likewise, REG_INC does not count.
2036 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2037 but for this use that makes no difference, since regs don't overlap
2038 during their lifetimes. Therefore, this function may be used
2039 at any time after deaths have been computed.
2041 If REG is a hard reg that occupies multiple machine registers, this
2042 function will only return 1 if each of those registers will be replaced
2043 by INSN. */
2046 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2048 unsigned int regno, end_regno;
2049 unsigned int i;
2051 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2052 if (GET_CODE (x) == CC0)
2053 return 1;
2055 gcc_assert (REG_P (x));
2057 regno = REGNO (x);
2058 end_regno = END_REGNO (x);
2059 for (i = regno; i < end_regno; i++)
2060 if (! dead_or_set_regno_p (insn, i))
2061 return 0;
2063 return 1;
2066 /* Return TRUE iff DEST is a register or subreg of a register, is a
2067 complete rather than read-modify-write destination, and contains
2068 register TEST_REGNO. */
2070 static bool
2071 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2073 unsigned int regno, endregno;
2075 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2076 dest = SUBREG_REG (dest);
2078 if (!REG_P (dest))
2079 return false;
2081 regno = REGNO (dest);
2082 endregno = END_REGNO (dest);
2083 return (test_regno >= regno && test_regno < endregno);
2086 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2087 any member matches the covers_regno_no_parallel_p criteria. */
2089 static bool
2090 covers_regno_p (const_rtx dest, unsigned int test_regno)
2092 if (GET_CODE (dest) == PARALLEL)
2094 /* Some targets place small structures in registers for return
2095 values of functions, and those registers are wrapped in
2096 PARALLELs that we may see as the destination of a SET. */
2097 int i;
2099 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2101 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2102 if (inner != NULL_RTX
2103 && covers_regno_no_parallel_p (inner, test_regno))
2104 return true;
2107 return false;
2109 else
2110 return covers_regno_no_parallel_p (dest, test_regno);
2113 /* Utility function for dead_or_set_p to check an individual register. */
2116 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2118 const_rtx pattern;
2120 /* See if there is a death note for something that includes TEST_REGNO. */
2121 if (find_regno_note (insn, REG_DEAD, test_regno))
2122 return 1;
2124 if (CALL_P (insn)
2125 && find_regno_fusage (insn, CLOBBER, test_regno))
2126 return 1;
2128 pattern = PATTERN (insn);
2130 /* If a COND_EXEC is not executed, the value survives. */
2131 if (GET_CODE (pattern) == COND_EXEC)
2132 return 0;
2134 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2135 return covers_regno_p (SET_DEST (pattern), test_regno);
2136 else if (GET_CODE (pattern) == PARALLEL)
2138 int i;
2140 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2142 rtx body = XVECEXP (pattern, 0, i);
2144 if (GET_CODE (body) == COND_EXEC)
2145 body = COND_EXEC_CODE (body);
2147 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2148 && covers_regno_p (SET_DEST (body), test_regno))
2149 return 1;
2153 return 0;
2156 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2157 If DATUM is nonzero, look for one whose datum is DATUM. */
2160 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2162 rtx link;
2164 gcc_checking_assert (insn);
2166 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2167 if (! INSN_P (insn))
2168 return 0;
2169 if (datum == 0)
2171 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2172 if (REG_NOTE_KIND (link) == kind)
2173 return link;
2174 return 0;
2177 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2178 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2179 return link;
2180 return 0;
2183 /* Return the reg-note of kind KIND in insn INSN which applies to register
2184 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2185 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2186 it might be the case that the note overlaps REGNO. */
2189 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2191 rtx link;
2193 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2194 if (! INSN_P (insn))
2195 return 0;
2197 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2198 if (REG_NOTE_KIND (link) == kind
2199 /* Verify that it is a register, so that scratch and MEM won't cause a
2200 problem here. */
2201 && REG_P (XEXP (link, 0))
2202 && REGNO (XEXP (link, 0)) <= regno
2203 && END_REGNO (XEXP (link, 0)) > regno)
2204 return link;
2205 return 0;
2208 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2209 has such a note. */
2212 find_reg_equal_equiv_note (const_rtx insn)
2214 rtx link;
2216 if (!INSN_P (insn))
2217 return 0;
2219 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2220 if (REG_NOTE_KIND (link) == REG_EQUAL
2221 || REG_NOTE_KIND (link) == REG_EQUIV)
2223 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2224 insns that have multiple sets. Checking single_set to
2225 make sure of this is not the proper check, as explained
2226 in the comment in set_unique_reg_note.
2228 This should be changed into an assert. */
2229 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2230 return 0;
2231 return link;
2233 return NULL;
2236 /* Check whether INSN is a single_set whose source is known to be
2237 equivalent to a constant. Return that constant if so, otherwise
2238 return null. */
2241 find_constant_src (const rtx_insn *insn)
2243 rtx note, set, x;
2245 set = single_set (insn);
2246 if (set)
2248 x = avoid_constant_pool_reference (SET_SRC (set));
2249 if (CONSTANT_P (x))
2250 return x;
2253 note = find_reg_equal_equiv_note (insn);
2254 if (note && CONSTANT_P (XEXP (note, 0)))
2255 return XEXP (note, 0);
2257 return NULL_RTX;
2260 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2261 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2264 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2266 /* If it's not a CALL_INSN, it can't possibly have a
2267 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2268 if (!CALL_P (insn))
2269 return 0;
2271 gcc_assert (datum);
2273 if (!REG_P (datum))
2275 rtx link;
2277 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2278 link;
2279 link = XEXP (link, 1))
2280 if (GET_CODE (XEXP (link, 0)) == code
2281 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2282 return 1;
2284 else
2286 unsigned int regno = REGNO (datum);
2288 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2289 to pseudo registers, so don't bother checking. */
2291 if (regno < FIRST_PSEUDO_REGISTER)
2293 unsigned int end_regno = END_REGNO (datum);
2294 unsigned int i;
2296 for (i = regno; i < end_regno; i++)
2297 if (find_regno_fusage (insn, code, i))
2298 return 1;
2302 return 0;
2305 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2306 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2309 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2311 rtx link;
2313 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2314 to pseudo registers, so don't bother checking. */
2316 if (regno >= FIRST_PSEUDO_REGISTER
2317 || !CALL_P (insn) )
2318 return 0;
2320 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2322 rtx op, reg;
2324 if (GET_CODE (op = XEXP (link, 0)) == code
2325 && REG_P (reg = XEXP (op, 0))
2326 && REGNO (reg) <= regno
2327 && END_REGNO (reg) > regno)
2328 return 1;
2331 return 0;
2335 /* Return true if KIND is an integer REG_NOTE. */
2337 static bool
2338 int_reg_note_p (enum reg_note kind)
2340 return kind == REG_BR_PROB;
2343 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2344 stored as the pointer to the next register note. */
2347 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2349 rtx note;
2351 gcc_checking_assert (!int_reg_note_p (kind));
2352 switch (kind)
2354 case REG_CC_SETTER:
2355 case REG_CC_USER:
2356 case REG_LABEL_TARGET:
2357 case REG_LABEL_OPERAND:
2358 case REG_TM:
2359 /* These types of register notes use an INSN_LIST rather than an
2360 EXPR_LIST, so that copying is done right and dumps look
2361 better. */
2362 note = alloc_INSN_LIST (datum, list);
2363 PUT_REG_NOTE_KIND (note, kind);
2364 break;
2366 default:
2367 note = alloc_EXPR_LIST (kind, datum, list);
2368 break;
2371 return note;
2374 /* Add register note with kind KIND and datum DATUM to INSN. */
2376 void
2377 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2379 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2382 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2384 void
2385 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2387 gcc_checking_assert (int_reg_note_p (kind));
2388 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2389 datum, REG_NOTES (insn));
2392 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2394 void
2395 add_args_size_note (rtx_insn *insn, poly_int64 value)
2397 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2398 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2401 /* Add a register note like NOTE to INSN. */
2403 void
2404 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2406 if (GET_CODE (note) == INT_LIST)
2407 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2408 else
2409 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2412 /* Duplicate NOTE and return the copy. */
2414 duplicate_reg_note (rtx note)
2416 reg_note kind = REG_NOTE_KIND (note);
2418 if (GET_CODE (note) == INT_LIST)
2419 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2420 else if (GET_CODE (note) == EXPR_LIST)
2421 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2422 else
2423 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2426 /* Remove register note NOTE from the REG_NOTES of INSN. */
2428 void
2429 remove_note (rtx_insn *insn, const_rtx note)
2431 rtx link;
2433 if (note == NULL_RTX)
2434 return;
2436 if (REG_NOTES (insn) == note)
2437 REG_NOTES (insn) = XEXP (note, 1);
2438 else
2439 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2440 if (XEXP (link, 1) == note)
2442 XEXP (link, 1) = XEXP (note, 1);
2443 break;
2446 switch (REG_NOTE_KIND (note))
2448 case REG_EQUAL:
2449 case REG_EQUIV:
2450 df_notes_rescan (insn);
2451 break;
2452 default:
2453 break;
2457 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2458 Return true if any note has been removed. */
2460 bool
2461 remove_reg_equal_equiv_notes (rtx_insn *insn)
2463 rtx *loc;
2464 bool ret = false;
2466 loc = &REG_NOTES (insn);
2467 while (*loc)
2469 enum reg_note kind = REG_NOTE_KIND (*loc);
2470 if (kind == REG_EQUAL || kind == REG_EQUIV)
2472 *loc = XEXP (*loc, 1);
2473 ret = true;
2475 else
2476 loc = &XEXP (*loc, 1);
2478 return ret;
2481 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2483 void
2484 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2486 df_ref eq_use;
2488 if (!df)
2489 return;
2491 /* This loop is a little tricky. We cannot just go down the chain because
2492 it is being modified by some actions in the loop. So we just iterate
2493 over the head. We plan to drain the list anyway. */
2494 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2496 rtx_insn *insn = DF_REF_INSN (eq_use);
2497 rtx note = find_reg_equal_equiv_note (insn);
2499 /* This assert is generally triggered when someone deletes a REG_EQUAL
2500 or REG_EQUIV note by hacking the list manually rather than calling
2501 remove_note. */
2502 gcc_assert (note);
2504 remove_note (insn, note);
2508 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2509 return 1 if it is found. A simple equality test is used to determine if
2510 NODE matches. */
2512 bool
2513 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2515 const_rtx x;
2517 for (x = listp; x; x = XEXP (x, 1))
2518 if (node == XEXP (x, 0))
2519 return true;
2521 return false;
2524 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2525 remove that entry from the list if it is found.
2527 A simple equality test is used to determine if NODE matches. */
2529 void
2530 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2532 rtx_expr_list *temp = *listp;
2533 rtx_expr_list *prev = NULL;
2535 while (temp)
2537 if (node == temp->element ())
2539 /* Splice the node out of the list. */
2540 if (prev)
2541 XEXP (prev, 1) = temp->next ();
2542 else
2543 *listp = temp->next ();
2545 return;
2548 prev = temp;
2549 temp = temp->next ();
2553 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2554 remove that entry from the list if it is found.
2556 A simple equality test is used to determine if NODE matches. */
2558 void
2559 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2561 rtx_insn_list *temp = *listp;
2562 rtx_insn_list *prev = NULL;
2564 while (temp)
2566 if (node == temp->insn ())
2568 /* Splice the node out of the list. */
2569 if (prev)
2570 XEXP (prev, 1) = temp->next ();
2571 else
2572 *listp = temp->next ();
2574 return;
2577 prev = temp;
2578 temp = temp->next ();
2582 /* Nonzero if X contains any volatile instructions. These are instructions
2583 which may cause unpredictable machine state instructions, and thus no
2584 instructions or register uses should be moved or combined across them.
2585 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2588 volatile_insn_p (const_rtx x)
2590 const RTX_CODE code = GET_CODE (x);
2591 switch (code)
2593 case LABEL_REF:
2594 case SYMBOL_REF:
2595 case CONST:
2596 CASE_CONST_ANY:
2597 case CC0:
2598 case PC:
2599 case REG:
2600 case SCRATCH:
2601 case CLOBBER:
2602 case ADDR_VEC:
2603 case ADDR_DIFF_VEC:
2604 case CALL:
2605 case MEM:
2606 return 0;
2608 case UNSPEC_VOLATILE:
2609 return 1;
2611 case ASM_INPUT:
2612 case ASM_OPERANDS:
2613 if (MEM_VOLATILE_P (x))
2614 return 1;
2616 default:
2617 break;
2620 /* Recursively scan the operands of this expression. */
2623 const char *const fmt = GET_RTX_FORMAT (code);
2624 int i;
2626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2628 if (fmt[i] == 'e')
2630 if (volatile_insn_p (XEXP (x, i)))
2631 return 1;
2633 else if (fmt[i] == 'E')
2635 int j;
2636 for (j = 0; j < XVECLEN (x, i); j++)
2637 if (volatile_insn_p (XVECEXP (x, i, j)))
2638 return 1;
2642 return 0;
2645 /* Nonzero if X contains any volatile memory references
2646 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2649 volatile_refs_p (const_rtx x)
2651 const RTX_CODE code = GET_CODE (x);
2652 switch (code)
2654 case LABEL_REF:
2655 case SYMBOL_REF:
2656 case CONST:
2657 CASE_CONST_ANY:
2658 case CC0:
2659 case PC:
2660 case REG:
2661 case SCRATCH:
2662 case CLOBBER:
2663 case ADDR_VEC:
2664 case ADDR_DIFF_VEC:
2665 return 0;
2667 case UNSPEC_VOLATILE:
2668 return 1;
2670 case MEM:
2671 case ASM_INPUT:
2672 case ASM_OPERANDS:
2673 if (MEM_VOLATILE_P (x))
2674 return 1;
2676 default:
2677 break;
2680 /* Recursively scan the operands of this expression. */
2683 const char *const fmt = GET_RTX_FORMAT (code);
2684 int i;
2686 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2688 if (fmt[i] == 'e')
2690 if (volatile_refs_p (XEXP (x, i)))
2691 return 1;
2693 else if (fmt[i] == 'E')
2695 int j;
2696 for (j = 0; j < XVECLEN (x, i); j++)
2697 if (volatile_refs_p (XVECEXP (x, i, j)))
2698 return 1;
2702 return 0;
2705 /* Similar to above, except that it also rejects register pre- and post-
2706 incrementing. */
2709 side_effects_p (const_rtx x)
2711 const RTX_CODE code = GET_CODE (x);
2712 switch (code)
2714 case LABEL_REF:
2715 case SYMBOL_REF:
2716 case CONST:
2717 CASE_CONST_ANY:
2718 case CC0:
2719 case PC:
2720 case REG:
2721 case SCRATCH:
2722 case ADDR_VEC:
2723 case ADDR_DIFF_VEC:
2724 case VAR_LOCATION:
2725 return 0;
2727 case CLOBBER:
2728 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2729 when some combination can't be done. If we see one, don't think
2730 that we can simplify the expression. */
2731 return (GET_MODE (x) != VOIDmode);
2733 case PRE_INC:
2734 case PRE_DEC:
2735 case POST_INC:
2736 case POST_DEC:
2737 case PRE_MODIFY:
2738 case POST_MODIFY:
2739 case CALL:
2740 case UNSPEC_VOLATILE:
2741 return 1;
2743 case MEM:
2744 case ASM_INPUT:
2745 case ASM_OPERANDS:
2746 if (MEM_VOLATILE_P (x))
2747 return 1;
2749 default:
2750 break;
2753 /* Recursively scan the operands of this expression. */
2756 const char *fmt = GET_RTX_FORMAT (code);
2757 int i;
2759 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2761 if (fmt[i] == 'e')
2763 if (side_effects_p (XEXP (x, i)))
2764 return 1;
2766 else if (fmt[i] == 'E')
2768 int j;
2769 for (j = 0; j < XVECLEN (x, i); j++)
2770 if (side_effects_p (XVECEXP (x, i, j)))
2771 return 1;
2775 return 0;
2778 /* Return nonzero if evaluating rtx X might cause a trap.
2779 FLAGS controls how to consider MEMs. A nonzero means the context
2780 of the access may have changed from the original, such that the
2781 address may have become invalid. */
2784 may_trap_p_1 (const_rtx x, unsigned flags)
2786 int i;
2787 enum rtx_code code;
2788 const char *fmt;
2790 /* We make no distinction currently, but this function is part of
2791 the internal target-hooks ABI so we keep the parameter as
2792 "unsigned flags". */
2793 bool code_changed = flags != 0;
2795 if (x == 0)
2796 return 0;
2797 code = GET_CODE (x);
2798 switch (code)
2800 /* Handle these cases quickly. */
2801 CASE_CONST_ANY:
2802 case SYMBOL_REF:
2803 case LABEL_REF:
2804 case CONST:
2805 case PC:
2806 case CC0:
2807 case REG:
2808 case SCRATCH:
2809 return 0;
2811 case UNSPEC:
2812 return targetm.unspec_may_trap_p (x, flags);
2814 case UNSPEC_VOLATILE:
2815 case ASM_INPUT:
2816 case TRAP_IF:
2817 return 1;
2819 case ASM_OPERANDS:
2820 return MEM_VOLATILE_P (x);
2822 /* Memory ref can trap unless it's a static var or a stack slot. */
2823 case MEM:
2824 /* Recognize specific pattern of stack checking probes. */
2825 if (flag_stack_check
2826 && MEM_VOLATILE_P (x)
2827 && XEXP (x, 0) == stack_pointer_rtx)
2828 return 1;
2829 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2830 reference; moving it out of context such as when moving code
2831 when optimizing, might cause its address to become invalid. */
2832 code_changed
2833 || !MEM_NOTRAP_P (x))
2835 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
2836 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2837 GET_MODE (x), code_changed);
2840 return 0;
2842 /* Division by a non-constant might trap. */
2843 case DIV:
2844 case MOD:
2845 case UDIV:
2846 case UMOD:
2847 if (HONOR_SNANS (x))
2848 return 1;
2849 if (FLOAT_MODE_P (GET_MODE (x)))
2850 return flag_trapping_math;
2851 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2852 return 1;
2853 if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
2855 /* For CONST_VECTOR, return 1 if any element is or might be zero. */
2856 unsigned int n_elts;
2857 rtx op = XEXP (x, 1);
2858 if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
2860 if (!CONST_VECTOR_DUPLICATE_P (op))
2861 return 1;
2862 for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
2863 if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
2864 return 1;
2866 else
2867 for (unsigned i = 0; i < n_elts; i++)
2868 if (CONST_VECTOR_ELT (op, i) == const0_rtx)
2869 return 1;
2871 break;
2873 case EXPR_LIST:
2874 /* An EXPR_LIST is used to represent a function call. This
2875 certainly may trap. */
2876 return 1;
2878 case GE:
2879 case GT:
2880 case LE:
2881 case LT:
2882 case LTGT:
2883 case COMPARE:
2884 /* Some floating point comparisons may trap. */
2885 if (!flag_trapping_math)
2886 break;
2887 /* ??? There is no machine independent way to check for tests that trap
2888 when COMPARE is used, though many targets do make this distinction.
2889 For instance, sparc uses CCFPE for compares which generate exceptions
2890 and CCFP for compares which do not generate exceptions. */
2891 if (HONOR_NANS (x))
2892 return 1;
2893 /* But often the compare has some CC mode, so check operand
2894 modes as well. */
2895 if (HONOR_NANS (XEXP (x, 0))
2896 || HONOR_NANS (XEXP (x, 1)))
2897 return 1;
2898 break;
2900 case EQ:
2901 case NE:
2902 if (HONOR_SNANS (x))
2903 return 1;
2904 /* Often comparison is CC mode, so check operand modes. */
2905 if (HONOR_SNANS (XEXP (x, 0))
2906 || HONOR_SNANS (XEXP (x, 1)))
2907 return 1;
2908 break;
2910 case FIX:
2911 /* Conversion of floating point might trap. */
2912 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2913 return 1;
2914 break;
2916 case NEG:
2917 case ABS:
2918 case SUBREG:
2919 case VEC_MERGE:
2920 case VEC_SELECT:
2921 case VEC_CONCAT:
2922 case VEC_DUPLICATE:
2923 /* These operations don't trap even with floating point. */
2924 break;
2926 default:
2927 /* Any floating arithmetic may trap. */
2928 if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2929 return 1;
2932 fmt = GET_RTX_FORMAT (code);
2933 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2935 if (fmt[i] == 'e')
2937 if (may_trap_p_1 (XEXP (x, i), flags))
2938 return 1;
2940 else if (fmt[i] == 'E')
2942 int j;
2943 for (j = 0; j < XVECLEN (x, i); j++)
2944 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2945 return 1;
2948 return 0;
2951 /* Return nonzero if evaluating rtx X might cause a trap. */
2954 may_trap_p (const_rtx x)
2956 return may_trap_p_1 (x, 0);
2959 /* Same as above, but additionally return nonzero if evaluating rtx X might
2960 cause a fault. We define a fault for the purpose of this function as a
2961 erroneous execution condition that cannot be encountered during the normal
2962 execution of a valid program; the typical example is an unaligned memory
2963 access on a strict alignment machine. The compiler guarantees that it
2964 doesn't generate code that will fault from a valid program, but this
2965 guarantee doesn't mean anything for individual instructions. Consider
2966 the following example:
2968 struct S { int d; union { char *cp; int *ip; }; };
2970 int foo(struct S *s)
2972 if (s->d == 1)
2973 return *s->ip;
2974 else
2975 return *s->cp;
2978 on a strict alignment machine. In a valid program, foo will never be
2979 invoked on a structure for which d is equal to 1 and the underlying
2980 unique field of the union not aligned on a 4-byte boundary, but the
2981 expression *s->ip might cause a fault if considered individually.
2983 At the RTL level, potentially problematic expressions will almost always
2984 verify may_trap_p; for example, the above dereference can be emitted as
2985 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2986 However, suppose that foo is inlined in a caller that causes s->cp to
2987 point to a local character variable and guarantees that s->d is not set
2988 to 1; foo may have been effectively translated into pseudo-RTL as:
2990 if ((reg:SI) == 1)
2991 (set (reg:SI) (mem:SI (%fp - 7)))
2992 else
2993 (set (reg:QI) (mem:QI (%fp - 7)))
2995 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2996 memory reference to a stack slot, but it will certainly cause a fault
2997 on a strict alignment machine. */
3000 may_trap_or_fault_p (const_rtx x)
3002 return may_trap_p_1 (x, 1);
3005 /* Return nonzero if X contains a comparison that is not either EQ or NE,
3006 i.e., an inequality. */
3009 inequality_comparisons_p (const_rtx x)
3011 const char *fmt;
3012 int len, i;
3013 const enum rtx_code code = GET_CODE (x);
3015 switch (code)
3017 case REG:
3018 case SCRATCH:
3019 case PC:
3020 case CC0:
3021 CASE_CONST_ANY:
3022 case CONST:
3023 case LABEL_REF:
3024 case SYMBOL_REF:
3025 return 0;
3027 case LT:
3028 case LTU:
3029 case GT:
3030 case GTU:
3031 case LE:
3032 case LEU:
3033 case GE:
3034 case GEU:
3035 return 1;
3037 default:
3038 break;
3041 len = GET_RTX_LENGTH (code);
3042 fmt = GET_RTX_FORMAT (code);
3044 for (i = 0; i < len; i++)
3046 if (fmt[i] == 'e')
3048 if (inequality_comparisons_p (XEXP (x, i)))
3049 return 1;
3051 else if (fmt[i] == 'E')
3053 int j;
3054 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3055 if (inequality_comparisons_p (XVECEXP (x, i, j)))
3056 return 1;
3060 return 0;
3063 /* Replace any occurrence of FROM in X with TO. The function does
3064 not enter into CONST_DOUBLE for the replace.
3066 Note that copying is not done so X must not be shared unless all copies
3067 are to be modified.
3069 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3070 those pointer-equal ones. */
3073 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3075 int i, j;
3076 const char *fmt;
3078 if (x == from)
3079 return to;
3081 /* Allow this function to make replacements in EXPR_LISTs. */
3082 if (x == 0)
3083 return 0;
3085 if (all_regs
3086 && REG_P (x)
3087 && REG_P (from)
3088 && REGNO (x) == REGNO (from))
3090 gcc_assert (GET_MODE (x) == GET_MODE (from));
3091 return to;
3093 else if (GET_CODE (x) == SUBREG)
3095 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3097 if (CONST_INT_P (new_rtx))
3099 x = simplify_subreg (GET_MODE (x), new_rtx,
3100 GET_MODE (SUBREG_REG (x)),
3101 SUBREG_BYTE (x));
3102 gcc_assert (x);
3104 else
3105 SUBREG_REG (x) = new_rtx;
3107 return x;
3109 else if (GET_CODE (x) == ZERO_EXTEND)
3111 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3113 if (CONST_INT_P (new_rtx))
3115 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3116 new_rtx, GET_MODE (XEXP (x, 0)));
3117 gcc_assert (x);
3119 else
3120 XEXP (x, 0) = new_rtx;
3122 return x;
3125 fmt = GET_RTX_FORMAT (GET_CODE (x));
3126 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3128 if (fmt[i] == 'e')
3129 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3130 else if (fmt[i] == 'E')
3131 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3132 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3133 from, to, all_regs);
3136 return x;
3139 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3140 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3142 void
3143 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3145 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3146 rtx x = *loc;
3147 if (JUMP_TABLE_DATA_P (x))
3149 x = PATTERN (x);
3150 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3151 int len = GET_NUM_ELEM (vec);
3152 for (int i = 0; i < len; ++i)
3154 rtx ref = RTVEC_ELT (vec, i);
3155 if (XEXP (ref, 0) == old_label)
3157 XEXP (ref, 0) = new_label;
3158 if (update_label_nuses)
3160 ++LABEL_NUSES (new_label);
3161 --LABEL_NUSES (old_label);
3165 return;
3168 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3169 field. This is not handled by the iterator because it doesn't
3170 handle unprinted ('0') fields. */
3171 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3172 JUMP_LABEL (x) = new_label;
3174 subrtx_ptr_iterator::array_type array;
3175 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3177 rtx *loc = *iter;
3178 if (rtx x = *loc)
3180 if (GET_CODE (x) == SYMBOL_REF
3181 && CONSTANT_POOL_ADDRESS_P (x))
3183 rtx c = get_pool_constant (x);
3184 if (rtx_referenced_p (old_label, c))
3186 /* Create a copy of constant C; replace the label inside
3187 but do not update LABEL_NUSES because uses in constant pool
3188 are not counted. */
3189 rtx new_c = copy_rtx (c);
3190 replace_label (&new_c, old_label, new_label, false);
3192 /* Add the new constant NEW_C to constant pool and replace
3193 the old reference to constant by new reference. */
3194 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3195 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3199 if ((GET_CODE (x) == LABEL_REF
3200 || GET_CODE (x) == INSN_LIST)
3201 && XEXP (x, 0) == old_label)
3203 XEXP (x, 0) = new_label;
3204 if (update_label_nuses)
3206 ++LABEL_NUSES (new_label);
3207 --LABEL_NUSES (old_label);
3214 void
3215 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3216 rtx_insn *new_label, bool update_label_nuses)
3218 rtx insn_as_rtx = insn;
3219 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3220 gcc_checking_assert (insn_as_rtx == insn);
3223 /* Return true if X is referenced in BODY. */
3225 bool
3226 rtx_referenced_p (const_rtx x, const_rtx body)
3228 subrtx_iterator::array_type array;
3229 FOR_EACH_SUBRTX (iter, array, body, ALL)
3230 if (const_rtx y = *iter)
3232 /* Check if a label_ref Y refers to label X. */
3233 if (GET_CODE (y) == LABEL_REF
3234 && LABEL_P (x)
3235 && label_ref_label (y) == x)
3236 return true;
3238 if (rtx_equal_p (x, y))
3239 return true;
3241 /* If Y is a reference to pool constant traverse the constant. */
3242 if (GET_CODE (y) == SYMBOL_REF
3243 && CONSTANT_POOL_ADDRESS_P (y))
3244 iter.substitute (get_pool_constant (y));
3246 return false;
3249 /* If INSN is a tablejump return true and store the label (before jump table) to
3250 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3252 bool
3253 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3254 rtx_jump_table_data **tablep)
3256 if (!JUMP_P (insn))
3257 return false;
3259 rtx target = JUMP_LABEL (insn);
3260 if (target == NULL_RTX || ANY_RETURN_P (target))
3261 return false;
3263 rtx_insn *label = as_a<rtx_insn *> (target);
3264 rtx_insn *table = next_insn (label);
3265 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3266 return false;
3268 if (labelp)
3269 *labelp = label;
3270 if (tablep)
3271 *tablep = as_a <rtx_jump_table_data *> (table);
3272 return true;
3275 /* For INSN known to satisfy tablejump_p, determine if it actually is a
3276 CASESI. Return the insn pattern if so, NULL_RTX otherwise. */
3279 tablejump_casesi_pattern (const rtx_insn *insn)
3281 rtx tmp;
3283 if ((tmp = single_set (insn)) != NULL
3284 && SET_DEST (tmp) == pc_rtx
3285 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
3286 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
3287 return tmp;
3289 return NULL_RTX;
3292 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3293 constant that is not in the constant pool and not in the condition
3294 of an IF_THEN_ELSE. */
3296 static int
3297 computed_jump_p_1 (const_rtx x)
3299 const enum rtx_code code = GET_CODE (x);
3300 int i, j;
3301 const char *fmt;
3303 switch (code)
3305 case LABEL_REF:
3306 case PC:
3307 return 0;
3309 case CONST:
3310 CASE_CONST_ANY:
3311 case SYMBOL_REF:
3312 case REG:
3313 return 1;
3315 case MEM:
3316 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3317 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3319 case IF_THEN_ELSE:
3320 return (computed_jump_p_1 (XEXP (x, 1))
3321 || computed_jump_p_1 (XEXP (x, 2)));
3323 default:
3324 break;
3327 fmt = GET_RTX_FORMAT (code);
3328 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3330 if (fmt[i] == 'e'
3331 && computed_jump_p_1 (XEXP (x, i)))
3332 return 1;
3334 else if (fmt[i] == 'E')
3335 for (j = 0; j < XVECLEN (x, i); j++)
3336 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3337 return 1;
3340 return 0;
3343 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3345 Tablejumps and casesi insns are not considered indirect jumps;
3346 we can recognize them by a (use (label_ref)). */
3349 computed_jump_p (const rtx_insn *insn)
3351 int i;
3352 if (JUMP_P (insn))
3354 rtx pat = PATTERN (insn);
3356 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3357 if (JUMP_LABEL (insn) != NULL)
3358 return 0;
3360 if (GET_CODE (pat) == PARALLEL)
3362 int len = XVECLEN (pat, 0);
3363 int has_use_labelref = 0;
3365 for (i = len - 1; i >= 0; i--)
3366 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3367 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3368 == LABEL_REF))
3370 has_use_labelref = 1;
3371 break;
3374 if (! has_use_labelref)
3375 for (i = len - 1; i >= 0; i--)
3376 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3377 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3378 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3379 return 1;
3381 else if (GET_CODE (pat) == SET
3382 && SET_DEST (pat) == pc_rtx
3383 && computed_jump_p_1 (SET_SRC (pat)))
3384 return 1;
3386 return 0;
3391 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3392 the equivalent add insn and pass the result to FN, using DATA as the
3393 final argument. */
3395 static int
3396 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3398 rtx x = XEXP (mem, 0);
3399 switch (GET_CODE (x))
3401 case PRE_INC:
3402 case POST_INC:
3404 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3405 rtx r1 = XEXP (x, 0);
3406 rtx c = gen_int_mode (size, GET_MODE (r1));
3407 return fn (mem, x, r1, r1, c, data);
3410 case PRE_DEC:
3411 case POST_DEC:
3413 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3414 rtx r1 = XEXP (x, 0);
3415 rtx c = gen_int_mode (-size, GET_MODE (r1));
3416 return fn (mem, x, r1, r1, c, data);
3419 case PRE_MODIFY:
3420 case POST_MODIFY:
3422 rtx r1 = XEXP (x, 0);
3423 rtx add = XEXP (x, 1);
3424 return fn (mem, x, r1, add, NULL, data);
3427 default:
3428 gcc_unreachable ();
3432 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3433 For each such autoinc operation found, call FN, passing it
3434 the innermost enclosing MEM, the operation itself, the RTX modified
3435 by the operation, two RTXs (the second may be NULL) that, once
3436 added, represent the value to be held by the modified RTX
3437 afterwards, and DATA. FN is to return 0 to continue the
3438 traversal or any other value to have it returned to the caller of
3439 for_each_inc_dec. */
3442 for_each_inc_dec (rtx x,
3443 for_each_inc_dec_fn fn,
3444 void *data)
3446 subrtx_var_iterator::array_type array;
3447 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3449 rtx mem = *iter;
3450 if (mem
3451 && MEM_P (mem)
3452 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3454 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3455 if (res != 0)
3456 return res;
3457 iter.skip_subrtxes ();
3460 return 0;
3464 /* Searches X for any reference to REGNO, returning the rtx of the
3465 reference found if any. Otherwise, returns NULL_RTX. */
3468 regno_use_in (unsigned int regno, rtx x)
3470 const char *fmt;
3471 int i, j;
3472 rtx tem;
3474 if (REG_P (x) && REGNO (x) == regno)
3475 return x;
3477 fmt = GET_RTX_FORMAT (GET_CODE (x));
3478 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3480 if (fmt[i] == 'e')
3482 if ((tem = regno_use_in (regno, XEXP (x, i))))
3483 return tem;
3485 else if (fmt[i] == 'E')
3486 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3487 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3488 return tem;
3491 return NULL_RTX;
3494 /* Return a value indicating whether OP, an operand of a commutative
3495 operation, is preferred as the first or second operand. The more
3496 positive the value, the stronger the preference for being the first
3497 operand. */
3500 commutative_operand_precedence (rtx op)
3502 enum rtx_code code = GET_CODE (op);
3504 /* Constants always become the second operand. Prefer "nice" constants. */
3505 if (code == CONST_INT)
3506 return -10;
3507 if (code == CONST_WIDE_INT)
3508 return -9;
3509 if (code == CONST_POLY_INT)
3510 return -8;
3511 if (code == CONST_DOUBLE)
3512 return -8;
3513 if (code == CONST_FIXED)
3514 return -8;
3515 op = avoid_constant_pool_reference (op);
3516 code = GET_CODE (op);
3518 switch (GET_RTX_CLASS (code))
3520 case RTX_CONST_OBJ:
3521 if (code == CONST_INT)
3522 return -7;
3523 if (code == CONST_WIDE_INT)
3524 return -6;
3525 if (code == CONST_POLY_INT)
3526 return -5;
3527 if (code == CONST_DOUBLE)
3528 return -5;
3529 if (code == CONST_FIXED)
3530 return -5;
3531 return -4;
3533 case RTX_EXTRA:
3534 /* SUBREGs of objects should come second. */
3535 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3536 return -3;
3537 return 0;
3539 case RTX_OBJ:
3540 /* Complex expressions should be the first, so decrease priority
3541 of objects. Prefer pointer objects over non pointer objects. */
3542 if ((REG_P (op) && REG_POINTER (op))
3543 || (MEM_P (op) && MEM_POINTER (op)))
3544 return -1;
3545 return -2;
3547 case RTX_COMM_ARITH:
3548 /* Prefer operands that are themselves commutative to be first.
3549 This helps to make things linear. In particular,
3550 (and (and (reg) (reg)) (not (reg))) is canonical. */
3551 return 4;
3553 case RTX_BIN_ARITH:
3554 /* If only one operand is a binary expression, it will be the first
3555 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3556 is canonical, although it will usually be further simplified. */
3557 return 2;
3559 case RTX_UNARY:
3560 /* Then prefer NEG and NOT. */
3561 if (code == NEG || code == NOT)
3562 return 1;
3563 /* FALLTHRU */
3565 default:
3566 return 0;
3570 /* Return 1 iff it is necessary to swap operands of commutative operation
3571 in order to canonicalize expression. */
3573 bool
3574 swap_commutative_operands_p (rtx x, rtx y)
3576 return (commutative_operand_precedence (x)
3577 < commutative_operand_precedence (y));
3580 /* Return 1 if X is an autoincrement side effect and the register is
3581 not the stack pointer. */
3583 auto_inc_p (const_rtx x)
3585 switch (GET_CODE (x))
3587 case PRE_INC:
3588 case POST_INC:
3589 case PRE_DEC:
3590 case POST_DEC:
3591 case PRE_MODIFY:
3592 case POST_MODIFY:
3593 /* There are no REG_INC notes for SP. */
3594 if (XEXP (x, 0) != stack_pointer_rtx)
3595 return 1;
3596 default:
3597 break;
3599 return 0;
3602 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3604 loc_mentioned_in_p (rtx *loc, const_rtx in)
3606 enum rtx_code code;
3607 const char *fmt;
3608 int i, j;
3610 if (!in)
3611 return 0;
3613 code = GET_CODE (in);
3614 fmt = GET_RTX_FORMAT (code);
3615 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3617 if (fmt[i] == 'e')
3619 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3620 return 1;
3622 else if (fmt[i] == 'E')
3623 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3624 if (loc == &XVECEXP (in, i, j)
3625 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3626 return 1;
3628 return 0;
3631 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3632 and SUBREG_BYTE, return the bit offset where the subreg begins
3633 (counting from the least significant bit of the operand). */
3635 poly_uint64
3636 subreg_lsb_1 (machine_mode outer_mode,
3637 machine_mode inner_mode,
3638 poly_uint64 subreg_byte)
3640 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3642 /* A paradoxical subreg begins at bit position 0. */
3643 if (paradoxical_subreg_p (outer_mode, inner_mode))
3644 return 0;
3646 subreg_end = subreg_byte + GET_MODE_SIZE (outer_mode);
3647 trailing_bytes = GET_MODE_SIZE (inner_mode) - subreg_end;
3648 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3649 byte_pos = trailing_bytes;
3650 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3651 byte_pos = subreg_byte;
3652 else
3654 /* When bytes and words have opposite endianness, we must be able
3655 to split offsets into words and bytes at compile time. */
3656 poly_uint64 leading_word_part
3657 = force_align_down (subreg_byte, UNITS_PER_WORD);
3658 poly_uint64 trailing_word_part
3659 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3660 /* If the subreg crosses a word boundary ensure that
3661 it also begins and ends on a word boundary. */
3662 gcc_assert (known_le (subreg_end - leading_word_part,
3663 (unsigned int) UNITS_PER_WORD)
3664 || (known_eq (leading_word_part, subreg_byte)
3665 && known_eq (trailing_word_part, trailing_bytes)));
3666 if (WORDS_BIG_ENDIAN)
3667 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3668 else
3669 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3672 return byte_pos * BITS_PER_UNIT;
3675 /* Given a subreg X, return the bit offset where the subreg begins
3676 (counting from the least significant bit of the reg). */
3678 poly_uint64
3679 subreg_lsb (const_rtx x)
3681 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3682 SUBREG_BYTE (x));
3685 /* Return the subreg byte offset for a subreg whose outer value has
3686 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3687 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3688 lsb of the inner value. This is the inverse of the calculation
3689 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3691 poly_uint64
3692 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3693 poly_uint64 lsb_shift)
3695 /* A paradoxical subreg begins at bit position 0. */
3696 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3697 if (maybe_gt (outer_bytes, inner_bytes))
3699 gcc_checking_assert (known_eq (lsb_shift, 0U));
3700 return 0;
3703 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3704 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3705 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3706 return upper_bytes;
3707 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3708 return lower_bytes;
3709 else
3711 /* When bytes and words have opposite endianness, we must be able
3712 to split offsets into words and bytes at compile time. */
3713 poly_uint64 lower_word_part = force_align_down (lower_bytes,
3714 UNITS_PER_WORD);
3715 poly_uint64 upper_word_part = force_align_down (upper_bytes,
3716 UNITS_PER_WORD);
3717 if (WORDS_BIG_ENDIAN)
3718 return upper_word_part + (lower_bytes - lower_word_part);
3719 else
3720 return lower_word_part + (upper_bytes - upper_word_part);
3724 /* Fill in information about a subreg of a hard register.
3725 xregno - A regno of an inner hard subreg_reg (or what will become one).
3726 xmode - The mode of xregno.
3727 offset - The byte offset.
3728 ymode - The mode of a top level SUBREG (or what may become one).
3729 info - Pointer to structure to fill in.
3731 Rather than considering one particular inner register (and thus one
3732 particular "outer" register) in isolation, this function really uses
3733 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3734 function does not check whether adding INFO->offset to XREGNO gives
3735 a valid hard register; even if INFO->offset + XREGNO is out of range,
3736 there might be another register of the same type that is in range.
3737 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3738 the new register, since that can depend on things like whether the final
3739 register number is even or odd. Callers that want to check whether
3740 this particular subreg can be replaced by a simple (reg ...) should
3741 use simplify_subreg_regno. */
3743 void
3744 subreg_get_info (unsigned int xregno, machine_mode xmode,
3745 poly_uint64 offset, machine_mode ymode,
3746 struct subreg_info *info)
3748 unsigned int nregs_xmode, nregs_ymode;
3750 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3752 poly_uint64 xsize = GET_MODE_SIZE (xmode);
3753 poly_uint64 ysize = GET_MODE_SIZE (ymode);
3755 bool rknown = false;
3757 /* If the register representation of a non-scalar mode has holes in it,
3758 we expect the scalar units to be concatenated together, with the holes
3759 distributed evenly among the scalar units. Each scalar unit must occupy
3760 at least one register. */
3761 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3763 /* As a consequence, we must be dealing with a constant number of
3764 scalars, and thus a constant offset and number of units. */
3765 HOST_WIDE_INT coffset = offset.to_constant ();
3766 HOST_WIDE_INT cysize = ysize.to_constant ();
3767 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3768 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
3769 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3770 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3771 gcc_assert (nregs_xmode
3772 == (nunits
3773 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3774 gcc_assert (hard_regno_nregs (xregno, xmode)
3775 == hard_regno_nregs (xregno, xmode_unit) * nunits);
3777 /* You can only ask for a SUBREG of a value with holes in the middle
3778 if you don't cross the holes. (Such a SUBREG should be done by
3779 picking a different register class, or doing it in memory if
3780 necessary.) An example of a value with holes is XCmode on 32-bit
3781 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3782 3 for each part, but in memory it's two 128-bit parts.
3783 Padding is assumed to be at the end (not necessarily the 'high part')
3784 of each unit. */
3785 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3786 && (coffset / GET_MODE_SIZE (xmode_unit)
3787 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
3789 info->representable_p = false;
3790 rknown = true;
3793 else
3794 nregs_xmode = hard_regno_nregs (xregno, xmode);
3796 nregs_ymode = hard_regno_nregs (xregno, ymode);
3798 /* Subreg sizes must be ordered, so that we can tell whether they are
3799 partial, paradoxical or complete. */
3800 gcc_checking_assert (ordered_p (xsize, ysize));
3802 /* Paradoxical subregs are otherwise valid. */
3803 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
3805 info->representable_p = true;
3806 /* If this is a big endian paradoxical subreg, which uses more
3807 actual hard registers than the original register, we must
3808 return a negative offset so that we find the proper highpart
3809 of the register.
3811 We assume that the ordering of registers within a multi-register
3812 value has a consistent endianness: if bytes and register words
3813 have different endianness, the hard registers that make up a
3814 multi-register value must be at least word-sized. */
3815 if (REG_WORDS_BIG_ENDIAN)
3816 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3817 else
3818 info->offset = 0;
3819 info->nregs = nregs_ymode;
3820 return;
3823 /* If registers store different numbers of bits in the different
3824 modes, we cannot generally form this subreg. */
3825 poly_uint64 regsize_xmode, regsize_ymode;
3826 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3827 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3828 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
3829 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
3831 if (!rknown
3832 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
3833 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
3835 info->representable_p = false;
3836 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
3837 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
3838 /* Checked by validate_subreg. We must know at compile time
3839 which inner registers are being accessed. */
3840 gcc_unreachable ();
3841 return;
3843 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3844 would go outside of XMODE. */
3845 if (!rknown && maybe_gt (ysize + offset, xsize))
3847 info->representable_p = false;
3848 info->nregs = nregs_ymode;
3849 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
3850 /* Checked by validate_subreg. We must know at compile time
3851 which inner registers are being accessed. */
3852 gcc_unreachable ();
3853 return;
3855 /* Quick exit for the simple and common case of extracting whole
3856 subregisters from a multiregister value. */
3857 /* ??? It would be better to integrate this into the code below,
3858 if we can generalize the concept enough and figure out how
3859 odd-sized modes can coexist with the other weird cases we support. */
3860 HOST_WIDE_INT count;
3861 if (!rknown
3862 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3863 && known_eq (regsize_xmode, regsize_ymode)
3864 && constant_multiple_p (offset, regsize_ymode, &count))
3866 info->representable_p = true;
3867 info->nregs = nregs_ymode;
3868 info->offset = count;
3869 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3870 return;
3874 /* Lowpart subregs are otherwise valid. */
3875 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
3877 info->representable_p = true;
3878 rknown = true;
3880 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
3882 info->offset = 0;
3883 info->nregs = nregs_ymode;
3884 return;
3888 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3889 values there are in (reg:XMODE XREGNO). We can view the register
3890 as consisting of this number of independent "blocks", where each
3891 block occupies NREGS_YMODE registers and contains exactly one
3892 representable YMODE value. */
3893 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3894 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3896 /* Calculate the number of bytes in each block. This must always
3897 be exact, otherwise we don't know how to verify the constraint.
3898 These conditions may be relaxed but subreg_regno_offset would
3899 need to be redesigned. */
3900 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
3902 /* Get the number of the first block that contains the subreg and the byte
3903 offset of the subreg from the start of that block. */
3904 unsigned int block_number;
3905 poly_uint64 subblock_offset;
3906 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
3907 &subblock_offset))
3908 /* Checked by validate_subreg. We must know at compile time which
3909 inner registers are being accessed. */
3910 gcc_unreachable ();
3912 if (!rknown)
3914 /* Only the lowpart of each block is representable. */
3915 info->representable_p
3916 = known_eq (subblock_offset,
3917 subreg_size_lowpart_offset (ysize, bytes_per_block));
3918 rknown = true;
3921 /* We assume that the ordering of registers within a multi-register
3922 value has a consistent endianness: if bytes and register words
3923 have different endianness, the hard registers that make up a
3924 multi-register value must be at least word-sized. */
3925 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3926 /* The block number we calculated above followed memory endianness.
3927 Convert it to register endianness by counting back from the end.
3928 (Note that, because of the assumption above, each block must be
3929 at least word-sized.) */
3930 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3931 else
3932 info->offset = block_number * nregs_ymode;
3933 info->nregs = nregs_ymode;
3936 /* This function returns the regno offset of a subreg expression.
3937 xregno - A regno of an inner hard subreg_reg (or what will become one).
3938 xmode - The mode of xregno.
3939 offset - The byte offset.
3940 ymode - The mode of a top level SUBREG (or what may become one).
3941 RETURN - The regno offset which would be used. */
3942 unsigned int
3943 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3944 poly_uint64 offset, machine_mode ymode)
3946 struct subreg_info info;
3947 subreg_get_info (xregno, xmode, offset, ymode, &info);
3948 return info.offset;
3951 /* This function returns true when the offset is representable via
3952 subreg_offset in the given regno.
3953 xregno - A regno of an inner hard subreg_reg (or what will become one).
3954 xmode - The mode of xregno.
3955 offset - The byte offset.
3956 ymode - The mode of a top level SUBREG (or what may become one).
3957 RETURN - Whether the offset is representable. */
3958 bool
3959 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3960 poly_uint64 offset, machine_mode ymode)
3962 struct subreg_info info;
3963 subreg_get_info (xregno, xmode, offset, ymode, &info);
3964 return info.representable_p;
3967 /* Return the number of a YMODE register to which
3969 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3971 can be simplified. Return -1 if the subreg can't be simplified.
3973 XREGNO is a hard register number. */
3976 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3977 poly_uint64 offset, machine_mode ymode)
3979 struct subreg_info info;
3980 unsigned int yregno;
3982 /* Give the backend a chance to disallow the mode change. */
3983 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3984 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3985 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)
3986 /* We can use mode change in LRA for some transformations. */
3987 && ! lra_in_progress)
3988 return -1;
3990 /* We shouldn't simplify stack-related registers. */
3991 if ((!reload_completed || frame_pointer_needed)
3992 && xregno == FRAME_POINTER_REGNUM)
3993 return -1;
3995 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3996 && xregno == ARG_POINTER_REGNUM)
3997 return -1;
3999 if (xregno == STACK_POINTER_REGNUM
4000 /* We should convert hard stack register in LRA if it is
4001 possible. */
4002 && ! lra_in_progress)
4003 return -1;
4005 /* Try to get the register offset. */
4006 subreg_get_info (xregno, xmode, offset, ymode, &info);
4007 if (!info.representable_p)
4008 return -1;
4010 /* Make sure that the offsetted register value is in range. */
4011 yregno = xregno + info.offset;
4012 if (!HARD_REGISTER_NUM_P (yregno))
4013 return -1;
4015 /* See whether (reg:YMODE YREGNO) is valid.
4017 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
4018 This is a kludge to work around how complex FP arguments are passed
4019 on IA-64 and should be fixed. See PR target/49226. */
4020 if (!targetm.hard_regno_mode_ok (yregno, ymode)
4021 && targetm.hard_regno_mode_ok (xregno, xmode))
4022 return -1;
4024 return (int) yregno;
4027 /* Return the final regno that a subreg expression refers to. */
4028 unsigned int
4029 subreg_regno (const_rtx x)
4031 unsigned int ret;
4032 rtx subreg = SUBREG_REG (x);
4033 int regno = REGNO (subreg);
4035 ret = regno + subreg_regno_offset (regno,
4036 GET_MODE (subreg),
4037 SUBREG_BYTE (x),
4038 GET_MODE (x));
4039 return ret;
4043 /* Return the number of registers that a subreg expression refers
4044 to. */
4045 unsigned int
4046 subreg_nregs (const_rtx x)
4048 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4051 /* Return the number of registers that a subreg REG with REGNO
4052 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
4053 changed so that the regno can be passed in. */
4055 unsigned int
4056 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4058 struct subreg_info info;
4059 rtx subreg = SUBREG_REG (x);
4061 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4062 &info);
4063 return info.nregs;
4066 struct parms_set_data
4068 int nregs;
4069 HARD_REG_SET regs;
4072 /* Helper function for noticing stores to parameter registers. */
4073 static void
4074 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4076 struct parms_set_data *const d = (struct parms_set_data *) data;
4077 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4078 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4080 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4081 d->nregs--;
4085 /* Look backward for first parameter to be loaded.
4086 Note that loads of all parameters will not necessarily be
4087 found if CSE has eliminated some of them (e.g., an argument
4088 to the outer function is passed down as a parameter).
4089 Do not skip BOUNDARY. */
4090 rtx_insn *
4091 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4093 struct parms_set_data parm;
4094 rtx p;
4095 rtx_insn *before, *first_set;
4097 /* Since different machines initialize their parameter registers
4098 in different orders, assume nothing. Collect the set of all
4099 parameter registers. */
4100 CLEAR_HARD_REG_SET (parm.regs);
4101 parm.nregs = 0;
4102 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4103 if (GET_CODE (XEXP (p, 0)) == USE
4104 && REG_P (XEXP (XEXP (p, 0), 0))
4105 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4107 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4109 /* We only care about registers which can hold function
4110 arguments. */
4111 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4112 continue;
4114 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4115 parm.nregs++;
4117 before = call_insn;
4118 first_set = call_insn;
4120 /* Search backward for the first set of a register in this set. */
4121 while (parm.nregs && before != boundary)
4123 before = PREV_INSN (before);
4125 /* It is possible that some loads got CSEed from one call to
4126 another. Stop in that case. */
4127 if (CALL_P (before))
4128 break;
4130 /* Our caller needs either ensure that we will find all sets
4131 (in case code has not been optimized yet), or take care
4132 for possible labels in a way by setting boundary to preceding
4133 CODE_LABEL. */
4134 if (LABEL_P (before))
4136 gcc_assert (before == boundary);
4137 break;
4140 if (INSN_P (before))
4142 int nregs_old = parm.nregs;
4143 note_stores (PATTERN (before), parms_set, &parm);
4144 /* If we found something that did not set a parameter reg,
4145 we're done. Do not keep going, as that might result
4146 in hoisting an insn before the setting of a pseudo
4147 that is used by the hoisted insn. */
4148 if (nregs_old != parm.nregs)
4149 first_set = before;
4150 else
4151 break;
4154 return first_set;
4157 /* Return true if we should avoid inserting code between INSN and preceding
4158 call instruction. */
4160 bool
4161 keep_with_call_p (const rtx_insn *insn)
4163 rtx set;
4165 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4167 if (REG_P (SET_DEST (set))
4168 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4169 && fixed_regs[REGNO (SET_DEST (set))]
4170 && general_operand (SET_SRC (set), VOIDmode))
4171 return true;
4172 if (REG_P (SET_SRC (set))
4173 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4174 && REG_P (SET_DEST (set))
4175 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4176 return true;
4177 /* There may be a stack pop just after the call and before the store
4178 of the return register. Search for the actual store when deciding
4179 if we can break or not. */
4180 if (SET_DEST (set) == stack_pointer_rtx)
4182 /* This CONST_CAST is okay because next_nonnote_insn just
4183 returns its argument and we assign it to a const_rtx
4184 variable. */
4185 const rtx_insn *i2
4186 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4187 if (i2 && keep_with_call_p (i2))
4188 return true;
4191 return false;
4194 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4195 to non-complex jumps. That is, direct unconditional, conditional,
4196 and tablejumps, but not computed jumps or returns. It also does
4197 not apply to the fallthru case of a conditional jump. */
4199 bool
4200 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4202 rtx tmp = JUMP_LABEL (jump_insn);
4203 rtx_jump_table_data *table;
4205 if (label == tmp)
4206 return true;
4208 if (tablejump_p (jump_insn, NULL, &table))
4210 rtvec vec = table->get_labels ();
4211 int i, veclen = GET_NUM_ELEM (vec);
4213 for (i = 0; i < veclen; ++i)
4214 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4215 return true;
4218 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4219 return true;
4221 return false;
4225 /* Return an estimate of the cost of computing rtx X.
4226 One use is in cse, to decide which expression to keep in the hash table.
4227 Another is in rtl generation, to pick the cheapest way to multiply.
4228 Other uses like the latter are expected in the future.
4230 X appears as operand OPNO in an expression with code OUTER_CODE.
4231 SPEED specifies whether costs optimized for speed or size should
4232 be returned. */
4235 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4236 int opno, bool speed)
4238 int i, j;
4239 enum rtx_code code;
4240 const char *fmt;
4241 int total;
4242 int factor;
4244 if (x == 0)
4245 return 0;
4247 if (GET_MODE (x) != VOIDmode)
4248 mode = GET_MODE (x);
4250 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4251 many insns, taking N times as long. */
4252 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4253 if (factor == 0)
4254 factor = 1;
4256 /* Compute the default costs of certain things.
4257 Note that targetm.rtx_costs can override the defaults. */
4259 code = GET_CODE (x);
4260 switch (code)
4262 case MULT:
4263 /* Multiplication has time-complexity O(N*N), where N is the
4264 number of units (translated from digits) when using
4265 schoolbook long multiplication. */
4266 total = factor * factor * COSTS_N_INSNS (5);
4267 break;
4268 case DIV:
4269 case UDIV:
4270 case MOD:
4271 case UMOD:
4272 /* Similarly, complexity for schoolbook long division. */
4273 total = factor * factor * COSTS_N_INSNS (7);
4274 break;
4275 case USE:
4276 /* Used in combine.c as a marker. */
4277 total = 0;
4278 break;
4279 case SET:
4280 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4281 the mode for the factor. */
4282 mode = GET_MODE (SET_DEST (x));
4283 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4284 if (factor == 0)
4285 factor = 1;
4286 /* FALLTHRU */
4287 default:
4288 total = factor * COSTS_N_INSNS (1);
4291 switch (code)
4293 case REG:
4294 return 0;
4296 case SUBREG:
4297 total = 0;
4298 /* If we can't tie these modes, make this expensive. The larger
4299 the mode, the more expensive it is. */
4300 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4301 return COSTS_N_INSNS (2 + factor);
4302 break;
4304 case TRUNCATE:
4305 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4307 total = 0;
4308 break;
4310 /* FALLTHRU */
4311 default:
4312 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4313 return total;
4314 break;
4317 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4318 which is already in total. */
4320 fmt = GET_RTX_FORMAT (code);
4321 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4322 if (fmt[i] == 'e')
4323 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4324 else if (fmt[i] == 'E')
4325 for (j = 0; j < XVECLEN (x, i); j++)
4326 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4328 return total;
4331 /* Fill in the structure C with information about both speed and size rtx
4332 costs for X, which is operand OPNO in an expression with code OUTER. */
4334 void
4335 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4336 struct full_rtx_costs *c)
4338 c->speed = rtx_cost (x, mode, outer, opno, true);
4339 c->size = rtx_cost (x, mode, outer, opno, false);
4343 /* Return cost of address expression X.
4344 Expect that X is properly formed address reference.
4346 SPEED parameter specify whether costs optimized for speed or size should
4347 be returned. */
4350 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4352 /* We may be asked for cost of various unusual addresses, such as operands
4353 of push instruction. It is not worthwhile to complicate writing
4354 of the target hook by such cases. */
4356 if (!memory_address_addr_space_p (mode, x, as))
4357 return 1000;
4359 return targetm.address_cost (x, mode, as, speed);
4362 /* If the target doesn't override, compute the cost as with arithmetic. */
4365 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4367 return rtx_cost (x, Pmode, MEM, 0, speed);
4371 unsigned HOST_WIDE_INT
4372 nonzero_bits (const_rtx x, machine_mode mode)
4374 if (mode == VOIDmode)
4375 mode = GET_MODE (x);
4376 scalar_int_mode int_mode;
4377 if (!is_a <scalar_int_mode> (mode, &int_mode))
4378 return GET_MODE_MASK (mode);
4379 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4382 unsigned int
4383 num_sign_bit_copies (const_rtx x, machine_mode mode)
4385 if (mode == VOIDmode)
4386 mode = GET_MODE (x);
4387 scalar_int_mode int_mode;
4388 if (!is_a <scalar_int_mode> (mode, &int_mode))
4389 return 1;
4390 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4393 /* Return true if nonzero_bits1 might recurse into both operands
4394 of X. */
4396 static inline bool
4397 nonzero_bits_binary_arith_p (const_rtx x)
4399 if (!ARITHMETIC_P (x))
4400 return false;
4401 switch (GET_CODE (x))
4403 case AND:
4404 case XOR:
4405 case IOR:
4406 case UMIN:
4407 case UMAX:
4408 case SMIN:
4409 case SMAX:
4410 case PLUS:
4411 case MINUS:
4412 case MULT:
4413 case DIV:
4414 case UDIV:
4415 case MOD:
4416 case UMOD:
4417 return true;
4418 default:
4419 return false;
4423 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4424 It avoids exponential behavior in nonzero_bits1 when X has
4425 identical subexpressions on the first or the second level. */
4427 static unsigned HOST_WIDE_INT
4428 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4429 machine_mode known_mode,
4430 unsigned HOST_WIDE_INT known_ret)
4432 if (x == known_x && mode == known_mode)
4433 return known_ret;
4435 /* Try to find identical subexpressions. If found call
4436 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4437 precomputed value for the subexpression as KNOWN_RET. */
4439 if (nonzero_bits_binary_arith_p (x))
4441 rtx x0 = XEXP (x, 0);
4442 rtx x1 = XEXP (x, 1);
4444 /* Check the first level. */
4445 if (x0 == x1)
4446 return nonzero_bits1 (x, mode, x0, mode,
4447 cached_nonzero_bits (x0, mode, known_x,
4448 known_mode, known_ret));
4450 /* Check the second level. */
4451 if (nonzero_bits_binary_arith_p (x0)
4452 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4453 return nonzero_bits1 (x, mode, x1, mode,
4454 cached_nonzero_bits (x1, mode, known_x,
4455 known_mode, known_ret));
4457 if (nonzero_bits_binary_arith_p (x1)
4458 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4459 return nonzero_bits1 (x, mode, x0, mode,
4460 cached_nonzero_bits (x0, mode, known_x,
4461 known_mode, known_ret));
4464 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4467 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4468 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4469 is less useful. We can't allow both, because that results in exponential
4470 run time recursion. There is a nullstone testcase that triggered
4471 this. This macro avoids accidental uses of num_sign_bit_copies. */
4472 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4474 /* Given an expression, X, compute which bits in X can be nonzero.
4475 We don't care about bits outside of those defined in MODE.
4477 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4478 an arithmetic operation, we can do better. */
4480 static unsigned HOST_WIDE_INT
4481 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4482 machine_mode known_mode,
4483 unsigned HOST_WIDE_INT known_ret)
4485 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4486 unsigned HOST_WIDE_INT inner_nz;
4487 enum rtx_code code = GET_CODE (x);
4488 machine_mode inner_mode;
4489 unsigned int inner_width;
4490 scalar_int_mode xmode;
4492 unsigned int mode_width = GET_MODE_PRECISION (mode);
4494 if (CONST_INT_P (x))
4496 if (SHORT_IMMEDIATES_SIGN_EXTEND
4497 && INTVAL (x) > 0
4498 && mode_width < BITS_PER_WORD
4499 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4500 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4502 return UINTVAL (x);
4505 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4506 return nonzero;
4507 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4509 /* If X is wider than MODE, use its mode instead. */
4510 if (xmode_width > mode_width)
4512 mode = xmode;
4513 nonzero = GET_MODE_MASK (mode);
4514 mode_width = xmode_width;
4517 if (mode_width > HOST_BITS_PER_WIDE_INT)
4518 /* Our only callers in this case look for single bit values. So
4519 just return the mode mask. Those tests will then be false. */
4520 return nonzero;
4522 /* If MODE is wider than X, but both are a single word for both the host
4523 and target machines, we can compute this from which bits of the object
4524 might be nonzero in its own mode, taking into account the fact that, on
4525 CISC machines, accessing an object in a wider mode generally causes the
4526 high-order bits to become undefined, so they are not known to be zero.
4527 We extend this reasoning to RISC machines for operations that might not
4528 operate on the full registers. */
4529 if (mode_width > xmode_width
4530 && xmode_width <= BITS_PER_WORD
4531 && xmode_width <= HOST_BITS_PER_WIDE_INT
4532 && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4534 nonzero &= cached_nonzero_bits (x, xmode,
4535 known_x, known_mode, known_ret);
4536 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4537 return nonzero;
4540 /* Please keep nonzero_bits_binary_arith_p above in sync with
4541 the code in the switch below. */
4542 switch (code)
4544 case REG:
4545 #if defined(POINTERS_EXTEND_UNSIGNED)
4546 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4547 all the bits above ptr_mode are known to be zero. */
4548 /* As we do not know which address space the pointer is referring to,
4549 we can do this only if the target does not support different pointer
4550 or address modes depending on the address space. */
4551 if (target_default_pointer_address_modes_p ()
4552 && POINTERS_EXTEND_UNSIGNED
4553 && xmode == Pmode
4554 && REG_POINTER (x)
4555 && !targetm.have_ptr_extend ())
4556 nonzero &= GET_MODE_MASK (ptr_mode);
4557 #endif
4559 /* Include declared information about alignment of pointers. */
4560 /* ??? We don't properly preserve REG_POINTER changes across
4561 pointer-to-integer casts, so we can't trust it except for
4562 things that we know must be pointers. See execute/960116-1.c. */
4563 if ((x == stack_pointer_rtx
4564 || x == frame_pointer_rtx
4565 || x == arg_pointer_rtx)
4566 && REGNO_POINTER_ALIGN (REGNO (x)))
4568 unsigned HOST_WIDE_INT alignment
4569 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4571 #ifdef PUSH_ROUNDING
4572 /* If PUSH_ROUNDING is defined, it is possible for the
4573 stack to be momentarily aligned only to that amount,
4574 so we pick the least alignment. */
4575 if (x == stack_pointer_rtx && PUSH_ARGS)
4577 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4578 alignment = MIN (known_alignment (rounded_1), alignment);
4580 #endif
4582 nonzero &= ~(alignment - 1);
4586 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4587 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4588 &nonzero_for_hook);
4590 if (new_rtx)
4591 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4592 known_mode, known_ret);
4594 return nonzero_for_hook;
4597 case MEM:
4598 /* In many, if not most, RISC machines, reading a byte from memory
4599 zeros the rest of the register. Noticing that fact saves a lot
4600 of extra zero-extends. */
4601 if (load_extend_op (xmode) == ZERO_EXTEND)
4602 nonzero &= GET_MODE_MASK (xmode);
4603 break;
4605 case EQ: case NE:
4606 case UNEQ: case LTGT:
4607 case GT: case GTU: case UNGT:
4608 case LT: case LTU: case UNLT:
4609 case GE: case GEU: case UNGE:
4610 case LE: case LEU: case UNLE:
4611 case UNORDERED: case ORDERED:
4612 /* If this produces an integer result, we know which bits are set.
4613 Code here used to clear bits outside the mode of X, but that is
4614 now done above. */
4615 /* Mind that MODE is the mode the caller wants to look at this
4616 operation in, and not the actual operation mode. We can wind
4617 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4618 that describes the results of a vector compare. */
4619 if (GET_MODE_CLASS (xmode) == MODE_INT
4620 && mode_width <= HOST_BITS_PER_WIDE_INT)
4621 nonzero = STORE_FLAG_VALUE;
4622 break;
4624 case NEG:
4625 #if 0
4626 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4627 and num_sign_bit_copies. */
4628 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4629 nonzero = 1;
4630 #endif
4632 if (xmode_width < mode_width)
4633 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4634 break;
4636 case ABS:
4637 #if 0
4638 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4639 and num_sign_bit_copies. */
4640 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4641 nonzero = 1;
4642 #endif
4643 break;
4645 case TRUNCATE:
4646 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4647 known_x, known_mode, known_ret)
4648 & GET_MODE_MASK (mode));
4649 break;
4651 case ZERO_EXTEND:
4652 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4653 known_x, known_mode, known_ret);
4654 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4655 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4656 break;
4658 case SIGN_EXTEND:
4659 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4660 Otherwise, show all the bits in the outer mode but not the inner
4661 may be nonzero. */
4662 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4663 known_x, known_mode, known_ret);
4664 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4666 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4667 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4668 inner_nz |= (GET_MODE_MASK (mode)
4669 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4672 nonzero &= inner_nz;
4673 break;
4675 case AND:
4676 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4677 known_x, known_mode, known_ret)
4678 & cached_nonzero_bits (XEXP (x, 1), mode,
4679 known_x, known_mode, known_ret);
4680 break;
4682 case XOR: case IOR:
4683 case UMIN: case UMAX: case SMIN: case SMAX:
4685 unsigned HOST_WIDE_INT nonzero0
4686 = cached_nonzero_bits (XEXP (x, 0), mode,
4687 known_x, known_mode, known_ret);
4689 /* Don't call nonzero_bits for the second time if it cannot change
4690 anything. */
4691 if ((nonzero & nonzero0) != nonzero)
4692 nonzero &= nonzero0
4693 | cached_nonzero_bits (XEXP (x, 1), mode,
4694 known_x, known_mode, known_ret);
4696 break;
4698 case PLUS: case MINUS:
4699 case MULT:
4700 case DIV: case UDIV:
4701 case MOD: case UMOD:
4702 /* We can apply the rules of arithmetic to compute the number of
4703 high- and low-order zero bits of these operations. We start by
4704 computing the width (position of the highest-order nonzero bit)
4705 and the number of low-order zero bits for each value. */
4707 unsigned HOST_WIDE_INT nz0
4708 = cached_nonzero_bits (XEXP (x, 0), mode,
4709 known_x, known_mode, known_ret);
4710 unsigned HOST_WIDE_INT nz1
4711 = cached_nonzero_bits (XEXP (x, 1), mode,
4712 known_x, known_mode, known_ret);
4713 int sign_index = xmode_width - 1;
4714 int width0 = floor_log2 (nz0) + 1;
4715 int width1 = floor_log2 (nz1) + 1;
4716 int low0 = ctz_or_zero (nz0);
4717 int low1 = ctz_or_zero (nz1);
4718 unsigned HOST_WIDE_INT op0_maybe_minusp
4719 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4720 unsigned HOST_WIDE_INT op1_maybe_minusp
4721 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4722 unsigned int result_width = mode_width;
4723 int result_low = 0;
4725 switch (code)
4727 case PLUS:
4728 result_width = MAX (width0, width1) + 1;
4729 result_low = MIN (low0, low1);
4730 break;
4731 case MINUS:
4732 result_low = MIN (low0, low1);
4733 break;
4734 case MULT:
4735 result_width = width0 + width1;
4736 result_low = low0 + low1;
4737 break;
4738 case DIV:
4739 if (width1 == 0)
4740 break;
4741 if (!op0_maybe_minusp && !op1_maybe_minusp)
4742 result_width = width0;
4743 break;
4744 case UDIV:
4745 if (width1 == 0)
4746 break;
4747 result_width = width0;
4748 break;
4749 case MOD:
4750 if (width1 == 0)
4751 break;
4752 if (!op0_maybe_minusp && !op1_maybe_minusp)
4753 result_width = MIN (width0, width1);
4754 result_low = MIN (low0, low1);
4755 break;
4756 case UMOD:
4757 if (width1 == 0)
4758 break;
4759 result_width = MIN (width0, width1);
4760 result_low = MIN (low0, low1);
4761 break;
4762 default:
4763 gcc_unreachable ();
4766 if (result_width < mode_width)
4767 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4769 if (result_low > 0)
4770 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4772 break;
4774 case ZERO_EXTRACT:
4775 if (CONST_INT_P (XEXP (x, 1))
4776 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4777 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4778 break;
4780 case SUBREG:
4781 /* If this is a SUBREG formed for a promoted variable that has
4782 been zero-extended, we know that at least the high-order bits
4783 are zero, though others might be too. */
4784 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4785 nonzero = GET_MODE_MASK (xmode)
4786 & cached_nonzero_bits (SUBREG_REG (x), xmode,
4787 known_x, known_mode, known_ret);
4789 /* If the inner mode is a single word for both the host and target
4790 machines, we can compute this from which bits of the inner
4791 object might be nonzero. */
4792 inner_mode = GET_MODE (SUBREG_REG (x));
4793 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
4794 && inner_width <= BITS_PER_WORD
4795 && inner_width <= HOST_BITS_PER_WIDE_INT)
4797 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4798 known_x, known_mode, known_ret);
4800 /* On a typical CISC machine, accessing an object in a wider mode
4801 causes the high-order bits to become undefined. So they are
4802 not known to be zero.
4804 On a typical RISC machine, we only have to worry about the way
4805 loads are extended. Otherwise, if we get a reload for the inner
4806 part, it may be loaded from the stack, and then we may lose all
4807 the zero bits that existed before the store to the stack. */
4808 rtx_code extend_op;
4809 if ((!WORD_REGISTER_OPERATIONS
4810 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4811 ? val_signbit_known_set_p (inner_mode, nonzero)
4812 : extend_op != ZERO_EXTEND)
4813 || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
4814 && xmode_width > inner_width)
4815 nonzero
4816 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4818 break;
4820 case ASHIFT:
4821 case ASHIFTRT:
4822 case LSHIFTRT:
4823 case ROTATE:
4824 case ROTATERT:
4825 /* The nonzero bits are in two classes: any bits within MODE
4826 that aren't in xmode are always significant. The rest of the
4827 nonzero bits are those that are significant in the operand of
4828 the shift when shifted the appropriate number of bits. This
4829 shows that high-order bits are cleared by the right shift and
4830 low-order bits by left shifts. */
4831 if (CONST_INT_P (XEXP (x, 1))
4832 && INTVAL (XEXP (x, 1)) >= 0
4833 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4834 && INTVAL (XEXP (x, 1)) < xmode_width)
4836 int count = INTVAL (XEXP (x, 1));
4837 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4838 unsigned HOST_WIDE_INT op_nonzero
4839 = cached_nonzero_bits (XEXP (x, 0), mode,
4840 known_x, known_mode, known_ret);
4841 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4842 unsigned HOST_WIDE_INT outer = 0;
4844 if (mode_width > xmode_width)
4845 outer = (op_nonzero & nonzero & ~mode_mask);
4847 switch (code)
4849 case ASHIFT:
4850 inner <<= count;
4851 break;
4853 case LSHIFTRT:
4854 inner >>= count;
4855 break;
4857 case ASHIFTRT:
4858 inner >>= count;
4860 /* If the sign bit may have been nonzero before the shift, we
4861 need to mark all the places it could have been copied to
4862 by the shift as possibly nonzero. */
4863 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4864 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4865 << (xmode_width - count));
4866 break;
4868 case ROTATE:
4869 inner = (inner << (count % xmode_width)
4870 | (inner >> (xmode_width - (count % xmode_width))))
4871 & mode_mask;
4872 break;
4874 case ROTATERT:
4875 inner = (inner >> (count % xmode_width)
4876 | (inner << (xmode_width - (count % xmode_width))))
4877 & mode_mask;
4878 break;
4880 default:
4881 gcc_unreachable ();
4884 nonzero &= (outer | inner);
4886 break;
4888 case FFS:
4889 case POPCOUNT:
4890 /* This is at most the number of bits in the mode. */
4891 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4892 break;
4894 case CLZ:
4895 /* If CLZ has a known value at zero, then the nonzero bits are
4896 that value, plus the number of bits in the mode minus one. */
4897 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4898 nonzero
4899 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4900 else
4901 nonzero = -1;
4902 break;
4904 case CTZ:
4905 /* If CTZ has a known value at zero, then the nonzero bits are
4906 that value, plus the number of bits in the mode minus one. */
4907 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4908 nonzero
4909 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4910 else
4911 nonzero = -1;
4912 break;
4914 case CLRSB:
4915 /* This is at most the number of bits in the mode minus 1. */
4916 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4917 break;
4919 case PARITY:
4920 nonzero = 1;
4921 break;
4923 case IF_THEN_ELSE:
4925 unsigned HOST_WIDE_INT nonzero_true
4926 = cached_nonzero_bits (XEXP (x, 1), mode,
4927 known_x, known_mode, known_ret);
4929 /* Don't call nonzero_bits for the second time if it cannot change
4930 anything. */
4931 if ((nonzero & nonzero_true) != nonzero)
4932 nonzero &= nonzero_true
4933 | cached_nonzero_bits (XEXP (x, 2), mode,
4934 known_x, known_mode, known_ret);
4936 break;
4938 default:
4939 break;
4942 return nonzero;
4945 /* See the macro definition above. */
4946 #undef cached_num_sign_bit_copies
4949 /* Return true if num_sign_bit_copies1 might recurse into both operands
4950 of X. */
4952 static inline bool
4953 num_sign_bit_copies_binary_arith_p (const_rtx x)
4955 if (!ARITHMETIC_P (x))
4956 return false;
4957 switch (GET_CODE (x))
4959 case IOR:
4960 case AND:
4961 case XOR:
4962 case SMIN:
4963 case SMAX:
4964 case UMIN:
4965 case UMAX:
4966 case PLUS:
4967 case MINUS:
4968 case MULT:
4969 return true;
4970 default:
4971 return false;
4975 /* The function cached_num_sign_bit_copies is a wrapper around
4976 num_sign_bit_copies1. It avoids exponential behavior in
4977 num_sign_bit_copies1 when X has identical subexpressions on the
4978 first or the second level. */
4980 static unsigned int
4981 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4982 const_rtx known_x, machine_mode known_mode,
4983 unsigned int known_ret)
4985 if (x == known_x && mode == known_mode)
4986 return known_ret;
4988 /* Try to find identical subexpressions. If found call
4989 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4990 the precomputed value for the subexpression as KNOWN_RET. */
4992 if (num_sign_bit_copies_binary_arith_p (x))
4994 rtx x0 = XEXP (x, 0);
4995 rtx x1 = XEXP (x, 1);
4997 /* Check the first level. */
4998 if (x0 == x1)
4999 return
5000 num_sign_bit_copies1 (x, mode, x0, mode,
5001 cached_num_sign_bit_copies (x0, mode, known_x,
5002 known_mode,
5003 known_ret));
5005 /* Check the second level. */
5006 if (num_sign_bit_copies_binary_arith_p (x0)
5007 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
5008 return
5009 num_sign_bit_copies1 (x, mode, x1, mode,
5010 cached_num_sign_bit_copies (x1, mode, known_x,
5011 known_mode,
5012 known_ret));
5014 if (num_sign_bit_copies_binary_arith_p (x1)
5015 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
5016 return
5017 num_sign_bit_copies1 (x, mode, x0, mode,
5018 cached_num_sign_bit_copies (x0, mode, known_x,
5019 known_mode,
5020 known_ret));
5023 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
5026 /* Return the number of bits at the high-order end of X that are known to
5027 be equal to the sign bit. X will be used in mode MODE. The returned
5028 value will always be between 1 and the number of bits in MODE. */
5030 static unsigned int
5031 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
5032 machine_mode known_mode,
5033 unsigned int known_ret)
5035 enum rtx_code code = GET_CODE (x);
5036 unsigned int bitwidth = GET_MODE_PRECISION (mode);
5037 int num0, num1, result;
5038 unsigned HOST_WIDE_INT nonzero;
5040 if (CONST_INT_P (x))
5042 /* If the constant is negative, take its 1's complement and remask.
5043 Then see how many zero bits we have. */
5044 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5045 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5046 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5047 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5049 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5052 scalar_int_mode xmode, inner_mode;
5053 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5054 return 1;
5056 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5058 /* For a smaller mode, just ignore the high bits. */
5059 if (bitwidth < xmode_width)
5061 num0 = cached_num_sign_bit_copies (x, xmode,
5062 known_x, known_mode, known_ret);
5063 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5066 if (bitwidth > xmode_width)
5068 /* If this machine does not do all register operations on the entire
5069 register and MODE is wider than the mode of X, we can say nothing
5070 at all about the high-order bits. We extend this reasoning to RISC
5071 machines for operations that might not operate on full registers. */
5072 if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5073 return 1;
5075 /* Likewise on machines that do, if the mode of the object is smaller
5076 than a word and loads of that size don't sign extend, we can say
5077 nothing about the high order bits. */
5078 if (xmode_width < BITS_PER_WORD
5079 && load_extend_op (xmode) != SIGN_EXTEND)
5080 return 1;
5083 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5084 the code in the switch below. */
5085 switch (code)
5087 case REG:
5089 #if defined(POINTERS_EXTEND_UNSIGNED)
5090 /* If pointers extend signed and this is a pointer in Pmode, say that
5091 all the bits above ptr_mode are known to be sign bit copies. */
5092 /* As we do not know which address space the pointer is referring to,
5093 we can do this only if the target does not support different pointer
5094 or address modes depending on the address space. */
5095 if (target_default_pointer_address_modes_p ()
5096 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5097 && mode == Pmode && REG_POINTER (x)
5098 && !targetm.have_ptr_extend ())
5099 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5100 #endif
5103 unsigned int copies_for_hook = 1, copies = 1;
5104 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5105 &copies_for_hook);
5107 if (new_rtx)
5108 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5109 known_mode, known_ret);
5111 if (copies > 1 || copies_for_hook > 1)
5112 return MAX (copies, copies_for_hook);
5114 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5116 break;
5118 case MEM:
5119 /* Some RISC machines sign-extend all loads of smaller than a word. */
5120 if (load_extend_op (xmode) == SIGN_EXTEND)
5121 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5122 break;
5124 case SUBREG:
5125 /* If this is a SUBREG for a promoted object that is sign-extended
5126 and we are looking at it in a wider mode, we know that at least the
5127 high-order bits are known to be sign bit copies. */
5129 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5131 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5132 known_x, known_mode, known_ret);
5133 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5136 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5138 /* For a smaller object, just ignore the high bits. */
5139 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5141 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5142 known_x, known_mode,
5143 known_ret);
5144 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5145 - bitwidth));
5148 /* For paradoxical SUBREGs on machines where all register operations
5149 affect the entire register, just look inside. Note that we are
5150 passing MODE to the recursive call, so the number of sign bit
5151 copies will remain relative to that mode, not the inner mode.
5153 This works only if loads sign extend. Otherwise, if we get a
5154 reload for the inner part, it may be loaded from the stack, and
5155 then we lose all sign bit copies that existed before the store
5156 to the stack. */
5157 if (WORD_REGISTER_OPERATIONS
5158 && load_extend_op (inner_mode) == SIGN_EXTEND
5159 && paradoxical_subreg_p (x)
5160 && MEM_P (SUBREG_REG (x)))
5161 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5162 known_x, known_mode, known_ret);
5164 break;
5166 case SIGN_EXTRACT:
5167 if (CONST_INT_P (XEXP (x, 1)))
5168 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5169 break;
5171 case SIGN_EXTEND:
5172 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5173 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5174 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5175 known_x, known_mode, known_ret));
5176 break;
5178 case TRUNCATE:
5179 /* For a smaller object, just ignore the high bits. */
5180 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5181 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5182 known_x, known_mode, known_ret);
5183 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5184 - bitwidth)));
5186 case NOT:
5187 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5188 known_x, known_mode, known_ret);
5190 case ROTATE: case ROTATERT:
5191 /* If we are rotating left by a number of bits less than the number
5192 of sign bit copies, we can just subtract that amount from the
5193 number. */
5194 if (CONST_INT_P (XEXP (x, 1))
5195 && INTVAL (XEXP (x, 1)) >= 0
5196 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5198 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5199 known_x, known_mode, known_ret);
5200 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5201 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5203 break;
5205 case NEG:
5206 /* In general, this subtracts one sign bit copy. But if the value
5207 is known to be positive, the number of sign bit copies is the
5208 same as that of the input. Finally, if the input has just one bit
5209 that might be nonzero, all the bits are copies of the sign bit. */
5210 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5211 known_x, known_mode, known_ret);
5212 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5213 return num0 > 1 ? num0 - 1 : 1;
5215 nonzero = nonzero_bits (XEXP (x, 0), mode);
5216 if (nonzero == 1)
5217 return bitwidth;
5219 if (num0 > 1
5220 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5221 num0--;
5223 return num0;
5225 case IOR: case AND: case XOR:
5226 case SMIN: case SMAX: case UMIN: case UMAX:
5227 /* Logical operations will preserve the number of sign-bit copies.
5228 MIN and MAX operations always return one of the operands. */
5229 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5230 known_x, known_mode, known_ret);
5231 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5232 known_x, known_mode, known_ret);
5234 /* If num1 is clearing some of the top bits then regardless of
5235 the other term, we are guaranteed to have at least that many
5236 high-order zero bits. */
5237 if (code == AND
5238 && num1 > 1
5239 && bitwidth <= HOST_BITS_PER_WIDE_INT
5240 && CONST_INT_P (XEXP (x, 1))
5241 && (UINTVAL (XEXP (x, 1))
5242 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5243 return num1;
5245 /* Similarly for IOR when setting high-order bits. */
5246 if (code == IOR
5247 && num1 > 1
5248 && bitwidth <= HOST_BITS_PER_WIDE_INT
5249 && CONST_INT_P (XEXP (x, 1))
5250 && (UINTVAL (XEXP (x, 1))
5251 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5252 return num1;
5254 return MIN (num0, num1);
5256 case PLUS: case MINUS:
5257 /* For addition and subtraction, we can have a 1-bit carry. However,
5258 if we are subtracting 1 from a positive number, there will not
5259 be such a carry. Furthermore, if the positive number is known to
5260 be 0 or 1, we know the result is either -1 or 0. */
5262 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5263 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5265 nonzero = nonzero_bits (XEXP (x, 0), mode);
5266 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5267 return (nonzero == 1 || nonzero == 0 ? bitwidth
5268 : bitwidth - floor_log2 (nonzero) - 1);
5271 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5272 known_x, known_mode, known_ret);
5273 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5274 known_x, known_mode, known_ret);
5275 result = MAX (1, MIN (num0, num1) - 1);
5277 return result;
5279 case MULT:
5280 /* The number of bits of the product is the sum of the number of
5281 bits of both terms. However, unless one of the terms if known
5282 to be positive, we must allow for an additional bit since negating
5283 a negative number can remove one sign bit copy. */
5285 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5286 known_x, known_mode, known_ret);
5287 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5288 known_x, known_mode, known_ret);
5290 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5291 if (result > 0
5292 && (bitwidth > HOST_BITS_PER_WIDE_INT
5293 || (((nonzero_bits (XEXP (x, 0), mode)
5294 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5295 && ((nonzero_bits (XEXP (x, 1), mode)
5296 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5297 != 0))))
5298 result--;
5300 return MAX (1, result);
5302 case UDIV:
5303 /* The result must be <= the first operand. If the first operand
5304 has the high bit set, we know nothing about the number of sign
5305 bit copies. */
5306 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5307 return 1;
5308 else if ((nonzero_bits (XEXP (x, 0), mode)
5309 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5310 return 1;
5311 else
5312 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5313 known_x, known_mode, known_ret);
5315 case UMOD:
5316 /* The result must be <= the second operand. If the second operand
5317 has (or just might have) the high bit set, we know nothing about
5318 the number of sign bit copies. */
5319 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5320 return 1;
5321 else if ((nonzero_bits (XEXP (x, 1), mode)
5322 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5323 return 1;
5324 else
5325 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5326 known_x, known_mode, known_ret);
5328 case DIV:
5329 /* Similar to unsigned division, except that we have to worry about
5330 the case where the divisor is negative, in which case we have
5331 to add 1. */
5332 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5333 known_x, known_mode, known_ret);
5334 if (result > 1
5335 && (bitwidth > HOST_BITS_PER_WIDE_INT
5336 || (nonzero_bits (XEXP (x, 1), mode)
5337 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5338 result--;
5340 return result;
5342 case MOD:
5343 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5344 known_x, known_mode, known_ret);
5345 if (result > 1
5346 && (bitwidth > HOST_BITS_PER_WIDE_INT
5347 || (nonzero_bits (XEXP (x, 1), mode)
5348 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5349 result--;
5351 return result;
5353 case ASHIFTRT:
5354 /* Shifts by a constant add to the number of bits equal to the
5355 sign bit. */
5356 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5357 known_x, known_mode, known_ret);
5358 if (CONST_INT_P (XEXP (x, 1))
5359 && INTVAL (XEXP (x, 1)) > 0
5360 && INTVAL (XEXP (x, 1)) < xmode_width)
5361 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5363 return num0;
5365 case ASHIFT:
5366 /* Left shifts destroy copies. */
5367 if (!CONST_INT_P (XEXP (x, 1))
5368 || INTVAL (XEXP (x, 1)) < 0
5369 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5370 || INTVAL (XEXP (x, 1)) >= xmode_width)
5371 return 1;
5373 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5374 known_x, known_mode, known_ret);
5375 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5377 case IF_THEN_ELSE:
5378 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5379 known_x, known_mode, known_ret);
5380 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5381 known_x, known_mode, known_ret);
5382 return MIN (num0, num1);
5384 case EQ: case NE: case GE: case GT: case LE: case LT:
5385 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5386 case GEU: case GTU: case LEU: case LTU:
5387 case UNORDERED: case ORDERED:
5388 /* If the constant is negative, take its 1's complement and remask.
5389 Then see how many zero bits we have. */
5390 nonzero = STORE_FLAG_VALUE;
5391 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5392 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5393 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5395 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5397 default:
5398 break;
5401 /* If we haven't been able to figure it out by one of the above rules,
5402 see if some of the high-order bits are known to be zero. If so,
5403 count those bits and return one less than that amount. If we can't
5404 safely compute the mask for this mode, always return BITWIDTH. */
5406 bitwidth = GET_MODE_PRECISION (mode);
5407 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5408 return 1;
5410 nonzero = nonzero_bits (x, mode);
5411 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5412 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5415 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5416 zero indicates an instruction pattern without a known cost. */
5419 pattern_cost (rtx pat, bool speed)
5421 int i, cost;
5422 rtx set;
5424 /* Extract the single set rtx from the instruction pattern. We
5425 can't use single_set since we only have the pattern. We also
5426 consider PARALLELs of a normal set and a single comparison. In
5427 that case we use the cost of the non-comparison SET operation,
5428 which is most-likely to be the real cost of this operation. */
5429 if (GET_CODE (pat) == SET)
5430 set = pat;
5431 else if (GET_CODE (pat) == PARALLEL)
5433 set = NULL_RTX;
5434 rtx comparison = NULL_RTX;
5436 for (i = 0; i < XVECLEN (pat, 0); i++)
5438 rtx x = XVECEXP (pat, 0, i);
5439 if (GET_CODE (x) == SET)
5441 if (GET_CODE (SET_SRC (x)) == COMPARE)
5443 if (comparison)
5444 return 0;
5445 comparison = x;
5447 else
5449 if (set)
5450 return 0;
5451 set = x;
5456 if (!set && comparison)
5457 set = comparison;
5459 if (!set)
5460 return 0;
5462 else
5463 return 0;
5465 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5466 return cost > 0 ? cost : COSTS_N_INSNS (1);
5469 /* Calculate the cost of a single instruction. A return value of zero
5470 indicates an instruction pattern without a known cost. */
5473 insn_cost (rtx_insn *insn, bool speed)
5475 if (targetm.insn_cost)
5476 return targetm.insn_cost (insn, speed);
5478 return pattern_cost (PATTERN (insn), speed);
5481 /* Returns estimate on cost of computing SEQ. */
5483 unsigned
5484 seq_cost (const rtx_insn *seq, bool speed)
5486 unsigned cost = 0;
5487 rtx set;
5489 for (; seq; seq = NEXT_INSN (seq))
5491 set = single_set (seq);
5492 if (set)
5493 cost += set_rtx_cost (set, speed);
5494 else if (NONDEBUG_INSN_P (seq))
5496 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5497 if (this_cost > 0)
5498 cost += this_cost;
5499 else
5500 cost++;
5504 return cost;
5507 /* Given an insn INSN and condition COND, return the condition in a
5508 canonical form to simplify testing by callers. Specifically:
5510 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5511 (2) Both operands will be machine operands; (cc0) will have been replaced.
5512 (3) If an operand is a constant, it will be the second operand.
5513 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5514 for GE, GEU, and LEU.
5516 If the condition cannot be understood, or is an inequality floating-point
5517 comparison which needs to be reversed, 0 will be returned.
5519 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5521 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5522 insn used in locating the condition was found. If a replacement test
5523 of the condition is desired, it should be placed in front of that
5524 insn and we will be sure that the inputs are still valid.
5526 If WANT_REG is nonzero, we wish the condition to be relative to that
5527 register, if possible. Therefore, do not canonicalize the condition
5528 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5529 to be a compare to a CC mode register.
5531 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5532 and at INSN. */
5535 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5536 rtx_insn **earliest,
5537 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5539 enum rtx_code code;
5540 rtx_insn *prev = insn;
5541 const_rtx set;
5542 rtx tem;
5543 rtx op0, op1;
5544 int reverse_code = 0;
5545 machine_mode mode;
5546 basic_block bb = BLOCK_FOR_INSN (insn);
5548 code = GET_CODE (cond);
5549 mode = GET_MODE (cond);
5550 op0 = XEXP (cond, 0);
5551 op1 = XEXP (cond, 1);
5553 if (reverse)
5554 code = reversed_comparison_code (cond, insn);
5555 if (code == UNKNOWN)
5556 return 0;
5558 if (earliest)
5559 *earliest = insn;
5561 /* If we are comparing a register with zero, see if the register is set
5562 in the previous insn to a COMPARE or a comparison operation. Perform
5563 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5564 in cse.c */
5566 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5567 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5568 && op1 == CONST0_RTX (GET_MODE (op0))
5569 && op0 != want_reg)
5571 /* Set nonzero when we find something of interest. */
5572 rtx x = 0;
5574 /* If comparison with cc0, import actual comparison from compare
5575 insn. */
5576 if (op0 == cc0_rtx)
5578 if ((prev = prev_nonnote_insn (prev)) == 0
5579 || !NONJUMP_INSN_P (prev)
5580 || (set = single_set (prev)) == 0
5581 || SET_DEST (set) != cc0_rtx)
5582 return 0;
5584 op0 = SET_SRC (set);
5585 op1 = CONST0_RTX (GET_MODE (op0));
5586 if (earliest)
5587 *earliest = prev;
5590 /* If this is a COMPARE, pick up the two things being compared. */
5591 if (GET_CODE (op0) == COMPARE)
5593 op1 = XEXP (op0, 1);
5594 op0 = XEXP (op0, 0);
5595 continue;
5597 else if (!REG_P (op0))
5598 break;
5600 /* Go back to the previous insn. Stop if it is not an INSN. We also
5601 stop if it isn't a single set or if it has a REG_INC note because
5602 we don't want to bother dealing with it. */
5604 prev = prev_nonnote_nondebug_insn (prev);
5606 if (prev == 0
5607 || !NONJUMP_INSN_P (prev)
5608 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5609 /* In cfglayout mode, there do not have to be labels at the
5610 beginning of a block, or jumps at the end, so the previous
5611 conditions would not stop us when we reach bb boundary. */
5612 || BLOCK_FOR_INSN (prev) != bb)
5613 break;
5615 set = set_of (op0, prev);
5617 if (set
5618 && (GET_CODE (set) != SET
5619 || !rtx_equal_p (SET_DEST (set), op0)))
5620 break;
5622 /* If this is setting OP0, get what it sets it to if it looks
5623 relevant. */
5624 if (set)
5626 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5627 #ifdef FLOAT_STORE_FLAG_VALUE
5628 REAL_VALUE_TYPE fsfv;
5629 #endif
5631 /* ??? We may not combine comparisons done in a CCmode with
5632 comparisons not done in a CCmode. This is to aid targets
5633 like Alpha that have an IEEE compliant EQ instruction, and
5634 a non-IEEE compliant BEQ instruction. The use of CCmode is
5635 actually artificial, simply to prevent the combination, but
5636 should not affect other platforms.
5638 However, we must allow VOIDmode comparisons to match either
5639 CCmode or non-CCmode comparison, because some ports have
5640 modeless comparisons inside branch patterns.
5642 ??? This mode check should perhaps look more like the mode check
5643 in simplify_comparison in combine. */
5644 if (((GET_MODE_CLASS (mode) == MODE_CC)
5645 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5646 && mode != VOIDmode
5647 && inner_mode != VOIDmode)
5648 break;
5649 if (GET_CODE (SET_SRC (set)) == COMPARE
5650 || (((code == NE
5651 || (code == LT
5652 && val_signbit_known_set_p (inner_mode,
5653 STORE_FLAG_VALUE))
5654 #ifdef FLOAT_STORE_FLAG_VALUE
5655 || (code == LT
5656 && SCALAR_FLOAT_MODE_P (inner_mode)
5657 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5658 REAL_VALUE_NEGATIVE (fsfv)))
5659 #endif
5661 && COMPARISON_P (SET_SRC (set))))
5662 x = SET_SRC (set);
5663 else if (((code == EQ
5664 || (code == GE
5665 && val_signbit_known_set_p (inner_mode,
5666 STORE_FLAG_VALUE))
5667 #ifdef FLOAT_STORE_FLAG_VALUE
5668 || (code == GE
5669 && SCALAR_FLOAT_MODE_P (inner_mode)
5670 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5671 REAL_VALUE_NEGATIVE (fsfv)))
5672 #endif
5674 && COMPARISON_P (SET_SRC (set)))
5676 reverse_code = 1;
5677 x = SET_SRC (set);
5679 else if ((code == EQ || code == NE)
5680 && GET_CODE (SET_SRC (set)) == XOR)
5681 /* Handle sequences like:
5683 (set op0 (xor X Y))
5684 ...(eq|ne op0 (const_int 0))...
5686 in which case:
5688 (eq op0 (const_int 0)) reduces to (eq X Y)
5689 (ne op0 (const_int 0)) reduces to (ne X Y)
5691 This is the form used by MIPS16, for example. */
5692 x = SET_SRC (set);
5693 else
5694 break;
5697 else if (reg_set_p (op0, prev))
5698 /* If this sets OP0, but not directly, we have to give up. */
5699 break;
5701 if (x)
5703 /* If the caller is expecting the condition to be valid at INSN,
5704 make sure X doesn't change before INSN. */
5705 if (valid_at_insn_p)
5706 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5707 break;
5708 if (COMPARISON_P (x))
5709 code = GET_CODE (x);
5710 if (reverse_code)
5712 code = reversed_comparison_code (x, prev);
5713 if (code == UNKNOWN)
5714 return 0;
5715 reverse_code = 0;
5718 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5719 if (earliest)
5720 *earliest = prev;
5724 /* If constant is first, put it last. */
5725 if (CONSTANT_P (op0))
5726 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5728 /* If OP0 is the result of a comparison, we weren't able to find what
5729 was really being compared, so fail. */
5730 if (!allow_cc_mode
5731 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5732 return 0;
5734 /* Canonicalize any ordered comparison with integers involving equality
5735 if we can do computations in the relevant mode and we do not
5736 overflow. */
5738 scalar_int_mode op0_mode;
5739 if (CONST_INT_P (op1)
5740 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5741 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5743 HOST_WIDE_INT const_val = INTVAL (op1);
5744 unsigned HOST_WIDE_INT uconst_val = const_val;
5745 unsigned HOST_WIDE_INT max_val
5746 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5748 switch (code)
5750 case LE:
5751 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5752 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5753 break;
5755 /* When cross-compiling, const_val might be sign-extended from
5756 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5757 case GE:
5758 if ((const_val & max_val)
5759 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5760 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5761 break;
5763 case LEU:
5764 if (uconst_val < max_val)
5765 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5766 break;
5768 case GEU:
5769 if (uconst_val != 0)
5770 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5771 break;
5773 default:
5774 break;
5778 /* Never return CC0; return zero instead. */
5779 if (CC0_P (op0))
5780 return 0;
5782 /* We promised to return a comparison. */
5783 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5784 if (COMPARISON_P (ret))
5785 return ret;
5786 return 0;
5789 /* Given a jump insn JUMP, return the condition that will cause it to branch
5790 to its JUMP_LABEL. If the condition cannot be understood, or is an
5791 inequality floating-point comparison which needs to be reversed, 0 will
5792 be returned.
5794 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5795 insn used in locating the condition was found. If a replacement test
5796 of the condition is desired, it should be placed in front of that
5797 insn and we will be sure that the inputs are still valid. If EARLIEST
5798 is null, the returned condition will be valid at INSN.
5800 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5801 compare CC mode register.
5803 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5806 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5807 int valid_at_insn_p)
5809 rtx cond;
5810 int reverse;
5811 rtx set;
5813 /* If this is not a standard conditional jump, we can't parse it. */
5814 if (!JUMP_P (jump)
5815 || ! any_condjump_p (jump))
5816 return 0;
5817 set = pc_set (jump);
5819 cond = XEXP (SET_SRC (set), 0);
5821 /* If this branches to JUMP_LABEL when the condition is false, reverse
5822 the condition. */
5823 reverse
5824 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5825 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5827 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5828 allow_cc_mode, valid_at_insn_p);
5831 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5832 TARGET_MODE_REP_EXTENDED.
5834 Note that we assume that the property of
5835 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5836 narrower than mode B. I.e., if A is a mode narrower than B then in
5837 order to be able to operate on it in mode B, mode A needs to
5838 satisfy the requirements set by the representation of mode B. */
5840 static void
5841 init_num_sign_bit_copies_in_rep (void)
5843 opt_scalar_int_mode in_mode_iter;
5844 scalar_int_mode mode;
5846 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5847 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5849 scalar_int_mode in_mode = in_mode_iter.require ();
5850 scalar_int_mode i;
5852 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5853 extends to the next widest mode. */
5854 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5855 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5857 /* We are in in_mode. Count how many bits outside of mode
5858 have to be copies of the sign-bit. */
5859 FOR_EACH_MODE (i, mode, in_mode)
5861 /* This must always exist (for the last iteration it will be
5862 IN_MODE). */
5863 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5865 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5866 /* We can only check sign-bit copies starting from the
5867 top-bit. In order to be able to check the bits we
5868 have already seen we pretend that subsequent bits
5869 have to be sign-bit copies too. */
5870 || num_sign_bit_copies_in_rep [in_mode][mode])
5871 num_sign_bit_copies_in_rep [in_mode][mode]
5872 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5877 /* Suppose that truncation from the machine mode of X to MODE is not a
5878 no-op. See if there is anything special about X so that we can
5879 assume it already contains a truncated value of MODE. */
5881 bool
5882 truncated_to_mode (machine_mode mode, const_rtx x)
5884 /* This register has already been used in MODE without explicit
5885 truncation. */
5886 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5887 return true;
5889 /* See if we already satisfy the requirements of MODE. If yes we
5890 can just switch to MODE. */
5891 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5892 && (num_sign_bit_copies (x, GET_MODE (x))
5893 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5894 return true;
5896 return false;
5899 /* Return true if RTX code CODE has a single sequence of zero or more
5900 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5901 entry in that case. */
5903 static bool
5904 setup_reg_subrtx_bounds (unsigned int code)
5906 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5907 unsigned int i = 0;
5908 for (; format[i] != 'e'; ++i)
5910 if (!format[i])
5911 /* No subrtxes. Leave start and count as 0. */
5912 return true;
5913 if (format[i] == 'E' || format[i] == 'V')
5914 return false;
5917 /* Record the sequence of 'e's. */
5918 rtx_all_subrtx_bounds[code].start = i;
5920 ++i;
5921 while (format[i] == 'e');
5922 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5923 /* rtl-iter.h relies on this. */
5924 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5926 for (; format[i]; ++i)
5927 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5928 return false;
5930 return true;
5933 /* Initialize rtx_all_subrtx_bounds. */
5934 void
5935 init_rtlanal (void)
5937 int i;
5938 for (i = 0; i < NUM_RTX_CODE; i++)
5940 if (!setup_reg_subrtx_bounds (i))
5941 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5942 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5943 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5946 init_num_sign_bit_copies_in_rep ();
5949 /* Check whether this is a constant pool constant. */
5950 bool
5951 constant_pool_constant_p (rtx x)
5953 x = avoid_constant_pool_reference (x);
5954 return CONST_DOUBLE_P (x);
5957 /* If M is a bitmask that selects a field of low-order bits within an item but
5958 not the entire word, return the length of the field. Return -1 otherwise.
5959 M is used in machine mode MODE. */
5962 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5964 if (mode != VOIDmode)
5966 if (!HWI_COMPUTABLE_MODE_P (mode))
5967 return -1;
5968 m &= GET_MODE_MASK (mode);
5971 return exact_log2 (m + 1);
5974 /* Return the mode of MEM's address. */
5976 scalar_int_mode
5977 get_address_mode (rtx mem)
5979 machine_mode mode;
5981 gcc_assert (MEM_P (mem));
5982 mode = GET_MODE (XEXP (mem, 0));
5983 if (mode != VOIDmode)
5984 return as_a <scalar_int_mode> (mode);
5985 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5988 /* Split up a CONST_DOUBLE or integer constant rtx
5989 into two rtx's for single words,
5990 storing in *FIRST the word that comes first in memory in the target
5991 and in *SECOND the other.
5993 TODO: This function needs to be rewritten to work on any size
5994 integer. */
5996 void
5997 split_double (rtx value, rtx *first, rtx *second)
5999 if (CONST_INT_P (value))
6001 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
6003 /* In this case the CONST_INT holds both target words.
6004 Extract the bits from it into two word-sized pieces.
6005 Sign extend each half to HOST_WIDE_INT. */
6006 unsigned HOST_WIDE_INT low, high;
6007 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
6008 unsigned bits_per_word = BITS_PER_WORD;
6010 /* Set sign_bit to the most significant bit of a word. */
6011 sign_bit = 1;
6012 sign_bit <<= bits_per_word - 1;
6014 /* Set mask so that all bits of the word are set. We could
6015 have used 1 << BITS_PER_WORD instead of basing the
6016 calculation on sign_bit. However, on machines where
6017 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
6018 compiler warning, even though the code would never be
6019 executed. */
6020 mask = sign_bit << 1;
6021 mask--;
6023 /* Set sign_extend as any remaining bits. */
6024 sign_extend = ~mask;
6026 /* Pick the lower word and sign-extend it. */
6027 low = INTVAL (value);
6028 low &= mask;
6029 if (low & sign_bit)
6030 low |= sign_extend;
6032 /* Pick the higher word, shifted to the least significant
6033 bits, and sign-extend it. */
6034 high = INTVAL (value);
6035 high >>= bits_per_word - 1;
6036 high >>= 1;
6037 high &= mask;
6038 if (high & sign_bit)
6039 high |= sign_extend;
6041 /* Store the words in the target machine order. */
6042 if (WORDS_BIG_ENDIAN)
6044 *first = GEN_INT (high);
6045 *second = GEN_INT (low);
6047 else
6049 *first = GEN_INT (low);
6050 *second = GEN_INT (high);
6053 else
6055 /* The rule for using CONST_INT for a wider mode
6056 is that we regard the value as signed.
6057 So sign-extend it. */
6058 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6059 if (WORDS_BIG_ENDIAN)
6061 *first = high;
6062 *second = value;
6064 else
6066 *first = value;
6067 *second = high;
6071 else if (GET_CODE (value) == CONST_WIDE_INT)
6073 /* All of this is scary code and needs to be converted to
6074 properly work with any size integer. */
6075 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6076 if (WORDS_BIG_ENDIAN)
6078 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6079 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6081 else
6083 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6084 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6087 else if (!CONST_DOUBLE_P (value))
6089 if (WORDS_BIG_ENDIAN)
6091 *first = const0_rtx;
6092 *second = value;
6094 else
6096 *first = value;
6097 *second = const0_rtx;
6100 else if (GET_MODE (value) == VOIDmode
6101 /* This is the old way we did CONST_DOUBLE integers. */
6102 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6104 /* In an integer, the words are defined as most and least significant.
6105 So order them by the target's convention. */
6106 if (WORDS_BIG_ENDIAN)
6108 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6109 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6111 else
6113 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6114 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6117 else
6119 long l[2];
6121 /* Note, this converts the REAL_VALUE_TYPE to the target's
6122 format, splits up the floating point double and outputs
6123 exactly 32 bits of it into each of l[0] and l[1] --
6124 not necessarily BITS_PER_WORD bits. */
6125 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6127 /* If 32 bits is an entire word for the target, but not for the host,
6128 then sign-extend on the host so that the number will look the same
6129 way on the host that it would on the target. See for instance
6130 simplify_unary_operation. The #if is needed to avoid compiler
6131 warnings. */
6133 #if HOST_BITS_PER_LONG > 32
6134 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6136 if (l[0] & ((long) 1 << 31))
6137 l[0] |= ((unsigned long) (-1) << 32);
6138 if (l[1] & ((long) 1 << 31))
6139 l[1] |= ((unsigned long) (-1) << 32);
6141 #endif
6143 *first = GEN_INT (l[0]);
6144 *second = GEN_INT (l[1]);
6148 /* Return true if X is a sign_extract or zero_extract from the least
6149 significant bit. */
6151 static bool
6152 lsb_bitfield_op_p (rtx x)
6154 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6156 machine_mode mode = GET_MODE (XEXP (x, 0));
6157 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6158 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6159 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6161 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6163 return false;
6166 /* Strip outer address "mutations" from LOC and return a pointer to the
6167 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6168 stripped expression there.
6170 "Mutations" either convert between modes or apply some kind of
6171 extension, truncation or alignment. */
6173 rtx *
6174 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6176 for (;;)
6178 enum rtx_code code = GET_CODE (*loc);
6179 if (GET_RTX_CLASS (code) == RTX_UNARY)
6180 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6181 used to convert between pointer sizes. */
6182 loc = &XEXP (*loc, 0);
6183 else if (lsb_bitfield_op_p (*loc))
6184 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6185 acts as a combined truncation and extension. */
6186 loc = &XEXP (*loc, 0);
6187 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6188 /* (and ... (const_int -X)) is used to align to X bytes. */
6189 loc = &XEXP (*loc, 0);
6190 else if (code == SUBREG
6191 && !OBJECT_P (SUBREG_REG (*loc))
6192 && subreg_lowpart_p (*loc))
6193 /* (subreg (operator ...) ...) inside and is used for mode
6194 conversion too. */
6195 loc = &SUBREG_REG (*loc);
6196 else
6197 return loc;
6198 if (outer_code)
6199 *outer_code = code;
6203 /* Return true if CODE applies some kind of scale. The scaled value is
6204 is the first operand and the scale is the second. */
6206 static bool
6207 binary_scale_code_p (enum rtx_code code)
6209 return (code == MULT
6210 || code == ASHIFT
6211 /* Needed by ARM targets. */
6212 || code == ASHIFTRT
6213 || code == LSHIFTRT
6214 || code == ROTATE
6215 || code == ROTATERT);
6218 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6219 (see address_info). Return null otherwise. */
6221 static rtx *
6222 get_base_term (rtx *inner)
6224 if (GET_CODE (*inner) == LO_SUM)
6225 inner = strip_address_mutations (&XEXP (*inner, 0));
6226 if (REG_P (*inner)
6227 || MEM_P (*inner)
6228 || GET_CODE (*inner) == SUBREG
6229 || GET_CODE (*inner) == SCRATCH)
6230 return inner;
6231 return 0;
6234 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6235 (see address_info). Return null otherwise. */
6237 static rtx *
6238 get_index_term (rtx *inner)
6240 /* At present, only constant scales are allowed. */
6241 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6242 inner = strip_address_mutations (&XEXP (*inner, 0));
6243 if (REG_P (*inner)
6244 || MEM_P (*inner)
6245 || GET_CODE (*inner) == SUBREG
6246 || GET_CODE (*inner) == SCRATCH)
6247 return inner;
6248 return 0;
6251 /* Set the segment part of address INFO to LOC, given that INNER is the
6252 unmutated value. */
6254 static void
6255 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6257 gcc_assert (!info->segment);
6258 info->segment = loc;
6259 info->segment_term = inner;
6262 /* Set the base part of address INFO to LOC, given that INNER is the
6263 unmutated value. */
6265 static void
6266 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6268 gcc_assert (!info->base);
6269 info->base = loc;
6270 info->base_term = inner;
6273 /* Set the index part of address INFO to LOC, given that INNER is the
6274 unmutated value. */
6276 static void
6277 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6279 gcc_assert (!info->index);
6280 info->index = loc;
6281 info->index_term = inner;
6284 /* Set the displacement part of address INFO to LOC, given that INNER
6285 is the constant term. */
6287 static void
6288 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6290 gcc_assert (!info->disp);
6291 info->disp = loc;
6292 info->disp_term = inner;
6295 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6296 rest of INFO accordingly. */
6298 static void
6299 decompose_incdec_address (struct address_info *info)
6301 info->autoinc_p = true;
6303 rtx *base = &XEXP (*info->inner, 0);
6304 set_address_base (info, base, base);
6305 gcc_checking_assert (info->base == info->base_term);
6307 /* These addresses are only valid when the size of the addressed
6308 value is known. */
6309 gcc_checking_assert (info->mode != VOIDmode);
6312 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6313 of INFO accordingly. */
6315 static void
6316 decompose_automod_address (struct address_info *info)
6318 info->autoinc_p = true;
6320 rtx *base = &XEXP (*info->inner, 0);
6321 set_address_base (info, base, base);
6322 gcc_checking_assert (info->base == info->base_term);
6324 rtx plus = XEXP (*info->inner, 1);
6325 gcc_assert (GET_CODE (plus) == PLUS);
6327 info->base_term2 = &XEXP (plus, 0);
6328 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6330 rtx *step = &XEXP (plus, 1);
6331 rtx *inner_step = strip_address_mutations (step);
6332 if (CONSTANT_P (*inner_step))
6333 set_address_disp (info, step, inner_step);
6334 else
6335 set_address_index (info, step, inner_step);
6338 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6339 values in [PTR, END). Return a pointer to the end of the used array. */
6341 static rtx **
6342 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6344 rtx x = *loc;
6345 if (GET_CODE (x) == PLUS)
6347 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6348 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6350 else
6352 gcc_assert (ptr != end);
6353 *ptr++ = loc;
6355 return ptr;
6358 /* Evaluate the likelihood of X being a base or index value, returning
6359 positive if it is likely to be a base, negative if it is likely to be
6360 an index, and 0 if we can't tell. Make the magnitude of the return
6361 value reflect the amount of confidence we have in the answer.
6363 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6365 static int
6366 baseness (rtx x, machine_mode mode, addr_space_t as,
6367 enum rtx_code outer_code, enum rtx_code index_code)
6369 /* Believe *_POINTER unless the address shape requires otherwise. */
6370 if (REG_P (x) && REG_POINTER (x))
6371 return 2;
6372 if (MEM_P (x) && MEM_POINTER (x))
6373 return 2;
6375 if (REG_P (x) && HARD_REGISTER_P (x))
6377 /* X is a hard register. If it only fits one of the base
6378 or index classes, choose that interpretation. */
6379 int regno = REGNO (x);
6380 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6381 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6382 if (base_p != index_p)
6383 return base_p ? 1 : -1;
6385 return 0;
6388 /* INFO->INNER describes a normal, non-automodified address.
6389 Fill in the rest of INFO accordingly. */
6391 static void
6392 decompose_normal_address (struct address_info *info)
6394 /* Treat the address as the sum of up to four values. */
6395 rtx *ops[4];
6396 size_t n_ops = extract_plus_operands (info->inner, ops,
6397 ops + ARRAY_SIZE (ops)) - ops;
6399 /* If there is more than one component, any base component is in a PLUS. */
6400 if (n_ops > 1)
6401 info->base_outer_code = PLUS;
6403 /* Try to classify each sum operand now. Leave those that could be
6404 either a base or an index in OPS. */
6405 rtx *inner_ops[4];
6406 size_t out = 0;
6407 for (size_t in = 0; in < n_ops; ++in)
6409 rtx *loc = ops[in];
6410 rtx *inner = strip_address_mutations (loc);
6411 if (CONSTANT_P (*inner))
6412 set_address_disp (info, loc, inner);
6413 else if (GET_CODE (*inner) == UNSPEC)
6414 set_address_segment (info, loc, inner);
6415 else
6417 /* The only other possibilities are a base or an index. */
6418 rtx *base_term = get_base_term (inner);
6419 rtx *index_term = get_index_term (inner);
6420 gcc_assert (base_term || index_term);
6421 if (!base_term)
6422 set_address_index (info, loc, index_term);
6423 else if (!index_term)
6424 set_address_base (info, loc, base_term);
6425 else
6427 gcc_assert (base_term == index_term);
6428 ops[out] = loc;
6429 inner_ops[out] = base_term;
6430 ++out;
6435 /* Classify the remaining OPS members as bases and indexes. */
6436 if (out == 1)
6438 /* If we haven't seen a base or an index yet, assume that this is
6439 the base. If we were confident that another term was the base
6440 or index, treat the remaining operand as the other kind. */
6441 if (!info->base)
6442 set_address_base (info, ops[0], inner_ops[0]);
6443 else
6444 set_address_index (info, ops[0], inner_ops[0]);
6446 else if (out == 2)
6448 /* In the event of a tie, assume the base comes first. */
6449 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6450 GET_CODE (*ops[1]))
6451 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6452 GET_CODE (*ops[0])))
6454 set_address_base (info, ops[0], inner_ops[0]);
6455 set_address_index (info, ops[1], inner_ops[1]);
6457 else
6459 set_address_base (info, ops[1], inner_ops[1]);
6460 set_address_index (info, ops[0], inner_ops[0]);
6463 else
6464 gcc_assert (out == 0);
6467 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6468 or VOIDmode if not known. AS is the address space associated with LOC.
6469 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6471 void
6472 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6473 addr_space_t as, enum rtx_code outer_code)
6475 memset (info, 0, sizeof (*info));
6476 info->mode = mode;
6477 info->as = as;
6478 info->addr_outer_code = outer_code;
6479 info->outer = loc;
6480 info->inner = strip_address_mutations (loc, &outer_code);
6481 info->base_outer_code = outer_code;
6482 switch (GET_CODE (*info->inner))
6484 case PRE_DEC:
6485 case PRE_INC:
6486 case POST_DEC:
6487 case POST_INC:
6488 decompose_incdec_address (info);
6489 break;
6491 case PRE_MODIFY:
6492 case POST_MODIFY:
6493 decompose_automod_address (info);
6494 break;
6496 default:
6497 decompose_normal_address (info);
6498 break;
6502 /* Describe address operand LOC in INFO. */
6504 void
6505 decompose_lea_address (struct address_info *info, rtx *loc)
6507 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6510 /* Describe the address of MEM X in INFO. */
6512 void
6513 decompose_mem_address (struct address_info *info, rtx x)
6515 gcc_assert (MEM_P (x));
6516 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6517 MEM_ADDR_SPACE (x), MEM);
6520 /* Update INFO after a change to the address it describes. */
6522 void
6523 update_address (struct address_info *info)
6525 decompose_address (info, info->outer, info->mode, info->as,
6526 info->addr_outer_code);
6529 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6530 more complicated than that. */
6532 HOST_WIDE_INT
6533 get_index_scale (const struct address_info *info)
6535 rtx index = *info->index;
6536 if (GET_CODE (index) == MULT
6537 && CONST_INT_P (XEXP (index, 1))
6538 && info->index_term == &XEXP (index, 0))
6539 return INTVAL (XEXP (index, 1));
6541 if (GET_CODE (index) == ASHIFT
6542 && CONST_INT_P (XEXP (index, 1))
6543 && info->index_term == &XEXP (index, 0))
6544 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6546 if (info->index == info->index_term)
6547 return 1;
6549 return 0;
6552 /* Return the "index code" of INFO, in the form required by
6553 ok_for_base_p_1. */
6555 enum rtx_code
6556 get_index_code (const struct address_info *info)
6558 if (info->index)
6559 return GET_CODE (*info->index);
6561 if (info->disp)
6562 return GET_CODE (*info->disp);
6564 return SCRATCH;
6567 /* Return true if RTL X contains a SYMBOL_REF. */
6569 bool
6570 contains_symbol_ref_p (const_rtx x)
6572 subrtx_iterator::array_type array;
6573 FOR_EACH_SUBRTX (iter, array, x, ALL)
6574 if (SYMBOL_REF_P (*iter))
6575 return true;
6577 return false;
6580 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6582 bool
6583 contains_symbolic_reference_p (const_rtx x)
6585 subrtx_iterator::array_type array;
6586 FOR_EACH_SUBRTX (iter, array, x, ALL)
6587 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6588 return true;
6590 return false;
6593 /* Return true if RTL X contains a constant pool address. */
6595 bool
6596 contains_constant_pool_address_p (const_rtx x)
6598 subrtx_iterator::array_type array;
6599 FOR_EACH_SUBRTX (iter, array, x, ALL)
6600 if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
6601 return true;
6603 return false;
6607 /* Return true if X contains a thread-local symbol. */
6609 bool
6610 tls_referenced_p (const_rtx x)
6612 if (!targetm.have_tls)
6613 return false;
6615 subrtx_iterator::array_type array;
6616 FOR_EACH_SUBRTX (iter, array, x, ALL)
6617 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6618 return true;
6619 return false;
6622 /* Return true if reg REGNO with mode REG_MODE would be clobbered by the
6623 clobber_high operand in CLOBBER_HIGH_OP. */
6625 bool
6626 reg_is_clobbered_by_clobber_high (unsigned int regno, machine_mode reg_mode,
6627 const_rtx clobber_high_op)
6629 unsigned int clobber_regno = REGNO (clobber_high_op);
6630 machine_mode clobber_mode = GET_MODE (clobber_high_op);
6631 unsigned char regno_nregs = hard_regno_nregs (regno, reg_mode);
6633 /* Clobber high should always span exactly one register. */
6634 gcc_assert (REG_NREGS (clobber_high_op) == 1);
6636 /* Clobber high needs to match with one of the registers in X. */
6637 if (clobber_regno < regno || clobber_regno >= regno + regno_nregs)
6638 return false;
6640 gcc_assert (reg_mode != BLKmode && clobber_mode != BLKmode);
6642 if (reg_mode == VOIDmode)
6643 return clobber_mode != VOIDmode;
6645 /* Clobber high will clobber if its size might be greater than the size of
6646 register regno. */
6647 return maybe_gt (exact_div (GET_MODE_SIZE (reg_mode), regno_nregs),
6648 GET_MODE_SIZE (clobber_mode));