re PR middle-end/91603 (Unaligned access in expand_assignment)
[official-gcc.git] / gcc / function.c
blob751d2de3bfd8ed81b6a1679338e5fe670c37d577
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "regs.h"
50 #include "emit-rtl.h"
51 #include "recog.h"
52 #include "rtl-error.h"
53 #include "alias.h"
54 #include "fold-const.h"
55 #include "stor-layout.h"
56 #include "varasm.h"
57 #include "except.h"
58 #include "dojump.h"
59 #include "explow.h"
60 #include "calls.h"
61 #include "expr.h"
62 #include "optabs-tree.h"
63 #include "output.h"
64 #include "langhooks.h"
65 #include "common/common-target.h"
66 #include "gimplify.h"
67 #include "tree-pass.h"
68 #include "cfgrtl.h"
69 #include "cfganal.h"
70 #include "cfgbuild.h"
71 #include "cfgcleanup.h"
72 #include "cfgexpand.h"
73 #include "shrink-wrap.h"
74 #include "toplev.h"
75 #include "rtl-iter.h"
76 #include "tree-dfa.h"
77 #include "tree-ssa.h"
78 #include "stringpool.h"
79 #include "attribs.h"
80 #include "gimple.h"
81 #include "options.h"
83 /* So we can assign to cfun in this file. */
84 #undef cfun
86 #ifndef STACK_ALIGNMENT_NEEDED
87 #define STACK_ALIGNMENT_NEEDED 1
88 #endif
90 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
92 /* Round a value to the lowest integer less than it that is a multiple of
93 the required alignment. Avoid using division in case the value is
94 negative. Assume the alignment is a power of two. */
95 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
97 /* Similar, but round to the next highest integer that meets the
98 alignment. */
99 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
101 /* Nonzero once virtual register instantiation has been done.
102 assign_stack_local uses frame_pointer_rtx when this is nonzero.
103 calls.c:emit_library_call_value_1 uses it to set up
104 post-instantiation libcalls. */
105 int virtuals_instantiated;
107 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
108 static GTY(()) int funcdef_no;
110 /* These variables hold pointers to functions to create and destroy
111 target specific, per-function data structures. */
112 struct machine_function * (*init_machine_status) (void);
114 /* The currently compiled function. */
115 struct function *cfun = 0;
117 /* These hashes record the prologue and epilogue insns. */
119 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
121 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
122 static bool equal (rtx a, rtx b) { return a == b; }
125 static GTY((cache))
126 hash_table<insn_cache_hasher> *prologue_insn_hash;
127 static GTY((cache))
128 hash_table<insn_cache_hasher> *epilogue_insn_hash;
131 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
132 vec<tree, va_gc> *types_used_by_cur_var_decl;
134 /* Forward declarations. */
136 static class temp_slot *find_temp_slot_from_address (rtx);
137 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
138 static void pad_below (struct args_size *, machine_mode, tree);
139 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
140 static int all_blocks (tree, tree *);
141 static tree *get_block_vector (tree, int *);
142 extern tree debug_find_var_in_block_tree (tree, tree);
143 /* We always define `record_insns' even if it's not used so that we
144 can always export `prologue_epilogue_contains'. */
145 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
146 ATTRIBUTE_UNUSED;
147 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
148 static void prepare_function_start (void);
149 static void do_clobber_return_reg (rtx, void *);
150 static void do_use_return_reg (rtx, void *);
153 /* Stack of nested functions. */
154 /* Keep track of the cfun stack. */
156 static vec<function *> function_context_stack;
158 /* Save the current context for compilation of a nested function.
159 This is called from language-specific code. */
161 void
162 push_function_context (void)
164 if (cfun == 0)
165 allocate_struct_function (NULL, false);
167 function_context_stack.safe_push (cfun);
168 set_cfun (NULL);
171 /* Restore the last saved context, at the end of a nested function.
172 This function is called from language-specific code. */
174 void
175 pop_function_context (void)
177 struct function *p = function_context_stack.pop ();
178 set_cfun (p);
179 current_function_decl = p->decl;
181 /* Reset variables that have known state during rtx generation. */
182 virtuals_instantiated = 0;
183 generating_concat_p = 1;
186 /* Clear out all parts of the state in F that can safely be discarded
187 after the function has been parsed, but not compiled, to let
188 garbage collection reclaim the memory. */
190 void
191 free_after_parsing (struct function *f)
193 f->language = 0;
196 /* Clear out all parts of the state in F that can safely be discarded
197 after the function has been compiled, to let garbage collection
198 reclaim the memory. */
200 void
201 free_after_compilation (struct function *f)
203 prologue_insn_hash = NULL;
204 epilogue_insn_hash = NULL;
206 free (crtl->emit.regno_pointer_align);
208 memset (crtl, 0, sizeof (struct rtl_data));
209 f->eh = NULL;
210 f->machine = NULL;
211 f->cfg = NULL;
212 f->curr_properties &= ~PROP_cfg;
214 regno_reg_rtx = NULL;
217 /* Return size needed for stack frame based on slots so far allocated.
218 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
219 the caller may have to do that. */
221 poly_int64
222 get_frame_size (void)
224 if (FRAME_GROWS_DOWNWARD)
225 return -frame_offset;
226 else
227 return frame_offset;
230 /* Issue an error message and return TRUE if frame OFFSET overflows in
231 the signed target pointer arithmetics for function FUNC. Otherwise
232 return FALSE. */
234 bool
235 frame_offset_overflow (poly_int64 offset, tree func)
237 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
238 unsigned HOST_WIDE_INT limit
239 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
240 /* Leave room for the fixed part of the frame. */
241 - 64 * UNITS_PER_WORD);
243 if (!coeffs_in_range_p (size, 0U, limit))
245 unsigned HOST_WIDE_INT hwisize;
246 if (size.is_constant (&hwisize))
247 error_at (DECL_SOURCE_LOCATION (func),
248 "total size of local objects %wu exceeds maximum %wu",
249 hwisize, limit);
250 else
251 error_at (DECL_SOURCE_LOCATION (func),
252 "total size of local objects exceeds maximum %wu",
253 limit);
254 return true;
257 return false;
260 /* Return the minimum spill slot alignment for a register of mode MODE. */
262 unsigned int
263 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
265 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
268 /* Return stack slot alignment in bits for TYPE and MODE. */
270 static unsigned int
271 get_stack_local_alignment (tree type, machine_mode mode)
273 unsigned int alignment;
275 if (mode == BLKmode)
276 alignment = BIGGEST_ALIGNMENT;
277 else
278 alignment = GET_MODE_ALIGNMENT (mode);
280 /* Allow the frond-end to (possibly) increase the alignment of this
281 stack slot. */
282 if (! type)
283 type = lang_hooks.types.type_for_mode (mode, 0);
285 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
288 /* Determine whether it is possible to fit a stack slot of size SIZE and
289 alignment ALIGNMENT into an area in the stack frame that starts at
290 frame offset START and has a length of LENGTH. If so, store the frame
291 offset to be used for the stack slot in *POFFSET and return true;
292 return false otherwise. This function will extend the frame size when
293 given a start/length pair that lies at the end of the frame. */
295 static bool
296 try_fit_stack_local (poly_int64 start, poly_int64 length,
297 poly_int64 size, unsigned int alignment,
298 poly_int64_pod *poffset)
300 poly_int64 this_frame_offset;
301 int frame_off, frame_alignment, frame_phase;
303 /* Calculate how many bytes the start of local variables is off from
304 stack alignment. */
305 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
306 frame_off = targetm.starting_frame_offset () % frame_alignment;
307 frame_phase = frame_off ? frame_alignment - frame_off : 0;
309 /* Round the frame offset to the specified alignment. */
311 if (FRAME_GROWS_DOWNWARD)
312 this_frame_offset
313 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
314 + frame_phase);
315 else
316 this_frame_offset
317 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
319 /* See if it fits. If this space is at the edge of the frame,
320 consider extending the frame to make it fit. Our caller relies on
321 this when allocating a new slot. */
322 if (maybe_lt (this_frame_offset, start))
324 if (known_eq (frame_offset, start))
325 frame_offset = this_frame_offset;
326 else
327 return false;
329 else if (maybe_gt (this_frame_offset + size, start + length))
331 if (known_eq (frame_offset, start + length))
332 frame_offset = this_frame_offset + size;
333 else
334 return false;
337 *poffset = this_frame_offset;
338 return true;
341 /* Create a new frame_space structure describing free space in the stack
342 frame beginning at START and ending at END, and chain it into the
343 function's frame_space_list. */
345 static void
346 add_frame_space (poly_int64 start, poly_int64 end)
348 class frame_space *space = ggc_alloc<frame_space> ();
349 space->next = crtl->frame_space_list;
350 crtl->frame_space_list = space;
351 space->start = start;
352 space->length = end - start;
355 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
356 with machine mode MODE.
358 ALIGN controls the amount of alignment for the address of the slot:
359 0 means according to MODE,
360 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
361 -2 means use BITS_PER_UNIT,
362 positive specifies alignment boundary in bits.
364 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
365 alignment and ASLK_RECORD_PAD bit set if we should remember
366 extra space we allocated for alignment purposes. When we are
367 called from assign_stack_temp_for_type, it is not set so we don't
368 track the same stack slot in two independent lists.
370 We do not round to stack_boundary here. */
373 assign_stack_local_1 (machine_mode mode, poly_int64 size,
374 int align, int kind)
376 rtx x, addr;
377 poly_int64 bigend_correction = 0;
378 poly_int64 slot_offset = 0, old_frame_offset;
379 unsigned int alignment, alignment_in_bits;
381 if (align == 0)
383 alignment = get_stack_local_alignment (NULL, mode);
384 alignment /= BITS_PER_UNIT;
386 else if (align == -1)
388 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
389 size = aligned_upper_bound (size, alignment);
391 else if (align == -2)
392 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
393 else
394 alignment = align / BITS_PER_UNIT;
396 alignment_in_bits = alignment * BITS_PER_UNIT;
398 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
399 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
401 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
402 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
405 if (SUPPORTS_STACK_ALIGNMENT)
407 if (crtl->stack_alignment_estimated < alignment_in_bits)
409 if (!crtl->stack_realign_processed)
410 crtl->stack_alignment_estimated = alignment_in_bits;
411 else
413 /* If stack is realigned and stack alignment value
414 hasn't been finalized, it is OK not to increase
415 stack_alignment_estimated. The bigger alignment
416 requirement is recorded in stack_alignment_needed
417 below. */
418 gcc_assert (!crtl->stack_realign_finalized);
419 if (!crtl->stack_realign_needed)
421 /* It is OK to reduce the alignment as long as the
422 requested size is 0 or the estimated stack
423 alignment >= mode alignment. */
424 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
425 || known_eq (size, 0)
426 || (crtl->stack_alignment_estimated
427 >= GET_MODE_ALIGNMENT (mode)));
428 alignment_in_bits = crtl->stack_alignment_estimated;
429 alignment = alignment_in_bits / BITS_PER_UNIT;
435 if (crtl->stack_alignment_needed < alignment_in_bits)
436 crtl->stack_alignment_needed = alignment_in_bits;
437 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
438 crtl->max_used_stack_slot_alignment = alignment_in_bits;
440 if (mode != BLKmode || maybe_ne (size, 0))
442 if (kind & ASLK_RECORD_PAD)
444 class frame_space **psp;
446 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
448 class frame_space *space = *psp;
449 if (!try_fit_stack_local (space->start, space->length, size,
450 alignment, &slot_offset))
451 continue;
452 *psp = space->next;
453 if (known_gt (slot_offset, space->start))
454 add_frame_space (space->start, slot_offset);
455 if (known_lt (slot_offset + size, space->start + space->length))
456 add_frame_space (slot_offset + size,
457 space->start + space->length);
458 goto found_space;
462 else if (!STACK_ALIGNMENT_NEEDED)
464 slot_offset = frame_offset;
465 goto found_space;
468 old_frame_offset = frame_offset;
470 if (FRAME_GROWS_DOWNWARD)
472 frame_offset -= size;
473 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
475 if (kind & ASLK_RECORD_PAD)
477 if (known_gt (slot_offset, frame_offset))
478 add_frame_space (frame_offset, slot_offset);
479 if (known_lt (slot_offset + size, old_frame_offset))
480 add_frame_space (slot_offset + size, old_frame_offset);
483 else
485 frame_offset += size;
486 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
488 if (kind & ASLK_RECORD_PAD)
490 if (known_gt (slot_offset, old_frame_offset))
491 add_frame_space (old_frame_offset, slot_offset);
492 if (known_lt (slot_offset + size, frame_offset))
493 add_frame_space (slot_offset + size, frame_offset);
497 found_space:
498 /* On a big-endian machine, if we are allocating more space than we will use,
499 use the least significant bytes of those that are allocated. */
500 if (mode != BLKmode)
502 /* The slot size can sometimes be smaller than the mode size;
503 e.g. the rs6000 port allocates slots with a vector mode
504 that have the size of only one element. However, the slot
505 size must always be ordered wrt to the mode size, in the
506 same way as for a subreg. */
507 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
508 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
509 bigend_correction = size - GET_MODE_SIZE (mode);
512 /* If we have already instantiated virtual registers, return the actual
513 address relative to the frame pointer. */
514 if (virtuals_instantiated)
515 addr = plus_constant (Pmode, frame_pointer_rtx,
516 trunc_int_for_mode
517 (slot_offset + bigend_correction
518 + targetm.starting_frame_offset (), Pmode));
519 else
520 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction,
523 Pmode));
525 x = gen_rtx_MEM (mode, addr);
526 set_mem_align (x, alignment_in_bits);
527 MEM_NOTRAP_P (x) = 1;
529 vec_safe_push (stack_slot_list, x);
531 if (frame_offset_overflow (frame_offset, current_function_decl))
532 frame_offset = 0;
534 return x;
537 /* Wrap up assign_stack_local_1 with last parameter as false. */
540 assign_stack_local (machine_mode mode, poly_int64 size, int align)
542 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
545 /* In order to evaluate some expressions, such as function calls returning
546 structures in memory, we need to temporarily allocate stack locations.
547 We record each allocated temporary in the following structure.
549 Associated with each temporary slot is a nesting level. When we pop up
550 one level, all temporaries associated with the previous level are freed.
551 Normally, all temporaries are freed after the execution of the statement
552 in which they were created. However, if we are inside a ({...}) grouping,
553 the result may be in a temporary and hence must be preserved. If the
554 result could be in a temporary, we preserve it if we can determine which
555 one it is in. If we cannot determine which temporary may contain the
556 result, all temporaries are preserved. A temporary is preserved by
557 pretending it was allocated at the previous nesting level. */
559 class GTY(()) temp_slot {
560 public:
561 /* Points to next temporary slot. */
562 class temp_slot *next;
563 /* Points to previous temporary slot. */
564 class temp_slot *prev;
565 /* The rtx to used to reference the slot. */
566 rtx slot;
567 /* The size, in units, of the slot. */
568 poly_int64 size;
569 /* The type of the object in the slot, or zero if it doesn't correspond
570 to a type. We use this to determine whether a slot can be reused.
571 It can be reused if objects of the type of the new slot will always
572 conflict with objects of the type of the old slot. */
573 tree type;
574 /* The alignment (in bits) of the slot. */
575 unsigned int align;
576 /* Nonzero if this temporary is currently in use. */
577 char in_use;
578 /* Nesting level at which this slot is being used. */
579 int level;
580 /* The offset of the slot from the frame_pointer, including extra space
581 for alignment. This info is for combine_temp_slots. */
582 poly_int64 base_offset;
583 /* The size of the slot, including extra space for alignment. This
584 info is for combine_temp_slots. */
585 poly_int64 full_size;
588 /* Entry for the below hash table. */
589 struct GTY((for_user)) temp_slot_address_entry {
590 hashval_t hash;
591 rtx address;
592 class temp_slot *temp_slot;
595 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
597 static hashval_t hash (temp_slot_address_entry *);
598 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
601 /* A table of addresses that represent a stack slot. The table is a mapping
602 from address RTXen to a temp slot. */
603 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
604 static size_t n_temp_slots_in_use;
606 /* Removes temporary slot TEMP from LIST. */
608 static void
609 cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
611 if (temp->next)
612 temp->next->prev = temp->prev;
613 if (temp->prev)
614 temp->prev->next = temp->next;
615 else
616 *list = temp->next;
618 temp->prev = temp->next = NULL;
621 /* Inserts temporary slot TEMP to LIST. */
623 static void
624 insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
626 temp->next = *list;
627 if (*list)
628 (*list)->prev = temp;
629 temp->prev = NULL;
630 *list = temp;
633 /* Returns the list of used temp slots at LEVEL. */
635 static class temp_slot **
636 temp_slots_at_level (int level)
638 if (level >= (int) vec_safe_length (used_temp_slots))
639 vec_safe_grow_cleared (used_temp_slots, level + 1);
641 return &(*used_temp_slots)[level];
644 /* Returns the maximal temporary slot level. */
646 static int
647 max_slot_level (void)
649 if (!used_temp_slots)
650 return -1;
652 return used_temp_slots->length () - 1;
655 /* Moves temporary slot TEMP to LEVEL. */
657 static void
658 move_slot_to_level (class temp_slot *temp, int level)
660 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
661 insert_slot_to_list (temp, temp_slots_at_level (level));
662 temp->level = level;
665 /* Make temporary slot TEMP available. */
667 static void
668 make_slot_available (class temp_slot *temp)
670 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
671 insert_slot_to_list (temp, &avail_temp_slots);
672 temp->in_use = 0;
673 temp->level = -1;
674 n_temp_slots_in_use--;
677 /* Compute the hash value for an address -> temp slot mapping.
678 The value is cached on the mapping entry. */
679 static hashval_t
680 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
682 int do_not_record = 0;
683 return hash_rtx (t->address, GET_MODE (t->address),
684 &do_not_record, NULL, false);
687 /* Return the hash value for an address -> temp slot mapping. */
688 hashval_t
689 temp_address_hasher::hash (temp_slot_address_entry *t)
691 return t->hash;
694 /* Compare two address -> temp slot mapping entries. */
695 bool
696 temp_address_hasher::equal (temp_slot_address_entry *t1,
697 temp_slot_address_entry *t2)
699 return exp_equiv_p (t1->address, t2->address, 0, true);
702 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
703 static void
704 insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
706 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
707 t->address = copy_rtx (address);
708 t->temp_slot = temp_slot;
709 t->hash = temp_slot_address_compute_hash (t);
710 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
713 /* Remove an address -> temp slot mapping entry if the temp slot is
714 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
716 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
718 const struct temp_slot_address_entry *t = *slot;
719 if (! t->temp_slot->in_use)
720 temp_slot_address_table->clear_slot (slot);
721 return 1;
724 /* Remove all mappings of addresses to unused temp slots. */
725 static void
726 remove_unused_temp_slot_addresses (void)
728 /* Use quicker clearing if there aren't any active temp slots. */
729 if (n_temp_slots_in_use)
730 temp_slot_address_table->traverse
731 <void *, remove_unused_temp_slot_addresses_1> (NULL);
732 else
733 temp_slot_address_table->empty ();
736 /* Find the temp slot corresponding to the object at address X. */
738 static class temp_slot *
739 find_temp_slot_from_address (rtx x)
741 class temp_slot *p;
742 struct temp_slot_address_entry tmp, *t;
744 /* First try the easy way:
745 See if X exists in the address -> temp slot mapping. */
746 tmp.address = x;
747 tmp.temp_slot = NULL;
748 tmp.hash = temp_slot_address_compute_hash (&tmp);
749 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
750 if (t)
751 return t->temp_slot;
753 /* If we have a sum involving a register, see if it points to a temp
754 slot. */
755 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
756 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
757 return p;
758 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
759 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
760 return p;
762 /* Last resort: Address is a virtual stack var address. */
763 poly_int64 offset;
764 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
766 int i;
767 for (i = max_slot_level (); i >= 0; i--)
768 for (p = *temp_slots_at_level (i); p; p = p->next)
769 if (known_in_range_p (offset, p->base_offset, p->full_size))
770 return p;
773 return NULL;
776 /* Allocate a temporary stack slot and record it for possible later
777 reuse.
779 MODE is the machine mode to be given to the returned rtx.
781 SIZE is the size in units of the space required. We do no rounding here
782 since assign_stack_local will do any required rounding.
784 TYPE is the type that will be used for the stack slot. */
787 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
789 unsigned int align;
790 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
791 rtx slot;
793 gcc_assert (known_size_p (size));
795 align = get_stack_local_alignment (type, mode);
797 /* Try to find an available, already-allocated temporary of the proper
798 mode which meets the size and alignment requirements. Choose the
799 smallest one with the closest alignment.
801 If assign_stack_temp is called outside of the tree->rtl expansion,
802 we cannot reuse the stack slots (that may still refer to
803 VIRTUAL_STACK_VARS_REGNUM). */
804 if (!virtuals_instantiated)
806 for (p = avail_temp_slots; p; p = p->next)
808 if (p->align >= align
809 && known_ge (p->size, size)
810 && GET_MODE (p->slot) == mode
811 && objects_must_conflict_p (p->type, type)
812 && (best_p == 0
813 || (known_eq (best_p->size, p->size)
814 ? best_p->align > p->align
815 : known_ge (best_p->size, p->size))))
817 if (p->align == align && known_eq (p->size, size))
819 selected = p;
820 cut_slot_from_list (selected, &avail_temp_slots);
821 best_p = 0;
822 break;
824 best_p = p;
829 /* Make our best, if any, the one to use. */
830 if (best_p)
832 selected = best_p;
833 cut_slot_from_list (selected, &avail_temp_slots);
835 /* If there are enough aligned bytes left over, make them into a new
836 temp_slot so that the extra bytes don't get wasted. Do this only
837 for BLKmode slots, so that we can be sure of the alignment. */
838 if (GET_MODE (best_p->slot) == BLKmode)
840 int alignment = best_p->align / BITS_PER_UNIT;
841 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
843 if (known_ge (best_p->size - rounded_size, alignment))
845 p = ggc_alloc<temp_slot> ();
846 p->in_use = 0;
847 p->size = best_p->size - rounded_size;
848 p->base_offset = best_p->base_offset + rounded_size;
849 p->full_size = best_p->full_size - rounded_size;
850 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
851 p->align = best_p->align;
852 p->type = best_p->type;
853 insert_slot_to_list (p, &avail_temp_slots);
855 vec_safe_push (stack_slot_list, p->slot);
857 best_p->size = rounded_size;
858 best_p->full_size = rounded_size;
863 /* If we still didn't find one, make a new temporary. */
864 if (selected == 0)
866 poly_int64 frame_offset_old = frame_offset;
868 p = ggc_alloc<temp_slot> ();
870 /* We are passing an explicit alignment request to assign_stack_local.
871 One side effect of that is assign_stack_local will not round SIZE
872 to ensure the frame offset remains suitably aligned.
874 So for requests which depended on the rounding of SIZE, we go ahead
875 and round it now. We also make sure ALIGNMENT is at least
876 BIGGEST_ALIGNMENT. */
877 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
878 p->slot = assign_stack_local_1 (mode,
879 (mode == BLKmode
880 ? aligned_upper_bound (size,
881 (int) align
882 / BITS_PER_UNIT)
883 : size),
884 align, 0);
886 p->align = align;
888 /* The following slot size computation is necessary because we don't
889 know the actual size of the temporary slot until assign_stack_local
890 has performed all the frame alignment and size rounding for the
891 requested temporary. Note that extra space added for alignment
892 can be either above or below this stack slot depending on which
893 way the frame grows. We include the extra space if and only if it
894 is above this slot. */
895 if (FRAME_GROWS_DOWNWARD)
896 p->size = frame_offset_old - frame_offset;
897 else
898 p->size = size;
900 /* Now define the fields used by combine_temp_slots. */
901 if (FRAME_GROWS_DOWNWARD)
903 p->base_offset = frame_offset;
904 p->full_size = frame_offset_old - frame_offset;
906 else
908 p->base_offset = frame_offset_old;
909 p->full_size = frame_offset - frame_offset_old;
912 selected = p;
915 p = selected;
916 p->in_use = 1;
917 p->type = type;
918 p->level = temp_slot_level;
919 n_temp_slots_in_use++;
921 pp = temp_slots_at_level (p->level);
922 insert_slot_to_list (p, pp);
923 insert_temp_slot_address (XEXP (p->slot, 0), p);
925 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
926 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
927 vec_safe_push (stack_slot_list, slot);
929 /* If we know the alias set for the memory that will be used, use
930 it. If there's no TYPE, then we don't know anything about the
931 alias set for the memory. */
932 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
933 set_mem_align (slot, align);
935 /* If a type is specified, set the relevant flags. */
936 if (type != 0)
937 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
938 MEM_NOTRAP_P (slot) = 1;
940 return slot;
943 /* Allocate a temporary stack slot and record it for possible later
944 reuse. First two arguments are same as in preceding function. */
947 assign_stack_temp (machine_mode mode, poly_int64 size)
949 return assign_stack_temp_for_type (mode, size, NULL_TREE);
952 /* Assign a temporary.
953 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
954 and so that should be used in error messages. In either case, we
955 allocate of the given type.
956 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
957 it is 0 if a register is OK.
958 DONT_PROMOTE is 1 if we should not promote values in register
959 to wider modes. */
962 assign_temp (tree type_or_decl, int memory_required,
963 int dont_promote ATTRIBUTE_UNUSED)
965 tree type, decl;
966 machine_mode mode;
967 #ifdef PROMOTE_MODE
968 int unsignedp;
969 #endif
971 if (DECL_P (type_or_decl))
972 decl = type_or_decl, type = TREE_TYPE (decl);
973 else
974 decl = NULL, type = type_or_decl;
976 mode = TYPE_MODE (type);
977 #ifdef PROMOTE_MODE
978 unsignedp = TYPE_UNSIGNED (type);
979 #endif
981 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
982 end. See also create_tmp_var for the gimplification-time check. */
983 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
985 if (mode == BLKmode || memory_required)
987 poly_int64 size;
988 rtx tmp;
990 /* Unfortunately, we don't yet know how to allocate variable-sized
991 temporaries. However, sometimes we can find a fixed upper limit on
992 the size, so try that instead. */
993 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
994 size = max_int_size_in_bytes (type);
996 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
997 problems with allocating the stack space. */
998 if (known_eq (size, 0))
999 size = 1;
1001 /* The size of the temporary may be too large to fit into an integer. */
1002 /* ??? Not sure this should happen except for user silliness, so limit
1003 this to things that aren't compiler-generated temporaries. The
1004 rest of the time we'll die in assign_stack_temp_for_type. */
1005 if (decl
1006 && !known_size_p (size)
1007 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1009 error ("size of variable %q+D is too large", decl);
1010 size = 1;
1013 tmp = assign_stack_temp_for_type (mode, size, type);
1014 return tmp;
1017 #ifdef PROMOTE_MODE
1018 if (! dont_promote)
1019 mode = promote_mode (type, mode, &unsignedp);
1020 #endif
1022 return gen_reg_rtx (mode);
1025 /* Combine temporary stack slots which are adjacent on the stack.
1027 This allows for better use of already allocated stack space. This is only
1028 done for BLKmode slots because we can be sure that we won't have alignment
1029 problems in this case. */
1031 static void
1032 combine_temp_slots (void)
1034 class temp_slot *p, *q, *next, *next_q;
1035 int num_slots;
1037 /* We can't combine slots, because the information about which slot
1038 is in which alias set will be lost. */
1039 if (flag_strict_aliasing)
1040 return;
1042 /* If there are a lot of temp slots, don't do anything unless
1043 high levels of optimization. */
1044 if (! flag_expensive_optimizations)
1045 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1046 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1047 return;
1049 for (p = avail_temp_slots; p; p = next)
1051 int delete_p = 0;
1053 next = p->next;
1055 if (GET_MODE (p->slot) != BLKmode)
1056 continue;
1058 for (q = p->next; q; q = next_q)
1060 int delete_q = 0;
1062 next_q = q->next;
1064 if (GET_MODE (q->slot) != BLKmode)
1065 continue;
1067 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1069 /* Q comes after P; combine Q into P. */
1070 p->size += q->size;
1071 p->full_size += q->full_size;
1072 delete_q = 1;
1074 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1076 /* P comes after Q; combine P into Q. */
1077 q->size += p->size;
1078 q->full_size += p->full_size;
1079 delete_p = 1;
1080 break;
1082 if (delete_q)
1083 cut_slot_from_list (q, &avail_temp_slots);
1086 /* Either delete P or advance past it. */
1087 if (delete_p)
1088 cut_slot_from_list (p, &avail_temp_slots);
1092 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1093 slot that previously was known by OLD_RTX. */
1095 void
1096 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1098 class temp_slot *p;
1100 if (rtx_equal_p (old_rtx, new_rtx))
1101 return;
1103 p = find_temp_slot_from_address (old_rtx);
1105 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1106 NEW_RTX is a register, see if one operand of the PLUS is a
1107 temporary location. If so, NEW_RTX points into it. Otherwise,
1108 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1109 in common between them. If so, try a recursive call on those
1110 values. */
1111 if (p == 0)
1113 if (GET_CODE (old_rtx) != PLUS)
1114 return;
1116 if (REG_P (new_rtx))
1118 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1119 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1120 return;
1122 else if (GET_CODE (new_rtx) != PLUS)
1123 return;
1125 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1126 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1127 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1128 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1129 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1130 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1131 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1132 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1134 return;
1137 /* Otherwise add an alias for the temp's address. */
1138 insert_temp_slot_address (new_rtx, p);
1141 /* If X could be a reference to a temporary slot, mark that slot as
1142 belonging to the to one level higher than the current level. If X
1143 matched one of our slots, just mark that one. Otherwise, we can't
1144 easily predict which it is, so upgrade all of them.
1146 This is called when an ({...}) construct occurs and a statement
1147 returns a value in memory. */
1149 void
1150 preserve_temp_slots (rtx x)
1152 class temp_slot *p = 0, *next;
1154 if (x == 0)
1155 return;
1157 /* If X is a register that is being used as a pointer, see if we have
1158 a temporary slot we know it points to. */
1159 if (REG_P (x) && REG_POINTER (x))
1160 p = find_temp_slot_from_address (x);
1162 /* If X is not in memory or is at a constant address, it cannot be in
1163 a temporary slot. */
1164 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1165 return;
1167 /* First see if we can find a match. */
1168 if (p == 0)
1169 p = find_temp_slot_from_address (XEXP (x, 0));
1171 if (p != 0)
1173 if (p->level == temp_slot_level)
1174 move_slot_to_level (p, temp_slot_level - 1);
1175 return;
1178 /* Otherwise, preserve all non-kept slots at this level. */
1179 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1181 next = p->next;
1182 move_slot_to_level (p, temp_slot_level - 1);
1186 /* Free all temporaries used so far. This is normally called at the
1187 end of generating code for a statement. */
1189 void
1190 free_temp_slots (void)
1192 class temp_slot *p, *next;
1193 bool some_available = false;
1195 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1197 next = p->next;
1198 make_slot_available (p);
1199 some_available = true;
1202 if (some_available)
1204 remove_unused_temp_slot_addresses ();
1205 combine_temp_slots ();
1209 /* Push deeper into the nesting level for stack temporaries. */
1211 void
1212 push_temp_slots (void)
1214 temp_slot_level++;
1217 /* Pop a temporary nesting level. All slots in use in the current level
1218 are freed. */
1220 void
1221 pop_temp_slots (void)
1223 free_temp_slots ();
1224 temp_slot_level--;
1227 /* Initialize temporary slots. */
1229 void
1230 init_temp_slots (void)
1232 /* We have not allocated any temporaries yet. */
1233 avail_temp_slots = 0;
1234 vec_alloc (used_temp_slots, 0);
1235 temp_slot_level = 0;
1236 n_temp_slots_in_use = 0;
1238 /* Set up the table to map addresses to temp slots. */
1239 if (! temp_slot_address_table)
1240 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1241 else
1242 temp_slot_address_table->empty ();
1245 /* Functions and data structures to keep track of the values hard regs
1246 had at the start of the function. */
1248 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1249 and has_hard_reg_initial_val.. */
1250 struct GTY(()) initial_value_pair {
1251 rtx hard_reg;
1252 rtx pseudo;
1254 /* ??? This could be a VEC but there is currently no way to define an
1255 opaque VEC type. This could be worked around by defining struct
1256 initial_value_pair in function.h. */
1257 struct GTY(()) initial_value_struct {
1258 int num_entries;
1259 int max_entries;
1260 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1263 /* If a pseudo represents an initial hard reg (or expression), return
1264 it, else return NULL_RTX. */
1267 get_hard_reg_initial_reg (rtx reg)
1269 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1270 int i;
1272 if (ivs == 0)
1273 return NULL_RTX;
1275 for (i = 0; i < ivs->num_entries; i++)
1276 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1277 return ivs->entries[i].hard_reg;
1279 return NULL_RTX;
1282 /* Make sure that there's a pseudo register of mode MODE that stores the
1283 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1286 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1288 struct initial_value_struct *ivs;
1289 rtx rv;
1291 rv = has_hard_reg_initial_val (mode, regno);
1292 if (rv)
1293 return rv;
1295 ivs = crtl->hard_reg_initial_vals;
1296 if (ivs == 0)
1298 ivs = ggc_alloc<initial_value_struct> ();
1299 ivs->num_entries = 0;
1300 ivs->max_entries = 5;
1301 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1302 crtl->hard_reg_initial_vals = ivs;
1305 if (ivs->num_entries >= ivs->max_entries)
1307 ivs->max_entries += 5;
1308 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1309 ivs->max_entries);
1312 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1313 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1315 return ivs->entries[ivs->num_entries++].pseudo;
1318 /* See if get_hard_reg_initial_val has been used to create a pseudo
1319 for the initial value of hard register REGNO in mode MODE. Return
1320 the associated pseudo if so, otherwise return NULL. */
1323 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1325 struct initial_value_struct *ivs;
1326 int i;
1328 ivs = crtl->hard_reg_initial_vals;
1329 if (ivs != 0)
1330 for (i = 0; i < ivs->num_entries; i++)
1331 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1332 && REGNO (ivs->entries[i].hard_reg) == regno)
1333 return ivs->entries[i].pseudo;
1335 return NULL_RTX;
1338 unsigned int
1339 emit_initial_value_sets (void)
1341 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1342 int i;
1343 rtx_insn *seq;
1345 if (ivs == 0)
1346 return 0;
1348 start_sequence ();
1349 for (i = 0; i < ivs->num_entries; i++)
1350 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1351 seq = get_insns ();
1352 end_sequence ();
1354 emit_insn_at_entry (seq);
1355 return 0;
1358 /* Return the hardreg-pseudoreg initial values pair entry I and
1359 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1360 bool
1361 initial_value_entry (int i, rtx *hreg, rtx *preg)
1363 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1364 if (!ivs || i >= ivs->num_entries)
1365 return false;
1367 *hreg = ivs->entries[i].hard_reg;
1368 *preg = ivs->entries[i].pseudo;
1369 return true;
1372 /* These routines are responsible for converting virtual register references
1373 to the actual hard register references once RTL generation is complete.
1375 The following four variables are used for communication between the
1376 routines. They contain the offsets of the virtual registers from their
1377 respective hard registers. */
1379 static poly_int64 in_arg_offset;
1380 static poly_int64 var_offset;
1381 static poly_int64 dynamic_offset;
1382 static poly_int64 out_arg_offset;
1383 static poly_int64 cfa_offset;
1385 /* In most machines, the stack pointer register is equivalent to the bottom
1386 of the stack. */
1388 #ifndef STACK_POINTER_OFFSET
1389 #define STACK_POINTER_OFFSET 0
1390 #endif
1392 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1393 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1394 #endif
1396 /* If not defined, pick an appropriate default for the offset of dynamically
1397 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1398 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1400 #ifndef STACK_DYNAMIC_OFFSET
1402 /* The bottom of the stack points to the actual arguments. If
1403 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1404 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1405 stack space for register parameters is not pushed by the caller, but
1406 rather part of the fixed stack areas and hence not included in
1407 `crtl->outgoing_args_size'. Nevertheless, we must allow
1408 for it when allocating stack dynamic objects. */
1410 #ifdef INCOMING_REG_PARM_STACK_SPACE
1411 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1412 ((ACCUMULATE_OUTGOING_ARGS \
1413 ? (crtl->outgoing_args_size \
1414 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1415 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1416 : 0) + (STACK_POINTER_OFFSET))
1417 #else
1418 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1419 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1420 + (STACK_POINTER_OFFSET))
1421 #endif
1422 #endif
1425 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1426 is a virtual register, return the equivalent hard register and set the
1427 offset indirectly through the pointer. Otherwise, return 0. */
1429 static rtx
1430 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1432 rtx new_rtx;
1433 poly_int64 offset;
1435 if (x == virtual_incoming_args_rtx)
1437 if (stack_realign_drap)
1439 /* Replace virtual_incoming_args_rtx with internal arg
1440 pointer if DRAP is used to realign stack. */
1441 new_rtx = crtl->args.internal_arg_pointer;
1442 offset = 0;
1444 else
1445 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1447 else if (x == virtual_stack_vars_rtx)
1448 new_rtx = frame_pointer_rtx, offset = var_offset;
1449 else if (x == virtual_stack_dynamic_rtx)
1450 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1451 else if (x == virtual_outgoing_args_rtx)
1452 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1453 else if (x == virtual_cfa_rtx)
1455 #ifdef FRAME_POINTER_CFA_OFFSET
1456 new_rtx = frame_pointer_rtx;
1457 #else
1458 new_rtx = arg_pointer_rtx;
1459 #endif
1460 offset = cfa_offset;
1462 else if (x == virtual_preferred_stack_boundary_rtx)
1464 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1465 offset = 0;
1467 else
1468 return NULL_RTX;
1470 *poffset = offset;
1471 return new_rtx;
1474 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1475 registers present inside of *LOC. The expression is simplified,
1476 as much as possible, but is not to be considered "valid" in any sense
1477 implied by the target. Return true if any change is made. */
1479 static bool
1480 instantiate_virtual_regs_in_rtx (rtx *loc)
1482 if (!*loc)
1483 return false;
1484 bool changed = false;
1485 subrtx_ptr_iterator::array_type array;
1486 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1488 rtx *loc = *iter;
1489 if (rtx x = *loc)
1491 rtx new_rtx;
1492 poly_int64 offset;
1493 switch (GET_CODE (x))
1495 case REG:
1496 new_rtx = instantiate_new_reg (x, &offset);
1497 if (new_rtx)
1499 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1500 changed = true;
1502 iter.skip_subrtxes ();
1503 break;
1505 case PLUS:
1506 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1507 if (new_rtx)
1509 XEXP (x, 0) = new_rtx;
1510 *loc = plus_constant (GET_MODE (x), x, offset, true);
1511 changed = true;
1512 iter.skip_subrtxes ();
1513 break;
1516 /* FIXME -- from old code */
1517 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1518 we can commute the PLUS and SUBREG because pointers into the
1519 frame are well-behaved. */
1520 break;
1522 default:
1523 break;
1527 return changed;
1530 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1531 matches the predicate for insn CODE operand OPERAND. */
1533 static int
1534 safe_insn_predicate (int code, int operand, rtx x)
1536 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1539 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1540 registers present inside of insn. The result will be a valid insn. */
1542 static void
1543 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1545 poly_int64 offset;
1546 int insn_code, i;
1547 bool any_change = false;
1548 rtx set, new_rtx, x;
1549 rtx_insn *seq;
1551 /* There are some special cases to be handled first. */
1552 set = single_set (insn);
1553 if (set)
1555 /* We're allowed to assign to a virtual register. This is interpreted
1556 to mean that the underlying register gets assigned the inverse
1557 transformation. This is used, for example, in the handling of
1558 non-local gotos. */
1559 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1560 if (new_rtx)
1562 start_sequence ();
1564 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1565 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1566 gen_int_mode (-offset, GET_MODE (new_rtx)));
1567 x = force_operand (x, new_rtx);
1568 if (x != new_rtx)
1569 emit_move_insn (new_rtx, x);
1571 seq = get_insns ();
1572 end_sequence ();
1574 emit_insn_before (seq, insn);
1575 delete_insn (insn);
1576 return;
1579 /* Handle a straight copy from a virtual register by generating a
1580 new add insn. The difference between this and falling through
1581 to the generic case is avoiding a new pseudo and eliminating a
1582 move insn in the initial rtl stream. */
1583 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1584 if (new_rtx
1585 && maybe_ne (offset, 0)
1586 && REG_P (SET_DEST (set))
1587 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1589 start_sequence ();
1591 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1592 gen_int_mode (offset,
1593 GET_MODE (SET_DEST (set))),
1594 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1595 if (x != SET_DEST (set))
1596 emit_move_insn (SET_DEST (set), x);
1598 seq = get_insns ();
1599 end_sequence ();
1601 emit_insn_before (seq, insn);
1602 delete_insn (insn);
1603 return;
1606 extract_insn (insn);
1607 insn_code = INSN_CODE (insn);
1609 /* Handle a plus involving a virtual register by determining if the
1610 operands remain valid if they're modified in place. */
1611 poly_int64 delta;
1612 if (GET_CODE (SET_SRC (set)) == PLUS
1613 && recog_data.n_operands >= 3
1614 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1615 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1616 && poly_int_rtx_p (recog_data.operand[2], &delta)
1617 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1619 offset += delta;
1621 /* If the sum is zero, then replace with a plain move. */
1622 if (known_eq (offset, 0)
1623 && REG_P (SET_DEST (set))
1624 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1626 start_sequence ();
1627 emit_move_insn (SET_DEST (set), new_rtx);
1628 seq = get_insns ();
1629 end_sequence ();
1631 emit_insn_before (seq, insn);
1632 delete_insn (insn);
1633 return;
1636 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1638 /* Using validate_change and apply_change_group here leaves
1639 recog_data in an invalid state. Since we know exactly what
1640 we want to check, do those two by hand. */
1641 if (safe_insn_predicate (insn_code, 1, new_rtx)
1642 && safe_insn_predicate (insn_code, 2, x))
1644 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1645 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1646 any_change = true;
1648 /* Fall through into the regular operand fixup loop in
1649 order to take care of operands other than 1 and 2. */
1653 else
1655 extract_insn (insn);
1656 insn_code = INSN_CODE (insn);
1659 /* In the general case, we expect virtual registers to appear only in
1660 operands, and then only as either bare registers or inside memories. */
1661 for (i = 0; i < recog_data.n_operands; ++i)
1663 x = recog_data.operand[i];
1664 switch (GET_CODE (x))
1666 case MEM:
1668 rtx addr = XEXP (x, 0);
1670 if (!instantiate_virtual_regs_in_rtx (&addr))
1671 continue;
1673 start_sequence ();
1674 x = replace_equiv_address (x, addr, true);
1675 /* It may happen that the address with the virtual reg
1676 was valid (e.g. based on the virtual stack reg, which might
1677 be acceptable to the predicates with all offsets), whereas
1678 the address now isn't anymore, for instance when the address
1679 is still offsetted, but the base reg isn't virtual-stack-reg
1680 anymore. Below we would do a force_reg on the whole operand,
1681 but this insn might actually only accept memory. Hence,
1682 before doing that last resort, try to reload the address into
1683 a register, so this operand stays a MEM. */
1684 if (!safe_insn_predicate (insn_code, i, x))
1686 addr = force_reg (GET_MODE (addr), addr);
1687 x = replace_equiv_address (x, addr, true);
1689 seq = get_insns ();
1690 end_sequence ();
1691 if (seq)
1692 emit_insn_before (seq, insn);
1694 break;
1696 case REG:
1697 new_rtx = instantiate_new_reg (x, &offset);
1698 if (new_rtx == NULL)
1699 continue;
1700 if (known_eq (offset, 0))
1701 x = new_rtx;
1702 else
1704 start_sequence ();
1706 /* Careful, special mode predicates may have stuff in
1707 insn_data[insn_code].operand[i].mode that isn't useful
1708 to us for computing a new value. */
1709 /* ??? Recognize address_operand and/or "p" constraints
1710 to see if (plus new offset) is a valid before we put
1711 this through expand_simple_binop. */
1712 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1713 gen_int_mode (offset, GET_MODE (x)),
1714 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1715 seq = get_insns ();
1716 end_sequence ();
1717 emit_insn_before (seq, insn);
1719 break;
1721 case SUBREG:
1722 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1723 if (new_rtx == NULL)
1724 continue;
1725 if (maybe_ne (offset, 0))
1727 start_sequence ();
1728 new_rtx = expand_simple_binop
1729 (GET_MODE (new_rtx), PLUS, new_rtx,
1730 gen_int_mode (offset, GET_MODE (new_rtx)),
1731 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1732 seq = get_insns ();
1733 end_sequence ();
1734 emit_insn_before (seq, insn);
1736 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1737 GET_MODE (new_rtx), SUBREG_BYTE (x));
1738 gcc_assert (x);
1739 break;
1741 default:
1742 continue;
1745 /* At this point, X contains the new value for the operand.
1746 Validate the new value vs the insn predicate. Note that
1747 asm insns will have insn_code -1 here. */
1748 if (!safe_insn_predicate (insn_code, i, x))
1750 start_sequence ();
1751 if (REG_P (x))
1753 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1754 x = copy_to_reg (x);
1756 else
1757 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1758 seq = get_insns ();
1759 end_sequence ();
1760 if (seq)
1761 emit_insn_before (seq, insn);
1764 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1765 any_change = true;
1768 if (any_change)
1770 /* Propagate operand changes into the duplicates. */
1771 for (i = 0; i < recog_data.n_dups; ++i)
1772 *recog_data.dup_loc[i]
1773 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1775 /* Force re-recognition of the instruction for validation. */
1776 INSN_CODE (insn) = -1;
1779 if (asm_noperands (PATTERN (insn)) >= 0)
1781 if (!check_asm_operands (PATTERN (insn)))
1783 error_for_asm (insn, "impossible constraint in %<asm%>");
1784 /* For asm goto, instead of fixing up all the edges
1785 just clear the template and clear input operands
1786 (asm goto doesn't have any output operands). */
1787 if (JUMP_P (insn))
1789 rtx asm_op = extract_asm_operands (PATTERN (insn));
1790 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1791 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1792 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1794 else
1795 delete_insn (insn);
1798 else
1800 if (recog_memoized (insn) < 0)
1801 fatal_insn_not_found (insn);
1805 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1806 do any instantiation required. */
1808 void
1809 instantiate_decl_rtl (rtx x)
1811 rtx addr;
1813 if (x == 0)
1814 return;
1816 /* If this is a CONCAT, recurse for the pieces. */
1817 if (GET_CODE (x) == CONCAT)
1819 instantiate_decl_rtl (XEXP (x, 0));
1820 instantiate_decl_rtl (XEXP (x, 1));
1821 return;
1824 /* If this is not a MEM, no need to do anything. Similarly if the
1825 address is a constant or a register that is not a virtual register. */
1826 if (!MEM_P (x))
1827 return;
1829 addr = XEXP (x, 0);
1830 if (CONSTANT_P (addr)
1831 || (REG_P (addr)
1832 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1833 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1834 return;
1836 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1839 /* Helper for instantiate_decls called via walk_tree: Process all decls
1840 in the given DECL_VALUE_EXPR. */
1842 static tree
1843 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1845 tree t = *tp;
1846 if (! EXPR_P (t))
1848 *walk_subtrees = 0;
1849 if (DECL_P (t))
1851 if (DECL_RTL_SET_P (t))
1852 instantiate_decl_rtl (DECL_RTL (t));
1853 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1854 && DECL_INCOMING_RTL (t))
1855 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1856 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1857 && DECL_HAS_VALUE_EXPR_P (t))
1859 tree v = DECL_VALUE_EXPR (t);
1860 walk_tree (&v, instantiate_expr, NULL, NULL);
1864 return NULL;
1867 /* Subroutine of instantiate_decls: Process all decls in the given
1868 BLOCK node and all its subblocks. */
1870 static void
1871 instantiate_decls_1 (tree let)
1873 tree t;
1875 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1877 if (DECL_RTL_SET_P (t))
1878 instantiate_decl_rtl (DECL_RTL (t));
1879 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1881 tree v = DECL_VALUE_EXPR (t);
1882 walk_tree (&v, instantiate_expr, NULL, NULL);
1886 /* Process all subblocks. */
1887 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1888 instantiate_decls_1 (t);
1891 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1892 all virtual registers in their DECL_RTL's. */
1894 static void
1895 instantiate_decls (tree fndecl)
1897 tree decl;
1898 unsigned ix;
1900 /* Process all parameters of the function. */
1901 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1903 instantiate_decl_rtl (DECL_RTL (decl));
1904 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1905 if (DECL_HAS_VALUE_EXPR_P (decl))
1907 tree v = DECL_VALUE_EXPR (decl);
1908 walk_tree (&v, instantiate_expr, NULL, NULL);
1912 if ((decl = DECL_RESULT (fndecl))
1913 && TREE_CODE (decl) == RESULT_DECL)
1915 if (DECL_RTL_SET_P (decl))
1916 instantiate_decl_rtl (DECL_RTL (decl));
1917 if (DECL_HAS_VALUE_EXPR_P (decl))
1919 tree v = DECL_VALUE_EXPR (decl);
1920 walk_tree (&v, instantiate_expr, NULL, NULL);
1924 /* Process the saved static chain if it exists. */
1925 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1926 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1927 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1929 /* Now process all variables defined in the function or its subblocks. */
1930 if (DECL_INITIAL (fndecl))
1931 instantiate_decls_1 (DECL_INITIAL (fndecl));
1933 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1934 if (DECL_RTL_SET_P (decl))
1935 instantiate_decl_rtl (DECL_RTL (decl));
1936 vec_free (cfun->local_decls);
1939 /* Pass through the INSNS of function FNDECL and convert virtual register
1940 references to hard register references. */
1942 static unsigned int
1943 instantiate_virtual_regs (void)
1945 rtx_insn *insn;
1947 /* Compute the offsets to use for this function. */
1948 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1949 var_offset = targetm.starting_frame_offset ();
1950 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1951 out_arg_offset = STACK_POINTER_OFFSET;
1952 #ifdef FRAME_POINTER_CFA_OFFSET
1953 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1954 #else
1955 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1956 #endif
1958 /* Initialize recognition, indicating that volatile is OK. */
1959 init_recog ();
1961 /* Scan through all the insns, instantiating every virtual register still
1962 present. */
1963 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1964 if (INSN_P (insn))
1966 /* These patterns in the instruction stream can never be recognized.
1967 Fortunately, they shouldn't contain virtual registers either. */
1968 if (GET_CODE (PATTERN (insn)) == USE
1969 || GET_CODE (PATTERN (insn)) == CLOBBER
1970 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1971 || DEBUG_MARKER_INSN_P (insn))
1972 continue;
1973 else if (DEBUG_BIND_INSN_P (insn))
1974 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1975 else
1976 instantiate_virtual_regs_in_insn (insn);
1978 if (insn->deleted ())
1979 continue;
1981 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1983 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1984 if (CALL_P (insn))
1985 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1988 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1989 instantiate_decls (current_function_decl);
1991 targetm.instantiate_decls ();
1993 /* Indicate that, from now on, assign_stack_local should use
1994 frame_pointer_rtx. */
1995 virtuals_instantiated = 1;
1997 return 0;
2000 namespace {
2002 const pass_data pass_data_instantiate_virtual_regs =
2004 RTL_PASS, /* type */
2005 "vregs", /* name */
2006 OPTGROUP_NONE, /* optinfo_flags */
2007 TV_NONE, /* tv_id */
2008 0, /* properties_required */
2009 0, /* properties_provided */
2010 0, /* properties_destroyed */
2011 0, /* todo_flags_start */
2012 0, /* todo_flags_finish */
2015 class pass_instantiate_virtual_regs : public rtl_opt_pass
2017 public:
2018 pass_instantiate_virtual_regs (gcc::context *ctxt)
2019 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2022 /* opt_pass methods: */
2023 virtual unsigned int execute (function *)
2025 return instantiate_virtual_regs ();
2028 }; // class pass_instantiate_virtual_regs
2030 } // anon namespace
2032 rtl_opt_pass *
2033 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2035 return new pass_instantiate_virtual_regs (ctxt);
2039 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2040 This means a type for which function calls must pass an address to the
2041 function or get an address back from the function.
2042 EXP may be a type node or an expression (whose type is tested). */
2045 aggregate_value_p (const_tree exp, const_tree fntype)
2047 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2048 int i, regno, nregs;
2049 rtx reg;
2051 if (fntype)
2052 switch (TREE_CODE (fntype))
2054 case CALL_EXPR:
2056 tree fndecl = get_callee_fndecl (fntype);
2057 if (fndecl)
2058 fntype = TREE_TYPE (fndecl);
2059 else if (CALL_EXPR_FN (fntype))
2060 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2061 else
2062 /* For internal functions, assume nothing needs to be
2063 returned in memory. */
2064 return 0;
2066 break;
2067 case FUNCTION_DECL:
2068 fntype = TREE_TYPE (fntype);
2069 break;
2070 case FUNCTION_TYPE:
2071 case METHOD_TYPE:
2072 break;
2073 case IDENTIFIER_NODE:
2074 fntype = NULL_TREE;
2075 break;
2076 default:
2077 /* We don't expect other tree types here. */
2078 gcc_unreachable ();
2081 if (VOID_TYPE_P (type))
2082 return 0;
2084 /* If a record should be passed the same as its first (and only) member
2085 don't pass it as an aggregate. */
2086 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2087 return aggregate_value_p (first_field (type), fntype);
2089 /* If the front end has decided that this needs to be passed by
2090 reference, do so. */
2091 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2092 && DECL_BY_REFERENCE (exp))
2093 return 1;
2095 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2096 if (fntype && TREE_ADDRESSABLE (fntype))
2097 return 1;
2099 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2100 and thus can't be returned in registers. */
2101 if (TREE_ADDRESSABLE (type))
2102 return 1;
2104 if (TYPE_EMPTY_P (type))
2105 return 0;
2107 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2108 return 1;
2110 if (targetm.calls.return_in_memory (type, fntype))
2111 return 1;
2113 /* Make sure we have suitable call-clobbered regs to return
2114 the value in; if not, we must return it in memory. */
2115 reg = hard_function_value (type, 0, fntype, 0);
2117 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2118 it is OK. */
2119 if (!REG_P (reg))
2120 return 0;
2122 regno = REGNO (reg);
2123 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2124 for (i = 0; i < nregs; i++)
2125 if (! call_used_regs[regno + i])
2126 return 1;
2128 return 0;
2131 /* Return true if we should assign DECL a pseudo register; false if it
2132 should live on the local stack. */
2134 bool
2135 use_register_for_decl (const_tree decl)
2137 if (TREE_CODE (decl) == SSA_NAME)
2139 /* We often try to use the SSA_NAME, instead of its underlying
2140 decl, to get type information and guide decisions, to avoid
2141 differences of behavior between anonymous and named
2142 variables, but in this one case we have to go for the actual
2143 variable if there is one. The main reason is that, at least
2144 at -O0, we want to place user variables on the stack, but we
2145 don't mind using pseudos for anonymous or ignored temps.
2146 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2147 should go in pseudos, whereas their corresponding variables
2148 might have to go on the stack. So, disregarding the decl
2149 here would negatively impact debug info at -O0, enable
2150 coalescing between SSA_NAMEs that ought to get different
2151 stack/pseudo assignments, and get the incoming argument
2152 processing thoroughly confused by PARM_DECLs expected to live
2153 in stack slots but assigned to pseudos. */
2154 if (!SSA_NAME_VAR (decl))
2155 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2156 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2158 decl = SSA_NAME_VAR (decl);
2161 /* Honor volatile. */
2162 if (TREE_SIDE_EFFECTS (decl))
2163 return false;
2165 /* Honor addressability. */
2166 if (TREE_ADDRESSABLE (decl))
2167 return false;
2169 /* RESULT_DECLs are a bit special in that they're assigned without
2170 regard to use_register_for_decl, but we generally only store in
2171 them. If we coalesce their SSA NAMEs, we'd better return a
2172 result that matches the assignment in expand_function_start. */
2173 if (TREE_CODE (decl) == RESULT_DECL)
2175 /* If it's not an aggregate, we're going to use a REG or a
2176 PARALLEL containing a REG. */
2177 if (!aggregate_value_p (decl, current_function_decl))
2178 return true;
2180 /* If expand_function_start determines the return value, we'll
2181 use MEM if it's not by reference. */
2182 if (cfun->returns_pcc_struct
2183 || (targetm.calls.struct_value_rtx
2184 (TREE_TYPE (current_function_decl), 1)))
2185 return DECL_BY_REFERENCE (decl);
2187 /* Otherwise, we're taking an extra all.function_result_decl
2188 argument. It's set up in assign_parms_augmented_arg_list,
2189 under the (negated) conditions above, and then it's used to
2190 set up the RESULT_DECL rtl in assign_params, after looping
2191 over all parameters. Now, if the RESULT_DECL is not by
2192 reference, we'll use a MEM either way. */
2193 if (!DECL_BY_REFERENCE (decl))
2194 return false;
2196 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2197 the function_result_decl's assignment. Since it's a pointer,
2198 we can short-circuit a number of the tests below, and we must
2199 duplicat e them because we don't have the
2200 function_result_decl to test. */
2201 if (!targetm.calls.allocate_stack_slots_for_args ())
2202 return true;
2203 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2204 if (optimize)
2205 return true;
2206 /* We don't set DECL_REGISTER for the function_result_decl. */
2207 return false;
2210 /* Only register-like things go in registers. */
2211 if (DECL_MODE (decl) == BLKmode)
2212 return false;
2214 /* If -ffloat-store specified, don't put explicit float variables
2215 into registers. */
2216 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2217 propagates values across these stores, and it probably shouldn't. */
2218 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2219 return false;
2221 if (!targetm.calls.allocate_stack_slots_for_args ())
2222 return true;
2224 /* If we're not interested in tracking debugging information for
2225 this decl, then we can certainly put it in a register. */
2226 if (DECL_IGNORED_P (decl))
2227 return true;
2229 if (optimize)
2230 return true;
2232 if (!DECL_REGISTER (decl))
2233 return false;
2235 /* When not optimizing, disregard register keyword for types that
2236 could have methods, otherwise the methods won't be callable from
2237 the debugger. */
2238 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2239 return false;
2241 return true;
2244 /* Structures to communicate between the subroutines of assign_parms.
2245 The first holds data persistent across all parameters, the second
2246 is cleared out for each parameter. */
2248 struct assign_parm_data_all
2250 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2251 should become a job of the target or otherwise encapsulated. */
2252 CUMULATIVE_ARGS args_so_far_v;
2253 cumulative_args_t args_so_far;
2254 struct args_size stack_args_size;
2255 tree function_result_decl;
2256 tree orig_fnargs;
2257 rtx_insn *first_conversion_insn;
2258 rtx_insn *last_conversion_insn;
2259 HOST_WIDE_INT pretend_args_size;
2260 HOST_WIDE_INT extra_pretend_bytes;
2261 int reg_parm_stack_space;
2264 struct assign_parm_data_one
2266 tree nominal_type;
2267 function_arg_info arg;
2268 rtx entry_parm;
2269 rtx stack_parm;
2270 machine_mode nominal_mode;
2271 machine_mode passed_mode;
2272 struct locate_and_pad_arg_data locate;
2273 int partial;
2276 /* A subroutine of assign_parms. Initialize ALL. */
2278 static void
2279 assign_parms_initialize_all (struct assign_parm_data_all *all)
2281 tree fntype ATTRIBUTE_UNUSED;
2283 memset (all, 0, sizeof (*all));
2285 fntype = TREE_TYPE (current_function_decl);
2287 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2288 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2289 #else
2290 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2291 current_function_decl, -1);
2292 #endif
2293 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2295 #ifdef INCOMING_REG_PARM_STACK_SPACE
2296 all->reg_parm_stack_space
2297 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2298 #endif
2301 /* If ARGS contains entries with complex types, split the entry into two
2302 entries of the component type. Return a new list of substitutions are
2303 needed, else the old list. */
2305 static void
2306 split_complex_args (vec<tree> *args)
2308 unsigned i;
2309 tree p;
2311 FOR_EACH_VEC_ELT (*args, i, p)
2313 tree type = TREE_TYPE (p);
2314 if (TREE_CODE (type) == COMPLEX_TYPE
2315 && targetm.calls.split_complex_arg (type))
2317 tree decl;
2318 tree subtype = TREE_TYPE (type);
2319 bool addressable = TREE_ADDRESSABLE (p);
2321 /* Rewrite the PARM_DECL's type with its component. */
2322 p = copy_node (p);
2323 TREE_TYPE (p) = subtype;
2324 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2325 SET_DECL_MODE (p, VOIDmode);
2326 DECL_SIZE (p) = NULL;
2327 DECL_SIZE_UNIT (p) = NULL;
2328 /* If this arg must go in memory, put it in a pseudo here.
2329 We can't allow it to go in memory as per normal parms,
2330 because the usual place might not have the imag part
2331 adjacent to the real part. */
2332 DECL_ARTIFICIAL (p) = addressable;
2333 DECL_IGNORED_P (p) = addressable;
2334 TREE_ADDRESSABLE (p) = 0;
2335 layout_decl (p, 0);
2336 (*args)[i] = p;
2338 /* Build a second synthetic decl. */
2339 decl = build_decl (EXPR_LOCATION (p),
2340 PARM_DECL, NULL_TREE, subtype);
2341 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2342 DECL_ARTIFICIAL (decl) = addressable;
2343 DECL_IGNORED_P (decl) = addressable;
2344 layout_decl (decl, 0);
2345 args->safe_insert (++i, decl);
2350 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2351 the hidden struct return argument, and (abi willing) complex args.
2352 Return the new parameter list. */
2354 static vec<tree>
2355 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2357 tree fndecl = current_function_decl;
2358 tree fntype = TREE_TYPE (fndecl);
2359 vec<tree> fnargs = vNULL;
2360 tree arg;
2362 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2363 fnargs.safe_push (arg);
2365 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2367 /* If struct value address is treated as the first argument, make it so. */
2368 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2369 && ! cfun->returns_pcc_struct
2370 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2372 tree type = build_pointer_type (TREE_TYPE (fntype));
2373 tree decl;
2375 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2376 PARM_DECL, get_identifier (".result_ptr"), type);
2377 DECL_ARG_TYPE (decl) = type;
2378 DECL_ARTIFICIAL (decl) = 1;
2379 DECL_NAMELESS (decl) = 1;
2380 TREE_CONSTANT (decl) = 1;
2381 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2382 changes, the end of the RESULT_DECL handling block in
2383 use_register_for_decl must be adjusted to match. */
2385 DECL_CHAIN (decl) = all->orig_fnargs;
2386 all->orig_fnargs = decl;
2387 fnargs.safe_insert (0, decl);
2389 all->function_result_decl = decl;
2392 /* If the target wants to split complex arguments into scalars, do so. */
2393 if (targetm.calls.split_complex_arg)
2394 split_complex_args (&fnargs);
2396 return fnargs;
2399 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2400 data for the parameter. Incorporate ABI specifics such as pass-by-
2401 reference and type promotion. */
2403 static void
2404 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2405 struct assign_parm_data_one *data)
2407 int unsignedp;
2409 *data = assign_parm_data_one ();
2411 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2412 if (!cfun->stdarg)
2413 data->arg.named = 1; /* No variadic parms. */
2414 else if (DECL_CHAIN (parm))
2415 data->arg.named = 1; /* Not the last non-variadic parm. */
2416 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2417 data->arg.named = 1; /* Only variadic ones are unnamed. */
2418 else
2419 data->arg.named = 0; /* Treat as variadic. */
2421 data->nominal_type = TREE_TYPE (parm);
2422 data->arg.type = DECL_ARG_TYPE (parm);
2424 /* Look out for errors propagating this far. Also, if the parameter's
2425 type is void then its value doesn't matter. */
2426 if (TREE_TYPE (parm) == error_mark_node
2427 /* This can happen after weird syntax errors
2428 or if an enum type is defined among the parms. */
2429 || TREE_CODE (parm) != PARM_DECL
2430 || data->arg.type == NULL
2431 || VOID_TYPE_P (data->nominal_type))
2433 data->nominal_type = data->arg.type = void_type_node;
2434 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2435 return;
2438 /* Find mode of arg as it is passed, and mode of arg as it should be
2439 during execution of this function. */
2440 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2441 data->nominal_mode = TYPE_MODE (data->nominal_type);
2443 /* If the parm is to be passed as a transparent union or record, use the
2444 type of the first field for the tests below. We have already verified
2445 that the modes are the same. */
2446 if ((TREE_CODE (data->arg.type) == UNION_TYPE
2447 || TREE_CODE (data->arg.type) == RECORD_TYPE)
2448 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2449 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2451 /* See if this arg was passed by invisible reference. */
2452 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2454 data->nominal_type = data->arg.type;
2455 data->passed_mode = data->nominal_mode = data->arg.mode;
2458 /* Find mode as it is passed by the ABI. */
2459 unsignedp = TYPE_UNSIGNED (data->arg.type);
2460 data->arg.mode
2461 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2462 TREE_TYPE (current_function_decl), 0);
2465 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2467 static void
2468 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2469 struct assign_parm_data_one *data, bool no_rtl)
2471 int varargs_pretend_bytes = 0;
2473 function_arg_info last_named_arg = data->arg;
2474 last_named_arg.named = true;
2475 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2476 &varargs_pretend_bytes, no_rtl);
2478 /* If the back-end has requested extra stack space, record how much is
2479 needed. Do not change pretend_args_size otherwise since it may be
2480 nonzero from an earlier partial argument. */
2481 if (varargs_pretend_bytes > 0)
2482 all->pretend_args_size = varargs_pretend_bytes;
2485 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2486 the incoming location of the current parameter. */
2488 static void
2489 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2490 struct assign_parm_data_one *data)
2492 HOST_WIDE_INT pretend_bytes = 0;
2493 rtx entry_parm;
2494 bool in_regs;
2496 if (data->arg.mode == VOIDmode)
2498 data->entry_parm = data->stack_parm = const0_rtx;
2499 return;
2502 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2503 data->arg.type);
2505 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2506 data->arg);
2507 if (entry_parm == 0)
2508 data->arg.mode = data->passed_mode;
2510 /* Determine parm's home in the stack, in case it arrives in the stack
2511 or we should pretend it did. Compute the stack position and rtx where
2512 the argument arrives and its size.
2514 There is one complexity here: If this was a parameter that would
2515 have been passed in registers, but wasn't only because it is
2516 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2517 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2518 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2519 as it was the previous time. */
2520 in_regs = (entry_parm != 0);
2521 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2522 in_regs = true;
2523 #endif
2524 if (!in_regs && !data->arg.named)
2526 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2528 rtx tem;
2529 function_arg_info named_arg = data->arg;
2530 named_arg.named = true;
2531 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2532 named_arg);
2533 in_regs = tem != NULL;
2537 /* If this parameter was passed both in registers and in the stack, use
2538 the copy on the stack. */
2539 if (targetm.calls.must_pass_in_stack (data->arg))
2540 entry_parm = 0;
2542 if (entry_parm)
2544 int partial;
2546 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2547 data->partial = partial;
2549 /* The caller might already have allocated stack space for the
2550 register parameters. */
2551 if (partial != 0 && all->reg_parm_stack_space == 0)
2553 /* Part of this argument is passed in registers and part
2554 is passed on the stack. Ask the prologue code to extend
2555 the stack part so that we can recreate the full value.
2557 PRETEND_BYTES is the size of the registers we need to store.
2558 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2559 stack space that the prologue should allocate.
2561 Internally, gcc assumes that the argument pointer is aligned
2562 to STACK_BOUNDARY bits. This is used both for alignment
2563 optimizations (see init_emit) and to locate arguments that are
2564 aligned to more than PARM_BOUNDARY bits. We must preserve this
2565 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2566 a stack boundary. */
2568 /* We assume at most one partial arg, and it must be the first
2569 argument on the stack. */
2570 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2572 pretend_bytes = partial;
2573 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2575 /* We want to align relative to the actual stack pointer, so
2576 don't include this in the stack size until later. */
2577 all->extra_pretend_bytes = all->pretend_args_size;
2581 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2582 all->reg_parm_stack_space,
2583 entry_parm ? data->partial : 0, current_function_decl,
2584 &all->stack_args_size, &data->locate);
2586 /* Update parm_stack_boundary if this parameter is passed in the
2587 stack. */
2588 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2589 crtl->parm_stack_boundary = data->locate.boundary;
2591 /* Adjust offsets to include the pretend args. */
2592 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2593 data->locate.slot_offset.constant += pretend_bytes;
2594 data->locate.offset.constant += pretend_bytes;
2596 data->entry_parm = entry_parm;
2599 /* A subroutine of assign_parms. If there is actually space on the stack
2600 for this parm, count it in stack_args_size and return true. */
2602 static bool
2603 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2604 struct assign_parm_data_one *data)
2606 /* Trivially true if we've no incoming register. */
2607 if (data->entry_parm == NULL)
2609 /* Also true if we're partially in registers and partially not,
2610 since we've arranged to drop the entire argument on the stack. */
2611 else if (data->partial != 0)
2613 /* Also true if the target says that it's passed in both registers
2614 and on the stack. */
2615 else if (GET_CODE (data->entry_parm) == PARALLEL
2616 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2618 /* Also true if the target says that there's stack allocated for
2619 all register parameters. */
2620 else if (all->reg_parm_stack_space > 0)
2622 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2623 else
2624 return false;
2626 all->stack_args_size.constant += data->locate.size.constant;
2627 if (data->locate.size.var)
2628 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2630 return true;
2633 /* A subroutine of assign_parms. Given that this parameter is allocated
2634 stack space by the ABI, find it. */
2636 static void
2637 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2639 rtx offset_rtx, stack_parm;
2640 unsigned int align, boundary;
2642 /* If we're passing this arg using a reg, make its stack home the
2643 aligned stack slot. */
2644 if (data->entry_parm)
2645 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2646 else
2647 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2649 stack_parm = crtl->args.internal_arg_pointer;
2650 if (offset_rtx != const0_rtx)
2651 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2652 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2654 if (!data->arg.pass_by_reference)
2656 set_mem_attributes (stack_parm, parm, 1);
2657 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2658 while promoted mode's size is needed. */
2659 if (data->arg.mode != BLKmode
2660 && data->arg.mode != DECL_MODE (parm))
2662 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode));
2663 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2665 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2666 data->arg.mode);
2667 if (maybe_ne (offset, 0))
2668 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2673 boundary = data->locate.boundary;
2674 align = BITS_PER_UNIT;
2676 /* If we're padding upward, we know that the alignment of the slot
2677 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2678 intentionally forcing upward padding. Otherwise we have to come
2679 up with a guess at the alignment based on OFFSET_RTX. */
2680 poly_int64 offset;
2681 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2682 align = boundary;
2683 else if (data->locate.where_pad == PAD_UPWARD)
2685 align = boundary;
2686 /* If the argument offset is actually more aligned than the nominal
2687 stack slot boundary, take advantage of that excess alignment.
2688 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2689 if (poly_int_rtx_p (offset_rtx, &offset)
2690 && known_eq (STACK_POINTER_OFFSET, 0))
2692 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2693 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2694 offset_align = STACK_BOUNDARY;
2695 align = MAX (align, offset_align);
2698 else if (poly_int_rtx_p (offset_rtx, &offset))
2700 align = least_bit_hwi (boundary);
2701 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2702 if (offset_align != 0)
2703 align = MIN (align, offset_align);
2705 set_mem_align (stack_parm, align);
2707 if (data->entry_parm)
2708 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2710 data->stack_parm = stack_parm;
2713 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2714 always valid and contiguous. */
2716 static void
2717 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2719 rtx entry_parm = data->entry_parm;
2720 rtx stack_parm = data->stack_parm;
2722 /* If this parm was passed part in regs and part in memory, pretend it
2723 arrived entirely in memory by pushing the register-part onto the stack.
2724 In the special case of a DImode or DFmode that is split, we could put
2725 it together in a pseudoreg directly, but for now that's not worth
2726 bothering with. */
2727 if (data->partial != 0)
2729 /* Handle calls that pass values in multiple non-contiguous
2730 locations. The Irix 6 ABI has examples of this. */
2731 if (GET_CODE (entry_parm) == PARALLEL)
2732 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2733 data->arg.type, int_size_in_bytes (data->arg.type));
2734 else
2736 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2737 move_block_from_reg (REGNO (entry_parm),
2738 validize_mem (copy_rtx (stack_parm)),
2739 data->partial / UNITS_PER_WORD);
2742 entry_parm = stack_parm;
2745 /* If we didn't decide this parm came in a register, by default it came
2746 on the stack. */
2747 else if (entry_parm == NULL)
2748 entry_parm = stack_parm;
2750 /* When an argument is passed in multiple locations, we can't make use
2751 of this information, but we can save some copying if the whole argument
2752 is passed in a single register. */
2753 else if (GET_CODE (entry_parm) == PARALLEL
2754 && data->nominal_mode != BLKmode
2755 && data->passed_mode != BLKmode)
2757 size_t i, len = XVECLEN (entry_parm, 0);
2759 for (i = 0; i < len; i++)
2760 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2761 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2762 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2763 == data->passed_mode)
2764 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2766 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2767 break;
2771 data->entry_parm = entry_parm;
2774 /* A subroutine of assign_parms. Reconstitute any values which were
2775 passed in multiple registers and would fit in a single register. */
2777 static void
2778 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2780 rtx entry_parm = data->entry_parm;
2782 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2783 This can be done with register operations rather than on the
2784 stack, even if we will store the reconstituted parameter on the
2785 stack later. */
2786 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2788 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2789 emit_group_store (parmreg, entry_parm, data->arg.type,
2790 GET_MODE_SIZE (GET_MODE (entry_parm)));
2791 entry_parm = parmreg;
2794 data->entry_parm = entry_parm;
2797 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2798 always valid and properly aligned. */
2800 static void
2801 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2803 rtx stack_parm = data->stack_parm;
2805 /* If we can't trust the parm stack slot to be aligned enough for its
2806 ultimate type, don't use that slot after entry. We'll make another
2807 stack slot, if we need one. */
2808 if (stack_parm
2809 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2810 && ((optab_handler (movmisalign_optab, data->nominal_mode)
2811 != CODE_FOR_nothing)
2812 || targetm.slow_unaligned_access (data->nominal_mode,
2813 MEM_ALIGN (stack_parm))))
2814 || (data->nominal_type
2815 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2816 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2817 stack_parm = NULL;
2819 /* If parm was passed in memory, and we need to convert it on entry,
2820 don't store it back in that same slot. */
2821 else if (data->entry_parm == stack_parm
2822 && data->nominal_mode != BLKmode
2823 && data->nominal_mode != data->passed_mode)
2824 stack_parm = NULL;
2826 /* If stack protection is in effect for this function, don't leave any
2827 pointers in their passed stack slots. */
2828 else if (crtl->stack_protect_guard
2829 && (flag_stack_protect == 2
2830 || data->arg.pass_by_reference
2831 || POINTER_TYPE_P (data->nominal_type)))
2832 stack_parm = NULL;
2834 data->stack_parm = stack_parm;
2837 /* A subroutine of assign_parms. Return true if the current parameter
2838 should be stored as a BLKmode in the current frame. */
2840 static bool
2841 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2843 if (data->nominal_mode == BLKmode)
2844 return true;
2845 if (GET_MODE (data->entry_parm) == BLKmode)
2846 return true;
2848 #ifdef BLOCK_REG_PADDING
2849 /* Only assign_parm_setup_block knows how to deal with register arguments
2850 that are padded at the least significant end. */
2851 if (REG_P (data->entry_parm)
2852 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2853 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2854 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2855 return true;
2856 #endif
2858 return false;
2861 /* A subroutine of assign_parms. Arrange for the parameter to be
2862 present and valid in DATA->STACK_RTL. */
2864 static void
2865 assign_parm_setup_block (struct assign_parm_data_all *all,
2866 tree parm, struct assign_parm_data_one *data)
2868 rtx entry_parm = data->entry_parm;
2869 rtx stack_parm = data->stack_parm;
2870 rtx target_reg = NULL_RTX;
2871 bool in_conversion_seq = false;
2872 HOST_WIDE_INT size;
2873 HOST_WIDE_INT size_stored;
2875 if (GET_CODE (entry_parm) == PARALLEL)
2876 entry_parm = emit_group_move_into_temps (entry_parm);
2878 /* If we want the parameter in a pseudo, don't use a stack slot. */
2879 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2881 tree def = ssa_default_def (cfun, parm);
2882 gcc_assert (def);
2883 machine_mode mode = promote_ssa_mode (def, NULL);
2884 rtx reg = gen_reg_rtx (mode);
2885 if (GET_CODE (reg) != CONCAT)
2886 stack_parm = reg;
2887 else
2889 target_reg = reg;
2890 /* Avoid allocating a stack slot, if there isn't one
2891 preallocated by the ABI. It might seem like we should
2892 always prefer a pseudo, but converting between
2893 floating-point and integer modes goes through the stack
2894 on various machines, so it's better to use the reserved
2895 stack slot than to risk wasting it and allocating more
2896 for the conversion. */
2897 if (stack_parm == NULL_RTX)
2899 int save = generating_concat_p;
2900 generating_concat_p = 0;
2901 stack_parm = gen_reg_rtx (mode);
2902 generating_concat_p = save;
2905 data->stack_parm = NULL;
2908 size = int_size_in_bytes (data->arg.type);
2909 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2910 if (stack_parm == 0)
2912 HOST_WIDE_INT parm_align
2913 = (STRICT_ALIGNMENT
2914 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2916 SET_DECL_ALIGN (parm, parm_align);
2917 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2919 rtx allocsize = gen_int_mode (size_stored, Pmode);
2920 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2921 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2922 MAX_SUPPORTED_STACK_ALIGNMENT);
2923 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2924 DECL_ALIGN (parm));
2925 mark_reg_pointer (addr, DECL_ALIGN (parm));
2926 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2927 MEM_NOTRAP_P (stack_parm) = 1;
2929 else
2930 stack_parm = assign_stack_local (BLKmode, size_stored,
2931 DECL_ALIGN (parm));
2932 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2933 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2934 set_mem_attributes (stack_parm, parm, 1);
2937 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2938 calls that pass values in multiple non-contiguous locations. */
2939 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2941 rtx mem;
2943 /* Note that we will be storing an integral number of words.
2944 So we have to be careful to ensure that we allocate an
2945 integral number of words. We do this above when we call
2946 assign_stack_local if space was not allocated in the argument
2947 list. If it was, this will not work if PARM_BOUNDARY is not
2948 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2949 if it becomes a problem. Exception is when BLKmode arrives
2950 with arguments not conforming to word_mode. */
2952 if (data->stack_parm == 0)
2954 else if (GET_CODE (entry_parm) == PARALLEL)
2956 else
2957 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2959 mem = validize_mem (copy_rtx (stack_parm));
2961 /* Handle values in multiple non-contiguous locations. */
2962 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2963 emit_group_store (mem, entry_parm, data->arg.type, size);
2964 else if (GET_CODE (entry_parm) == PARALLEL)
2966 push_to_sequence2 (all->first_conversion_insn,
2967 all->last_conversion_insn);
2968 emit_group_store (mem, entry_parm, data->arg.type, size);
2969 all->first_conversion_insn = get_insns ();
2970 all->last_conversion_insn = get_last_insn ();
2971 end_sequence ();
2972 in_conversion_seq = true;
2975 else if (size == 0)
2978 /* If SIZE is that of a mode no bigger than a word, just use
2979 that mode's store operation. */
2980 else if (size <= UNITS_PER_WORD)
2982 unsigned int bits = size * BITS_PER_UNIT;
2983 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
2985 if (mode != BLKmode
2986 #ifdef BLOCK_REG_PADDING
2987 && (size == UNITS_PER_WORD
2988 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
2989 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2990 #endif
2993 rtx reg;
2995 /* We are really truncating a word_mode value containing
2996 SIZE bytes into a value of mode MODE. If such an
2997 operation requires no actual instructions, we can refer
2998 to the value directly in mode MODE, otherwise we must
2999 start with the register in word_mode and explicitly
3000 convert it. */
3001 if (targetm.truly_noop_truncation (size * BITS_PER_UNIT,
3002 BITS_PER_WORD))
3003 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3004 else
3006 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3007 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3009 emit_move_insn (change_address (mem, mode, 0), reg);
3012 #ifdef BLOCK_REG_PADDING
3013 /* Storing the register in memory as a full word, as
3014 move_block_from_reg below would do, and then using the
3015 MEM in a smaller mode, has the effect of shifting right
3016 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3017 shifting must be explicit. */
3018 else if (!MEM_P (mem))
3020 rtx x;
3022 /* If the assert below fails, we should have taken the
3023 mode != BLKmode path above, unless we have downward
3024 padding of smaller-than-word arguments on a machine
3025 with little-endian bytes, which would likely require
3026 additional changes to work correctly. */
3027 gcc_checking_assert (BYTES_BIG_ENDIAN
3028 && (BLOCK_REG_PADDING (mode,
3029 data->arg.type, 1)
3030 == PAD_UPWARD));
3032 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3034 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3035 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3036 NULL_RTX, 1);
3037 x = force_reg (word_mode, x);
3038 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3040 emit_move_insn (mem, x);
3042 #endif
3044 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3045 machine must be aligned to the left before storing
3046 to memory. Note that the previous test doesn't
3047 handle all cases (e.g. SIZE == 3). */
3048 else if (size != UNITS_PER_WORD
3049 #ifdef BLOCK_REG_PADDING
3050 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3051 == PAD_DOWNWARD)
3052 #else
3053 && BYTES_BIG_ENDIAN
3054 #endif
3057 rtx tem, x;
3058 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3059 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3061 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3062 tem = change_address (mem, word_mode, 0);
3063 emit_move_insn (tem, x);
3065 else
3066 move_block_from_reg (REGNO (entry_parm), mem,
3067 size_stored / UNITS_PER_WORD);
3069 else if (!MEM_P (mem))
3071 gcc_checking_assert (size > UNITS_PER_WORD);
3072 #ifdef BLOCK_REG_PADDING
3073 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3074 data->arg.type, 0)
3075 == PAD_UPWARD);
3076 #endif
3077 emit_move_insn (mem, entry_parm);
3079 else
3080 move_block_from_reg (REGNO (entry_parm), mem,
3081 size_stored / UNITS_PER_WORD);
3083 else if (data->stack_parm == 0)
3085 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3086 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3087 BLOCK_OP_NORMAL);
3088 all->first_conversion_insn = get_insns ();
3089 all->last_conversion_insn = get_last_insn ();
3090 end_sequence ();
3091 in_conversion_seq = true;
3094 if (target_reg)
3096 if (!in_conversion_seq)
3097 emit_move_insn (target_reg, stack_parm);
3098 else
3100 push_to_sequence2 (all->first_conversion_insn,
3101 all->last_conversion_insn);
3102 emit_move_insn (target_reg, stack_parm);
3103 all->first_conversion_insn = get_insns ();
3104 all->last_conversion_insn = get_last_insn ();
3105 end_sequence ();
3107 stack_parm = target_reg;
3110 data->stack_parm = stack_parm;
3111 set_parm_rtl (parm, stack_parm);
3114 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3115 parameter. Get it there. Perform all ABI specified conversions. */
3117 static void
3118 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3119 struct assign_parm_data_one *data)
3121 rtx parmreg, validated_mem;
3122 rtx equiv_stack_parm;
3123 machine_mode promoted_nominal_mode;
3124 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3125 bool did_conversion = false;
3126 bool need_conversion, moved;
3127 enum insn_code icode;
3128 rtx rtl;
3130 /* Store the parm in a pseudoregister during the function, but we may
3131 need to do it in a wider mode. Using 2 here makes the result
3132 consistent with promote_decl_mode and thus expand_expr_real_1. */
3133 promoted_nominal_mode
3134 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3135 TREE_TYPE (current_function_decl), 2);
3137 parmreg = gen_reg_rtx (promoted_nominal_mode);
3138 if (!DECL_ARTIFICIAL (parm))
3139 mark_user_reg (parmreg);
3141 /* If this was an item that we received a pointer to,
3142 set rtl appropriately. */
3143 if (data->arg.pass_by_reference)
3145 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3146 set_mem_attributes (rtl, parm, 1);
3148 else
3149 rtl = parmreg;
3151 assign_parm_remove_parallels (data);
3153 /* Copy the value into the register, thus bridging between
3154 assign_parm_find_data_types and expand_expr_real_1. */
3156 equiv_stack_parm = data->stack_parm;
3157 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3159 need_conversion = (data->nominal_mode != data->passed_mode
3160 || promoted_nominal_mode != data->arg.mode);
3161 moved = false;
3163 if (need_conversion
3164 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3165 && data->nominal_mode == data->passed_mode
3166 && data->nominal_mode == GET_MODE (data->entry_parm))
3168 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3169 mode, by the caller. We now have to convert it to
3170 NOMINAL_MODE, if different. However, PARMREG may be in
3171 a different mode than NOMINAL_MODE if it is being stored
3172 promoted.
3174 If ENTRY_PARM is a hard register, it might be in a register
3175 not valid for operating in its mode (e.g., an odd-numbered
3176 register for a DFmode). In that case, moves are the only
3177 thing valid, so we can't do a convert from there. This
3178 occurs when the calling sequence allow such misaligned
3179 usages.
3181 In addition, the conversion may involve a call, which could
3182 clobber parameters which haven't been copied to pseudo
3183 registers yet.
3185 First, we try to emit an insn which performs the necessary
3186 conversion. We verify that this insn does not clobber any
3187 hard registers. */
3189 rtx op0, op1;
3191 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3192 unsignedp);
3194 op0 = parmreg;
3195 op1 = validated_mem;
3196 if (icode != CODE_FOR_nothing
3197 && insn_operand_matches (icode, 0, op0)
3198 && insn_operand_matches (icode, 1, op1))
3200 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3201 rtx_insn *insn, *insns;
3202 rtx t = op1;
3203 HARD_REG_SET hardregs;
3205 start_sequence ();
3206 /* If op1 is a hard register that is likely spilled, first
3207 force it into a pseudo, otherwise combiner might extend
3208 its lifetime too much. */
3209 if (GET_CODE (t) == SUBREG)
3210 t = SUBREG_REG (t);
3211 if (REG_P (t)
3212 && HARD_REGISTER_P (t)
3213 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3214 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3216 t = gen_reg_rtx (GET_MODE (op1));
3217 emit_move_insn (t, op1);
3219 else
3220 t = op1;
3221 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3222 data->passed_mode, unsignedp);
3223 emit_insn (pat);
3224 insns = get_insns ();
3226 moved = true;
3227 CLEAR_HARD_REG_SET (hardregs);
3228 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3230 if (INSN_P (insn))
3231 note_stores (PATTERN (insn), record_hard_reg_sets,
3232 &hardregs);
3233 if (!hard_reg_set_empty_p (hardregs))
3234 moved = false;
3237 end_sequence ();
3239 if (moved)
3241 emit_insn (insns);
3242 if (equiv_stack_parm != NULL_RTX)
3243 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3244 equiv_stack_parm);
3249 if (moved)
3250 /* Nothing to do. */
3252 else if (need_conversion)
3254 /* We did not have an insn to convert directly, or the sequence
3255 generated appeared unsafe. We must first copy the parm to a
3256 pseudo reg, and save the conversion until after all
3257 parameters have been moved. */
3259 int save_tree_used;
3260 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3262 emit_move_insn (tempreg, validated_mem);
3264 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3265 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3267 if (partial_subreg_p (tempreg)
3268 && GET_MODE (tempreg) == data->nominal_mode
3269 && REG_P (SUBREG_REG (tempreg))
3270 && data->nominal_mode == data->passed_mode
3271 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3273 /* The argument is already sign/zero extended, so note it
3274 into the subreg. */
3275 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3276 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3279 /* TREE_USED gets set erroneously during expand_assignment. */
3280 save_tree_used = TREE_USED (parm);
3281 SET_DECL_RTL (parm, rtl);
3282 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3283 SET_DECL_RTL (parm, NULL_RTX);
3284 TREE_USED (parm) = save_tree_used;
3285 all->first_conversion_insn = get_insns ();
3286 all->last_conversion_insn = get_last_insn ();
3287 end_sequence ();
3289 did_conversion = true;
3291 else if (MEM_P (data->entry_parm)
3292 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3293 > MEM_ALIGN (data->entry_parm)
3294 && (((icode = optab_handler (movmisalign_optab,
3295 promoted_nominal_mode))
3296 != CODE_FOR_nothing)
3297 || targetm.slow_unaligned_access (promoted_nominal_mode,
3298 MEM_ALIGN (data->entry_parm))))
3300 if (icode != CODE_FOR_nothing)
3301 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3302 else
3303 rtl = parmreg = extract_bit_field (validated_mem,
3304 GET_MODE_BITSIZE (promoted_nominal_mode), 0,
3305 unsignedp, parmreg,
3306 promoted_nominal_mode, VOIDmode, false, NULL);
3308 else
3309 emit_move_insn (parmreg, validated_mem);
3311 /* If we were passed a pointer but the actual value can safely live
3312 in a register, retrieve it and use it directly. */
3313 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3315 /* We can't use nominal_mode, because it will have been set to
3316 Pmode above. We must use the actual mode of the parm. */
3317 if (use_register_for_decl (parm))
3319 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3320 mark_user_reg (parmreg);
3322 else
3324 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3325 TYPE_MODE (TREE_TYPE (parm)),
3326 TYPE_ALIGN (TREE_TYPE (parm)));
3327 parmreg
3328 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3329 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3330 align);
3331 set_mem_attributes (parmreg, parm, 1);
3334 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3335 the debug info in case it is not legitimate. */
3336 if (GET_MODE (parmreg) != GET_MODE (rtl))
3338 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3339 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3341 push_to_sequence2 (all->first_conversion_insn,
3342 all->last_conversion_insn);
3343 emit_move_insn (tempreg, rtl);
3344 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3345 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3346 tempreg);
3347 all->first_conversion_insn = get_insns ();
3348 all->last_conversion_insn = get_last_insn ();
3349 end_sequence ();
3351 did_conversion = true;
3353 else
3354 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3356 rtl = parmreg;
3358 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3359 now the parm. */
3360 data->stack_parm = NULL;
3363 set_parm_rtl (parm, rtl);
3365 /* Mark the register as eliminable if we did no conversion and it was
3366 copied from memory at a fixed offset, and the arg pointer was not
3367 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3368 offset formed an invalid address, such memory-equivalences as we
3369 make here would screw up life analysis for it. */
3370 if (data->nominal_mode == data->passed_mode
3371 && !did_conversion
3372 && data->stack_parm != 0
3373 && MEM_P (data->stack_parm)
3374 && data->locate.offset.var == 0
3375 && reg_mentioned_p (virtual_incoming_args_rtx,
3376 XEXP (data->stack_parm, 0)))
3378 rtx_insn *linsn = get_last_insn ();
3379 rtx_insn *sinsn;
3380 rtx set;
3382 /* Mark complex types separately. */
3383 if (GET_CODE (parmreg) == CONCAT)
3385 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3386 int regnor = REGNO (XEXP (parmreg, 0));
3387 int regnoi = REGNO (XEXP (parmreg, 1));
3388 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3389 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3390 GET_MODE_SIZE (submode));
3392 /* Scan backwards for the set of the real and
3393 imaginary parts. */
3394 for (sinsn = linsn; sinsn != 0;
3395 sinsn = prev_nonnote_insn (sinsn))
3397 set = single_set (sinsn);
3398 if (set == 0)
3399 continue;
3401 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3402 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3403 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3404 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3407 else
3408 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3411 /* For pointer data type, suggest pointer register. */
3412 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3413 mark_reg_pointer (parmreg,
3414 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3417 /* A subroutine of assign_parms. Allocate stack space to hold the current
3418 parameter. Get it there. Perform all ABI specified conversions. */
3420 static void
3421 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3422 struct assign_parm_data_one *data)
3424 /* Value must be stored in the stack slot STACK_PARM during function
3425 execution. */
3426 bool to_conversion = false;
3428 assign_parm_remove_parallels (data);
3430 if (data->arg.mode != data->nominal_mode)
3432 /* Conversion is required. */
3433 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3435 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3437 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3438 to_conversion = true;
3440 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3441 TYPE_UNSIGNED (TREE_TYPE (parm)));
3443 if (data->stack_parm)
3445 poly_int64 offset
3446 = subreg_lowpart_offset (data->nominal_mode,
3447 GET_MODE (data->stack_parm));
3448 /* ??? This may need a big-endian conversion on sparc64. */
3449 data->stack_parm
3450 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3451 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3452 set_mem_offset (data->stack_parm,
3453 MEM_OFFSET (data->stack_parm) + offset);
3457 if (data->entry_parm != data->stack_parm)
3459 rtx src, dest;
3461 if (data->stack_parm == 0)
3463 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3464 GET_MODE (data->entry_parm),
3465 TYPE_ALIGN (data->arg.type));
3466 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3467 && ((optab_handler (movmisalign_optab,
3468 GET_MODE (data->entry_parm))
3469 != CODE_FOR_nothing)
3470 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3471 align)))
3472 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3473 data->stack_parm
3474 = assign_stack_local (GET_MODE (data->entry_parm),
3475 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3476 align);
3477 align = MEM_ALIGN (data->stack_parm);
3478 set_mem_attributes (data->stack_parm, parm, 1);
3479 set_mem_align (data->stack_parm, align);
3482 dest = validize_mem (copy_rtx (data->stack_parm));
3483 src = validize_mem (copy_rtx (data->entry_parm));
3485 if (MEM_P (src))
3487 /* Use a block move to handle potentially misaligned entry_parm. */
3488 if (!to_conversion)
3489 push_to_sequence2 (all->first_conversion_insn,
3490 all->last_conversion_insn);
3491 to_conversion = true;
3493 emit_block_move (dest, src,
3494 GEN_INT (int_size_in_bytes (data->arg.type)),
3495 BLOCK_OP_NORMAL);
3497 else
3499 if (!REG_P (src))
3500 src = force_reg (GET_MODE (src), src);
3501 emit_move_insn (dest, src);
3505 if (to_conversion)
3507 all->first_conversion_insn = get_insns ();
3508 all->last_conversion_insn = get_last_insn ();
3509 end_sequence ();
3512 set_parm_rtl (parm, data->stack_parm);
3515 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3516 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3518 static void
3519 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3520 vec<tree> fnargs)
3522 tree parm;
3523 tree orig_fnargs = all->orig_fnargs;
3524 unsigned i = 0;
3526 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3528 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3529 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3531 rtx tmp, real, imag;
3532 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3534 real = DECL_RTL (fnargs[i]);
3535 imag = DECL_RTL (fnargs[i + 1]);
3536 if (inner != GET_MODE (real))
3538 real = gen_lowpart_SUBREG (inner, real);
3539 imag = gen_lowpart_SUBREG (inner, imag);
3542 if (TREE_ADDRESSABLE (parm))
3544 rtx rmem, imem;
3545 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3546 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3547 DECL_MODE (parm),
3548 TYPE_ALIGN (TREE_TYPE (parm)));
3550 /* split_complex_arg put the real and imag parts in
3551 pseudos. Move them to memory. */
3552 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3553 set_mem_attributes (tmp, parm, 1);
3554 rmem = adjust_address_nv (tmp, inner, 0);
3555 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3556 push_to_sequence2 (all->first_conversion_insn,
3557 all->last_conversion_insn);
3558 emit_move_insn (rmem, real);
3559 emit_move_insn (imem, imag);
3560 all->first_conversion_insn = get_insns ();
3561 all->last_conversion_insn = get_last_insn ();
3562 end_sequence ();
3564 else
3565 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3566 set_parm_rtl (parm, tmp);
3568 real = DECL_INCOMING_RTL (fnargs[i]);
3569 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3570 if (inner != GET_MODE (real))
3572 real = gen_lowpart_SUBREG (inner, real);
3573 imag = gen_lowpart_SUBREG (inner, imag);
3575 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3576 set_decl_incoming_rtl (parm, tmp, false);
3577 i++;
3582 /* Assign RTL expressions to the function's parameters. This may involve
3583 copying them into registers and using those registers as the DECL_RTL. */
3585 static void
3586 assign_parms (tree fndecl)
3588 struct assign_parm_data_all all;
3589 tree parm;
3590 vec<tree> fnargs;
3591 unsigned i;
3593 crtl->args.internal_arg_pointer
3594 = targetm.calls.internal_arg_pointer ();
3596 assign_parms_initialize_all (&all);
3597 fnargs = assign_parms_augmented_arg_list (&all);
3599 FOR_EACH_VEC_ELT (fnargs, i, parm)
3601 struct assign_parm_data_one data;
3603 /* Extract the type of PARM; adjust it according to ABI. */
3604 assign_parm_find_data_types (&all, parm, &data);
3606 /* Early out for errors and void parameters. */
3607 if (data.passed_mode == VOIDmode)
3609 SET_DECL_RTL (parm, const0_rtx);
3610 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3611 continue;
3614 /* Estimate stack alignment from parameter alignment. */
3615 if (SUPPORTS_STACK_ALIGNMENT)
3617 unsigned int align
3618 = targetm.calls.function_arg_boundary (data.arg.mode,
3619 data.arg.type);
3620 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3621 if (TYPE_ALIGN (data.nominal_type) > align)
3622 align = MINIMUM_ALIGNMENT (data.nominal_type,
3623 TYPE_MODE (data.nominal_type),
3624 TYPE_ALIGN (data.nominal_type));
3625 if (crtl->stack_alignment_estimated < align)
3627 gcc_assert (!crtl->stack_realign_processed);
3628 crtl->stack_alignment_estimated = align;
3632 /* Find out where the parameter arrives in this function. */
3633 assign_parm_find_entry_rtl (&all, &data);
3635 /* Find out where stack space for this parameter might be. */
3636 if (assign_parm_is_stack_parm (&all, &data))
3638 assign_parm_find_stack_rtl (parm, &data);
3639 assign_parm_adjust_entry_rtl (&data);
3641 /* Record permanently how this parm was passed. */
3642 if (data.arg.pass_by_reference)
3644 rtx incoming_rtl
3645 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3646 data.entry_parm);
3647 set_decl_incoming_rtl (parm, incoming_rtl, true);
3649 else
3650 set_decl_incoming_rtl (parm, data.entry_parm, false);
3652 assign_parm_adjust_stack_rtl (&data);
3654 if (assign_parm_setup_block_p (&data))
3655 assign_parm_setup_block (&all, parm, &data);
3656 else if (data.arg.pass_by_reference || use_register_for_decl (parm))
3657 assign_parm_setup_reg (&all, parm, &data);
3658 else
3659 assign_parm_setup_stack (&all, parm, &data);
3661 if (cfun->stdarg && !DECL_CHAIN (parm))
3662 assign_parms_setup_varargs (&all, &data, false);
3664 /* Update info on where next arg arrives in registers. */
3665 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3668 if (targetm.calls.split_complex_arg)
3669 assign_parms_unsplit_complex (&all, fnargs);
3671 fnargs.release ();
3673 /* Output all parameter conversion instructions (possibly including calls)
3674 now that all parameters have been copied out of hard registers. */
3675 emit_insn (all.first_conversion_insn);
3677 /* Estimate reload stack alignment from scalar return mode. */
3678 if (SUPPORTS_STACK_ALIGNMENT)
3680 if (DECL_RESULT (fndecl))
3682 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3683 machine_mode mode = TYPE_MODE (type);
3685 if (mode != BLKmode
3686 && mode != VOIDmode
3687 && !AGGREGATE_TYPE_P (type))
3689 unsigned int align = GET_MODE_ALIGNMENT (mode);
3690 if (crtl->stack_alignment_estimated < align)
3692 gcc_assert (!crtl->stack_realign_processed);
3693 crtl->stack_alignment_estimated = align;
3699 /* If we are receiving a struct value address as the first argument, set up
3700 the RTL for the function result. As this might require code to convert
3701 the transmitted address to Pmode, we do this here to ensure that possible
3702 preliminary conversions of the address have been emitted already. */
3703 if (all.function_result_decl)
3705 tree result = DECL_RESULT (current_function_decl);
3706 rtx addr = DECL_RTL (all.function_result_decl);
3707 rtx x;
3709 if (DECL_BY_REFERENCE (result))
3711 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3712 x = addr;
3714 else
3716 SET_DECL_VALUE_EXPR (result,
3717 build1 (INDIRECT_REF, TREE_TYPE (result),
3718 all.function_result_decl));
3719 addr = convert_memory_address (Pmode, addr);
3720 x = gen_rtx_MEM (DECL_MODE (result), addr);
3721 set_mem_attributes (x, result, 1);
3724 DECL_HAS_VALUE_EXPR_P (result) = 1;
3726 set_parm_rtl (result, x);
3729 /* We have aligned all the args, so add space for the pretend args. */
3730 crtl->args.pretend_args_size = all.pretend_args_size;
3731 all.stack_args_size.constant += all.extra_pretend_bytes;
3732 crtl->args.size = all.stack_args_size.constant;
3734 /* Adjust function incoming argument size for alignment and
3735 minimum length. */
3737 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3738 crtl->args.size = aligned_upper_bound (crtl->args.size,
3739 PARM_BOUNDARY / BITS_PER_UNIT);
3741 if (ARGS_GROW_DOWNWARD)
3743 crtl->args.arg_offset_rtx
3744 = (all.stack_args_size.var == 0
3745 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3746 : expand_expr (size_diffop (all.stack_args_size.var,
3747 size_int (-all.stack_args_size.constant)),
3748 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3750 else
3751 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3753 /* See how many bytes, if any, of its args a function should try to pop
3754 on return. */
3756 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3757 TREE_TYPE (fndecl),
3758 crtl->args.size);
3760 /* For stdarg.h function, save info about
3761 regs and stack space used by the named args. */
3763 crtl->args.info = all.args_so_far_v;
3765 /* Set the rtx used for the function return value. Put this in its
3766 own variable so any optimizers that need this information don't have
3767 to include tree.h. Do this here so it gets done when an inlined
3768 function gets output. */
3770 crtl->return_rtx
3771 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3772 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3774 /* If scalar return value was computed in a pseudo-reg, or was a named
3775 return value that got dumped to the stack, copy that to the hard
3776 return register. */
3777 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3779 tree decl_result = DECL_RESULT (fndecl);
3780 rtx decl_rtl = DECL_RTL (decl_result);
3782 if (REG_P (decl_rtl)
3783 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3784 : DECL_REGISTER (decl_result))
3786 rtx real_decl_rtl;
3788 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3789 fndecl, true);
3790 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3791 /* The delay slot scheduler assumes that crtl->return_rtx
3792 holds the hard register containing the return value, not a
3793 temporary pseudo. */
3794 crtl->return_rtx = real_decl_rtl;
3799 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3800 For all seen types, gimplify their sizes. */
3802 static tree
3803 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3805 tree t = *tp;
3807 *walk_subtrees = 0;
3808 if (TYPE_P (t))
3810 if (POINTER_TYPE_P (t))
3811 *walk_subtrees = 1;
3812 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3813 && !TYPE_SIZES_GIMPLIFIED (t))
3815 gimplify_type_sizes (t, (gimple_seq *) data);
3816 *walk_subtrees = 1;
3820 return NULL;
3823 /* Gimplify the parameter list for current_function_decl. This involves
3824 evaluating SAVE_EXPRs of variable sized parameters and generating code
3825 to implement callee-copies reference parameters. Returns a sequence of
3826 statements to add to the beginning of the function. */
3828 gimple_seq
3829 gimplify_parameters (gimple_seq *cleanup)
3831 struct assign_parm_data_all all;
3832 tree parm;
3833 gimple_seq stmts = NULL;
3834 vec<tree> fnargs;
3835 unsigned i;
3837 assign_parms_initialize_all (&all);
3838 fnargs = assign_parms_augmented_arg_list (&all);
3840 FOR_EACH_VEC_ELT (fnargs, i, parm)
3842 struct assign_parm_data_one data;
3844 /* Extract the type of PARM; adjust it according to ABI. */
3845 assign_parm_find_data_types (&all, parm, &data);
3847 /* Early out for errors and void parameters. */
3848 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3849 continue;
3851 /* Update info on where next arg arrives in registers. */
3852 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3854 /* ??? Once upon a time variable_size stuffed parameter list
3855 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3856 turned out to be less than manageable in the gimple world.
3857 Now we have to hunt them down ourselves. */
3858 walk_tree_without_duplicates (&data.arg.type,
3859 gimplify_parm_type, &stmts);
3861 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3863 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3864 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3867 if (data.arg.pass_by_reference)
3869 tree type = TREE_TYPE (data.arg.type);
3870 function_arg_info orig_arg (type, data.arg.named);
3871 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3873 tree local, t;
3875 /* For constant-sized objects, this is trivial; for
3876 variable-sized objects, we have to play games. */
3877 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3878 && !(flag_stack_check == GENERIC_STACK_CHECK
3879 && compare_tree_int (DECL_SIZE_UNIT (parm),
3880 STACK_CHECK_MAX_VAR_SIZE) > 0))
3882 local = create_tmp_var (type, get_name (parm));
3883 DECL_IGNORED_P (local) = 0;
3884 /* If PARM was addressable, move that flag over
3885 to the local copy, as its address will be taken,
3886 not the PARMs. Keep the parms address taken
3887 as we'll query that flag during gimplification. */
3888 if (TREE_ADDRESSABLE (parm))
3889 TREE_ADDRESSABLE (local) = 1;
3890 else if (TREE_CODE (type) == COMPLEX_TYPE
3891 || TREE_CODE (type) == VECTOR_TYPE)
3892 DECL_GIMPLE_REG_P (local) = 1;
3894 if (!is_gimple_reg (local)
3895 && flag_stack_reuse != SR_NONE)
3897 tree clobber = build_constructor (type, NULL);
3898 gimple *clobber_stmt;
3899 TREE_THIS_VOLATILE (clobber) = 1;
3900 clobber_stmt = gimple_build_assign (local, clobber);
3901 gimple_seq_add_stmt (cleanup, clobber_stmt);
3904 else
3906 tree ptr_type, addr;
3908 ptr_type = build_pointer_type (type);
3909 addr = create_tmp_reg (ptr_type, get_name (parm));
3910 DECL_IGNORED_P (addr) = 0;
3911 local = build_fold_indirect_ref (addr);
3913 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3914 DECL_ALIGN (parm),
3915 max_int_size_in_bytes (type));
3916 /* The call has been built for a variable-sized object. */
3917 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3918 t = fold_convert (ptr_type, t);
3919 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3920 gimplify_and_add (t, &stmts);
3923 gimplify_assign (local, parm, &stmts);
3925 SET_DECL_VALUE_EXPR (parm, local);
3926 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3931 fnargs.release ();
3933 return stmts;
3936 /* Compute the size and offset from the start of the stacked arguments for a
3937 parm passed in mode PASSED_MODE and with type TYPE.
3939 INITIAL_OFFSET_PTR points to the current offset into the stacked
3940 arguments.
3942 The starting offset and size for this parm are returned in
3943 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3944 nonzero, the offset is that of stack slot, which is returned in
3945 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3946 padding required from the initial offset ptr to the stack slot.
3948 IN_REGS is nonzero if the argument will be passed in registers. It will
3949 never be set if REG_PARM_STACK_SPACE is not defined.
3951 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3952 for arguments which are passed in registers.
3954 FNDECL is the function in which the argument was defined.
3956 There are two types of rounding that are done. The first, controlled by
3957 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3958 argument list to be aligned to the specific boundary (in bits). This
3959 rounding affects the initial and starting offsets, but not the argument
3960 size.
3962 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3963 optionally rounds the size of the parm to PARM_BOUNDARY. The
3964 initial offset is not affected by this rounding, while the size always
3965 is and the starting offset may be. */
3967 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3968 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3969 callers pass in the total size of args so far as
3970 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3972 void
3973 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
3974 int reg_parm_stack_space, int partial,
3975 tree fndecl ATTRIBUTE_UNUSED,
3976 struct args_size *initial_offset_ptr,
3977 struct locate_and_pad_arg_data *locate)
3979 tree sizetree;
3980 pad_direction where_pad;
3981 unsigned int boundary, round_boundary;
3982 int part_size_in_regs;
3984 /* If we have found a stack parm before we reach the end of the
3985 area reserved for registers, skip that area. */
3986 if (! in_regs)
3988 if (reg_parm_stack_space > 0)
3990 if (initial_offset_ptr->var
3991 || !ordered_p (initial_offset_ptr->constant,
3992 reg_parm_stack_space))
3994 initial_offset_ptr->var
3995 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3996 ssize_int (reg_parm_stack_space));
3997 initial_offset_ptr->constant = 0;
3999 else
4000 initial_offset_ptr->constant
4001 = ordered_max (initial_offset_ptr->constant,
4002 reg_parm_stack_space);
4006 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4008 sizetree = (type
4009 ? arg_size_in_bytes (type)
4010 : size_int (GET_MODE_SIZE (passed_mode)));
4011 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4012 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4013 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4014 type);
4015 locate->where_pad = where_pad;
4017 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4018 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4019 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4021 locate->boundary = boundary;
4023 if (SUPPORTS_STACK_ALIGNMENT)
4025 /* stack_alignment_estimated can't change after stack has been
4026 realigned. */
4027 if (crtl->stack_alignment_estimated < boundary)
4029 if (!crtl->stack_realign_processed)
4030 crtl->stack_alignment_estimated = boundary;
4031 else
4033 /* If stack is realigned and stack alignment value
4034 hasn't been finalized, it is OK not to increase
4035 stack_alignment_estimated. The bigger alignment
4036 requirement is recorded in stack_alignment_needed
4037 below. */
4038 gcc_assert (!crtl->stack_realign_finalized
4039 && crtl->stack_realign_needed);
4044 if (ARGS_GROW_DOWNWARD)
4046 locate->slot_offset.constant = -initial_offset_ptr->constant;
4047 if (initial_offset_ptr->var)
4048 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4049 initial_offset_ptr->var);
4052 tree s2 = sizetree;
4053 if (where_pad != PAD_NONE
4054 && (!tree_fits_uhwi_p (sizetree)
4055 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4056 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4057 SUB_PARM_SIZE (locate->slot_offset, s2);
4060 locate->slot_offset.constant += part_size_in_regs;
4062 if (!in_regs || reg_parm_stack_space > 0)
4063 pad_to_arg_alignment (&locate->slot_offset, boundary,
4064 &locate->alignment_pad);
4066 locate->size.constant = (-initial_offset_ptr->constant
4067 - locate->slot_offset.constant);
4068 if (initial_offset_ptr->var)
4069 locate->size.var = size_binop (MINUS_EXPR,
4070 size_binop (MINUS_EXPR,
4071 ssize_int (0),
4072 initial_offset_ptr->var),
4073 locate->slot_offset.var);
4075 /* Pad_below needs the pre-rounded size to know how much to pad
4076 below. */
4077 locate->offset = locate->slot_offset;
4078 if (where_pad == PAD_DOWNWARD)
4079 pad_below (&locate->offset, passed_mode, sizetree);
4082 else
4084 if (!in_regs || reg_parm_stack_space > 0)
4085 pad_to_arg_alignment (initial_offset_ptr, boundary,
4086 &locate->alignment_pad);
4087 locate->slot_offset = *initial_offset_ptr;
4089 #ifdef PUSH_ROUNDING
4090 if (passed_mode != BLKmode)
4091 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4092 #endif
4094 /* Pad_below needs the pre-rounded size to know how much to pad below
4095 so this must be done before rounding up. */
4096 locate->offset = locate->slot_offset;
4097 if (where_pad == PAD_DOWNWARD)
4098 pad_below (&locate->offset, passed_mode, sizetree);
4100 if (where_pad != PAD_NONE
4101 && (!tree_fits_uhwi_p (sizetree)
4102 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4103 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4105 ADD_PARM_SIZE (locate->size, sizetree);
4107 locate->size.constant -= part_size_in_regs;
4110 locate->offset.constant
4111 += targetm.calls.function_arg_offset (passed_mode, type);
4114 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4115 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4117 static void
4118 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4119 struct args_size *alignment_pad)
4121 tree save_var = NULL_TREE;
4122 poly_int64 save_constant = 0;
4123 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4124 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4126 #ifdef SPARC_STACK_BOUNDARY_HACK
4127 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4128 the real alignment of %sp. However, when it does this, the
4129 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4130 if (SPARC_STACK_BOUNDARY_HACK)
4131 sp_offset = 0;
4132 #endif
4134 if (boundary > PARM_BOUNDARY)
4136 save_var = offset_ptr->var;
4137 save_constant = offset_ptr->constant;
4140 alignment_pad->var = NULL_TREE;
4141 alignment_pad->constant = 0;
4143 if (boundary > BITS_PER_UNIT)
4145 int misalign;
4146 if (offset_ptr->var
4147 || !known_misalignment (offset_ptr->constant + sp_offset,
4148 boundary_in_bytes, &misalign))
4150 tree sp_offset_tree = ssize_int (sp_offset);
4151 tree offset = size_binop (PLUS_EXPR,
4152 ARGS_SIZE_TREE (*offset_ptr),
4153 sp_offset_tree);
4154 tree rounded;
4155 if (ARGS_GROW_DOWNWARD)
4156 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4157 else
4158 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4160 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4161 /* ARGS_SIZE_TREE includes constant term. */
4162 offset_ptr->constant = 0;
4163 if (boundary > PARM_BOUNDARY)
4164 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4165 save_var);
4167 else
4169 if (ARGS_GROW_DOWNWARD)
4170 offset_ptr->constant -= misalign;
4171 else
4172 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4174 if (boundary > PARM_BOUNDARY)
4175 alignment_pad->constant = offset_ptr->constant - save_constant;
4180 static void
4181 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4183 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4184 int misalign;
4185 if (passed_mode != BLKmode
4186 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4187 offset_ptr->constant += -misalign & (align - 1);
4188 else
4190 if (TREE_CODE (sizetree) != INTEGER_CST
4191 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4193 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4194 tree s2 = round_up (sizetree, align);
4195 /* Add it in. */
4196 ADD_PARM_SIZE (*offset_ptr, s2);
4197 SUB_PARM_SIZE (*offset_ptr, sizetree);
4203 /* True if register REGNO was alive at a place where `setjmp' was
4204 called and was set more than once or is an argument. Such regs may
4205 be clobbered by `longjmp'. */
4207 static bool
4208 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4210 /* There appear to be cases where some local vars never reach the
4211 backend but have bogus regnos. */
4212 if (regno >= max_reg_num ())
4213 return false;
4215 return ((REG_N_SETS (regno) > 1
4216 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4217 regno))
4218 && REGNO_REG_SET_P (setjmp_crosses, regno));
4221 /* Walk the tree of blocks describing the binding levels within a
4222 function and warn about variables the might be killed by setjmp or
4223 vfork. This is done after calling flow_analysis before register
4224 allocation since that will clobber the pseudo-regs to hard
4225 regs. */
4227 static void
4228 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4230 tree decl, sub;
4232 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4234 if (VAR_P (decl)
4235 && DECL_RTL_SET_P (decl)
4236 && REG_P (DECL_RTL (decl))
4237 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4238 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4239 " %<longjmp%> or %<vfork%>", decl);
4242 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4243 setjmp_vars_warning (setjmp_crosses, sub);
4246 /* Do the appropriate part of setjmp_vars_warning
4247 but for arguments instead of local variables. */
4249 static void
4250 setjmp_args_warning (bitmap setjmp_crosses)
4252 tree decl;
4253 for (decl = DECL_ARGUMENTS (current_function_decl);
4254 decl; decl = DECL_CHAIN (decl))
4255 if (DECL_RTL (decl) != 0
4256 && REG_P (DECL_RTL (decl))
4257 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4258 warning (OPT_Wclobbered,
4259 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4260 decl);
4263 /* Generate warning messages for variables live across setjmp. */
4265 void
4266 generate_setjmp_warnings (void)
4268 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4270 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4271 || bitmap_empty_p (setjmp_crosses))
4272 return;
4274 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4275 setjmp_args_warning (setjmp_crosses);
4279 /* Reverse the order of elements in the fragment chain T of blocks,
4280 and return the new head of the chain (old last element).
4281 In addition to that clear BLOCK_SAME_RANGE flags when needed
4282 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4283 its super fragment origin. */
4285 static tree
4286 block_fragments_nreverse (tree t)
4288 tree prev = 0, block, next, prev_super = 0;
4289 tree super = BLOCK_SUPERCONTEXT (t);
4290 if (BLOCK_FRAGMENT_ORIGIN (super))
4291 super = BLOCK_FRAGMENT_ORIGIN (super);
4292 for (block = t; block; block = next)
4294 next = BLOCK_FRAGMENT_CHAIN (block);
4295 BLOCK_FRAGMENT_CHAIN (block) = prev;
4296 if ((prev && !BLOCK_SAME_RANGE (prev))
4297 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4298 != prev_super))
4299 BLOCK_SAME_RANGE (block) = 0;
4300 prev_super = BLOCK_SUPERCONTEXT (block);
4301 BLOCK_SUPERCONTEXT (block) = super;
4302 prev = block;
4304 t = BLOCK_FRAGMENT_ORIGIN (t);
4305 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4306 != prev_super)
4307 BLOCK_SAME_RANGE (t) = 0;
4308 BLOCK_SUPERCONTEXT (t) = super;
4309 return prev;
4312 /* Reverse the order of elements in the chain T of blocks,
4313 and return the new head of the chain (old last element).
4314 Also do the same on subblocks and reverse the order of elements
4315 in BLOCK_FRAGMENT_CHAIN as well. */
4317 static tree
4318 blocks_nreverse_all (tree t)
4320 tree prev = 0, block, next;
4321 for (block = t; block; block = next)
4323 next = BLOCK_CHAIN (block);
4324 BLOCK_CHAIN (block) = prev;
4325 if (BLOCK_FRAGMENT_CHAIN (block)
4326 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4328 BLOCK_FRAGMENT_CHAIN (block)
4329 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4330 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4331 BLOCK_SAME_RANGE (block) = 0;
4333 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4334 prev = block;
4336 return prev;
4340 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4341 and create duplicate blocks. */
4342 /* ??? Need an option to either create block fragments or to create
4343 abstract origin duplicates of a source block. It really depends
4344 on what optimization has been performed. */
4346 void
4347 reorder_blocks (void)
4349 tree block = DECL_INITIAL (current_function_decl);
4351 if (block == NULL_TREE)
4352 return;
4354 auto_vec<tree, 10> block_stack;
4356 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4357 clear_block_marks (block);
4359 /* Prune the old trees away, so that they don't get in the way. */
4360 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4361 BLOCK_CHAIN (block) = NULL_TREE;
4363 /* Recreate the block tree from the note nesting. */
4364 reorder_blocks_1 (get_insns (), block, &block_stack);
4365 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4368 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4370 void
4371 clear_block_marks (tree block)
4373 while (block)
4375 TREE_ASM_WRITTEN (block) = 0;
4376 clear_block_marks (BLOCK_SUBBLOCKS (block));
4377 block = BLOCK_CHAIN (block);
4381 static void
4382 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4383 vec<tree> *p_block_stack)
4385 rtx_insn *insn;
4386 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4388 for (insn = insns; insn; insn = NEXT_INSN (insn))
4390 if (NOTE_P (insn))
4392 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4394 tree block = NOTE_BLOCK (insn);
4395 tree origin;
4397 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4398 origin = block;
4400 if (prev_end)
4401 BLOCK_SAME_RANGE (prev_end) = 0;
4402 prev_end = NULL_TREE;
4404 /* If we have seen this block before, that means it now
4405 spans multiple address regions. Create a new fragment. */
4406 if (TREE_ASM_WRITTEN (block))
4408 tree new_block = copy_node (block);
4410 BLOCK_SAME_RANGE (new_block) = 0;
4411 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4412 BLOCK_FRAGMENT_CHAIN (new_block)
4413 = BLOCK_FRAGMENT_CHAIN (origin);
4414 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4416 NOTE_BLOCK (insn) = new_block;
4417 block = new_block;
4420 if (prev_beg == current_block && prev_beg)
4421 BLOCK_SAME_RANGE (block) = 1;
4423 prev_beg = origin;
4425 BLOCK_SUBBLOCKS (block) = 0;
4426 TREE_ASM_WRITTEN (block) = 1;
4427 /* When there's only one block for the entire function,
4428 current_block == block and we mustn't do this, it
4429 will cause infinite recursion. */
4430 if (block != current_block)
4432 tree super;
4433 if (block != origin)
4434 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4435 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4436 (origin))
4437 == current_block);
4438 if (p_block_stack->is_empty ())
4439 super = current_block;
4440 else
4442 super = p_block_stack->last ();
4443 gcc_assert (super == current_block
4444 || BLOCK_FRAGMENT_ORIGIN (super)
4445 == current_block);
4447 BLOCK_SUPERCONTEXT (block) = super;
4448 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4449 BLOCK_SUBBLOCKS (current_block) = block;
4450 current_block = origin;
4452 p_block_stack->safe_push (block);
4454 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4456 NOTE_BLOCK (insn) = p_block_stack->pop ();
4457 current_block = BLOCK_SUPERCONTEXT (current_block);
4458 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4459 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4460 prev_beg = NULL_TREE;
4461 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4462 ? NOTE_BLOCK (insn) : NULL_TREE;
4465 else
4467 prev_beg = NULL_TREE;
4468 if (prev_end)
4469 BLOCK_SAME_RANGE (prev_end) = 0;
4470 prev_end = NULL_TREE;
4475 /* Reverse the order of elements in the chain T of blocks,
4476 and return the new head of the chain (old last element). */
4478 tree
4479 blocks_nreverse (tree t)
4481 tree prev = 0, block, next;
4482 for (block = t; block; block = next)
4484 next = BLOCK_CHAIN (block);
4485 BLOCK_CHAIN (block) = prev;
4486 prev = block;
4488 return prev;
4491 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4492 by modifying the last node in chain 1 to point to chain 2. */
4494 tree
4495 block_chainon (tree op1, tree op2)
4497 tree t1;
4499 if (!op1)
4500 return op2;
4501 if (!op2)
4502 return op1;
4504 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4505 continue;
4506 BLOCK_CHAIN (t1) = op2;
4508 #ifdef ENABLE_TREE_CHECKING
4510 tree t2;
4511 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4512 gcc_assert (t2 != t1);
4514 #endif
4516 return op1;
4519 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4520 non-NULL, list them all into VECTOR, in a depth-first preorder
4521 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4522 blocks. */
4524 static int
4525 all_blocks (tree block, tree *vector)
4527 int n_blocks = 0;
4529 while (block)
4531 TREE_ASM_WRITTEN (block) = 0;
4533 /* Record this block. */
4534 if (vector)
4535 vector[n_blocks] = block;
4537 ++n_blocks;
4539 /* Record the subblocks, and their subblocks... */
4540 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4541 vector ? vector + n_blocks : 0);
4542 block = BLOCK_CHAIN (block);
4545 return n_blocks;
4548 /* Return a vector containing all the blocks rooted at BLOCK. The
4549 number of elements in the vector is stored in N_BLOCKS_P. The
4550 vector is dynamically allocated; it is the caller's responsibility
4551 to call `free' on the pointer returned. */
4553 static tree *
4554 get_block_vector (tree block, int *n_blocks_p)
4556 tree *block_vector;
4558 *n_blocks_p = all_blocks (block, NULL);
4559 block_vector = XNEWVEC (tree, *n_blocks_p);
4560 all_blocks (block, block_vector);
4562 return block_vector;
4565 static GTY(()) int next_block_index = 2;
4567 /* Set BLOCK_NUMBER for all the blocks in FN. */
4569 void
4570 number_blocks (tree fn)
4572 int i;
4573 int n_blocks;
4574 tree *block_vector;
4576 /* For XCOFF debugging output, we start numbering the blocks
4577 from 1 within each function, rather than keeping a running
4578 count. */
4579 #if defined (XCOFF_DEBUGGING_INFO)
4580 if (write_symbols == XCOFF_DEBUG)
4581 next_block_index = 1;
4582 #endif
4584 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4586 /* The top-level BLOCK isn't numbered at all. */
4587 for (i = 1; i < n_blocks; ++i)
4588 /* We number the blocks from two. */
4589 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4591 free (block_vector);
4593 return;
4596 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4598 DEBUG_FUNCTION tree
4599 debug_find_var_in_block_tree (tree var, tree block)
4601 tree t;
4603 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4604 if (t == var)
4605 return block;
4607 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4609 tree ret = debug_find_var_in_block_tree (var, t);
4610 if (ret)
4611 return ret;
4614 return NULL_TREE;
4617 /* Keep track of whether we're in a dummy function context. If we are,
4618 we don't want to invoke the set_current_function hook, because we'll
4619 get into trouble if the hook calls target_reinit () recursively or
4620 when the initial initialization is not yet complete. */
4622 static bool in_dummy_function;
4624 /* Invoke the target hook when setting cfun. Update the optimization options
4625 if the function uses different options than the default. */
4627 static void
4628 invoke_set_current_function_hook (tree fndecl)
4630 if (!in_dummy_function)
4632 tree opts = ((fndecl)
4633 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4634 : optimization_default_node);
4636 if (!opts)
4637 opts = optimization_default_node;
4639 /* Change optimization options if needed. */
4640 if (optimization_current_node != opts)
4642 optimization_current_node = opts;
4643 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4646 targetm.set_current_function (fndecl);
4647 this_fn_optabs = this_target_optabs;
4649 /* Initialize global alignment variables after op. */
4650 parse_alignment_opts ();
4652 if (opts != optimization_default_node)
4654 init_tree_optimization_optabs (opts);
4655 if (TREE_OPTIMIZATION_OPTABS (opts))
4656 this_fn_optabs = (struct target_optabs *)
4657 TREE_OPTIMIZATION_OPTABS (opts);
4662 /* cfun should never be set directly; use this function. */
4664 void
4665 set_cfun (struct function *new_cfun, bool force)
4667 if (cfun != new_cfun || force)
4669 cfun = new_cfun;
4670 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4671 redirect_edge_var_map_empty ();
4675 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4677 static vec<function *> cfun_stack;
4679 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4680 current_function_decl accordingly. */
4682 void
4683 push_cfun (struct function *new_cfun)
4685 gcc_assert ((!cfun && !current_function_decl)
4686 || (cfun && current_function_decl == cfun->decl));
4687 cfun_stack.safe_push (cfun);
4688 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4689 set_cfun (new_cfun);
4692 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4694 void
4695 pop_cfun (void)
4697 struct function *new_cfun = cfun_stack.pop ();
4698 /* When in_dummy_function, we do have a cfun but current_function_decl is
4699 NULL. We also allow pushing NULL cfun and subsequently changing
4700 current_function_decl to something else and have both restored by
4701 pop_cfun. */
4702 gcc_checking_assert (in_dummy_function
4703 || !cfun
4704 || current_function_decl == cfun->decl);
4705 set_cfun (new_cfun);
4706 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4709 /* Return value of funcdef and increase it. */
4711 get_next_funcdef_no (void)
4713 return funcdef_no++;
4716 /* Return value of funcdef. */
4718 get_last_funcdef_no (void)
4720 return funcdef_no;
4723 /* Allocate a function structure for FNDECL and set its contents
4724 to the defaults. Set cfun to the newly-allocated object.
4725 Some of the helper functions invoked during initialization assume
4726 that cfun has already been set. Therefore, assign the new object
4727 directly into cfun and invoke the back end hook explicitly at the
4728 very end, rather than initializing a temporary and calling set_cfun
4729 on it.
4731 ABSTRACT_P is true if this is a function that will never be seen by
4732 the middle-end. Such functions are front-end concepts (like C++
4733 function templates) that do not correspond directly to functions
4734 placed in object files. */
4736 void
4737 allocate_struct_function (tree fndecl, bool abstract_p)
4739 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4741 cfun = ggc_cleared_alloc<function> ();
4743 init_eh_for_function ();
4745 if (init_machine_status)
4746 cfun->machine = (*init_machine_status) ();
4748 #ifdef OVERRIDE_ABI_FORMAT
4749 OVERRIDE_ABI_FORMAT (fndecl);
4750 #endif
4752 if (fndecl != NULL_TREE)
4754 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4755 cfun->decl = fndecl;
4756 current_function_funcdef_no = get_next_funcdef_no ();
4759 invoke_set_current_function_hook (fndecl);
4761 if (fndecl != NULL_TREE)
4763 tree result = DECL_RESULT (fndecl);
4765 if (!abstract_p)
4767 /* Now that we have activated any function-specific attributes
4768 that might affect layout, particularly vector modes, relayout
4769 each of the parameters and the result. */
4770 relayout_decl (result);
4771 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4772 parm = DECL_CHAIN (parm))
4773 relayout_decl (parm);
4775 /* Similarly relayout the function decl. */
4776 targetm.target_option.relayout_function (fndecl);
4779 if (!abstract_p && aggregate_value_p (result, fndecl))
4781 #ifdef PCC_STATIC_STRUCT_RETURN
4782 cfun->returns_pcc_struct = 1;
4783 #endif
4784 cfun->returns_struct = 1;
4787 cfun->stdarg = stdarg_p (fntype);
4789 /* Assume all registers in stdarg functions need to be saved. */
4790 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4791 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4793 /* ??? This could be set on a per-function basis by the front-end
4794 but is this worth the hassle? */
4795 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4796 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4798 if (!profile_flag && !flag_instrument_function_entry_exit)
4799 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4802 /* Don't enable begin stmt markers if var-tracking at assignments is
4803 disabled. The markers make little sense without the variable
4804 binding annotations among them. */
4805 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4806 && MAY_HAVE_DEBUG_MARKER_STMTS;
4809 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4810 instead of just setting it. */
4812 void
4813 push_struct_function (tree fndecl)
4815 /* When in_dummy_function we might be in the middle of a pop_cfun and
4816 current_function_decl and cfun may not match. */
4817 gcc_assert (in_dummy_function
4818 || (!cfun && !current_function_decl)
4819 || (cfun && current_function_decl == cfun->decl));
4820 cfun_stack.safe_push (cfun);
4821 current_function_decl = fndecl;
4822 allocate_struct_function (fndecl, false);
4825 /* Reset crtl and other non-struct-function variables to defaults as
4826 appropriate for emitting rtl at the start of a function. */
4828 static void
4829 prepare_function_start (void)
4831 gcc_assert (!get_last_insn ());
4832 init_temp_slots ();
4833 init_emit ();
4834 init_varasm_status ();
4835 init_expr ();
4836 default_rtl_profile ();
4838 if (flag_stack_usage_info)
4840 cfun->su = ggc_cleared_alloc<stack_usage> ();
4841 cfun->su->static_stack_size = -1;
4844 cse_not_expected = ! optimize;
4846 /* Caller save not needed yet. */
4847 caller_save_needed = 0;
4849 /* We haven't done register allocation yet. */
4850 reg_renumber = 0;
4852 /* Indicate that we have not instantiated virtual registers yet. */
4853 virtuals_instantiated = 0;
4855 /* Indicate that we want CONCATs now. */
4856 generating_concat_p = 1;
4858 /* Indicate we have no need of a frame pointer yet. */
4859 frame_pointer_needed = 0;
4862 void
4863 push_dummy_function (bool with_decl)
4865 tree fn_decl, fn_type, fn_result_decl;
4867 gcc_assert (!in_dummy_function);
4868 in_dummy_function = true;
4870 if (with_decl)
4872 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4873 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4874 fn_type);
4875 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4876 NULL_TREE, void_type_node);
4877 DECL_RESULT (fn_decl) = fn_result_decl;
4879 else
4880 fn_decl = NULL_TREE;
4882 push_struct_function (fn_decl);
4885 /* Initialize the rtl expansion mechanism so that we can do simple things
4886 like generate sequences. This is used to provide a context during global
4887 initialization of some passes. You must call expand_dummy_function_end
4888 to exit this context. */
4890 void
4891 init_dummy_function_start (void)
4893 push_dummy_function (false);
4894 prepare_function_start ();
4897 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4898 and initialize static variables for generating RTL for the statements
4899 of the function. */
4901 void
4902 init_function_start (tree subr)
4904 /* Initialize backend, if needed. */
4905 initialize_rtl ();
4907 prepare_function_start ();
4908 decide_function_section (subr);
4910 /* Warn if this value is an aggregate type,
4911 regardless of which calling convention we are using for it. */
4912 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4913 warning (OPT_Waggregate_return, "function returns an aggregate");
4916 /* Expand code to verify the stack_protect_guard. This is invoked at
4917 the end of a function to be protected. */
4919 void
4920 stack_protect_epilogue (void)
4922 tree guard_decl = crtl->stack_protect_guard_decl;
4923 rtx_code_label *label = gen_label_rtx ();
4924 rtx x, y;
4925 rtx_insn *seq = NULL;
4927 x = expand_normal (crtl->stack_protect_guard);
4929 if (targetm.have_stack_protect_combined_test () && guard_decl)
4931 gcc_assert (DECL_P (guard_decl));
4932 y = DECL_RTL (guard_decl);
4933 /* Allow the target to compute address of Y and compare it with X without
4934 leaking Y into a register. This combined address + compare pattern
4935 allows the target to prevent spilling of any intermediate results by
4936 splitting it after register allocator. */
4937 seq = targetm.gen_stack_protect_combined_test (x, y, label);
4939 else
4941 if (guard_decl)
4942 y = expand_normal (guard_decl);
4943 else
4944 y = const0_rtx;
4946 /* Allow the target to compare Y with X without leaking either into
4947 a register. */
4948 if (targetm.have_stack_protect_test ())
4949 seq = targetm.gen_stack_protect_test (x, y, label);
4952 if (seq)
4953 emit_insn (seq);
4954 else
4955 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4957 /* The noreturn predictor has been moved to the tree level. The rtl-level
4958 predictors estimate this branch about 20%, which isn't enough to get
4959 things moved out of line. Since this is the only extant case of adding
4960 a noreturn function at the rtl level, it doesn't seem worth doing ought
4961 except adding the prediction by hand. */
4962 rtx_insn *tmp = get_last_insn ();
4963 if (JUMP_P (tmp))
4964 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4966 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4967 free_temp_slots ();
4968 emit_label (label);
4971 /* Start the RTL for a new function, and set variables used for
4972 emitting RTL.
4973 SUBR is the FUNCTION_DECL node.
4974 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4975 the function's parameters, which must be run at any return statement. */
4977 void
4978 expand_function_start (tree subr)
4980 /* Make sure volatile mem refs aren't considered
4981 valid operands of arithmetic insns. */
4982 init_recog_no_volatile ();
4984 crtl->profile
4985 = (profile_flag
4986 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4988 crtl->limit_stack
4989 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4991 /* Make the label for return statements to jump to. Do not special
4992 case machines with special return instructions -- they will be
4993 handled later during jump, ifcvt, or epilogue creation. */
4994 return_label = gen_label_rtx ();
4996 /* Initialize rtx used to return the value. */
4997 /* Do this before assign_parms so that we copy the struct value address
4998 before any library calls that assign parms might generate. */
5000 /* Decide whether to return the value in memory or in a register. */
5001 tree res = DECL_RESULT (subr);
5002 if (aggregate_value_p (res, subr))
5004 /* Returning something that won't go in a register. */
5005 rtx value_address = 0;
5007 #ifdef PCC_STATIC_STRUCT_RETURN
5008 if (cfun->returns_pcc_struct)
5010 int size = int_size_in_bytes (TREE_TYPE (res));
5011 value_address = assemble_static_space (size);
5013 else
5014 #endif
5016 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5017 /* Expect to be passed the address of a place to store the value.
5018 If it is passed as an argument, assign_parms will take care of
5019 it. */
5020 if (sv)
5022 value_address = gen_reg_rtx (Pmode);
5023 emit_move_insn (value_address, sv);
5026 if (value_address)
5028 rtx x = value_address;
5029 if (!DECL_BY_REFERENCE (res))
5031 x = gen_rtx_MEM (DECL_MODE (res), x);
5032 set_mem_attributes (x, res, 1);
5034 set_parm_rtl (res, x);
5037 else if (DECL_MODE (res) == VOIDmode)
5038 /* If return mode is void, this decl rtl should not be used. */
5039 set_parm_rtl (res, NULL_RTX);
5040 else
5042 /* Compute the return values into a pseudo reg, which we will copy
5043 into the true return register after the cleanups are done. */
5044 tree return_type = TREE_TYPE (res);
5046 /* If we may coalesce this result, make sure it has the expected mode
5047 in case it was promoted. But we need not bother about BLKmode. */
5048 machine_mode promoted_mode
5049 = flag_tree_coalesce_vars && is_gimple_reg (res)
5050 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5051 : BLKmode;
5053 if (promoted_mode != BLKmode)
5054 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5055 else if (TYPE_MODE (return_type) != BLKmode
5056 && targetm.calls.return_in_msb (return_type))
5057 /* expand_function_end will insert the appropriate padding in
5058 this case. Use the return value's natural (unpadded) mode
5059 within the function proper. */
5060 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5061 else
5063 /* In order to figure out what mode to use for the pseudo, we
5064 figure out what the mode of the eventual return register will
5065 actually be, and use that. */
5066 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5068 /* Structures that are returned in registers are not
5069 aggregate_value_p, so we may see a PARALLEL or a REG. */
5070 if (REG_P (hard_reg))
5071 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5072 else
5074 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5075 set_parm_rtl (res, gen_group_rtx (hard_reg));
5079 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5080 result to the real return register(s). */
5081 DECL_REGISTER (res) = 1;
5084 /* Initialize rtx for parameters and local variables.
5085 In some cases this requires emitting insns. */
5086 assign_parms (subr);
5088 /* If function gets a static chain arg, store it. */
5089 if (cfun->static_chain_decl)
5091 tree parm = cfun->static_chain_decl;
5092 rtx local, chain;
5093 rtx_insn *insn;
5094 int unsignedp;
5096 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5097 chain = targetm.calls.static_chain (current_function_decl, true);
5099 set_decl_incoming_rtl (parm, chain, false);
5100 set_parm_rtl (parm, local);
5101 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5103 if (GET_MODE (local) != GET_MODE (chain))
5105 convert_move (local, chain, unsignedp);
5106 insn = get_last_insn ();
5108 else
5109 insn = emit_move_insn (local, chain);
5111 /* Mark the register as eliminable, similar to parameters. */
5112 if (MEM_P (chain)
5113 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5114 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5116 /* If we aren't optimizing, save the static chain onto the stack. */
5117 if (!optimize)
5119 tree saved_static_chain_decl
5120 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5121 DECL_NAME (parm), TREE_TYPE (parm));
5122 rtx saved_static_chain_rtx
5123 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5124 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5125 emit_move_insn (saved_static_chain_rtx, chain);
5126 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5127 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5131 /* The following was moved from init_function_start.
5132 The move was supposed to make sdb output more accurate. */
5133 /* Indicate the beginning of the function body,
5134 as opposed to parm setup. */
5135 emit_note (NOTE_INSN_FUNCTION_BEG);
5137 gcc_assert (NOTE_P (get_last_insn ()));
5139 parm_birth_insn = get_last_insn ();
5141 /* If the function receives a non-local goto, then store the
5142 bits we need to restore the frame pointer. */
5143 if (cfun->nonlocal_goto_save_area)
5145 tree t_save;
5146 rtx r_save;
5148 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5149 gcc_assert (DECL_RTL_SET_P (var));
5151 t_save = build4 (ARRAY_REF,
5152 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5153 cfun->nonlocal_goto_save_area,
5154 integer_zero_node, NULL_TREE, NULL_TREE);
5155 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5156 gcc_assert (GET_MODE (r_save) == Pmode);
5158 emit_move_insn (r_save, hard_frame_pointer_rtx);
5159 update_nonlocal_goto_save_area ();
5162 if (crtl->profile)
5164 #ifdef PROFILE_HOOK
5165 PROFILE_HOOK (current_function_funcdef_no);
5166 #endif
5169 /* If we are doing generic stack checking, the probe should go here. */
5170 if (flag_stack_check == GENERIC_STACK_CHECK)
5171 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5174 void
5175 pop_dummy_function (void)
5177 pop_cfun ();
5178 in_dummy_function = false;
5181 /* Undo the effects of init_dummy_function_start. */
5182 void
5183 expand_dummy_function_end (void)
5185 gcc_assert (in_dummy_function);
5187 /* End any sequences that failed to be closed due to syntax errors. */
5188 while (in_sequence_p ())
5189 end_sequence ();
5191 /* Outside function body, can't compute type's actual size
5192 until next function's body starts. */
5194 free_after_parsing (cfun);
5195 free_after_compilation (cfun);
5196 pop_dummy_function ();
5199 /* Helper for diddle_return_value. */
5201 void
5202 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5204 if (! outgoing)
5205 return;
5207 if (REG_P (outgoing))
5208 (*doit) (outgoing, arg);
5209 else if (GET_CODE (outgoing) == PARALLEL)
5211 int i;
5213 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5215 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5217 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5218 (*doit) (x, arg);
5223 /* Call DOIT for each hard register used as a return value from
5224 the current function. */
5226 void
5227 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5229 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5232 static void
5233 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5235 emit_clobber (reg);
5238 void
5239 clobber_return_register (void)
5241 diddle_return_value (do_clobber_return_reg, NULL);
5243 /* In case we do use pseudo to return value, clobber it too. */
5244 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5246 tree decl_result = DECL_RESULT (current_function_decl);
5247 rtx decl_rtl = DECL_RTL (decl_result);
5248 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5250 do_clobber_return_reg (decl_rtl, NULL);
5255 static void
5256 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5258 emit_use (reg);
5261 static void
5262 use_return_register (void)
5264 diddle_return_value (do_use_return_reg, NULL);
5267 /* Generate RTL for the end of the current function. */
5269 void
5270 expand_function_end (void)
5272 /* If arg_pointer_save_area was referenced only from a nested
5273 function, we will not have initialized it yet. Do that now. */
5274 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5275 get_arg_pointer_save_area ();
5277 /* If we are doing generic stack checking and this function makes calls,
5278 do a stack probe at the start of the function to ensure we have enough
5279 space for another stack frame. */
5280 if (flag_stack_check == GENERIC_STACK_CHECK)
5282 rtx_insn *insn, *seq;
5284 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5285 if (CALL_P (insn))
5287 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5288 start_sequence ();
5289 if (STACK_CHECK_MOVING_SP)
5290 anti_adjust_stack_and_probe (max_frame_size, true);
5291 else
5292 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5293 seq = get_insns ();
5294 end_sequence ();
5295 set_insn_locations (seq, prologue_location);
5296 emit_insn_before (seq, stack_check_probe_note);
5297 break;
5301 /* End any sequences that failed to be closed due to syntax errors. */
5302 while (in_sequence_p ())
5303 end_sequence ();
5305 clear_pending_stack_adjust ();
5306 do_pending_stack_adjust ();
5308 /* Output a linenumber for the end of the function.
5309 SDB depended on this. */
5310 set_curr_insn_location (input_location);
5312 /* Before the return label (if any), clobber the return
5313 registers so that they are not propagated live to the rest of
5314 the function. This can only happen with functions that drop
5315 through; if there had been a return statement, there would
5316 have either been a return rtx, or a jump to the return label.
5318 We delay actual code generation after the current_function_value_rtx
5319 is computed. */
5320 rtx_insn *clobber_after = get_last_insn ();
5322 /* Output the label for the actual return from the function. */
5323 emit_label (return_label);
5325 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5327 /* Let except.c know where it should emit the call to unregister
5328 the function context for sjlj exceptions. */
5329 if (flag_exceptions)
5330 sjlj_emit_function_exit_after (get_last_insn ());
5333 /* If this is an implementation of throw, do what's necessary to
5334 communicate between __builtin_eh_return and the epilogue. */
5335 expand_eh_return ();
5337 /* If stack protection is enabled for this function, check the guard. */
5338 if (crtl->stack_protect_guard
5339 && targetm.stack_protect_runtime_enabled_p ()
5340 && naked_return_label == NULL_RTX)
5341 stack_protect_epilogue ();
5343 /* If scalar return value was computed in a pseudo-reg, or was a named
5344 return value that got dumped to the stack, copy that to the hard
5345 return register. */
5346 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5348 tree decl_result = DECL_RESULT (current_function_decl);
5349 rtx decl_rtl = DECL_RTL (decl_result);
5351 if (REG_P (decl_rtl)
5352 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5353 : DECL_REGISTER (decl_result))
5355 rtx real_decl_rtl = crtl->return_rtx;
5356 complex_mode cmode;
5358 /* This should be set in assign_parms. */
5359 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5361 /* If this is a BLKmode structure being returned in registers,
5362 then use the mode computed in expand_return. Note that if
5363 decl_rtl is memory, then its mode may have been changed,
5364 but that crtl->return_rtx has not. */
5365 if (GET_MODE (real_decl_rtl) == BLKmode)
5366 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5368 /* If a non-BLKmode return value should be padded at the least
5369 significant end of the register, shift it left by the appropriate
5370 amount. BLKmode results are handled using the group load/store
5371 machinery. */
5372 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5373 && REG_P (real_decl_rtl)
5374 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5376 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5377 REGNO (real_decl_rtl)),
5378 decl_rtl);
5379 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5381 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5383 /* If expand_function_start has created a PARALLEL for decl_rtl,
5384 move the result to the real return registers. Otherwise, do
5385 a group load from decl_rtl for a named return. */
5386 if (GET_CODE (decl_rtl) == PARALLEL)
5387 emit_group_move (real_decl_rtl, decl_rtl);
5388 else
5389 emit_group_load (real_decl_rtl, decl_rtl,
5390 TREE_TYPE (decl_result),
5391 int_size_in_bytes (TREE_TYPE (decl_result)));
5393 /* In the case of complex integer modes smaller than a word, we'll
5394 need to generate some non-trivial bitfield insertions. Do that
5395 on a pseudo and not the hard register. */
5396 else if (GET_CODE (decl_rtl) == CONCAT
5397 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5398 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5400 int old_generating_concat_p;
5401 rtx tmp;
5403 old_generating_concat_p = generating_concat_p;
5404 generating_concat_p = 0;
5405 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5406 generating_concat_p = old_generating_concat_p;
5408 emit_move_insn (tmp, decl_rtl);
5409 emit_move_insn (real_decl_rtl, tmp);
5411 /* If a named return value dumped decl_return to memory, then
5412 we may need to re-do the PROMOTE_MODE signed/unsigned
5413 extension. */
5414 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5416 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5417 promote_function_mode (TREE_TYPE (decl_result),
5418 GET_MODE (decl_rtl), &unsignedp,
5419 TREE_TYPE (current_function_decl), 1);
5421 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5423 else
5424 emit_move_insn (real_decl_rtl, decl_rtl);
5428 /* If returning a structure, arrange to return the address of the value
5429 in a place where debuggers expect to find it.
5431 If returning a structure PCC style,
5432 the caller also depends on this value.
5433 And cfun->returns_pcc_struct is not necessarily set. */
5434 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5435 && !targetm.calls.omit_struct_return_reg)
5437 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5438 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5439 rtx outgoing;
5441 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5442 type = TREE_TYPE (type);
5443 else
5444 value_address = XEXP (value_address, 0);
5446 outgoing = targetm.calls.function_value (build_pointer_type (type),
5447 current_function_decl, true);
5449 /* Mark this as a function return value so integrate will delete the
5450 assignment and USE below when inlining this function. */
5451 REG_FUNCTION_VALUE_P (outgoing) = 1;
5453 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5454 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5455 value_address = convert_memory_address (mode, value_address);
5457 emit_move_insn (outgoing, value_address);
5459 /* Show return register used to hold result (in this case the address
5460 of the result. */
5461 crtl->return_rtx = outgoing;
5464 /* Emit the actual code to clobber return register. Don't emit
5465 it if clobber_after is a barrier, then the previous basic block
5466 certainly doesn't fall thru into the exit block. */
5467 if (!BARRIER_P (clobber_after))
5469 start_sequence ();
5470 clobber_return_register ();
5471 rtx_insn *seq = get_insns ();
5472 end_sequence ();
5474 emit_insn_after (seq, clobber_after);
5477 /* Output the label for the naked return from the function. */
5478 if (naked_return_label)
5479 emit_label (naked_return_label);
5481 /* @@@ This is a kludge. We want to ensure that instructions that
5482 may trap are not moved into the epilogue by scheduling, because
5483 we don't always emit unwind information for the epilogue. */
5484 if (cfun->can_throw_non_call_exceptions
5485 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5486 emit_insn (gen_blockage ());
5488 /* If stack protection is enabled for this function, check the guard. */
5489 if (crtl->stack_protect_guard
5490 && targetm.stack_protect_runtime_enabled_p ()
5491 && naked_return_label)
5492 stack_protect_epilogue ();
5494 /* If we had calls to alloca, and this machine needs
5495 an accurate stack pointer to exit the function,
5496 insert some code to save and restore the stack pointer. */
5497 if (! EXIT_IGNORE_STACK
5498 && cfun->calls_alloca)
5500 rtx tem = 0;
5502 start_sequence ();
5503 emit_stack_save (SAVE_FUNCTION, &tem);
5504 rtx_insn *seq = get_insns ();
5505 end_sequence ();
5506 emit_insn_before (seq, parm_birth_insn);
5508 emit_stack_restore (SAVE_FUNCTION, tem);
5511 /* ??? This should no longer be necessary since stupid is no longer with
5512 us, but there are some parts of the compiler (eg reload_combine, and
5513 sh mach_dep_reorg) that still try and compute their own lifetime info
5514 instead of using the general framework. */
5515 use_return_register ();
5519 get_arg_pointer_save_area (void)
5521 rtx ret = arg_pointer_save_area;
5523 if (! ret)
5525 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5526 arg_pointer_save_area = ret;
5529 if (! crtl->arg_pointer_save_area_init)
5531 /* Save the arg pointer at the beginning of the function. The
5532 generated stack slot may not be a valid memory address, so we
5533 have to check it and fix it if necessary. */
5534 start_sequence ();
5535 emit_move_insn (validize_mem (copy_rtx (ret)),
5536 crtl->args.internal_arg_pointer);
5537 rtx_insn *seq = get_insns ();
5538 end_sequence ();
5540 push_topmost_sequence ();
5541 emit_insn_after (seq, entry_of_function ());
5542 pop_topmost_sequence ();
5544 crtl->arg_pointer_save_area_init = true;
5547 return ret;
5551 /* If debugging dumps are requested, dump information about how the
5552 target handled -fstack-check=clash for the prologue.
5554 PROBES describes what if any probes were emitted.
5556 RESIDUALS indicates if the prologue had any residual allocation
5557 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5559 void
5560 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5562 if (!dump_file)
5563 return;
5565 switch (probes)
5567 case NO_PROBE_NO_FRAME:
5568 fprintf (dump_file,
5569 "Stack clash no probe no stack adjustment in prologue.\n");
5570 break;
5571 case NO_PROBE_SMALL_FRAME:
5572 fprintf (dump_file,
5573 "Stack clash no probe small stack adjustment in prologue.\n");
5574 break;
5575 case PROBE_INLINE:
5576 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5577 break;
5578 case PROBE_LOOP:
5579 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5580 break;
5583 if (residuals)
5584 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5585 else
5586 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5588 if (frame_pointer_needed)
5589 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5590 else
5591 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5593 if (TREE_THIS_VOLATILE (cfun->decl))
5594 fprintf (dump_file,
5595 "Stack clash noreturn prologue, assuming no implicit"
5596 " probes in caller.\n");
5597 else
5598 fprintf (dump_file,
5599 "Stack clash not noreturn prologue.\n");
5602 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5603 for the first time. */
5605 static void
5606 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5608 rtx_insn *tmp;
5609 hash_table<insn_cache_hasher> *hash = *hashp;
5611 if (hash == NULL)
5612 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5614 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5616 rtx *slot = hash->find_slot (tmp, INSERT);
5617 gcc_assert (*slot == NULL);
5618 *slot = tmp;
5622 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5623 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5624 insn, then record COPY as well. */
5626 void
5627 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5629 hash_table<insn_cache_hasher> *hash;
5630 rtx *slot;
5632 hash = epilogue_insn_hash;
5633 if (!hash || !hash->find (insn))
5635 hash = prologue_insn_hash;
5636 if (!hash || !hash->find (insn))
5637 return;
5640 slot = hash->find_slot (copy, INSERT);
5641 gcc_assert (*slot == NULL);
5642 *slot = copy;
5645 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5646 we can be running after reorg, SEQUENCE rtl is possible. */
5648 static bool
5649 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5651 if (hash == NULL)
5652 return false;
5654 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5656 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5657 int i;
5658 for (i = seq->len () - 1; i >= 0; i--)
5659 if (hash->find (seq->element (i)))
5660 return true;
5661 return false;
5664 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5668 prologue_contains (const rtx_insn *insn)
5670 return contains (insn, prologue_insn_hash);
5674 epilogue_contains (const rtx_insn *insn)
5676 return contains (insn, epilogue_insn_hash);
5680 prologue_epilogue_contains (const rtx_insn *insn)
5682 if (contains (insn, prologue_insn_hash))
5683 return 1;
5684 if (contains (insn, epilogue_insn_hash))
5685 return 1;
5686 return 0;
5689 void
5690 record_prologue_seq (rtx_insn *seq)
5692 record_insns (seq, NULL, &prologue_insn_hash);
5695 void
5696 record_epilogue_seq (rtx_insn *seq)
5698 record_insns (seq, NULL, &epilogue_insn_hash);
5701 /* Set JUMP_LABEL for a return insn. */
5703 void
5704 set_return_jump_label (rtx_insn *returnjump)
5706 rtx pat = PATTERN (returnjump);
5707 if (GET_CODE (pat) == PARALLEL)
5708 pat = XVECEXP (pat, 0, 0);
5709 if (ANY_RETURN_P (pat))
5710 JUMP_LABEL (returnjump) = pat;
5711 else
5712 JUMP_LABEL (returnjump) = ret_rtx;
5715 /* Return a sequence to be used as the split prologue for the current
5716 function, or NULL. */
5718 static rtx_insn *
5719 make_split_prologue_seq (void)
5721 if (!flag_split_stack
5722 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5723 return NULL;
5725 start_sequence ();
5726 emit_insn (targetm.gen_split_stack_prologue ());
5727 rtx_insn *seq = get_insns ();
5728 end_sequence ();
5730 record_insns (seq, NULL, &prologue_insn_hash);
5731 set_insn_locations (seq, prologue_location);
5733 return seq;
5736 /* Return a sequence to be used as the prologue for the current function,
5737 or NULL. */
5739 static rtx_insn *
5740 make_prologue_seq (void)
5742 if (!targetm.have_prologue ())
5743 return NULL;
5745 start_sequence ();
5746 rtx_insn *seq = targetm.gen_prologue ();
5747 emit_insn (seq);
5749 /* Insert an explicit USE for the frame pointer
5750 if the profiling is on and the frame pointer is required. */
5751 if (crtl->profile && frame_pointer_needed)
5752 emit_use (hard_frame_pointer_rtx);
5754 /* Retain a map of the prologue insns. */
5755 record_insns (seq, NULL, &prologue_insn_hash);
5756 emit_note (NOTE_INSN_PROLOGUE_END);
5758 /* Ensure that instructions are not moved into the prologue when
5759 profiling is on. The call to the profiling routine can be
5760 emitted within the live range of a call-clobbered register. */
5761 if (!targetm.profile_before_prologue () && crtl->profile)
5762 emit_insn (gen_blockage ());
5764 seq = get_insns ();
5765 end_sequence ();
5766 set_insn_locations (seq, prologue_location);
5768 return seq;
5771 /* Return a sequence to be used as the epilogue for the current function,
5772 or NULL. */
5774 static rtx_insn *
5775 make_epilogue_seq (void)
5777 if (!targetm.have_epilogue ())
5778 return NULL;
5780 start_sequence ();
5781 emit_note (NOTE_INSN_EPILOGUE_BEG);
5782 rtx_insn *seq = targetm.gen_epilogue ();
5783 if (seq)
5784 emit_jump_insn (seq);
5786 /* Retain a map of the epilogue insns. */
5787 record_insns (seq, NULL, &epilogue_insn_hash);
5788 set_insn_locations (seq, epilogue_location);
5790 seq = get_insns ();
5791 rtx_insn *returnjump = get_last_insn ();
5792 end_sequence ();
5794 if (JUMP_P (returnjump))
5795 set_return_jump_label (returnjump);
5797 return seq;
5801 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5802 this into place with notes indicating where the prologue ends and where
5803 the epilogue begins. Update the basic block information when possible.
5805 Notes on epilogue placement:
5806 There are several kinds of edges to the exit block:
5807 * a single fallthru edge from LAST_BB
5808 * possibly, edges from blocks containing sibcalls
5809 * possibly, fake edges from infinite loops
5811 The epilogue is always emitted on the fallthru edge from the last basic
5812 block in the function, LAST_BB, into the exit block.
5814 If LAST_BB is empty except for a label, it is the target of every
5815 other basic block in the function that ends in a return. If a
5816 target has a return or simple_return pattern (possibly with
5817 conditional variants), these basic blocks can be changed so that a
5818 return insn is emitted into them, and their target is adjusted to
5819 the real exit block.
5821 Notes on shrink wrapping: We implement a fairly conservative
5822 version of shrink-wrapping rather than the textbook one. We only
5823 generate a single prologue and a single epilogue. This is
5824 sufficient to catch a number of interesting cases involving early
5825 exits.
5827 First, we identify the blocks that require the prologue to occur before
5828 them. These are the ones that modify a call-saved register, or reference
5829 any of the stack or frame pointer registers. To simplify things, we then
5830 mark everything reachable from these blocks as also requiring a prologue.
5831 This takes care of loops automatically, and avoids the need to examine
5832 whether MEMs reference the frame, since it is sufficient to check for
5833 occurrences of the stack or frame pointer.
5835 We then compute the set of blocks for which the need for a prologue
5836 is anticipatable (borrowing terminology from the shrink-wrapping
5837 description in Muchnick's book). These are the blocks which either
5838 require a prologue themselves, or those that have only successors
5839 where the prologue is anticipatable. The prologue needs to be
5840 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5841 is not. For the moment, we ensure that only one such edge exists.
5843 The epilogue is placed as described above, but we make a
5844 distinction between inserting return and simple_return patterns
5845 when modifying other blocks that end in a return. Blocks that end
5846 in a sibcall omit the sibcall_epilogue if the block is not in
5847 ANTIC. */
5849 void
5850 thread_prologue_and_epilogue_insns (void)
5852 df_analyze ();
5854 /* Can't deal with multiple successors of the entry block at the
5855 moment. Function should always have at least one entry
5856 point. */
5857 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5859 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5860 edge orig_entry_edge = entry_edge;
5862 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
5863 rtx_insn *prologue_seq = make_prologue_seq ();
5864 rtx_insn *epilogue_seq = make_epilogue_seq ();
5866 /* Try to perform a kind of shrink-wrapping, making sure the
5867 prologue/epilogue is emitted only around those parts of the
5868 function that require it. */
5869 try_shrink_wrapping (&entry_edge, prologue_seq);
5871 /* If the target can handle splitting the prologue/epilogue into separate
5872 components, try to shrink-wrap these components separately. */
5873 try_shrink_wrapping_separate (entry_edge->dest);
5875 /* If that did anything for any component we now need the generate the
5876 "main" prologue again. Because some targets require some of these
5877 to be called in a specific order (i386 requires the split prologue
5878 to be first, for example), we create all three sequences again here.
5879 If this does not work for some target, that target should not enable
5880 separate shrink-wrapping. */
5881 if (crtl->shrink_wrapped_separate)
5883 split_prologue_seq = make_split_prologue_seq ();
5884 prologue_seq = make_prologue_seq ();
5885 epilogue_seq = make_epilogue_seq ();
5888 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5890 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5891 this marker for the splits of EH_RETURN patterns, and nothing else
5892 uses the flag in the meantime. */
5893 epilogue_completed = 1;
5895 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5896 some targets, these get split to a special version of the epilogue
5897 code. In order to be able to properly annotate these with unwind
5898 info, try to split them now. If we get a valid split, drop an
5899 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5900 edge e;
5901 edge_iterator ei;
5902 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5904 rtx_insn *prev, *last, *trial;
5906 if (e->flags & EDGE_FALLTHRU)
5907 continue;
5908 last = BB_END (e->src);
5909 if (!eh_returnjump_p (last))
5910 continue;
5912 prev = PREV_INSN (last);
5913 trial = try_split (PATTERN (last), last, 1);
5914 if (trial == last)
5915 continue;
5917 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5918 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5921 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5923 if (exit_fallthru_edge)
5925 if (epilogue_seq)
5927 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
5928 commit_edge_insertions ();
5930 /* The epilogue insns we inserted may cause the exit edge to no longer
5931 be fallthru. */
5932 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5934 if (((e->flags & EDGE_FALLTHRU) != 0)
5935 && returnjump_p (BB_END (e->src)))
5936 e->flags &= ~EDGE_FALLTHRU;
5939 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
5941 /* We have a fall-through edge to the exit block, the source is not
5942 at the end of the function, and there will be an assembler epilogue
5943 at the end of the function.
5944 We can't use force_nonfallthru here, because that would try to
5945 use return. Inserting a jump 'by hand' is extremely messy, so
5946 we take advantage of cfg_layout_finalize using
5947 fixup_fallthru_exit_predecessor. */
5948 cfg_layout_initialize (0);
5949 basic_block cur_bb;
5950 FOR_EACH_BB_FN (cur_bb, cfun)
5951 if (cur_bb->index >= NUM_FIXED_BLOCKS
5952 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5953 cur_bb->aux = cur_bb->next_bb;
5954 cfg_layout_finalize ();
5958 /* Insert the prologue. */
5960 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5962 if (split_prologue_seq || prologue_seq)
5964 rtx_insn *split_prologue_insn = split_prologue_seq;
5965 if (split_prologue_seq)
5967 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
5968 split_prologue_insn = NEXT_INSN (split_prologue_insn);
5969 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5972 rtx_insn *prologue_insn = prologue_seq;
5973 if (prologue_seq)
5975 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
5976 prologue_insn = NEXT_INSN (prologue_insn);
5977 insert_insn_on_edge (prologue_seq, entry_edge);
5980 commit_edge_insertions ();
5982 /* Look for basic blocks within the prologue insns. */
5983 if (split_prologue_insn
5984 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
5985 split_prologue_insn = NULL;
5986 if (prologue_insn
5987 && BLOCK_FOR_INSN (prologue_insn) == NULL)
5988 prologue_insn = NULL;
5989 if (split_prologue_insn || prologue_insn)
5991 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
5992 bitmap_clear (blocks);
5993 if (split_prologue_insn)
5994 bitmap_set_bit (blocks,
5995 BLOCK_FOR_INSN (split_prologue_insn)->index);
5996 if (prologue_insn)
5997 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
5998 find_many_sub_basic_blocks (blocks);
6002 default_rtl_profile ();
6004 /* Emit sibling epilogues before any sibling call sites. */
6005 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6006 (e = ei_safe_edge (ei));
6007 ei_next (&ei))
6009 /* Skip those already handled, the ones that run without prologue. */
6010 if (e->flags & EDGE_IGNORE)
6012 e->flags &= ~EDGE_IGNORE;
6013 continue;
6016 rtx_insn *insn = BB_END (e->src);
6018 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6019 continue;
6021 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6023 start_sequence ();
6024 emit_note (NOTE_INSN_EPILOGUE_BEG);
6025 emit_insn (ep_seq);
6026 rtx_insn *seq = get_insns ();
6027 end_sequence ();
6029 /* Retain a map of the epilogue insns. Used in life analysis to
6030 avoid getting rid of sibcall epilogue insns. Do this before we
6031 actually emit the sequence. */
6032 record_insns (seq, NULL, &epilogue_insn_hash);
6033 set_insn_locations (seq, epilogue_location);
6035 emit_insn_before (seq, insn);
6039 if (epilogue_seq)
6041 rtx_insn *insn, *next;
6043 /* Similarly, move any line notes that appear after the epilogue.
6044 There is no need, however, to be quite so anal about the existence
6045 of such a note. Also possibly move
6046 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6047 info generation. */
6048 for (insn = epilogue_seq; insn; insn = next)
6050 next = NEXT_INSN (insn);
6051 if (NOTE_P (insn)
6052 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6053 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6057 /* Threading the prologue and epilogue changes the artificial refs
6058 in the entry and exit blocks. */
6059 epilogue_completed = 1;
6060 df_update_entry_exit_and_calls ();
6063 /* Reposition the prologue-end and epilogue-begin notes after
6064 instruction scheduling. */
6066 void
6067 reposition_prologue_and_epilogue_notes (void)
6069 if (!targetm.have_prologue ()
6070 && !targetm.have_epilogue ()
6071 && !targetm.have_sibcall_epilogue ())
6072 return;
6074 /* Since the hash table is created on demand, the fact that it is
6075 non-null is a signal that it is non-empty. */
6076 if (prologue_insn_hash != NULL)
6078 size_t len = prologue_insn_hash->elements ();
6079 rtx_insn *insn, *last = NULL, *note = NULL;
6081 /* Scan from the beginning until we reach the last prologue insn. */
6082 /* ??? While we do have the CFG intact, there are two problems:
6083 (1) The prologue can contain loops (typically probing the stack),
6084 which means that the end of the prologue isn't in the first bb.
6085 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6086 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6088 if (NOTE_P (insn))
6090 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6091 note = insn;
6093 else if (contains (insn, prologue_insn_hash))
6095 last = insn;
6096 if (--len == 0)
6097 break;
6101 if (last)
6103 if (note == NULL)
6105 /* Scan forward looking for the PROLOGUE_END note. It should
6106 be right at the beginning of the block, possibly with other
6107 insn notes that got moved there. */
6108 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6110 if (NOTE_P (note)
6111 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6112 break;
6116 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6117 if (LABEL_P (last))
6118 last = NEXT_INSN (last);
6119 reorder_insns (note, note, last);
6123 if (epilogue_insn_hash != NULL)
6125 edge_iterator ei;
6126 edge e;
6128 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6130 rtx_insn *insn, *first = NULL, *note = NULL;
6131 basic_block bb = e->src;
6133 /* Scan from the beginning until we reach the first epilogue insn. */
6134 FOR_BB_INSNS (bb, insn)
6136 if (NOTE_P (insn))
6138 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6140 note = insn;
6141 if (first != NULL)
6142 break;
6145 else if (first == NULL && contains (insn, epilogue_insn_hash))
6147 first = insn;
6148 if (note != NULL)
6149 break;
6153 if (note)
6155 /* If the function has a single basic block, and no real
6156 epilogue insns (e.g. sibcall with no cleanup), the
6157 epilogue note can get scheduled before the prologue
6158 note. If we have frame related prologue insns, having
6159 them scanned during the epilogue will result in a crash.
6160 In this case re-order the epilogue note to just before
6161 the last insn in the block. */
6162 if (first == NULL)
6163 first = BB_END (bb);
6165 if (PREV_INSN (first) != note)
6166 reorder_insns (note, note, PREV_INSN (first));
6172 /* Returns the name of function declared by FNDECL. */
6173 const char *
6174 fndecl_name (tree fndecl)
6176 if (fndecl == NULL)
6177 return "(nofn)";
6178 return lang_hooks.decl_printable_name (fndecl, 1);
6181 /* Returns the name of function FN. */
6182 const char *
6183 function_name (struct function *fn)
6185 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6186 return fndecl_name (fndecl);
6189 /* Returns the name of the current function. */
6190 const char *
6191 current_function_name (void)
6193 return function_name (cfun);
6197 static unsigned int
6198 rest_of_handle_check_leaf_regs (void)
6200 #ifdef LEAF_REGISTERS
6201 crtl->uses_only_leaf_regs
6202 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6203 #endif
6204 return 0;
6207 /* Insert a TYPE into the used types hash table of CFUN. */
6209 static void
6210 used_types_insert_helper (tree type, struct function *func)
6212 if (type != NULL && func != NULL)
6214 if (func->used_types_hash == NULL)
6215 func->used_types_hash = hash_set<tree>::create_ggc (37);
6217 func->used_types_hash->add (type);
6221 /* Given a type, insert it into the used hash table in cfun. */
6222 void
6223 used_types_insert (tree t)
6225 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6226 if (TYPE_NAME (t))
6227 break;
6228 else
6229 t = TREE_TYPE (t);
6230 if (TREE_CODE (t) == ERROR_MARK)
6231 return;
6232 if (TYPE_NAME (t) == NULL_TREE
6233 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6234 t = TYPE_MAIN_VARIANT (t);
6235 if (debug_info_level > DINFO_LEVEL_NONE)
6237 if (cfun)
6238 used_types_insert_helper (t, cfun);
6239 else
6241 /* So this might be a type referenced by a global variable.
6242 Record that type so that we can later decide to emit its
6243 debug information. */
6244 vec_safe_push (types_used_by_cur_var_decl, t);
6249 /* Helper to Hash a struct types_used_by_vars_entry. */
6251 static hashval_t
6252 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6254 gcc_assert (entry && entry->var_decl && entry->type);
6256 return iterative_hash_object (entry->type,
6257 iterative_hash_object (entry->var_decl, 0));
6260 /* Hash function of the types_used_by_vars_entry hash table. */
6262 hashval_t
6263 used_type_hasher::hash (types_used_by_vars_entry *entry)
6265 return hash_types_used_by_vars_entry (entry);
6268 /*Equality function of the types_used_by_vars_entry hash table. */
6270 bool
6271 used_type_hasher::equal (types_used_by_vars_entry *e1,
6272 types_used_by_vars_entry *e2)
6274 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6277 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6279 void
6280 types_used_by_var_decl_insert (tree type, tree var_decl)
6282 if (type != NULL && var_decl != NULL)
6284 types_used_by_vars_entry **slot;
6285 struct types_used_by_vars_entry e;
6286 e.var_decl = var_decl;
6287 e.type = type;
6288 if (types_used_by_vars_hash == NULL)
6289 types_used_by_vars_hash
6290 = hash_table<used_type_hasher>::create_ggc (37);
6292 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6293 if (*slot == NULL)
6295 struct types_used_by_vars_entry *entry;
6296 entry = ggc_alloc<types_used_by_vars_entry> ();
6297 entry->type = type;
6298 entry->var_decl = var_decl;
6299 *slot = entry;
6304 namespace {
6306 const pass_data pass_data_leaf_regs =
6308 RTL_PASS, /* type */
6309 "*leaf_regs", /* name */
6310 OPTGROUP_NONE, /* optinfo_flags */
6311 TV_NONE, /* tv_id */
6312 0, /* properties_required */
6313 0, /* properties_provided */
6314 0, /* properties_destroyed */
6315 0, /* todo_flags_start */
6316 0, /* todo_flags_finish */
6319 class pass_leaf_regs : public rtl_opt_pass
6321 public:
6322 pass_leaf_regs (gcc::context *ctxt)
6323 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6326 /* opt_pass methods: */
6327 virtual unsigned int execute (function *)
6329 return rest_of_handle_check_leaf_regs ();
6332 }; // class pass_leaf_regs
6334 } // anon namespace
6336 rtl_opt_pass *
6337 make_pass_leaf_regs (gcc::context *ctxt)
6339 return new pass_leaf_regs (ctxt);
6342 static unsigned int
6343 rest_of_handle_thread_prologue_and_epilogue (void)
6345 /* prepare_shrink_wrap is sensitive to the block structure of the control
6346 flow graph, so clean it up first. */
6347 if (optimize)
6348 cleanup_cfg (0);
6350 /* On some machines, the prologue and epilogue code, or parts thereof,
6351 can be represented as RTL. Doing so lets us schedule insns between
6352 it and the rest of the code and also allows delayed branch
6353 scheduling to operate in the epilogue. */
6354 thread_prologue_and_epilogue_insns ();
6356 /* Some non-cold blocks may now be only reachable from cold blocks.
6357 Fix that up. */
6358 fixup_partitions ();
6360 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6361 see PR57320. */
6362 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6364 /* The stack usage info is finalized during prologue expansion. */
6365 if (flag_stack_usage_info)
6366 output_stack_usage ();
6368 return 0;
6371 namespace {
6373 const pass_data pass_data_thread_prologue_and_epilogue =
6375 RTL_PASS, /* type */
6376 "pro_and_epilogue", /* name */
6377 OPTGROUP_NONE, /* optinfo_flags */
6378 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6379 0, /* properties_required */
6380 0, /* properties_provided */
6381 0, /* properties_destroyed */
6382 0, /* todo_flags_start */
6383 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6386 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6388 public:
6389 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6390 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6393 /* opt_pass methods: */
6394 virtual unsigned int execute (function *)
6396 return rest_of_handle_thread_prologue_and_epilogue ();
6399 }; // class pass_thread_prologue_and_epilogue
6401 } // anon namespace
6403 rtl_opt_pass *
6404 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6406 return new pass_thread_prologue_and_epilogue (ctxt);
6410 /* If CONSTRAINT is a matching constraint, then return its number.
6411 Otherwise, return -1. */
6413 static int
6414 matching_constraint_num (const char *constraint)
6416 if (*constraint == '%')
6417 constraint++;
6419 if (IN_RANGE (*constraint, '0', '9'))
6420 return strtoul (constraint, NULL, 10);
6422 return -1;
6425 /* This mini-pass fixes fall-out from SSA in asm statements that have
6426 in-out constraints. Say you start with
6428 orig = inout;
6429 asm ("": "+mr" (inout));
6430 use (orig);
6432 which is transformed very early to use explicit output and match operands:
6434 orig = inout;
6435 asm ("": "=mr" (inout) : "0" (inout));
6436 use (orig);
6438 Or, after SSA and copyprop,
6440 asm ("": "=mr" (inout_2) : "0" (inout_1));
6441 use (inout_1);
6443 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6444 they represent two separate values, so they will get different pseudo
6445 registers during expansion. Then, since the two operands need to match
6446 per the constraints, but use different pseudo registers, reload can
6447 only register a reload for these operands. But reloads can only be
6448 satisfied by hardregs, not by memory, so we need a register for this
6449 reload, just because we are presented with non-matching operands.
6450 So, even though we allow memory for this operand, no memory can be
6451 used for it, just because the two operands don't match. This can
6452 cause reload failures on register-starved targets.
6454 So it's a symptom of reload not being able to use memory for reloads
6455 or, alternatively it's also a symptom of both operands not coming into
6456 reload as matching (in which case the pseudo could go to memory just
6457 fine, as the alternative allows it, and no reload would be necessary).
6458 We fix the latter problem here, by transforming
6460 asm ("": "=mr" (inout_2) : "0" (inout_1));
6462 back to
6464 inout_2 = inout_1;
6465 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6467 static void
6468 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6470 int i;
6471 bool changed = false;
6472 rtx op = SET_SRC (p_sets[0]);
6473 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6474 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6475 bool *output_matched = XALLOCAVEC (bool, noutputs);
6477 memset (output_matched, 0, noutputs * sizeof (bool));
6478 for (i = 0; i < ninputs; i++)
6480 rtx input, output;
6481 rtx_insn *insns;
6482 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6483 int match, j;
6485 match = matching_constraint_num (constraint);
6486 if (match < 0)
6487 continue;
6489 gcc_assert (match < noutputs);
6490 output = SET_DEST (p_sets[match]);
6491 input = RTVEC_ELT (inputs, i);
6492 /* Only do the transformation for pseudos. */
6493 if (! REG_P (output)
6494 || rtx_equal_p (output, input)
6495 || !(REG_P (input) || SUBREG_P (input)
6496 || MEM_P (input) || CONSTANT_P (input))
6497 || !general_operand (input, GET_MODE (output)))
6498 continue;
6500 /* We can't do anything if the output is also used as input,
6501 as we're going to overwrite it. */
6502 for (j = 0; j < ninputs; j++)
6503 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6504 break;
6505 if (j != ninputs)
6506 continue;
6508 /* Avoid changing the same input several times. For
6509 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6510 only change it once (to out1), rather than changing it
6511 first to out1 and afterwards to out2. */
6512 if (i > 0)
6514 for (j = 0; j < noutputs; j++)
6515 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6516 break;
6517 if (j != noutputs)
6518 continue;
6520 output_matched[match] = true;
6522 start_sequence ();
6523 emit_move_insn (output, copy_rtx (input));
6524 insns = get_insns ();
6525 end_sequence ();
6526 emit_insn_before (insns, insn);
6528 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6529 bool early_clobber_p = strchr (constraint, '&') != NULL;
6531 /* Now replace all mentions of the input with output. We can't
6532 just replace the occurrence in inputs[i], as the register might
6533 also be used in some other input (or even in an address of an
6534 output), which would mean possibly increasing the number of
6535 inputs by one (namely 'output' in addition), which might pose
6536 a too complicated problem for reload to solve. E.g. this situation:
6538 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6540 Here 'input' is used in two occurrences as input (once for the
6541 input operand, once for the address in the second output operand).
6542 If we would replace only the occurrence of the input operand (to
6543 make the matching) we would be left with this:
6545 output = input
6546 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6548 Now we suddenly have two different input values (containing the same
6549 value, but different pseudos) where we formerly had only one.
6550 With more complicated asms this might lead to reload failures
6551 which wouldn't have happen without this pass. So, iterate over
6552 all operands and replace all occurrences of the register used.
6554 However, if one or more of the 'input' uses have a non-matching
6555 constraint and the matched output operand is an early clobber
6556 operand, then do not replace the input operand, since by definition
6557 it conflicts with the output operand and cannot share the same
6558 register. See PR89313 for details. */
6560 for (j = 0; j < noutputs; j++)
6561 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6562 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6563 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6564 input, output);
6565 for (j = 0; j < ninputs; j++)
6566 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6568 if (!early_clobber_p
6569 || match == matching_constraint_num
6570 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6571 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6572 input, output);
6575 changed = true;
6578 if (changed)
6579 df_insn_rescan (insn);
6582 /* Add the decl D to the local_decls list of FUN. */
6584 void
6585 add_local_decl (struct function *fun, tree d)
6587 gcc_assert (VAR_P (d));
6588 vec_safe_push (fun->local_decls, d);
6591 namespace {
6593 const pass_data pass_data_match_asm_constraints =
6595 RTL_PASS, /* type */
6596 "asmcons", /* name */
6597 OPTGROUP_NONE, /* optinfo_flags */
6598 TV_NONE, /* tv_id */
6599 0, /* properties_required */
6600 0, /* properties_provided */
6601 0, /* properties_destroyed */
6602 0, /* todo_flags_start */
6603 0, /* todo_flags_finish */
6606 class pass_match_asm_constraints : public rtl_opt_pass
6608 public:
6609 pass_match_asm_constraints (gcc::context *ctxt)
6610 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6613 /* opt_pass methods: */
6614 virtual unsigned int execute (function *);
6616 }; // class pass_match_asm_constraints
6618 unsigned
6619 pass_match_asm_constraints::execute (function *fun)
6621 basic_block bb;
6622 rtx_insn *insn;
6623 rtx pat, *p_sets;
6624 int noutputs;
6626 if (!crtl->has_asm_statement)
6627 return 0;
6629 df_set_flags (DF_DEFER_INSN_RESCAN);
6630 FOR_EACH_BB_FN (bb, fun)
6632 FOR_BB_INSNS (bb, insn)
6634 if (!INSN_P (insn))
6635 continue;
6637 pat = PATTERN (insn);
6638 if (GET_CODE (pat) == PARALLEL)
6639 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6640 else if (GET_CODE (pat) == SET)
6641 p_sets = &PATTERN (insn), noutputs = 1;
6642 else
6643 continue;
6645 if (GET_CODE (*p_sets) == SET
6646 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6647 match_asm_constraints_1 (insn, p_sets, noutputs);
6651 return TODO_df_finish;
6654 } // anon namespace
6656 rtl_opt_pass *
6657 make_pass_match_asm_constraints (gcc::context *ctxt)
6659 return new pass_match_asm_constraints (ctxt);
6663 #include "gt-function.h"