Mark ChangeLog
[official-gcc.git] / gcc / tree-ssa-propagate.c
blobd39d97a1751dc6fdd2cb23bdedfda6c22a609ce1
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "gimple-pretty-print.h"
31 #include "dumpfile.h"
32 #include "tree-flow.h"
33 #include "tree-ssa-propagate.h"
34 #include "langhooks.h"
35 #include "vec.h"
36 #include "value-prof.h"
37 #include "gimple.h"
39 /* This file implements a generic value propagation engine based on
40 the same propagation used by the SSA-CCP algorithm [1].
42 Propagation is performed by simulating the execution of every
43 statement that produces the value being propagated. Simulation
44 proceeds as follows:
46 1- Initially, all edges of the CFG are marked not executable and
47 the CFG worklist is seeded with all the statements in the entry
48 basic block (block 0).
50 2- Every statement S is simulated with a call to the call-back
51 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
52 results:
54 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
55 interest and does not affect any of the work lists.
57 SSA_PROP_VARYING: The value produced by S cannot be determined
58 at compile time. Further simulation of S is not required.
59 If S is a conditional jump, all the outgoing edges for the
60 block are considered executable and added to the work
61 list.
63 SSA_PROP_INTERESTING: S produces a value that can be computed
64 at compile time. Its result can be propagated into the
65 statements that feed from S. Furthermore, if S is a
66 conditional jump, only the edge known to be taken is added
67 to the work list. Edges that are known not to execute are
68 never simulated.
70 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
71 return value from SSA_PROP_VISIT_PHI has the same semantics as
72 described in #2.
74 4- Three work lists are kept. Statements are only added to these
75 lists if they produce one of SSA_PROP_INTERESTING or
76 SSA_PROP_VARYING.
78 CFG_BLOCKS contains the list of blocks to be simulated.
79 Blocks are added to this list if their incoming edges are
80 found executable.
82 VARYING_SSA_EDGES contains the list of statements that feed
83 from statements that produce an SSA_PROP_VARYING result.
84 These are simulated first to speed up processing.
86 INTERESTING_SSA_EDGES contains the list of statements that
87 feed from statements that produce an SSA_PROP_INTERESTING
88 result.
90 5- Simulation terminates when all three work lists are drained.
92 Before calling ssa_propagate, it is important to clear
93 prop_simulate_again_p for all the statements in the program that
94 should be simulated. This initialization allows an implementation
95 to specify which statements should never be simulated.
97 It is also important to compute def-use information before calling
98 ssa_propagate.
100 References:
102 [1] Constant propagation with conditional branches,
103 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
105 [2] Building an Optimizing Compiler,
106 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
108 [3] Advanced Compiler Design and Implementation,
109 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
111 /* Function pointers used to parameterize the propagation engine. */
112 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
113 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
115 /* Keep track of statements that have been added to one of the SSA
116 edges worklists. This flag is used to avoid visiting statements
117 unnecessarily when draining an SSA edge worklist. If while
118 simulating a basic block, we find a statement with
119 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
120 processing from visiting it again.
122 NOTE: users of the propagation engine are not allowed to use
123 the GF_PLF_1 flag. */
124 #define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1
126 /* A bitmap to keep track of executable blocks in the CFG. */
127 static sbitmap executable_blocks;
129 /* Array of control flow edges on the worklist. */
130 static vec<basic_block> cfg_blocks;
132 static unsigned int cfg_blocks_num = 0;
133 static int cfg_blocks_tail;
134 static int cfg_blocks_head;
136 static sbitmap bb_in_list;
138 /* Worklist of SSA edges which will need reexamination as their
139 definition has changed. SSA edges are def-use edges in the SSA
140 web. For each D-U edge, we store the target statement or PHI node
141 U. */
142 static GTY(()) vec<gimple, va_gc> *interesting_ssa_edges;
144 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
145 list of SSA edges is split into two. One contains all SSA edges
146 who need to be reexamined because their lattice value changed to
147 varying (this worklist), and the other contains all other SSA edges
148 to be reexamined (INTERESTING_SSA_EDGES).
150 Since most values in the program are VARYING, the ideal situation
151 is to move them to that lattice value as quickly as possible.
152 Thus, it doesn't make sense to process any other type of lattice
153 value until all VARYING values are propagated fully, which is one
154 thing using the VARYING worklist achieves. In addition, if we
155 don't use a separate worklist for VARYING edges, we end up with
156 situations where lattice values move from
157 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
158 static GTY(()) vec<gimple, va_gc> *varying_ssa_edges;
161 /* Return true if the block worklist empty. */
163 static inline bool
164 cfg_blocks_empty_p (void)
166 return (cfg_blocks_num == 0);
170 /* Add a basic block to the worklist. The block must not be already
171 in the worklist, and it must not be the ENTRY or EXIT block. */
173 static void
174 cfg_blocks_add (basic_block bb)
176 bool head = false;
178 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
179 gcc_assert (!bitmap_bit_p (bb_in_list, bb->index));
181 if (cfg_blocks_empty_p ())
183 cfg_blocks_tail = cfg_blocks_head = 0;
184 cfg_blocks_num = 1;
186 else
188 cfg_blocks_num++;
189 if (cfg_blocks_num > cfg_blocks.length ())
191 /* We have to grow the array now. Adjust to queue to occupy
192 the full space of the original array. We do not need to
193 initialize the newly allocated portion of the array
194 because we keep track of CFG_BLOCKS_HEAD and
195 CFG_BLOCKS_HEAD. */
196 cfg_blocks_tail = cfg_blocks.length ();
197 cfg_blocks_head = 0;
198 cfg_blocks.safe_grow (2 * cfg_blocks_tail);
200 /* Minor optimization: we prefer to see blocks with more
201 predecessors later, because there is more of a chance that
202 the incoming edges will be executable. */
203 else if (EDGE_COUNT (bb->preds)
204 >= EDGE_COUNT (cfg_blocks[cfg_blocks_head]->preds))
205 cfg_blocks_tail = ((cfg_blocks_tail + 1) % cfg_blocks.length ());
206 else
208 if (cfg_blocks_head == 0)
209 cfg_blocks_head = cfg_blocks.length ();
210 --cfg_blocks_head;
211 head = true;
215 cfg_blocks[head ? cfg_blocks_head : cfg_blocks_tail] = bb;
216 bitmap_set_bit (bb_in_list, bb->index);
220 /* Remove a block from the worklist. */
222 static basic_block
223 cfg_blocks_get (void)
225 basic_block bb;
227 bb = cfg_blocks[cfg_blocks_head];
229 gcc_assert (!cfg_blocks_empty_p ());
230 gcc_assert (bb);
232 cfg_blocks_head = ((cfg_blocks_head + 1) % cfg_blocks.length ());
233 --cfg_blocks_num;
234 bitmap_clear_bit (bb_in_list, bb->index);
236 return bb;
240 /* We have just defined a new value for VAR. If IS_VARYING is true,
241 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
242 them to INTERESTING_SSA_EDGES. */
244 static void
245 add_ssa_edge (tree var, bool is_varying)
247 imm_use_iterator iter;
248 use_operand_p use_p;
250 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
252 gimple use_stmt = USE_STMT (use_p);
254 if (prop_simulate_again_p (use_stmt)
255 && !gimple_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST))
257 gimple_set_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST, true);
258 if (is_varying)
259 vec_safe_push (varying_ssa_edges, use_stmt);
260 else
261 vec_safe_push (interesting_ssa_edges, use_stmt);
267 /* Add edge E to the control flow worklist. */
269 static void
270 add_control_edge (edge e)
272 basic_block bb = e->dest;
273 if (bb == EXIT_BLOCK_PTR)
274 return;
276 /* If the edge had already been executed, skip it. */
277 if (e->flags & EDGE_EXECUTABLE)
278 return;
280 e->flags |= EDGE_EXECUTABLE;
282 /* If the block is already in the list, we're done. */
283 if (bitmap_bit_p (bb_in_list, bb->index))
284 return;
286 cfg_blocks_add (bb);
288 if (dump_file && (dump_flags & TDF_DETAILS))
289 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
290 e->src->index, e->dest->index);
294 /* Simulate the execution of STMT and update the work lists accordingly. */
296 static void
297 simulate_stmt (gimple stmt)
299 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
300 edge taken_edge = NULL;
301 tree output_name = NULL_TREE;
303 /* Don't bother visiting statements that are already
304 considered varying by the propagator. */
305 if (!prop_simulate_again_p (stmt))
306 return;
308 if (gimple_code (stmt) == GIMPLE_PHI)
310 val = ssa_prop_visit_phi (stmt);
311 output_name = gimple_phi_result (stmt);
313 else
314 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
316 if (val == SSA_PROP_VARYING)
318 prop_set_simulate_again (stmt, false);
320 /* If the statement produced a new varying value, add the SSA
321 edges coming out of OUTPUT_NAME. */
322 if (output_name)
323 add_ssa_edge (output_name, true);
325 /* If STMT transfers control out of its basic block, add
326 all outgoing edges to the work list. */
327 if (stmt_ends_bb_p (stmt))
329 edge e;
330 edge_iterator ei;
331 basic_block bb = gimple_bb (stmt);
332 FOR_EACH_EDGE (e, ei, bb->succs)
333 add_control_edge (e);
336 else if (val == SSA_PROP_INTERESTING)
338 /* If the statement produced new value, add the SSA edges coming
339 out of OUTPUT_NAME. */
340 if (output_name)
341 add_ssa_edge (output_name, false);
343 /* If we know which edge is going to be taken out of this block,
344 add it to the CFG work list. */
345 if (taken_edge)
346 add_control_edge (taken_edge);
350 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
351 drain. This pops statements off the given WORKLIST and processes
352 them until there are no more statements on WORKLIST.
353 We take a pointer to WORKLIST because it may be reallocated when an
354 SSA edge is added to it in simulate_stmt. */
356 static void
357 process_ssa_edge_worklist (vec<gimple, va_gc> **worklist)
359 /* Drain the entire worklist. */
360 while ((*worklist)->length () > 0)
362 basic_block bb;
364 /* Pull the statement to simulate off the worklist. */
365 gimple stmt = (*worklist)->pop ();
367 /* If this statement was already visited by simulate_block, then
368 we don't need to visit it again here. */
369 if (!gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
370 continue;
372 /* STMT is no longer in a worklist. */
373 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
375 if (dump_file && (dump_flags & TDF_DETAILS))
377 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
378 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
381 bb = gimple_bb (stmt);
383 /* PHI nodes are always visited, regardless of whether or not
384 the destination block is executable. Otherwise, visit the
385 statement only if its block is marked executable. */
386 if (gimple_code (stmt) == GIMPLE_PHI
387 || bitmap_bit_p (executable_blocks, bb->index))
388 simulate_stmt (stmt);
393 /* Simulate the execution of BLOCK. Evaluate the statement associated
394 with each variable reference inside the block. */
396 static void
397 simulate_block (basic_block block)
399 gimple_stmt_iterator gsi;
401 /* There is nothing to do for the exit block. */
402 if (block == EXIT_BLOCK_PTR)
403 return;
405 if (dump_file && (dump_flags & TDF_DETAILS))
406 fprintf (dump_file, "\nSimulating block %d\n", block->index);
408 /* Always simulate PHI nodes, even if we have simulated this block
409 before. */
410 for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
411 simulate_stmt (gsi_stmt (gsi));
413 /* If this is the first time we've simulated this block, then we
414 must simulate each of its statements. */
415 if (!bitmap_bit_p (executable_blocks, block->index))
417 gimple_stmt_iterator j;
418 unsigned int normal_edge_count;
419 edge e, normal_edge;
420 edge_iterator ei;
422 /* Note that we have simulated this block. */
423 bitmap_set_bit (executable_blocks, block->index);
425 for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
427 gimple stmt = gsi_stmt (j);
429 /* If this statement is already in the worklist then
430 "cancel" it. The reevaluation implied by the worklist
431 entry will produce the same value we generate here and
432 thus reevaluating it again from the worklist is
433 pointless. */
434 if (gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
435 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
437 simulate_stmt (stmt);
440 /* We can not predict when abnormal and EH edges will be executed, so
441 once a block is considered executable, we consider any
442 outgoing abnormal edges as executable.
444 TODO: This is not exactly true. Simplifying statement might
445 prove it non-throwing and also computed goto can be handled
446 when destination is known.
448 At the same time, if this block has only one successor that is
449 reached by non-abnormal edges, then add that successor to the
450 worklist. */
451 normal_edge_count = 0;
452 normal_edge = NULL;
453 FOR_EACH_EDGE (e, ei, block->succs)
455 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
456 add_control_edge (e);
457 else
459 normal_edge_count++;
460 normal_edge = e;
464 if (normal_edge_count == 1)
465 add_control_edge (normal_edge);
470 /* Initialize local data structures and work lists. */
472 static void
473 ssa_prop_init (void)
475 edge e;
476 edge_iterator ei;
477 basic_block bb;
479 /* Worklists of SSA edges. */
480 vec_alloc (interesting_ssa_edges, 20);
481 vec_alloc (varying_ssa_edges, 20);
483 executable_blocks = sbitmap_alloc (last_basic_block);
484 bitmap_clear (executable_blocks);
486 bb_in_list = sbitmap_alloc (last_basic_block);
487 bitmap_clear (bb_in_list);
489 if (dump_file && (dump_flags & TDF_DETAILS))
490 dump_immediate_uses (dump_file);
492 cfg_blocks.create (20);
493 cfg_blocks.safe_grow_cleared (20);
495 /* Initially assume that every edge in the CFG is not executable.
496 (including the edges coming out of ENTRY_BLOCK_PTR). */
497 FOR_ALL_BB (bb)
499 gimple_stmt_iterator si;
501 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
502 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
504 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
505 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
507 FOR_EACH_EDGE (e, ei, bb->succs)
508 e->flags &= ~EDGE_EXECUTABLE;
511 /* Seed the algorithm by adding the successors of the entry block to the
512 edge worklist. */
513 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
514 add_control_edge (e);
518 /* Free allocated storage. */
520 static void
521 ssa_prop_fini (void)
523 vec_free (interesting_ssa_edges);
524 vec_free (varying_ssa_edges);
525 cfg_blocks.release ();
526 sbitmap_free (bb_in_list);
527 sbitmap_free (executable_blocks);
531 /* Return true if EXPR is an acceptable right-hand-side for a
532 GIMPLE assignment. We validate the entire tree, not just
533 the root node, thus catching expressions that embed complex
534 operands that are not permitted in GIMPLE. This function
535 is needed because the folding routines in fold-const.c
536 may return such expressions in some cases, e.g., an array
537 access with an embedded index addition. It may make more
538 sense to have folding routines that are sensitive to the
539 constraints on GIMPLE operands, rather than abandoning any
540 any attempt to fold if the usual folding turns out to be too
541 aggressive. */
543 bool
544 valid_gimple_rhs_p (tree expr)
546 enum tree_code code = TREE_CODE (expr);
548 switch (TREE_CODE_CLASS (code))
550 case tcc_declaration:
551 if (!is_gimple_variable (expr))
552 return false;
553 break;
555 case tcc_constant:
556 /* All constants are ok. */
557 break;
559 case tcc_comparison:
560 /* GENERIC allows comparisons with non-boolean types, reject
561 those for GIMPLE. Let vector-typed comparisons pass - rules
562 for GENERIC and GIMPLE are the same here. */
563 if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr))
564 && (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE
565 || TYPE_PRECISION (TREE_TYPE (expr)) == 1))
566 && TREE_CODE (TREE_TYPE (expr)) != VECTOR_TYPE)
567 return false;
569 /* Fallthru. */
570 case tcc_binary:
571 if (!is_gimple_val (TREE_OPERAND (expr, 0))
572 || !is_gimple_val (TREE_OPERAND (expr, 1)))
573 return false;
574 break;
576 case tcc_unary:
577 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
578 return false;
579 break;
581 case tcc_expression:
582 switch (code)
584 case ADDR_EXPR:
586 tree t;
587 if (is_gimple_min_invariant (expr))
588 return true;
589 t = TREE_OPERAND (expr, 0);
590 while (handled_component_p (t))
592 /* ??? More checks needed, see the GIMPLE verifier. */
593 if ((TREE_CODE (t) == ARRAY_REF
594 || TREE_CODE (t) == ARRAY_RANGE_REF)
595 && !is_gimple_val (TREE_OPERAND (t, 1)))
596 return false;
597 t = TREE_OPERAND (t, 0);
599 if (!is_gimple_id (t))
600 return false;
602 break;
604 default:
605 if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
607 if (((code == VEC_COND_EXPR || code == COND_EXPR)
608 ? !is_gimple_condexpr (TREE_OPERAND (expr, 0))
609 : !is_gimple_val (TREE_OPERAND (expr, 0)))
610 || !is_gimple_val (TREE_OPERAND (expr, 1))
611 || !is_gimple_val (TREE_OPERAND (expr, 2)))
612 return false;
613 break;
615 return false;
617 break;
619 case tcc_vl_exp:
620 return false;
622 case tcc_exceptional:
623 if (code == CONSTRUCTOR)
625 unsigned i;
626 tree elt;
627 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), i, elt)
628 if (!is_gimple_val (elt))
629 return false;
630 return true;
632 if (code != SSA_NAME)
633 return false;
634 break;
636 case tcc_reference:
637 if (code == BIT_FIELD_REF)
638 return is_gimple_val (TREE_OPERAND (expr, 0));
639 return false;
641 default:
642 return false;
645 return true;
649 /* Return true if EXPR is a CALL_EXPR suitable for representation
650 as a single GIMPLE_CALL statement. If the arguments require
651 further gimplification, return false. */
653 static bool
654 valid_gimple_call_p (tree expr)
656 unsigned i, nargs;
658 if (TREE_CODE (expr) != CALL_EXPR)
659 return false;
661 nargs = call_expr_nargs (expr);
662 for (i = 0; i < nargs; i++)
664 tree arg = CALL_EXPR_ARG (expr, i);
665 if (is_gimple_reg_type (arg))
667 if (!is_gimple_val (arg))
668 return false;
670 else
671 if (!is_gimple_lvalue (arg))
672 return false;
675 return true;
679 /* Make SSA names defined by OLD_STMT point to NEW_STMT
680 as their defining statement. */
682 void
683 move_ssa_defining_stmt_for_defs (gimple new_stmt, gimple old_stmt)
685 tree var;
686 ssa_op_iter iter;
688 if (gimple_in_ssa_p (cfun))
690 /* Make defined SSA_NAMEs point to the new
691 statement as their definition. */
692 FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
694 if (TREE_CODE (var) == SSA_NAME)
695 SSA_NAME_DEF_STMT (var) = new_stmt;
700 /* Helper function for update_gimple_call and update_call_from_tree.
701 A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */
703 static void
704 finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple new_stmt,
705 gimple stmt)
707 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
708 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
709 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
710 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
711 gimple_set_location (new_stmt, gimple_location (stmt));
712 if (gimple_block (new_stmt) == NULL_TREE)
713 gimple_set_block (new_stmt, gimple_block (stmt));
714 gsi_replace (si_p, new_stmt, false);
717 /* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
718 with number of arguments NARGS, where the arguments in GIMPLE form
719 follow NARGS argument. */
721 bool
722 update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...)
724 va_list ap;
725 gimple new_stmt, stmt = gsi_stmt (*si_p);
727 gcc_assert (is_gimple_call (stmt));
728 va_start (ap, nargs);
729 new_stmt = gimple_build_call_valist (fn, nargs, ap);
730 finish_update_gimple_call (si_p, new_stmt, stmt);
731 va_end (ap);
732 return true;
735 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
736 value of EXPR, which is expected to be the result of folding the
737 call. This can only be done if EXPR is a CALL_EXPR with valid
738 GIMPLE operands as arguments, or if it is a suitable RHS expression
739 for a GIMPLE_ASSIGN. More complex expressions will require
740 gimplification, which will introduce additional statements. In this
741 event, no update is performed, and the function returns false.
742 Note that we cannot mutate a GIMPLE_CALL in-place, so we always
743 replace the statement at *SI_P with an entirely new statement.
744 The new statement need not be a call, e.g., if the original call
745 folded to a constant. */
747 bool
748 update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
750 gimple stmt = gsi_stmt (*si_p);
752 if (valid_gimple_call_p (expr))
754 /* The call has simplified to another call. */
755 tree fn = CALL_EXPR_FN (expr);
756 unsigned i;
757 unsigned nargs = call_expr_nargs (expr);
758 vec<tree> args = vNULL;
759 gimple new_stmt;
761 if (nargs > 0)
763 args.create (nargs);
764 args.safe_grow_cleared (nargs);
766 for (i = 0; i < nargs; i++)
767 args[i] = CALL_EXPR_ARG (expr, i);
770 new_stmt = gimple_build_call_vec (fn, args);
771 finish_update_gimple_call (si_p, new_stmt, stmt);
772 args.release ();
774 return true;
776 else if (valid_gimple_rhs_p (expr))
778 tree lhs = gimple_call_lhs (stmt);
779 gimple new_stmt;
781 /* The call has simplified to an expression
782 that cannot be represented as a GIMPLE_CALL. */
783 if (lhs)
785 /* A value is expected.
786 Introduce a new GIMPLE_ASSIGN statement. */
787 STRIP_USELESS_TYPE_CONVERSION (expr);
788 new_stmt = gimple_build_assign (lhs, expr);
789 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
790 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
791 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
793 else if (!TREE_SIDE_EFFECTS (expr))
795 /* No value is expected, and EXPR has no effect.
796 Replace it with an empty statement. */
797 new_stmt = gimple_build_nop ();
798 if (gimple_in_ssa_p (cfun))
800 unlink_stmt_vdef (stmt);
801 release_defs (stmt);
804 else
806 /* No value is expected, but EXPR has an effect,
807 e.g., it could be a reference to a volatile
808 variable. Create an assignment statement
809 with a dummy (unused) lhs variable. */
810 STRIP_USELESS_TYPE_CONVERSION (expr);
811 if (gimple_in_ssa_p (cfun))
812 lhs = make_ssa_name (TREE_TYPE (expr), NULL);
813 else
814 lhs = create_tmp_var (TREE_TYPE (expr), NULL);
815 new_stmt = gimple_build_assign (lhs, expr);
816 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
817 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
818 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
820 gimple_set_location (new_stmt, gimple_location (stmt));
821 gsi_replace (si_p, new_stmt, false);
822 return true;
824 else
825 /* The call simplified to an expression that is
826 not a valid GIMPLE RHS. */
827 return false;
831 /* Entry point to the propagation engine.
833 VISIT_STMT is called for every statement visited.
834 VISIT_PHI is called for every PHI node visited. */
836 void
837 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
838 ssa_prop_visit_phi_fn visit_phi)
840 ssa_prop_visit_stmt = visit_stmt;
841 ssa_prop_visit_phi = visit_phi;
843 ssa_prop_init ();
845 /* Iterate until the worklists are empty. */
846 while (!cfg_blocks_empty_p ()
847 || interesting_ssa_edges->length () > 0
848 || varying_ssa_edges->length () > 0)
850 if (!cfg_blocks_empty_p ())
852 /* Pull the next block to simulate off the worklist. */
853 basic_block dest_block = cfg_blocks_get ();
854 simulate_block (dest_block);
857 /* In order to move things to varying as quickly as
858 possible,process the VARYING_SSA_EDGES worklist first. */
859 process_ssa_edge_worklist (&varying_ssa_edges);
861 /* Now process the INTERESTING_SSA_EDGES worklist. */
862 process_ssa_edge_worklist (&interesting_ssa_edges);
865 ssa_prop_fini ();
869 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
870 is a non-volatile pointer dereference, a structure reference or a
871 reference to a single _DECL. Ignore volatile memory references
872 because they are not interesting for the optimizers. */
874 bool
875 stmt_makes_single_store (gimple stmt)
877 tree lhs;
879 if (gimple_code (stmt) != GIMPLE_ASSIGN
880 && gimple_code (stmt) != GIMPLE_CALL)
881 return false;
883 if (!gimple_vdef (stmt))
884 return false;
886 lhs = gimple_get_lhs (stmt);
888 /* A call statement may have a null LHS. */
889 if (!lhs)
890 return false;
892 return (!TREE_THIS_VOLATILE (lhs)
893 && (DECL_P (lhs)
894 || REFERENCE_CLASS_P (lhs)));
898 /* Propagation statistics. */
899 struct prop_stats_d
901 long num_const_prop;
902 long num_copy_prop;
903 long num_stmts_folded;
904 long num_dce;
907 static struct prop_stats_d prop_stats;
909 /* Replace USE references in statement STMT with the values stored in
910 PROP_VALUE. Return true if at least one reference was replaced. */
912 static bool
913 replace_uses_in (gimple stmt, ssa_prop_get_value_fn get_value)
915 bool replaced = false;
916 use_operand_p use;
917 ssa_op_iter iter;
919 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
921 tree tuse = USE_FROM_PTR (use);
922 tree val = (*get_value) (tuse);
924 if (val == tuse || val == NULL_TREE)
925 continue;
927 if (gimple_code (stmt) == GIMPLE_ASM
928 && !may_propagate_copy_into_asm (tuse))
929 continue;
931 if (!may_propagate_copy (tuse, val))
932 continue;
934 if (TREE_CODE (val) != SSA_NAME)
935 prop_stats.num_const_prop++;
936 else
937 prop_stats.num_copy_prop++;
939 propagate_value (use, val);
941 replaced = true;
944 return replaced;
948 /* Replace propagated values into all the arguments for PHI using the
949 values from PROP_VALUE. */
951 static void
952 replace_phi_args_in (gimple phi, ssa_prop_get_value_fn get_value)
954 size_t i;
955 bool replaced = false;
957 if (dump_file && (dump_flags & TDF_DETAILS))
959 fprintf (dump_file, "Folding PHI node: ");
960 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
963 for (i = 0; i < gimple_phi_num_args (phi); i++)
965 tree arg = gimple_phi_arg_def (phi, i);
967 if (TREE_CODE (arg) == SSA_NAME)
969 tree val = (*get_value) (arg);
971 if (val && val != arg && may_propagate_copy (arg, val))
973 if (TREE_CODE (val) != SSA_NAME)
974 prop_stats.num_const_prop++;
975 else
976 prop_stats.num_copy_prop++;
978 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
979 replaced = true;
981 /* If we propagated a copy and this argument flows
982 through an abnormal edge, update the replacement
983 accordingly. */
984 if (TREE_CODE (val) == SSA_NAME
985 && gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL)
986 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
991 if (dump_file && (dump_flags & TDF_DETAILS))
993 if (!replaced)
994 fprintf (dump_file, "No folding possible\n");
995 else
997 fprintf (dump_file, "Folded into: ");
998 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
999 fprintf (dump_file, "\n");
1005 /* Perform final substitution and folding of propagated values.
1007 PROP_VALUE[I] contains the single value that should be substituted
1008 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1009 substituted.
1011 If FOLD_FN is non-NULL the function will be invoked on all statements
1012 before propagating values for pass specific simplification.
1014 DO_DCE is true if trivially dead stmts can be removed.
1016 If DO_DCE is true, the statements within a BB are walked from
1017 last to first element. Otherwise we scan from first to last element.
1019 Return TRUE when something changed. */
1021 bool
1022 substitute_and_fold (ssa_prop_get_value_fn get_value_fn,
1023 ssa_prop_fold_stmt_fn fold_fn,
1024 bool do_dce)
1026 basic_block bb;
1027 bool something_changed = false;
1028 unsigned i;
1030 if (!get_value_fn && !fold_fn)
1031 return false;
1033 if (dump_file && (dump_flags & TDF_DETAILS))
1034 fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
1036 memset (&prop_stats, 0, sizeof (prop_stats));
1038 /* Substitute lattice values at definition sites. */
1039 if (get_value_fn)
1040 for (i = 1; i < num_ssa_names; ++i)
1042 tree name = ssa_name (i);
1043 tree val;
1044 gimple def_stmt;
1045 gimple_stmt_iterator gsi;
1047 if (!name
1048 || virtual_operand_p (name))
1049 continue;
1051 def_stmt = SSA_NAME_DEF_STMT (name);
1052 if (gimple_nop_p (def_stmt)
1053 /* Do not substitute ASSERT_EXPR rhs, this will confuse VRP. */
1054 || (gimple_assign_single_p (def_stmt)
1055 && gimple_assign_rhs_code (def_stmt) == ASSERT_EXPR)
1056 || !(val = (*get_value_fn) (name))
1057 || !may_propagate_copy (name, val))
1058 continue;
1060 gsi = gsi_for_stmt (def_stmt);
1061 if (is_gimple_assign (def_stmt))
1063 gimple_assign_set_rhs_with_ops (&gsi, TREE_CODE (val),
1064 val, NULL_TREE);
1065 gcc_assert (gsi_stmt (gsi) == def_stmt);
1066 if (maybe_clean_eh_stmt (def_stmt))
1067 gimple_purge_dead_eh_edges (gimple_bb (def_stmt));
1068 update_stmt (def_stmt);
1070 else if (is_gimple_call (def_stmt))
1072 int flags = gimple_call_flags (def_stmt);
1074 /* Don't optimize away calls that have side-effects. */
1075 if ((flags & (ECF_CONST|ECF_PURE)) == 0
1076 || (flags & ECF_LOOPING_CONST_OR_PURE))
1077 continue;
1078 if (update_call_from_tree (&gsi, val)
1079 && maybe_clean_or_replace_eh_stmt (def_stmt, gsi_stmt (gsi)))
1080 gimple_purge_dead_eh_edges (gimple_bb (gsi_stmt (gsi)));
1082 else if (gimple_code (def_stmt) == GIMPLE_PHI)
1084 gimple new_stmt = gimple_build_assign (name, val);
1085 gimple_stmt_iterator gsi2;
1086 SSA_NAME_DEF_STMT (name) = new_stmt;
1087 gsi2 = gsi_after_labels (gimple_bb (def_stmt));
1088 gsi_insert_before (&gsi2, new_stmt, GSI_SAME_STMT);
1089 remove_phi_node (&gsi, false);
1092 something_changed = true;
1095 /* Propagate into all uses and fold. */
1096 FOR_EACH_BB (bb)
1098 gimple_stmt_iterator i;
1100 /* Propagate known values into PHI nodes. */
1101 if (get_value_fn)
1102 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
1103 replace_phi_args_in (gsi_stmt (i), get_value_fn);
1105 /* Propagate known values into stmts. Do a backward walk if
1106 do_dce is true. In some case it exposes
1107 more trivially deletable stmts to walk backward. */
1108 for (i = (do_dce ? gsi_last_bb (bb) : gsi_start_bb (bb)); !gsi_end_p (i);)
1110 bool did_replace;
1111 gimple stmt = gsi_stmt (i);
1112 gimple old_stmt;
1113 enum gimple_code code = gimple_code (stmt);
1114 gimple_stmt_iterator oldi;
1116 oldi = i;
1117 if (do_dce)
1118 gsi_prev (&i);
1119 else
1120 gsi_next (&i);
1122 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1123 range information for names and they are discarded
1124 afterwards. */
1126 if (code == GIMPLE_ASSIGN
1127 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
1128 continue;
1130 /* No point propagating into a stmt whose result is not used,
1131 but instead we might be able to remove a trivially dead stmt.
1132 Don't do this when called from VRP, since the SSA_NAME which
1133 is going to be released could be still referenced in VRP
1134 ranges. */
1135 if (do_dce
1136 && gimple_get_lhs (stmt)
1137 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1138 && has_zero_uses (gimple_get_lhs (stmt))
1139 && !stmt_could_throw_p (stmt)
1140 && !gimple_has_side_effects (stmt))
1142 gimple_stmt_iterator i2;
1144 if (dump_file && dump_flags & TDF_DETAILS)
1146 fprintf (dump_file, "Removing dead stmt ");
1147 print_gimple_stmt (dump_file, stmt, 0, 0);
1148 fprintf (dump_file, "\n");
1150 prop_stats.num_dce++;
1151 i2 = gsi_for_stmt (stmt);
1152 gsi_remove (&i2, true);
1153 release_defs (stmt);
1154 continue;
1157 /* Replace the statement with its folded version and mark it
1158 folded. */
1159 did_replace = false;
1160 if (dump_file && (dump_flags & TDF_DETAILS))
1162 fprintf (dump_file, "Folding statement: ");
1163 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1166 old_stmt = stmt;
1168 /* Some statements may be simplified using propagator
1169 specific information. Do this before propagating
1170 into the stmt to not disturb pass specific information. */
1171 if (fold_fn
1172 && (*fold_fn)(&oldi))
1174 did_replace = true;
1175 prop_stats.num_stmts_folded++;
1176 stmt = gsi_stmt (oldi);
1177 update_stmt (stmt);
1180 /* Replace real uses in the statement. */
1181 if (get_value_fn)
1182 did_replace |= replace_uses_in (stmt, get_value_fn);
1184 /* If we made a replacement, fold the statement. */
1185 if (did_replace)
1186 fold_stmt (&oldi);
1188 /* Now cleanup. */
1189 if (did_replace)
1191 stmt = gsi_stmt (oldi);
1193 /* If we cleaned up EH information from the statement,
1194 remove EH edges. */
1195 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1196 gimple_purge_dead_eh_edges (bb);
1198 if (is_gimple_assign (stmt)
1199 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1200 == GIMPLE_SINGLE_RHS))
1202 tree rhs = gimple_assign_rhs1 (stmt);
1204 if (TREE_CODE (rhs) == ADDR_EXPR)
1205 recompute_tree_invariant_for_addr_expr (rhs);
1208 /* Determine what needs to be done to update the SSA form. */
1209 update_stmt (stmt);
1210 if (!is_gimple_debug (stmt))
1211 something_changed = true;
1214 if (dump_file && (dump_flags & TDF_DETAILS))
1216 if (did_replace)
1218 fprintf (dump_file, "Folded into: ");
1219 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1220 fprintf (dump_file, "\n");
1222 else
1223 fprintf (dump_file, "Not folded\n");
1228 statistics_counter_event (cfun, "Constants propagated",
1229 prop_stats.num_const_prop);
1230 statistics_counter_event (cfun, "Copies propagated",
1231 prop_stats.num_copy_prop);
1232 statistics_counter_event (cfun, "Statements folded",
1233 prop_stats.num_stmts_folded);
1234 statistics_counter_event (cfun, "Statements deleted",
1235 prop_stats.num_dce);
1236 return something_changed;
1239 #include "gt-tree-ssa-propagate.h"