Mark ChangeLog
[official-gcc.git] / gcc / tree-ssa-loop-niter.c
blob76a64e578f9a3bcd33b66c42c228c686f136ed2b
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "intl.h"
29 #include "tree-flow.h"
30 #include "dumpfile.h"
31 #include "cfgloop.h"
32 #include "ggc.h"
33 #include "tree-chrec.h"
34 #include "tree-scalar-evolution.h"
35 #include "tree-data-ref.h"
36 #include "params.h"
37 #include "flags.h"
38 #include "diagnostic-core.h"
39 #include "tree-inline.h"
40 #include "tree-pass.h"
42 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
44 /* The maximum number of dominator BBs we search for conditions
45 of loop header copies we use for simplifying a conditional
46 expression. */
47 #define MAX_DOMINATORS_TO_WALK 8
51 Analysis of number of iterations of an affine exit test.
55 /* Bounds on some value, BELOW <= X <= UP. */
57 typedef struct
59 mpz_t below, up;
60 } bounds;
63 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
65 static void
66 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
68 tree type = TREE_TYPE (expr);
69 tree op0, op1;
70 double_int off;
71 bool negate = false;
73 *var = expr;
74 mpz_set_ui (offset, 0);
76 switch (TREE_CODE (expr))
78 case MINUS_EXPR:
79 negate = true;
80 /* Fallthru. */
82 case PLUS_EXPR:
83 case POINTER_PLUS_EXPR:
84 op0 = TREE_OPERAND (expr, 0);
85 op1 = TREE_OPERAND (expr, 1);
87 if (TREE_CODE (op1) != INTEGER_CST)
88 break;
90 *var = op0;
91 /* Always sign extend the offset. */
92 off = tree_to_double_int (op1);
93 off = off.sext (TYPE_PRECISION (type));
94 mpz_set_double_int (offset, off, false);
95 if (negate)
96 mpz_neg (offset, offset);
97 break;
99 case INTEGER_CST:
100 *var = build_int_cst_type (type, 0);
101 off = tree_to_double_int (expr);
102 mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
103 break;
105 default:
106 break;
110 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
111 in TYPE to MIN and MAX. */
113 static void
114 determine_value_range (tree type, tree var, mpz_t off,
115 mpz_t min, mpz_t max)
117 /* If the expression is a constant, we know its value exactly. */
118 if (integer_zerop (var))
120 mpz_set (min, off);
121 mpz_set (max, off);
122 return;
125 /* If the computation may wrap, we know nothing about the value, except for
126 the range of the type. */
127 get_type_static_bounds (type, min, max);
128 if (!nowrap_type_p (type))
129 return;
131 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
132 add it to MIN, otherwise to MAX. */
133 if (mpz_sgn (off) < 0)
134 mpz_add (max, max, off);
135 else
136 mpz_add (min, min, off);
139 /* Stores the bounds on the difference of the values of the expressions
140 (var + X) and (var + Y), computed in TYPE, to BNDS. */
142 static void
143 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
144 bounds *bnds)
146 int rel = mpz_cmp (x, y);
147 bool may_wrap = !nowrap_type_p (type);
148 mpz_t m;
150 /* If X == Y, then the expressions are always equal.
151 If X > Y, there are the following possibilities:
152 a) neither of var + X and var + Y overflow or underflow, or both of
153 them do. Then their difference is X - Y.
154 b) var + X overflows, and var + Y does not. Then the values of the
155 expressions are var + X - M and var + Y, where M is the range of
156 the type, and their difference is X - Y - M.
157 c) var + Y underflows and var + X does not. Their difference again
158 is M - X + Y.
159 Therefore, if the arithmetics in type does not overflow, then the
160 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
161 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
162 (X - Y, X - Y + M). */
164 if (rel == 0)
166 mpz_set_ui (bnds->below, 0);
167 mpz_set_ui (bnds->up, 0);
168 return;
171 mpz_init (m);
172 mpz_set_double_int (m, double_int::mask (TYPE_PRECISION (type)), true);
173 mpz_add_ui (m, m, 1);
174 mpz_sub (bnds->up, x, y);
175 mpz_set (bnds->below, bnds->up);
177 if (may_wrap)
179 if (rel > 0)
180 mpz_sub (bnds->below, bnds->below, m);
181 else
182 mpz_add (bnds->up, bnds->up, m);
185 mpz_clear (m);
188 /* From condition C0 CMP C1 derives information regarding the
189 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
190 and stores it to BNDS. */
192 static void
193 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
194 tree vary, mpz_t offy,
195 tree c0, enum tree_code cmp, tree c1,
196 bounds *bnds)
198 tree varc0, varc1, tmp, ctype;
199 mpz_t offc0, offc1, loffx, loffy, bnd;
200 bool lbound = false;
201 bool no_wrap = nowrap_type_p (type);
202 bool x_ok, y_ok;
204 switch (cmp)
206 case LT_EXPR:
207 case LE_EXPR:
208 case GT_EXPR:
209 case GE_EXPR:
210 STRIP_SIGN_NOPS (c0);
211 STRIP_SIGN_NOPS (c1);
212 ctype = TREE_TYPE (c0);
213 if (!useless_type_conversion_p (ctype, type))
214 return;
216 break;
218 case EQ_EXPR:
219 /* We could derive quite precise information from EQ_EXPR, however, such
220 a guard is unlikely to appear, so we do not bother with handling
221 it. */
222 return;
224 case NE_EXPR:
225 /* NE_EXPR comparisons do not contain much of useful information, except for
226 special case of comparing with the bounds of the type. */
227 if (TREE_CODE (c1) != INTEGER_CST
228 || !INTEGRAL_TYPE_P (type))
229 return;
231 /* Ensure that the condition speaks about an expression in the same type
232 as X and Y. */
233 ctype = TREE_TYPE (c0);
234 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
235 return;
236 c0 = fold_convert (type, c0);
237 c1 = fold_convert (type, c1);
239 if (TYPE_MIN_VALUE (type)
240 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
242 cmp = GT_EXPR;
243 break;
245 if (TYPE_MAX_VALUE (type)
246 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
248 cmp = LT_EXPR;
249 break;
252 return;
253 default:
254 return;
257 mpz_init (offc0);
258 mpz_init (offc1);
259 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
260 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
262 /* We are only interested in comparisons of expressions based on VARX and
263 VARY. TODO -- we might also be able to derive some bounds from
264 expressions containing just one of the variables. */
266 if (operand_equal_p (varx, varc1, 0))
268 tmp = varc0; varc0 = varc1; varc1 = tmp;
269 mpz_swap (offc0, offc1);
270 cmp = swap_tree_comparison (cmp);
273 if (!operand_equal_p (varx, varc0, 0)
274 || !operand_equal_p (vary, varc1, 0))
275 goto end;
277 mpz_init_set (loffx, offx);
278 mpz_init_set (loffy, offy);
280 if (cmp == GT_EXPR || cmp == GE_EXPR)
282 tmp = varx; varx = vary; vary = tmp;
283 mpz_swap (offc0, offc1);
284 mpz_swap (loffx, loffy);
285 cmp = swap_tree_comparison (cmp);
286 lbound = true;
289 /* If there is no overflow, the condition implies that
291 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
293 The overflows and underflows may complicate things a bit; each
294 overflow decreases the appropriate offset by M, and underflow
295 increases it by M. The above inequality would not necessarily be
296 true if
298 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
299 VARX + OFFC0 overflows, but VARX + OFFX does not.
300 This may only happen if OFFX < OFFC0.
301 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
302 VARY + OFFC1 underflows and VARY + OFFY does not.
303 This may only happen if OFFY > OFFC1. */
305 if (no_wrap)
307 x_ok = true;
308 y_ok = true;
310 else
312 x_ok = (integer_zerop (varx)
313 || mpz_cmp (loffx, offc0) >= 0);
314 y_ok = (integer_zerop (vary)
315 || mpz_cmp (loffy, offc1) <= 0);
318 if (x_ok && y_ok)
320 mpz_init (bnd);
321 mpz_sub (bnd, loffx, loffy);
322 mpz_add (bnd, bnd, offc1);
323 mpz_sub (bnd, bnd, offc0);
325 if (cmp == LT_EXPR)
326 mpz_sub_ui (bnd, bnd, 1);
328 if (lbound)
330 mpz_neg (bnd, bnd);
331 if (mpz_cmp (bnds->below, bnd) < 0)
332 mpz_set (bnds->below, bnd);
334 else
336 if (mpz_cmp (bnd, bnds->up) < 0)
337 mpz_set (bnds->up, bnd);
339 mpz_clear (bnd);
342 mpz_clear (loffx);
343 mpz_clear (loffy);
344 end:
345 mpz_clear (offc0);
346 mpz_clear (offc1);
349 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
350 The subtraction is considered to be performed in arbitrary precision,
351 without overflows.
353 We do not attempt to be too clever regarding the value ranges of X and
354 Y; most of the time, they are just integers or ssa names offsetted by
355 integer. However, we try to use the information contained in the
356 comparisons before the loop (usually created by loop header copying). */
358 static void
359 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
361 tree type = TREE_TYPE (x);
362 tree varx, vary;
363 mpz_t offx, offy;
364 mpz_t minx, maxx, miny, maxy;
365 int cnt = 0;
366 edge e;
367 basic_block bb;
368 tree c0, c1;
369 gimple cond;
370 enum tree_code cmp;
372 /* Get rid of unnecessary casts, but preserve the value of
373 the expressions. */
374 STRIP_SIGN_NOPS (x);
375 STRIP_SIGN_NOPS (y);
377 mpz_init (bnds->below);
378 mpz_init (bnds->up);
379 mpz_init (offx);
380 mpz_init (offy);
381 split_to_var_and_offset (x, &varx, offx);
382 split_to_var_and_offset (y, &vary, offy);
384 if (!integer_zerop (varx)
385 && operand_equal_p (varx, vary, 0))
387 /* Special case VARX == VARY -- we just need to compare the
388 offsets. The matters are a bit more complicated in the
389 case addition of offsets may wrap. */
390 bound_difference_of_offsetted_base (type, offx, offy, bnds);
392 else
394 /* Otherwise, use the value ranges to determine the initial
395 estimates on below and up. */
396 mpz_init (minx);
397 mpz_init (maxx);
398 mpz_init (miny);
399 mpz_init (maxy);
400 determine_value_range (type, varx, offx, minx, maxx);
401 determine_value_range (type, vary, offy, miny, maxy);
403 mpz_sub (bnds->below, minx, maxy);
404 mpz_sub (bnds->up, maxx, miny);
405 mpz_clear (minx);
406 mpz_clear (maxx);
407 mpz_clear (miny);
408 mpz_clear (maxy);
411 /* If both X and Y are constants, we cannot get any more precise. */
412 if (integer_zerop (varx) && integer_zerop (vary))
413 goto end;
415 /* Now walk the dominators of the loop header and use the entry
416 guards to refine the estimates. */
417 for (bb = loop->header;
418 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
419 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
421 if (!single_pred_p (bb))
422 continue;
423 e = single_pred_edge (bb);
425 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
426 continue;
428 cond = last_stmt (e->src);
429 c0 = gimple_cond_lhs (cond);
430 cmp = gimple_cond_code (cond);
431 c1 = gimple_cond_rhs (cond);
433 if (e->flags & EDGE_FALSE_VALUE)
434 cmp = invert_tree_comparison (cmp, false);
436 refine_bounds_using_guard (type, varx, offx, vary, offy,
437 c0, cmp, c1, bnds);
438 ++cnt;
441 end:
442 mpz_clear (offx);
443 mpz_clear (offy);
446 /* Update the bounds in BNDS that restrict the value of X to the bounds
447 that restrict the value of X + DELTA. X can be obtained as a
448 difference of two values in TYPE. */
450 static void
451 bounds_add (bounds *bnds, double_int delta, tree type)
453 mpz_t mdelta, max;
455 mpz_init (mdelta);
456 mpz_set_double_int (mdelta, delta, false);
458 mpz_init (max);
459 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
461 mpz_add (bnds->up, bnds->up, mdelta);
462 mpz_add (bnds->below, bnds->below, mdelta);
464 if (mpz_cmp (bnds->up, max) > 0)
465 mpz_set (bnds->up, max);
467 mpz_neg (max, max);
468 if (mpz_cmp (bnds->below, max) < 0)
469 mpz_set (bnds->below, max);
471 mpz_clear (mdelta);
472 mpz_clear (max);
475 /* Update the bounds in BNDS that restrict the value of X to the bounds
476 that restrict the value of -X. */
478 static void
479 bounds_negate (bounds *bnds)
481 mpz_t tmp;
483 mpz_init_set (tmp, bnds->up);
484 mpz_neg (bnds->up, bnds->below);
485 mpz_neg (bnds->below, tmp);
486 mpz_clear (tmp);
489 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
491 static tree
492 inverse (tree x, tree mask)
494 tree type = TREE_TYPE (x);
495 tree rslt;
496 unsigned ctr = tree_floor_log2 (mask);
498 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
500 unsigned HOST_WIDE_INT ix;
501 unsigned HOST_WIDE_INT imask;
502 unsigned HOST_WIDE_INT irslt = 1;
504 gcc_assert (cst_and_fits_in_hwi (x));
505 gcc_assert (cst_and_fits_in_hwi (mask));
507 ix = int_cst_value (x);
508 imask = int_cst_value (mask);
510 for (; ctr; ctr--)
512 irslt *= ix;
513 ix *= ix;
515 irslt &= imask;
517 rslt = build_int_cst_type (type, irslt);
519 else
521 rslt = build_int_cst (type, 1);
522 for (; ctr; ctr--)
524 rslt = int_const_binop (MULT_EXPR, rslt, x);
525 x = int_const_binop (MULT_EXPR, x, x);
527 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
530 return rslt;
533 /* Derives the upper bound BND on the number of executions of loop with exit
534 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
535 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
536 that the loop ends through this exit, i.e., the induction variable ever
537 reaches the value of C.
539 The value C is equal to final - base, where final and base are the final and
540 initial value of the actual induction variable in the analysed loop. BNDS
541 bounds the value of this difference when computed in signed type with
542 unbounded range, while the computation of C is performed in an unsigned
543 type with the range matching the range of the type of the induction variable.
544 In particular, BNDS.up contains an upper bound on C in the following cases:
545 -- if the iv must reach its final value without overflow, i.e., if
546 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
547 -- if final >= base, which we know to hold when BNDS.below >= 0. */
549 static void
550 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
551 bounds *bnds, bool exit_must_be_taken)
553 double_int max;
554 mpz_t d;
555 tree type = TREE_TYPE (c);
556 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
557 || mpz_sgn (bnds->below) >= 0);
559 if (integer_onep (s)
560 || (TREE_CODE (c) == INTEGER_CST
561 && TREE_CODE (s) == INTEGER_CST
562 && tree_to_double_int (c).mod (tree_to_double_int (s),
563 TYPE_UNSIGNED (type),
564 EXACT_DIV_EXPR).is_zero ())
565 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (c))
566 && multiple_of_p (type, c, s)))
568 /* If C is an exact multiple of S, then its value will be reached before
569 the induction variable overflows (unless the loop is exited in some
570 other way before). Note that the actual induction variable in the
571 loop (which ranges from base to final instead of from 0 to C) may
572 overflow, in which case BNDS.up will not be giving a correct upper
573 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
574 no_overflow = true;
575 exit_must_be_taken = true;
578 /* If the induction variable can overflow, the number of iterations is at
579 most the period of the control variable (or infinite, but in that case
580 the whole # of iterations analysis will fail). */
581 if (!no_overflow)
583 max = double_int::mask (TYPE_PRECISION (type)
584 - tree_low_cst (num_ending_zeros (s), 1));
585 mpz_set_double_int (bnd, max, true);
586 return;
589 /* Now we know that the induction variable does not overflow, so the loop
590 iterates at most (range of type / S) times. */
591 mpz_set_double_int (bnd, double_int::mask (TYPE_PRECISION (type)), true);
593 /* If the induction variable is guaranteed to reach the value of C before
594 overflow, ... */
595 if (exit_must_be_taken)
597 /* ... then we can strengthen this to C / S, and possibly we can use
598 the upper bound on C given by BNDS. */
599 if (TREE_CODE (c) == INTEGER_CST)
600 mpz_set_double_int (bnd, tree_to_double_int (c), true);
601 else if (bnds_u_valid)
602 mpz_set (bnd, bnds->up);
605 mpz_init (d);
606 mpz_set_double_int (d, tree_to_double_int (s), true);
607 mpz_fdiv_q (bnd, bnd, d);
608 mpz_clear (d);
611 /* Determines number of iterations of loop whose ending condition
612 is IV <> FINAL. TYPE is the type of the iv. The number of
613 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
614 we know that the exit must be taken eventually, i.e., that the IV
615 ever reaches the value FINAL (we derived this earlier, and possibly set
616 NITER->assumptions to make sure this is the case). BNDS contains the
617 bounds on the difference FINAL - IV->base. */
619 static bool
620 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
621 struct tree_niter_desc *niter, bool exit_must_be_taken,
622 bounds *bnds)
624 tree niter_type = unsigned_type_for (type);
625 tree s, c, d, bits, assumption, tmp, bound;
626 mpz_t max;
628 niter->control = *iv;
629 niter->bound = final;
630 niter->cmp = NE_EXPR;
632 /* Rearrange the terms so that we get inequality S * i <> C, with S
633 positive. Also cast everything to the unsigned type. If IV does
634 not overflow, BNDS bounds the value of C. Also, this is the
635 case if the computation |FINAL - IV->base| does not overflow, i.e.,
636 if BNDS->below in the result is nonnegative. */
637 if (tree_int_cst_sign_bit (iv->step))
639 s = fold_convert (niter_type,
640 fold_build1 (NEGATE_EXPR, type, iv->step));
641 c = fold_build2 (MINUS_EXPR, niter_type,
642 fold_convert (niter_type, iv->base),
643 fold_convert (niter_type, final));
644 bounds_negate (bnds);
646 else
648 s = fold_convert (niter_type, iv->step);
649 c = fold_build2 (MINUS_EXPR, niter_type,
650 fold_convert (niter_type, final),
651 fold_convert (niter_type, iv->base));
654 mpz_init (max);
655 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
656 exit_must_be_taken);
657 niter->max = mpz_get_double_int (niter_type, max, false);
658 mpz_clear (max);
660 /* First the trivial cases -- when the step is 1. */
661 if (integer_onep (s))
663 niter->niter = c;
664 return true;
667 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
668 is infinite. Otherwise, the number of iterations is
669 (inverse(s/d) * (c/d)) mod (size of mode/d). */
670 bits = num_ending_zeros (s);
671 bound = build_low_bits_mask (niter_type,
672 (TYPE_PRECISION (niter_type)
673 - tree_low_cst (bits, 1)));
675 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
676 build_int_cst (niter_type, 1), bits);
677 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
679 if (!exit_must_be_taken)
681 /* If we cannot assume that the exit is taken eventually, record the
682 assumptions for divisibility of c. */
683 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
684 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
685 assumption, build_int_cst (niter_type, 0));
686 if (!integer_nonzerop (assumption))
687 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
688 niter->assumptions, assumption);
691 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
692 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
693 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
694 return true;
697 /* Checks whether we can determine the final value of the control variable
698 of the loop with ending condition IV0 < IV1 (computed in TYPE).
699 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
700 of the step. The assumptions necessary to ensure that the computation
701 of the final value does not overflow are recorded in NITER. If we
702 find the final value, we adjust DELTA and return TRUE. Otherwise
703 we return false. BNDS bounds the value of IV1->base - IV0->base,
704 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
705 true if we know that the exit must be taken eventually. */
707 static bool
708 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
709 struct tree_niter_desc *niter,
710 tree *delta, tree step,
711 bool exit_must_be_taken, bounds *bnds)
713 tree niter_type = TREE_TYPE (step);
714 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
715 tree tmod;
716 mpz_t mmod;
717 tree assumption = boolean_true_node, bound, noloop;
718 bool ret = false, fv_comp_no_overflow;
719 tree type1 = type;
720 if (POINTER_TYPE_P (type))
721 type1 = sizetype;
723 if (TREE_CODE (mod) != INTEGER_CST)
724 return false;
725 if (integer_nonzerop (mod))
726 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
727 tmod = fold_convert (type1, mod);
729 mpz_init (mmod);
730 mpz_set_double_int (mmod, tree_to_double_int (mod), true);
731 mpz_neg (mmod, mmod);
733 /* If the induction variable does not overflow and the exit is taken,
734 then the computation of the final value does not overflow. This is
735 also obviously the case if the new final value is equal to the
736 current one. Finally, we postulate this for pointer type variables,
737 as the code cannot rely on the object to that the pointer points being
738 placed at the end of the address space (and more pragmatically,
739 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
740 if (integer_zerop (mod) || POINTER_TYPE_P (type))
741 fv_comp_no_overflow = true;
742 else if (!exit_must_be_taken)
743 fv_comp_no_overflow = false;
744 else
745 fv_comp_no_overflow =
746 (iv0->no_overflow && integer_nonzerop (iv0->step))
747 || (iv1->no_overflow && integer_nonzerop (iv1->step));
749 if (integer_nonzerop (iv0->step))
751 /* The final value of the iv is iv1->base + MOD, assuming that this
752 computation does not overflow, and that
753 iv0->base <= iv1->base + MOD. */
754 if (!fv_comp_no_overflow)
756 bound = fold_build2 (MINUS_EXPR, type1,
757 TYPE_MAX_VALUE (type1), tmod);
758 assumption = fold_build2 (LE_EXPR, boolean_type_node,
759 iv1->base, bound);
760 if (integer_zerop (assumption))
761 goto end;
763 if (mpz_cmp (mmod, bnds->below) < 0)
764 noloop = boolean_false_node;
765 else if (POINTER_TYPE_P (type))
766 noloop = fold_build2 (GT_EXPR, boolean_type_node,
767 iv0->base,
768 fold_build_pointer_plus (iv1->base, tmod));
769 else
770 noloop = fold_build2 (GT_EXPR, boolean_type_node,
771 iv0->base,
772 fold_build2 (PLUS_EXPR, type1,
773 iv1->base, tmod));
775 else
777 /* The final value of the iv is iv0->base - MOD, assuming that this
778 computation does not overflow, and that
779 iv0->base - MOD <= iv1->base. */
780 if (!fv_comp_no_overflow)
782 bound = fold_build2 (PLUS_EXPR, type1,
783 TYPE_MIN_VALUE (type1), tmod);
784 assumption = fold_build2 (GE_EXPR, boolean_type_node,
785 iv0->base, bound);
786 if (integer_zerop (assumption))
787 goto end;
789 if (mpz_cmp (mmod, bnds->below) < 0)
790 noloop = boolean_false_node;
791 else if (POINTER_TYPE_P (type))
792 noloop = fold_build2 (GT_EXPR, boolean_type_node,
793 fold_build_pointer_plus (iv0->base,
794 fold_build1 (NEGATE_EXPR,
795 type1, tmod)),
796 iv1->base);
797 else
798 noloop = fold_build2 (GT_EXPR, boolean_type_node,
799 fold_build2 (MINUS_EXPR, type1,
800 iv0->base, tmod),
801 iv1->base);
804 if (!integer_nonzerop (assumption))
805 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
806 niter->assumptions,
807 assumption);
808 if (!integer_zerop (noloop))
809 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
810 niter->may_be_zero,
811 noloop);
812 bounds_add (bnds, tree_to_double_int (mod), type);
813 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
815 ret = true;
816 end:
817 mpz_clear (mmod);
818 return ret;
821 /* Add assertions to NITER that ensure that the control variable of the loop
822 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
823 are TYPE. Returns false if we can prove that there is an overflow, true
824 otherwise. STEP is the absolute value of the step. */
826 static bool
827 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
828 struct tree_niter_desc *niter, tree step)
830 tree bound, d, assumption, diff;
831 tree niter_type = TREE_TYPE (step);
833 if (integer_nonzerop (iv0->step))
835 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
836 if (iv0->no_overflow)
837 return true;
839 /* If iv0->base is a constant, we can determine the last value before
840 overflow precisely; otherwise we conservatively assume
841 MAX - STEP + 1. */
843 if (TREE_CODE (iv0->base) == INTEGER_CST)
845 d = fold_build2 (MINUS_EXPR, niter_type,
846 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
847 fold_convert (niter_type, iv0->base));
848 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
850 else
851 diff = fold_build2 (MINUS_EXPR, niter_type, step,
852 build_int_cst (niter_type, 1));
853 bound = fold_build2 (MINUS_EXPR, type,
854 TYPE_MAX_VALUE (type), fold_convert (type, diff));
855 assumption = fold_build2 (LE_EXPR, boolean_type_node,
856 iv1->base, bound);
858 else
860 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
861 if (iv1->no_overflow)
862 return true;
864 if (TREE_CODE (iv1->base) == INTEGER_CST)
866 d = fold_build2 (MINUS_EXPR, niter_type,
867 fold_convert (niter_type, iv1->base),
868 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
869 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
871 else
872 diff = fold_build2 (MINUS_EXPR, niter_type, step,
873 build_int_cst (niter_type, 1));
874 bound = fold_build2 (PLUS_EXPR, type,
875 TYPE_MIN_VALUE (type), fold_convert (type, diff));
876 assumption = fold_build2 (GE_EXPR, boolean_type_node,
877 iv0->base, bound);
880 if (integer_zerop (assumption))
881 return false;
882 if (!integer_nonzerop (assumption))
883 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
884 niter->assumptions, assumption);
886 iv0->no_overflow = true;
887 iv1->no_overflow = true;
888 return true;
891 /* Add an assumption to NITER that a loop whose ending condition
892 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
893 bounds the value of IV1->base - IV0->base. */
895 static void
896 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
897 struct tree_niter_desc *niter, bounds *bnds)
899 tree assumption = boolean_true_node, bound, diff;
900 tree mbz, mbzl, mbzr, type1;
901 bool rolls_p, no_overflow_p;
902 double_int dstep;
903 mpz_t mstep, max;
905 /* We are going to compute the number of iterations as
906 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
907 variant of TYPE. This formula only works if
909 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
911 (where MAX is the maximum value of the unsigned variant of TYPE, and
912 the computations in this formula are performed in full precision,
913 i.e., without overflows).
915 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
916 we have a condition of the form iv0->base - step < iv1->base before the loop,
917 and for loops iv0->base < iv1->base - step * i the condition
918 iv0->base < iv1->base + step, due to loop header copying, which enable us
919 to prove the lower bound.
921 The upper bound is more complicated. Unless the expressions for initial
922 and final value themselves contain enough information, we usually cannot
923 derive it from the context. */
925 /* First check whether the answer does not follow from the bounds we gathered
926 before. */
927 if (integer_nonzerop (iv0->step))
928 dstep = tree_to_double_int (iv0->step);
929 else
931 dstep = tree_to_double_int (iv1->step).sext (TYPE_PRECISION (type));
932 dstep = -dstep;
935 mpz_init (mstep);
936 mpz_set_double_int (mstep, dstep, true);
937 mpz_neg (mstep, mstep);
938 mpz_add_ui (mstep, mstep, 1);
940 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
942 mpz_init (max);
943 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
944 mpz_add (max, max, mstep);
945 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
946 /* For pointers, only values lying inside a single object
947 can be compared or manipulated by pointer arithmetics.
948 Gcc in general does not allow or handle objects larger
949 than half of the address space, hence the upper bound
950 is satisfied for pointers. */
951 || POINTER_TYPE_P (type));
952 mpz_clear (mstep);
953 mpz_clear (max);
955 if (rolls_p && no_overflow_p)
956 return;
958 type1 = type;
959 if (POINTER_TYPE_P (type))
960 type1 = sizetype;
962 /* Now the hard part; we must formulate the assumption(s) as expressions, and
963 we must be careful not to introduce overflow. */
965 if (integer_nonzerop (iv0->step))
967 diff = fold_build2 (MINUS_EXPR, type1,
968 iv0->step, build_int_cst (type1, 1));
970 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
971 0 address never belongs to any object, we can assume this for
972 pointers. */
973 if (!POINTER_TYPE_P (type))
975 bound = fold_build2 (PLUS_EXPR, type1,
976 TYPE_MIN_VALUE (type), diff);
977 assumption = fold_build2 (GE_EXPR, boolean_type_node,
978 iv0->base, bound);
981 /* And then we can compute iv0->base - diff, and compare it with
982 iv1->base. */
983 mbzl = fold_build2 (MINUS_EXPR, type1,
984 fold_convert (type1, iv0->base), diff);
985 mbzr = fold_convert (type1, iv1->base);
987 else
989 diff = fold_build2 (PLUS_EXPR, type1,
990 iv1->step, build_int_cst (type1, 1));
992 if (!POINTER_TYPE_P (type))
994 bound = fold_build2 (PLUS_EXPR, type1,
995 TYPE_MAX_VALUE (type), diff);
996 assumption = fold_build2 (LE_EXPR, boolean_type_node,
997 iv1->base, bound);
1000 mbzl = fold_convert (type1, iv0->base);
1001 mbzr = fold_build2 (MINUS_EXPR, type1,
1002 fold_convert (type1, iv1->base), diff);
1005 if (!integer_nonzerop (assumption))
1006 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1007 niter->assumptions, assumption);
1008 if (!rolls_p)
1010 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1011 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1012 niter->may_be_zero, mbz);
1016 /* Determines number of iterations of loop whose ending condition
1017 is IV0 < IV1. TYPE is the type of the iv. The number of
1018 iterations is stored to NITER. BNDS bounds the difference
1019 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1020 that the exit must be taken eventually. */
1022 static bool
1023 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1024 struct tree_niter_desc *niter,
1025 bool exit_must_be_taken, bounds *bnds)
1027 tree niter_type = unsigned_type_for (type);
1028 tree delta, step, s;
1029 mpz_t mstep, tmp;
1031 if (integer_nonzerop (iv0->step))
1033 niter->control = *iv0;
1034 niter->cmp = LT_EXPR;
1035 niter->bound = iv1->base;
1037 else
1039 niter->control = *iv1;
1040 niter->cmp = GT_EXPR;
1041 niter->bound = iv0->base;
1044 delta = fold_build2 (MINUS_EXPR, niter_type,
1045 fold_convert (niter_type, iv1->base),
1046 fold_convert (niter_type, iv0->base));
1048 /* First handle the special case that the step is +-1. */
1049 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1050 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1052 /* for (i = iv0->base; i < iv1->base; i++)
1056 for (i = iv1->base; i > iv0->base; i--).
1058 In both cases # of iterations is iv1->base - iv0->base, assuming that
1059 iv1->base >= iv0->base.
1061 First try to derive a lower bound on the value of
1062 iv1->base - iv0->base, computed in full precision. If the difference
1063 is nonnegative, we are done, otherwise we must record the
1064 condition. */
1066 if (mpz_sgn (bnds->below) < 0)
1067 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1068 iv1->base, iv0->base);
1069 niter->niter = delta;
1070 niter->max = mpz_get_double_int (niter_type, bnds->up, false);
1071 return true;
1074 if (integer_nonzerop (iv0->step))
1075 step = fold_convert (niter_type, iv0->step);
1076 else
1077 step = fold_convert (niter_type,
1078 fold_build1 (NEGATE_EXPR, type, iv1->step));
1080 /* If we can determine the final value of the control iv exactly, we can
1081 transform the condition to != comparison. In particular, this will be
1082 the case if DELTA is constant. */
1083 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1084 exit_must_be_taken, bnds))
1086 affine_iv zps;
1088 zps.base = build_int_cst (niter_type, 0);
1089 zps.step = step;
1090 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1091 zps does not overflow. */
1092 zps.no_overflow = true;
1094 return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1097 /* Make sure that the control iv does not overflow. */
1098 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1099 return false;
1101 /* We determine the number of iterations as (delta + step - 1) / step. For
1102 this to work, we must know that iv1->base >= iv0->base - step + 1,
1103 otherwise the loop does not roll. */
1104 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1106 s = fold_build2 (MINUS_EXPR, niter_type,
1107 step, build_int_cst (niter_type, 1));
1108 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1109 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1111 mpz_init (mstep);
1112 mpz_init (tmp);
1113 mpz_set_double_int (mstep, tree_to_double_int (step), true);
1114 mpz_add (tmp, bnds->up, mstep);
1115 mpz_sub_ui (tmp, tmp, 1);
1116 mpz_fdiv_q (tmp, tmp, mstep);
1117 niter->max = mpz_get_double_int (niter_type, tmp, false);
1118 mpz_clear (mstep);
1119 mpz_clear (tmp);
1121 return true;
1124 /* Determines number of iterations of loop whose ending condition
1125 is IV0 <= IV1. TYPE is the type of the iv. The number of
1126 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1127 we know that this condition must eventually become false (we derived this
1128 earlier, and possibly set NITER->assumptions to make sure this
1129 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1131 static bool
1132 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1133 struct tree_niter_desc *niter, bool exit_must_be_taken,
1134 bounds *bnds)
1136 tree assumption;
1137 tree type1 = type;
1138 if (POINTER_TYPE_P (type))
1139 type1 = sizetype;
1141 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1142 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1143 value of the type. This we must know anyway, since if it is
1144 equal to this value, the loop rolls forever. We do not check
1145 this condition for pointer type ivs, as the code cannot rely on
1146 the object to that the pointer points being placed at the end of
1147 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1148 not defined for pointers). */
1150 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1152 if (integer_nonzerop (iv0->step))
1153 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1154 iv1->base, TYPE_MAX_VALUE (type));
1155 else
1156 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1157 iv0->base, TYPE_MIN_VALUE (type));
1159 if (integer_zerop (assumption))
1160 return false;
1161 if (!integer_nonzerop (assumption))
1162 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1163 niter->assumptions, assumption);
1166 if (integer_nonzerop (iv0->step))
1168 if (POINTER_TYPE_P (type))
1169 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1170 else
1171 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1172 build_int_cst (type1, 1));
1174 else if (POINTER_TYPE_P (type))
1175 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1176 else
1177 iv0->base = fold_build2 (MINUS_EXPR, type1,
1178 iv0->base, build_int_cst (type1, 1));
1180 bounds_add (bnds, double_int_one, type1);
1182 return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1183 bnds);
1186 /* Dumps description of affine induction variable IV to FILE. */
1188 static void
1189 dump_affine_iv (FILE *file, affine_iv *iv)
1191 if (!integer_zerop (iv->step))
1192 fprintf (file, "[");
1194 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1196 if (!integer_zerop (iv->step))
1198 fprintf (file, ", + , ");
1199 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1200 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1204 /* Determine the number of iterations according to condition (for staying
1205 inside loop) which compares two induction variables using comparison
1206 operator CODE. The induction variable on left side of the comparison
1207 is IV0, the right-hand side is IV1. Both induction variables must have
1208 type TYPE, which must be an integer or pointer type. The steps of the
1209 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1211 LOOP is the loop whose number of iterations we are determining.
1213 ONLY_EXIT is true if we are sure this is the only way the loop could be
1214 exited (including possibly non-returning function calls, exceptions, etc.)
1215 -- in this case we can use the information whether the control induction
1216 variables can overflow or not in a more efficient way.
1218 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1220 The results (number of iterations and assumptions as described in
1221 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1222 Returns false if it fails to determine number of iterations, true if it
1223 was determined (possibly with some assumptions). */
1225 static bool
1226 number_of_iterations_cond (struct loop *loop,
1227 tree type, affine_iv *iv0, enum tree_code code,
1228 affine_iv *iv1, struct tree_niter_desc *niter,
1229 bool only_exit, bool every_iteration)
1231 bool exit_must_be_taken = false, ret;
1232 bounds bnds;
1234 /* If the test is not executed every iteration, wrapping may make the test
1235 to pass again.
1236 TODO: the overflow case can be still used as unreliable estimate of upper
1237 bound. But we have no API to pass it down to number of iterations code
1238 and, at present, it will not use it anyway. */
1239 if (!every_iteration
1240 && (!iv0->no_overflow || !iv1->no_overflow
1241 || code == NE_EXPR || code == EQ_EXPR))
1242 return false;
1244 /* The meaning of these assumptions is this:
1245 if !assumptions
1246 then the rest of information does not have to be valid
1247 if may_be_zero then the loop does not roll, even if
1248 niter != 0. */
1249 niter->assumptions = boolean_true_node;
1250 niter->may_be_zero = boolean_false_node;
1251 niter->niter = NULL_TREE;
1252 niter->max = double_int_zero;
1254 niter->bound = NULL_TREE;
1255 niter->cmp = ERROR_MARK;
1257 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1258 the control variable is on lhs. */
1259 if (code == GE_EXPR || code == GT_EXPR
1260 || (code == NE_EXPR && integer_zerop (iv0->step)))
1262 SWAP (iv0, iv1);
1263 code = swap_tree_comparison (code);
1266 if (POINTER_TYPE_P (type))
1268 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1269 to the same object. If they do, the control variable cannot wrap
1270 (as wrap around the bounds of memory will never return a pointer
1271 that would be guaranteed to point to the same object, even if we
1272 avoid undefined behavior by casting to size_t and back). */
1273 iv0->no_overflow = true;
1274 iv1->no_overflow = true;
1277 /* If the control induction variable does not overflow and the only exit
1278 from the loop is the one that we analyze, we know it must be taken
1279 eventually. */
1280 if (only_exit)
1282 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1283 exit_must_be_taken = true;
1284 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1285 exit_must_be_taken = true;
1288 /* We can handle the case when neither of the sides of the comparison is
1289 invariant, provided that the test is NE_EXPR. This rarely occurs in
1290 practice, but it is simple enough to manage. */
1291 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1293 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1294 if (code != NE_EXPR)
1295 return false;
1297 iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
1298 iv0->step, iv1->step);
1299 iv0->no_overflow = false;
1300 iv1->step = build_int_cst (step_type, 0);
1301 iv1->no_overflow = true;
1304 /* If the result of the comparison is a constant, the loop is weird. More
1305 precise handling would be possible, but the situation is not common enough
1306 to waste time on it. */
1307 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1308 return false;
1310 /* Ignore loops of while (i-- < 10) type. */
1311 if (code != NE_EXPR)
1313 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1314 return false;
1316 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1317 return false;
1320 /* If the loop exits immediately, there is nothing to do. */
1321 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1322 if (tem && integer_zerop (tem))
1324 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1325 niter->max = double_int_zero;
1326 return true;
1329 /* OK, now we know we have a senseful loop. Handle several cases, depending
1330 on what comparison operator is used. */
1331 bound_difference (loop, iv1->base, iv0->base, &bnds);
1333 if (dump_file && (dump_flags & TDF_DETAILS))
1335 fprintf (dump_file,
1336 "Analyzing # of iterations of loop %d\n", loop->num);
1338 fprintf (dump_file, " exit condition ");
1339 dump_affine_iv (dump_file, iv0);
1340 fprintf (dump_file, " %s ",
1341 code == NE_EXPR ? "!="
1342 : code == LT_EXPR ? "<"
1343 : "<=");
1344 dump_affine_iv (dump_file, iv1);
1345 fprintf (dump_file, "\n");
1347 fprintf (dump_file, " bounds on difference of bases: ");
1348 mpz_out_str (dump_file, 10, bnds.below);
1349 fprintf (dump_file, " ... ");
1350 mpz_out_str (dump_file, 10, bnds.up);
1351 fprintf (dump_file, "\n");
1354 switch (code)
1356 case NE_EXPR:
1357 gcc_assert (integer_zerop (iv1->step));
1358 ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1359 exit_must_be_taken, &bnds);
1360 break;
1362 case LT_EXPR:
1363 ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1364 &bnds);
1365 break;
1367 case LE_EXPR:
1368 ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1369 &bnds);
1370 break;
1372 default:
1373 gcc_unreachable ();
1376 mpz_clear (bnds.up);
1377 mpz_clear (bnds.below);
1379 if (dump_file && (dump_flags & TDF_DETAILS))
1381 if (ret)
1383 fprintf (dump_file, " result:\n");
1384 if (!integer_nonzerop (niter->assumptions))
1386 fprintf (dump_file, " under assumptions ");
1387 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1388 fprintf (dump_file, "\n");
1391 if (!integer_zerop (niter->may_be_zero))
1393 fprintf (dump_file, " zero if ");
1394 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1395 fprintf (dump_file, "\n");
1398 fprintf (dump_file, " # of iterations ");
1399 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1400 fprintf (dump_file, ", bounded by ");
1401 dump_double_int (dump_file, niter->max, true);
1402 fprintf (dump_file, "\n");
1404 else
1405 fprintf (dump_file, " failed\n\n");
1407 return ret;
1410 /* Substitute NEW for OLD in EXPR and fold the result. */
1412 static tree
1413 simplify_replace_tree (tree expr, tree old, tree new_tree)
1415 unsigned i, n;
1416 tree ret = NULL_TREE, e, se;
1418 if (!expr)
1419 return NULL_TREE;
1421 /* Do not bother to replace constants. */
1422 if (CONSTANT_CLASS_P (old))
1423 return expr;
1425 if (expr == old
1426 || operand_equal_p (expr, old, 0))
1427 return unshare_expr (new_tree);
1429 if (!EXPR_P (expr))
1430 return expr;
1432 n = TREE_OPERAND_LENGTH (expr);
1433 for (i = 0; i < n; i++)
1435 e = TREE_OPERAND (expr, i);
1436 se = simplify_replace_tree (e, old, new_tree);
1437 if (e == se)
1438 continue;
1440 if (!ret)
1441 ret = copy_node (expr);
1443 TREE_OPERAND (ret, i) = se;
1446 return (ret ? fold (ret) : expr);
1449 /* Expand definitions of ssa names in EXPR as long as they are simple
1450 enough, and return the new expression. */
1452 tree
1453 expand_simple_operations (tree expr)
1455 unsigned i, n;
1456 tree ret = NULL_TREE, e, ee, e1;
1457 enum tree_code code;
1458 gimple stmt;
1460 if (expr == NULL_TREE)
1461 return expr;
1463 if (is_gimple_min_invariant (expr))
1464 return expr;
1466 code = TREE_CODE (expr);
1467 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1469 n = TREE_OPERAND_LENGTH (expr);
1470 for (i = 0; i < n; i++)
1472 e = TREE_OPERAND (expr, i);
1473 ee = expand_simple_operations (e);
1474 if (e == ee)
1475 continue;
1477 if (!ret)
1478 ret = copy_node (expr);
1480 TREE_OPERAND (ret, i) = ee;
1483 if (!ret)
1484 return expr;
1486 fold_defer_overflow_warnings ();
1487 ret = fold (ret);
1488 fold_undefer_and_ignore_overflow_warnings ();
1489 return ret;
1492 if (TREE_CODE (expr) != SSA_NAME)
1493 return expr;
1495 stmt = SSA_NAME_DEF_STMT (expr);
1496 if (gimple_code (stmt) == GIMPLE_PHI)
1498 basic_block src, dest;
1500 if (gimple_phi_num_args (stmt) != 1)
1501 return expr;
1502 e = PHI_ARG_DEF (stmt, 0);
1504 /* Avoid propagating through loop exit phi nodes, which
1505 could break loop-closed SSA form restrictions. */
1506 dest = gimple_bb (stmt);
1507 src = single_pred (dest);
1508 if (TREE_CODE (e) == SSA_NAME
1509 && src->loop_father != dest->loop_father)
1510 return expr;
1512 return expand_simple_operations (e);
1514 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1515 return expr;
1517 e = gimple_assign_rhs1 (stmt);
1518 code = gimple_assign_rhs_code (stmt);
1519 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1521 if (is_gimple_min_invariant (e))
1522 return e;
1524 if (code == SSA_NAME)
1525 return expand_simple_operations (e);
1527 return expr;
1530 switch (code)
1532 CASE_CONVERT:
1533 /* Casts are simple. */
1534 ee = expand_simple_operations (e);
1535 return fold_build1 (code, TREE_TYPE (expr), ee);
1537 case PLUS_EXPR:
1538 case MINUS_EXPR:
1539 case POINTER_PLUS_EXPR:
1540 /* And increments and decrements by a constant are simple. */
1541 e1 = gimple_assign_rhs2 (stmt);
1542 if (!is_gimple_min_invariant (e1))
1543 return expr;
1545 ee = expand_simple_operations (e);
1546 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1548 default:
1549 return expr;
1553 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1554 expression (or EXPR unchanged, if no simplification was possible). */
1556 static tree
1557 tree_simplify_using_condition_1 (tree cond, tree expr)
1559 bool changed;
1560 tree e, te, e0, e1, e2, notcond;
1561 enum tree_code code = TREE_CODE (expr);
1563 if (code == INTEGER_CST)
1564 return expr;
1566 if (code == TRUTH_OR_EXPR
1567 || code == TRUTH_AND_EXPR
1568 || code == COND_EXPR)
1570 changed = false;
1572 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1573 if (TREE_OPERAND (expr, 0) != e0)
1574 changed = true;
1576 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1577 if (TREE_OPERAND (expr, 1) != e1)
1578 changed = true;
1580 if (code == COND_EXPR)
1582 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1583 if (TREE_OPERAND (expr, 2) != e2)
1584 changed = true;
1586 else
1587 e2 = NULL_TREE;
1589 if (changed)
1591 if (code == COND_EXPR)
1592 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1593 else
1594 expr = fold_build2 (code, boolean_type_node, e0, e1);
1597 return expr;
1600 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1601 propagation, and vice versa. Fold does not handle this, since it is
1602 considered too expensive. */
1603 if (TREE_CODE (cond) == EQ_EXPR)
1605 e0 = TREE_OPERAND (cond, 0);
1606 e1 = TREE_OPERAND (cond, 1);
1608 /* We know that e0 == e1. Check whether we cannot simplify expr
1609 using this fact. */
1610 e = simplify_replace_tree (expr, e0, e1);
1611 if (integer_zerop (e) || integer_nonzerop (e))
1612 return e;
1614 e = simplify_replace_tree (expr, e1, e0);
1615 if (integer_zerop (e) || integer_nonzerop (e))
1616 return e;
1618 if (TREE_CODE (expr) == EQ_EXPR)
1620 e0 = TREE_OPERAND (expr, 0);
1621 e1 = TREE_OPERAND (expr, 1);
1623 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1624 e = simplify_replace_tree (cond, e0, e1);
1625 if (integer_zerop (e))
1626 return e;
1627 e = simplify_replace_tree (cond, e1, e0);
1628 if (integer_zerop (e))
1629 return e;
1631 if (TREE_CODE (expr) == NE_EXPR)
1633 e0 = TREE_OPERAND (expr, 0);
1634 e1 = TREE_OPERAND (expr, 1);
1636 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1637 e = simplify_replace_tree (cond, e0, e1);
1638 if (integer_zerop (e))
1639 return boolean_true_node;
1640 e = simplify_replace_tree (cond, e1, e0);
1641 if (integer_zerop (e))
1642 return boolean_true_node;
1645 te = expand_simple_operations (expr);
1647 /* Check whether COND ==> EXPR. */
1648 notcond = invert_truthvalue (cond);
1649 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1650 if (e && integer_nonzerop (e))
1651 return e;
1653 /* Check whether COND ==> not EXPR. */
1654 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1655 if (e && integer_zerop (e))
1656 return e;
1658 return expr;
1661 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1662 expression (or EXPR unchanged, if no simplification was possible).
1663 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1664 of simple operations in definitions of ssa names in COND are expanded,
1665 so that things like casts or incrementing the value of the bound before
1666 the loop do not cause us to fail. */
1668 static tree
1669 tree_simplify_using_condition (tree cond, tree expr)
1671 cond = expand_simple_operations (cond);
1673 return tree_simplify_using_condition_1 (cond, expr);
1676 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1677 Returns the simplified expression (or EXPR unchanged, if no
1678 simplification was possible).*/
1680 static tree
1681 simplify_using_initial_conditions (struct loop *loop, tree expr)
1683 edge e;
1684 basic_block bb;
1685 gimple stmt;
1686 tree cond;
1687 int cnt = 0;
1689 if (TREE_CODE (expr) == INTEGER_CST)
1690 return expr;
1692 /* Limit walking the dominators to avoid quadraticness in
1693 the number of BBs times the number of loops in degenerate
1694 cases. */
1695 for (bb = loop->header;
1696 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
1697 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1699 if (!single_pred_p (bb))
1700 continue;
1701 e = single_pred_edge (bb);
1703 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1704 continue;
1706 stmt = last_stmt (e->src);
1707 cond = fold_build2 (gimple_cond_code (stmt),
1708 boolean_type_node,
1709 gimple_cond_lhs (stmt),
1710 gimple_cond_rhs (stmt));
1711 if (e->flags & EDGE_FALSE_VALUE)
1712 cond = invert_truthvalue (cond);
1713 expr = tree_simplify_using_condition (cond, expr);
1714 ++cnt;
1717 return expr;
1720 /* Tries to simplify EXPR using the evolutions of the loop invariants
1721 in the superloops of LOOP. Returns the simplified expression
1722 (or EXPR unchanged, if no simplification was possible). */
1724 static tree
1725 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1727 enum tree_code code = TREE_CODE (expr);
1728 bool changed;
1729 tree e, e0, e1, e2;
1731 if (is_gimple_min_invariant (expr))
1732 return expr;
1734 if (code == TRUTH_OR_EXPR
1735 || code == TRUTH_AND_EXPR
1736 || code == COND_EXPR)
1738 changed = false;
1740 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1741 if (TREE_OPERAND (expr, 0) != e0)
1742 changed = true;
1744 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1745 if (TREE_OPERAND (expr, 1) != e1)
1746 changed = true;
1748 if (code == COND_EXPR)
1750 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1751 if (TREE_OPERAND (expr, 2) != e2)
1752 changed = true;
1754 else
1755 e2 = NULL_TREE;
1757 if (changed)
1759 if (code == COND_EXPR)
1760 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1761 else
1762 expr = fold_build2 (code, boolean_type_node, e0, e1);
1765 return expr;
1768 e = instantiate_parameters (loop, expr);
1769 if (is_gimple_min_invariant (e))
1770 return e;
1772 return expr;
1775 /* Returns true if EXIT is the only possible exit from LOOP. */
1777 bool
1778 loop_only_exit_p (const struct loop *loop, const_edge exit)
1780 basic_block *body;
1781 gimple_stmt_iterator bsi;
1782 unsigned i;
1783 gimple call;
1785 if (exit != single_exit (loop))
1786 return false;
1788 body = get_loop_body (loop);
1789 for (i = 0; i < loop->num_nodes; i++)
1791 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1793 call = gsi_stmt (bsi);
1794 if (gimple_code (call) != GIMPLE_CALL)
1795 continue;
1797 if (gimple_has_side_effects (call))
1799 free (body);
1800 return false;
1805 free (body);
1806 return true;
1809 /* Stores description of number of iterations of LOOP derived from
1810 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1811 useful information could be derived (and fields of NITER has
1812 meaning described in comments at struct tree_niter_desc
1813 declaration), false otherwise. If WARN is true and
1814 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1815 potentially unsafe assumptions.
1816 When EVERY_ITERATION is true, only tests that are known to be executed
1817 every iteration are considered (i.e. only test that alone bounds the loop).
1820 bool
1821 number_of_iterations_exit (struct loop *loop, edge exit,
1822 struct tree_niter_desc *niter,
1823 bool warn, bool every_iteration)
1825 gimple stmt;
1826 tree type;
1827 tree op0, op1;
1828 enum tree_code code;
1829 affine_iv iv0, iv1;
1830 bool safe;
1832 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
1834 if (every_iteration && !safe)
1835 return false;
1837 niter->assumptions = boolean_false_node;
1838 stmt = last_stmt (exit->src);
1839 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1840 return false;
1842 /* We want the condition for staying inside loop. */
1843 code = gimple_cond_code (stmt);
1844 if (exit->flags & EDGE_TRUE_VALUE)
1845 code = invert_tree_comparison (code, false);
1847 switch (code)
1849 case GT_EXPR:
1850 case GE_EXPR:
1851 case LT_EXPR:
1852 case LE_EXPR:
1853 case NE_EXPR:
1854 break;
1856 default:
1857 return false;
1860 op0 = gimple_cond_lhs (stmt);
1861 op1 = gimple_cond_rhs (stmt);
1862 type = TREE_TYPE (op0);
1864 if (TREE_CODE (type) != INTEGER_TYPE
1865 && !POINTER_TYPE_P (type))
1866 return false;
1868 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1869 return false;
1870 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1871 return false;
1873 /* We don't want to see undefined signed overflow warnings while
1874 computing the number of iterations. */
1875 fold_defer_overflow_warnings ();
1877 iv0.base = expand_simple_operations (iv0.base);
1878 iv1.base = expand_simple_operations (iv1.base);
1879 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1880 loop_only_exit_p (loop, exit), safe))
1882 fold_undefer_and_ignore_overflow_warnings ();
1883 return false;
1886 if (optimize >= 3)
1888 niter->assumptions = simplify_using_outer_evolutions (loop,
1889 niter->assumptions);
1890 niter->may_be_zero = simplify_using_outer_evolutions (loop,
1891 niter->may_be_zero);
1892 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1895 niter->assumptions
1896 = simplify_using_initial_conditions (loop,
1897 niter->assumptions);
1898 niter->may_be_zero
1899 = simplify_using_initial_conditions (loop,
1900 niter->may_be_zero);
1902 fold_undefer_and_ignore_overflow_warnings ();
1904 /* If NITER has simplified into a constant, update MAX. */
1905 if (TREE_CODE (niter->niter) == INTEGER_CST)
1906 niter->max = tree_to_double_int (niter->niter);
1908 if (integer_onep (niter->assumptions))
1909 return true;
1911 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1912 But if we can prove that there is overflow or some other source of weird
1913 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1914 if (integer_zerop (niter->assumptions) || !single_exit (loop))
1915 return false;
1917 if (flag_unsafe_loop_optimizations)
1918 niter->assumptions = boolean_true_node;
1920 if (warn)
1922 const char *wording;
1923 location_t loc = gimple_location (stmt);
1925 /* We can provide a more specific warning if one of the operator is
1926 constant and the other advances by +1 or -1. */
1927 if (!integer_zerop (iv1.step)
1928 ? (integer_zerop (iv0.step)
1929 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1930 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
1931 wording =
1932 flag_unsafe_loop_optimizations
1933 ? N_("assuming that the loop is not infinite")
1934 : N_("cannot optimize possibly infinite loops");
1935 else
1936 wording =
1937 flag_unsafe_loop_optimizations
1938 ? N_("assuming that the loop counter does not overflow")
1939 : N_("cannot optimize loop, the loop counter may overflow");
1941 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
1942 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1945 return flag_unsafe_loop_optimizations;
1948 /* Try to determine the number of iterations of LOOP. If we succeed,
1949 expression giving number of iterations is returned and *EXIT is
1950 set to the edge from that the information is obtained. Otherwise
1951 chrec_dont_know is returned. */
1953 tree
1954 find_loop_niter (struct loop *loop, edge *exit)
1956 unsigned i;
1957 vec<edge> exits = get_loop_exit_edges (loop);
1958 edge ex;
1959 tree niter = NULL_TREE, aniter;
1960 struct tree_niter_desc desc;
1962 *exit = NULL;
1963 FOR_EACH_VEC_ELT (exits, i, ex)
1965 if (!number_of_iterations_exit (loop, ex, &desc, false))
1966 continue;
1968 if (integer_nonzerop (desc.may_be_zero))
1970 /* We exit in the first iteration through this exit.
1971 We won't find anything better. */
1972 niter = build_int_cst (unsigned_type_node, 0);
1973 *exit = ex;
1974 break;
1977 if (!integer_zerop (desc.may_be_zero))
1978 continue;
1980 aniter = desc.niter;
1982 if (!niter)
1984 /* Nothing recorded yet. */
1985 niter = aniter;
1986 *exit = ex;
1987 continue;
1990 /* Prefer constants, the lower the better. */
1991 if (TREE_CODE (aniter) != INTEGER_CST)
1992 continue;
1994 if (TREE_CODE (niter) != INTEGER_CST)
1996 niter = aniter;
1997 *exit = ex;
1998 continue;
2001 if (tree_int_cst_lt (aniter, niter))
2003 niter = aniter;
2004 *exit = ex;
2005 continue;
2008 exits.release ();
2010 return niter ? niter : chrec_dont_know;
2013 /* Return true if loop is known to have bounded number of iterations. */
2015 bool
2016 finite_loop_p (struct loop *loop)
2018 double_int nit;
2019 int flags;
2021 if (flag_unsafe_loop_optimizations)
2022 return true;
2023 flags = flags_from_decl_or_type (current_function_decl);
2024 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2026 if (dump_file && (dump_flags & TDF_DETAILS))
2027 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2028 loop->num);
2029 return true;
2032 if (loop->any_upper_bound
2033 || max_loop_iterations (loop, &nit))
2035 if (dump_file && (dump_flags & TDF_DETAILS))
2036 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2037 loop->num);
2038 return true;
2040 return false;
2045 Analysis of a number of iterations of a loop by a brute-force evaluation.
2049 /* Bound on the number of iterations we try to evaluate. */
2051 #define MAX_ITERATIONS_TO_TRACK \
2052 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2054 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2055 result by a chain of operations such that all but exactly one of their
2056 operands are constants. */
2058 static gimple
2059 chain_of_csts_start (struct loop *loop, tree x)
2061 gimple stmt = SSA_NAME_DEF_STMT (x);
2062 tree use;
2063 basic_block bb = gimple_bb (stmt);
2064 enum tree_code code;
2066 if (!bb
2067 || !flow_bb_inside_loop_p (loop, bb))
2068 return NULL;
2070 if (gimple_code (stmt) == GIMPLE_PHI)
2072 if (bb == loop->header)
2073 return stmt;
2075 return NULL;
2078 if (gimple_code (stmt) != GIMPLE_ASSIGN
2079 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
2080 return NULL;
2082 code = gimple_assign_rhs_code (stmt);
2083 if (gimple_references_memory_p (stmt)
2084 || TREE_CODE_CLASS (code) == tcc_reference
2085 || (code == ADDR_EXPR
2086 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2087 return NULL;
2089 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2090 if (use == NULL_TREE)
2091 return NULL;
2093 return chain_of_csts_start (loop, use);
2096 /* Determines whether the expression X is derived from a result of a phi node
2097 in header of LOOP such that
2099 * the derivation of X consists only from operations with constants
2100 * the initial value of the phi node is constant
2101 * the value of the phi node in the next iteration can be derived from the
2102 value in the current iteration by a chain of operations with constants.
2104 If such phi node exists, it is returned, otherwise NULL is returned. */
2106 static gimple
2107 get_base_for (struct loop *loop, tree x)
2109 gimple phi;
2110 tree init, next;
2112 if (is_gimple_min_invariant (x))
2113 return NULL;
2115 phi = chain_of_csts_start (loop, x);
2116 if (!phi)
2117 return NULL;
2119 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2120 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2122 if (TREE_CODE (next) != SSA_NAME)
2123 return NULL;
2125 if (!is_gimple_min_invariant (init))
2126 return NULL;
2128 if (chain_of_csts_start (loop, next) != phi)
2129 return NULL;
2131 return phi;
2134 /* Given an expression X, then
2136 * if X is NULL_TREE, we return the constant BASE.
2137 * otherwise X is a SSA name, whose value in the considered loop is derived
2138 by a chain of operations with constant from a result of a phi node in
2139 the header of the loop. Then we return value of X when the value of the
2140 result of this phi node is given by the constant BASE. */
2142 static tree
2143 get_val_for (tree x, tree base)
2145 gimple stmt;
2147 gcc_checking_assert (is_gimple_min_invariant (base));
2149 if (!x)
2150 return base;
2152 stmt = SSA_NAME_DEF_STMT (x);
2153 if (gimple_code (stmt) == GIMPLE_PHI)
2154 return base;
2156 gcc_checking_assert (is_gimple_assign (stmt));
2158 /* STMT must be either an assignment of a single SSA name or an
2159 expression involving an SSA name and a constant. Try to fold that
2160 expression using the value for the SSA name. */
2161 if (gimple_assign_ssa_name_copy_p (stmt))
2162 return get_val_for (gimple_assign_rhs1 (stmt), base);
2163 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2164 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2166 return fold_build1 (gimple_assign_rhs_code (stmt),
2167 gimple_expr_type (stmt),
2168 get_val_for (gimple_assign_rhs1 (stmt), base));
2170 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2172 tree rhs1 = gimple_assign_rhs1 (stmt);
2173 tree rhs2 = gimple_assign_rhs2 (stmt);
2174 if (TREE_CODE (rhs1) == SSA_NAME)
2175 rhs1 = get_val_for (rhs1, base);
2176 else if (TREE_CODE (rhs2) == SSA_NAME)
2177 rhs2 = get_val_for (rhs2, base);
2178 else
2179 gcc_unreachable ();
2180 return fold_build2 (gimple_assign_rhs_code (stmt),
2181 gimple_expr_type (stmt), rhs1, rhs2);
2183 else
2184 gcc_unreachable ();
2188 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2189 by brute force -- i.e. by determining the value of the operands of the
2190 condition at EXIT in first few iterations of the loop (assuming that
2191 these values are constant) and determining the first one in that the
2192 condition is not satisfied. Returns the constant giving the number
2193 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2195 tree
2196 loop_niter_by_eval (struct loop *loop, edge exit)
2198 tree acnd;
2199 tree op[2], val[2], next[2], aval[2];
2200 gimple phi, cond;
2201 unsigned i, j;
2202 enum tree_code cmp;
2204 cond = last_stmt (exit->src);
2205 if (!cond || gimple_code (cond) != GIMPLE_COND)
2206 return chrec_dont_know;
2208 cmp = gimple_cond_code (cond);
2209 if (exit->flags & EDGE_TRUE_VALUE)
2210 cmp = invert_tree_comparison (cmp, false);
2212 switch (cmp)
2214 case EQ_EXPR:
2215 case NE_EXPR:
2216 case GT_EXPR:
2217 case GE_EXPR:
2218 case LT_EXPR:
2219 case LE_EXPR:
2220 op[0] = gimple_cond_lhs (cond);
2221 op[1] = gimple_cond_rhs (cond);
2222 break;
2224 default:
2225 return chrec_dont_know;
2228 for (j = 0; j < 2; j++)
2230 if (is_gimple_min_invariant (op[j]))
2232 val[j] = op[j];
2233 next[j] = NULL_TREE;
2234 op[j] = NULL_TREE;
2236 else
2238 phi = get_base_for (loop, op[j]);
2239 if (!phi)
2240 return chrec_dont_know;
2241 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2242 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2246 /* Don't issue signed overflow warnings. */
2247 fold_defer_overflow_warnings ();
2249 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2251 for (j = 0; j < 2; j++)
2252 aval[j] = get_val_for (op[j], val[j]);
2254 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2255 if (acnd && integer_zerop (acnd))
2257 fold_undefer_and_ignore_overflow_warnings ();
2258 if (dump_file && (dump_flags & TDF_DETAILS))
2259 fprintf (dump_file,
2260 "Proved that loop %d iterates %d times using brute force.\n",
2261 loop->num, i);
2262 return build_int_cst (unsigned_type_node, i);
2265 for (j = 0; j < 2; j++)
2267 val[j] = get_val_for (next[j], val[j]);
2268 if (!is_gimple_min_invariant (val[j]))
2270 fold_undefer_and_ignore_overflow_warnings ();
2271 return chrec_dont_know;
2276 fold_undefer_and_ignore_overflow_warnings ();
2278 return chrec_dont_know;
2281 /* Finds the exit of the LOOP by that the loop exits after a constant
2282 number of iterations and stores the exit edge to *EXIT. The constant
2283 giving the number of iterations of LOOP is returned. The number of
2284 iterations is determined using loop_niter_by_eval (i.e. by brute force
2285 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2286 determines the number of iterations, chrec_dont_know is returned. */
2288 tree
2289 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2291 unsigned i;
2292 vec<edge> exits = get_loop_exit_edges (loop);
2293 edge ex;
2294 tree niter = NULL_TREE, aniter;
2296 *exit = NULL;
2298 /* Loops with multiple exits are expensive to handle and less important. */
2299 if (!flag_expensive_optimizations
2300 && exits.length () > 1)
2302 exits.release ();
2303 return chrec_dont_know;
2306 FOR_EACH_VEC_ELT (exits, i, ex)
2308 if (!just_once_each_iteration_p (loop, ex->src))
2309 continue;
2311 aniter = loop_niter_by_eval (loop, ex);
2312 if (chrec_contains_undetermined (aniter))
2313 continue;
2315 if (niter
2316 && !tree_int_cst_lt (aniter, niter))
2317 continue;
2319 niter = aniter;
2320 *exit = ex;
2322 exits.release ();
2324 return niter ? niter : chrec_dont_know;
2329 Analysis of upper bounds on number of iterations of a loop.
2333 static double_int derive_constant_upper_bound_ops (tree, tree,
2334 enum tree_code, tree);
2336 /* Returns a constant upper bound on the value of the right-hand side of
2337 an assignment statement STMT. */
2339 static double_int
2340 derive_constant_upper_bound_assign (gimple stmt)
2342 enum tree_code code = gimple_assign_rhs_code (stmt);
2343 tree op0 = gimple_assign_rhs1 (stmt);
2344 tree op1 = gimple_assign_rhs2 (stmt);
2346 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2347 op0, code, op1);
2350 /* Returns a constant upper bound on the value of expression VAL. VAL
2351 is considered to be unsigned. If its type is signed, its value must
2352 be nonnegative. */
2354 static double_int
2355 derive_constant_upper_bound (tree val)
2357 enum tree_code code;
2358 tree op0, op1;
2360 extract_ops_from_tree (val, &code, &op0, &op1);
2361 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2364 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2365 whose type is TYPE. The expression is considered to be unsigned. If
2366 its type is signed, its value must be nonnegative. */
2368 static double_int
2369 derive_constant_upper_bound_ops (tree type, tree op0,
2370 enum tree_code code, tree op1)
2372 tree subtype, maxt;
2373 double_int bnd, max, mmax, cst;
2374 gimple stmt;
2376 if (INTEGRAL_TYPE_P (type))
2377 maxt = TYPE_MAX_VALUE (type);
2378 else
2379 maxt = upper_bound_in_type (type, type);
2381 max = tree_to_double_int (maxt);
2383 switch (code)
2385 case INTEGER_CST:
2386 return tree_to_double_int (op0);
2388 CASE_CONVERT:
2389 subtype = TREE_TYPE (op0);
2390 if (!TYPE_UNSIGNED (subtype)
2391 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2392 that OP0 is nonnegative. */
2393 && TYPE_UNSIGNED (type)
2394 && !tree_expr_nonnegative_p (op0))
2396 /* If we cannot prove that the casted expression is nonnegative,
2397 we cannot establish more useful upper bound than the precision
2398 of the type gives us. */
2399 return max;
2402 /* We now know that op0 is an nonnegative value. Try deriving an upper
2403 bound for it. */
2404 bnd = derive_constant_upper_bound (op0);
2406 /* If the bound does not fit in TYPE, max. value of TYPE could be
2407 attained. */
2408 if (max.ult (bnd))
2409 return max;
2411 return bnd;
2413 case PLUS_EXPR:
2414 case POINTER_PLUS_EXPR:
2415 case MINUS_EXPR:
2416 if (TREE_CODE (op1) != INTEGER_CST
2417 || !tree_expr_nonnegative_p (op0))
2418 return max;
2420 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2421 choose the most logical way how to treat this constant regardless
2422 of the signedness of the type. */
2423 cst = tree_to_double_int (op1);
2424 cst = cst.sext (TYPE_PRECISION (type));
2425 if (code != MINUS_EXPR)
2426 cst = -cst;
2428 bnd = derive_constant_upper_bound (op0);
2430 if (cst.is_negative ())
2432 cst = -cst;
2433 /* Avoid CST == 0x80000... */
2434 if (cst.is_negative ())
2435 return max;;
2437 /* OP0 + CST. We need to check that
2438 BND <= MAX (type) - CST. */
2440 mmax -= cst;
2441 if (bnd.ugt (mmax))
2442 return max;
2444 return bnd + cst;
2446 else
2448 /* OP0 - CST, where CST >= 0.
2450 If TYPE is signed, we have already verified that OP0 >= 0, and we
2451 know that the result is nonnegative. This implies that
2452 VAL <= BND - CST.
2454 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2455 otherwise the operation underflows.
2458 /* This should only happen if the type is unsigned; however, for
2459 buggy programs that use overflowing signed arithmetics even with
2460 -fno-wrapv, this condition may also be true for signed values. */
2461 if (bnd.ult (cst))
2462 return max;
2464 if (TYPE_UNSIGNED (type))
2466 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2467 double_int_to_tree (type, cst));
2468 if (!tem || integer_nonzerop (tem))
2469 return max;
2472 bnd -= cst;
2475 return bnd;
2477 case FLOOR_DIV_EXPR:
2478 case EXACT_DIV_EXPR:
2479 if (TREE_CODE (op1) != INTEGER_CST
2480 || tree_int_cst_sign_bit (op1))
2481 return max;
2483 bnd = derive_constant_upper_bound (op0);
2484 return bnd.udiv (tree_to_double_int (op1), FLOOR_DIV_EXPR);
2486 case BIT_AND_EXPR:
2487 if (TREE_CODE (op1) != INTEGER_CST
2488 || tree_int_cst_sign_bit (op1))
2489 return max;
2490 return tree_to_double_int (op1);
2492 case SSA_NAME:
2493 stmt = SSA_NAME_DEF_STMT (op0);
2494 if (gimple_code (stmt) != GIMPLE_ASSIGN
2495 || gimple_assign_lhs (stmt) != op0)
2496 return max;
2497 return derive_constant_upper_bound_assign (stmt);
2499 default:
2500 return max;
2504 /* Records that every statement in LOOP is executed I_BOUND times.
2505 REALISTIC is true if I_BOUND is expected to be close to the real number
2506 of iterations. UPPER is true if we are sure the loop iterates at most
2507 I_BOUND times. */
2509 void
2510 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
2511 bool upper)
2513 /* Update the bounds only when there is no previous estimation, or when the
2514 current estimation is smaller. */
2515 if (upper
2516 && (!loop->any_upper_bound
2517 || i_bound.ult (loop->nb_iterations_upper_bound)))
2519 loop->any_upper_bound = true;
2520 loop->nb_iterations_upper_bound = i_bound;
2522 if (realistic
2523 && (!loop->any_estimate
2524 || i_bound.ult (loop->nb_iterations_estimate)))
2526 loop->any_estimate = true;
2527 loop->nb_iterations_estimate = i_bound;
2530 /* If an upper bound is smaller than the realistic estimate of the
2531 number of iterations, use the upper bound instead. */
2532 if (loop->any_upper_bound
2533 && loop->any_estimate
2534 && loop->nb_iterations_upper_bound.ult (loop->nb_iterations_estimate))
2535 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
2538 /* Emit a -Waggressive-loop-optimizations warning if needed. */
2540 static void
2541 do_warn_aggressive_loop_optimizations (struct loop *loop,
2542 double_int i_bound, gimple stmt)
2544 /* Don't warn if the loop doesn't have known constant bound. */
2545 if (!loop->nb_iterations
2546 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
2547 || !warn_aggressive_loop_optimizations
2548 /* To avoid warning multiple times for the same loop,
2549 only start warning when we preserve loops. */
2550 || (cfun->curr_properties & PROP_loops) == 0
2551 /* Only warn once per loop. */
2552 || loop->warned_aggressive_loop_optimizations
2553 /* Only warn if undefined behavior gives us lower estimate than the
2554 known constant bound. */
2555 || i_bound.ucmp (tree_to_double_int (loop->nb_iterations)) >= 0
2556 /* And undefined behavior happens unconditionally. */
2557 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
2558 return;
2560 edge e = single_exit (loop);
2561 if (e == NULL)
2562 return;
2564 gimple estmt = last_stmt (e->src);
2565 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
2566 "iteration %E invokes undefined behavior",
2567 double_int_to_tree (TREE_TYPE (loop->nb_iterations),
2568 i_bound)))
2569 inform (gimple_location (estmt), "containing loop");
2570 loop->warned_aggressive_loop_optimizations = true;
2573 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2574 is true if the loop is exited immediately after STMT, and this exit
2575 is taken at last when the STMT is executed BOUND + 1 times.
2576 REALISTIC is true if BOUND is expected to be close to the real number
2577 of iterations. UPPER is true if we are sure the loop iterates at most
2578 BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
2580 static void
2581 record_estimate (struct loop *loop, tree bound, double_int i_bound,
2582 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2584 double_int delta;
2586 if (dump_file && (dump_flags & TDF_DETAILS))
2588 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2589 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2590 fprintf (dump_file, " is %sexecuted at most ",
2591 upper ? "" : "probably ");
2592 print_generic_expr (dump_file, bound, TDF_SLIM);
2593 fprintf (dump_file, " (bounded by ");
2594 dump_double_int (dump_file, i_bound, true);
2595 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2598 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2599 real number of iterations. */
2600 if (TREE_CODE (bound) != INTEGER_CST)
2601 realistic = false;
2602 else
2603 gcc_checking_assert (i_bound == tree_to_double_int (bound));
2604 if (!upper && !realistic)
2605 return;
2607 /* If we have a guaranteed upper bound, record it in the appropriate
2608 list, unless this is an !is_exit bound (i.e. undefined behavior in
2609 at_stmt) in a loop with known constant number of iterations. */
2610 if (upper
2611 && (is_exit
2612 || loop->nb_iterations == NULL_TREE
2613 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
2615 struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
2617 elt->bound = i_bound;
2618 elt->stmt = at_stmt;
2619 elt->is_exit = is_exit;
2620 elt->next = loop->bounds;
2621 loop->bounds = elt;
2624 /* If statement is executed on every path to the loop latch, we can directly
2625 infer the upper bound on the # of iterations of the loop. */
2626 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
2627 return;
2629 /* Update the number of iteration estimates according to the bound.
2630 If at_stmt is an exit then the loop latch is executed at most BOUND times,
2631 otherwise it can be executed BOUND + 1 times. We will lower the estimate
2632 later if such statement must be executed on last iteration */
2633 if (is_exit)
2634 delta = double_int_zero;
2635 else
2636 delta = double_int_one;
2637 i_bound += delta;
2639 /* If an overflow occurred, ignore the result. */
2640 if (i_bound.ult (delta))
2641 return;
2643 if (upper && !is_exit)
2644 do_warn_aggressive_loop_optimizations (loop, i_bound, at_stmt);
2645 record_niter_bound (loop, i_bound, realistic, upper);
2648 /* Record the estimate on number of iterations of LOOP based on the fact that
2649 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2650 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2651 estimated number of iterations is expected to be close to the real one.
2652 UPPER is true if we are sure the induction variable does not wrap. */
2654 static void
2655 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2656 tree low, tree high, bool realistic, bool upper)
2658 tree niter_bound, extreme, delta;
2659 tree type = TREE_TYPE (base), unsigned_type;
2660 double_int max;
2662 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2663 return;
2665 if (dump_file && (dump_flags & TDF_DETAILS))
2667 fprintf (dump_file, "Induction variable (");
2668 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2669 fprintf (dump_file, ") ");
2670 print_generic_expr (dump_file, base, TDF_SLIM);
2671 fprintf (dump_file, " + ");
2672 print_generic_expr (dump_file, step, TDF_SLIM);
2673 fprintf (dump_file, " * iteration does not wrap in statement ");
2674 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2675 fprintf (dump_file, " in loop %d.\n", loop->num);
2678 unsigned_type = unsigned_type_for (type);
2679 base = fold_convert (unsigned_type, base);
2680 step = fold_convert (unsigned_type, step);
2682 if (tree_int_cst_sign_bit (step))
2684 extreme = fold_convert (unsigned_type, low);
2685 if (TREE_CODE (base) != INTEGER_CST)
2686 base = fold_convert (unsigned_type, high);
2687 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2688 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2690 else
2692 extreme = fold_convert (unsigned_type, high);
2693 if (TREE_CODE (base) != INTEGER_CST)
2694 base = fold_convert (unsigned_type, low);
2695 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2698 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2699 would get out of the range. */
2700 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2701 max = derive_constant_upper_bound (niter_bound);
2702 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2705 /* Determine information about number of iterations a LOOP from the index
2706 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2707 guaranteed to be executed in every iteration of LOOP. Callback for
2708 for_each_index. */
2710 struct ilb_data
2712 struct loop *loop;
2713 gimple stmt;
2716 static bool
2717 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2719 struct ilb_data *data = (struct ilb_data *) dta;
2720 tree ev, init, step;
2721 tree low, high, type, next;
2722 bool sign, upper = true, at_end = false;
2723 struct loop *loop = data->loop;
2724 bool reliable = true;
2726 if (TREE_CODE (base) != ARRAY_REF)
2727 return true;
2729 /* For arrays at the end of the structure, we are not guaranteed that they
2730 do not really extend over their declared size. However, for arrays of
2731 size greater than one, this is unlikely to be intended. */
2732 if (array_at_struct_end_p (base))
2734 at_end = true;
2735 upper = false;
2738 struct loop *dloop = loop_containing_stmt (data->stmt);
2739 if (!dloop)
2740 return true;
2742 ev = analyze_scalar_evolution (dloop, *idx);
2743 ev = instantiate_parameters (loop, ev);
2744 init = initial_condition (ev);
2745 step = evolution_part_in_loop_num (ev, loop->num);
2747 if (!init
2748 || !step
2749 || TREE_CODE (step) != INTEGER_CST
2750 || integer_zerop (step)
2751 || tree_contains_chrecs (init, NULL)
2752 || chrec_contains_symbols_defined_in_loop (init, loop->num))
2753 return true;
2755 low = array_ref_low_bound (base);
2756 high = array_ref_up_bound (base);
2758 /* The case of nonconstant bounds could be handled, but it would be
2759 complicated. */
2760 if (TREE_CODE (low) != INTEGER_CST
2761 || !high
2762 || TREE_CODE (high) != INTEGER_CST)
2763 return true;
2764 sign = tree_int_cst_sign_bit (step);
2765 type = TREE_TYPE (step);
2767 /* The array of length 1 at the end of a structure most likely extends
2768 beyond its bounds. */
2769 if (at_end
2770 && operand_equal_p (low, high, 0))
2771 return true;
2773 /* In case the relevant bound of the array does not fit in type, or
2774 it does, but bound + step (in type) still belongs into the range of the
2775 array, the index may wrap and still stay within the range of the array
2776 (consider e.g. if the array is indexed by the full range of
2777 unsigned char).
2779 To make things simpler, we require both bounds to fit into type, although
2780 there are cases where this would not be strictly necessary. */
2781 if (!int_fits_type_p (high, type)
2782 || !int_fits_type_p (low, type))
2783 return true;
2784 low = fold_convert (type, low);
2785 high = fold_convert (type, high);
2787 if (sign)
2788 next = fold_binary (PLUS_EXPR, type, low, step);
2789 else
2790 next = fold_binary (PLUS_EXPR, type, high, step);
2792 if (tree_int_cst_compare (low, next) <= 0
2793 && tree_int_cst_compare (next, high) <= 0)
2794 return true;
2796 /* If access is not executed on every iteration, we must ensure that overlow may
2797 not make the access valid later. */
2798 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
2799 && scev_probably_wraps_p (initial_condition_in_loop_num (ev, loop->num),
2800 step, data->stmt, loop, true))
2801 reliable = false;
2803 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, reliable, upper);
2804 return true;
2807 /* Determine information about number of iterations a LOOP from the bounds
2808 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2809 STMT is guaranteed to be executed in every iteration of LOOP.*/
2811 static void
2812 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref)
2814 struct ilb_data data;
2816 data.loop = loop;
2817 data.stmt = stmt;
2818 for_each_index (&ref, idx_infer_loop_bounds, &data);
2821 /* Determine information about number of iterations of a LOOP from the way
2822 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2823 executed in every iteration of LOOP. */
2825 static void
2826 infer_loop_bounds_from_array (struct loop *loop, gimple stmt)
2828 if (is_gimple_assign (stmt))
2830 tree op0 = gimple_assign_lhs (stmt);
2831 tree op1 = gimple_assign_rhs1 (stmt);
2833 /* For each memory access, analyze its access function
2834 and record a bound on the loop iteration domain. */
2835 if (REFERENCE_CLASS_P (op0))
2836 infer_loop_bounds_from_ref (loop, stmt, op0);
2838 if (REFERENCE_CLASS_P (op1))
2839 infer_loop_bounds_from_ref (loop, stmt, op1);
2841 else if (is_gimple_call (stmt))
2843 tree arg, lhs;
2844 unsigned i, n = gimple_call_num_args (stmt);
2846 lhs = gimple_call_lhs (stmt);
2847 if (lhs && REFERENCE_CLASS_P (lhs))
2848 infer_loop_bounds_from_ref (loop, stmt, lhs);
2850 for (i = 0; i < n; i++)
2852 arg = gimple_call_arg (stmt, i);
2853 if (REFERENCE_CLASS_P (arg))
2854 infer_loop_bounds_from_ref (loop, stmt, arg);
2859 /* Determine information about number of iterations of a LOOP from the fact
2860 that pointer arithmetics in STMT does not overflow. */
2862 static void
2863 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
2865 tree def, base, step, scev, type, low, high;
2866 tree var, ptr;
2868 if (!is_gimple_assign (stmt)
2869 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
2870 return;
2872 def = gimple_assign_lhs (stmt);
2873 if (TREE_CODE (def) != SSA_NAME)
2874 return;
2876 type = TREE_TYPE (def);
2877 if (!nowrap_type_p (type))
2878 return;
2880 ptr = gimple_assign_rhs1 (stmt);
2881 if (!expr_invariant_in_loop_p (loop, ptr))
2882 return;
2884 var = gimple_assign_rhs2 (stmt);
2885 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
2886 return;
2888 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2889 if (chrec_contains_undetermined (scev))
2890 return;
2892 base = initial_condition_in_loop_num (scev, loop->num);
2893 step = evolution_part_in_loop_num (scev, loop->num);
2895 if (!base || !step
2896 || TREE_CODE (step) != INTEGER_CST
2897 || tree_contains_chrecs (base, NULL)
2898 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2899 return;
2901 low = lower_bound_in_type (type, type);
2902 high = upper_bound_in_type (type, type);
2904 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2905 produce a NULL pointer. The contrary would mean NULL points to an object,
2906 while NULL is supposed to compare unequal with the address of all objects.
2907 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2908 NULL pointer since that would mean wrapping, which we assume here not to
2909 happen. So, we can exclude NULL from the valid range of pointer
2910 arithmetic. */
2911 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
2912 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
2914 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2917 /* Determine information about number of iterations of a LOOP from the fact
2918 that signed arithmetics in STMT does not overflow. */
2920 static void
2921 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
2923 tree def, base, step, scev, type, low, high;
2925 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2926 return;
2928 def = gimple_assign_lhs (stmt);
2930 if (TREE_CODE (def) != SSA_NAME)
2931 return;
2933 type = TREE_TYPE (def);
2934 if (!INTEGRAL_TYPE_P (type)
2935 || !TYPE_OVERFLOW_UNDEFINED (type))
2936 return;
2938 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2939 if (chrec_contains_undetermined (scev))
2940 return;
2942 base = initial_condition_in_loop_num (scev, loop->num);
2943 step = evolution_part_in_loop_num (scev, loop->num);
2945 if (!base || !step
2946 || TREE_CODE (step) != INTEGER_CST
2947 || tree_contains_chrecs (base, NULL)
2948 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2949 return;
2951 low = lower_bound_in_type (type, type);
2952 high = upper_bound_in_type (type, type);
2954 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2957 /* The following analyzers are extracting informations on the bounds
2958 of LOOP from the following undefined behaviors:
2960 - data references should not access elements over the statically
2961 allocated size,
2963 - signed variables should not overflow when flag_wrapv is not set.
2966 static void
2967 infer_loop_bounds_from_undefined (struct loop *loop)
2969 unsigned i;
2970 basic_block *bbs;
2971 gimple_stmt_iterator bsi;
2972 basic_block bb;
2973 bool reliable;
2975 bbs = get_loop_body (loop);
2977 for (i = 0; i < loop->num_nodes; i++)
2979 bb = bbs[i];
2981 /* If BB is not executed in each iteration of the loop, we cannot
2982 use the operations in it to infer reliable upper bound on the
2983 # of iterations of the loop. However, we can use it as a guess.
2984 Reliable guesses come only from array bounds. */
2985 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
2987 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2989 gimple stmt = gsi_stmt (bsi);
2991 infer_loop_bounds_from_array (loop, stmt);
2993 if (reliable)
2995 infer_loop_bounds_from_signedness (loop, stmt);
2996 infer_loop_bounds_from_pointer_arith (loop, stmt);
3002 free (bbs);
3005 /* Converts VAL to double_int. */
3007 static double_int
3008 gcov_type_to_double_int (gcov_type val)
3010 double_int ret;
3012 ret.low = (unsigned HOST_WIDE_INT) val;
3013 /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
3014 the size of type. */
3015 val >>= HOST_BITS_PER_WIDE_INT - 1;
3016 val >>= 1;
3017 ret.high = (unsigned HOST_WIDE_INT) val;
3019 return ret;
3022 /* Compare double ints, callback for qsort. */
3025 double_int_cmp (const void *p1, const void *p2)
3027 const double_int *d1 = (const double_int *)p1;
3028 const double_int *d2 = (const double_int *)p2;
3029 if (*d1 == *d2)
3030 return 0;
3031 if (d1->ult (*d2))
3032 return -1;
3033 return 1;
3036 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3037 Lookup by binary search. */
3040 bound_index (vec<double_int> bounds, double_int bound)
3042 unsigned int end = bounds.length ();
3043 unsigned int begin = 0;
3045 /* Find a matching index by means of a binary search. */
3046 while (begin != end)
3048 unsigned int middle = (begin + end) / 2;
3049 double_int index = bounds[middle];
3051 if (index == bound)
3052 return middle;
3053 else if (index.ult (bound))
3054 begin = middle + 1;
3055 else
3056 end = middle;
3058 gcc_unreachable ();
3061 /* We recorded loop bounds only for statements dominating loop latch (and thus
3062 executed each loop iteration). If there are any bounds on statements not
3063 dominating the loop latch we can improve the estimate by walking the loop
3064 body and seeing if every path from loop header to loop latch contains
3065 some bounded statement. */
3067 static void
3068 discover_iteration_bound_by_body_walk (struct loop *loop)
3070 pointer_map_t *bb_bounds;
3071 struct nb_iter_bound *elt;
3072 vec<double_int> bounds = vNULL;
3073 vec<vec<basic_block> > queues = vNULL;
3074 vec<basic_block> queue = vNULL;
3075 ptrdiff_t queue_index;
3076 ptrdiff_t latch_index = 0;
3077 pointer_map_t *block_priority;
3079 /* Discover what bounds may interest us. */
3080 for (elt = loop->bounds; elt; elt = elt->next)
3082 double_int bound = elt->bound;
3084 /* Exit terminates loop at given iteration, while non-exits produce undefined
3085 effect on the next iteration. */
3086 if (!elt->is_exit)
3088 bound += double_int_one;
3089 /* If an overflow occurred, ignore the result. */
3090 if (bound.is_zero ())
3091 continue;
3094 if (!loop->any_upper_bound
3095 || bound.ult (loop->nb_iterations_upper_bound))
3096 bounds.safe_push (bound);
3099 /* Exit early if there is nothing to do. */
3100 if (!bounds.exists ())
3101 return;
3103 if (dump_file && (dump_flags & TDF_DETAILS))
3104 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3106 /* Sort the bounds in decreasing order. */
3107 qsort (bounds.address (), bounds.length (),
3108 sizeof (double_int), double_int_cmp);
3110 /* For every basic block record the lowest bound that is guaranteed to
3111 terminate the loop. */
3113 bb_bounds = pointer_map_create ();
3114 for (elt = loop->bounds; elt; elt = elt->next)
3116 double_int bound = elt->bound;
3117 if (!elt->is_exit)
3119 bound += double_int_one;
3120 /* If an overflow occurred, ignore the result. */
3121 if (bound.is_zero ())
3122 continue;
3125 if (!loop->any_upper_bound
3126 || bound.ult (loop->nb_iterations_upper_bound))
3128 ptrdiff_t index = bound_index (bounds, bound);
3129 void **entry = pointer_map_contains (bb_bounds,
3130 gimple_bb (elt->stmt));
3131 if (!entry)
3132 *pointer_map_insert (bb_bounds,
3133 gimple_bb (elt->stmt)) = (void *)index;
3134 else if ((ptrdiff_t)*entry > index)
3135 *entry = (void *)index;
3139 block_priority = pointer_map_create ();
3141 /* Perform shortest path discovery loop->header ... loop->latch.
3143 The "distance" is given by the smallest loop bound of basic block
3144 present in the path and we look for path with largest smallest bound
3145 on it.
3147 To avoid the need for fibonacci heap on double ints we simply compress
3148 double ints into indexes to BOUNDS array and then represent the queue
3149 as arrays of queues for every index.
3150 Index of BOUNDS.length() means that the execution of given BB has
3151 no bounds determined.
3153 VISITED is a pointer map translating basic block into smallest index
3154 it was inserted into the priority queue with. */
3155 latch_index = -1;
3157 /* Start walk in loop header with index set to infinite bound. */
3158 queue_index = bounds.length ();
3159 queues.safe_grow_cleared (queue_index + 1);
3160 queue.safe_push (loop->header);
3161 queues[queue_index] = queue;
3162 *pointer_map_insert (block_priority, loop->header) = (void *)queue_index;
3164 for (; queue_index >= 0; queue_index--)
3166 if (latch_index < queue_index)
3168 while (queues[queue_index].length ())
3170 basic_block bb;
3171 ptrdiff_t bound_index = queue_index;
3172 void **entry;
3173 edge e;
3174 edge_iterator ei;
3176 queue = queues[queue_index];
3177 bb = queue.pop ();
3179 /* OK, we later inserted the BB with lower priority, skip it. */
3180 if ((ptrdiff_t)*pointer_map_contains (block_priority, bb) > queue_index)
3181 continue;
3183 /* See if we can improve the bound. */
3184 entry = pointer_map_contains (bb_bounds, bb);
3185 if (entry && (ptrdiff_t)*entry < bound_index)
3186 bound_index = (ptrdiff_t)*entry;
3188 /* Insert succesors into the queue, watch for latch edge
3189 and record greatest index we saw. */
3190 FOR_EACH_EDGE (e, ei, bb->succs)
3192 bool insert = false;
3193 void **entry;
3195 if (loop_exit_edge_p (loop, e))
3196 continue;
3198 if (e == loop_latch_edge (loop)
3199 && latch_index < bound_index)
3200 latch_index = bound_index;
3201 else if (!(entry = pointer_map_contains (block_priority, e->dest)))
3203 insert = true;
3204 *pointer_map_insert (block_priority, e->dest) = (void *)bound_index;
3206 else if ((ptrdiff_t)*entry < bound_index)
3208 insert = true;
3209 *entry = (void *)bound_index;
3212 if (insert)
3213 queues[bound_index].safe_push (e->dest);
3217 queues[queue_index].release ();
3220 gcc_assert (latch_index >= 0);
3221 if ((unsigned)latch_index < bounds.length ())
3223 if (dump_file && (dump_flags & TDF_DETAILS))
3225 fprintf (dump_file, "Found better loop bound ");
3226 dump_double_int (dump_file, bounds[latch_index], true);
3227 fprintf (dump_file, "\n");
3229 record_niter_bound (loop, bounds[latch_index], false, true);
3232 queues.release ();
3233 bounds.release ();
3234 pointer_map_destroy (bb_bounds);
3235 pointer_map_destroy (block_priority);
3238 /* See if every path cross the loop goes through a statement that is known
3239 to not execute at the last iteration. In that case we can decrese iteration
3240 count by 1. */
3242 static void
3243 maybe_lower_iteration_bound (struct loop *loop)
3245 pointer_set_t *not_executed_last_iteration = NULL;
3246 struct nb_iter_bound *elt;
3247 bool found_exit = false;
3248 vec<basic_block> queue = vNULL;
3249 bitmap visited;
3251 /* Collect all statements with interesting (i.e. lower than
3252 nb_iterations_upper_bound) bound on them.
3254 TODO: Due to the way record_estimate choose estimates to store, the bounds
3255 will be always nb_iterations_upper_bound-1. We can change this to record
3256 also statements not dominating the loop latch and update the walk bellow
3257 to the shortest path algorthm. */
3258 for (elt = loop->bounds; elt; elt = elt->next)
3260 if (!elt->is_exit
3261 && elt->bound.ult (loop->nb_iterations_upper_bound))
3263 if (!not_executed_last_iteration)
3264 not_executed_last_iteration = pointer_set_create ();
3265 pointer_set_insert (not_executed_last_iteration, elt->stmt);
3268 if (!not_executed_last_iteration)
3269 return;
3271 /* Start DFS walk in the loop header and see if we can reach the
3272 loop latch or any of the exits (including statements with side
3273 effects that may terminate the loop otherwise) without visiting
3274 any of the statements known to have undefined effect on the last
3275 iteration. */
3276 queue.safe_push (loop->header);
3277 visited = BITMAP_ALLOC (NULL);
3278 bitmap_set_bit (visited, loop->header->index);
3279 found_exit = false;
3283 basic_block bb = queue.pop ();
3284 gimple_stmt_iterator gsi;
3285 bool stmt_found = false;
3287 /* Loop for possible exits and statements bounding the execution. */
3288 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3290 gimple stmt = gsi_stmt (gsi);
3291 if (pointer_set_contains (not_executed_last_iteration, stmt))
3293 stmt_found = true;
3294 break;
3296 if (gimple_has_side_effects (stmt))
3298 found_exit = true;
3299 break;
3302 if (found_exit)
3303 break;
3305 /* If no bounding statement is found, continue the walk. */
3306 if (!stmt_found)
3308 edge e;
3309 edge_iterator ei;
3311 FOR_EACH_EDGE (e, ei, bb->succs)
3313 if (loop_exit_edge_p (loop, e)
3314 || e == loop_latch_edge (loop))
3316 found_exit = true;
3317 break;
3319 if (bitmap_set_bit (visited, e->dest->index))
3320 queue.safe_push (e->dest);
3324 while (queue.length () && !found_exit);
3326 /* If every path through the loop reach bounding statement before exit,
3327 then we know the last iteration of the loop will have undefined effect
3328 and we can decrease number of iterations. */
3330 if (!found_exit)
3332 if (dump_file && (dump_flags & TDF_DETAILS))
3333 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
3334 "undefined statement must be executed at the last iteration.\n");
3335 record_niter_bound (loop, loop->nb_iterations_upper_bound - double_int_one,
3336 false, true);
3338 BITMAP_FREE (visited);
3339 queue.release ();
3340 pointer_set_destroy (not_executed_last_iteration);
3343 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3344 is true also use estimates derived from undefined behavior. */
3346 void
3347 estimate_numbers_of_iterations_loop (struct loop *loop)
3349 vec<edge> exits;
3350 tree niter, type;
3351 unsigned i;
3352 struct tree_niter_desc niter_desc;
3353 edge ex;
3354 double_int bound;
3355 edge likely_exit;
3357 /* Give up if we already have tried to compute an estimation. */
3358 if (loop->estimate_state != EST_NOT_COMPUTED)
3359 return;
3361 loop->estimate_state = EST_AVAILABLE;
3362 /* Force estimate compuation but leave any existing upper bound in place. */
3363 loop->any_estimate = false;
3365 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
3366 to be constant, we avoid undefined behavior implied bounds and instead
3367 diagnose those loops with -Waggressive-loop-optimizations. */
3368 number_of_latch_executions (loop);
3370 exits = get_loop_exit_edges (loop);
3371 likely_exit = single_likely_exit (loop);
3372 FOR_EACH_VEC_ELT (exits, i, ex)
3374 if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
3375 continue;
3377 niter = niter_desc.niter;
3378 type = TREE_TYPE (niter);
3379 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
3380 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
3381 build_int_cst (type, 0),
3382 niter);
3383 record_estimate (loop, niter, niter_desc.max,
3384 last_stmt (ex->src),
3385 true, ex == likely_exit, true);
3387 exits.release ();
3389 if (flag_aggressive_loop_optimizations)
3390 infer_loop_bounds_from_undefined (loop);
3392 discover_iteration_bound_by_body_walk (loop);
3394 maybe_lower_iteration_bound (loop);
3396 /* If we have a measured profile, use it to estimate the number of
3397 iterations. */
3398 if (loop->header->count != 0)
3400 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
3401 bound = gcov_type_to_double_int (nit);
3402 record_niter_bound (loop, bound, true, false);
3405 /* If we know the exact number of iterations of this loop, try to
3406 not break code with undefined behavior by not recording smaller
3407 maximum number of iterations. */
3408 if (loop->nb_iterations
3409 && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
3411 loop->any_upper_bound = true;
3412 loop->nb_iterations_upper_bound
3413 = tree_to_double_int (loop->nb_iterations);
3417 /* Sets NIT to the estimated number of executions of the latch of the
3418 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3419 large as the number of iterations. If we have no reliable estimate,
3420 the function returns false, otherwise returns true. */
3422 bool
3423 estimated_loop_iterations (struct loop *loop, double_int *nit)
3425 /* When SCEV information is available, try to update loop iterations
3426 estimate. Otherwise just return whatever we recorded earlier. */
3427 if (scev_initialized_p ())
3428 estimate_numbers_of_iterations_loop (loop);
3430 /* Even if the bound is not recorded, possibly we can derrive one from
3431 profile. */
3432 if (!loop->any_estimate)
3434 if (loop->header->count)
3436 *nit = gcov_type_to_double_int
3437 (expected_loop_iterations_unbounded (loop) + 1);
3438 return true;
3440 return false;
3443 *nit = loop->nb_iterations_estimate;
3444 return true;
3447 /* Sets NIT to an upper bound for the maximum number of executions of the
3448 latch of the LOOP. If we have no reliable estimate, the function returns
3449 false, otherwise returns true. */
3451 bool
3452 max_loop_iterations (struct loop *loop, double_int *nit)
3454 /* When SCEV information is available, try to update loop iterations
3455 estimate. Otherwise just return whatever we recorded earlier. */
3456 if (scev_initialized_p ())
3457 estimate_numbers_of_iterations_loop (loop);
3458 if (!loop->any_upper_bound)
3459 return false;
3461 *nit = loop->nb_iterations_upper_bound;
3462 return true;
3465 /* Similar to estimated_loop_iterations, but returns the estimate only
3466 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3467 on the number of iterations of LOOP could not be derived, returns -1. */
3469 HOST_WIDE_INT
3470 estimated_loop_iterations_int (struct loop *loop)
3472 double_int nit;
3473 HOST_WIDE_INT hwi_nit;
3475 if (!estimated_loop_iterations (loop, &nit))
3476 return -1;
3478 if (!nit.fits_shwi ())
3479 return -1;
3480 hwi_nit = nit.to_shwi ();
3482 return hwi_nit < 0 ? -1 : hwi_nit;
3485 /* Similar to max_loop_iterations, but returns the estimate only
3486 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3487 on the number of iterations of LOOP could not be derived, returns -1. */
3489 HOST_WIDE_INT
3490 max_loop_iterations_int (struct loop *loop)
3492 double_int nit;
3493 HOST_WIDE_INT hwi_nit;
3495 if (!max_loop_iterations (loop, &nit))
3496 return -1;
3498 if (!nit.fits_shwi ())
3499 return -1;
3500 hwi_nit = nit.to_shwi ();
3502 return hwi_nit < 0 ? -1 : hwi_nit;
3505 /* Returns an upper bound on the number of executions of statements
3506 in the LOOP. For statements before the loop exit, this exceeds
3507 the number of execution of the latch by one. */
3509 HOST_WIDE_INT
3510 max_stmt_executions_int (struct loop *loop)
3512 HOST_WIDE_INT nit = max_loop_iterations_int (loop);
3513 HOST_WIDE_INT snit;
3515 if (nit == -1)
3516 return -1;
3518 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3520 /* If the computation overflows, return -1. */
3521 return snit < 0 ? -1 : snit;
3524 /* Returns an estimate for the number of executions of statements
3525 in the LOOP. For statements before the loop exit, this exceeds
3526 the number of execution of the latch by one. */
3528 HOST_WIDE_INT
3529 estimated_stmt_executions_int (struct loop *loop)
3531 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
3532 HOST_WIDE_INT snit;
3534 if (nit == -1)
3535 return -1;
3537 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3539 /* If the computation overflows, return -1. */
3540 return snit < 0 ? -1 : snit;
3543 /* Sets NIT to the estimated maximum number of executions of the latch of the
3544 LOOP, plus one. If we have no reliable estimate, the function returns
3545 false, otherwise returns true. */
3547 bool
3548 max_stmt_executions (struct loop *loop, double_int *nit)
3550 double_int nit_minus_one;
3552 if (!max_loop_iterations (loop, nit))
3553 return false;
3555 nit_minus_one = *nit;
3557 *nit += double_int_one;
3559 return (*nit).ugt (nit_minus_one);
3562 /* Sets NIT to the estimated number of executions of the latch of the
3563 LOOP, plus one. If we have no reliable estimate, the function returns
3564 false, otherwise returns true. */
3566 bool
3567 estimated_stmt_executions (struct loop *loop, double_int *nit)
3569 double_int nit_minus_one;
3571 if (!estimated_loop_iterations (loop, nit))
3572 return false;
3574 nit_minus_one = *nit;
3576 *nit += double_int_one;
3578 return (*nit).ugt (nit_minus_one);
3581 /* Records estimates on numbers of iterations of loops. */
3583 void
3584 estimate_numbers_of_iterations (void)
3586 loop_iterator li;
3587 struct loop *loop;
3589 /* We don't want to issue signed overflow warnings while getting
3590 loop iteration estimates. */
3591 fold_defer_overflow_warnings ();
3593 FOR_EACH_LOOP (li, loop, 0)
3595 estimate_numbers_of_iterations_loop (loop);
3598 fold_undefer_and_ignore_overflow_warnings ();
3601 /* Returns true if statement S1 dominates statement S2. */
3603 bool
3604 stmt_dominates_stmt_p (gimple s1, gimple s2)
3606 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3608 if (!bb1
3609 || s1 == s2)
3610 return true;
3612 if (bb1 == bb2)
3614 gimple_stmt_iterator bsi;
3616 if (gimple_code (s2) == GIMPLE_PHI)
3617 return false;
3619 if (gimple_code (s1) == GIMPLE_PHI)
3620 return true;
3622 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3623 if (gsi_stmt (bsi) == s1)
3624 return true;
3626 return false;
3629 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3632 /* Returns true when we can prove that the number of executions of
3633 STMT in the loop is at most NITER, according to the bound on
3634 the number of executions of the statement NITER_BOUND->stmt recorded in
3635 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
3637 ??? This code can become quite a CPU hog - we can have many bounds,
3638 and large basic block forcing stmt_dominates_stmt_p to be queried
3639 many times on a large basic blocks, so the whole thing is O(n^2)
3640 for scev_probably_wraps_p invocation (that can be done n times).
3642 It would make more sense (and give better answers) to remember BB
3643 bounds computed by discover_iteration_bound_by_body_walk. */
3645 static bool
3646 n_of_executions_at_most (gimple stmt,
3647 struct nb_iter_bound *niter_bound,
3648 tree niter)
3650 double_int bound = niter_bound->bound;
3651 tree nit_type = TREE_TYPE (niter), e;
3652 enum tree_code cmp;
3654 gcc_assert (TYPE_UNSIGNED (nit_type));
3656 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3657 the number of iterations is small. */
3658 if (!double_int_fits_to_tree_p (nit_type, bound))
3659 return false;
3661 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3662 times. This means that:
3664 -- if NITER_BOUND->is_exit is true, then everything after
3665 it at most NITER_BOUND->bound times.
3667 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3668 is executed, then NITER_BOUND->stmt is executed as well in the same
3669 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
3671 If we can determine that NITER_BOUND->stmt is always executed
3672 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
3673 We conclude that if both statements belong to the same
3674 basic block and STMT is before NITER_BOUND->stmt and there are no
3675 statements with side effects in between. */
3677 if (niter_bound->is_exit)
3679 if (stmt == niter_bound->stmt
3680 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3681 return false;
3682 cmp = GE_EXPR;
3684 else
3686 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3688 gimple_stmt_iterator bsi;
3689 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3690 || gimple_code (stmt) == GIMPLE_PHI
3691 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
3692 return false;
3694 /* By stmt_dominates_stmt_p we already know that STMT appears
3695 before NITER_BOUND->STMT. Still need to test that the loop
3696 can not be terinated by a side effect in between. */
3697 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
3698 gsi_next (&bsi))
3699 if (gimple_has_side_effects (gsi_stmt (bsi)))
3700 return false;
3701 bound += double_int_one;
3702 if (bound.is_zero ()
3703 || !double_int_fits_to_tree_p (nit_type, bound))
3704 return false;
3706 cmp = GT_EXPR;
3709 e = fold_binary (cmp, boolean_type_node,
3710 niter, double_int_to_tree (nit_type, bound));
3711 return e && integer_nonzerop (e);
3714 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3716 bool
3717 nowrap_type_p (tree type)
3719 if (INTEGRAL_TYPE_P (type)
3720 && TYPE_OVERFLOW_UNDEFINED (type))
3721 return true;
3723 if (POINTER_TYPE_P (type))
3724 return true;
3726 return false;
3729 /* Return false only when the induction variable BASE + STEP * I is
3730 known to not overflow: i.e. when the number of iterations is small
3731 enough with respect to the step and initial condition in order to
3732 keep the evolution confined in TYPEs bounds. Return true when the
3733 iv is known to overflow or when the property is not computable.
3735 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3736 the rules for overflow of the given language apply (e.g., that signed
3737 arithmetics in C does not overflow). */
3739 bool
3740 scev_probably_wraps_p (tree base, tree step,
3741 gimple at_stmt, struct loop *loop,
3742 bool use_overflow_semantics)
3744 tree delta, step_abs;
3745 tree unsigned_type, valid_niter;
3746 tree type = TREE_TYPE (step);
3747 tree e;
3748 double_int niter;
3749 struct nb_iter_bound *bound;
3751 /* FIXME: We really need something like
3752 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3754 We used to test for the following situation that frequently appears
3755 during address arithmetics:
3757 D.1621_13 = (long unsigned intD.4) D.1620_12;
3758 D.1622_14 = D.1621_13 * 8;
3759 D.1623_15 = (doubleD.29 *) D.1622_14;
3761 And derived that the sequence corresponding to D_14
3762 can be proved to not wrap because it is used for computing a
3763 memory access; however, this is not really the case -- for example,
3764 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3765 2032, 2040, 0, 8, ..., but the code is still legal. */
3767 if (chrec_contains_undetermined (base)
3768 || chrec_contains_undetermined (step))
3769 return true;
3771 if (integer_zerop (step))
3772 return false;
3774 /* If we can use the fact that signed and pointer arithmetics does not
3775 wrap, we are done. */
3776 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
3777 return false;
3779 /* To be able to use estimates on number of iterations of the loop,
3780 we must have an upper bound on the absolute value of the step. */
3781 if (TREE_CODE (step) != INTEGER_CST)
3782 return true;
3784 /* Don't issue signed overflow warnings. */
3785 fold_defer_overflow_warnings ();
3787 /* Otherwise, compute the number of iterations before we reach the
3788 bound of the type, and verify that the loop is exited before this
3789 occurs. */
3790 unsigned_type = unsigned_type_for (type);
3791 base = fold_convert (unsigned_type, base);
3793 if (tree_int_cst_sign_bit (step))
3795 tree extreme = fold_convert (unsigned_type,
3796 lower_bound_in_type (type, type));
3797 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3798 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3799 fold_convert (unsigned_type, step));
3801 else
3803 tree extreme = fold_convert (unsigned_type,
3804 upper_bound_in_type (type, type));
3805 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3806 step_abs = fold_convert (unsigned_type, step);
3809 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3811 estimate_numbers_of_iterations_loop (loop);
3813 if (max_loop_iterations (loop, &niter)
3814 && double_int_fits_to_tree_p (TREE_TYPE (valid_niter), niter)
3815 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
3816 double_int_to_tree (TREE_TYPE (valid_niter),
3817 niter))) != NULL
3818 && integer_nonzerop (e))
3820 fold_undefer_and_ignore_overflow_warnings ();
3821 return false;
3823 if (at_stmt)
3824 for (bound = loop->bounds; bound; bound = bound->next)
3826 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3828 fold_undefer_and_ignore_overflow_warnings ();
3829 return false;
3833 fold_undefer_and_ignore_overflow_warnings ();
3835 /* At this point we still don't have a proof that the iv does not
3836 overflow: give up. */
3837 return true;
3840 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3842 void
3843 free_numbers_of_iterations_estimates_loop (struct loop *loop)
3845 struct nb_iter_bound *bound, *next;
3847 loop->nb_iterations = NULL;
3848 loop->estimate_state = EST_NOT_COMPUTED;
3849 for (bound = loop->bounds; bound; bound = next)
3851 next = bound->next;
3852 ggc_free (bound);
3855 loop->bounds = NULL;
3858 /* Frees the information on upper bounds on numbers of iterations of loops. */
3860 void
3861 free_numbers_of_iterations_estimates (void)
3863 loop_iterator li;
3864 struct loop *loop;
3866 FOR_EACH_LOOP (li, loop, 0)
3868 free_numbers_of_iterations_estimates_loop (loop);
3872 /* Substitute value VAL for ssa name NAME inside expressions held
3873 at LOOP. */
3875 void
3876 substitute_in_loop_info (struct loop *loop, tree name, tree val)
3878 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);