Mark ChangeLog
[official-gcc.git] / gcc / lra-spills.c
blob163ca11509d6835674818fe81ada80e93ead4191
1 /* Change pseudos by memory.
2 Copyright (C) 2010-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for a pass to change spilled pseudos into
23 memory.
25 The pass creates necessary stack slots and assigns spilled pseudos
26 to the stack slots in following way:
28 for all spilled pseudos P most frequently used first do
29 for all stack slots S do
30 if P doesn't conflict with pseudos assigned to S then
31 assign S to P and goto to the next pseudo process
32 end
33 end
34 create new stack slot S and assign P to S
35 end
37 The actual algorithm is bit more complicated because of different
38 pseudo sizes.
40 After that the code changes spilled pseudos (except ones created
41 from scratches) by corresponding stack slot memory in RTL.
43 If at least one stack slot was created, we need to run more passes
44 because we have new addresses which should be checked and because
45 the old address displacements might change and address constraints
46 (or insn memory constraints) might not be satisfied any more.
48 For some targets, the pass can spill some pseudos into hard
49 registers of different class (usually into vector registers)
50 instead of spilling them into memory if it is possible and
51 profitable. Spilling GENERAL_REGS pseudo into SSE registers for
52 Intel Corei7 is an example of such optimization. And this is
53 actually recommended by Intel optimization guide.
55 The file also contains code for final change of pseudos on hard
56 regs correspondingly assigned to them. */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "tm.h"
62 #include "rtl.h"
63 #include "tm_p.h"
64 #include "insn-config.h"
65 #include "recog.h"
66 #include "output.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "flags.h"
70 #include "function.h"
71 #include "expr.h"
72 #include "basic-block.h"
73 #include "except.h"
74 #include "timevar.h"
75 #include "target.h"
76 #include "lra-int.h"
77 #include "ira.h"
78 #include "df.h"
81 /* Max regno at the start of the pass. */
82 static int regs_num;
84 /* Map spilled regno -> hard regno used instead of memory for
85 spilling. */
86 static rtx *spill_hard_reg;
88 /* The structure describes stack slot of a spilled pseudo. */
89 struct pseudo_slot
91 /* Number (0, 1, ...) of the stack slot to which given pseudo
92 belongs. */
93 int slot_num;
94 /* First or next slot with the same slot number. */
95 struct pseudo_slot *next, *first;
96 /* Memory representing the spilled pseudo. */
97 rtx mem;
100 /* The stack slots for each spilled pseudo. Indexed by regnos. */
101 static struct pseudo_slot *pseudo_slots;
103 /* The structure describes a register or a stack slot which can be
104 used for several spilled pseudos. */
105 struct slot
107 /* First pseudo with given stack slot. */
108 int regno;
109 /* Hard reg into which the slot pseudos are spilled. The value is
110 negative for pseudos spilled into memory. */
111 int hard_regno;
112 /* Memory representing the all stack slot. It can be different from
113 memory representing a pseudo belonging to give stack slot because
114 pseudo can be placed in a part of the corresponding stack slot.
115 The value is NULL for pseudos spilled into a hard reg. */
116 rtx mem;
117 /* Combined live ranges of all pseudos belonging to given slot. It
118 is used to figure out that a new spilled pseudo can use given
119 stack slot. */
120 lra_live_range_t live_ranges;
123 /* Array containing info about the stack slots. The array element is
124 indexed by the stack slot number in the range [0..slots_num). */
125 static struct slot *slots;
126 /* The number of the stack slots currently existing. */
127 static int slots_num;
129 /* Set up memory of the spilled pseudo I. The function can allocate
130 the corresponding stack slot if it is not done yet. */
131 static void
132 assign_mem_slot (int i)
134 rtx x = NULL_RTX;
135 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
136 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
137 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
138 unsigned int max_ref_width = GET_MODE_SIZE (lra_reg_info[i].biggest_mode);
139 unsigned int total_size = MAX (inherent_size, max_ref_width);
140 unsigned int min_align = max_ref_width * BITS_PER_UNIT;
141 int adjust = 0;
143 lra_assert (regno_reg_rtx[i] != NULL_RTX && REG_P (regno_reg_rtx[i])
144 && lra_reg_info[i].nrefs != 0 && reg_renumber[i] < 0);
146 x = slots[pseudo_slots[i].slot_num].mem;
148 /* We can use a slot already allocated because it is guaranteed the
149 slot provides both enough inherent space and enough total
150 space. */
151 if (x)
153 /* Each pseudo has an inherent size which comes from its own mode,
154 and a total size which provides room for paradoxical subregs
155 which refer to the pseudo reg in wider modes. We allocate a new
156 slot, making sure that it has enough inherent space and total
157 space. */
158 else
160 rtx stack_slot;
162 /* No known place to spill from => no slot to reuse. */
163 x = assign_stack_local (mode, total_size,
164 min_align > inherent_align
165 || total_size > inherent_size ? -1 : 0);
166 x = lra_eliminate_regs_1 (x, GET_MODE (x), false, false, true);
167 stack_slot = x;
168 /* Cancel the big-endian correction done in assign_stack_local.
169 Get the address of the beginning of the slot. This is so we
170 can do a big-endian correction unconditionally below. */
171 if (BYTES_BIG_ENDIAN)
173 adjust = inherent_size - total_size;
174 if (adjust)
175 stack_slot
176 = adjust_address_nv (x,
177 mode_for_size (total_size * BITS_PER_UNIT,
178 MODE_INT, 1),
179 adjust);
181 slots[pseudo_slots[i].slot_num].mem = stack_slot;
184 /* On a big endian machine, the "address" of the slot is the address
185 of the low part that fits its inherent mode. */
186 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
187 adjust += (total_size - inherent_size);
189 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
191 /* Set all of the memory attributes as appropriate for a spill. */
192 set_mem_attrs_for_spill (x);
193 pseudo_slots[i].mem = x;
196 /* Sort pseudos according their usage frequencies. */
197 static int
198 regno_freq_compare (const void *v1p, const void *v2p)
200 const int regno1 = *(const int *) v1p;
201 const int regno2 = *(const int *) v2p;
202 int diff;
204 if ((diff = lra_reg_info[regno2].freq - lra_reg_info[regno1].freq) != 0)
205 return diff;
206 return regno1 - regno2;
209 /* Redefine STACK_GROWS_DOWNWARD in terms of 0 or 1. */
210 #ifdef STACK_GROWS_DOWNWARD
211 # undef STACK_GROWS_DOWNWARD
212 # define STACK_GROWS_DOWNWARD 1
213 #else
214 # define STACK_GROWS_DOWNWARD 0
215 #endif
217 /* Sort pseudos according to their slots, putting the slots in the order
218 that they should be allocated. Slots with lower numbers have the highest
219 priority and should get the smallest displacement from the stack or
220 frame pointer (whichever is being used).
222 The first allocated slot is always closest to the frame pointer,
223 so prefer lower slot numbers when frame_pointer_needed. If the stack
224 and frame grow in the same direction, then the first allocated slot is
225 always closest to the initial stack pointer and furthest away from the
226 final stack pointer, so allocate higher numbers first when using the
227 stack pointer in that case. The reverse is true if the stack and
228 frame grow in opposite directions. */
229 static int
230 pseudo_reg_slot_compare (const void *v1p, const void *v2p)
232 const int regno1 = *(const int *) v1p;
233 const int regno2 = *(const int *) v2p;
234 int diff, slot_num1, slot_num2;
235 int total_size1, total_size2;
237 slot_num1 = pseudo_slots[regno1].slot_num;
238 slot_num2 = pseudo_slots[regno2].slot_num;
239 if ((diff = slot_num1 - slot_num2) != 0)
240 return (frame_pointer_needed
241 || !FRAME_GROWS_DOWNWARD == STACK_GROWS_DOWNWARD ? diff : -diff);
242 total_size1 = GET_MODE_SIZE (lra_reg_info[regno1].biggest_mode);
243 total_size2 = GET_MODE_SIZE (lra_reg_info[regno2].biggest_mode);
244 if ((diff = total_size2 - total_size1) != 0)
245 return diff;
246 return regno1 - regno2;
249 /* Assign spill hard registers to N pseudos in PSEUDO_REGNOS which is
250 sorted in order of highest frequency first. Put the pseudos which
251 did not get a spill hard register at the beginning of array
252 PSEUDO_REGNOS. Return the number of such pseudos. */
253 static int
254 assign_spill_hard_regs (int *pseudo_regnos, int n)
256 int i, k, p, regno, res, spill_class_size, hard_regno, nr;
257 enum reg_class rclass, spill_class;
258 enum machine_mode mode;
259 lra_live_range_t r;
260 rtx insn, set;
261 basic_block bb;
262 HARD_REG_SET conflict_hard_regs;
263 bitmap_head ok_insn_bitmap;
264 bitmap setjump_crosses = regstat_get_setjmp_crosses ();
265 /* Hard registers which can not be used for any purpose at given
266 program point because they are unallocatable or already allocated
267 for other pseudos. */
268 HARD_REG_SET *reserved_hard_regs;
270 if (! lra_reg_spill_p)
271 return n;
272 /* Set up reserved hard regs for every program point. */
273 reserved_hard_regs = XNEWVEC (HARD_REG_SET, lra_live_max_point);
274 for (p = 0; p < lra_live_max_point; p++)
275 COPY_HARD_REG_SET (reserved_hard_regs[p], lra_no_alloc_regs);
276 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
277 if (lra_reg_info[i].nrefs != 0
278 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
279 for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
280 for (p = r->start; p <= r->finish; p++)
281 add_to_hard_reg_set (&reserved_hard_regs[p],
282 lra_reg_info[i].biggest_mode, hard_regno);
283 bitmap_initialize (&ok_insn_bitmap, &reg_obstack);
284 FOR_EACH_BB (bb)
285 FOR_BB_INSNS (bb, insn)
286 if (DEBUG_INSN_P (insn)
287 || ((set = single_set (insn)) != NULL_RTX
288 && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))))
289 bitmap_set_bit (&ok_insn_bitmap, INSN_UID (insn));
290 for (res = i = 0; i < n; i++)
292 regno = pseudo_regnos[i];
293 rclass = lra_get_allocno_class (regno);
294 if (bitmap_bit_p (setjump_crosses, regno)
295 || (spill_class
296 = ((enum reg_class)
297 targetm.spill_class ((reg_class_t) rclass,
298 PSEUDO_REGNO_MODE (regno)))) == NO_REGS
299 || bitmap_intersect_compl_p (&lra_reg_info[regno].insn_bitmap,
300 &ok_insn_bitmap))
302 pseudo_regnos[res++] = regno;
303 continue;
305 lra_assert (spill_class != NO_REGS);
306 COPY_HARD_REG_SET (conflict_hard_regs,
307 lra_reg_info[regno].conflict_hard_regs);
308 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
309 for (p = r->start; p <= r->finish; p++)
310 IOR_HARD_REG_SET (conflict_hard_regs, reserved_hard_regs[p]);
311 spill_class_size = ira_class_hard_regs_num[spill_class];
312 mode = lra_reg_info[regno].biggest_mode;
313 for (k = 0; k < spill_class_size; k++)
315 hard_regno = ira_class_hard_regs[spill_class][k];
316 if (! overlaps_hard_reg_set_p (conflict_hard_regs, mode, hard_regno))
317 break;
319 if (k >= spill_class_size)
321 /* There is no available regs -- assign memory later. */
322 pseudo_regnos[res++] = regno;
323 continue;
325 if (lra_dump_file != NULL)
326 fprintf (lra_dump_file, " Spill r%d into hr%d\n", regno, hard_regno);
327 /* Update reserved_hard_regs. */
328 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
329 for (p = r->start; p <= r->finish; p++)
330 add_to_hard_reg_set (&reserved_hard_regs[p],
331 lra_reg_info[regno].biggest_mode, hard_regno);
332 spill_hard_reg[regno]
333 = gen_raw_REG (PSEUDO_REGNO_MODE (regno), hard_regno);
334 for (nr = 0;
335 nr < hard_regno_nregs[hard_regno][lra_reg_info[regno].biggest_mode];
336 nr++)
337 /* Just loop. */;
338 df_set_regs_ever_live (hard_regno + nr, true);
340 bitmap_clear (&ok_insn_bitmap);
341 free (reserved_hard_regs);
342 return res;
345 /* Add pseudo REGNO to slot SLOT_NUM. */
346 static void
347 add_pseudo_to_slot (int regno, int slot_num)
349 struct pseudo_slot *first;
351 if (slots[slot_num].regno < 0)
353 /* It is the first pseudo in the slot. */
354 slots[slot_num].regno = regno;
355 pseudo_slots[regno].first = &pseudo_slots[regno];
356 pseudo_slots[regno].next = NULL;
358 else
360 first = pseudo_slots[regno].first = &pseudo_slots[slots[slot_num].regno];
361 pseudo_slots[regno].next = first->next;
362 first->next = &pseudo_slots[regno];
364 pseudo_slots[regno].mem = NULL_RTX;
365 pseudo_slots[regno].slot_num = slot_num;
366 slots[slot_num].live_ranges
367 = lra_merge_live_ranges (slots[slot_num].live_ranges,
368 lra_copy_live_range_list
369 (lra_reg_info[regno].live_ranges));
372 /* Assign stack slot numbers to pseudos in array PSEUDO_REGNOS of
373 length N. Sort pseudos in PSEUDO_REGNOS for subsequent assigning
374 memory stack slots. */
375 static void
376 assign_stack_slot_num_and_sort_pseudos (int *pseudo_regnos, int n)
378 int i, j, regno;
380 slots_num = 0;
381 /* Assign stack slot numbers to spilled pseudos, use smaller numbers
382 for most frequently used pseudos. */
383 for (i = 0; i < n; i++)
385 regno = pseudo_regnos[i];
386 if (! flag_ira_share_spill_slots)
387 j = slots_num;
388 else
390 for (j = 0; j < slots_num; j++)
391 if (slots[j].hard_regno < 0
392 && ! (lra_intersected_live_ranges_p
393 (slots[j].live_ranges,
394 lra_reg_info[regno].live_ranges)))
395 break;
397 if (j >= slots_num)
399 /* New slot. */
400 slots[j].live_ranges = NULL;
401 slots[j].regno = slots[j].hard_regno = -1;
402 slots[j].mem = NULL_RTX;
403 slots_num++;
405 add_pseudo_to_slot (regno, j);
407 /* Sort regnos according to their slot numbers. */
408 qsort (pseudo_regnos, n, sizeof (int), pseudo_reg_slot_compare);
411 /* Recursively process LOC in INSN and change spilled pseudos to the
412 corresponding memory or spilled hard reg. Ignore spilled pseudos
413 created from the scratches. */
414 static void
415 remove_pseudos (rtx *loc, rtx insn)
417 int i;
418 rtx hard_reg;
419 const char *fmt;
420 enum rtx_code code;
422 if (*loc == NULL_RTX)
423 return;
424 code = GET_CODE (*loc);
425 if (code == REG && (i = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
426 && lra_get_regno_hard_regno (i) < 0
427 /* We do not want to assign memory for former scratches because
428 it might result in an address reload for some targets. In
429 any case we transform such pseudos not getting hard registers
430 into scratches back. */
431 && ! lra_former_scratch_p (i))
433 hard_reg = spill_hard_reg[i];
434 *loc = copy_rtx (hard_reg != NULL_RTX ? hard_reg : pseudo_slots[i].mem);
435 return;
438 fmt = GET_RTX_FORMAT (code);
439 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
441 if (fmt[i] == 'e')
442 remove_pseudos (&XEXP (*loc, i), insn);
443 else if (fmt[i] == 'E')
445 int j;
447 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
448 remove_pseudos (&XVECEXP (*loc, i, j), insn);
453 /* Convert spilled pseudos into their stack slots or spill hard regs,
454 put insns to process on the constraint stack (that is all insns in
455 which pseudos were changed to memory or spill hard regs). */
456 static void
457 spill_pseudos (void)
459 basic_block bb;
460 rtx insn;
461 int i;
462 bitmap_head spilled_pseudos, changed_insns;
464 bitmap_initialize (&spilled_pseudos, &reg_obstack);
465 bitmap_initialize (&changed_insns, &reg_obstack);
466 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
468 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
469 && ! lra_former_scratch_p (i))
471 bitmap_set_bit (&spilled_pseudos, i);
472 bitmap_ior_into (&changed_insns, &lra_reg_info[i].insn_bitmap);
475 FOR_EACH_BB (bb)
477 FOR_BB_INSNS (bb, insn)
478 if (bitmap_bit_p (&changed_insns, INSN_UID (insn)))
480 remove_pseudos (&PATTERN (insn), insn);
481 if (CALL_P (insn))
482 remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn);
483 if (lra_dump_file != NULL)
484 fprintf (lra_dump_file,
485 "Changing spilled pseudos to memory in insn #%u\n",
486 INSN_UID (insn));
487 lra_push_insn (insn);
488 if (lra_reg_spill_p || targetm.different_addr_displacement_p ())
489 lra_set_used_insn_alternative (insn, -1);
491 else if (CALL_P (insn))
492 /* Presence of any pseudo in CALL_INSN_FUNCTION_USAGE does
493 not affect value of insn_bitmap of the corresponding
494 lra_reg_info. That is because we don't need to reload
495 pseudos in CALL_INSN_FUNCTION_USAGEs. So if we process
496 only insns in the insn_bitmap of given pseudo here, we
497 can miss the pseudo in some
498 CALL_INSN_FUNCTION_USAGEs. */
499 remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn);
500 bitmap_and_compl_into (df_get_live_in (bb), &spilled_pseudos);
501 bitmap_and_compl_into (df_get_live_out (bb), &spilled_pseudos);
503 bitmap_clear (&spilled_pseudos);
504 bitmap_clear (&changed_insns);
507 /* Return true if we need to change some pseudos into memory. */
508 bool
509 lra_need_for_spills_p (void)
511 int i; max_regno = max_reg_num ();
513 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
514 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
515 && ! lra_former_scratch_p (i))
516 return true;
517 return false;
520 /* Change spilled pseudos into memory or spill hard regs. Put changed
521 insns on the constraint stack (these insns will be considered on
522 the next constraint pass). The changed insns are all insns in
523 which pseudos were changed. */
524 void
525 lra_spill (void)
527 int i, n, curr_regno;
528 int *pseudo_regnos;
530 regs_num = max_reg_num ();
531 spill_hard_reg = XNEWVEC (rtx, regs_num);
532 pseudo_regnos = XNEWVEC (int, regs_num);
533 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
534 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
535 /* We do not want to assign memory for former scratches. */
536 && ! lra_former_scratch_p (i))
538 spill_hard_reg[i] = NULL_RTX;
539 pseudo_regnos[n++] = i;
541 lra_assert (n > 0);
542 pseudo_slots = XNEWVEC (struct pseudo_slot, regs_num);
543 slots = XNEWVEC (struct slot, regs_num);
544 /* Sort regnos according their usage frequencies. */
545 qsort (pseudo_regnos, n, sizeof (int), regno_freq_compare);
546 n = assign_spill_hard_regs (pseudo_regnos, n);
547 assign_stack_slot_num_and_sort_pseudos (pseudo_regnos, n);
548 for (i = 0; i < n; i++)
549 if (pseudo_slots[pseudo_regnos[i]].mem == NULL_RTX)
550 assign_mem_slot (pseudo_regnos[i]);
551 if (lra_dump_file != NULL)
553 for (i = 0; i < slots_num; i++)
555 fprintf (lra_dump_file, " Slot %d regnos (width = %d):", i,
556 GET_MODE_SIZE (GET_MODE (slots[i].mem)));
557 for (curr_regno = slots[i].regno;;
558 curr_regno = pseudo_slots[curr_regno].next - pseudo_slots)
560 fprintf (lra_dump_file, " %d", curr_regno);
561 if (pseudo_slots[curr_regno].next == NULL)
562 break;
564 fprintf (lra_dump_file, "\n");
567 spill_pseudos ();
568 free (slots);
569 free (pseudo_slots);
570 free (pseudo_regnos);
571 free (spill_hard_reg);
574 /* Apply alter_subreg for subregs of regs in *LOC. Use FINAL_P for
575 alter_subreg calls. Return true if any subreg of reg is
576 processed. */
577 static bool
578 alter_subregs (rtx *loc, bool final_p)
580 int i;
581 rtx x = *loc;
582 bool res;
583 const char *fmt;
584 enum rtx_code code;
586 if (x == NULL_RTX)
587 return false;
588 code = GET_CODE (x);
589 if (code == SUBREG && REG_P (SUBREG_REG (x)))
591 lra_assert (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER);
592 alter_subreg (loc, final_p);
593 return true;
595 fmt = GET_RTX_FORMAT (code);
596 res = false;
597 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
599 if (fmt[i] == 'e')
601 if (alter_subregs (&XEXP (x, i), final_p))
602 res = true;
604 else if (fmt[i] == 'E')
606 int j;
608 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
609 if (alter_subregs (&XVECEXP (x, i, j), final_p))
610 res = true;
613 return res;
616 /* Final change of pseudos got hard registers into the corresponding
617 hard registers and removing temporary clobbers. */
618 void
619 lra_final_code_change (void)
621 int i, hard_regno;
622 basic_block bb;
623 rtx insn, curr;
624 int max_regno = max_reg_num ();
626 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
627 if (lra_reg_info[i].nrefs != 0
628 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
629 SET_REGNO (regno_reg_rtx[i], hard_regno);
630 FOR_EACH_BB (bb)
631 FOR_BB_INSNS_SAFE (bb, insn, curr)
632 if (INSN_P (insn))
634 rtx pat = PATTERN (insn);
636 if (GET_CODE (pat) == CLOBBER && LRA_TEMP_CLOBBER_P (pat))
638 /* Remove clobbers temporarily created in LRA. We don't
639 need them anymore and don't want to waste compiler
640 time processing them in a few subsequent passes. */
641 lra_invalidate_insn_data (insn);
642 remove_insn (insn);
643 continue;
646 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
647 bool insn_change_p = false;
649 for (i = id->insn_static_data->n_operands - 1; i >= 0; i--)
650 if (alter_subregs (id->operand_loc[i], ! DEBUG_INSN_P (insn)))
652 lra_update_dup (id, i);
653 insn_change_p = true;
655 if (insn_change_p)
656 lra_update_operator_dups (id);