Mark ChangeLog
[official-gcc.git] / gcc / gcse.c
blobe0bd200c23035e7e68574343c0882c4469e9234b
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
142 #include "hard-reg-set.h"
143 #include "rtl.h"
144 #include "tree.h"
145 #include "tm_p.h"
146 #include "regs.h"
147 #include "ira.h"
148 #include "flags.h"
149 #include "insn-config.h"
150 #include "recog.h"
151 #include "basic-block.h"
152 #include "function.h"
153 #include "expr.h"
154 #include "except.h"
155 #include "ggc.h"
156 #include "params.h"
157 #include "cselib.h"
158 #include "intl.h"
159 #include "obstack.h"
160 #include "tree-pass.h"
161 #include "hashtab.h"
162 #include "df.h"
163 #include "dbgcnt.h"
164 #include "target.h"
165 #include "gcse.h"
167 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
168 are a superset of those done by classic GCSE.
170 Two passes of copy/constant propagation are done around PRE or hoisting
171 because the first one enables more GCSE and the second one helps to clean
172 up the copies that PRE and HOIST create. This is needed more for PRE than
173 for HOIST because code hoisting will try to use an existing register
174 containing the common subexpression rather than create a new one. This is
175 harder to do for PRE because of the code motion (which HOIST doesn't do).
177 Expressions we are interested in GCSE-ing are of the form
178 (set (pseudo-reg) (expression)).
179 Function want_to_gcse_p says what these are.
181 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
182 This allows PRE to hoist expressions that are expressed in multiple insns,
183 such as complex address calculations (e.g. for PIC code, or loads with a
184 high part and a low part).
186 PRE handles moving invariant expressions out of loops (by treating them as
187 partially redundant).
189 **********************
191 We used to support multiple passes but there are diminishing returns in
192 doing so. The first pass usually makes 90% of the changes that are doable.
193 A second pass can make a few more changes made possible by the first pass.
194 Experiments show any further passes don't make enough changes to justify
195 the expense.
197 A study of spec92 using an unlimited number of passes:
198 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
199 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
200 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
202 It was found doing copy propagation between each pass enables further
203 substitutions.
205 This study was done before expressions in REG_EQUAL notes were added as
206 candidate expressions for optimization, and before the GIMPLE optimizers
207 were added. Probably, multiple passes is even less efficient now than
208 at the time when the study was conducted.
210 PRE is quite expensive in complicated functions because the DFA can take
211 a while to converge. Hence we only perform one pass.
213 **********************
215 The steps for PRE are:
217 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
219 2) Perform the data flow analysis for PRE.
221 3) Delete the redundant instructions
223 4) Insert the required copies [if any] that make the partially
224 redundant instructions fully redundant.
226 5) For other reaching expressions, insert an instruction to copy the value
227 to a newly created pseudo that will reach the redundant instruction.
229 The deletion is done first so that when we do insertions we
230 know which pseudo reg to use.
232 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
233 argue it is not. The number of iterations for the algorithm to converge
234 is typically 2-4 so I don't view it as that expensive (relatively speaking).
236 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
237 we create. To make an expression reach the place where it's redundant,
238 the result of the expression is copied to a new register, and the redundant
239 expression is deleted by replacing it with this new register. Classic GCSE
240 doesn't have this problem as much as it computes the reaching defs of
241 each register in each block and thus can try to use an existing
242 register. */
244 /* GCSE global vars. */
246 struct target_gcse default_target_gcse;
247 #if SWITCHABLE_TARGET
248 struct target_gcse *this_target_gcse = &default_target_gcse;
249 #endif
251 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
252 int flag_rerun_cse_after_global_opts;
254 /* An obstack for our working variables. */
255 static struct obstack gcse_obstack;
257 /* Hash table of expressions. */
259 struct expr
261 /* The expression. */
262 rtx expr;
263 /* Index in the available expression bitmaps. */
264 int bitmap_index;
265 /* Next entry with the same hash. */
266 struct expr *next_same_hash;
267 /* List of anticipatable occurrences in basic blocks in the function.
268 An "anticipatable occurrence" is one that is the first occurrence in the
269 basic block, the operands are not modified in the basic block prior
270 to the occurrence and the output is not used between the start of
271 the block and the occurrence. */
272 struct occr *antic_occr;
273 /* List of available occurrence in basic blocks in the function.
274 An "available occurrence" is one that is the last occurrence in the
275 basic block and the operands are not modified by following statements in
276 the basic block [including this insn]. */
277 struct occr *avail_occr;
278 /* Non-null if the computation is PRE redundant.
279 The value is the newly created pseudo-reg to record a copy of the
280 expression in all the places that reach the redundant copy. */
281 rtx reaching_reg;
282 /* Maximum distance in instructions this expression can travel.
283 We avoid moving simple expressions for more than a few instructions
284 to keep register pressure under control.
285 A value of "0" removes restrictions on how far the expression can
286 travel. */
287 int max_distance;
290 /* Occurrence of an expression.
291 There is one per basic block. If a pattern appears more than once the
292 last appearance is used [or first for anticipatable expressions]. */
294 struct occr
296 /* Next occurrence of this expression. */
297 struct occr *next;
298 /* The insn that computes the expression. */
299 rtx insn;
300 /* Nonzero if this [anticipatable] occurrence has been deleted. */
301 char deleted_p;
302 /* Nonzero if this [available] occurrence has been copied to
303 reaching_reg. */
304 /* ??? This is mutually exclusive with deleted_p, so they could share
305 the same byte. */
306 char copied_p;
309 typedef struct occr *occr_t;
311 /* Expression hash tables.
312 Each hash table is an array of buckets.
313 ??? It is known that if it were an array of entries, structure elements
314 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
315 not clear whether in the final analysis a sufficient amount of memory would
316 be saved as the size of the available expression bitmaps would be larger
317 [one could build a mapping table without holes afterwards though].
318 Someday I'll perform the computation and figure it out. */
320 struct hash_table_d
322 /* The table itself.
323 This is an array of `expr_hash_table_size' elements. */
324 struct expr **table;
326 /* Size of the hash table, in elements. */
327 unsigned int size;
329 /* Number of hash table elements. */
330 unsigned int n_elems;
333 /* Expression hash table. */
334 static struct hash_table_d expr_hash_table;
336 /* This is a list of expressions which are MEMs and will be used by load
337 or store motion.
338 Load motion tracks MEMs which aren't killed by anything except itself,
339 i.e. loads and stores to a single location.
340 We can then allow movement of these MEM refs with a little special
341 allowance. (all stores copy the same value to the reaching reg used
342 for the loads). This means all values used to store into memory must have
343 no side effects so we can re-issue the setter value. */
345 struct ls_expr
347 struct expr * expr; /* Gcse expression reference for LM. */
348 rtx pattern; /* Pattern of this mem. */
349 rtx pattern_regs; /* List of registers mentioned by the mem. */
350 rtx loads; /* INSN list of loads seen. */
351 rtx stores; /* INSN list of stores seen. */
352 struct ls_expr * next; /* Next in the list. */
353 int invalid; /* Invalid for some reason. */
354 int index; /* If it maps to a bitmap index. */
355 unsigned int hash_index; /* Index when in a hash table. */
356 rtx reaching_reg; /* Register to use when re-writing. */
359 /* Head of the list of load/store memory refs. */
360 static struct ls_expr * pre_ldst_mems = NULL;
362 /* Hashtable for the load/store memory refs. */
363 static htab_t pre_ldst_table = NULL;
365 /* Bitmap containing one bit for each register in the program.
366 Used when performing GCSE to track which registers have been set since
367 the start of the basic block. */
368 static regset reg_set_bitmap;
370 /* Array, indexed by basic block number for a list of insns which modify
371 memory within that block. */
372 static vec<rtx> *modify_mem_list;
373 static bitmap modify_mem_list_set;
375 typedef struct modify_pair_s
377 rtx dest; /* A MEM. */
378 rtx dest_addr; /* The canonical address of `dest'. */
379 } modify_pair;
382 /* This array parallels modify_mem_list, except that it stores MEMs
383 being set and their canonicalized memory addresses. */
384 static vec<modify_pair> *canon_modify_mem_list;
386 /* Bitmap indexed by block numbers to record which blocks contain
387 function calls. */
388 static bitmap blocks_with_calls;
390 /* Various variables for statistics gathering. */
392 /* Memory used in a pass.
393 This isn't intended to be absolutely precise. Its intent is only
394 to keep an eye on memory usage. */
395 static int bytes_used;
397 /* GCSE substitutions made. */
398 static int gcse_subst_count;
399 /* Number of copy instructions created. */
400 static int gcse_create_count;
402 /* Doing code hoisting. */
403 static bool doing_code_hoisting_p = false;
405 /* For available exprs */
406 static sbitmap *ae_kill;
408 /* Data stored for each basic block. */
409 struct bb_data
411 /* Maximal register pressure inside basic block for given register class
412 (defined only for the pressure classes). */
413 int max_reg_pressure[N_REG_CLASSES];
414 /* Recorded register pressure of basic block before trying to hoist
415 an expression. Will be used to restore the register pressure
416 if the expression should not be hoisted. */
417 int old_pressure;
418 /* Recorded register live_in info of basic block during code hoisting
419 process. BACKUP is used to record live_in info before trying to
420 hoist an expression, and will be used to restore LIVE_IN if the
421 expression should not be hoisted. */
422 bitmap live_in, backup;
425 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
427 static basic_block curr_bb;
429 /* Current register pressure for each pressure class. */
430 static int curr_reg_pressure[N_REG_CLASSES];
433 static void compute_can_copy (void);
434 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
435 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
436 static void *gcse_alloc (unsigned long);
437 static void alloc_gcse_mem (void);
438 static void free_gcse_mem (void);
439 static void hash_scan_insn (rtx, struct hash_table_d *);
440 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
441 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
442 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
443 static int want_to_gcse_p (rtx, int *);
444 static int oprs_unchanged_p (const_rtx, const_rtx, int);
445 static int oprs_anticipatable_p (const_rtx, const_rtx);
446 static int oprs_available_p (const_rtx, const_rtx);
447 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
448 struct hash_table_d *);
449 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
450 static int expr_equiv_p (const_rtx, const_rtx);
451 static void record_last_reg_set_info (rtx, int);
452 static void record_last_mem_set_info (rtx);
453 static void record_last_set_info (rtx, const_rtx, void *);
454 static void compute_hash_table (struct hash_table_d *);
455 static void alloc_hash_table (struct hash_table_d *);
456 static void free_hash_table (struct hash_table_d *);
457 static void compute_hash_table_work (struct hash_table_d *);
458 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
459 static void compute_transp (const_rtx, int, sbitmap *);
460 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
461 struct hash_table_d *);
462 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
463 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
464 static void canon_list_insert (rtx, const_rtx, void *);
465 static void alloc_pre_mem (int, int);
466 static void free_pre_mem (void);
467 static struct edge_list *compute_pre_data (void);
468 static int pre_expr_reaches_here_p (basic_block, struct expr *,
469 basic_block);
470 static void insert_insn_end_basic_block (struct expr *, basic_block);
471 static void pre_insert_copy_insn (struct expr *, rtx);
472 static void pre_insert_copies (void);
473 static int pre_delete (void);
474 static int pre_gcse (struct edge_list *);
475 static int one_pre_gcse_pass (void);
476 static void add_label_notes (rtx, rtx);
477 static void alloc_code_hoist_mem (int, int);
478 static void free_code_hoist_mem (void);
479 static void compute_code_hoist_vbeinout (void);
480 static void compute_code_hoist_data (void);
481 static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
482 sbitmap, int, int *, enum reg_class,
483 int *, bitmap, rtx);
484 static int hoist_code (void);
485 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
486 static enum reg_class get_pressure_class_and_nregs (rtx insn, int *nregs);
487 static int one_code_hoisting_pass (void);
488 static rtx process_insert_insn (struct expr *);
489 static int pre_edge_insert (struct edge_list *, struct expr **);
490 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
491 basic_block, char *);
492 static struct ls_expr * ldst_entry (rtx);
493 static void free_ldst_entry (struct ls_expr *);
494 static void free_ld_motion_mems (void);
495 static void print_ldst_list (FILE *);
496 static struct ls_expr * find_rtx_in_ldst (rtx);
497 static int simple_mem (const_rtx);
498 static void invalidate_any_buried_refs (rtx);
499 static void compute_ld_motion_mems (void);
500 static void trim_ld_motion_mems (void);
501 static void update_ld_motion_stores (struct expr *);
502 static void clear_modify_mem_tables (void);
503 static void free_modify_mem_tables (void);
504 static rtx gcse_emit_move_after (rtx, rtx, rtx);
505 static bool is_too_expensive (const char *);
507 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
508 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
510 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
511 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
513 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
514 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
516 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
517 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
519 /* Misc. utilities. */
521 #define can_copy \
522 (this_target_gcse->x_can_copy)
523 #define can_copy_init_p \
524 (this_target_gcse->x_can_copy_init_p)
526 /* Compute which modes support reg/reg copy operations. */
528 static void
529 compute_can_copy (void)
531 int i;
532 #ifndef AVOID_CCMODE_COPIES
533 rtx reg, insn;
534 #endif
535 memset (can_copy, 0, NUM_MACHINE_MODES);
537 start_sequence ();
538 for (i = 0; i < NUM_MACHINE_MODES; i++)
539 if (GET_MODE_CLASS (i) == MODE_CC)
541 #ifdef AVOID_CCMODE_COPIES
542 can_copy[i] = 0;
543 #else
544 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
545 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
546 if (recog (PATTERN (insn), insn, NULL) >= 0)
547 can_copy[i] = 1;
548 #endif
550 else
551 can_copy[i] = 1;
553 end_sequence ();
556 /* Returns whether the mode supports reg/reg copy operations. */
558 bool
559 can_copy_p (enum machine_mode mode)
561 if (! can_copy_init_p)
563 compute_can_copy ();
564 can_copy_init_p = true;
567 return can_copy[mode] != 0;
570 /* Cover function to xmalloc to record bytes allocated. */
572 static void *
573 gmalloc (size_t size)
575 bytes_used += size;
576 return xmalloc (size);
579 /* Cover function to xcalloc to record bytes allocated. */
581 static void *
582 gcalloc (size_t nelem, size_t elsize)
584 bytes_used += nelem * elsize;
585 return xcalloc (nelem, elsize);
588 /* Cover function to obstack_alloc. */
590 static void *
591 gcse_alloc (unsigned long size)
593 bytes_used += size;
594 return obstack_alloc (&gcse_obstack, size);
597 /* Allocate memory for the reg/memory set tracking tables.
598 This is called at the start of each pass. */
600 static void
601 alloc_gcse_mem (void)
603 /* Allocate vars to track sets of regs. */
604 reg_set_bitmap = ALLOC_REG_SET (NULL);
606 /* Allocate array to keep a list of insns which modify memory in each
607 basic block. The two typedefs are needed to work around the
608 pre-processor limitation with template types in macro arguments. */
609 typedef vec<rtx> vec_rtx_heap;
610 typedef vec<modify_pair> vec_modify_pair_heap;
611 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block);
612 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap, last_basic_block);
613 modify_mem_list_set = BITMAP_ALLOC (NULL);
614 blocks_with_calls = BITMAP_ALLOC (NULL);
617 /* Free memory allocated by alloc_gcse_mem. */
619 static void
620 free_gcse_mem (void)
622 FREE_REG_SET (reg_set_bitmap);
624 free_modify_mem_tables ();
625 BITMAP_FREE (modify_mem_list_set);
626 BITMAP_FREE (blocks_with_calls);
629 /* Compute the local properties of each recorded expression.
631 Local properties are those that are defined by the block, irrespective of
632 other blocks.
634 An expression is transparent in a block if its operands are not modified
635 in the block.
637 An expression is computed (locally available) in a block if it is computed
638 at least once and expression would contain the same value if the
639 computation was moved to the end of the block.
641 An expression is locally anticipatable in a block if it is computed at
642 least once and expression would contain the same value if the computation
643 was moved to the beginning of the block.
645 We call this routine for pre and code hoisting. They all compute
646 basically the same information and thus can easily share this code.
648 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
649 properties. If NULL, then it is not necessary to compute or record that
650 particular property.
652 TABLE controls which hash table to look at. */
654 static void
655 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
656 struct hash_table_d *table)
658 unsigned int i;
660 /* Initialize any bitmaps that were passed in. */
661 if (transp)
663 bitmap_vector_ones (transp, last_basic_block);
666 if (comp)
667 bitmap_vector_clear (comp, last_basic_block);
668 if (antloc)
669 bitmap_vector_clear (antloc, last_basic_block);
671 for (i = 0; i < table->size; i++)
673 struct expr *expr;
675 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
677 int indx = expr->bitmap_index;
678 struct occr *occr;
680 /* The expression is transparent in this block if it is not killed.
681 We start by assuming all are transparent [none are killed], and
682 then reset the bits for those that are. */
683 if (transp)
684 compute_transp (expr->expr, indx, transp);
686 /* The occurrences recorded in antic_occr are exactly those that
687 we want to set to nonzero in ANTLOC. */
688 if (antloc)
689 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
691 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
693 /* While we're scanning the table, this is a good place to
694 initialize this. */
695 occr->deleted_p = 0;
698 /* The occurrences recorded in avail_occr are exactly those that
699 we want to set to nonzero in COMP. */
700 if (comp)
701 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
703 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
705 /* While we're scanning the table, this is a good place to
706 initialize this. */
707 occr->copied_p = 0;
710 /* While we're scanning the table, this is a good place to
711 initialize this. */
712 expr->reaching_reg = 0;
717 /* Hash table support. */
719 struct reg_avail_info
721 basic_block last_bb;
722 int first_set;
723 int last_set;
726 static struct reg_avail_info *reg_avail_info;
727 static basic_block current_bb;
729 /* See whether X, the source of a set, is something we want to consider for
730 GCSE. */
732 static int
733 want_to_gcse_p (rtx x, int *max_distance_ptr)
735 #ifdef STACK_REGS
736 /* On register stack architectures, don't GCSE constants from the
737 constant pool, as the benefits are often swamped by the overhead
738 of shuffling the register stack between basic blocks. */
739 if (IS_STACK_MODE (GET_MODE (x)))
740 x = avoid_constant_pool_reference (x);
741 #endif
743 /* GCSE'ing constants:
745 We do not specifically distinguish between constant and non-constant
746 expressions in PRE and Hoist. We use set_src_cost below to limit
747 the maximum distance simple expressions can travel.
749 Nevertheless, constants are much easier to GCSE, and, hence,
750 it is easy to overdo the optimizations. Usually, excessive PRE and
751 Hoisting of constant leads to increased register pressure.
753 RA can deal with this by rematerialing some of the constants.
754 Therefore, it is important that the back-end generates sets of constants
755 in a way that allows reload rematerialize them under high register
756 pressure, i.e., a pseudo register with REG_EQUAL to constant
757 is set only once. Failing to do so will result in IRA/reload
758 spilling such constants under high register pressure instead of
759 rematerializing them. */
761 switch (GET_CODE (x))
763 case REG:
764 case SUBREG:
765 case CALL:
766 return 0;
768 CASE_CONST_ANY:
769 if (!doing_code_hoisting_p)
770 /* Do not PRE constants. */
771 return 0;
773 /* FALLTHRU */
775 default:
776 if (doing_code_hoisting_p)
777 /* PRE doesn't implement max_distance restriction. */
779 int cost;
780 int max_distance;
782 gcc_assert (!optimize_function_for_speed_p (cfun)
783 && optimize_function_for_size_p (cfun));
784 cost = set_src_cost (x, 0);
786 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
788 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
789 if (max_distance == 0)
790 return 0;
792 gcc_assert (max_distance > 0);
794 else
795 max_distance = 0;
797 if (max_distance_ptr)
798 *max_distance_ptr = max_distance;
801 return can_assign_to_reg_without_clobbers_p (x);
805 /* Used internally by can_assign_to_reg_without_clobbers_p. */
807 static GTY(()) rtx test_insn;
809 /* Return true if we can assign X to a pseudo register such that the
810 resulting insn does not result in clobbering a hard register as a
811 side-effect.
813 Additionally, if the target requires it, check that the resulting insn
814 can be copied. If it cannot, this means that X is special and probably
815 has hidden side-effects we don't want to mess with.
817 This function is typically used by code motion passes, to verify
818 that it is safe to insert an insn without worrying about clobbering
819 maybe live hard regs. */
821 bool
822 can_assign_to_reg_without_clobbers_p (rtx x)
824 int num_clobbers = 0;
825 int icode;
827 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
828 if (general_operand (x, GET_MODE (x)))
829 return 1;
830 else if (GET_MODE (x) == VOIDmode)
831 return 0;
833 /* Otherwise, check if we can make a valid insn from it. First initialize
834 our test insn if we haven't already. */
835 if (test_insn == 0)
837 test_insn
838 = make_insn_raw (gen_rtx_SET (VOIDmode,
839 gen_rtx_REG (word_mode,
840 FIRST_PSEUDO_REGISTER * 2),
841 const0_rtx));
842 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
845 /* Now make an insn like the one we would make when GCSE'ing and see if
846 valid. */
847 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
848 SET_SRC (PATTERN (test_insn)) = x;
850 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
851 if (icode < 0)
852 return false;
854 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
855 return false;
857 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
858 return false;
860 return true;
863 /* Return nonzero if the operands of expression X are unchanged from the
864 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
865 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
867 static int
868 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
870 int i, j;
871 enum rtx_code code;
872 const char *fmt;
874 if (x == 0)
875 return 1;
877 code = GET_CODE (x);
878 switch (code)
880 case REG:
882 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
884 if (info->last_bb != current_bb)
885 return 1;
886 if (avail_p)
887 return info->last_set < DF_INSN_LUID (insn);
888 else
889 return info->first_set >= DF_INSN_LUID (insn);
892 case MEM:
893 if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
894 x, avail_p))
895 return 0;
896 else
897 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
899 case PRE_DEC:
900 case PRE_INC:
901 case POST_DEC:
902 case POST_INC:
903 case PRE_MODIFY:
904 case POST_MODIFY:
905 return 0;
907 case PC:
908 case CC0: /*FIXME*/
909 case CONST:
910 CASE_CONST_ANY:
911 case SYMBOL_REF:
912 case LABEL_REF:
913 case ADDR_VEC:
914 case ADDR_DIFF_VEC:
915 return 1;
917 default:
918 break;
921 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
923 if (fmt[i] == 'e')
925 /* If we are about to do the last recursive call needed at this
926 level, change it into iteration. This function is called enough
927 to be worth it. */
928 if (i == 0)
929 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
931 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
932 return 0;
934 else if (fmt[i] == 'E')
935 for (j = 0; j < XVECLEN (x, i); j++)
936 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
937 return 0;
940 return 1;
943 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
945 struct mem_conflict_info
947 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
948 see if a memory store conflicts with this memory load. */
949 const_rtx mem;
951 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
952 references. */
953 bool conflict;
956 /* DEST is the output of an instruction. If it is a memory reference and
957 possibly conflicts with the load found in DATA, then communicate this
958 information back through DATA. */
960 static void
961 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
962 void *data)
964 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
966 while (GET_CODE (dest) == SUBREG
967 || GET_CODE (dest) == ZERO_EXTRACT
968 || GET_CODE (dest) == STRICT_LOW_PART)
969 dest = XEXP (dest, 0);
971 /* If DEST is not a MEM, then it will not conflict with the load. Note
972 that function calls are assumed to clobber memory, but are handled
973 elsewhere. */
974 if (! MEM_P (dest))
975 return;
977 /* If we are setting a MEM in our list of specially recognized MEMs,
978 don't mark as killed this time. */
979 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
981 if (!find_rtx_in_ldst (dest))
982 mci->conflict = true;
983 return;
986 if (true_dependence (dest, GET_MODE (dest), mci->mem))
987 mci->conflict = true;
990 /* Return nonzero if the expression in X (a memory reference) is killed
991 in block BB before or after the insn with the LUID in UID_LIMIT.
992 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
993 before UID_LIMIT.
995 To check the entire block, set UID_LIMIT to max_uid + 1 and
996 AVAIL_P to 0. */
998 static int
999 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1000 int avail_p)
1002 vec<rtx> list = modify_mem_list[bb->index];
1003 rtx setter;
1004 unsigned ix;
1006 /* If this is a readonly then we aren't going to be changing it. */
1007 if (MEM_READONLY_P (x))
1008 return 0;
1010 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1012 struct mem_conflict_info mci;
1014 /* Ignore entries in the list that do not apply. */
1015 if ((avail_p
1016 && DF_INSN_LUID (setter) < uid_limit)
1017 || (! avail_p
1018 && DF_INSN_LUID (setter) > uid_limit))
1019 continue;
1021 /* If SETTER is a call everything is clobbered. Note that calls
1022 to pure functions are never put on the list, so we need not
1023 worry about them. */
1024 if (CALL_P (setter))
1025 return 1;
1027 /* SETTER must be an INSN of some kind that sets memory. Call
1028 note_stores to examine each hunk of memory that is modified. */
1029 mci.mem = x;
1030 mci.conflict = false;
1031 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1032 if (mci.conflict)
1033 return 1;
1035 return 0;
1038 /* Return nonzero if the operands of expression X are unchanged from
1039 the start of INSN's basic block up to but not including INSN. */
1041 static int
1042 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1044 return oprs_unchanged_p (x, insn, 0);
1047 /* Return nonzero if the operands of expression X are unchanged from
1048 INSN to the end of INSN's basic block. */
1050 static int
1051 oprs_available_p (const_rtx x, const_rtx insn)
1053 return oprs_unchanged_p (x, insn, 1);
1056 /* Hash expression X.
1058 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1059 indicating if a volatile operand is found or if the expression contains
1060 something we don't want to insert in the table. HASH_TABLE_SIZE is
1061 the current size of the hash table to be probed. */
1063 static unsigned int
1064 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1065 int hash_table_size)
1067 unsigned int hash;
1069 *do_not_record_p = 0;
1071 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1072 return hash % hash_table_size;
1075 /* Return nonzero if exp1 is equivalent to exp2. */
1077 static int
1078 expr_equiv_p (const_rtx x, const_rtx y)
1080 return exp_equiv_p (x, y, 0, true);
1083 /* Insert expression X in INSN in the hash TABLE.
1084 If it is already present, record it as the last occurrence in INSN's
1085 basic block.
1087 MODE is the mode of the value X is being stored into.
1088 It is only used if X is a CONST_INT.
1090 ANTIC_P is nonzero if X is an anticipatable expression.
1091 AVAIL_P is nonzero if X is an available expression.
1093 MAX_DISTANCE is the maximum distance in instructions this expression can
1094 be moved. */
1096 static void
1097 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1098 int avail_p, int max_distance, struct hash_table_d *table)
1100 int found, do_not_record_p;
1101 unsigned int hash;
1102 struct expr *cur_expr, *last_expr = NULL;
1103 struct occr *antic_occr, *avail_occr;
1105 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1107 /* Do not insert expression in table if it contains volatile operands,
1108 or if hash_expr determines the expression is something we don't want
1109 to or can't handle. */
1110 if (do_not_record_p)
1111 return;
1113 cur_expr = table->table[hash];
1114 found = 0;
1116 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1118 /* If the expression isn't found, save a pointer to the end of
1119 the list. */
1120 last_expr = cur_expr;
1121 cur_expr = cur_expr->next_same_hash;
1124 if (! found)
1126 cur_expr = GOBNEW (struct expr);
1127 bytes_used += sizeof (struct expr);
1128 if (table->table[hash] == NULL)
1129 /* This is the first pattern that hashed to this index. */
1130 table->table[hash] = cur_expr;
1131 else
1132 /* Add EXPR to end of this hash chain. */
1133 last_expr->next_same_hash = cur_expr;
1135 /* Set the fields of the expr element. */
1136 cur_expr->expr = x;
1137 cur_expr->bitmap_index = table->n_elems++;
1138 cur_expr->next_same_hash = NULL;
1139 cur_expr->antic_occr = NULL;
1140 cur_expr->avail_occr = NULL;
1141 gcc_assert (max_distance >= 0);
1142 cur_expr->max_distance = max_distance;
1144 else
1145 gcc_assert (cur_expr->max_distance == max_distance);
1147 /* Now record the occurrence(s). */
1148 if (antic_p)
1150 antic_occr = cur_expr->antic_occr;
1152 if (antic_occr
1153 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1154 antic_occr = NULL;
1156 if (antic_occr)
1157 /* Found another instance of the expression in the same basic block.
1158 Prefer the currently recorded one. We want the first one in the
1159 block and the block is scanned from start to end. */
1160 ; /* nothing to do */
1161 else
1163 /* First occurrence of this expression in this basic block. */
1164 antic_occr = GOBNEW (struct occr);
1165 bytes_used += sizeof (struct occr);
1166 antic_occr->insn = insn;
1167 antic_occr->next = cur_expr->antic_occr;
1168 antic_occr->deleted_p = 0;
1169 cur_expr->antic_occr = antic_occr;
1173 if (avail_p)
1175 avail_occr = cur_expr->avail_occr;
1177 if (avail_occr
1178 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1180 /* Found another instance of the expression in the same basic block.
1181 Prefer this occurrence to the currently recorded one. We want
1182 the last one in the block and the block is scanned from start
1183 to end. */
1184 avail_occr->insn = insn;
1186 else
1188 /* First occurrence of this expression in this basic block. */
1189 avail_occr = GOBNEW (struct occr);
1190 bytes_used += sizeof (struct occr);
1191 avail_occr->insn = insn;
1192 avail_occr->next = cur_expr->avail_occr;
1193 avail_occr->deleted_p = 0;
1194 cur_expr->avail_occr = avail_occr;
1199 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1201 static void
1202 hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
1204 rtx src = SET_SRC (set);
1205 rtx dest = SET_DEST (set);
1206 rtx note;
1208 if (GET_CODE (src) == CALL)
1209 hash_scan_call (src, insn, table);
1211 else if (REG_P (dest))
1213 unsigned int regno = REGNO (dest);
1214 int max_distance = 0;
1216 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1218 This allows us to do a single GCSE pass and still eliminate
1219 redundant constants, addresses or other expressions that are
1220 constructed with multiple instructions.
1222 However, keep the original SRC if INSN is a simple reg-reg move.
1223 In this case, there will almost always be a REG_EQUAL note on the
1224 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1225 for INSN, we miss copy propagation opportunities and we perform the
1226 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1227 do more than one PRE GCSE pass.
1229 Note that this does not impede profitable constant propagations. We
1230 "look through" reg-reg sets in lookup_avail_set. */
1231 note = find_reg_equal_equiv_note (insn);
1232 if (note != 0
1233 && REG_NOTE_KIND (note) == REG_EQUAL
1234 && !REG_P (src)
1235 && want_to_gcse_p (XEXP (note, 0), NULL))
1236 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1238 /* Only record sets of pseudo-regs in the hash table. */
1239 if (regno >= FIRST_PSEUDO_REGISTER
1240 /* Don't GCSE something if we can't do a reg/reg copy. */
1241 && can_copy_p (GET_MODE (dest))
1242 /* GCSE commonly inserts instruction after the insn. We can't
1243 do that easily for EH edges so disable GCSE on these for now. */
1244 /* ??? We can now easily create new EH landing pads at the
1245 gimple level, for splitting edges; there's no reason we
1246 can't do the same thing at the rtl level. */
1247 && !can_throw_internal (insn)
1248 /* Is SET_SRC something we want to gcse? */
1249 && want_to_gcse_p (src, &max_distance)
1250 /* Don't CSE a nop. */
1251 && ! set_noop_p (set)
1252 /* Don't GCSE if it has attached REG_EQUIV note.
1253 At this point this only function parameters should have
1254 REG_EQUIV notes and if the argument slot is used somewhere
1255 explicitly, it means address of parameter has been taken,
1256 so we should not extend the lifetime of the pseudo. */
1257 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1259 /* An expression is not anticipatable if its operands are
1260 modified before this insn or if this is not the only SET in
1261 this insn. The latter condition does not have to mean that
1262 SRC itself is not anticipatable, but we just will not be
1263 able to handle code motion of insns with multiple sets. */
1264 int antic_p = oprs_anticipatable_p (src, insn)
1265 && !multiple_sets (insn);
1266 /* An expression is not available if its operands are
1267 subsequently modified, including this insn. It's also not
1268 available if this is a branch, because we can't insert
1269 a set after the branch. */
1270 int avail_p = (oprs_available_p (src, insn)
1271 && ! JUMP_P (insn));
1273 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1274 max_distance, table);
1277 /* In case of store we want to consider the memory value as available in
1278 the REG stored in that memory. This makes it possible to remove
1279 redundant loads from due to stores to the same location. */
1280 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1282 unsigned int regno = REGNO (src);
1283 int max_distance = 0;
1285 /* Only record sets of pseudo-regs in the hash table. */
1286 if (regno >= FIRST_PSEUDO_REGISTER
1287 /* Don't GCSE something if we can't do a reg/reg copy. */
1288 && can_copy_p (GET_MODE (src))
1289 /* GCSE commonly inserts instruction after the insn. We can't
1290 do that easily for EH edges so disable GCSE on these for now. */
1291 && !can_throw_internal (insn)
1292 /* Is SET_DEST something we want to gcse? */
1293 && want_to_gcse_p (dest, &max_distance)
1294 /* Don't CSE a nop. */
1295 && ! set_noop_p (set)
1296 /* Don't GCSE if it has attached REG_EQUIV note.
1297 At this point this only function parameters should have
1298 REG_EQUIV notes and if the argument slot is used somewhere
1299 explicitly, it means address of parameter has been taken,
1300 so we should not extend the lifetime of the pseudo. */
1301 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1302 || ! MEM_P (XEXP (note, 0))))
1304 /* Stores are never anticipatable. */
1305 int antic_p = 0;
1306 /* An expression is not available if its operands are
1307 subsequently modified, including this insn. It's also not
1308 available if this is a branch, because we can't insert
1309 a set after the branch. */
1310 int avail_p = oprs_available_p (dest, insn)
1311 && ! JUMP_P (insn);
1313 /* Record the memory expression (DEST) in the hash table. */
1314 insert_expr_in_table (dest, GET_MODE (dest), insn,
1315 antic_p, avail_p, max_distance, table);
1320 static void
1321 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1322 struct hash_table_d *table ATTRIBUTE_UNUSED)
1324 /* Currently nothing to do. */
1327 static void
1328 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1329 struct hash_table_d *table ATTRIBUTE_UNUSED)
1331 /* Currently nothing to do. */
1334 /* Process INSN and add hash table entries as appropriate. */
1336 static void
1337 hash_scan_insn (rtx insn, struct hash_table_d *table)
1339 rtx pat = PATTERN (insn);
1340 int i;
1342 /* Pick out the sets of INSN and for other forms of instructions record
1343 what's been modified. */
1345 if (GET_CODE (pat) == SET)
1346 hash_scan_set (pat, insn, table);
1348 else if (GET_CODE (pat) == CLOBBER)
1349 hash_scan_clobber (pat, insn, table);
1351 else if (GET_CODE (pat) == CALL)
1352 hash_scan_call (pat, insn, table);
1354 else if (GET_CODE (pat) == PARALLEL)
1355 for (i = 0; i < XVECLEN (pat, 0); i++)
1357 rtx x = XVECEXP (pat, 0, i);
1359 if (GET_CODE (x) == SET)
1360 hash_scan_set (x, insn, table);
1361 else if (GET_CODE (x) == CLOBBER)
1362 hash_scan_clobber (x, insn, table);
1363 else if (GET_CODE (x) == CALL)
1364 hash_scan_call (x, insn, table);
1368 /* Dump the hash table TABLE to file FILE under the name NAME. */
1370 static void
1371 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1373 int i;
1374 /* Flattened out table, so it's printed in proper order. */
1375 struct expr **flat_table;
1376 unsigned int *hash_val;
1377 struct expr *expr;
1379 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1380 hash_val = XNEWVEC (unsigned int, table->n_elems);
1382 for (i = 0; i < (int) table->size; i++)
1383 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1385 flat_table[expr->bitmap_index] = expr;
1386 hash_val[expr->bitmap_index] = i;
1389 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1390 name, table->size, table->n_elems);
1392 for (i = 0; i < (int) table->n_elems; i++)
1393 if (flat_table[i] != 0)
1395 expr = flat_table[i];
1396 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1397 expr->bitmap_index, hash_val[i], expr->max_distance);
1398 print_rtl (file, expr->expr);
1399 fprintf (file, "\n");
1402 fprintf (file, "\n");
1404 free (flat_table);
1405 free (hash_val);
1408 /* Record register first/last/block set information for REGNO in INSN.
1410 first_set records the first place in the block where the register
1411 is set and is used to compute "anticipatability".
1413 last_set records the last place in the block where the register
1414 is set and is used to compute "availability".
1416 last_bb records the block for which first_set and last_set are
1417 valid, as a quick test to invalidate them. */
1419 static void
1420 record_last_reg_set_info (rtx insn, int regno)
1422 struct reg_avail_info *info = &reg_avail_info[regno];
1423 int luid = DF_INSN_LUID (insn);
1425 info->last_set = luid;
1426 if (info->last_bb != current_bb)
1428 info->last_bb = current_bb;
1429 info->first_set = luid;
1433 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1434 Note we store a pair of elements in the list, so they have to be
1435 taken off pairwise. */
1437 static void
1438 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1439 void * v_insn)
1441 rtx dest_addr, insn;
1442 int bb;
1443 modify_pair pair;
1445 while (GET_CODE (dest) == SUBREG
1446 || GET_CODE (dest) == ZERO_EXTRACT
1447 || GET_CODE (dest) == STRICT_LOW_PART)
1448 dest = XEXP (dest, 0);
1450 /* If DEST is not a MEM, then it will not conflict with a load. Note
1451 that function calls are assumed to clobber memory, but are handled
1452 elsewhere. */
1454 if (! MEM_P (dest))
1455 return;
1457 dest_addr = get_addr (XEXP (dest, 0));
1458 dest_addr = canon_rtx (dest_addr);
1459 insn = (rtx) v_insn;
1460 bb = BLOCK_FOR_INSN (insn)->index;
1462 pair.dest = dest;
1463 pair.dest_addr = dest_addr;
1464 canon_modify_mem_list[bb].safe_push (pair);
1467 /* Record memory modification information for INSN. We do not actually care
1468 about the memory location(s) that are set, or even how they are set (consider
1469 a CALL_INSN). We merely need to record which insns modify memory. */
1471 static void
1472 record_last_mem_set_info (rtx insn)
1474 int bb = BLOCK_FOR_INSN (insn)->index;
1476 /* load_killed_in_block_p will handle the case of calls clobbering
1477 everything. */
1478 modify_mem_list[bb].safe_push (insn);
1479 bitmap_set_bit (modify_mem_list_set, bb);
1481 if (CALL_P (insn))
1482 bitmap_set_bit (blocks_with_calls, bb);
1483 else
1484 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1487 /* Called from compute_hash_table via note_stores to handle one
1488 SET or CLOBBER in an insn. DATA is really the instruction in which
1489 the SET is taking place. */
1491 static void
1492 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1494 rtx last_set_insn = (rtx) data;
1496 if (GET_CODE (dest) == SUBREG)
1497 dest = SUBREG_REG (dest);
1499 if (REG_P (dest))
1500 record_last_reg_set_info (last_set_insn, REGNO (dest));
1501 else if (MEM_P (dest)
1502 /* Ignore pushes, they clobber nothing. */
1503 && ! push_operand (dest, GET_MODE (dest)))
1504 record_last_mem_set_info (last_set_insn);
1507 /* Top level function to create an expression hash table.
1509 Expression entries are placed in the hash table if
1510 - they are of the form (set (pseudo-reg) src),
1511 - src is something we want to perform GCSE on,
1512 - none of the operands are subsequently modified in the block
1514 Currently src must be a pseudo-reg or a const_int.
1516 TABLE is the table computed. */
1518 static void
1519 compute_hash_table_work (struct hash_table_d *table)
1521 int i;
1523 /* re-Cache any INSN_LIST nodes we have allocated. */
1524 clear_modify_mem_tables ();
1525 /* Some working arrays used to track first and last set in each block. */
1526 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1528 for (i = 0; i < max_reg_num (); ++i)
1529 reg_avail_info[i].last_bb = NULL;
1531 FOR_EACH_BB (current_bb)
1533 rtx insn;
1534 unsigned int regno;
1536 /* First pass over the instructions records information used to
1537 determine when registers and memory are first and last set. */
1538 FOR_BB_INSNS (current_bb, insn)
1540 if (!NONDEBUG_INSN_P (insn))
1541 continue;
1543 if (CALL_P (insn))
1545 hard_reg_set_iterator hrsi;
1546 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1547 0, regno, hrsi)
1548 record_last_reg_set_info (insn, regno);
1550 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1551 record_last_mem_set_info (insn);
1554 note_stores (PATTERN (insn), record_last_set_info, insn);
1557 /* The next pass builds the hash table. */
1558 FOR_BB_INSNS (current_bb, insn)
1559 if (NONDEBUG_INSN_P (insn))
1560 hash_scan_insn (insn, table);
1563 free (reg_avail_info);
1564 reg_avail_info = NULL;
1567 /* Allocate space for the set/expr hash TABLE.
1568 It is used to determine the number of buckets to use. */
1570 static void
1571 alloc_hash_table (struct hash_table_d *table)
1573 int n;
1575 n = get_max_insn_count ();
1577 table->size = n / 4;
1578 if (table->size < 11)
1579 table->size = 11;
1581 /* Attempt to maintain efficient use of hash table.
1582 Making it an odd number is simplest for now.
1583 ??? Later take some measurements. */
1584 table->size |= 1;
1585 n = table->size * sizeof (struct expr *);
1586 table->table = GNEWVAR (struct expr *, n);
1589 /* Free things allocated by alloc_hash_table. */
1591 static void
1592 free_hash_table (struct hash_table_d *table)
1594 free (table->table);
1597 /* Compute the expression hash table TABLE. */
1599 static void
1600 compute_hash_table (struct hash_table_d *table)
1602 /* Initialize count of number of entries in hash table. */
1603 table->n_elems = 0;
1604 memset (table->table, 0, table->size * sizeof (struct expr *));
1606 compute_hash_table_work (table);
1609 /* Expression tracking support. */
1611 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1612 static void
1613 clear_modify_mem_tables (void)
1615 unsigned i;
1616 bitmap_iterator bi;
1618 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1620 modify_mem_list[i].release ();
1621 canon_modify_mem_list[i].release ();
1623 bitmap_clear (modify_mem_list_set);
1624 bitmap_clear (blocks_with_calls);
1627 /* Release memory used by modify_mem_list_set. */
1629 static void
1630 free_modify_mem_tables (void)
1632 clear_modify_mem_tables ();
1633 free (modify_mem_list);
1634 free (canon_modify_mem_list);
1635 modify_mem_list = 0;
1636 canon_modify_mem_list = 0;
1639 /* For each block, compute whether X is transparent. X is either an
1640 expression or an assignment [though we don't care which, for this context
1641 an assignment is treated as an expression]. For each block where an
1642 element of X is modified, reset the INDX bit in BMAP. */
1644 static void
1645 compute_transp (const_rtx x, int indx, sbitmap *bmap)
1647 int i, j;
1648 enum rtx_code code;
1649 const char *fmt;
1651 /* repeat is used to turn tail-recursion into iteration since GCC
1652 can't do it when there's no return value. */
1653 repeat:
1655 if (x == 0)
1656 return;
1658 code = GET_CODE (x);
1659 switch (code)
1661 case REG:
1663 df_ref def;
1664 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1665 def;
1666 def = DF_REF_NEXT_REG (def))
1667 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
1670 return;
1672 case MEM:
1673 if (! MEM_READONLY_P (x))
1675 bitmap_iterator bi;
1676 unsigned bb_index;
1677 rtx x_addr;
1679 x_addr = get_addr (XEXP (x, 0));
1680 x_addr = canon_rtx (x_addr);
1682 /* First handle all the blocks with calls. We don't need to
1683 do any list walking for them. */
1684 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1686 bitmap_clear_bit (bmap[bb_index], indx);
1689 /* Now iterate over the blocks which have memory modifications
1690 but which do not have any calls. */
1691 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1692 blocks_with_calls,
1693 0, bb_index, bi)
1695 vec<modify_pair> list
1696 = canon_modify_mem_list[bb_index];
1697 modify_pair *pair;
1698 unsigned ix;
1700 FOR_EACH_VEC_ELT_REVERSE (list, ix, pair)
1702 rtx dest = pair->dest;
1703 rtx dest_addr = pair->dest_addr;
1705 if (canon_true_dependence (dest, GET_MODE (dest),
1706 dest_addr, x, x_addr))
1707 bitmap_clear_bit (bmap[bb_index], indx);
1712 x = XEXP (x, 0);
1713 goto repeat;
1715 case PC:
1716 case CC0: /*FIXME*/
1717 case CONST:
1718 CASE_CONST_ANY:
1719 case SYMBOL_REF:
1720 case LABEL_REF:
1721 case ADDR_VEC:
1722 case ADDR_DIFF_VEC:
1723 return;
1725 default:
1726 break;
1729 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1731 if (fmt[i] == 'e')
1733 /* If we are about to do the last recursive call
1734 needed at this level, change it into iteration.
1735 This function is called enough to be worth it. */
1736 if (i == 0)
1738 x = XEXP (x, i);
1739 goto repeat;
1742 compute_transp (XEXP (x, i), indx, bmap);
1744 else if (fmt[i] == 'E')
1745 for (j = 0; j < XVECLEN (x, i); j++)
1746 compute_transp (XVECEXP (x, i, j), indx, bmap);
1750 /* Compute PRE+LCM working variables. */
1752 /* Local properties of expressions. */
1754 /* Nonzero for expressions that are transparent in the block. */
1755 static sbitmap *transp;
1757 /* Nonzero for expressions that are computed (available) in the block. */
1758 static sbitmap *comp;
1760 /* Nonzero for expressions that are locally anticipatable in the block. */
1761 static sbitmap *antloc;
1763 /* Nonzero for expressions where this block is an optimal computation
1764 point. */
1765 static sbitmap *pre_optimal;
1767 /* Nonzero for expressions which are redundant in a particular block. */
1768 static sbitmap *pre_redundant;
1770 /* Nonzero for expressions which should be inserted on a specific edge. */
1771 static sbitmap *pre_insert_map;
1773 /* Nonzero for expressions which should be deleted in a specific block. */
1774 static sbitmap *pre_delete_map;
1776 /* Allocate vars used for PRE analysis. */
1778 static void
1779 alloc_pre_mem (int n_blocks, int n_exprs)
1781 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1782 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1783 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1785 pre_optimal = NULL;
1786 pre_redundant = NULL;
1787 pre_insert_map = NULL;
1788 pre_delete_map = NULL;
1789 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1791 /* pre_insert and pre_delete are allocated later. */
1794 /* Free vars used for PRE analysis. */
1796 static void
1797 free_pre_mem (void)
1799 sbitmap_vector_free (transp);
1800 sbitmap_vector_free (comp);
1802 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1804 if (pre_optimal)
1805 sbitmap_vector_free (pre_optimal);
1806 if (pre_redundant)
1807 sbitmap_vector_free (pre_redundant);
1808 if (pre_insert_map)
1809 sbitmap_vector_free (pre_insert_map);
1810 if (pre_delete_map)
1811 sbitmap_vector_free (pre_delete_map);
1813 transp = comp = NULL;
1814 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1817 /* Remove certain expressions from anticipatable and transparent
1818 sets of basic blocks that have incoming abnormal edge.
1819 For PRE remove potentially trapping expressions to avoid placing
1820 them on abnormal edges. For hoisting remove memory references that
1821 can be clobbered by calls. */
1823 static void
1824 prune_expressions (bool pre_p)
1826 sbitmap prune_exprs;
1827 struct expr *expr;
1828 unsigned int ui;
1829 basic_block bb;
1831 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1832 bitmap_clear (prune_exprs);
1833 for (ui = 0; ui < expr_hash_table.size; ui++)
1835 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1837 /* Note potentially trapping expressions. */
1838 if (may_trap_p (expr->expr))
1840 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1841 continue;
1844 if (!pre_p && MEM_P (expr->expr))
1845 /* Note memory references that can be clobbered by a call.
1846 We do not split abnormal edges in hoisting, so would
1847 a memory reference get hoisted along an abnormal edge,
1848 it would be placed /before/ the call. Therefore, only
1849 constant memory references can be hoisted along abnormal
1850 edges. */
1852 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1853 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1854 continue;
1856 if (MEM_READONLY_P (expr->expr)
1857 && !MEM_VOLATILE_P (expr->expr)
1858 && MEM_NOTRAP_P (expr->expr))
1859 /* Constant memory reference, e.g., a PIC address. */
1860 continue;
1862 /* ??? Optimally, we would use interprocedural alias
1863 analysis to determine if this mem is actually killed
1864 by this call. */
1866 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1871 FOR_EACH_BB (bb)
1873 edge e;
1874 edge_iterator ei;
1876 /* If the current block is the destination of an abnormal edge, we
1877 kill all trapping (for PRE) and memory (for hoist) expressions
1878 because we won't be able to properly place the instruction on
1879 the edge. So make them neither anticipatable nor transparent.
1880 This is fairly conservative.
1882 ??? For hoisting it may be necessary to check for set-and-jump
1883 instructions here, not just for abnormal edges. The general problem
1884 is that when an expression cannot not be placed right at the end of
1885 a basic block we should account for any side-effects of a subsequent
1886 jump instructions that could clobber the expression. It would
1887 be best to implement this check along the lines of
1888 should_hoist_expr_to_dom where the target block is already known
1889 and, hence, there's no need to conservatively prune expressions on
1890 "intermediate" set-and-jump instructions. */
1891 FOR_EACH_EDGE (e, ei, bb->preds)
1892 if ((e->flags & EDGE_ABNORMAL)
1893 && (pre_p || CALL_P (BB_END (e->src))))
1895 bitmap_and_compl (antloc[bb->index],
1896 antloc[bb->index], prune_exprs);
1897 bitmap_and_compl (transp[bb->index],
1898 transp[bb->index], prune_exprs);
1899 break;
1903 sbitmap_free (prune_exprs);
1906 /* It may be necessary to insert a large number of insns on edges to
1907 make the existing occurrences of expressions fully redundant. This
1908 routine examines the set of insertions and deletions and if the ratio
1909 of insertions to deletions is too high for a particular expression, then
1910 the expression is removed from the insertion/deletion sets.
1912 N_ELEMS is the number of elements in the hash table. */
1914 static void
1915 prune_insertions_deletions (int n_elems)
1917 sbitmap_iterator sbi;
1918 sbitmap prune_exprs;
1920 /* We always use I to iterate over blocks/edges and J to iterate over
1921 expressions. */
1922 unsigned int i, j;
1924 /* Counts for the number of times an expression needs to be inserted and
1925 number of times an expression can be removed as a result. */
1926 int *insertions = GCNEWVEC (int, n_elems);
1927 int *deletions = GCNEWVEC (int, n_elems);
1929 /* Set of expressions which require too many insertions relative to
1930 the number of deletions achieved. We will prune these out of the
1931 insertion/deletion sets. */
1932 prune_exprs = sbitmap_alloc (n_elems);
1933 bitmap_clear (prune_exprs);
1935 /* Iterate over the edges counting the number of times each expression
1936 needs to be inserted. */
1937 for (i = 0; i < (unsigned) n_edges; i++)
1939 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1940 insertions[j]++;
1943 /* Similarly for deletions, but those occur in blocks rather than on
1944 edges. */
1945 for (i = 0; i < (unsigned) last_basic_block; i++)
1947 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1948 deletions[j]++;
1951 /* Now that we have accurate counts, iterate over the elements in the
1952 hash table and see if any need too many insertions relative to the
1953 number of evaluations that can be removed. If so, mark them in
1954 PRUNE_EXPRS. */
1955 for (j = 0; j < (unsigned) n_elems; j++)
1956 if (deletions[j]
1957 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1958 bitmap_set_bit (prune_exprs, j);
1960 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1961 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1963 for (i = 0; i < (unsigned) n_edges; i++)
1964 bitmap_clear_bit (pre_insert_map[i], j);
1966 for (i = 0; i < (unsigned) last_basic_block; i++)
1967 bitmap_clear_bit (pre_delete_map[i], j);
1970 sbitmap_free (prune_exprs);
1971 free (insertions);
1972 free (deletions);
1975 /* Top level routine to do the dataflow analysis needed by PRE. */
1977 static struct edge_list *
1978 compute_pre_data (void)
1980 struct edge_list *edge_list;
1981 basic_block bb;
1983 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1984 prune_expressions (true);
1985 bitmap_vector_clear (ae_kill, last_basic_block);
1987 /* Compute ae_kill for each basic block using:
1989 ~(TRANSP | COMP)
1992 FOR_EACH_BB (bb)
1994 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1995 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1998 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1999 ae_kill, &pre_insert_map, &pre_delete_map);
2000 sbitmap_vector_free (antloc);
2001 antloc = NULL;
2002 sbitmap_vector_free (ae_kill);
2003 ae_kill = NULL;
2005 prune_insertions_deletions (expr_hash_table.n_elems);
2007 return edge_list;
2010 /* PRE utilities */
2012 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
2013 block BB.
2015 VISITED is a pointer to a working buffer for tracking which BB's have
2016 been visited. It is NULL for the top-level call.
2018 We treat reaching expressions that go through blocks containing the same
2019 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2020 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2021 2 as not reaching. The intent is to improve the probability of finding
2022 only one reaching expression and to reduce register lifetimes by picking
2023 the closest such expression. */
2025 static int
2026 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2027 basic_block bb, char *visited)
2029 edge pred;
2030 edge_iterator ei;
2032 FOR_EACH_EDGE (pred, ei, bb->preds)
2034 basic_block pred_bb = pred->src;
2036 if (pred->src == ENTRY_BLOCK_PTR
2037 /* Has predecessor has already been visited? */
2038 || visited[pred_bb->index])
2039 ;/* Nothing to do. */
2041 /* Does this predecessor generate this expression? */
2042 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
2044 /* Is this the occurrence we're looking for?
2045 Note that there's only one generating occurrence per block
2046 so we just need to check the block number. */
2047 if (occr_bb == pred_bb)
2048 return 1;
2050 visited[pred_bb->index] = 1;
2052 /* Ignore this predecessor if it kills the expression. */
2053 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2054 visited[pred_bb->index] = 1;
2056 /* Neither gen nor kill. */
2057 else
2059 visited[pred_bb->index] = 1;
2060 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
2061 return 1;
2065 /* All paths have been checked. */
2066 return 0;
2069 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2070 memory allocated for that function is returned. */
2072 static int
2073 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
2075 int rval;
2076 char *visited = XCNEWVEC (char, last_basic_block);
2078 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
2080 free (visited);
2081 return rval;
2084 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2086 static rtx
2087 process_insert_insn (struct expr *expr)
2089 rtx reg = expr->reaching_reg;
2090 /* Copy the expression to make sure we don't have any sharing issues. */
2091 rtx exp = copy_rtx (expr->expr);
2092 rtx pat;
2094 start_sequence ();
2096 /* If the expression is something that's an operand, like a constant,
2097 just copy it to a register. */
2098 if (general_operand (exp, GET_MODE (reg)))
2099 emit_move_insn (reg, exp);
2101 /* Otherwise, make a new insn to compute this expression and make sure the
2102 insn will be recognized (this also adds any needed CLOBBERs). */
2103 else
2105 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2107 if (insn_invalid_p (insn, false))
2108 gcc_unreachable ();
2111 pat = get_insns ();
2112 end_sequence ();
2114 return pat;
2117 /* Add EXPR to the end of basic block BB.
2119 This is used by both the PRE and code hoisting. */
2121 static void
2122 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
2124 rtx insn = BB_END (bb);
2125 rtx new_insn;
2126 rtx reg = expr->reaching_reg;
2127 int regno = REGNO (reg);
2128 rtx pat, pat_end;
2130 pat = process_insert_insn (expr);
2131 gcc_assert (pat && INSN_P (pat));
2133 pat_end = pat;
2134 while (NEXT_INSN (pat_end) != NULL_RTX)
2135 pat_end = NEXT_INSN (pat_end);
2137 /* If the last insn is a jump, insert EXPR in front [taking care to
2138 handle cc0, etc. properly]. Similarly we need to care trapping
2139 instructions in presence of non-call exceptions. */
2141 if (JUMP_P (insn)
2142 || (NONJUMP_INSN_P (insn)
2143 && (!single_succ_p (bb)
2144 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2146 #ifdef HAVE_cc0
2147 rtx note;
2148 #endif
2150 /* If this is a jump table, then we can't insert stuff here. Since
2151 we know the previous real insn must be the tablejump, we insert
2152 the new instruction just before the tablejump. */
2153 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
2154 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
2155 insn = prev_active_insn (insn);
2157 #ifdef HAVE_cc0
2158 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2159 if cc0 isn't set. */
2160 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2161 if (note)
2162 insn = XEXP (note, 0);
2163 else
2165 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2166 if (maybe_cc0_setter
2167 && INSN_P (maybe_cc0_setter)
2168 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2169 insn = maybe_cc0_setter;
2171 #endif
2172 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2173 new_insn = emit_insn_before_noloc (pat, insn, bb);
2176 /* Likewise if the last insn is a call, as will happen in the presence
2177 of exception handling. */
2178 else if (CALL_P (insn)
2179 && (!single_succ_p (bb)
2180 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2182 /* Keeping in mind targets with small register classes and parameters
2183 in registers, we search backward and place the instructions before
2184 the first parameter is loaded. Do this for everyone for consistency
2185 and a presumption that we'll get better code elsewhere as well. */
2187 /* Since different machines initialize their parameter registers
2188 in different orders, assume nothing. Collect the set of all
2189 parameter registers. */
2190 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2192 /* If we found all the parameter loads, then we want to insert
2193 before the first parameter load.
2195 If we did not find all the parameter loads, then we might have
2196 stopped on the head of the block, which could be a CODE_LABEL.
2197 If we inserted before the CODE_LABEL, then we would be putting
2198 the insn in the wrong basic block. In that case, put the insn
2199 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2200 while (LABEL_P (insn)
2201 || NOTE_INSN_BASIC_BLOCK_P (insn))
2202 insn = NEXT_INSN (insn);
2204 new_insn = emit_insn_before_noloc (pat, insn, bb);
2206 else
2207 new_insn = emit_insn_after_noloc (pat, insn, bb);
2209 while (1)
2211 if (INSN_P (pat))
2212 add_label_notes (PATTERN (pat), new_insn);
2213 if (pat == pat_end)
2214 break;
2215 pat = NEXT_INSN (pat);
2218 gcse_create_count++;
2220 if (dump_file)
2222 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2223 bb->index, INSN_UID (new_insn));
2224 fprintf (dump_file, "copying expression %d to reg %d\n",
2225 expr->bitmap_index, regno);
2229 /* Insert partially redundant expressions on edges in the CFG to make
2230 the expressions fully redundant. */
2232 static int
2233 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
2235 int e, i, j, num_edges, set_size, did_insert = 0;
2236 sbitmap *inserted;
2238 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2239 if it reaches any of the deleted expressions. */
2241 set_size = pre_insert_map[0]->size;
2242 num_edges = NUM_EDGES (edge_list);
2243 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2244 bitmap_vector_clear (inserted, num_edges);
2246 for (e = 0; e < num_edges; e++)
2248 int indx;
2249 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2251 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2253 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2255 for (j = indx;
2256 insert && j < (int) expr_hash_table.n_elems;
2257 j++, insert >>= 1)
2258 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2260 struct expr *expr = index_map[j];
2261 struct occr *occr;
2263 /* Now look at each deleted occurrence of this expression. */
2264 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2266 if (! occr->deleted_p)
2267 continue;
2269 /* Insert this expression on this edge if it would
2270 reach the deleted occurrence in BB. */
2271 if (!bitmap_bit_p (inserted[e], j))
2273 rtx insn;
2274 edge eg = INDEX_EDGE (edge_list, e);
2276 /* We can't insert anything on an abnormal and
2277 critical edge, so we insert the insn at the end of
2278 the previous block. There are several alternatives
2279 detailed in Morgans book P277 (sec 10.5) for
2280 handling this situation. This one is easiest for
2281 now. */
2283 if (eg->flags & EDGE_ABNORMAL)
2284 insert_insn_end_basic_block (index_map[j], bb);
2285 else
2287 insn = process_insert_insn (index_map[j]);
2288 insert_insn_on_edge (insn, eg);
2291 if (dump_file)
2293 fprintf (dump_file, "PRE: edge (%d,%d), ",
2294 bb->index,
2295 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2296 fprintf (dump_file, "copy expression %d\n",
2297 expr->bitmap_index);
2300 update_ld_motion_stores (expr);
2301 bitmap_set_bit (inserted[e], j);
2302 did_insert = 1;
2303 gcse_create_count++;
2310 sbitmap_vector_free (inserted);
2311 return did_insert;
2314 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2315 Given "old_reg <- expr" (INSN), instead of adding after it
2316 reaching_reg <- old_reg
2317 it's better to do the following:
2318 reaching_reg <- expr
2319 old_reg <- reaching_reg
2320 because this way copy propagation can discover additional PRE
2321 opportunities. But if this fails, we try the old way.
2322 When "expr" is a store, i.e.
2323 given "MEM <- old_reg", instead of adding after it
2324 reaching_reg <- old_reg
2325 it's better to add it before as follows:
2326 reaching_reg <- old_reg
2327 MEM <- reaching_reg. */
2329 static void
2330 pre_insert_copy_insn (struct expr *expr, rtx insn)
2332 rtx reg = expr->reaching_reg;
2333 int regno = REGNO (reg);
2334 int indx = expr->bitmap_index;
2335 rtx pat = PATTERN (insn);
2336 rtx set, first_set, new_insn;
2337 rtx old_reg;
2338 int i;
2340 /* This block matches the logic in hash_scan_insn. */
2341 switch (GET_CODE (pat))
2343 case SET:
2344 set = pat;
2345 break;
2347 case PARALLEL:
2348 /* Search through the parallel looking for the set whose
2349 source was the expression that we're interested in. */
2350 first_set = NULL_RTX;
2351 set = NULL_RTX;
2352 for (i = 0; i < XVECLEN (pat, 0); i++)
2354 rtx x = XVECEXP (pat, 0, i);
2355 if (GET_CODE (x) == SET)
2357 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2358 may not find an equivalent expression, but in this
2359 case the PARALLEL will have a single set. */
2360 if (first_set == NULL_RTX)
2361 first_set = x;
2362 if (expr_equiv_p (SET_SRC (x), expr->expr))
2364 set = x;
2365 break;
2370 gcc_assert (first_set);
2371 if (set == NULL_RTX)
2372 set = first_set;
2373 break;
2375 default:
2376 gcc_unreachable ();
2379 if (REG_P (SET_DEST (set)))
2381 old_reg = SET_DEST (set);
2382 /* Check if we can modify the set destination in the original insn. */
2383 if (validate_change (insn, &SET_DEST (set), reg, 0))
2385 new_insn = gen_move_insn (old_reg, reg);
2386 new_insn = emit_insn_after (new_insn, insn);
2388 else
2390 new_insn = gen_move_insn (reg, old_reg);
2391 new_insn = emit_insn_after (new_insn, insn);
2394 else /* This is possible only in case of a store to memory. */
2396 old_reg = SET_SRC (set);
2397 new_insn = gen_move_insn (reg, old_reg);
2399 /* Check if we can modify the set source in the original insn. */
2400 if (validate_change (insn, &SET_SRC (set), reg, 0))
2401 new_insn = emit_insn_before (new_insn, insn);
2402 else
2403 new_insn = emit_insn_after (new_insn, insn);
2406 gcse_create_count++;
2408 if (dump_file)
2409 fprintf (dump_file,
2410 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2411 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2412 INSN_UID (insn), regno);
2415 /* Copy available expressions that reach the redundant expression
2416 to `reaching_reg'. */
2418 static void
2419 pre_insert_copies (void)
2421 unsigned int i, added_copy;
2422 struct expr *expr;
2423 struct occr *occr;
2424 struct occr *avail;
2426 /* For each available expression in the table, copy the result to
2427 `reaching_reg' if the expression reaches a deleted one.
2429 ??? The current algorithm is rather brute force.
2430 Need to do some profiling. */
2432 for (i = 0; i < expr_hash_table.size; i++)
2433 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2435 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2436 we don't want to insert a copy here because the expression may not
2437 really be redundant. So only insert an insn if the expression was
2438 deleted. This test also avoids further processing if the
2439 expression wasn't deleted anywhere. */
2440 if (expr->reaching_reg == NULL)
2441 continue;
2443 /* Set when we add a copy for that expression. */
2444 added_copy = 0;
2446 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2448 if (! occr->deleted_p)
2449 continue;
2451 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2453 rtx insn = avail->insn;
2455 /* No need to handle this one if handled already. */
2456 if (avail->copied_p)
2457 continue;
2459 /* Don't handle this one if it's a redundant one. */
2460 if (INSN_DELETED_P (insn))
2461 continue;
2463 /* Or if the expression doesn't reach the deleted one. */
2464 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2465 expr,
2466 BLOCK_FOR_INSN (occr->insn)))
2467 continue;
2469 added_copy = 1;
2471 /* Copy the result of avail to reaching_reg. */
2472 pre_insert_copy_insn (expr, insn);
2473 avail->copied_p = 1;
2477 if (added_copy)
2478 update_ld_motion_stores (expr);
2482 /* Emit move from SRC to DEST noting the equivalence with expression computed
2483 in INSN. */
2485 static rtx
2486 gcse_emit_move_after (rtx dest, rtx src, rtx insn)
2488 rtx new_rtx;
2489 rtx set = single_set (insn), set2;
2490 rtx note;
2491 rtx eqv = NULL_RTX;
2493 /* This should never fail since we're creating a reg->reg copy
2494 we've verified to be valid. */
2496 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2498 /* Note the equivalence for local CSE pass. Take the note from the old
2499 set if there was one. Otherwise record the SET_SRC from the old set
2500 unless DEST is also an operand of the SET_SRC. */
2501 set2 = single_set (new_rtx);
2502 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2503 return new_rtx;
2504 if ((note = find_reg_equal_equiv_note (insn)))
2505 eqv = XEXP (note, 0);
2506 else if (! REG_P (dest)
2507 || ! reg_mentioned_p (dest, SET_SRC (set)))
2508 eqv = SET_SRC (set);
2510 if (eqv != NULL_RTX)
2511 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2513 return new_rtx;
2516 /* Delete redundant computations.
2517 Deletion is done by changing the insn to copy the `reaching_reg' of
2518 the expression into the result of the SET. It is left to later passes
2519 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
2521 Return nonzero if a change is made. */
2523 static int
2524 pre_delete (void)
2526 unsigned int i;
2527 int changed;
2528 struct expr *expr;
2529 struct occr *occr;
2531 changed = 0;
2532 for (i = 0; i < expr_hash_table.size; i++)
2533 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2535 int indx = expr->bitmap_index;
2537 /* We only need to search antic_occr since we require ANTLOC != 0. */
2538 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2540 rtx insn = occr->insn;
2541 rtx set;
2542 basic_block bb = BLOCK_FOR_INSN (insn);
2544 /* We only delete insns that have a single_set. */
2545 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2546 && (set = single_set (insn)) != 0
2547 && dbg_cnt (pre_insn))
2549 /* Create a pseudo-reg to store the result of reaching
2550 expressions into. Get the mode for the new pseudo from
2551 the mode of the original destination pseudo. */
2552 if (expr->reaching_reg == NULL)
2553 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2555 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2556 delete_insn (insn);
2557 occr->deleted_p = 1;
2558 changed = 1;
2559 gcse_subst_count++;
2561 if (dump_file)
2563 fprintf (dump_file,
2564 "PRE: redundant insn %d (expression %d) in ",
2565 INSN_UID (insn), indx);
2566 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2567 bb->index, REGNO (expr->reaching_reg));
2573 return changed;
2576 /* Perform GCSE optimizations using PRE.
2577 This is called by one_pre_gcse_pass after all the dataflow analysis
2578 has been done.
2580 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2581 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2582 Compiler Design and Implementation.
2584 ??? A new pseudo reg is created to hold the reaching expression. The nice
2585 thing about the classical approach is that it would try to use an existing
2586 reg. If the register can't be adequately optimized [i.e. we introduce
2587 reload problems], one could add a pass here to propagate the new register
2588 through the block.
2590 ??? We don't handle single sets in PARALLELs because we're [currently] not
2591 able to copy the rest of the parallel when we insert copies to create full
2592 redundancies from partial redundancies. However, there's no reason why we
2593 can't handle PARALLELs in the cases where there are no partial
2594 redundancies. */
2596 static int
2597 pre_gcse (struct edge_list *edge_list)
2599 unsigned int i;
2600 int did_insert, changed;
2601 struct expr **index_map;
2602 struct expr *expr;
2604 /* Compute a mapping from expression number (`bitmap_index') to
2605 hash table entry. */
2607 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
2608 for (i = 0; i < expr_hash_table.size; i++)
2609 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2610 index_map[expr->bitmap_index] = expr;
2612 /* Delete the redundant insns first so that
2613 - we know what register to use for the new insns and for the other
2614 ones with reaching expressions
2615 - we know which insns are redundant when we go to create copies */
2617 changed = pre_delete ();
2618 did_insert = pre_edge_insert (edge_list, index_map);
2620 /* In other places with reaching expressions, copy the expression to the
2621 specially allocated pseudo-reg that reaches the redundant expr. */
2622 pre_insert_copies ();
2623 if (did_insert)
2625 commit_edge_insertions ();
2626 changed = 1;
2629 free (index_map);
2630 return changed;
2633 /* Top level routine to perform one PRE GCSE pass.
2635 Return nonzero if a change was made. */
2637 static int
2638 one_pre_gcse_pass (void)
2640 int changed = 0;
2642 gcse_subst_count = 0;
2643 gcse_create_count = 0;
2645 /* Return if there's nothing to do, or it is too expensive. */
2646 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
2647 || is_too_expensive (_("PRE disabled")))
2648 return 0;
2650 /* We need alias. */
2651 init_alias_analysis ();
2653 bytes_used = 0;
2654 gcc_obstack_init (&gcse_obstack);
2655 alloc_gcse_mem ();
2657 alloc_hash_table (&expr_hash_table);
2658 add_noreturn_fake_exit_edges ();
2659 if (flag_gcse_lm)
2660 compute_ld_motion_mems ();
2662 compute_hash_table (&expr_hash_table);
2663 if (flag_gcse_lm)
2664 trim_ld_motion_mems ();
2665 if (dump_file)
2666 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2668 if (expr_hash_table.n_elems > 0)
2670 struct edge_list *edge_list;
2671 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
2672 edge_list = compute_pre_data ();
2673 changed |= pre_gcse (edge_list);
2674 free_edge_list (edge_list);
2675 free_pre_mem ();
2678 if (flag_gcse_lm)
2679 free_ld_motion_mems ();
2680 remove_fake_exit_edges ();
2681 free_hash_table (&expr_hash_table);
2683 free_gcse_mem ();
2684 obstack_free (&gcse_obstack, NULL);
2686 /* We are finished with alias. */
2687 end_alias_analysis ();
2689 if (dump_file)
2691 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2692 current_function_name (), n_basic_blocks, bytes_used);
2693 fprintf (dump_file, "%d substs, %d insns created\n",
2694 gcse_subst_count, gcse_create_count);
2697 return changed;
2700 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2701 to INSN. If such notes are added to an insn which references a
2702 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2703 that note, because the following loop optimization pass requires
2704 them. */
2706 /* ??? If there was a jump optimization pass after gcse and before loop,
2707 then we would not need to do this here, because jump would add the
2708 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2710 static void
2711 add_label_notes (rtx x, rtx insn)
2713 enum rtx_code code = GET_CODE (x);
2714 int i, j;
2715 const char *fmt;
2717 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2719 /* This code used to ignore labels that referred to dispatch tables to
2720 avoid flow generating (slightly) worse code.
2722 We no longer ignore such label references (see LABEL_REF handling in
2723 mark_jump_label for additional information). */
2725 /* There's no reason for current users to emit jump-insns with
2726 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2727 notes. */
2728 gcc_assert (!JUMP_P (insn));
2729 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2731 if (LABEL_P (XEXP (x, 0)))
2732 LABEL_NUSES (XEXP (x, 0))++;
2734 return;
2737 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2739 if (fmt[i] == 'e')
2740 add_label_notes (XEXP (x, i), insn);
2741 else if (fmt[i] == 'E')
2742 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2743 add_label_notes (XVECEXP (x, i, j), insn);
2747 /* Code Hoisting variables and subroutines. */
2749 /* Very busy expressions. */
2750 static sbitmap *hoist_vbein;
2751 static sbitmap *hoist_vbeout;
2753 /* ??? We could compute post dominators and run this algorithm in
2754 reverse to perform tail merging, doing so would probably be
2755 more effective than the tail merging code in jump.c.
2757 It's unclear if tail merging could be run in parallel with
2758 code hoisting. It would be nice. */
2760 /* Allocate vars used for code hoisting analysis. */
2762 static void
2763 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2765 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2766 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2767 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2769 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2770 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2773 /* Free vars used for code hoisting analysis. */
2775 static void
2776 free_code_hoist_mem (void)
2778 sbitmap_vector_free (antloc);
2779 sbitmap_vector_free (transp);
2780 sbitmap_vector_free (comp);
2782 sbitmap_vector_free (hoist_vbein);
2783 sbitmap_vector_free (hoist_vbeout);
2785 free_dominance_info (CDI_DOMINATORS);
2788 /* Compute the very busy expressions at entry/exit from each block.
2790 An expression is very busy if all paths from a given point
2791 compute the expression. */
2793 static void
2794 compute_code_hoist_vbeinout (void)
2796 int changed, passes;
2797 basic_block bb;
2799 bitmap_vector_clear (hoist_vbeout, last_basic_block);
2800 bitmap_vector_clear (hoist_vbein, last_basic_block);
2802 passes = 0;
2803 changed = 1;
2805 while (changed)
2807 changed = 0;
2809 /* We scan the blocks in the reverse order to speed up
2810 the convergence. */
2811 FOR_EACH_BB_REVERSE (bb)
2813 if (bb->next_bb != EXIT_BLOCK_PTR)
2815 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2816 hoist_vbein, bb);
2818 /* Include expressions in VBEout that are calculated
2819 in BB and available at its end. */
2820 bitmap_ior (hoist_vbeout[bb->index],
2821 hoist_vbeout[bb->index], comp[bb->index]);
2824 changed |= bitmap_or_and (hoist_vbein[bb->index],
2825 antloc[bb->index],
2826 hoist_vbeout[bb->index],
2827 transp[bb->index]);
2830 passes++;
2833 if (dump_file)
2835 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2837 FOR_EACH_BB (bb)
2839 fprintf (dump_file, "vbein (%d): ", bb->index);
2840 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2841 fprintf (dump_file, "vbeout(%d): ", bb->index);
2842 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2847 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2849 static void
2850 compute_code_hoist_data (void)
2852 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2853 prune_expressions (false);
2854 compute_code_hoist_vbeinout ();
2855 calculate_dominance_info (CDI_DOMINATORS);
2856 if (dump_file)
2857 fprintf (dump_file, "\n");
2860 /* Update register pressure for BB when hoisting an expression from
2861 instruction FROM, if live ranges of inputs are shrunk. Also
2862 maintain live_in information if live range of register referred
2863 in FROM is shrunk.
2865 Return 0 if register pressure doesn't change, otherwise return
2866 the number by which register pressure is decreased.
2868 NOTE: Register pressure won't be increased in this function. */
2870 static int
2871 update_bb_reg_pressure (basic_block bb, rtx from)
2873 rtx dreg, insn;
2874 basic_block succ_bb;
2875 df_ref *op, op_ref;
2876 edge succ;
2877 edge_iterator ei;
2878 int decreased_pressure = 0;
2879 int nregs;
2880 enum reg_class pressure_class;
2882 for (op = DF_INSN_USES (from); *op; op++)
2884 dreg = DF_REF_REAL_REG (*op);
2885 /* The live range of register is shrunk only if it isn't:
2886 1. referred on any path from the end of this block to EXIT, or
2887 2. referred by insns other than FROM in this block. */
2888 FOR_EACH_EDGE (succ, ei, bb->succs)
2890 succ_bb = succ->dest;
2891 if (succ_bb == EXIT_BLOCK_PTR)
2892 continue;
2894 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2895 break;
2897 if (succ != NULL)
2898 continue;
2900 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2901 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2903 if (!DF_REF_INSN_INFO (op_ref))
2904 continue;
2906 insn = DF_REF_INSN (op_ref);
2907 if (BLOCK_FOR_INSN (insn) == bb
2908 && NONDEBUG_INSN_P (insn) && insn != from)
2909 break;
2912 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2913 /* Decrease register pressure and update live_in information for
2914 this block. */
2915 if (!op_ref && pressure_class != NO_REGS)
2917 decreased_pressure += nregs;
2918 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2919 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2922 return decreased_pressure;
2925 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2926 flow graph, if it can reach BB unimpared. Stop the search if the
2927 expression would need to be moved more than DISTANCE instructions.
2929 DISTANCE is the number of instructions through which EXPR can be
2930 hoisted up in flow graph.
2932 BB_SIZE points to an array which contains the number of instructions
2933 for each basic block.
2935 PRESSURE_CLASS and NREGS are register class and number of hard registers
2936 for storing EXPR.
2938 HOISTED_BBS points to a bitmap indicating basic blocks through which
2939 EXPR is hoisted.
2941 FROM is the instruction from which EXPR is hoisted.
2943 It's unclear exactly what Muchnick meant by "unimpared". It seems
2944 to me that the expression must either be computed or transparent in
2945 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2946 would allow the expression to be hoisted out of loops, even if
2947 the expression wasn't a loop invariant.
2949 Contrast this to reachability for PRE where an expression is
2950 considered reachable if *any* path reaches instead of *all*
2951 paths. */
2953 static int
2954 should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
2955 basic_block bb, sbitmap visited, int distance,
2956 int *bb_size, enum reg_class pressure_class,
2957 int *nregs, bitmap hoisted_bbs, rtx from)
2959 unsigned int i;
2960 edge pred;
2961 edge_iterator ei;
2962 sbitmap_iterator sbi;
2963 int visited_allocated_locally = 0;
2964 int decreased_pressure = 0;
2966 if (flag_ira_hoist_pressure)
2968 /* Record old information of basic block BB when it is visited
2969 at the first time. */
2970 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2972 struct bb_data *data = BB_DATA (bb);
2973 bitmap_copy (data->backup, data->live_in);
2974 data->old_pressure = data->max_reg_pressure[pressure_class];
2976 decreased_pressure = update_bb_reg_pressure (bb, from);
2978 /* Terminate the search if distance, for which EXPR is allowed to move,
2979 is exhausted. */
2980 if (distance > 0)
2982 if (flag_ira_hoist_pressure)
2984 /* Prefer to hoist EXPR if register pressure is decreased. */
2985 if (decreased_pressure > *nregs)
2986 distance += bb_size[bb->index];
2987 /* Let EXPR be hoisted through basic block at no cost if one
2988 of following conditions is satisfied:
2990 1. The basic block has low register pressure.
2991 2. Register pressure won't be increases after hoisting EXPR.
2993 Constant expressions is handled conservatively, because
2994 hoisting constant expression aggressively results in worse
2995 code. This decision is made by the observation of CSiBE
2996 on ARM target, while it has no obvious effect on other
2997 targets like x86, x86_64, mips and powerpc. */
2998 else if (CONST_INT_P (expr->expr)
2999 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
3000 >= ira_class_hard_regs_num[pressure_class]
3001 && decreased_pressure < *nregs))
3002 distance -= bb_size[bb->index];
3004 else
3005 distance -= bb_size[bb->index];
3007 if (distance <= 0)
3008 return 0;
3010 else
3011 gcc_assert (distance == 0);
3013 if (visited == NULL)
3015 visited_allocated_locally = 1;
3016 visited = sbitmap_alloc (last_basic_block);
3017 bitmap_clear (visited);
3020 FOR_EACH_EDGE (pred, ei, bb->preds)
3022 basic_block pred_bb = pred->src;
3024 if (pred->src == ENTRY_BLOCK_PTR)
3025 break;
3026 else if (pred_bb == expr_bb)
3027 continue;
3028 else if (bitmap_bit_p (visited, pred_bb->index))
3029 continue;
3030 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
3031 break;
3032 /* Not killed. */
3033 else
3035 bitmap_set_bit (visited, pred_bb->index);
3036 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3037 visited, distance, bb_size,
3038 pressure_class, nregs,
3039 hoisted_bbs, from))
3040 break;
3043 if (visited_allocated_locally)
3045 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3046 which EXPR is hoisted in hoisted_bbs. */
3047 if (flag_ira_hoist_pressure && !pred)
3049 /* Record the basic block from which EXPR is hoisted. */
3050 bitmap_set_bit (visited, bb->index);
3051 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3052 bitmap_set_bit (hoisted_bbs, i);
3054 sbitmap_free (visited);
3057 return (pred == NULL);
3060 /* Find occurrence in BB. */
3062 static struct occr *
3063 find_occr_in_bb (struct occr *occr, basic_block bb)
3065 /* Find the right occurrence of this expression. */
3066 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3067 occr = occr->next;
3069 return occr;
3072 /* Actually perform code hoisting.
3074 The code hoisting pass can hoist multiple computations of the same
3075 expression along dominated path to a dominating basic block, like
3076 from b2/b3 to b1 as depicted below:
3078 b1 ------
3079 /\ |
3080 / \ |
3081 bx by distance
3082 / \ |
3083 / \ |
3084 b2 b3 ------
3086 Unfortunately code hoisting generally extends the live range of an
3087 output pseudo register, which increases register pressure and hurts
3088 register allocation. To address this issue, an attribute MAX_DISTANCE
3089 is computed and attached to each expression. The attribute is computed
3090 from rtx cost of the corresponding expression and it's used to control
3091 how long the expression can be hoisted up in flow graph. As the
3092 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3093 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3094 register pressure if live ranges of inputs are shrunk.
3096 Option "-fira-hoist-pressure" implements register pressure directed
3097 hoist based on upper method. The rationale is:
3098 1. Calculate register pressure for each basic block by reusing IRA
3099 facility.
3100 2. When expression is hoisted through one basic block, GCC checks
3101 the change of live ranges for inputs/output. The basic block's
3102 register pressure will be increased because of extended live
3103 range of output. However, register pressure will be decreased
3104 if the live ranges of inputs are shrunk.
3105 3. After knowing how hoisting affects register pressure, GCC prefers
3106 to hoist the expression if it can decrease register pressure, by
3107 increasing DISTANCE of the corresponding expression.
3108 4. If hoisting the expression increases register pressure, GCC checks
3109 register pressure of the basic block and decrease DISTANCE only if
3110 the register pressure is high. In other words, expression will be
3111 hoisted through at no cost if the basic block has low register
3112 pressure.
3113 5. Update register pressure information for basic blocks through
3114 which expression is hoisted. */
3116 static int
3117 hoist_code (void)
3119 basic_block bb, dominated;
3120 vec<basic_block> dom_tree_walk;
3121 unsigned int dom_tree_walk_index;
3122 vec<basic_block> domby;
3123 unsigned int i, j, k;
3124 struct expr **index_map;
3125 struct expr *expr;
3126 int *to_bb_head;
3127 int *bb_size;
3128 int changed = 0;
3129 struct bb_data *data;
3130 /* Basic blocks that have occurrences reachable from BB. */
3131 bitmap from_bbs;
3132 /* Basic blocks through which expr is hoisted. */
3133 bitmap hoisted_bbs = NULL;
3134 bitmap_iterator bi;
3136 /* Compute a mapping from expression number (`bitmap_index') to
3137 hash table entry. */
3139 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
3140 for (i = 0; i < expr_hash_table.size; i++)
3141 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3142 index_map[expr->bitmap_index] = expr;
3144 /* Calculate sizes of basic blocks and note how far
3145 each instruction is from the start of its block. We then use this
3146 data to restrict distance an expression can travel. */
3148 to_bb_head = XCNEWVEC (int, get_max_uid ());
3149 bb_size = XCNEWVEC (int, last_basic_block);
3151 FOR_EACH_BB (bb)
3153 rtx insn;
3154 int to_head;
3156 to_head = 0;
3157 FOR_BB_INSNS (bb, insn)
3159 /* Don't count debug instructions to avoid them affecting
3160 decision choices. */
3161 if (NONDEBUG_INSN_P (insn))
3162 to_bb_head[INSN_UID (insn)] = to_head++;
3165 bb_size[bb->index] = to_head;
3168 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
3169 && (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
3170 == ENTRY_BLOCK_PTR->next_bb));
3172 from_bbs = BITMAP_ALLOC (NULL);
3173 if (flag_ira_hoist_pressure)
3174 hoisted_bbs = BITMAP_ALLOC (NULL);
3176 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3177 ENTRY_BLOCK_PTR->next_bb);
3179 /* Walk over each basic block looking for potentially hoistable
3180 expressions, nothing gets hoisted from the entry block. */
3181 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3183 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3185 if (domby.length () == 0)
3186 continue;
3188 /* Examine each expression that is very busy at the exit of this
3189 block. These are the potentially hoistable expressions. */
3190 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3192 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3194 int nregs = 0;
3195 enum reg_class pressure_class = NO_REGS;
3196 /* Current expression. */
3197 struct expr *expr = index_map[i];
3198 /* Number of occurrences of EXPR that can be hoisted to BB. */
3199 int hoistable = 0;
3200 /* Occurrences reachable from BB. */
3201 vec<occr_t> occrs_to_hoist = vNULL;
3202 /* We want to insert the expression into BB only once, so
3203 note when we've inserted it. */
3204 int insn_inserted_p;
3205 occr_t occr;
3207 /* If an expression is computed in BB and is available at end of
3208 BB, hoist all occurrences dominated by BB to BB. */
3209 if (bitmap_bit_p (comp[bb->index], i))
3211 occr = find_occr_in_bb (expr->antic_occr, bb);
3213 if (occr)
3215 /* An occurrence might've been already deleted
3216 while processing a dominator of BB. */
3217 if (!occr->deleted_p)
3219 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3220 hoistable++;
3223 else
3224 hoistable++;
3227 /* We've found a potentially hoistable expression, now
3228 we look at every block BB dominates to see if it
3229 computes the expression. */
3230 FOR_EACH_VEC_ELT (domby, j, dominated)
3232 int max_distance;
3234 /* Ignore self dominance. */
3235 if (bb == dominated)
3236 continue;
3237 /* We've found a dominated block, now see if it computes
3238 the busy expression and whether or not moving that
3239 expression to the "beginning" of that block is safe. */
3240 if (!bitmap_bit_p (antloc[dominated->index], i))
3241 continue;
3243 occr = find_occr_in_bb (expr->antic_occr, dominated);
3244 gcc_assert (occr);
3246 /* An occurrence might've been already deleted
3247 while processing a dominator of BB. */
3248 if (occr->deleted_p)
3249 continue;
3250 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3252 max_distance = expr->max_distance;
3253 if (max_distance > 0)
3254 /* Adjust MAX_DISTANCE to account for the fact that
3255 OCCR won't have to travel all of DOMINATED, but
3256 only part of it. */
3257 max_distance += (bb_size[dominated->index]
3258 - to_bb_head[INSN_UID (occr->insn)]);
3260 pressure_class = get_pressure_class_and_nregs (occr->insn,
3261 &nregs);
3263 /* Note if the expression should be hoisted from the dominated
3264 block to BB if it can reach DOMINATED unimpared.
3266 Keep track of how many times this expression is hoistable
3267 from a dominated block into BB. */
3268 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3269 max_distance, bb_size,
3270 pressure_class, &nregs,
3271 hoisted_bbs, occr->insn))
3273 hoistable++;
3274 occrs_to_hoist.safe_push (occr);
3275 bitmap_set_bit (from_bbs, dominated->index);
3279 /* If we found more than one hoistable occurrence of this
3280 expression, then note it in the vector of expressions to
3281 hoist. It makes no sense to hoist things which are computed
3282 in only one BB, and doing so tends to pessimize register
3283 allocation. One could increase this value to try harder
3284 to avoid any possible code expansion due to register
3285 allocation issues; however experiments have shown that
3286 the vast majority of hoistable expressions are only movable
3287 from two successors, so raising this threshold is likely
3288 to nullify any benefit we get from code hoisting. */
3289 if (hoistable > 1 && dbg_cnt (hoist_insn))
3291 /* If (hoistable != vec::length), then there is
3292 an occurrence of EXPR in BB itself. Don't waste
3293 time looking for LCA in this case. */
3294 if ((unsigned) hoistable == occrs_to_hoist.length ())
3296 basic_block lca;
3298 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3299 from_bbs);
3300 if (lca != bb)
3301 /* Punt, it's better to hoist these occurrences to
3302 LCA. */
3303 occrs_to_hoist.release ();
3306 else
3307 /* Punt, no point hoisting a single occurence. */
3308 occrs_to_hoist.release ();
3310 if (flag_ira_hoist_pressure
3311 && !occrs_to_hoist.is_empty ())
3313 /* Increase register pressure of basic blocks to which
3314 expr is hoisted because of extended live range of
3315 output. */
3316 data = BB_DATA (bb);
3317 data->max_reg_pressure[pressure_class] += nregs;
3318 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3320 data = BB_DATA (BASIC_BLOCK (k));
3321 data->max_reg_pressure[pressure_class] += nregs;
3324 else if (flag_ira_hoist_pressure)
3326 /* Restore register pressure and live_in info for basic
3327 blocks recorded in hoisted_bbs when expr will not be
3328 hoisted. */
3329 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3331 data = BB_DATA (BASIC_BLOCK (k));
3332 bitmap_copy (data->live_in, data->backup);
3333 data->max_reg_pressure[pressure_class]
3334 = data->old_pressure;
3338 if (flag_ira_hoist_pressure)
3339 bitmap_clear (hoisted_bbs);
3341 insn_inserted_p = 0;
3343 /* Walk through occurrences of I'th expressions we want
3344 to hoist to BB and make the transformations. */
3345 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3347 rtx insn;
3348 rtx set;
3350 gcc_assert (!occr->deleted_p);
3352 insn = occr->insn;
3353 set = single_set (insn);
3354 gcc_assert (set);
3356 /* Create a pseudo-reg to store the result of reaching
3357 expressions into. Get the mode for the new pseudo
3358 from the mode of the original destination pseudo.
3360 It is important to use new pseudos whenever we
3361 emit a set. This will allow reload to use
3362 rematerialization for such registers. */
3363 if (!insn_inserted_p)
3364 expr->reaching_reg
3365 = gen_reg_rtx_and_attrs (SET_DEST (set));
3367 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3368 insn);
3369 delete_insn (insn);
3370 occr->deleted_p = 1;
3371 changed = 1;
3372 gcse_subst_count++;
3374 if (!insn_inserted_p)
3376 insert_insn_end_basic_block (expr, bb);
3377 insn_inserted_p = 1;
3381 occrs_to_hoist.release ();
3382 bitmap_clear (from_bbs);
3385 domby.release ();
3388 dom_tree_walk.release ();
3389 BITMAP_FREE (from_bbs);
3390 if (flag_ira_hoist_pressure)
3391 BITMAP_FREE (hoisted_bbs);
3393 free (bb_size);
3394 free (to_bb_head);
3395 free (index_map);
3397 return changed;
3400 /* Return pressure class and number of needed hard registers (through
3401 *NREGS) of register REGNO. */
3402 static enum reg_class
3403 get_regno_pressure_class (int regno, int *nregs)
3405 if (regno >= FIRST_PSEUDO_REGISTER)
3407 enum reg_class pressure_class;
3409 pressure_class = reg_allocno_class (regno);
3410 pressure_class = ira_pressure_class_translate[pressure_class];
3411 *nregs
3412 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3413 return pressure_class;
3415 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3416 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3418 *nregs = 1;
3419 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3421 else
3423 *nregs = 0;
3424 return NO_REGS;
3428 /* Return pressure class and number of hard registers (through *NREGS)
3429 for destination of INSN. */
3430 static enum reg_class
3431 get_pressure_class_and_nregs (rtx insn, int *nregs)
3433 rtx reg;
3434 enum reg_class pressure_class;
3435 rtx set = single_set (insn);
3437 /* Considered invariant insns have only one set. */
3438 gcc_assert (set != NULL_RTX);
3439 reg = SET_DEST (set);
3440 if (GET_CODE (reg) == SUBREG)
3441 reg = SUBREG_REG (reg);
3442 if (MEM_P (reg))
3444 *nregs = 0;
3445 pressure_class = NO_REGS;
3447 else
3449 gcc_assert (REG_P (reg));
3450 pressure_class = reg_allocno_class (REGNO (reg));
3451 pressure_class = ira_pressure_class_translate[pressure_class];
3452 *nregs
3453 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3455 return pressure_class;
3458 /* Increase (if INCR_P) or decrease current register pressure for
3459 register REGNO. */
3460 static void
3461 change_pressure (int regno, bool incr_p)
3463 int nregs;
3464 enum reg_class pressure_class;
3466 pressure_class = get_regno_pressure_class (regno, &nregs);
3467 if (! incr_p)
3468 curr_reg_pressure[pressure_class] -= nregs;
3469 else
3471 curr_reg_pressure[pressure_class] += nregs;
3472 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3473 < curr_reg_pressure[pressure_class])
3474 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3475 = curr_reg_pressure[pressure_class];
3479 /* Calculate register pressure for each basic block by walking insns
3480 from last to first. */
3481 static void
3482 calculate_bb_reg_pressure (void)
3484 int i;
3485 unsigned int j;
3486 rtx insn;
3487 basic_block bb;
3488 bitmap curr_regs_live;
3489 bitmap_iterator bi;
3492 ira_setup_eliminable_regset (false);
3493 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3494 FOR_EACH_BB (bb)
3496 curr_bb = bb;
3497 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3498 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3499 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3500 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3501 for (i = 0; i < ira_pressure_classes_num; i++)
3502 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3503 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3504 change_pressure (j, true);
3506 FOR_BB_INSNS_REVERSE (bb, insn)
3508 rtx dreg;
3509 int regno;
3510 df_ref *def_rec, *use_rec;
3512 if (! NONDEBUG_INSN_P (insn))
3513 continue;
3515 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
3517 dreg = DF_REF_REAL_REG (*def_rec);
3518 gcc_assert (REG_P (dreg));
3519 regno = REGNO (dreg);
3520 if (!(DF_REF_FLAGS (*def_rec)
3521 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3523 if (bitmap_clear_bit (curr_regs_live, regno))
3524 change_pressure (regno, false);
3528 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
3530 dreg = DF_REF_REAL_REG (*use_rec);
3531 gcc_assert (REG_P (dreg));
3532 regno = REGNO (dreg);
3533 if (bitmap_set_bit (curr_regs_live, regno))
3534 change_pressure (regno, true);
3538 BITMAP_FREE (curr_regs_live);
3540 if (dump_file == NULL)
3541 return;
3543 fprintf (dump_file, "\nRegister Pressure: \n");
3544 FOR_EACH_BB (bb)
3546 fprintf (dump_file, " Basic block %d: \n", bb->index);
3547 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3549 enum reg_class pressure_class;
3551 pressure_class = ira_pressure_classes[i];
3552 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3553 continue;
3555 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3556 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3559 fprintf (dump_file, "\n");
3562 /* Top level routine to perform one code hoisting (aka unification) pass
3564 Return nonzero if a change was made. */
3566 static int
3567 one_code_hoisting_pass (void)
3569 int changed = 0;
3571 gcse_subst_count = 0;
3572 gcse_create_count = 0;
3574 /* Return if there's nothing to do, or it is too expensive. */
3575 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
3576 || is_too_expensive (_("GCSE disabled")))
3577 return 0;
3579 doing_code_hoisting_p = true;
3581 /* Calculate register pressure for each basic block. */
3582 if (flag_ira_hoist_pressure)
3584 regstat_init_n_sets_and_refs ();
3585 ira_set_pseudo_classes (false, dump_file);
3586 alloc_aux_for_blocks (sizeof (struct bb_data));
3587 calculate_bb_reg_pressure ();
3588 regstat_free_n_sets_and_refs ();
3591 /* We need alias. */
3592 init_alias_analysis ();
3594 bytes_used = 0;
3595 gcc_obstack_init (&gcse_obstack);
3596 alloc_gcse_mem ();
3598 alloc_hash_table (&expr_hash_table);
3599 compute_hash_table (&expr_hash_table);
3600 if (dump_file)
3601 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3603 if (expr_hash_table.n_elems > 0)
3605 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
3606 compute_code_hoist_data ();
3607 changed = hoist_code ();
3608 free_code_hoist_mem ();
3611 if (flag_ira_hoist_pressure)
3613 free_aux_for_blocks ();
3614 free_reg_info ();
3616 free_hash_table (&expr_hash_table);
3617 free_gcse_mem ();
3618 obstack_free (&gcse_obstack, NULL);
3620 /* We are finished with alias. */
3621 end_alias_analysis ();
3623 if (dump_file)
3625 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3626 current_function_name (), n_basic_blocks, bytes_used);
3627 fprintf (dump_file, "%d substs, %d insns created\n",
3628 gcse_subst_count, gcse_create_count);
3631 doing_code_hoisting_p = false;
3633 return changed;
3636 /* Here we provide the things required to do store motion towards the exit.
3637 In order for this to be effective, gcse also needed to be taught how to
3638 move a load when it is killed only by a store to itself.
3640 int i;
3641 float a[10];
3643 void foo(float scale)
3645 for (i=0; i<10; i++)
3646 a[i] *= scale;
3649 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3650 the load out since its live around the loop, and stored at the bottom
3651 of the loop.
3653 The 'Load Motion' referred to and implemented in this file is
3654 an enhancement to gcse which when using edge based LCM, recognizes
3655 this situation and allows gcse to move the load out of the loop.
3657 Once gcse has hoisted the load, store motion can then push this
3658 load towards the exit, and we end up with no loads or stores of 'i'
3659 in the loop. */
3661 static hashval_t
3662 pre_ldst_expr_hash (const void *p)
3664 int do_not_record_p = 0;
3665 const struct ls_expr *const x = (const struct ls_expr *) p;
3666 return
3667 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
3670 static int
3671 pre_ldst_expr_eq (const void *p1, const void *p2)
3673 const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
3674 *const ptr2 = (const struct ls_expr *) p2;
3675 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
3678 /* This will search the ldst list for a matching expression. If it
3679 doesn't find one, we create one and initialize it. */
3681 static struct ls_expr *
3682 ldst_entry (rtx x)
3684 int do_not_record_p = 0;
3685 struct ls_expr * ptr;
3686 unsigned int hash;
3687 void **slot;
3688 struct ls_expr e;
3690 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3691 NULL, /*have_reg_qty=*/false);
3693 e.pattern = x;
3694 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
3695 if (*slot)
3696 return (struct ls_expr *)*slot;
3698 ptr = XNEW (struct ls_expr);
3700 ptr->next = pre_ldst_mems;
3701 ptr->expr = NULL;
3702 ptr->pattern = x;
3703 ptr->pattern_regs = NULL_RTX;
3704 ptr->loads = NULL_RTX;
3705 ptr->stores = NULL_RTX;
3706 ptr->reaching_reg = NULL_RTX;
3707 ptr->invalid = 0;
3708 ptr->index = 0;
3709 ptr->hash_index = hash;
3710 pre_ldst_mems = ptr;
3711 *slot = ptr;
3713 return ptr;
3716 /* Free up an individual ldst entry. */
3718 static void
3719 free_ldst_entry (struct ls_expr * ptr)
3721 free_INSN_LIST_list (& ptr->loads);
3722 free_INSN_LIST_list (& ptr->stores);
3724 free (ptr);
3727 /* Free up all memory associated with the ldst list. */
3729 static void
3730 free_ld_motion_mems (void)
3732 if (pre_ldst_table)
3733 htab_delete (pre_ldst_table);
3734 pre_ldst_table = NULL;
3736 while (pre_ldst_mems)
3738 struct ls_expr * tmp = pre_ldst_mems;
3740 pre_ldst_mems = pre_ldst_mems->next;
3742 free_ldst_entry (tmp);
3745 pre_ldst_mems = NULL;
3748 /* Dump debugging info about the ldst list. */
3750 static void
3751 print_ldst_list (FILE * file)
3753 struct ls_expr * ptr;
3755 fprintf (file, "LDST list: \n");
3757 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3759 fprintf (file, " Pattern (%3d): ", ptr->index);
3761 print_rtl (file, ptr->pattern);
3763 fprintf (file, "\n Loads : ");
3765 if (ptr->loads)
3766 print_rtl (file, ptr->loads);
3767 else
3768 fprintf (file, "(nil)");
3770 fprintf (file, "\n Stores : ");
3772 if (ptr->stores)
3773 print_rtl (file, ptr->stores);
3774 else
3775 fprintf (file, "(nil)");
3777 fprintf (file, "\n\n");
3780 fprintf (file, "\n");
3783 /* Returns 1 if X is in the list of ldst only expressions. */
3785 static struct ls_expr *
3786 find_rtx_in_ldst (rtx x)
3788 struct ls_expr e;
3789 void **slot;
3790 if (!pre_ldst_table)
3791 return NULL;
3792 e.pattern = x;
3793 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
3794 if (!slot || ((struct ls_expr *)*slot)->invalid)
3795 return NULL;
3796 return (struct ls_expr *) *slot;
3799 /* Load Motion for loads which only kill themselves. */
3801 /* Return true if x, a MEM, is a simple access with no side effects.
3802 These are the types of loads we consider for the ld_motion list,
3803 otherwise we let the usual aliasing take care of it. */
3805 static int
3806 simple_mem (const_rtx x)
3808 if (MEM_VOLATILE_P (x))
3809 return 0;
3811 if (GET_MODE (x) == BLKmode)
3812 return 0;
3814 /* If we are handling exceptions, we must be careful with memory references
3815 that may trap. If we are not, the behavior is undefined, so we may just
3816 continue. */
3817 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3818 return 0;
3820 if (side_effects_p (x))
3821 return 0;
3823 /* Do not consider function arguments passed on stack. */
3824 if (reg_mentioned_p (stack_pointer_rtx, x))
3825 return 0;
3827 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3828 return 0;
3830 return 1;
3833 /* Make sure there isn't a buried reference in this pattern anywhere.
3834 If there is, invalidate the entry for it since we're not capable
3835 of fixing it up just yet.. We have to be sure we know about ALL
3836 loads since the aliasing code will allow all entries in the
3837 ld_motion list to not-alias itself. If we miss a load, we will get
3838 the wrong value since gcse might common it and we won't know to
3839 fix it up. */
3841 static void
3842 invalidate_any_buried_refs (rtx x)
3844 const char * fmt;
3845 int i, j;
3846 struct ls_expr * ptr;
3848 /* Invalidate it in the list. */
3849 if (MEM_P (x) && simple_mem (x))
3851 ptr = ldst_entry (x);
3852 ptr->invalid = 1;
3855 /* Recursively process the insn. */
3856 fmt = GET_RTX_FORMAT (GET_CODE (x));
3858 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3860 if (fmt[i] == 'e')
3861 invalidate_any_buried_refs (XEXP (x, i));
3862 else if (fmt[i] == 'E')
3863 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3864 invalidate_any_buried_refs (XVECEXP (x, i, j));
3868 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3869 being defined as MEM loads and stores to symbols, with no side effects
3870 and no registers in the expression. For a MEM destination, we also
3871 check that the insn is still valid if we replace the destination with a
3872 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3873 which don't match this criteria, they are invalidated and trimmed out
3874 later. */
3876 static void
3877 compute_ld_motion_mems (void)
3879 struct ls_expr * ptr;
3880 basic_block bb;
3881 rtx insn;
3883 pre_ldst_mems = NULL;
3884 pre_ldst_table
3885 = htab_create (13, pre_ldst_expr_hash, pre_ldst_expr_eq, NULL);
3887 FOR_EACH_BB (bb)
3889 FOR_BB_INSNS (bb, insn)
3891 if (NONDEBUG_INSN_P (insn))
3893 if (GET_CODE (PATTERN (insn)) == SET)
3895 rtx src = SET_SRC (PATTERN (insn));
3896 rtx dest = SET_DEST (PATTERN (insn));
3898 /* Check for a simple LOAD... */
3899 if (MEM_P (src) && simple_mem (src))
3901 ptr = ldst_entry (src);
3902 if (REG_P (dest))
3903 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3904 else
3905 ptr->invalid = 1;
3907 else
3909 /* Make sure there isn't a buried load somewhere. */
3910 invalidate_any_buried_refs (src);
3913 /* Check for stores. Don't worry about aliased ones, they
3914 will block any movement we might do later. We only care
3915 about this exact pattern since those are the only
3916 circumstance that we will ignore the aliasing info. */
3917 if (MEM_P (dest) && simple_mem (dest))
3919 ptr = ldst_entry (dest);
3921 if (! MEM_P (src)
3922 && GET_CODE (src) != ASM_OPERANDS
3923 /* Check for REG manually since want_to_gcse_p
3924 returns 0 for all REGs. */
3925 && can_assign_to_reg_without_clobbers_p (src))
3926 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3927 else
3928 ptr->invalid = 1;
3931 else
3932 invalidate_any_buried_refs (PATTERN (insn));
3938 /* Remove any references that have been either invalidated or are not in the
3939 expression list for pre gcse. */
3941 static void
3942 trim_ld_motion_mems (void)
3944 struct ls_expr * * last = & pre_ldst_mems;
3945 struct ls_expr * ptr = pre_ldst_mems;
3947 while (ptr != NULL)
3949 struct expr * expr;
3951 /* Delete if entry has been made invalid. */
3952 if (! ptr->invalid)
3954 /* Delete if we cannot find this mem in the expression list. */
3955 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3957 for (expr = expr_hash_table.table[hash];
3958 expr != NULL;
3959 expr = expr->next_same_hash)
3960 if (expr_equiv_p (expr->expr, ptr->pattern))
3961 break;
3963 else
3964 expr = (struct expr *) 0;
3966 if (expr)
3968 /* Set the expression field if we are keeping it. */
3969 ptr->expr = expr;
3970 last = & ptr->next;
3971 ptr = ptr->next;
3973 else
3975 *last = ptr->next;
3976 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
3977 free_ldst_entry (ptr);
3978 ptr = * last;
3982 /* Show the world what we've found. */
3983 if (dump_file && pre_ldst_mems != NULL)
3984 print_ldst_list (dump_file);
3987 /* This routine will take an expression which we are replacing with
3988 a reaching register, and update any stores that are needed if
3989 that expression is in the ld_motion list. Stores are updated by
3990 copying their SRC to the reaching register, and then storing
3991 the reaching register into the store location. These keeps the
3992 correct value in the reaching register for the loads. */
3994 static void
3995 update_ld_motion_stores (struct expr * expr)
3997 struct ls_expr * mem_ptr;
3999 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4001 /* We can try to find just the REACHED stores, but is shouldn't
4002 matter to set the reaching reg everywhere... some might be
4003 dead and should be eliminated later. */
4005 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4006 where reg is the reaching reg used in the load. We checked in
4007 compute_ld_motion_mems that we can replace (set mem expr) with
4008 (set reg expr) in that insn. */
4009 rtx list = mem_ptr->stores;
4011 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4013 rtx insn = XEXP (list, 0);
4014 rtx pat = PATTERN (insn);
4015 rtx src = SET_SRC (pat);
4016 rtx reg = expr->reaching_reg;
4017 rtx copy;
4019 /* If we've already copied it, continue. */
4020 if (expr->reaching_reg == src)
4021 continue;
4023 if (dump_file)
4025 fprintf (dump_file, "PRE: store updated with reaching reg ");
4026 print_rtl (dump_file, reg);
4027 fprintf (dump_file, ":\n ");
4028 print_inline_rtx (dump_file, insn, 8);
4029 fprintf (dump_file, "\n");
4032 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4033 emit_insn_before (copy, insn);
4034 SET_SRC (pat) = reg;
4035 df_insn_rescan (insn);
4037 /* un-recognize this pattern since it's probably different now. */
4038 INSN_CODE (insn) = -1;
4039 gcse_create_count++;
4044 /* Return true if the graph is too expensive to optimize. PASS is the
4045 optimization about to be performed. */
4047 static bool
4048 is_too_expensive (const char *pass)
4050 /* Trying to perform global optimizations on flow graphs which have
4051 a high connectivity will take a long time and is unlikely to be
4052 particularly useful.
4054 In normal circumstances a cfg should have about twice as many
4055 edges as blocks. But we do not want to punish small functions
4056 which have a couple switch statements. Rather than simply
4057 threshold the number of blocks, uses something with a more
4058 graceful degradation. */
4059 if (n_edges > 20000 + n_basic_blocks * 4)
4061 warning (OPT_Wdisabled_optimization,
4062 "%s: %d basic blocks and %d edges/basic block",
4063 pass, n_basic_blocks, n_edges / n_basic_blocks);
4065 return true;
4068 /* If allocating memory for the dataflow bitmaps would take up too much
4069 storage it's better just to disable the optimization. */
4070 if ((n_basic_blocks
4071 * SBITMAP_SET_SIZE (max_reg_num ())
4072 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4074 warning (OPT_Wdisabled_optimization,
4075 "%s: %d basic blocks and %d registers",
4076 pass, n_basic_blocks, max_reg_num ());
4078 return true;
4081 return false;
4084 /* All the passes implemented in this file. Each pass has its
4085 own gate and execute function, and at the end of the file a
4086 pass definition for passes.c.
4088 We do not construct an accurate cfg in functions which call
4089 setjmp, so none of these passes runs if the function calls
4090 setjmp.
4091 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4093 static bool
4094 gate_rtl_pre (void)
4096 return optimize > 0 && flag_gcse
4097 && !cfun->calls_setjmp
4098 && optimize_function_for_speed_p (cfun)
4099 && dbg_cnt (pre);
4102 static unsigned int
4103 execute_rtl_pre (void)
4105 int changed;
4106 delete_unreachable_blocks ();
4107 df_analyze ();
4108 changed = one_pre_gcse_pass ();
4109 flag_rerun_cse_after_global_opts |= changed;
4110 if (changed)
4111 cleanup_cfg (0);
4112 return 0;
4115 static bool
4116 gate_rtl_hoist (void)
4118 return optimize > 0 && flag_gcse
4119 && !cfun->calls_setjmp
4120 /* It does not make sense to run code hoisting unless we are optimizing
4121 for code size -- it rarely makes programs faster, and can make then
4122 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4123 && optimize_function_for_size_p (cfun)
4124 && dbg_cnt (hoist);
4127 static unsigned int
4128 execute_rtl_hoist (void)
4130 int changed;
4131 delete_unreachable_blocks ();
4132 df_analyze ();
4133 changed = one_code_hoisting_pass ();
4134 flag_rerun_cse_after_global_opts |= changed;
4135 if (changed)
4136 cleanup_cfg (0);
4137 return 0;
4140 struct rtl_opt_pass pass_rtl_pre =
4143 RTL_PASS,
4144 "rtl pre", /* name */
4145 OPTGROUP_NONE, /* optinfo_flags */
4146 gate_rtl_pre, /* gate */
4147 execute_rtl_pre, /* execute */
4148 NULL, /* sub */
4149 NULL, /* next */
4150 0, /* static_pass_number */
4151 TV_PRE, /* tv_id */
4152 PROP_cfglayout, /* properties_required */
4153 0, /* properties_provided */
4154 0, /* properties_destroyed */
4155 0, /* todo_flags_start */
4156 TODO_df_finish | TODO_verify_rtl_sharing |
4157 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
4161 struct rtl_opt_pass pass_rtl_hoist =
4164 RTL_PASS,
4165 "hoist", /* name */
4166 OPTGROUP_NONE, /* optinfo_flags */
4167 gate_rtl_hoist, /* gate */
4168 execute_rtl_hoist, /* execute */
4169 NULL, /* sub */
4170 NULL, /* next */
4171 0, /* static_pass_number */
4172 TV_HOIST, /* tv_id */
4173 PROP_cfglayout, /* properties_required */
4174 0, /* properties_provided */
4175 0, /* properties_destroyed */
4176 0, /* todo_flags_start */
4177 TODO_df_finish | TODO_verify_rtl_sharing |
4178 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
4182 #include "gt-gcse.h"