Mark ChangeLog
[official-gcc.git] / gcc / combine.c
blob0cdd37b9465fc8067d52864421f93f6a16f33bce
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "df.h"
103 #include "valtrack.h"
104 #include "cgraph.h"
105 #include "obstack.h"
107 /* Number of attempts to combine instructions in this function. */
109 static int combine_attempts;
111 /* Number of attempts that got as far as substitution in this function. */
113 static int combine_merges;
115 /* Number of instructions combined with added SETs in this function. */
117 static int combine_extras;
119 /* Number of instructions combined in this function. */
121 static int combine_successes;
123 /* Totals over entire compilation. */
125 static int total_attempts, total_merges, total_extras, total_successes;
127 /* combine_instructions may try to replace the right hand side of the
128 second instruction with the value of an associated REG_EQUAL note
129 before throwing it at try_combine. That is problematic when there
130 is a REG_DEAD note for a register used in the old right hand side
131 and can cause distribute_notes to do wrong things. This is the
132 second instruction if it has been so modified, null otherwise. */
134 static rtx i2mod;
136 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138 static rtx i2mod_old_rhs;
140 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142 static rtx i2mod_new_rhs;
144 typedef struct reg_stat_struct {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx last_set;
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
164 Therefore, we maintain the following fields:
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
180 (The next two parameters are out of date).
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
194 /* Record last value assigned to (hard or pseudo) register n. */
196 rtx last_set_value;
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
201 int last_set_table_tick;
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
206 int last_set_label;
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
221 char last_set_invalid;
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
233 If an entry is zero, it means that we don't know anything special. */
235 unsigned char sign_bit_copies;
237 unsigned HOST_WIDE_INT nonzero_bits;
239 /* Record the value of the label_tick when the last truncation
240 happened. The field truncated_to_mode is only valid if
241 truncation_label == label_tick. */
243 int truncation_label;
245 /* Record the last truncation seen for this register. If truncation
246 is not a nop to this mode we might be able to save an explicit
247 truncation if we know that value already contains a truncated
248 value. */
250 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
251 } reg_stat_type;
254 static vec<reg_stat_type> reg_stat;
256 /* Record the luid of the last insn that invalidated memory
257 (anything that writes memory, and subroutine calls, but not pushes). */
259 static int mem_last_set;
261 /* Record the luid of the last CALL_INSN
262 so we can tell whether a potential combination crosses any calls. */
264 static int last_call_luid;
266 /* When `subst' is called, this is the insn that is being modified
267 (by combining in a previous insn). The PATTERN of this insn
268 is still the old pattern partially modified and it should not be
269 looked at, but this may be used to examine the successors of the insn
270 to judge whether a simplification is valid. */
272 static rtx subst_insn;
274 /* This is the lowest LUID that `subst' is currently dealing with.
275 get_last_value will not return a value if the register was set at or
276 after this LUID. If not for this mechanism, we could get confused if
277 I2 or I1 in try_combine were an insn that used the old value of a register
278 to obtain a new value. In that case, we might erroneously get the
279 new value of the register when we wanted the old one. */
281 static int subst_low_luid;
283 /* This contains any hard registers that are used in newpat; reg_dead_at_p
284 must consider all these registers to be always live. */
286 static HARD_REG_SET newpat_used_regs;
288 /* This is an insn to which a LOG_LINKS entry has been added. If this
289 insn is the earlier than I2 or I3, combine should rescan starting at
290 that location. */
292 static rtx added_links_insn;
294 /* Basic block in which we are performing combines. */
295 static basic_block this_basic_block;
296 static bool optimize_this_for_speed_p;
299 /* Length of the currently allocated uid_insn_cost array. */
301 static int max_uid_known;
303 /* The following array records the insn_rtx_cost for every insn
304 in the instruction stream. */
306 static int *uid_insn_cost;
308 /* The following array records the LOG_LINKS for every insn in the
309 instruction stream as struct insn_link pointers. */
311 struct insn_link {
312 rtx insn;
313 struct insn_link *next;
316 static struct insn_link **uid_log_links;
318 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
319 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
321 #define FOR_EACH_LOG_LINK(L, INSN) \
322 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
324 /* Links for LOG_LINKS are allocated from this obstack. */
326 static struct obstack insn_link_obstack;
328 /* Allocate a link. */
330 static inline struct insn_link *
331 alloc_insn_link (rtx insn, struct insn_link *next)
333 struct insn_link *l
334 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
335 sizeof (struct insn_link));
336 l->insn = insn;
337 l->next = next;
338 return l;
341 /* Incremented for each basic block. */
343 static int label_tick;
345 /* Reset to label_tick for each extended basic block in scanning order. */
347 static int label_tick_ebb_start;
349 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
350 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
352 static enum machine_mode nonzero_bits_mode;
354 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
355 be safely used. It is zero while computing them and after combine has
356 completed. This former test prevents propagating values based on
357 previously set values, which can be incorrect if a variable is modified
358 in a loop. */
360 static int nonzero_sign_valid;
363 /* Record one modification to rtl structure
364 to be undone by storing old_contents into *where. */
366 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
368 struct undo
370 struct undo *next;
371 enum undo_kind kind;
372 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
373 union { rtx *r; int *i; struct insn_link **l; } where;
376 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
377 num_undo says how many are currently recorded.
379 other_insn is nonzero if we have modified some other insn in the process
380 of working on subst_insn. It must be verified too. */
382 struct undobuf
384 struct undo *undos;
385 struct undo *frees;
386 rtx other_insn;
389 static struct undobuf undobuf;
391 /* Number of times the pseudo being substituted for
392 was found and replaced. */
394 static int n_occurrences;
396 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
397 enum machine_mode,
398 unsigned HOST_WIDE_INT,
399 unsigned HOST_WIDE_INT *);
400 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned int, unsigned int *);
403 static void do_SUBST (rtx *, rtx);
404 static void do_SUBST_INT (int *, int);
405 static void init_reg_last (void);
406 static void setup_incoming_promotions (rtx);
407 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
408 static int cant_combine_insn_p (rtx);
409 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
410 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
411 static int contains_muldiv (rtx);
412 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
413 static void undo_all (void);
414 static void undo_commit (void);
415 static rtx *find_split_point (rtx *, rtx, bool);
416 static rtx subst (rtx, rtx, rtx, int, int, int);
417 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
418 static rtx simplify_if_then_else (rtx);
419 static rtx simplify_set (rtx);
420 static rtx simplify_logical (rtx);
421 static rtx expand_compound_operation (rtx);
422 static const_rtx expand_field_assignment (const_rtx);
423 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
424 rtx, unsigned HOST_WIDE_INT, int, int, int);
425 static rtx extract_left_shift (rtx, int);
426 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
427 unsigned HOST_WIDE_INT *);
428 static rtx canon_reg_for_combine (rtx, rtx);
429 static rtx force_to_mode (rtx, enum machine_mode,
430 unsigned HOST_WIDE_INT, int);
431 static rtx if_then_else_cond (rtx, rtx *, rtx *);
432 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
433 static int rtx_equal_for_field_assignment_p (rtx, rtx);
434 static rtx make_field_assignment (rtx);
435 static rtx apply_distributive_law (rtx);
436 static rtx distribute_and_simplify_rtx (rtx, int);
437 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
438 unsigned HOST_WIDE_INT);
439 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
440 unsigned HOST_WIDE_INT);
441 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
442 HOST_WIDE_INT, enum machine_mode, int *);
443 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
444 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
445 int);
446 static int recog_for_combine (rtx *, rtx, rtx *);
447 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
448 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
449 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
450 static void update_table_tick (rtx);
451 static void record_value_for_reg (rtx, rtx, rtx);
452 static void check_promoted_subreg (rtx, rtx);
453 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
454 static void record_dead_and_set_regs (rtx);
455 static int get_last_value_validate (rtx *, rtx, int, int);
456 static rtx get_last_value (const_rtx);
457 static int use_crosses_set_p (const_rtx, int);
458 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
459 static int reg_dead_at_p (rtx, rtx);
460 static void move_deaths (rtx, rtx, int, rtx, rtx *);
461 static int reg_bitfield_target_p (rtx, rtx);
462 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
463 static void distribute_links (struct insn_link *);
464 static void mark_used_regs_combine (rtx);
465 static void record_promoted_value (rtx, rtx);
466 static int unmentioned_reg_p_1 (rtx *, void *);
467 static bool unmentioned_reg_p (rtx, rtx);
468 static int record_truncated_value (rtx *, void *);
469 static void record_truncated_values (rtx *, void *);
470 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
471 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
474 /* It is not safe to use ordinary gen_lowpart in combine.
475 See comments in gen_lowpart_for_combine. */
476 #undef RTL_HOOKS_GEN_LOWPART
477 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
479 /* Our implementation of gen_lowpart never emits a new pseudo. */
480 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
481 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
483 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
484 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
486 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
487 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
489 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
490 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
492 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
495 /* Convenience wrapper for the canonicalize_comparison target hook.
496 Target hooks cannot use enum rtx_code. */
497 static inline void
498 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
499 bool op0_preserve_value)
501 int code_int = (int)*code;
502 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
503 *code = (enum rtx_code)code_int;
506 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
507 PATTERN can not be split. Otherwise, it returns an insn sequence.
508 This is a wrapper around split_insns which ensures that the
509 reg_stat vector is made larger if the splitter creates a new
510 register. */
512 static rtx
513 combine_split_insns (rtx pattern, rtx insn)
515 rtx ret;
516 unsigned int nregs;
518 ret = split_insns (pattern, insn);
519 nregs = max_reg_num ();
520 if (nregs > reg_stat.length ())
521 reg_stat.safe_grow_cleared (nregs);
522 return ret;
525 /* This is used by find_single_use to locate an rtx in LOC that
526 contains exactly one use of DEST, which is typically either a REG
527 or CC0. It returns a pointer to the innermost rtx expression
528 containing DEST. Appearances of DEST that are being used to
529 totally replace it are not counted. */
531 static rtx *
532 find_single_use_1 (rtx dest, rtx *loc)
534 rtx x = *loc;
535 enum rtx_code code = GET_CODE (x);
536 rtx *result = NULL;
537 rtx *this_result;
538 int i;
539 const char *fmt;
541 switch (code)
543 case CONST:
544 case LABEL_REF:
545 case SYMBOL_REF:
546 CASE_CONST_ANY:
547 case CLOBBER:
548 return 0;
550 case SET:
551 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
552 of a REG that occupies all of the REG, the insn uses DEST if
553 it is mentioned in the destination or the source. Otherwise, we
554 need just check the source. */
555 if (GET_CODE (SET_DEST (x)) != CC0
556 && GET_CODE (SET_DEST (x)) != PC
557 && !REG_P (SET_DEST (x))
558 && ! (GET_CODE (SET_DEST (x)) == SUBREG
559 && REG_P (SUBREG_REG (SET_DEST (x)))
560 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
561 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
562 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
563 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
564 break;
566 return find_single_use_1 (dest, &SET_SRC (x));
568 case MEM:
569 case SUBREG:
570 return find_single_use_1 (dest, &XEXP (x, 0));
572 default:
573 break;
576 /* If it wasn't one of the common cases above, check each expression and
577 vector of this code. Look for a unique usage of DEST. */
579 fmt = GET_RTX_FORMAT (code);
580 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
582 if (fmt[i] == 'e')
584 if (dest == XEXP (x, i)
585 || (REG_P (dest) && REG_P (XEXP (x, i))
586 && REGNO (dest) == REGNO (XEXP (x, i))))
587 this_result = loc;
588 else
589 this_result = find_single_use_1 (dest, &XEXP (x, i));
591 if (result == NULL)
592 result = this_result;
593 else if (this_result)
594 /* Duplicate usage. */
595 return NULL;
597 else if (fmt[i] == 'E')
599 int j;
601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
603 if (XVECEXP (x, i, j) == dest
604 || (REG_P (dest)
605 && REG_P (XVECEXP (x, i, j))
606 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
607 this_result = loc;
608 else
609 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
611 if (result == NULL)
612 result = this_result;
613 else if (this_result)
614 return NULL;
619 return result;
623 /* See if DEST, produced in INSN, is used only a single time in the
624 sequel. If so, return a pointer to the innermost rtx expression in which
625 it is used.
627 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
629 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
630 care about REG_DEAD notes or LOG_LINKS.
632 Otherwise, we find the single use by finding an insn that has a
633 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
634 only referenced once in that insn, we know that it must be the first
635 and last insn referencing DEST. */
637 static rtx *
638 find_single_use (rtx dest, rtx insn, rtx *ploc)
640 basic_block bb;
641 rtx next;
642 rtx *result;
643 struct insn_link *link;
645 #ifdef HAVE_cc0
646 if (dest == cc0_rtx)
648 next = NEXT_INSN (insn);
649 if (next == 0
650 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
651 return 0;
653 result = find_single_use_1 (dest, &PATTERN (next));
654 if (result && ploc)
655 *ploc = next;
656 return result;
658 #endif
660 if (!REG_P (dest))
661 return 0;
663 bb = BLOCK_FOR_INSN (insn);
664 for (next = NEXT_INSN (insn);
665 next && BLOCK_FOR_INSN (next) == bb;
666 next = NEXT_INSN (next))
667 if (INSN_P (next) && dead_or_set_p (next, dest))
669 FOR_EACH_LOG_LINK (link, next)
670 if (link->insn == insn)
671 break;
673 if (link)
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (ploc)
677 *ploc = next;
678 return result;
682 return 0;
685 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
686 insn. The substitution can be undone by undo_all. If INTO is already
687 set to NEWVAL, do not record this change. Because computing NEWVAL might
688 also call SUBST, we have to compute it before we put anything into
689 the undo table. */
691 static void
692 do_SUBST (rtx *into, rtx newval)
694 struct undo *buf;
695 rtx oldval = *into;
697 if (oldval == newval)
698 return;
700 /* We'd like to catch as many invalid transformations here as
701 possible. Unfortunately, there are way too many mode changes
702 that are perfectly valid, so we'd waste too much effort for
703 little gain doing the checks here. Focus on catching invalid
704 transformations involving integer constants. */
705 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
706 && CONST_INT_P (newval))
708 /* Sanity check that we're replacing oldval with a CONST_INT
709 that is a valid sign-extension for the original mode. */
710 gcc_assert (INTVAL (newval)
711 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
713 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
714 CONST_INT is not valid, because after the replacement, the
715 original mode would be gone. Unfortunately, we can't tell
716 when do_SUBST is called to replace the operand thereof, so we
717 perform this test on oldval instead, checking whether an
718 invalid replacement took place before we got here. */
719 gcc_assert (!(GET_CODE (oldval) == SUBREG
720 && CONST_INT_P (SUBREG_REG (oldval))));
721 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
722 && CONST_INT_P (XEXP (oldval, 0))));
725 if (undobuf.frees)
726 buf = undobuf.frees, undobuf.frees = buf->next;
727 else
728 buf = XNEW (struct undo);
730 buf->kind = UNDO_RTX;
731 buf->where.r = into;
732 buf->old_contents.r = oldval;
733 *into = newval;
735 buf->next = undobuf.undos, undobuf.undos = buf;
738 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
740 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
741 for the value of a HOST_WIDE_INT value (including CONST_INT) is
742 not safe. */
744 static void
745 do_SUBST_INT (int *into, int newval)
747 struct undo *buf;
748 int oldval = *into;
750 if (oldval == newval)
751 return;
753 if (undobuf.frees)
754 buf = undobuf.frees, undobuf.frees = buf->next;
755 else
756 buf = XNEW (struct undo);
758 buf->kind = UNDO_INT;
759 buf->where.i = into;
760 buf->old_contents.i = oldval;
761 *into = newval;
763 buf->next = undobuf.undos, undobuf.undos = buf;
766 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
768 /* Similar to SUBST, but just substitute the mode. This is used when
769 changing the mode of a pseudo-register, so that any other
770 references to the entry in the regno_reg_rtx array will change as
771 well. */
773 static void
774 do_SUBST_MODE (rtx *into, enum machine_mode newval)
776 struct undo *buf;
777 enum machine_mode oldval = GET_MODE (*into);
779 if (oldval == newval)
780 return;
782 if (undobuf.frees)
783 buf = undobuf.frees, undobuf.frees = buf->next;
784 else
785 buf = XNEW (struct undo);
787 buf->kind = UNDO_MODE;
788 buf->where.r = into;
789 buf->old_contents.m = oldval;
790 adjust_reg_mode (*into, newval);
792 buf->next = undobuf.undos, undobuf.undos = buf;
795 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
797 #ifndef HAVE_cc0
798 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
800 static void
801 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
803 struct undo *buf;
804 struct insn_link * oldval = *into;
806 if (oldval == newval)
807 return;
809 if (undobuf.frees)
810 buf = undobuf.frees, undobuf.frees = buf->next;
811 else
812 buf = XNEW (struct undo);
814 buf->kind = UNDO_LINKS;
815 buf->where.l = into;
816 buf->old_contents.l = oldval;
817 *into = newval;
819 buf->next = undobuf.undos, undobuf.undos = buf;
822 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
823 #endif
825 /* Subroutine of try_combine. Determine whether the replacement patterns
826 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
827 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
828 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
829 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
830 of all the instructions can be estimated and the replacements are more
831 expensive than the original sequence. */
833 static bool
834 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
835 rtx newi2pat, rtx newotherpat)
837 int i0_cost, i1_cost, i2_cost, i3_cost;
838 int new_i2_cost, new_i3_cost;
839 int old_cost, new_cost;
841 /* Lookup the original insn_rtx_costs. */
842 i2_cost = INSN_COST (i2);
843 i3_cost = INSN_COST (i3);
845 if (i1)
847 i1_cost = INSN_COST (i1);
848 if (i0)
850 i0_cost = INSN_COST (i0);
851 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
852 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
854 else
856 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
857 ? i1_cost + i2_cost + i3_cost : 0);
858 i0_cost = 0;
861 else
863 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
864 i1_cost = i0_cost = 0;
867 /* Calculate the replacement insn_rtx_costs. */
868 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
869 if (newi2pat)
871 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
872 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
873 ? new_i2_cost + new_i3_cost : 0;
875 else
877 new_cost = new_i3_cost;
878 new_i2_cost = 0;
881 if (undobuf.other_insn)
883 int old_other_cost, new_other_cost;
885 old_other_cost = INSN_COST (undobuf.other_insn);
886 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
887 if (old_other_cost > 0 && new_other_cost > 0)
889 old_cost += old_other_cost;
890 new_cost += new_other_cost;
892 else
893 old_cost = 0;
896 /* Disallow this combination if both new_cost and old_cost are greater than
897 zero, and new_cost is greater than old cost. */
898 if (old_cost > 0 && new_cost > old_cost)
900 if (dump_file)
902 if (i0)
904 fprintf (dump_file,
905 "rejecting combination of insns %d, %d, %d and %d\n",
906 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
907 INSN_UID (i3));
908 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
909 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
911 else if (i1)
913 fprintf (dump_file,
914 "rejecting combination of insns %d, %d and %d\n",
915 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
916 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
917 i1_cost, i2_cost, i3_cost, old_cost);
919 else
921 fprintf (dump_file,
922 "rejecting combination of insns %d and %d\n",
923 INSN_UID (i2), INSN_UID (i3));
924 fprintf (dump_file, "original costs %d + %d = %d\n",
925 i2_cost, i3_cost, old_cost);
928 if (newi2pat)
930 fprintf (dump_file, "replacement costs %d + %d = %d\n",
931 new_i2_cost, new_i3_cost, new_cost);
933 else
934 fprintf (dump_file, "replacement cost %d\n", new_cost);
937 return false;
940 /* Update the uid_insn_cost array with the replacement costs. */
941 INSN_COST (i2) = new_i2_cost;
942 INSN_COST (i3) = new_i3_cost;
943 if (i1)
945 INSN_COST (i1) = 0;
946 if (i0)
947 INSN_COST (i0) = 0;
950 return true;
954 /* Delete any insns that copy a register to itself. */
956 static void
957 delete_noop_moves (void)
959 rtx insn, next;
960 basic_block bb;
962 FOR_EACH_BB (bb)
964 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
966 next = NEXT_INSN (insn);
967 if (INSN_P (insn) && noop_move_p (insn))
969 if (dump_file)
970 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
972 delete_insn_and_edges (insn);
979 /* Fill in log links field for all insns. */
981 static void
982 create_log_links (void)
984 basic_block bb;
985 rtx *next_use, insn;
986 df_ref *def_vec, *use_vec;
988 next_use = XCNEWVEC (rtx, max_reg_num ());
990 /* Pass through each block from the end, recording the uses of each
991 register and establishing log links when def is encountered.
992 Note that we do not clear next_use array in order to save time,
993 so we have to test whether the use is in the same basic block as def.
995 There are a few cases below when we do not consider the definition or
996 usage -- these are taken from original flow.c did. Don't ask me why it is
997 done this way; I don't know and if it works, I don't want to know. */
999 FOR_EACH_BB (bb)
1001 FOR_BB_INSNS_REVERSE (bb, insn)
1003 if (!NONDEBUG_INSN_P (insn))
1004 continue;
1006 /* Log links are created only once. */
1007 gcc_assert (!LOG_LINKS (insn));
1009 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1011 df_ref def = *def_vec;
1012 int regno = DF_REF_REGNO (def);
1013 rtx use_insn;
1015 if (!next_use[regno])
1016 continue;
1018 /* Do not consider if it is pre/post modification in MEM. */
1019 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1020 continue;
1022 /* Do not make the log link for frame pointer. */
1023 if ((regno == FRAME_POINTER_REGNUM
1024 && (! reload_completed || frame_pointer_needed))
1025 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1026 || (regno == HARD_FRAME_POINTER_REGNUM
1027 && (! reload_completed || frame_pointer_needed))
1028 #endif
1029 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1030 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1031 #endif
1033 continue;
1035 use_insn = next_use[regno];
1036 if (BLOCK_FOR_INSN (use_insn) == bb)
1038 /* flow.c claimed:
1040 We don't build a LOG_LINK for hard registers contained
1041 in ASM_OPERANDs. If these registers get replaced,
1042 we might wind up changing the semantics of the insn,
1043 even if reload can make what appear to be valid
1044 assignments later. */
1045 if (regno >= FIRST_PSEUDO_REGISTER
1046 || asm_noperands (PATTERN (use_insn)) < 0)
1048 /* Don't add duplicate links between instructions. */
1049 struct insn_link *links;
1050 FOR_EACH_LOG_LINK (links, use_insn)
1051 if (insn == links->insn)
1052 break;
1054 if (!links)
1055 LOG_LINKS (use_insn)
1056 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1059 next_use[regno] = NULL_RTX;
1062 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1064 df_ref use = *use_vec;
1065 int regno = DF_REF_REGNO (use);
1067 /* Do not consider the usage of the stack pointer
1068 by function call. */
1069 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1070 continue;
1072 next_use[regno] = insn;
1077 free (next_use);
1080 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1081 true if we found a LOG_LINK that proves that A feeds B. This only works
1082 if there are no instructions between A and B which could have a link
1083 depending on A, since in that case we would not record a link for B.
1084 We also check the implicit dependency created by a cc0 setter/user
1085 pair. */
1087 static bool
1088 insn_a_feeds_b (rtx a, rtx b)
1090 struct insn_link *links;
1091 FOR_EACH_LOG_LINK (links, b)
1092 if (links->insn == a)
1093 return true;
1094 #ifdef HAVE_cc0
1095 if (sets_cc0_p (a))
1096 return true;
1097 #endif
1098 return false;
1101 /* Main entry point for combiner. F is the first insn of the function.
1102 NREGS is the first unused pseudo-reg number.
1104 Return nonzero if the combiner has turned an indirect jump
1105 instruction into a direct jump. */
1106 static int
1107 combine_instructions (rtx f, unsigned int nregs)
1109 rtx insn, next;
1110 #ifdef HAVE_cc0
1111 rtx prev;
1112 #endif
1113 struct insn_link *links, *nextlinks;
1114 rtx first;
1115 basic_block last_bb;
1117 int new_direct_jump_p = 0;
1119 for (first = f; first && !INSN_P (first); )
1120 first = NEXT_INSN (first);
1121 if (!first)
1122 return 0;
1124 combine_attempts = 0;
1125 combine_merges = 0;
1126 combine_extras = 0;
1127 combine_successes = 0;
1129 rtl_hooks = combine_rtl_hooks;
1131 reg_stat.safe_grow_cleared (nregs);
1133 init_recog_no_volatile ();
1135 /* Allocate array for insn info. */
1136 max_uid_known = get_max_uid ();
1137 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1138 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1139 gcc_obstack_init (&insn_link_obstack);
1141 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1143 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1144 problems when, for example, we have j <<= 1 in a loop. */
1146 nonzero_sign_valid = 0;
1147 label_tick = label_tick_ebb_start = 1;
1149 /* Scan all SETs and see if we can deduce anything about what
1150 bits are known to be zero for some registers and how many copies
1151 of the sign bit are known to exist for those registers.
1153 Also set any known values so that we can use it while searching
1154 for what bits are known to be set. */
1156 setup_incoming_promotions (first);
1157 /* Allow the entry block and the first block to fall into the same EBB.
1158 Conceptually the incoming promotions are assigned to the entry block. */
1159 last_bb = ENTRY_BLOCK_PTR;
1161 create_log_links ();
1162 FOR_EACH_BB (this_basic_block)
1164 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1165 last_call_luid = 0;
1166 mem_last_set = -1;
1168 label_tick++;
1169 if (!single_pred_p (this_basic_block)
1170 || single_pred (this_basic_block) != last_bb)
1171 label_tick_ebb_start = label_tick;
1172 last_bb = this_basic_block;
1174 FOR_BB_INSNS (this_basic_block, insn)
1175 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1177 #ifdef AUTO_INC_DEC
1178 rtx links;
1179 #endif
1181 subst_low_luid = DF_INSN_LUID (insn);
1182 subst_insn = insn;
1184 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1185 insn);
1186 record_dead_and_set_regs (insn);
1188 #ifdef AUTO_INC_DEC
1189 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1190 if (REG_NOTE_KIND (links) == REG_INC)
1191 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1192 insn);
1193 #endif
1195 /* Record the current insn_rtx_cost of this instruction. */
1196 if (NONJUMP_INSN_P (insn))
1197 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1198 optimize_this_for_speed_p);
1199 if (dump_file)
1200 fprintf(dump_file, "insn_cost %d: %d\n",
1201 INSN_UID (insn), INSN_COST (insn));
1205 nonzero_sign_valid = 1;
1207 /* Now scan all the insns in forward order. */
1208 label_tick = label_tick_ebb_start = 1;
1209 init_reg_last ();
1210 setup_incoming_promotions (first);
1211 last_bb = ENTRY_BLOCK_PTR;
1213 FOR_EACH_BB (this_basic_block)
1215 rtx last_combined_insn = NULL_RTX;
1216 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1217 last_call_luid = 0;
1218 mem_last_set = -1;
1220 label_tick++;
1221 if (!single_pred_p (this_basic_block)
1222 || single_pred (this_basic_block) != last_bb)
1223 label_tick_ebb_start = label_tick;
1224 last_bb = this_basic_block;
1226 rtl_profile_for_bb (this_basic_block);
1227 for (insn = BB_HEAD (this_basic_block);
1228 insn != NEXT_INSN (BB_END (this_basic_block));
1229 insn = next ? next : NEXT_INSN (insn))
1231 next = 0;
1232 if (NONDEBUG_INSN_P (insn))
1234 while (last_combined_insn
1235 && INSN_DELETED_P (last_combined_insn))
1236 last_combined_insn = PREV_INSN (last_combined_insn);
1237 if (last_combined_insn == NULL_RTX
1238 || BARRIER_P (last_combined_insn)
1239 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1240 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1241 last_combined_insn = insn;
1243 /* See if we know about function return values before this
1244 insn based upon SUBREG flags. */
1245 check_promoted_subreg (insn, PATTERN (insn));
1247 /* See if we can find hardregs and subreg of pseudos in
1248 narrower modes. This could help turning TRUNCATEs
1249 into SUBREGs. */
1250 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1252 /* Try this insn with each insn it links back to. */
1254 FOR_EACH_LOG_LINK (links, insn)
1255 if ((next = try_combine (insn, links->insn, NULL_RTX,
1256 NULL_RTX, &new_direct_jump_p,
1257 last_combined_insn)) != 0)
1258 goto retry;
1260 /* Try each sequence of three linked insns ending with this one. */
1262 FOR_EACH_LOG_LINK (links, insn)
1264 rtx link = links->insn;
1266 /* If the linked insn has been replaced by a note, then there
1267 is no point in pursuing this chain any further. */
1268 if (NOTE_P (link))
1269 continue;
1271 FOR_EACH_LOG_LINK (nextlinks, link)
1272 if ((next = try_combine (insn, link, nextlinks->insn,
1273 NULL_RTX, &new_direct_jump_p,
1274 last_combined_insn)) != 0)
1275 goto retry;
1278 #ifdef HAVE_cc0
1279 /* Try to combine a jump insn that uses CC0
1280 with a preceding insn that sets CC0, and maybe with its
1281 logical predecessor as well.
1282 This is how we make decrement-and-branch insns.
1283 We need this special code because data flow connections
1284 via CC0 do not get entered in LOG_LINKS. */
1286 if (JUMP_P (insn)
1287 && (prev = prev_nonnote_insn (insn)) != 0
1288 && NONJUMP_INSN_P (prev)
1289 && sets_cc0_p (PATTERN (prev)))
1291 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1292 &new_direct_jump_p,
1293 last_combined_insn)) != 0)
1294 goto retry;
1296 FOR_EACH_LOG_LINK (nextlinks, prev)
1297 if ((next = try_combine (insn, prev, nextlinks->insn,
1298 NULL_RTX, &new_direct_jump_p,
1299 last_combined_insn)) != 0)
1300 goto retry;
1303 /* Do the same for an insn that explicitly references CC0. */
1304 if (NONJUMP_INSN_P (insn)
1305 && (prev = prev_nonnote_insn (insn)) != 0
1306 && NONJUMP_INSN_P (prev)
1307 && sets_cc0_p (PATTERN (prev))
1308 && GET_CODE (PATTERN (insn)) == SET
1309 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1311 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1312 &new_direct_jump_p,
1313 last_combined_insn)) != 0)
1314 goto retry;
1316 FOR_EACH_LOG_LINK (nextlinks, prev)
1317 if ((next = try_combine (insn, prev, nextlinks->insn,
1318 NULL_RTX, &new_direct_jump_p,
1319 last_combined_insn)) != 0)
1320 goto retry;
1323 /* Finally, see if any of the insns that this insn links to
1324 explicitly references CC0. If so, try this insn, that insn,
1325 and its predecessor if it sets CC0. */
1326 FOR_EACH_LOG_LINK (links, insn)
1327 if (NONJUMP_INSN_P (links->insn)
1328 && GET_CODE (PATTERN (links->insn)) == SET
1329 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1330 && (prev = prev_nonnote_insn (links->insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && (next = try_combine (insn, links->insn,
1334 prev, NULL_RTX, &new_direct_jump_p,
1335 last_combined_insn)) != 0)
1336 goto retry;
1337 #endif
1339 /* Try combining an insn with two different insns whose results it
1340 uses. */
1341 FOR_EACH_LOG_LINK (links, insn)
1342 for (nextlinks = links->next; nextlinks;
1343 nextlinks = nextlinks->next)
1344 if ((next = try_combine (insn, links->insn,
1345 nextlinks->insn, NULL_RTX,
1346 &new_direct_jump_p,
1347 last_combined_insn)) != 0)
1348 goto retry;
1350 /* Try four-instruction combinations. */
1351 FOR_EACH_LOG_LINK (links, insn)
1353 struct insn_link *next1;
1354 rtx link = links->insn;
1356 /* If the linked insn has been replaced by a note, then there
1357 is no point in pursuing this chain any further. */
1358 if (NOTE_P (link))
1359 continue;
1361 FOR_EACH_LOG_LINK (next1, link)
1363 rtx link1 = next1->insn;
1364 if (NOTE_P (link1))
1365 continue;
1366 /* I0 -> I1 -> I2 -> I3. */
1367 FOR_EACH_LOG_LINK (nextlinks, link1)
1368 if ((next = try_combine (insn, link, link1,
1369 nextlinks->insn,
1370 &new_direct_jump_p,
1371 last_combined_insn)) != 0)
1372 goto retry;
1373 /* I0, I1 -> I2, I2 -> I3. */
1374 for (nextlinks = next1->next; nextlinks;
1375 nextlinks = nextlinks->next)
1376 if ((next = try_combine (insn, link, link1,
1377 nextlinks->insn,
1378 &new_direct_jump_p,
1379 last_combined_insn)) != 0)
1380 goto retry;
1383 for (next1 = links->next; next1; next1 = next1->next)
1385 rtx link1 = next1->insn;
1386 if (NOTE_P (link1))
1387 continue;
1388 /* I0 -> I2; I1, I2 -> I3. */
1389 FOR_EACH_LOG_LINK (nextlinks, link)
1390 if ((next = try_combine (insn, link, link1,
1391 nextlinks->insn,
1392 &new_direct_jump_p,
1393 last_combined_insn)) != 0)
1394 goto retry;
1395 /* I0 -> I1; I1, I2 -> I3. */
1396 FOR_EACH_LOG_LINK (nextlinks, link1)
1397 if ((next = try_combine (insn, link, link1,
1398 nextlinks->insn,
1399 &new_direct_jump_p,
1400 last_combined_insn)) != 0)
1401 goto retry;
1405 /* Try this insn with each REG_EQUAL note it links back to. */
1406 FOR_EACH_LOG_LINK (links, insn)
1408 rtx set, note;
1409 rtx temp = links->insn;
1410 if ((set = single_set (temp)) != 0
1411 && (note = find_reg_equal_equiv_note (temp)) != 0
1412 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1413 /* Avoid using a register that may already been marked
1414 dead by an earlier instruction. */
1415 && ! unmentioned_reg_p (note, SET_SRC (set))
1416 && (GET_MODE (note) == VOIDmode
1417 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1418 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1420 /* Temporarily replace the set's source with the
1421 contents of the REG_EQUAL note. The insn will
1422 be deleted or recognized by try_combine. */
1423 rtx orig = SET_SRC (set);
1424 SET_SRC (set) = note;
1425 i2mod = temp;
1426 i2mod_old_rhs = copy_rtx (orig);
1427 i2mod_new_rhs = copy_rtx (note);
1428 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1429 &new_direct_jump_p,
1430 last_combined_insn);
1431 i2mod = NULL_RTX;
1432 if (next)
1433 goto retry;
1434 SET_SRC (set) = orig;
1438 if (!NOTE_P (insn))
1439 record_dead_and_set_regs (insn);
1441 retry:
1447 default_rtl_profile ();
1448 clear_bb_flags ();
1449 new_direct_jump_p |= purge_all_dead_edges ();
1450 delete_noop_moves ();
1452 /* Clean up. */
1453 obstack_free (&insn_link_obstack, NULL);
1454 free (uid_log_links);
1455 free (uid_insn_cost);
1456 reg_stat.release ();
1459 struct undo *undo, *next;
1460 for (undo = undobuf.frees; undo; undo = next)
1462 next = undo->next;
1463 free (undo);
1465 undobuf.frees = 0;
1468 total_attempts += combine_attempts;
1469 total_merges += combine_merges;
1470 total_extras += combine_extras;
1471 total_successes += combine_successes;
1473 nonzero_sign_valid = 0;
1474 rtl_hooks = general_rtl_hooks;
1476 /* Make recognizer allow volatile MEMs again. */
1477 init_recog ();
1479 return new_direct_jump_p;
1482 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1484 static void
1485 init_reg_last (void)
1487 unsigned int i;
1488 reg_stat_type *p;
1490 FOR_EACH_VEC_ELT (reg_stat, i, p)
1491 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1494 /* Set up any promoted values for incoming argument registers. */
1496 static void
1497 setup_incoming_promotions (rtx first)
1499 tree arg;
1500 bool strictly_local = false;
1502 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1503 arg = DECL_CHAIN (arg))
1505 rtx x, reg = DECL_INCOMING_RTL (arg);
1506 int uns1, uns3;
1507 enum machine_mode mode1, mode2, mode3, mode4;
1509 /* Only continue if the incoming argument is in a register. */
1510 if (!REG_P (reg))
1511 continue;
1513 /* Determine, if possible, whether all call sites of the current
1514 function lie within the current compilation unit. (This does
1515 take into account the exporting of a function via taking its
1516 address, and so forth.) */
1517 strictly_local = cgraph_local_info (current_function_decl)->local;
1519 /* The mode and signedness of the argument before any promotions happen
1520 (equal to the mode of the pseudo holding it at that stage). */
1521 mode1 = TYPE_MODE (TREE_TYPE (arg));
1522 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1524 /* The mode and signedness of the argument after any source language and
1525 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1526 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1527 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1529 /* The mode and signedness of the argument as it is actually passed,
1530 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1531 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1532 TREE_TYPE (cfun->decl), 0);
1534 /* The mode of the register in which the argument is being passed. */
1535 mode4 = GET_MODE (reg);
1537 /* Eliminate sign extensions in the callee when:
1538 (a) A mode promotion has occurred; */
1539 if (mode1 == mode3)
1540 continue;
1541 /* (b) The mode of the register is the same as the mode of
1542 the argument as it is passed; */
1543 if (mode3 != mode4)
1544 continue;
1545 /* (c) There's no language level extension; */
1546 if (mode1 == mode2)
1548 /* (c.1) All callers are from the current compilation unit. If that's
1549 the case we don't have to rely on an ABI, we only have to know
1550 what we're generating right now, and we know that we will do the
1551 mode1 to mode2 promotion with the given sign. */
1552 else if (!strictly_local)
1553 continue;
1554 /* (c.2) The combination of the two promotions is useful. This is
1555 true when the signs match, or if the first promotion is unsigned.
1556 In the later case, (sign_extend (zero_extend x)) is the same as
1557 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1558 else if (uns1)
1559 uns3 = true;
1560 else if (uns3)
1561 continue;
1563 /* Record that the value was promoted from mode1 to mode3,
1564 so that any sign extension at the head of the current
1565 function may be eliminated. */
1566 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1567 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1568 record_value_for_reg (reg, first, x);
1572 /* Called via note_stores. If X is a pseudo that is narrower than
1573 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1575 If we are setting only a portion of X and we can't figure out what
1576 portion, assume all bits will be used since we don't know what will
1577 be happening.
1579 Similarly, set how many bits of X are known to be copies of the sign bit
1580 at all locations in the function. This is the smallest number implied
1581 by any set of X. */
1583 static void
1584 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1586 rtx insn = (rtx) data;
1587 unsigned int num;
1589 if (REG_P (x)
1590 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1591 /* If this register is undefined at the start of the file, we can't
1592 say what its contents were. */
1593 && ! REGNO_REG_SET_P
1594 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1595 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1597 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1599 if (set == 0 || GET_CODE (set) == CLOBBER)
1601 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1602 rsp->sign_bit_copies = 1;
1603 return;
1606 /* If this register is being initialized using itself, and the
1607 register is uninitialized in this basic block, and there are
1608 no LOG_LINKS which set the register, then part of the
1609 register is uninitialized. In that case we can't assume
1610 anything about the number of nonzero bits.
1612 ??? We could do better if we checked this in
1613 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1614 could avoid making assumptions about the insn which initially
1615 sets the register, while still using the information in other
1616 insns. We would have to be careful to check every insn
1617 involved in the combination. */
1619 if (insn
1620 && reg_referenced_p (x, PATTERN (insn))
1621 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1622 REGNO (x)))
1624 struct insn_link *link;
1626 FOR_EACH_LOG_LINK (link, insn)
1627 if (dead_or_set_p (link->insn, x))
1628 break;
1629 if (!link)
1631 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1632 rsp->sign_bit_copies = 1;
1633 return;
1637 /* If this is a complex assignment, see if we can convert it into a
1638 simple assignment. */
1639 set = expand_field_assignment (set);
1641 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1642 set what we know about X. */
1644 if (SET_DEST (set) == x
1645 || (paradoxical_subreg_p (SET_DEST (set))
1646 && SUBREG_REG (SET_DEST (set)) == x))
1648 rtx src = SET_SRC (set);
1650 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1651 /* If X is narrower than a word and SRC is a non-negative
1652 constant that would appear negative in the mode of X,
1653 sign-extend it for use in reg_stat[].nonzero_bits because some
1654 machines (maybe most) will actually do the sign-extension
1655 and this is the conservative approach.
1657 ??? For 2.5, try to tighten up the MD files in this regard
1658 instead of this kludge. */
1660 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1661 && CONST_INT_P (src)
1662 && INTVAL (src) > 0
1663 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1664 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1665 #endif
1667 /* Don't call nonzero_bits if it cannot change anything. */
1668 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1669 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1670 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1671 if (rsp->sign_bit_copies == 0
1672 || rsp->sign_bit_copies > num)
1673 rsp->sign_bit_copies = num;
1675 else
1677 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1678 rsp->sign_bit_copies = 1;
1683 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1684 optionally insns that were previously combined into I3 or that will be
1685 combined into the merger of INSN and I3. The order is PRED, PRED2,
1686 INSN, SUCC, SUCC2, I3.
1688 Return 0 if the combination is not allowed for any reason.
1690 If the combination is allowed, *PDEST will be set to the single
1691 destination of INSN and *PSRC to the single source, and this function
1692 will return 1. */
1694 static int
1695 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1696 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1697 rtx *pdest, rtx *psrc)
1699 int i;
1700 const_rtx set = 0;
1701 rtx src, dest;
1702 rtx p;
1703 #ifdef AUTO_INC_DEC
1704 rtx link;
1705 #endif
1706 bool all_adjacent = true;
1707 int (*is_volatile_p) (const_rtx);
1709 if (succ)
1711 if (succ2)
1713 if (next_active_insn (succ2) != i3)
1714 all_adjacent = false;
1715 if (next_active_insn (succ) != succ2)
1716 all_adjacent = false;
1718 else if (next_active_insn (succ) != i3)
1719 all_adjacent = false;
1720 if (next_active_insn (insn) != succ)
1721 all_adjacent = false;
1723 else if (next_active_insn (insn) != i3)
1724 all_adjacent = false;
1726 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1727 or a PARALLEL consisting of such a SET and CLOBBERs.
1729 If INSN has CLOBBER parallel parts, ignore them for our processing.
1730 By definition, these happen during the execution of the insn. When it
1731 is merged with another insn, all bets are off. If they are, in fact,
1732 needed and aren't also supplied in I3, they may be added by
1733 recog_for_combine. Otherwise, it won't match.
1735 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1736 note.
1738 Get the source and destination of INSN. If more than one, can't
1739 combine. */
1741 if (GET_CODE (PATTERN (insn)) == SET)
1742 set = PATTERN (insn);
1743 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1744 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1746 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1748 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1750 switch (GET_CODE (elt))
1752 /* This is important to combine floating point insns
1753 for the SH4 port. */
1754 case USE:
1755 /* Combining an isolated USE doesn't make sense.
1756 We depend here on combinable_i3pat to reject them. */
1757 /* The code below this loop only verifies that the inputs of
1758 the SET in INSN do not change. We call reg_set_between_p
1759 to verify that the REG in the USE does not change between
1760 I3 and INSN.
1761 If the USE in INSN was for a pseudo register, the matching
1762 insn pattern will likely match any register; combining this
1763 with any other USE would only be safe if we knew that the
1764 used registers have identical values, or if there was
1765 something to tell them apart, e.g. different modes. For
1766 now, we forgo such complicated tests and simply disallow
1767 combining of USES of pseudo registers with any other USE. */
1768 if (REG_P (XEXP (elt, 0))
1769 && GET_CODE (PATTERN (i3)) == PARALLEL)
1771 rtx i3pat = PATTERN (i3);
1772 int i = XVECLEN (i3pat, 0) - 1;
1773 unsigned int regno = REGNO (XEXP (elt, 0));
1777 rtx i3elt = XVECEXP (i3pat, 0, i);
1779 if (GET_CODE (i3elt) == USE
1780 && REG_P (XEXP (i3elt, 0))
1781 && (REGNO (XEXP (i3elt, 0)) == regno
1782 ? reg_set_between_p (XEXP (elt, 0),
1783 PREV_INSN (insn), i3)
1784 : regno >= FIRST_PSEUDO_REGISTER))
1785 return 0;
1787 while (--i >= 0);
1789 break;
1791 /* We can ignore CLOBBERs. */
1792 case CLOBBER:
1793 break;
1795 case SET:
1796 /* Ignore SETs whose result isn't used but not those that
1797 have side-effects. */
1798 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1799 && insn_nothrow_p (insn)
1800 && !side_effects_p (elt))
1801 break;
1803 /* If we have already found a SET, this is a second one and
1804 so we cannot combine with this insn. */
1805 if (set)
1806 return 0;
1808 set = elt;
1809 break;
1811 default:
1812 /* Anything else means we can't combine. */
1813 return 0;
1817 if (set == 0
1818 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1819 so don't do anything with it. */
1820 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1821 return 0;
1823 else
1824 return 0;
1826 if (set == 0)
1827 return 0;
1829 /* The simplification in expand_field_assignment may call back to
1830 get_last_value, so set safe guard here. */
1831 subst_low_luid = DF_INSN_LUID (insn);
1833 set = expand_field_assignment (set);
1834 src = SET_SRC (set), dest = SET_DEST (set);
1836 /* Don't eliminate a store in the stack pointer. */
1837 if (dest == stack_pointer_rtx
1838 /* Don't combine with an insn that sets a register to itself if it has
1839 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1840 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1841 /* Can't merge an ASM_OPERANDS. */
1842 || GET_CODE (src) == ASM_OPERANDS
1843 /* Can't merge a function call. */
1844 || GET_CODE (src) == CALL
1845 /* Don't eliminate a function call argument. */
1846 || (CALL_P (i3)
1847 && (find_reg_fusage (i3, USE, dest)
1848 || (REG_P (dest)
1849 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1850 && global_regs[REGNO (dest)])))
1851 /* Don't substitute into an incremented register. */
1852 || FIND_REG_INC_NOTE (i3, dest)
1853 || (succ && FIND_REG_INC_NOTE (succ, dest))
1854 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1855 /* Don't substitute into a non-local goto, this confuses CFG. */
1856 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1857 /* Make sure that DEST is not used after SUCC but before I3. */
1858 || (!all_adjacent
1859 && ((succ2
1860 && (reg_used_between_p (dest, succ2, i3)
1861 || reg_used_between_p (dest, succ, succ2)))
1862 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1863 /* Make sure that the value that is to be substituted for the register
1864 does not use any registers whose values alter in between. However,
1865 If the insns are adjacent, a use can't cross a set even though we
1866 think it might (this can happen for a sequence of insns each setting
1867 the same destination; last_set of that register might point to
1868 a NOTE). If INSN has a REG_EQUIV note, the register is always
1869 equivalent to the memory so the substitution is valid even if there
1870 are intervening stores. Also, don't move a volatile asm or
1871 UNSPEC_VOLATILE across any other insns. */
1872 || (! all_adjacent
1873 && (((!MEM_P (src)
1874 || ! find_reg_note (insn, REG_EQUIV, src))
1875 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1876 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1877 || GET_CODE (src) == UNSPEC_VOLATILE))
1878 /* Don't combine across a CALL_INSN, because that would possibly
1879 change whether the life span of some REGs crosses calls or not,
1880 and it is a pain to update that information.
1881 Exception: if source is a constant, moving it later can't hurt.
1882 Accept that as a special case. */
1883 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1884 return 0;
1886 /* DEST must either be a REG or CC0. */
1887 if (REG_P (dest))
1889 /* If register alignment is being enforced for multi-word items in all
1890 cases except for parameters, it is possible to have a register copy
1891 insn referencing a hard register that is not allowed to contain the
1892 mode being copied and which would not be valid as an operand of most
1893 insns. Eliminate this problem by not combining with such an insn.
1895 Also, on some machines we don't want to extend the life of a hard
1896 register. */
1898 if (REG_P (src)
1899 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1900 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1901 /* Don't extend the life of a hard register unless it is
1902 user variable (if we have few registers) or it can't
1903 fit into the desired register (meaning something special
1904 is going on).
1905 Also avoid substituting a return register into I3, because
1906 reload can't handle a conflict with constraints of other
1907 inputs. */
1908 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1909 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1910 return 0;
1912 else if (GET_CODE (dest) != CC0)
1913 return 0;
1916 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1917 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1918 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1920 /* Don't substitute for a register intended as a clobberable
1921 operand. */
1922 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1923 if (rtx_equal_p (reg, dest))
1924 return 0;
1926 /* If the clobber represents an earlyclobber operand, we must not
1927 substitute an expression containing the clobbered register.
1928 As we do not analyze the constraint strings here, we have to
1929 make the conservative assumption. However, if the register is
1930 a fixed hard reg, the clobber cannot represent any operand;
1931 we leave it up to the machine description to either accept or
1932 reject use-and-clobber patterns. */
1933 if (!REG_P (reg)
1934 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1935 || !fixed_regs[REGNO (reg)])
1936 if (reg_overlap_mentioned_p (reg, src))
1937 return 0;
1940 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1941 or not), reject, unless nothing volatile comes between it and I3 */
1943 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1945 /* Make sure neither succ nor succ2 contains a volatile reference. */
1946 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1947 return 0;
1948 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1949 return 0;
1950 /* We'll check insns between INSN and I3 below. */
1953 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1954 to be an explicit register variable, and was chosen for a reason. */
1956 if (GET_CODE (src) == ASM_OPERANDS
1957 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1958 return 0;
1960 /* If INSN contains volatile references (specifically volatile MEMs),
1961 we cannot combine across any other volatile references.
1962 Even if INSN doesn't contain volatile references, any intervening
1963 volatile insn might affect machine state. */
1965 is_volatile_p = volatile_refs_p (PATTERN (insn))
1966 ? volatile_refs_p
1967 : volatile_insn_p;
1969 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1970 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1971 return 0;
1973 /* If INSN contains an autoincrement or autodecrement, make sure that
1974 register is not used between there and I3, and not already used in
1975 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1976 Also insist that I3 not be a jump; if it were one
1977 and the incremented register were spilled, we would lose. */
1979 #ifdef AUTO_INC_DEC
1980 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1981 if (REG_NOTE_KIND (link) == REG_INC
1982 && (JUMP_P (i3)
1983 || reg_used_between_p (XEXP (link, 0), insn, i3)
1984 || (pred != NULL_RTX
1985 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1986 || (pred2 != NULL_RTX
1987 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1988 || (succ != NULL_RTX
1989 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1990 || (succ2 != NULL_RTX
1991 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1992 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1993 return 0;
1994 #endif
1996 #ifdef HAVE_cc0
1997 /* Don't combine an insn that follows a CC0-setting insn.
1998 An insn that uses CC0 must not be separated from the one that sets it.
1999 We do, however, allow I2 to follow a CC0-setting insn if that insn
2000 is passed as I1; in that case it will be deleted also.
2001 We also allow combining in this case if all the insns are adjacent
2002 because that would leave the two CC0 insns adjacent as well.
2003 It would be more logical to test whether CC0 occurs inside I1 or I2,
2004 but that would be much slower, and this ought to be equivalent. */
2006 p = prev_nonnote_insn (insn);
2007 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2008 && ! all_adjacent)
2009 return 0;
2010 #endif
2012 /* If we get here, we have passed all the tests and the combination is
2013 to be allowed. */
2015 *pdest = dest;
2016 *psrc = src;
2018 return 1;
2021 /* LOC is the location within I3 that contains its pattern or the component
2022 of a PARALLEL of the pattern. We validate that it is valid for combining.
2024 One problem is if I3 modifies its output, as opposed to replacing it
2025 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2026 doing so would produce an insn that is not equivalent to the original insns.
2028 Consider:
2030 (set (reg:DI 101) (reg:DI 100))
2031 (set (subreg:SI (reg:DI 101) 0) <foo>)
2033 This is NOT equivalent to:
2035 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2036 (set (reg:DI 101) (reg:DI 100))])
2038 Not only does this modify 100 (in which case it might still be valid
2039 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2041 We can also run into a problem if I2 sets a register that I1
2042 uses and I1 gets directly substituted into I3 (not via I2). In that
2043 case, we would be getting the wrong value of I2DEST into I3, so we
2044 must reject the combination. This case occurs when I2 and I1 both
2045 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2046 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2047 of a SET must prevent combination from occurring. The same situation
2048 can occur for I0, in which case I0_NOT_IN_SRC is set.
2050 Before doing the above check, we first try to expand a field assignment
2051 into a set of logical operations.
2053 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2054 we place a register that is both set and used within I3. If more than one
2055 such register is detected, we fail.
2057 Return 1 if the combination is valid, zero otherwise. */
2059 static int
2060 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2061 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2063 rtx x = *loc;
2065 if (GET_CODE (x) == SET)
2067 rtx set = x ;
2068 rtx dest = SET_DEST (set);
2069 rtx src = SET_SRC (set);
2070 rtx inner_dest = dest;
2071 rtx subdest;
2073 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2074 || GET_CODE (inner_dest) == SUBREG
2075 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2076 inner_dest = XEXP (inner_dest, 0);
2078 /* Check for the case where I3 modifies its output, as discussed
2079 above. We don't want to prevent pseudos from being combined
2080 into the address of a MEM, so only prevent the combination if
2081 i1 or i2 set the same MEM. */
2082 if ((inner_dest != dest &&
2083 (!MEM_P (inner_dest)
2084 || rtx_equal_p (i2dest, inner_dest)
2085 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2086 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2087 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2088 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2089 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2091 /* This is the same test done in can_combine_p except we can't test
2092 all_adjacent; we don't have to, since this instruction will stay
2093 in place, thus we are not considering increasing the lifetime of
2094 INNER_DEST.
2096 Also, if this insn sets a function argument, combining it with
2097 something that might need a spill could clobber a previous
2098 function argument; the all_adjacent test in can_combine_p also
2099 checks this; here, we do a more specific test for this case. */
2101 || (REG_P (inner_dest)
2102 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2103 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2104 GET_MODE (inner_dest))))
2105 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2106 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2107 return 0;
2109 /* If DEST is used in I3, it is being killed in this insn, so
2110 record that for later. We have to consider paradoxical
2111 subregs here, since they kill the whole register, but we
2112 ignore partial subregs, STRICT_LOW_PART, etc.
2113 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2114 STACK_POINTER_REGNUM, since these are always considered to be
2115 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2116 subdest = dest;
2117 if (GET_CODE (subdest) == SUBREG
2118 && (GET_MODE_SIZE (GET_MODE (subdest))
2119 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2120 subdest = SUBREG_REG (subdest);
2121 if (pi3dest_killed
2122 && REG_P (subdest)
2123 && reg_referenced_p (subdest, PATTERN (i3))
2124 && REGNO (subdest) != FRAME_POINTER_REGNUM
2125 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2126 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2127 #endif
2128 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2129 && (REGNO (subdest) != ARG_POINTER_REGNUM
2130 || ! fixed_regs [REGNO (subdest)])
2131 #endif
2132 && REGNO (subdest) != STACK_POINTER_REGNUM)
2134 if (*pi3dest_killed)
2135 return 0;
2137 *pi3dest_killed = subdest;
2141 else if (GET_CODE (x) == PARALLEL)
2143 int i;
2145 for (i = 0; i < XVECLEN (x, 0); i++)
2146 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2147 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2148 return 0;
2151 return 1;
2154 /* Return 1 if X is an arithmetic expression that contains a multiplication
2155 and division. We don't count multiplications by powers of two here. */
2157 static int
2158 contains_muldiv (rtx x)
2160 switch (GET_CODE (x))
2162 case MOD: case DIV: case UMOD: case UDIV:
2163 return 1;
2165 case MULT:
2166 return ! (CONST_INT_P (XEXP (x, 1))
2167 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2168 default:
2169 if (BINARY_P (x))
2170 return contains_muldiv (XEXP (x, 0))
2171 || contains_muldiv (XEXP (x, 1));
2173 if (UNARY_P (x))
2174 return contains_muldiv (XEXP (x, 0));
2176 return 0;
2180 /* Determine whether INSN can be used in a combination. Return nonzero if
2181 not. This is used in try_combine to detect early some cases where we
2182 can't perform combinations. */
2184 static int
2185 cant_combine_insn_p (rtx insn)
2187 rtx set;
2188 rtx src, dest;
2190 /* If this isn't really an insn, we can't do anything.
2191 This can occur when flow deletes an insn that it has merged into an
2192 auto-increment address. */
2193 if (! INSN_P (insn))
2194 return 1;
2196 /* Never combine loads and stores involving hard regs that are likely
2197 to be spilled. The register allocator can usually handle such
2198 reg-reg moves by tying. If we allow the combiner to make
2199 substitutions of likely-spilled regs, reload might die.
2200 As an exception, we allow combinations involving fixed regs; these are
2201 not available to the register allocator so there's no risk involved. */
2203 set = single_set (insn);
2204 if (! set)
2205 return 0;
2206 src = SET_SRC (set);
2207 dest = SET_DEST (set);
2208 if (GET_CODE (src) == SUBREG)
2209 src = SUBREG_REG (src);
2210 if (GET_CODE (dest) == SUBREG)
2211 dest = SUBREG_REG (dest);
2212 if (REG_P (src) && REG_P (dest)
2213 && ((HARD_REGISTER_P (src)
2214 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2215 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2216 || (HARD_REGISTER_P (dest)
2217 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2218 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2219 return 1;
2221 return 0;
2224 struct likely_spilled_retval_info
2226 unsigned regno, nregs;
2227 unsigned mask;
2230 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2231 hard registers that are known to be written to / clobbered in full. */
2232 static void
2233 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2235 struct likely_spilled_retval_info *const info =
2236 (struct likely_spilled_retval_info *) data;
2237 unsigned regno, nregs;
2238 unsigned new_mask;
2240 if (!REG_P (XEXP (set, 0)))
2241 return;
2242 regno = REGNO (x);
2243 if (regno >= info->regno + info->nregs)
2244 return;
2245 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2246 if (regno + nregs <= info->regno)
2247 return;
2248 new_mask = (2U << (nregs - 1)) - 1;
2249 if (regno < info->regno)
2250 new_mask >>= info->regno - regno;
2251 else
2252 new_mask <<= regno - info->regno;
2253 info->mask &= ~new_mask;
2256 /* Return nonzero iff part of the return value is live during INSN, and
2257 it is likely spilled. This can happen when more than one insn is needed
2258 to copy the return value, e.g. when we consider to combine into the
2259 second copy insn for a complex value. */
2261 static int
2262 likely_spilled_retval_p (rtx insn)
2264 rtx use = BB_END (this_basic_block);
2265 rtx reg, p;
2266 unsigned regno, nregs;
2267 /* We assume here that no machine mode needs more than
2268 32 hard registers when the value overlaps with a register
2269 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2270 unsigned mask;
2271 struct likely_spilled_retval_info info;
2273 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2274 return 0;
2275 reg = XEXP (PATTERN (use), 0);
2276 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2277 return 0;
2278 regno = REGNO (reg);
2279 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2280 if (nregs == 1)
2281 return 0;
2282 mask = (2U << (nregs - 1)) - 1;
2284 /* Disregard parts of the return value that are set later. */
2285 info.regno = regno;
2286 info.nregs = nregs;
2287 info.mask = mask;
2288 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2289 if (INSN_P (p))
2290 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2291 mask = info.mask;
2293 /* Check if any of the (probably) live return value registers is
2294 likely spilled. */
2295 nregs --;
2298 if ((mask & 1 << nregs)
2299 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2300 return 1;
2301 } while (nregs--);
2302 return 0;
2305 /* Adjust INSN after we made a change to its destination.
2307 Changing the destination can invalidate notes that say something about
2308 the results of the insn and a LOG_LINK pointing to the insn. */
2310 static void
2311 adjust_for_new_dest (rtx insn)
2313 /* For notes, be conservative and simply remove them. */
2314 remove_reg_equal_equiv_notes (insn);
2316 /* The new insn will have a destination that was previously the destination
2317 of an insn just above it. Call distribute_links to make a LOG_LINK from
2318 the next use of that destination. */
2319 distribute_links (alloc_insn_link (insn, NULL));
2321 df_insn_rescan (insn);
2324 /* Return TRUE if combine can reuse reg X in mode MODE.
2325 ADDED_SETS is nonzero if the original set is still required. */
2326 static bool
2327 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2329 unsigned int regno;
2331 if (!REG_P(x))
2332 return false;
2334 regno = REGNO (x);
2335 /* Allow hard registers if the new mode is legal, and occupies no more
2336 registers than the old mode. */
2337 if (regno < FIRST_PSEUDO_REGISTER)
2338 return (HARD_REGNO_MODE_OK (regno, mode)
2339 && (hard_regno_nregs[regno][GET_MODE (x)]
2340 >= hard_regno_nregs[regno][mode]));
2342 /* Or a pseudo that is only used once. */
2343 return (REG_N_SETS (regno) == 1 && !added_sets
2344 && !REG_USERVAR_P (x));
2348 /* Check whether X, the destination of a set, refers to part of
2349 the register specified by REG. */
2351 static bool
2352 reg_subword_p (rtx x, rtx reg)
2354 /* Check that reg is an integer mode register. */
2355 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2356 return false;
2358 if (GET_CODE (x) == STRICT_LOW_PART
2359 || GET_CODE (x) == ZERO_EXTRACT)
2360 x = XEXP (x, 0);
2362 return GET_CODE (x) == SUBREG
2363 && SUBREG_REG (x) == reg
2364 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2367 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2368 Note that the INSN should be deleted *after* removing dead edges, so
2369 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2370 but not for a (set (pc) (label_ref FOO)). */
2372 static void
2373 update_cfg_for_uncondjump (rtx insn)
2375 basic_block bb = BLOCK_FOR_INSN (insn);
2376 gcc_assert (BB_END (bb) == insn);
2378 purge_dead_edges (bb);
2380 delete_insn (insn);
2381 if (EDGE_COUNT (bb->succs) == 1)
2383 rtx insn;
2385 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2387 /* Remove barriers from the footer if there are any. */
2388 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2389 if (BARRIER_P (insn))
2391 if (PREV_INSN (insn))
2392 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2393 else
2394 BB_FOOTER (bb) = NEXT_INSN (insn);
2395 if (NEXT_INSN (insn))
2396 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2398 else if (LABEL_P (insn))
2399 break;
2403 /* Try to combine the insns I0, I1 and I2 into I3.
2404 Here I0, I1 and I2 appear earlier than I3.
2405 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2408 If we are combining more than two insns and the resulting insn is not
2409 recognized, try splitting it into two insns. If that happens, I2 and I3
2410 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2411 Otherwise, I0, I1 and I2 are pseudo-deleted.
2413 Return 0 if the combination does not work. Then nothing is changed.
2414 If we did the combination, return the insn at which combine should
2415 resume scanning.
2417 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2418 new direct jump instruction.
2420 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2421 been I3 passed to an earlier try_combine within the same basic
2422 block. */
2424 static rtx
2425 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2426 rtx last_combined_insn)
2428 /* New patterns for I3 and I2, respectively. */
2429 rtx newpat, newi2pat = 0;
2430 rtvec newpat_vec_with_clobbers = 0;
2431 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2432 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2433 dead. */
2434 int added_sets_0, added_sets_1, added_sets_2;
2435 /* Total number of SETs to put into I3. */
2436 int total_sets;
2437 /* Nonzero if I2's or I1's body now appears in I3. */
2438 int i2_is_used = 0, i1_is_used = 0;
2439 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2440 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2441 /* Contains I3 if the destination of I3 is used in its source, which means
2442 that the old life of I3 is being killed. If that usage is placed into
2443 I2 and not in I3, a REG_DEAD note must be made. */
2444 rtx i3dest_killed = 0;
2445 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2446 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2447 /* Copy of SET_SRC of I1 and I0, if needed. */
2448 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2449 /* Set if I2DEST was reused as a scratch register. */
2450 bool i2scratch = false;
2451 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2452 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2453 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2454 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2455 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2456 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2457 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2458 /* Notes that must be added to REG_NOTES in I3 and I2. */
2459 rtx new_i3_notes, new_i2_notes;
2460 /* Notes that we substituted I3 into I2 instead of the normal case. */
2461 int i3_subst_into_i2 = 0;
2462 /* Notes that I1, I2 or I3 is a MULT operation. */
2463 int have_mult = 0;
2464 int swap_i2i3 = 0;
2465 int changed_i3_dest = 0;
2467 int maxreg;
2468 rtx temp;
2469 struct insn_link *link;
2470 rtx other_pat = 0;
2471 rtx new_other_notes;
2472 int i;
2474 /* Only try four-insn combinations when there's high likelihood of
2475 success. Look for simple insns, such as loads of constants or
2476 binary operations involving a constant. */
2477 if (i0)
2479 int i;
2480 int ngood = 0;
2481 int nshift = 0;
2483 if (!flag_expensive_optimizations)
2484 return 0;
2486 for (i = 0; i < 4; i++)
2488 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2489 rtx set = single_set (insn);
2490 rtx src;
2491 if (!set)
2492 continue;
2493 src = SET_SRC (set);
2494 if (CONSTANT_P (src))
2496 ngood += 2;
2497 break;
2499 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2500 ngood++;
2501 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2502 || GET_CODE (src) == LSHIFTRT)
2503 nshift++;
2505 if (ngood < 2 && nshift < 2)
2506 return 0;
2509 /* Exit early if one of the insns involved can't be used for
2510 combinations. */
2511 if (cant_combine_insn_p (i3)
2512 || cant_combine_insn_p (i2)
2513 || (i1 && cant_combine_insn_p (i1))
2514 || (i0 && cant_combine_insn_p (i0))
2515 || likely_spilled_retval_p (i3))
2516 return 0;
2518 combine_attempts++;
2519 undobuf.other_insn = 0;
2521 /* Reset the hard register usage information. */
2522 CLEAR_HARD_REG_SET (newpat_used_regs);
2524 if (dump_file && (dump_flags & TDF_DETAILS))
2526 if (i0)
2527 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2528 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2529 else if (i1)
2530 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2531 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2532 else
2533 fprintf (dump_file, "\nTrying %d -> %d:\n",
2534 INSN_UID (i2), INSN_UID (i3));
2537 /* If multiple insns feed into one of I2 or I3, they can be in any
2538 order. To simplify the code below, reorder them in sequence. */
2539 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2540 temp = i2, i2 = i0, i0 = temp;
2541 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2542 temp = i1, i1 = i0, i0 = temp;
2543 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2544 temp = i1, i1 = i2, i2 = temp;
2546 added_links_insn = 0;
2548 /* First check for one important special case that the code below will
2549 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2550 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2551 we may be able to replace that destination with the destination of I3.
2552 This occurs in the common code where we compute both a quotient and
2553 remainder into a structure, in which case we want to do the computation
2554 directly into the structure to avoid register-register copies.
2556 Note that this case handles both multiple sets in I2 and also cases
2557 where I2 has a number of CLOBBERs inside the PARALLEL.
2559 We make very conservative checks below and only try to handle the
2560 most common cases of this. For example, we only handle the case
2561 where I2 and I3 are adjacent to avoid making difficult register
2562 usage tests. */
2564 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2565 && REG_P (SET_SRC (PATTERN (i3)))
2566 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2567 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2568 && GET_CODE (PATTERN (i2)) == PARALLEL
2569 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2570 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2571 below would need to check what is inside (and reg_overlap_mentioned_p
2572 doesn't support those codes anyway). Don't allow those destinations;
2573 the resulting insn isn't likely to be recognized anyway. */
2574 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2575 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2576 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2577 SET_DEST (PATTERN (i3)))
2578 && next_active_insn (i2) == i3)
2580 rtx p2 = PATTERN (i2);
2582 /* Make sure that the destination of I3,
2583 which we are going to substitute into one output of I2,
2584 is not used within another output of I2. We must avoid making this:
2585 (parallel [(set (mem (reg 69)) ...)
2586 (set (reg 69) ...)])
2587 which is not well-defined as to order of actions.
2588 (Besides, reload can't handle output reloads for this.)
2590 The problem can also happen if the dest of I3 is a memory ref,
2591 if another dest in I2 is an indirect memory ref. */
2592 for (i = 0; i < XVECLEN (p2, 0); i++)
2593 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2594 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2595 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2596 SET_DEST (XVECEXP (p2, 0, i))))
2597 break;
2599 if (i == XVECLEN (p2, 0))
2600 for (i = 0; i < XVECLEN (p2, 0); i++)
2601 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2602 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2604 combine_merges++;
2606 subst_insn = i3;
2607 subst_low_luid = DF_INSN_LUID (i2);
2609 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2610 i2src = SET_SRC (XVECEXP (p2, 0, i));
2611 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2612 i2dest_killed = dead_or_set_p (i2, i2dest);
2614 /* Replace the dest in I2 with our dest and make the resulting
2615 insn the new pattern for I3. Then skip to where we validate
2616 the pattern. Everything was set up above. */
2617 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2618 newpat = p2;
2619 i3_subst_into_i2 = 1;
2620 goto validate_replacement;
2624 /* If I2 is setting a pseudo to a constant and I3 is setting some
2625 sub-part of it to another constant, merge them by making a new
2626 constant. */
2627 if (i1 == 0
2628 && (temp = single_set (i2)) != 0
2629 && CONST_SCALAR_INT_P (SET_SRC (temp))
2630 && GET_CODE (PATTERN (i3)) == SET
2631 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2632 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2634 rtx dest = SET_DEST (PATTERN (i3));
2635 int offset = -1;
2636 int width = 0;
2638 /* There are not explicit tests to make sure that this is not a
2639 float, but there is code here that would not be correct if it
2640 was. */
2641 gcc_assert (GET_MODE_CLASS (GET_MODE (SET_SRC (temp))) != MODE_FLOAT);
2643 if (GET_CODE (dest) == ZERO_EXTRACT)
2645 if (CONST_INT_P (XEXP (dest, 1))
2646 && CONST_INT_P (XEXP (dest, 2)))
2648 width = INTVAL (XEXP (dest, 1));
2649 offset = INTVAL (XEXP (dest, 2));
2650 dest = XEXP (dest, 0);
2651 if (BITS_BIG_ENDIAN)
2652 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2655 else
2657 if (GET_CODE (dest) == STRICT_LOW_PART)
2658 dest = XEXP (dest, 0);
2659 width = GET_MODE_PRECISION (GET_MODE (dest));
2660 offset = 0;
2663 if (offset >= 0)
2665 /* If this is the low part, we're done. */
2666 if (subreg_lowpart_p (dest))
2668 /* Handle the case where inner is twice the size of outer. */
2669 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2670 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2671 offset += GET_MODE_PRECISION (GET_MODE (dest));
2672 /* Otherwise give up for now. */
2673 else
2674 offset = -1;
2677 if (offset >= 0
2678 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2679 <= HOST_BITS_PER_DOUBLE_INT))
2681 double_int m, o, i;
2682 rtx inner = SET_SRC (PATTERN (i3));
2683 rtx outer = SET_SRC (temp);
2685 o = rtx_to_double_int (outer);
2686 i = rtx_to_double_int (inner);
2688 m = double_int::mask (width);
2689 i &= m;
2690 m = m.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2691 i = i.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2692 o = o.and_not (m) | i;
2694 combine_merges++;
2695 subst_insn = i3;
2696 subst_low_luid = DF_INSN_LUID (i2);
2697 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2698 i2dest = SET_DEST (temp);
2699 i2dest_killed = dead_or_set_p (i2, i2dest);
2701 /* Replace the source in I2 with the new constant and make the
2702 resulting insn the new pattern for I3. Then skip to where we
2703 validate the pattern. Everything was set up above. */
2704 SUBST (SET_SRC (temp),
2705 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2707 newpat = PATTERN (i2);
2709 /* The dest of I3 has been replaced with the dest of I2. */
2710 changed_i3_dest = 1;
2711 goto validate_replacement;
2715 #ifndef HAVE_cc0
2716 /* If we have no I1 and I2 looks like:
2717 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2718 (set Y OP)])
2719 make up a dummy I1 that is
2720 (set Y OP)
2721 and change I2 to be
2722 (set (reg:CC X) (compare:CC Y (const_int 0)))
2724 (We can ignore any trailing CLOBBERs.)
2726 This undoes a previous combination and allows us to match a branch-and-
2727 decrement insn. */
2729 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2730 && XVECLEN (PATTERN (i2), 0) >= 2
2731 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2732 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2733 == MODE_CC)
2734 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2735 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2736 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2737 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2738 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2739 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2741 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2742 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2743 break;
2745 if (i == 1)
2747 /* We make I1 with the same INSN_UID as I2. This gives it
2748 the same DF_INSN_LUID for value tracking. Our fake I1 will
2749 never appear in the insn stream so giving it the same INSN_UID
2750 as I2 will not cause a problem. */
2752 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2753 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2754 INSN_LOCATION (i2), -1, NULL_RTX);
2756 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2757 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2758 SET_DEST (PATTERN (i1)));
2759 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2762 #endif
2764 /* Verify that I2 and I1 are valid for combining. */
2765 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2766 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2767 &i1dest, &i1src))
2768 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2769 &i0dest, &i0src)))
2771 undo_all ();
2772 return 0;
2775 /* Record whether I2DEST is used in I2SRC and similarly for the other
2776 cases. Knowing this will help in register status updating below. */
2777 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2778 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2779 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2780 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2781 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2782 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2783 i2dest_killed = dead_or_set_p (i2, i2dest);
2784 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2785 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2787 /* For the earlier insns, determine which of the subsequent ones they
2788 feed. */
2789 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2790 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2791 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2792 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2793 && reg_overlap_mentioned_p (i0dest, i2src))));
2795 /* Ensure that I3's pattern can be the destination of combines. */
2796 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2797 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2798 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2799 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2800 &i3dest_killed))
2802 undo_all ();
2803 return 0;
2806 /* See if any of the insns is a MULT operation. Unless one is, we will
2807 reject a combination that is, since it must be slower. Be conservative
2808 here. */
2809 if (GET_CODE (i2src) == MULT
2810 || (i1 != 0 && GET_CODE (i1src) == MULT)
2811 || (i0 != 0 && GET_CODE (i0src) == MULT)
2812 || (GET_CODE (PATTERN (i3)) == SET
2813 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2814 have_mult = 1;
2816 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2817 We used to do this EXCEPT in one case: I3 has a post-inc in an
2818 output operand. However, that exception can give rise to insns like
2819 mov r3,(r3)+
2820 which is a famous insn on the PDP-11 where the value of r3 used as the
2821 source was model-dependent. Avoid this sort of thing. */
2823 #if 0
2824 if (!(GET_CODE (PATTERN (i3)) == SET
2825 && REG_P (SET_SRC (PATTERN (i3)))
2826 && MEM_P (SET_DEST (PATTERN (i3)))
2827 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2828 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2829 /* It's not the exception. */
2830 #endif
2831 #ifdef AUTO_INC_DEC
2833 rtx link;
2834 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2835 if (REG_NOTE_KIND (link) == REG_INC
2836 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2837 || (i1 != 0
2838 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2840 undo_all ();
2841 return 0;
2844 #endif
2846 /* See if the SETs in I1 or I2 need to be kept around in the merged
2847 instruction: whenever the value set there is still needed past I3.
2848 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2850 For the SET in I1, we have two cases: If I1 and I2 independently
2851 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2852 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2853 in I1 needs to be kept around unless I1DEST dies or is set in either
2854 I2 or I3. The same consideration applies to I0. */
2856 added_sets_2 = !dead_or_set_p (i3, i2dest);
2858 if (i1)
2859 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2860 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2861 else
2862 added_sets_1 = 0;
2864 if (i0)
2865 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2866 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2867 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2868 else
2869 added_sets_0 = 0;
2871 /* We are about to copy insns for the case where they need to be kept
2872 around. Check that they can be copied in the merged instruction. */
2874 if (targetm.cannot_copy_insn_p
2875 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2876 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2877 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2879 undo_all ();
2880 return 0;
2883 /* If the set in I2 needs to be kept around, we must make a copy of
2884 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2885 PATTERN (I2), we are only substituting for the original I1DEST, not into
2886 an already-substituted copy. This also prevents making self-referential
2887 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2888 I2DEST. */
2890 if (added_sets_2)
2892 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2893 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2894 else
2895 i2pat = copy_rtx (PATTERN (i2));
2898 if (added_sets_1)
2900 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2901 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2902 else
2903 i1pat = copy_rtx (PATTERN (i1));
2906 if (added_sets_0)
2908 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2909 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2910 else
2911 i0pat = copy_rtx (PATTERN (i0));
2914 combine_merges++;
2916 /* Substitute in the latest insn for the regs set by the earlier ones. */
2918 maxreg = max_reg_num ();
2920 subst_insn = i3;
2922 #ifndef HAVE_cc0
2923 /* Many machines that don't use CC0 have insns that can both perform an
2924 arithmetic operation and set the condition code. These operations will
2925 be represented as a PARALLEL with the first element of the vector
2926 being a COMPARE of an arithmetic operation with the constant zero.
2927 The second element of the vector will set some pseudo to the result
2928 of the same arithmetic operation. If we simplify the COMPARE, we won't
2929 match such a pattern and so will generate an extra insn. Here we test
2930 for this case, where both the comparison and the operation result are
2931 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2932 I2SRC. Later we will make the PARALLEL that contains I2. */
2934 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2935 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2936 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
2937 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2939 rtx newpat_dest;
2940 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
2941 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
2942 enum machine_mode compare_mode, orig_compare_mode;
2943 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
2945 newpat = PATTERN (i3);
2946 newpat_dest = SET_DEST (newpat);
2947 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
2949 if (undobuf.other_insn == 0
2950 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
2951 &cc_use_insn)))
2953 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
2954 compare_code = simplify_compare_const (compare_code,
2955 op0, &op1);
2956 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
2959 /* Do the rest only if op1 is const0_rtx, which may be the
2960 result of simplification. */
2961 if (op1 == const0_rtx)
2963 /* If a single use of the CC is found, prepare to modify it
2964 when SELECT_CC_MODE returns a new CC-class mode, or when
2965 the above simplify_compare_const() returned a new comparison
2966 operator. undobuf.other_insn is assigned the CC use insn
2967 when modifying it. */
2968 if (cc_use_loc)
2970 #ifdef SELECT_CC_MODE
2971 enum machine_mode new_mode
2972 = SELECT_CC_MODE (compare_code, op0, op1);
2973 if (new_mode != orig_compare_mode
2974 && can_change_dest_mode (SET_DEST (newpat),
2975 added_sets_2, new_mode))
2977 unsigned int regno = REGNO (newpat_dest);
2978 compare_mode = new_mode;
2979 if (regno < FIRST_PSEUDO_REGISTER)
2980 newpat_dest = gen_rtx_REG (compare_mode, regno);
2981 else
2983 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2984 newpat_dest = regno_reg_rtx[regno];
2987 #endif
2988 /* Cases for modifying the CC-using comparison. */
2989 if (compare_code != orig_compare_code
2990 /* ??? Do we need to verify the zero rtx? */
2991 && XEXP (*cc_use_loc, 1) == const0_rtx)
2993 /* Replace cc_use_loc with entire new RTX. */
2994 SUBST (*cc_use_loc,
2995 gen_rtx_fmt_ee (compare_code, compare_mode,
2996 newpat_dest, const0_rtx));
2997 undobuf.other_insn = cc_use_insn;
2999 else if (compare_mode != orig_compare_mode)
3001 /* Just replace the CC reg with a new mode. */
3002 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3003 undobuf.other_insn = cc_use_insn;
3007 /* Now we modify the current newpat:
3008 First, SET_DEST(newpat) is updated if the CC mode has been
3009 altered. For targets without SELECT_CC_MODE, this should be
3010 optimized away. */
3011 if (compare_mode != orig_compare_mode)
3012 SUBST (SET_DEST (newpat), newpat_dest);
3013 /* This is always done to propagate i2src into newpat. */
3014 SUBST (SET_SRC (newpat),
3015 gen_rtx_COMPARE (compare_mode, op0, op1));
3016 /* Create new version of i2pat if needed; the below PARALLEL
3017 creation needs this to work correctly. */
3018 if (! rtx_equal_p (i2src, op0))
3019 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3020 i2_is_used = 1;
3023 #endif
3025 if (i2_is_used == 0)
3027 /* It is possible that the source of I2 or I1 may be performing
3028 an unneeded operation, such as a ZERO_EXTEND of something
3029 that is known to have the high part zero. Handle that case
3030 by letting subst look at the inner insns.
3032 Another way to do this would be to have a function that tries
3033 to simplify a single insn instead of merging two or more
3034 insns. We don't do this because of the potential of infinite
3035 loops and because of the potential extra memory required.
3036 However, doing it the way we are is a bit of a kludge and
3037 doesn't catch all cases.
3039 But only do this if -fexpensive-optimizations since it slows
3040 things down and doesn't usually win.
3042 This is not done in the COMPARE case above because the
3043 unmodified I2PAT is used in the PARALLEL and so a pattern
3044 with a modified I2SRC would not match. */
3046 if (flag_expensive_optimizations)
3048 /* Pass pc_rtx so no substitutions are done, just
3049 simplifications. */
3050 if (i1)
3052 subst_low_luid = DF_INSN_LUID (i1);
3053 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3056 subst_low_luid = DF_INSN_LUID (i2);
3057 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3060 n_occurrences = 0; /* `subst' counts here */
3061 subst_low_luid = DF_INSN_LUID (i2);
3063 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3064 copy of I2SRC each time we substitute it, in order to avoid creating
3065 self-referential RTL when we will be substituting I1SRC for I1DEST
3066 later. Likewise if I0 feeds into I2, either directly or indirectly
3067 through I1, and I0DEST is in I0SRC. */
3068 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3069 (i1_feeds_i2_n && i1dest_in_i1src)
3070 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3071 && i0dest_in_i0src));
3072 substed_i2 = 1;
3074 /* Record whether I2's body now appears within I3's body. */
3075 i2_is_used = n_occurrences;
3078 /* If we already got a failure, don't try to do more. Otherwise, try to
3079 substitute I1 if we have it. */
3081 if (i1 && GET_CODE (newpat) != CLOBBER)
3083 /* Check that an autoincrement side-effect on I1 has not been lost.
3084 This happens if I1DEST is mentioned in I2 and dies there, and
3085 has disappeared from the new pattern. */
3086 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3087 && i1_feeds_i2_n
3088 && dead_or_set_p (i2, i1dest)
3089 && !reg_overlap_mentioned_p (i1dest, newpat))
3090 /* Before we can do this substitution, we must redo the test done
3091 above (see detailed comments there) that ensures I1DEST isn't
3092 mentioned in any SETs in NEWPAT that are field assignments. */
3093 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3094 0, 0, 0))
3096 undo_all ();
3097 return 0;
3100 n_occurrences = 0;
3101 subst_low_luid = DF_INSN_LUID (i1);
3103 /* If the following substitution will modify I1SRC, make a copy of it
3104 for the case where it is substituted for I1DEST in I2PAT later. */
3105 if (added_sets_2 && i1_feeds_i2_n)
3106 i1src_copy = copy_rtx (i1src);
3108 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3109 copy of I1SRC each time we substitute it, in order to avoid creating
3110 self-referential RTL when we will be substituting I0SRC for I0DEST
3111 later. */
3112 newpat = subst (newpat, i1dest, i1src, 0, 0,
3113 i0_feeds_i1_n && i0dest_in_i0src);
3114 substed_i1 = 1;
3116 /* Record whether I1's body now appears within I3's body. */
3117 i1_is_used = n_occurrences;
3120 /* Likewise for I0 if we have it. */
3122 if (i0 && GET_CODE (newpat) != CLOBBER)
3124 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3125 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3126 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3127 && !reg_overlap_mentioned_p (i0dest, newpat))
3128 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3129 0, 0, 0))
3131 undo_all ();
3132 return 0;
3135 /* If the following substitution will modify I0SRC, make a copy of it
3136 for the case where it is substituted for I0DEST in I1PAT later. */
3137 if (added_sets_1 && i0_feeds_i1_n)
3138 i0src_copy = copy_rtx (i0src);
3139 /* And a copy for I0DEST in I2PAT substitution. */
3140 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3141 || (i0_feeds_i2_n)))
3142 i0src_copy2 = copy_rtx (i0src);
3144 n_occurrences = 0;
3145 subst_low_luid = DF_INSN_LUID (i0);
3146 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3147 substed_i0 = 1;
3150 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3151 to count all the ways that I2SRC and I1SRC can be used. */
3152 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3153 && i2_is_used + added_sets_2 > 1)
3154 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3155 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3156 > 1))
3157 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3158 && (n_occurrences + added_sets_0
3159 + (added_sets_1 && i0_feeds_i1_n)
3160 + (added_sets_2 && i0_feeds_i2_n)
3161 > 1))
3162 /* Fail if we tried to make a new register. */
3163 || max_reg_num () != maxreg
3164 /* Fail if we couldn't do something and have a CLOBBER. */
3165 || GET_CODE (newpat) == CLOBBER
3166 /* Fail if this new pattern is a MULT and we didn't have one before
3167 at the outer level. */
3168 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3169 && ! have_mult))
3171 undo_all ();
3172 return 0;
3175 /* If the actions of the earlier insns must be kept
3176 in addition to substituting them into the latest one,
3177 we must make a new PARALLEL for the latest insn
3178 to hold additional the SETs. */
3180 if (added_sets_0 || added_sets_1 || added_sets_2)
3182 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3183 combine_extras++;
3185 if (GET_CODE (newpat) == PARALLEL)
3187 rtvec old = XVEC (newpat, 0);
3188 total_sets = XVECLEN (newpat, 0) + extra_sets;
3189 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3190 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3191 sizeof (old->elem[0]) * old->num_elem);
3193 else
3195 rtx old = newpat;
3196 total_sets = 1 + extra_sets;
3197 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3198 XVECEXP (newpat, 0, 0) = old;
3201 if (added_sets_0)
3202 XVECEXP (newpat, 0, --total_sets) = i0pat;
3204 if (added_sets_1)
3206 rtx t = i1pat;
3207 if (i0_feeds_i1_n)
3208 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3210 XVECEXP (newpat, 0, --total_sets) = t;
3212 if (added_sets_2)
3214 rtx t = i2pat;
3215 if (i1_feeds_i2_n)
3216 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3217 i0_feeds_i1_n && i0dest_in_i0src);
3218 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3219 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3221 XVECEXP (newpat, 0, --total_sets) = t;
3225 validate_replacement:
3227 /* Note which hard regs this insn has as inputs. */
3228 mark_used_regs_combine (newpat);
3230 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3231 consider splitting this pattern, we might need these clobbers. */
3232 if (i1 && GET_CODE (newpat) == PARALLEL
3233 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3235 int len = XVECLEN (newpat, 0);
3237 newpat_vec_with_clobbers = rtvec_alloc (len);
3238 for (i = 0; i < len; i++)
3239 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3242 /* Is the result of combination a valid instruction? */
3243 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3245 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3246 the second SET's destination is a register that is unused and isn't
3247 marked as an instruction that might trap in an EH region. In that case,
3248 we just need the first SET. This can occur when simplifying a divmod
3249 insn. We *must* test for this case here because the code below that
3250 splits two independent SETs doesn't handle this case correctly when it
3251 updates the register status.
3253 It's pointless doing this if we originally had two sets, one from
3254 i3, and one from i2. Combining then splitting the parallel results
3255 in the original i2 again plus an invalid insn (which we delete).
3256 The net effect is only to move instructions around, which makes
3257 debug info less accurate.
3259 Also check the case where the first SET's destination is unused.
3260 That would not cause incorrect code, but does cause an unneeded
3261 insn to remain. */
3263 if (insn_code_number < 0
3264 && !(added_sets_2 && i1 == 0)
3265 && GET_CODE (newpat) == PARALLEL
3266 && XVECLEN (newpat, 0) == 2
3267 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3268 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3269 && asm_noperands (newpat) < 0)
3271 rtx set0 = XVECEXP (newpat, 0, 0);
3272 rtx set1 = XVECEXP (newpat, 0, 1);
3274 if (((REG_P (SET_DEST (set1))
3275 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3276 || (GET_CODE (SET_DEST (set1)) == SUBREG
3277 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3278 && insn_nothrow_p (i3)
3279 && !side_effects_p (SET_SRC (set1)))
3281 newpat = set0;
3282 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3285 else if (((REG_P (SET_DEST (set0))
3286 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3287 || (GET_CODE (SET_DEST (set0)) == SUBREG
3288 && find_reg_note (i3, REG_UNUSED,
3289 SUBREG_REG (SET_DEST (set0)))))
3290 && insn_nothrow_p (i3)
3291 && !side_effects_p (SET_SRC (set0)))
3293 newpat = set1;
3294 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3296 if (insn_code_number >= 0)
3297 changed_i3_dest = 1;
3301 /* If we were combining three insns and the result is a simple SET
3302 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3303 insns. There are two ways to do this. It can be split using a
3304 machine-specific method (like when you have an addition of a large
3305 constant) or by combine in the function find_split_point. */
3307 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3308 && asm_noperands (newpat) < 0)
3310 rtx parallel, m_split, *split;
3312 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3313 use I2DEST as a scratch register will help. In the latter case,
3314 convert I2DEST to the mode of the source of NEWPAT if we can. */
3316 m_split = combine_split_insns (newpat, i3);
3318 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3319 inputs of NEWPAT. */
3321 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3322 possible to try that as a scratch reg. This would require adding
3323 more code to make it work though. */
3325 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3327 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3329 /* First try to split using the original register as a
3330 scratch register. */
3331 parallel = gen_rtx_PARALLEL (VOIDmode,
3332 gen_rtvec (2, newpat,
3333 gen_rtx_CLOBBER (VOIDmode,
3334 i2dest)));
3335 m_split = combine_split_insns (parallel, i3);
3337 /* If that didn't work, try changing the mode of I2DEST if
3338 we can. */
3339 if (m_split == 0
3340 && new_mode != GET_MODE (i2dest)
3341 && new_mode != VOIDmode
3342 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3344 enum machine_mode old_mode = GET_MODE (i2dest);
3345 rtx ni2dest;
3347 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3348 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3349 else
3351 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3352 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3355 parallel = (gen_rtx_PARALLEL
3356 (VOIDmode,
3357 gen_rtvec (2, newpat,
3358 gen_rtx_CLOBBER (VOIDmode,
3359 ni2dest))));
3360 m_split = combine_split_insns (parallel, i3);
3362 if (m_split == 0
3363 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3365 struct undo *buf;
3367 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3368 buf = undobuf.undos;
3369 undobuf.undos = buf->next;
3370 buf->next = undobuf.frees;
3371 undobuf.frees = buf;
3375 i2scratch = m_split != 0;
3378 /* If recog_for_combine has discarded clobbers, try to use them
3379 again for the split. */
3380 if (m_split == 0 && newpat_vec_with_clobbers)
3382 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3383 m_split = combine_split_insns (parallel, i3);
3386 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3388 m_split = PATTERN (m_split);
3389 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3390 if (insn_code_number >= 0)
3391 newpat = m_split;
3393 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3394 && (next_nonnote_nondebug_insn (i2) == i3
3395 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3397 rtx i2set, i3set;
3398 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3399 newi2pat = PATTERN (m_split);
3401 i3set = single_set (NEXT_INSN (m_split));
3402 i2set = single_set (m_split);
3404 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3406 /* If I2 or I3 has multiple SETs, we won't know how to track
3407 register status, so don't use these insns. If I2's destination
3408 is used between I2 and I3, we also can't use these insns. */
3410 if (i2_code_number >= 0 && i2set && i3set
3411 && (next_nonnote_nondebug_insn (i2) == i3
3412 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3413 insn_code_number = recog_for_combine (&newi3pat, i3,
3414 &new_i3_notes);
3415 if (insn_code_number >= 0)
3416 newpat = newi3pat;
3418 /* It is possible that both insns now set the destination of I3.
3419 If so, we must show an extra use of it. */
3421 if (insn_code_number >= 0)
3423 rtx new_i3_dest = SET_DEST (i3set);
3424 rtx new_i2_dest = SET_DEST (i2set);
3426 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3427 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3428 || GET_CODE (new_i3_dest) == SUBREG)
3429 new_i3_dest = XEXP (new_i3_dest, 0);
3431 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3432 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3433 || GET_CODE (new_i2_dest) == SUBREG)
3434 new_i2_dest = XEXP (new_i2_dest, 0);
3436 if (REG_P (new_i3_dest)
3437 && REG_P (new_i2_dest)
3438 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3439 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3443 /* If we can split it and use I2DEST, go ahead and see if that
3444 helps things be recognized. Verify that none of the registers
3445 are set between I2 and I3. */
3446 if (insn_code_number < 0
3447 && (split = find_split_point (&newpat, i3, false)) != 0
3448 #ifdef HAVE_cc0
3449 && REG_P (i2dest)
3450 #endif
3451 /* We need I2DEST in the proper mode. If it is a hard register
3452 or the only use of a pseudo, we can change its mode.
3453 Make sure we don't change a hard register to have a mode that
3454 isn't valid for it, or change the number of registers. */
3455 && (GET_MODE (*split) == GET_MODE (i2dest)
3456 || GET_MODE (*split) == VOIDmode
3457 || can_change_dest_mode (i2dest, added_sets_2,
3458 GET_MODE (*split)))
3459 && (next_nonnote_nondebug_insn (i2) == i3
3460 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3461 /* We can't overwrite I2DEST if its value is still used by
3462 NEWPAT. */
3463 && ! reg_referenced_p (i2dest, newpat))
3465 rtx newdest = i2dest;
3466 enum rtx_code split_code = GET_CODE (*split);
3467 enum machine_mode split_mode = GET_MODE (*split);
3468 bool subst_done = false;
3469 newi2pat = NULL_RTX;
3471 i2scratch = true;
3473 /* *SPLIT may be part of I2SRC, so make sure we have the
3474 original expression around for later debug processing.
3475 We should not need I2SRC any more in other cases. */
3476 if (MAY_HAVE_DEBUG_INSNS)
3477 i2src = copy_rtx (i2src);
3478 else
3479 i2src = NULL;
3481 /* Get NEWDEST as a register in the proper mode. We have already
3482 validated that we can do this. */
3483 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3485 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3486 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3487 else
3489 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3490 newdest = regno_reg_rtx[REGNO (i2dest)];
3494 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3495 an ASHIFT. This can occur if it was inside a PLUS and hence
3496 appeared to be a memory address. This is a kludge. */
3497 if (split_code == MULT
3498 && CONST_INT_P (XEXP (*split, 1))
3499 && INTVAL (XEXP (*split, 1)) > 0
3500 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3502 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3503 XEXP (*split, 0), GEN_INT (i)));
3504 /* Update split_code because we may not have a multiply
3505 anymore. */
3506 split_code = GET_CODE (*split);
3509 #ifdef INSN_SCHEDULING
3510 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3511 be written as a ZERO_EXTEND. */
3512 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3514 #ifdef LOAD_EXTEND_OP
3515 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3516 what it really is. */
3517 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3518 == SIGN_EXTEND)
3519 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3520 SUBREG_REG (*split)));
3521 else
3522 #endif
3523 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3524 SUBREG_REG (*split)));
3526 #endif
3528 /* Attempt to split binary operators using arithmetic identities. */
3529 if (BINARY_P (SET_SRC (newpat))
3530 && split_mode == GET_MODE (SET_SRC (newpat))
3531 && ! side_effects_p (SET_SRC (newpat)))
3533 rtx setsrc = SET_SRC (newpat);
3534 enum machine_mode mode = GET_MODE (setsrc);
3535 enum rtx_code code = GET_CODE (setsrc);
3536 rtx src_op0 = XEXP (setsrc, 0);
3537 rtx src_op1 = XEXP (setsrc, 1);
3539 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3540 if (rtx_equal_p (src_op0, src_op1))
3542 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3543 SUBST (XEXP (setsrc, 0), newdest);
3544 SUBST (XEXP (setsrc, 1), newdest);
3545 subst_done = true;
3547 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3548 else if ((code == PLUS || code == MULT)
3549 && GET_CODE (src_op0) == code
3550 && GET_CODE (XEXP (src_op0, 0)) == code
3551 && (INTEGRAL_MODE_P (mode)
3552 || (FLOAT_MODE_P (mode)
3553 && flag_unsafe_math_optimizations)))
3555 rtx p = XEXP (XEXP (src_op0, 0), 0);
3556 rtx q = XEXP (XEXP (src_op0, 0), 1);
3557 rtx r = XEXP (src_op0, 1);
3558 rtx s = src_op1;
3560 /* Split both "((X op Y) op X) op Y" and
3561 "((X op Y) op Y) op X" as "T op T" where T is
3562 "X op Y". */
3563 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3564 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3566 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3567 XEXP (src_op0, 0));
3568 SUBST (XEXP (setsrc, 0), newdest);
3569 SUBST (XEXP (setsrc, 1), newdest);
3570 subst_done = true;
3572 /* Split "((X op X) op Y) op Y)" as "T op T" where
3573 T is "X op Y". */
3574 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3576 rtx tmp = simplify_gen_binary (code, mode, p, r);
3577 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3578 SUBST (XEXP (setsrc, 0), newdest);
3579 SUBST (XEXP (setsrc, 1), newdest);
3580 subst_done = true;
3585 if (!subst_done)
3587 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3588 SUBST (*split, newdest);
3591 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3593 /* recog_for_combine might have added CLOBBERs to newi2pat.
3594 Make sure NEWPAT does not depend on the clobbered regs. */
3595 if (GET_CODE (newi2pat) == PARALLEL)
3596 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3597 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3599 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3600 if (reg_overlap_mentioned_p (reg, newpat))
3602 undo_all ();
3603 return 0;
3607 /* If the split point was a MULT and we didn't have one before,
3608 don't use one now. */
3609 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3610 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3614 /* Check for a case where we loaded from memory in a narrow mode and
3615 then sign extended it, but we need both registers. In that case,
3616 we have a PARALLEL with both loads from the same memory location.
3617 We can split this into a load from memory followed by a register-register
3618 copy. This saves at least one insn, more if register allocation can
3619 eliminate the copy.
3621 We cannot do this if the destination of the first assignment is a
3622 condition code register or cc0. We eliminate this case by making sure
3623 the SET_DEST and SET_SRC have the same mode.
3625 We cannot do this if the destination of the second assignment is
3626 a register that we have already assumed is zero-extended. Similarly
3627 for a SUBREG of such a register. */
3629 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3630 && GET_CODE (newpat) == PARALLEL
3631 && XVECLEN (newpat, 0) == 2
3632 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3633 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3634 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3635 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3636 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3637 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3638 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3639 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3640 DF_INSN_LUID (i2))
3641 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3642 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3643 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3644 (REG_P (temp)
3645 && reg_stat[REGNO (temp)].nonzero_bits != 0
3646 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3647 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3648 && (reg_stat[REGNO (temp)].nonzero_bits
3649 != GET_MODE_MASK (word_mode))))
3650 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3651 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3652 (REG_P (temp)
3653 && reg_stat[REGNO (temp)].nonzero_bits != 0
3654 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3655 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3656 && (reg_stat[REGNO (temp)].nonzero_bits
3657 != GET_MODE_MASK (word_mode)))))
3658 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3659 SET_SRC (XVECEXP (newpat, 0, 1)))
3660 && ! find_reg_note (i3, REG_UNUSED,
3661 SET_DEST (XVECEXP (newpat, 0, 0))))
3663 rtx ni2dest;
3665 newi2pat = XVECEXP (newpat, 0, 0);
3666 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3667 newpat = XVECEXP (newpat, 0, 1);
3668 SUBST (SET_SRC (newpat),
3669 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3670 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3672 if (i2_code_number >= 0)
3673 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3675 if (insn_code_number >= 0)
3676 swap_i2i3 = 1;
3679 /* Similarly, check for a case where we have a PARALLEL of two independent
3680 SETs but we started with three insns. In this case, we can do the sets
3681 as two separate insns. This case occurs when some SET allows two
3682 other insns to combine, but the destination of that SET is still live. */
3684 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3685 && GET_CODE (newpat) == PARALLEL
3686 && XVECLEN (newpat, 0) == 2
3687 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3688 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3689 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3690 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3691 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3692 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3693 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3694 XVECEXP (newpat, 0, 0))
3695 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3696 XVECEXP (newpat, 0, 1))
3697 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3698 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3700 /* Normally, it doesn't matter which of the two is done first,
3701 but the one that references cc0 can't be the second, and
3702 one which uses any regs/memory set in between i2 and i3 can't
3703 be first. */
3704 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3705 DF_INSN_LUID (i2))
3706 #ifdef HAVE_cc0
3707 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3708 #endif
3711 newi2pat = XVECEXP (newpat, 0, 1);
3712 newpat = XVECEXP (newpat, 0, 0);
3714 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3715 DF_INSN_LUID (i2))
3716 #ifdef HAVE_cc0
3717 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3718 #endif
3721 newi2pat = XVECEXP (newpat, 0, 0);
3722 newpat = XVECEXP (newpat, 0, 1);
3724 else
3726 undo_all ();
3727 return 0;
3730 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3732 if (i2_code_number >= 0)
3734 /* recog_for_combine might have added CLOBBERs to newi2pat.
3735 Make sure NEWPAT does not depend on the clobbered regs. */
3736 if (GET_CODE (newi2pat) == PARALLEL)
3738 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3739 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3741 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3742 if (reg_overlap_mentioned_p (reg, newpat))
3744 undo_all ();
3745 return 0;
3750 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3754 /* If it still isn't recognized, fail and change things back the way they
3755 were. */
3756 if ((insn_code_number < 0
3757 /* Is the result a reasonable ASM_OPERANDS? */
3758 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3760 undo_all ();
3761 return 0;
3764 /* If we had to change another insn, make sure it is valid also. */
3765 if (undobuf.other_insn)
3767 CLEAR_HARD_REG_SET (newpat_used_regs);
3769 other_pat = PATTERN (undobuf.other_insn);
3770 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3771 &new_other_notes);
3773 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3775 undo_all ();
3776 return 0;
3780 #ifdef HAVE_cc0
3781 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3782 they are adjacent to each other or not. */
3784 rtx p = prev_nonnote_insn (i3);
3785 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3786 && sets_cc0_p (newi2pat))
3788 undo_all ();
3789 return 0;
3792 #endif
3794 /* Only allow this combination if insn_rtx_costs reports that the
3795 replacement instructions are cheaper than the originals. */
3796 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3798 undo_all ();
3799 return 0;
3802 if (MAY_HAVE_DEBUG_INSNS)
3804 struct undo *undo;
3806 for (undo = undobuf.undos; undo; undo = undo->next)
3807 if (undo->kind == UNDO_MODE)
3809 rtx reg = *undo->where.r;
3810 enum machine_mode new_mode = GET_MODE (reg);
3811 enum machine_mode old_mode = undo->old_contents.m;
3813 /* Temporarily revert mode back. */
3814 adjust_reg_mode (reg, old_mode);
3816 if (reg == i2dest && i2scratch)
3818 /* If we used i2dest as a scratch register with a
3819 different mode, substitute it for the original
3820 i2src while its original mode is temporarily
3821 restored, and then clear i2scratch so that we don't
3822 do it again later. */
3823 propagate_for_debug (i2, last_combined_insn, reg, i2src,
3824 this_basic_block);
3825 i2scratch = false;
3826 /* Put back the new mode. */
3827 adjust_reg_mode (reg, new_mode);
3829 else
3831 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3832 rtx first, last;
3834 if (reg == i2dest)
3836 first = i2;
3837 last = last_combined_insn;
3839 else
3841 first = i3;
3842 last = undobuf.other_insn;
3843 gcc_assert (last);
3844 if (DF_INSN_LUID (last)
3845 < DF_INSN_LUID (last_combined_insn))
3846 last = last_combined_insn;
3849 /* We're dealing with a reg that changed mode but not
3850 meaning, so we want to turn it into a subreg for
3851 the new mode. However, because of REG sharing and
3852 because its mode had already changed, we have to do
3853 it in two steps. First, replace any debug uses of
3854 reg, with its original mode temporarily restored,
3855 with this copy we have created; then, replace the
3856 copy with the SUBREG of the original shared reg,
3857 once again changed to the new mode. */
3858 propagate_for_debug (first, last, reg, tempreg,
3859 this_basic_block);
3860 adjust_reg_mode (reg, new_mode);
3861 propagate_for_debug (first, last, tempreg,
3862 lowpart_subreg (old_mode, reg, new_mode),
3863 this_basic_block);
3868 /* If we will be able to accept this, we have made a
3869 change to the destination of I3. This requires us to
3870 do a few adjustments. */
3872 if (changed_i3_dest)
3874 PATTERN (i3) = newpat;
3875 adjust_for_new_dest (i3);
3878 /* We now know that we can do this combination. Merge the insns and
3879 update the status of registers and LOG_LINKS. */
3881 if (undobuf.other_insn)
3883 rtx note, next;
3885 PATTERN (undobuf.other_insn) = other_pat;
3887 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
3888 ensure that they are still valid. Then add any non-duplicate
3889 notes added by recog_for_combine. */
3890 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3892 next = XEXP (note, 1);
3894 if ((REG_NOTE_KIND (note) == REG_DEAD
3895 && !reg_referenced_p (XEXP (note, 0),
3896 PATTERN (undobuf.other_insn)))
3897 ||(REG_NOTE_KIND (note) == REG_UNUSED
3898 && !reg_set_p (XEXP (note, 0),
3899 PATTERN (undobuf.other_insn))))
3900 remove_note (undobuf.other_insn, note);
3903 distribute_notes (new_other_notes, undobuf.other_insn,
3904 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3905 NULL_RTX);
3908 if (swap_i2i3)
3910 rtx insn;
3911 struct insn_link *link;
3912 rtx ni2dest;
3914 /* I3 now uses what used to be its destination and which is now
3915 I2's destination. This requires us to do a few adjustments. */
3916 PATTERN (i3) = newpat;
3917 adjust_for_new_dest (i3);
3919 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3920 so we still will.
3922 However, some later insn might be using I2's dest and have
3923 a LOG_LINK pointing at I3. We must remove this link.
3924 The simplest way to remove the link is to point it at I1,
3925 which we know will be a NOTE. */
3927 /* newi2pat is usually a SET here; however, recog_for_combine might
3928 have added some clobbers. */
3929 if (GET_CODE (newi2pat) == PARALLEL)
3930 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3931 else
3932 ni2dest = SET_DEST (newi2pat);
3934 for (insn = NEXT_INSN (i3);
3935 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3936 || insn != BB_HEAD (this_basic_block->next_bb));
3937 insn = NEXT_INSN (insn))
3939 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3941 FOR_EACH_LOG_LINK (link, insn)
3942 if (link->insn == i3)
3943 link->insn = i1;
3945 break;
3951 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3952 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
3953 rtx midnotes = 0;
3954 int from_luid;
3955 /* Compute which registers we expect to eliminate. newi2pat may be setting
3956 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3957 same as i3dest, in which case newi2pat may be setting i1dest. */
3958 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3959 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3960 || !i2dest_killed
3961 ? 0 : i2dest);
3962 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3963 || (newi2pat && reg_set_p (i1dest, newi2pat))
3964 || !i1dest_killed
3965 ? 0 : i1dest);
3966 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3967 || (newi2pat && reg_set_p (i0dest, newi2pat))
3968 || !i0dest_killed
3969 ? 0 : i0dest);
3971 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3972 clear them. */
3973 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3974 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3975 if (i1)
3976 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3977 if (i0)
3978 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3980 /* Ensure that we do not have something that should not be shared but
3981 occurs multiple times in the new insns. Check this by first
3982 resetting all the `used' flags and then copying anything is shared. */
3984 reset_used_flags (i3notes);
3985 reset_used_flags (i2notes);
3986 reset_used_flags (i1notes);
3987 reset_used_flags (i0notes);
3988 reset_used_flags (newpat);
3989 reset_used_flags (newi2pat);
3990 if (undobuf.other_insn)
3991 reset_used_flags (PATTERN (undobuf.other_insn));
3993 i3notes = copy_rtx_if_shared (i3notes);
3994 i2notes = copy_rtx_if_shared (i2notes);
3995 i1notes = copy_rtx_if_shared (i1notes);
3996 i0notes = copy_rtx_if_shared (i0notes);
3997 newpat = copy_rtx_if_shared (newpat);
3998 newi2pat = copy_rtx_if_shared (newi2pat);
3999 if (undobuf.other_insn)
4000 reset_used_flags (PATTERN (undobuf.other_insn));
4002 INSN_CODE (i3) = insn_code_number;
4003 PATTERN (i3) = newpat;
4005 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4007 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4009 reset_used_flags (call_usage);
4010 call_usage = copy_rtx (call_usage);
4012 if (substed_i2)
4014 /* I2SRC must still be meaningful at this point. Some splitting
4015 operations can invalidate I2SRC, but those operations do not
4016 apply to calls. */
4017 gcc_assert (i2src);
4018 replace_rtx (call_usage, i2dest, i2src);
4021 if (substed_i1)
4022 replace_rtx (call_usage, i1dest, i1src);
4023 if (substed_i0)
4024 replace_rtx (call_usage, i0dest, i0src);
4026 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4029 if (undobuf.other_insn)
4030 INSN_CODE (undobuf.other_insn) = other_code_number;
4032 /* We had one special case above where I2 had more than one set and
4033 we replaced a destination of one of those sets with the destination
4034 of I3. In that case, we have to update LOG_LINKS of insns later
4035 in this basic block. Note that this (expensive) case is rare.
4037 Also, in this case, we must pretend that all REG_NOTEs for I2
4038 actually came from I3, so that REG_UNUSED notes from I2 will be
4039 properly handled. */
4041 if (i3_subst_into_i2)
4043 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4044 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4045 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4046 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4047 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4048 && ! find_reg_note (i2, REG_UNUSED,
4049 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4050 for (temp = NEXT_INSN (i2);
4051 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4052 || BB_HEAD (this_basic_block) != temp);
4053 temp = NEXT_INSN (temp))
4054 if (temp != i3 && INSN_P (temp))
4055 FOR_EACH_LOG_LINK (link, temp)
4056 if (link->insn == i2)
4057 link->insn = i3;
4059 if (i3notes)
4061 rtx link = i3notes;
4062 while (XEXP (link, 1))
4063 link = XEXP (link, 1);
4064 XEXP (link, 1) = i2notes;
4066 else
4067 i3notes = i2notes;
4068 i2notes = 0;
4071 LOG_LINKS (i3) = NULL;
4072 REG_NOTES (i3) = 0;
4073 LOG_LINKS (i2) = NULL;
4074 REG_NOTES (i2) = 0;
4076 if (newi2pat)
4078 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4079 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4080 this_basic_block);
4081 INSN_CODE (i2) = i2_code_number;
4082 PATTERN (i2) = newi2pat;
4084 else
4086 if (MAY_HAVE_DEBUG_INSNS && i2src)
4087 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4088 this_basic_block);
4089 SET_INSN_DELETED (i2);
4092 if (i1)
4094 LOG_LINKS (i1) = NULL;
4095 REG_NOTES (i1) = 0;
4096 if (MAY_HAVE_DEBUG_INSNS)
4097 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4098 this_basic_block);
4099 SET_INSN_DELETED (i1);
4102 if (i0)
4104 LOG_LINKS (i0) = NULL;
4105 REG_NOTES (i0) = 0;
4106 if (MAY_HAVE_DEBUG_INSNS)
4107 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4108 this_basic_block);
4109 SET_INSN_DELETED (i0);
4112 /* Get death notes for everything that is now used in either I3 or
4113 I2 and used to die in a previous insn. If we built two new
4114 patterns, move from I1 to I2 then I2 to I3 so that we get the
4115 proper movement on registers that I2 modifies. */
4117 if (i0)
4118 from_luid = DF_INSN_LUID (i0);
4119 else if (i1)
4120 from_luid = DF_INSN_LUID (i1);
4121 else
4122 from_luid = DF_INSN_LUID (i2);
4123 if (newi2pat)
4124 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4125 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4127 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4128 if (i3notes)
4129 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4130 elim_i2, elim_i1, elim_i0);
4131 if (i2notes)
4132 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4133 elim_i2, elim_i1, elim_i0);
4134 if (i1notes)
4135 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4136 elim_i2, elim_i1, elim_i0);
4137 if (i0notes)
4138 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4139 elim_i2, elim_i1, elim_i0);
4140 if (midnotes)
4141 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4142 elim_i2, elim_i1, elim_i0);
4144 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4145 know these are REG_UNUSED and want them to go to the desired insn,
4146 so we always pass it as i3. */
4148 if (newi2pat && new_i2_notes)
4149 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4150 NULL_RTX);
4152 if (new_i3_notes)
4153 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4154 NULL_RTX);
4156 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4157 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4158 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4159 in that case, it might delete I2. Similarly for I2 and I1.
4160 Show an additional death due to the REG_DEAD note we make here. If
4161 we discard it in distribute_notes, we will decrement it again. */
4163 if (i3dest_killed)
4165 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4166 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4167 NULL_RTX),
4168 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4169 else
4170 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4171 NULL_RTX),
4172 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4173 elim_i2, elim_i1, elim_i0);
4176 if (i2dest_in_i2src)
4178 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4179 if (newi2pat && reg_set_p (i2dest, newi2pat))
4180 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4181 NULL_RTX, NULL_RTX);
4182 else
4183 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4184 NULL_RTX, NULL_RTX, NULL_RTX);
4187 if (i1dest_in_i1src)
4189 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4190 if (newi2pat && reg_set_p (i1dest, newi2pat))
4191 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4192 NULL_RTX, NULL_RTX);
4193 else
4194 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4195 NULL_RTX, NULL_RTX, NULL_RTX);
4198 if (i0dest_in_i0src)
4200 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4201 if (newi2pat && reg_set_p (i0dest, newi2pat))
4202 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4203 NULL_RTX, NULL_RTX);
4204 else
4205 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4206 NULL_RTX, NULL_RTX, NULL_RTX);
4209 distribute_links (i3links);
4210 distribute_links (i2links);
4211 distribute_links (i1links);
4212 distribute_links (i0links);
4214 if (REG_P (i2dest))
4216 struct insn_link *link;
4217 rtx i2_insn = 0, i2_val = 0, set;
4219 /* The insn that used to set this register doesn't exist, and
4220 this life of the register may not exist either. See if one of
4221 I3's links points to an insn that sets I2DEST. If it does,
4222 that is now the last known value for I2DEST. If we don't update
4223 this and I2 set the register to a value that depended on its old
4224 contents, we will get confused. If this insn is used, thing
4225 will be set correctly in combine_instructions. */
4226 FOR_EACH_LOG_LINK (link, i3)
4227 if ((set = single_set (link->insn)) != 0
4228 && rtx_equal_p (i2dest, SET_DEST (set)))
4229 i2_insn = link->insn, i2_val = SET_SRC (set);
4231 record_value_for_reg (i2dest, i2_insn, i2_val);
4233 /* If the reg formerly set in I2 died only once and that was in I3,
4234 zero its use count so it won't make `reload' do any work. */
4235 if (! added_sets_2
4236 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4237 && ! i2dest_in_i2src)
4238 INC_REG_N_SETS (REGNO (i2dest), -1);
4241 if (i1 && REG_P (i1dest))
4243 struct insn_link *link;
4244 rtx i1_insn = 0, i1_val = 0, set;
4246 FOR_EACH_LOG_LINK (link, i3)
4247 if ((set = single_set (link->insn)) != 0
4248 && rtx_equal_p (i1dest, SET_DEST (set)))
4249 i1_insn = link->insn, i1_val = SET_SRC (set);
4251 record_value_for_reg (i1dest, i1_insn, i1_val);
4253 if (! added_sets_1 && ! i1dest_in_i1src)
4254 INC_REG_N_SETS (REGNO (i1dest), -1);
4257 if (i0 && REG_P (i0dest))
4259 struct insn_link *link;
4260 rtx i0_insn = 0, i0_val = 0, set;
4262 FOR_EACH_LOG_LINK (link, i3)
4263 if ((set = single_set (link->insn)) != 0
4264 && rtx_equal_p (i0dest, SET_DEST (set)))
4265 i0_insn = link->insn, i0_val = SET_SRC (set);
4267 record_value_for_reg (i0dest, i0_insn, i0_val);
4269 if (! added_sets_0 && ! i0dest_in_i0src)
4270 INC_REG_N_SETS (REGNO (i0dest), -1);
4273 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4274 been made to this insn. The order of
4275 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4276 can affect nonzero_bits of newpat */
4277 if (newi2pat)
4278 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4279 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4282 if (undobuf.other_insn != NULL_RTX)
4284 if (dump_file)
4286 fprintf (dump_file, "modifying other_insn ");
4287 dump_insn_slim (dump_file, undobuf.other_insn);
4289 df_insn_rescan (undobuf.other_insn);
4292 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4294 if (dump_file)
4296 fprintf (dump_file, "modifying insn i1 ");
4297 dump_insn_slim (dump_file, i0);
4299 df_insn_rescan (i0);
4302 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4304 if (dump_file)
4306 fprintf (dump_file, "modifying insn i1 ");
4307 dump_insn_slim (dump_file, i1);
4309 df_insn_rescan (i1);
4312 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4314 if (dump_file)
4316 fprintf (dump_file, "modifying insn i2 ");
4317 dump_insn_slim (dump_file, i2);
4319 df_insn_rescan (i2);
4322 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4324 if (dump_file)
4326 fprintf (dump_file, "modifying insn i3 ");
4327 dump_insn_slim (dump_file, i3);
4329 df_insn_rescan (i3);
4332 /* Set new_direct_jump_p if a new return or simple jump instruction
4333 has been created. Adjust the CFG accordingly. */
4335 if (returnjump_p (i3) || any_uncondjump_p (i3))
4337 *new_direct_jump_p = 1;
4338 mark_jump_label (PATTERN (i3), i3, 0);
4339 update_cfg_for_uncondjump (i3);
4342 if (undobuf.other_insn != NULL_RTX
4343 && (returnjump_p (undobuf.other_insn)
4344 || any_uncondjump_p (undobuf.other_insn)))
4346 *new_direct_jump_p = 1;
4347 update_cfg_for_uncondjump (undobuf.other_insn);
4350 /* A noop might also need cleaning up of CFG, if it comes from the
4351 simplification of a jump. */
4352 if (JUMP_P (i3)
4353 && GET_CODE (newpat) == SET
4354 && SET_SRC (newpat) == pc_rtx
4355 && SET_DEST (newpat) == pc_rtx)
4357 *new_direct_jump_p = 1;
4358 update_cfg_for_uncondjump (i3);
4361 if (undobuf.other_insn != NULL_RTX
4362 && JUMP_P (undobuf.other_insn)
4363 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4364 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4365 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4367 *new_direct_jump_p = 1;
4368 update_cfg_for_uncondjump (undobuf.other_insn);
4371 combine_successes++;
4372 undo_commit ();
4374 if (added_links_insn
4375 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4376 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4377 return added_links_insn;
4378 else
4379 return newi2pat ? i2 : i3;
4382 /* Undo all the modifications recorded in undobuf. */
4384 static void
4385 undo_all (void)
4387 struct undo *undo, *next;
4389 for (undo = undobuf.undos; undo; undo = next)
4391 next = undo->next;
4392 switch (undo->kind)
4394 case UNDO_RTX:
4395 *undo->where.r = undo->old_contents.r;
4396 break;
4397 case UNDO_INT:
4398 *undo->where.i = undo->old_contents.i;
4399 break;
4400 case UNDO_MODE:
4401 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4402 break;
4403 case UNDO_LINKS:
4404 *undo->where.l = undo->old_contents.l;
4405 break;
4406 default:
4407 gcc_unreachable ();
4410 undo->next = undobuf.frees;
4411 undobuf.frees = undo;
4414 undobuf.undos = 0;
4417 /* We've committed to accepting the changes we made. Move all
4418 of the undos to the free list. */
4420 static void
4421 undo_commit (void)
4423 struct undo *undo, *next;
4425 for (undo = undobuf.undos; undo; undo = next)
4427 next = undo->next;
4428 undo->next = undobuf.frees;
4429 undobuf.frees = undo;
4431 undobuf.undos = 0;
4434 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4435 where we have an arithmetic expression and return that point. LOC will
4436 be inside INSN.
4438 try_combine will call this function to see if an insn can be split into
4439 two insns. */
4441 static rtx *
4442 find_split_point (rtx *loc, rtx insn, bool set_src)
4444 rtx x = *loc;
4445 enum rtx_code code = GET_CODE (x);
4446 rtx *split;
4447 unsigned HOST_WIDE_INT len = 0;
4448 HOST_WIDE_INT pos = 0;
4449 int unsignedp = 0;
4450 rtx inner = NULL_RTX;
4452 /* First special-case some codes. */
4453 switch (code)
4455 case SUBREG:
4456 #ifdef INSN_SCHEDULING
4457 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4458 point. */
4459 if (MEM_P (SUBREG_REG (x)))
4460 return loc;
4461 #endif
4462 return find_split_point (&SUBREG_REG (x), insn, false);
4464 case MEM:
4465 #ifdef HAVE_lo_sum
4466 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4467 using LO_SUM and HIGH. */
4468 if (GET_CODE (XEXP (x, 0)) == CONST
4469 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4471 enum machine_mode address_mode = get_address_mode (x);
4473 SUBST (XEXP (x, 0),
4474 gen_rtx_LO_SUM (address_mode,
4475 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4476 XEXP (x, 0)));
4477 return &XEXP (XEXP (x, 0), 0);
4479 #endif
4481 /* If we have a PLUS whose second operand is a constant and the
4482 address is not valid, perhaps will can split it up using
4483 the machine-specific way to split large constants. We use
4484 the first pseudo-reg (one of the virtual regs) as a placeholder;
4485 it will not remain in the result. */
4486 if (GET_CODE (XEXP (x, 0)) == PLUS
4487 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4488 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4489 MEM_ADDR_SPACE (x)))
4491 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4492 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4493 XEXP (x, 0)),
4494 subst_insn);
4496 /* This should have produced two insns, each of which sets our
4497 placeholder. If the source of the second is a valid address,
4498 we can make put both sources together and make a split point
4499 in the middle. */
4501 if (seq
4502 && NEXT_INSN (seq) != NULL_RTX
4503 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4504 && NONJUMP_INSN_P (seq)
4505 && GET_CODE (PATTERN (seq)) == SET
4506 && SET_DEST (PATTERN (seq)) == reg
4507 && ! reg_mentioned_p (reg,
4508 SET_SRC (PATTERN (seq)))
4509 && NONJUMP_INSN_P (NEXT_INSN (seq))
4510 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4511 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4512 && memory_address_addr_space_p
4513 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4514 MEM_ADDR_SPACE (x)))
4516 rtx src1 = SET_SRC (PATTERN (seq));
4517 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4519 /* Replace the placeholder in SRC2 with SRC1. If we can
4520 find where in SRC2 it was placed, that can become our
4521 split point and we can replace this address with SRC2.
4522 Just try two obvious places. */
4524 src2 = replace_rtx (src2, reg, src1);
4525 split = 0;
4526 if (XEXP (src2, 0) == src1)
4527 split = &XEXP (src2, 0);
4528 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4529 && XEXP (XEXP (src2, 0), 0) == src1)
4530 split = &XEXP (XEXP (src2, 0), 0);
4532 if (split)
4534 SUBST (XEXP (x, 0), src2);
4535 return split;
4539 /* If that didn't work, perhaps the first operand is complex and
4540 needs to be computed separately, so make a split point there.
4541 This will occur on machines that just support REG + CONST
4542 and have a constant moved through some previous computation. */
4544 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4545 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4546 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4547 return &XEXP (XEXP (x, 0), 0);
4550 /* If we have a PLUS whose first operand is complex, try computing it
4551 separately by making a split there. */
4552 if (GET_CODE (XEXP (x, 0)) == PLUS
4553 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4554 MEM_ADDR_SPACE (x))
4555 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4556 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4557 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4558 return &XEXP (XEXP (x, 0), 0);
4559 break;
4561 case SET:
4562 #ifdef HAVE_cc0
4563 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4564 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4565 we need to put the operand into a register. So split at that
4566 point. */
4568 if (SET_DEST (x) == cc0_rtx
4569 && GET_CODE (SET_SRC (x)) != COMPARE
4570 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4571 && !OBJECT_P (SET_SRC (x))
4572 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4573 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4574 return &SET_SRC (x);
4575 #endif
4577 /* See if we can split SET_SRC as it stands. */
4578 split = find_split_point (&SET_SRC (x), insn, true);
4579 if (split && split != &SET_SRC (x))
4580 return split;
4582 /* See if we can split SET_DEST as it stands. */
4583 split = find_split_point (&SET_DEST (x), insn, false);
4584 if (split && split != &SET_DEST (x))
4585 return split;
4587 /* See if this is a bitfield assignment with everything constant. If
4588 so, this is an IOR of an AND, so split it into that. */
4589 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4590 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4591 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4592 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4593 && CONST_INT_P (SET_SRC (x))
4594 && ((INTVAL (XEXP (SET_DEST (x), 1))
4595 + INTVAL (XEXP (SET_DEST (x), 2)))
4596 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4597 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4599 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4600 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4601 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4602 rtx dest = XEXP (SET_DEST (x), 0);
4603 enum machine_mode mode = GET_MODE (dest);
4604 unsigned HOST_WIDE_INT mask
4605 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4606 rtx or_mask;
4608 if (BITS_BIG_ENDIAN)
4609 pos = GET_MODE_PRECISION (mode) - len - pos;
4611 or_mask = gen_int_mode (src << pos, mode);
4612 if (src == mask)
4613 SUBST (SET_SRC (x),
4614 simplify_gen_binary (IOR, mode, dest, or_mask));
4615 else
4617 rtx negmask = gen_int_mode (~(mask << pos), mode);
4618 SUBST (SET_SRC (x),
4619 simplify_gen_binary (IOR, mode,
4620 simplify_gen_binary (AND, mode,
4621 dest, negmask),
4622 or_mask));
4625 SUBST (SET_DEST (x), dest);
4627 split = find_split_point (&SET_SRC (x), insn, true);
4628 if (split && split != &SET_SRC (x))
4629 return split;
4632 /* Otherwise, see if this is an operation that we can split into two.
4633 If so, try to split that. */
4634 code = GET_CODE (SET_SRC (x));
4636 switch (code)
4638 case AND:
4639 /* If we are AND'ing with a large constant that is only a single
4640 bit and the result is only being used in a context where we
4641 need to know if it is zero or nonzero, replace it with a bit
4642 extraction. This will avoid the large constant, which might
4643 have taken more than one insn to make. If the constant were
4644 not a valid argument to the AND but took only one insn to make,
4645 this is no worse, but if it took more than one insn, it will
4646 be better. */
4648 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4649 && REG_P (XEXP (SET_SRC (x), 0))
4650 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4651 && REG_P (SET_DEST (x))
4652 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4653 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4654 && XEXP (*split, 0) == SET_DEST (x)
4655 && XEXP (*split, 1) == const0_rtx)
4657 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4658 XEXP (SET_SRC (x), 0),
4659 pos, NULL_RTX, 1, 1, 0, 0);
4660 if (extraction != 0)
4662 SUBST (SET_SRC (x), extraction);
4663 return find_split_point (loc, insn, false);
4666 break;
4668 case NE:
4669 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4670 is known to be on, this can be converted into a NEG of a shift. */
4671 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4672 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4673 && 1 <= (pos = exact_log2
4674 (nonzero_bits (XEXP (SET_SRC (x), 0),
4675 GET_MODE (XEXP (SET_SRC (x), 0))))))
4677 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4679 SUBST (SET_SRC (x),
4680 gen_rtx_NEG (mode,
4681 gen_rtx_LSHIFTRT (mode,
4682 XEXP (SET_SRC (x), 0),
4683 GEN_INT (pos))));
4685 split = find_split_point (&SET_SRC (x), insn, true);
4686 if (split && split != &SET_SRC (x))
4687 return split;
4689 break;
4691 case SIGN_EXTEND:
4692 inner = XEXP (SET_SRC (x), 0);
4694 /* We can't optimize if either mode is a partial integer
4695 mode as we don't know how many bits are significant
4696 in those modes. */
4697 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4698 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4699 break;
4701 pos = 0;
4702 len = GET_MODE_PRECISION (GET_MODE (inner));
4703 unsignedp = 0;
4704 break;
4706 case SIGN_EXTRACT:
4707 case ZERO_EXTRACT:
4708 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4709 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4711 inner = XEXP (SET_SRC (x), 0);
4712 len = INTVAL (XEXP (SET_SRC (x), 1));
4713 pos = INTVAL (XEXP (SET_SRC (x), 2));
4715 if (BITS_BIG_ENDIAN)
4716 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4717 unsignedp = (code == ZERO_EXTRACT);
4719 break;
4721 default:
4722 break;
4725 if (len && pos >= 0
4726 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4728 enum machine_mode mode = GET_MODE (SET_SRC (x));
4730 /* For unsigned, we have a choice of a shift followed by an
4731 AND or two shifts. Use two shifts for field sizes where the
4732 constant might be too large. We assume here that we can
4733 always at least get 8-bit constants in an AND insn, which is
4734 true for every current RISC. */
4736 if (unsignedp && len <= 8)
4738 SUBST (SET_SRC (x),
4739 gen_rtx_AND (mode,
4740 gen_rtx_LSHIFTRT
4741 (mode, gen_lowpart (mode, inner),
4742 GEN_INT (pos)),
4743 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4744 - 1)));
4746 split = find_split_point (&SET_SRC (x), insn, true);
4747 if (split && split != &SET_SRC (x))
4748 return split;
4750 else
4752 SUBST (SET_SRC (x),
4753 gen_rtx_fmt_ee
4754 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4755 gen_rtx_ASHIFT (mode,
4756 gen_lowpart (mode, inner),
4757 GEN_INT (GET_MODE_PRECISION (mode)
4758 - len - pos)),
4759 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4761 split = find_split_point (&SET_SRC (x), insn, true);
4762 if (split && split != &SET_SRC (x))
4763 return split;
4767 /* See if this is a simple operation with a constant as the second
4768 operand. It might be that this constant is out of range and hence
4769 could be used as a split point. */
4770 if (BINARY_P (SET_SRC (x))
4771 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4772 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4773 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4774 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4775 return &XEXP (SET_SRC (x), 1);
4777 /* Finally, see if this is a simple operation with its first operand
4778 not in a register. The operation might require this operand in a
4779 register, so return it as a split point. We can always do this
4780 because if the first operand were another operation, we would have
4781 already found it as a split point. */
4782 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4783 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4784 return &XEXP (SET_SRC (x), 0);
4786 return 0;
4788 case AND:
4789 case IOR:
4790 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4791 it is better to write this as (not (ior A B)) so we can split it.
4792 Similarly for IOR. */
4793 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4795 SUBST (*loc,
4796 gen_rtx_NOT (GET_MODE (x),
4797 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4798 GET_MODE (x),
4799 XEXP (XEXP (x, 0), 0),
4800 XEXP (XEXP (x, 1), 0))));
4801 return find_split_point (loc, insn, set_src);
4804 /* Many RISC machines have a large set of logical insns. If the
4805 second operand is a NOT, put it first so we will try to split the
4806 other operand first. */
4807 if (GET_CODE (XEXP (x, 1)) == NOT)
4809 rtx tem = XEXP (x, 0);
4810 SUBST (XEXP (x, 0), XEXP (x, 1));
4811 SUBST (XEXP (x, 1), tem);
4813 break;
4815 case PLUS:
4816 case MINUS:
4817 /* Canonicalization can produce (minus A (mult B C)), where C is a
4818 constant. It may be better to try splitting (plus (mult B -C) A)
4819 instead if this isn't a multiply by a power of two. */
4820 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4821 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4822 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4824 enum machine_mode mode = GET_MODE (x);
4825 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4826 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4827 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4828 XEXP (XEXP (x, 1), 0),
4829 GEN_INT (other_int)),
4830 XEXP (x, 0)));
4831 return find_split_point (loc, insn, set_src);
4834 /* Split at a multiply-accumulate instruction. However if this is
4835 the SET_SRC, we likely do not have such an instruction and it's
4836 worthless to try this split. */
4837 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4838 return loc;
4840 default:
4841 break;
4844 /* Otherwise, select our actions depending on our rtx class. */
4845 switch (GET_RTX_CLASS (code))
4847 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4848 case RTX_TERNARY:
4849 split = find_split_point (&XEXP (x, 2), insn, false);
4850 if (split)
4851 return split;
4852 /* ... fall through ... */
4853 case RTX_BIN_ARITH:
4854 case RTX_COMM_ARITH:
4855 case RTX_COMPARE:
4856 case RTX_COMM_COMPARE:
4857 split = find_split_point (&XEXP (x, 1), insn, false);
4858 if (split)
4859 return split;
4860 /* ... fall through ... */
4861 case RTX_UNARY:
4862 /* Some machines have (and (shift ...) ...) insns. If X is not
4863 an AND, but XEXP (X, 0) is, use it as our split point. */
4864 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4865 return &XEXP (x, 0);
4867 split = find_split_point (&XEXP (x, 0), insn, false);
4868 if (split)
4869 return split;
4870 return loc;
4872 default:
4873 /* Otherwise, we don't have a split point. */
4874 return 0;
4878 /* Throughout X, replace FROM with TO, and return the result.
4879 The result is TO if X is FROM;
4880 otherwise the result is X, but its contents may have been modified.
4881 If they were modified, a record was made in undobuf so that
4882 undo_all will (among other things) return X to its original state.
4884 If the number of changes necessary is too much to record to undo,
4885 the excess changes are not made, so the result is invalid.
4886 The changes already made can still be undone.
4887 undobuf.num_undo is incremented for such changes, so by testing that
4888 the caller can tell whether the result is valid.
4890 `n_occurrences' is incremented each time FROM is replaced.
4892 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4894 IN_COND is nonzero if we are at the top level of a condition.
4896 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4897 by copying if `n_occurrences' is nonzero. */
4899 static rtx
4900 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4902 enum rtx_code code = GET_CODE (x);
4903 enum machine_mode op0_mode = VOIDmode;
4904 const char *fmt;
4905 int len, i;
4906 rtx new_rtx;
4908 /* Two expressions are equal if they are identical copies of a shared
4909 RTX or if they are both registers with the same register number
4910 and mode. */
4912 #define COMBINE_RTX_EQUAL_P(X,Y) \
4913 ((X) == (Y) \
4914 || (REG_P (X) && REG_P (Y) \
4915 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4917 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4919 n_occurrences++;
4920 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4923 /* If X and FROM are the same register but different modes, they
4924 will not have been seen as equal above. However, the log links code
4925 will make a LOG_LINKS entry for that case. If we do nothing, we
4926 will try to rerecognize our original insn and, when it succeeds,
4927 we will delete the feeding insn, which is incorrect.
4929 So force this insn not to match in this (rare) case. */
4930 if (! in_dest && code == REG && REG_P (from)
4931 && reg_overlap_mentioned_p (x, from))
4932 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4934 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4935 of which may contain things that can be combined. */
4936 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4937 return x;
4939 /* It is possible to have a subexpression appear twice in the insn.
4940 Suppose that FROM is a register that appears within TO.
4941 Then, after that subexpression has been scanned once by `subst',
4942 the second time it is scanned, TO may be found. If we were
4943 to scan TO here, we would find FROM within it and create a
4944 self-referent rtl structure which is completely wrong. */
4945 if (COMBINE_RTX_EQUAL_P (x, to))
4946 return to;
4948 /* Parallel asm_operands need special attention because all of the
4949 inputs are shared across the arms. Furthermore, unsharing the
4950 rtl results in recognition failures. Failure to handle this case
4951 specially can result in circular rtl.
4953 Solve this by doing a normal pass across the first entry of the
4954 parallel, and only processing the SET_DESTs of the subsequent
4955 entries. Ug. */
4957 if (code == PARALLEL
4958 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4959 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4961 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
4963 /* If this substitution failed, this whole thing fails. */
4964 if (GET_CODE (new_rtx) == CLOBBER
4965 && XEXP (new_rtx, 0) == const0_rtx)
4966 return new_rtx;
4968 SUBST (XVECEXP (x, 0, 0), new_rtx);
4970 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4972 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4974 if (!REG_P (dest)
4975 && GET_CODE (dest) != CC0
4976 && GET_CODE (dest) != PC)
4978 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
4980 /* If this substitution failed, this whole thing fails. */
4981 if (GET_CODE (new_rtx) == CLOBBER
4982 && XEXP (new_rtx, 0) == const0_rtx)
4983 return new_rtx;
4985 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4989 else
4991 len = GET_RTX_LENGTH (code);
4992 fmt = GET_RTX_FORMAT (code);
4994 /* We don't need to process a SET_DEST that is a register, CC0,
4995 or PC, so set up to skip this common case. All other cases
4996 where we want to suppress replacing something inside a
4997 SET_SRC are handled via the IN_DEST operand. */
4998 if (code == SET
4999 && (REG_P (SET_DEST (x))
5000 || GET_CODE (SET_DEST (x)) == CC0
5001 || GET_CODE (SET_DEST (x)) == PC))
5002 fmt = "ie";
5004 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5005 constant. */
5006 if (fmt[0] == 'e')
5007 op0_mode = GET_MODE (XEXP (x, 0));
5009 for (i = 0; i < len; i++)
5011 if (fmt[i] == 'E')
5013 int j;
5014 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5016 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5018 new_rtx = (unique_copy && n_occurrences
5019 ? copy_rtx (to) : to);
5020 n_occurrences++;
5022 else
5024 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5025 unique_copy);
5027 /* If this substitution failed, this whole thing
5028 fails. */
5029 if (GET_CODE (new_rtx) == CLOBBER
5030 && XEXP (new_rtx, 0) == const0_rtx)
5031 return new_rtx;
5034 SUBST (XVECEXP (x, i, j), new_rtx);
5037 else if (fmt[i] == 'e')
5039 /* If this is a register being set, ignore it. */
5040 new_rtx = XEXP (x, i);
5041 if (in_dest
5042 && i == 0
5043 && (((code == SUBREG || code == ZERO_EXTRACT)
5044 && REG_P (new_rtx))
5045 || code == STRICT_LOW_PART))
5048 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5050 /* In general, don't install a subreg involving two
5051 modes not tieable. It can worsen register
5052 allocation, and can even make invalid reload
5053 insns, since the reg inside may need to be copied
5054 from in the outside mode, and that may be invalid
5055 if it is an fp reg copied in integer mode.
5057 We allow two exceptions to this: It is valid if
5058 it is inside another SUBREG and the mode of that
5059 SUBREG and the mode of the inside of TO is
5060 tieable and it is valid if X is a SET that copies
5061 FROM to CC0. */
5063 if (GET_CODE (to) == SUBREG
5064 && ! MODES_TIEABLE_P (GET_MODE (to),
5065 GET_MODE (SUBREG_REG (to)))
5066 && ! (code == SUBREG
5067 && MODES_TIEABLE_P (GET_MODE (x),
5068 GET_MODE (SUBREG_REG (to))))
5069 #ifdef HAVE_cc0
5070 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5071 #endif
5073 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5075 #ifdef CANNOT_CHANGE_MODE_CLASS
5076 if (code == SUBREG
5077 && REG_P (to)
5078 && REGNO (to) < FIRST_PSEUDO_REGISTER
5079 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5080 GET_MODE (to),
5081 GET_MODE (x)))
5082 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5083 #endif
5085 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5086 n_occurrences++;
5088 else
5089 /* If we are in a SET_DEST, suppress most cases unless we
5090 have gone inside a MEM, in which case we want to
5091 simplify the address. We assume here that things that
5092 are actually part of the destination have their inner
5093 parts in the first expression. This is true for SUBREG,
5094 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5095 things aside from REG and MEM that should appear in a
5096 SET_DEST. */
5097 new_rtx = subst (XEXP (x, i), from, to,
5098 (((in_dest
5099 && (code == SUBREG || code == STRICT_LOW_PART
5100 || code == ZERO_EXTRACT))
5101 || code == SET)
5102 && i == 0),
5103 code == IF_THEN_ELSE && i == 0,
5104 unique_copy);
5106 /* If we found that we will have to reject this combination,
5107 indicate that by returning the CLOBBER ourselves, rather than
5108 an expression containing it. This will speed things up as
5109 well as prevent accidents where two CLOBBERs are considered
5110 to be equal, thus producing an incorrect simplification. */
5112 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5113 return new_rtx;
5115 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5117 enum machine_mode mode = GET_MODE (x);
5119 x = simplify_subreg (GET_MODE (x), new_rtx,
5120 GET_MODE (SUBREG_REG (x)),
5121 SUBREG_BYTE (x));
5122 if (! x)
5123 x = gen_rtx_CLOBBER (mode, const0_rtx);
5125 else if (CONST_INT_P (new_rtx)
5126 && GET_CODE (x) == ZERO_EXTEND)
5128 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5129 new_rtx, GET_MODE (XEXP (x, 0)));
5130 gcc_assert (x);
5132 else
5133 SUBST (XEXP (x, i), new_rtx);
5138 /* Check if we are loading something from the constant pool via float
5139 extension; in this case we would undo compress_float_constant
5140 optimization and degenerate constant load to an immediate value. */
5141 if (GET_CODE (x) == FLOAT_EXTEND
5142 && MEM_P (XEXP (x, 0))
5143 && MEM_READONLY_P (XEXP (x, 0)))
5145 rtx tmp = avoid_constant_pool_reference (x);
5146 if (x != tmp)
5147 return x;
5150 /* Try to simplify X. If the simplification changed the code, it is likely
5151 that further simplification will help, so loop, but limit the number
5152 of repetitions that will be performed. */
5154 for (i = 0; i < 4; i++)
5156 /* If X is sufficiently simple, don't bother trying to do anything
5157 with it. */
5158 if (code != CONST_INT && code != REG && code != CLOBBER)
5159 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5161 if (GET_CODE (x) == code)
5162 break;
5164 code = GET_CODE (x);
5166 /* We no longer know the original mode of operand 0 since we
5167 have changed the form of X) */
5168 op0_mode = VOIDmode;
5171 return x;
5174 /* Simplify X, a piece of RTL. We just operate on the expression at the
5175 outer level; call `subst' to simplify recursively. Return the new
5176 expression.
5178 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5179 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5180 of a condition. */
5182 static rtx
5183 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5184 int in_cond)
5186 enum rtx_code code = GET_CODE (x);
5187 enum machine_mode mode = GET_MODE (x);
5188 rtx temp;
5189 int i;
5191 /* If this is a commutative operation, put a constant last and a complex
5192 expression first. We don't need to do this for comparisons here. */
5193 if (COMMUTATIVE_ARITH_P (x)
5194 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5196 temp = XEXP (x, 0);
5197 SUBST (XEXP (x, 0), XEXP (x, 1));
5198 SUBST (XEXP (x, 1), temp);
5201 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5202 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5203 things. Check for cases where both arms are testing the same
5204 condition.
5206 Don't do anything if all operands are very simple. */
5208 if ((BINARY_P (x)
5209 && ((!OBJECT_P (XEXP (x, 0))
5210 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5211 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5212 || (!OBJECT_P (XEXP (x, 1))
5213 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5214 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5215 || (UNARY_P (x)
5216 && (!OBJECT_P (XEXP (x, 0))
5217 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5218 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5220 rtx cond, true_rtx, false_rtx;
5222 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5223 if (cond != 0
5224 /* If everything is a comparison, what we have is highly unlikely
5225 to be simpler, so don't use it. */
5226 && ! (COMPARISON_P (x)
5227 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5229 rtx cop1 = const0_rtx;
5230 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5232 if (cond_code == NE && COMPARISON_P (cond))
5233 return x;
5235 /* Simplify the alternative arms; this may collapse the true and
5236 false arms to store-flag values. Be careful to use copy_rtx
5237 here since true_rtx or false_rtx might share RTL with x as a
5238 result of the if_then_else_cond call above. */
5239 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5240 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5242 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5243 is unlikely to be simpler. */
5244 if (general_operand (true_rtx, VOIDmode)
5245 && general_operand (false_rtx, VOIDmode))
5247 enum rtx_code reversed;
5249 /* Restarting if we generate a store-flag expression will cause
5250 us to loop. Just drop through in this case. */
5252 /* If the result values are STORE_FLAG_VALUE and zero, we can
5253 just make the comparison operation. */
5254 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5255 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5256 cond, cop1);
5257 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5258 && ((reversed = reversed_comparison_code_parts
5259 (cond_code, cond, cop1, NULL))
5260 != UNKNOWN))
5261 x = simplify_gen_relational (reversed, mode, VOIDmode,
5262 cond, cop1);
5264 /* Likewise, we can make the negate of a comparison operation
5265 if the result values are - STORE_FLAG_VALUE and zero. */
5266 else if (CONST_INT_P (true_rtx)
5267 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5268 && false_rtx == const0_rtx)
5269 x = simplify_gen_unary (NEG, mode,
5270 simplify_gen_relational (cond_code,
5271 mode, VOIDmode,
5272 cond, cop1),
5273 mode);
5274 else if (CONST_INT_P (false_rtx)
5275 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5276 && true_rtx == const0_rtx
5277 && ((reversed = reversed_comparison_code_parts
5278 (cond_code, cond, cop1, NULL))
5279 != UNKNOWN))
5280 x = simplify_gen_unary (NEG, mode,
5281 simplify_gen_relational (reversed,
5282 mode, VOIDmode,
5283 cond, cop1),
5284 mode);
5285 else
5286 return gen_rtx_IF_THEN_ELSE (mode,
5287 simplify_gen_relational (cond_code,
5288 mode,
5289 VOIDmode,
5290 cond,
5291 cop1),
5292 true_rtx, false_rtx);
5294 code = GET_CODE (x);
5295 op0_mode = VOIDmode;
5300 /* Try to fold this expression in case we have constants that weren't
5301 present before. */
5302 temp = 0;
5303 switch (GET_RTX_CLASS (code))
5305 case RTX_UNARY:
5306 if (op0_mode == VOIDmode)
5307 op0_mode = GET_MODE (XEXP (x, 0));
5308 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5309 break;
5310 case RTX_COMPARE:
5311 case RTX_COMM_COMPARE:
5313 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5314 if (cmp_mode == VOIDmode)
5316 cmp_mode = GET_MODE (XEXP (x, 1));
5317 if (cmp_mode == VOIDmode)
5318 cmp_mode = op0_mode;
5320 temp = simplify_relational_operation (code, mode, cmp_mode,
5321 XEXP (x, 0), XEXP (x, 1));
5323 break;
5324 case RTX_COMM_ARITH:
5325 case RTX_BIN_ARITH:
5326 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5327 break;
5328 case RTX_BITFIELD_OPS:
5329 case RTX_TERNARY:
5330 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5331 XEXP (x, 1), XEXP (x, 2));
5332 break;
5333 default:
5334 break;
5337 if (temp)
5339 x = temp;
5340 code = GET_CODE (temp);
5341 op0_mode = VOIDmode;
5342 mode = GET_MODE (temp);
5345 /* First see if we can apply the inverse distributive law. */
5346 if (code == PLUS || code == MINUS
5347 || code == AND || code == IOR || code == XOR)
5349 x = apply_distributive_law (x);
5350 code = GET_CODE (x);
5351 op0_mode = VOIDmode;
5354 /* If CODE is an associative operation not otherwise handled, see if we
5355 can associate some operands. This can win if they are constants or
5356 if they are logically related (i.e. (a & b) & a). */
5357 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5358 || code == AND || code == IOR || code == XOR
5359 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5360 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5361 || (flag_associative_math && FLOAT_MODE_P (mode))))
5363 if (GET_CODE (XEXP (x, 0)) == code)
5365 rtx other = XEXP (XEXP (x, 0), 0);
5366 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5367 rtx inner_op1 = XEXP (x, 1);
5368 rtx inner;
5370 /* Make sure we pass the constant operand if any as the second
5371 one if this is a commutative operation. */
5372 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5374 rtx tem = inner_op0;
5375 inner_op0 = inner_op1;
5376 inner_op1 = tem;
5378 inner = simplify_binary_operation (code == MINUS ? PLUS
5379 : code == DIV ? MULT
5380 : code,
5381 mode, inner_op0, inner_op1);
5383 /* For commutative operations, try the other pair if that one
5384 didn't simplify. */
5385 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5387 other = XEXP (XEXP (x, 0), 1);
5388 inner = simplify_binary_operation (code, mode,
5389 XEXP (XEXP (x, 0), 0),
5390 XEXP (x, 1));
5393 if (inner)
5394 return simplify_gen_binary (code, mode, other, inner);
5398 /* A little bit of algebraic simplification here. */
5399 switch (code)
5401 case MEM:
5402 /* Ensure that our address has any ASHIFTs converted to MULT in case
5403 address-recognizing predicates are called later. */
5404 temp = make_compound_operation (XEXP (x, 0), MEM);
5405 SUBST (XEXP (x, 0), temp);
5406 break;
5408 case SUBREG:
5409 if (op0_mode == VOIDmode)
5410 op0_mode = GET_MODE (SUBREG_REG (x));
5412 /* See if this can be moved to simplify_subreg. */
5413 if (CONSTANT_P (SUBREG_REG (x))
5414 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5415 /* Don't call gen_lowpart if the inner mode
5416 is VOIDmode and we cannot simplify it, as SUBREG without
5417 inner mode is invalid. */
5418 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5419 || gen_lowpart_common (mode, SUBREG_REG (x))))
5420 return gen_lowpart (mode, SUBREG_REG (x));
5422 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5423 break;
5425 rtx temp;
5426 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5427 SUBREG_BYTE (x));
5428 if (temp)
5429 return temp;
5432 /* Don't change the mode of the MEM if that would change the meaning
5433 of the address. */
5434 if (MEM_P (SUBREG_REG (x))
5435 && (MEM_VOLATILE_P (SUBREG_REG (x))
5436 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5437 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5438 return gen_rtx_CLOBBER (mode, const0_rtx);
5440 /* Note that we cannot do any narrowing for non-constants since
5441 we might have been counting on using the fact that some bits were
5442 zero. We now do this in the SET. */
5444 break;
5446 case NEG:
5447 temp = expand_compound_operation (XEXP (x, 0));
5449 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5450 replaced by (lshiftrt X C). This will convert
5451 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5453 if (GET_CODE (temp) == ASHIFTRT
5454 && CONST_INT_P (XEXP (temp, 1))
5455 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5456 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5457 INTVAL (XEXP (temp, 1)));
5459 /* If X has only a single bit that might be nonzero, say, bit I, convert
5460 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5461 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5462 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5463 or a SUBREG of one since we'd be making the expression more
5464 complex if it was just a register. */
5466 if (!REG_P (temp)
5467 && ! (GET_CODE (temp) == SUBREG
5468 && REG_P (SUBREG_REG (temp)))
5469 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5471 rtx temp1 = simplify_shift_const
5472 (NULL_RTX, ASHIFTRT, mode,
5473 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5474 GET_MODE_PRECISION (mode) - 1 - i),
5475 GET_MODE_PRECISION (mode) - 1 - i);
5477 /* If all we did was surround TEMP with the two shifts, we
5478 haven't improved anything, so don't use it. Otherwise,
5479 we are better off with TEMP1. */
5480 if (GET_CODE (temp1) != ASHIFTRT
5481 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5482 || XEXP (XEXP (temp1, 0), 0) != temp)
5483 return temp1;
5485 break;
5487 case TRUNCATE:
5488 /* We can't handle truncation to a partial integer mode here
5489 because we don't know the real bitsize of the partial
5490 integer mode. */
5491 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5492 break;
5494 if (HWI_COMPUTABLE_MODE_P (mode))
5495 SUBST (XEXP (x, 0),
5496 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5497 GET_MODE_MASK (mode), 0));
5499 /* We can truncate a constant value and return it. */
5500 if (CONST_INT_P (XEXP (x, 0)))
5501 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5503 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5504 whose value is a comparison can be replaced with a subreg if
5505 STORE_FLAG_VALUE permits. */
5506 if (HWI_COMPUTABLE_MODE_P (mode)
5507 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5508 && (temp = get_last_value (XEXP (x, 0)))
5509 && COMPARISON_P (temp))
5510 return gen_lowpart (mode, XEXP (x, 0));
5511 break;
5513 case CONST:
5514 /* (const (const X)) can become (const X). Do it this way rather than
5515 returning the inner CONST since CONST can be shared with a
5516 REG_EQUAL note. */
5517 if (GET_CODE (XEXP (x, 0)) == CONST)
5518 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5519 break;
5521 #ifdef HAVE_lo_sum
5522 case LO_SUM:
5523 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5524 can add in an offset. find_split_point will split this address up
5525 again if it doesn't match. */
5526 if (GET_CODE (XEXP (x, 0)) == HIGH
5527 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5528 return XEXP (x, 1);
5529 break;
5530 #endif
5532 case PLUS:
5533 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5534 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5535 bit-field and can be replaced by either a sign_extend or a
5536 sign_extract. The `and' may be a zero_extend and the two
5537 <c>, -<c> constants may be reversed. */
5538 if (GET_CODE (XEXP (x, 0)) == XOR
5539 && CONST_INT_P (XEXP (x, 1))
5540 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5541 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5542 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5543 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5544 && HWI_COMPUTABLE_MODE_P (mode)
5545 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5546 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5547 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5548 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5549 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5550 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5551 == (unsigned int) i + 1))))
5552 return simplify_shift_const
5553 (NULL_RTX, ASHIFTRT, mode,
5554 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5555 XEXP (XEXP (XEXP (x, 0), 0), 0),
5556 GET_MODE_PRECISION (mode) - (i + 1)),
5557 GET_MODE_PRECISION (mode) - (i + 1));
5559 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5560 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5561 the bitsize of the mode - 1. This allows simplification of
5562 "a = (b & 8) == 0;" */
5563 if (XEXP (x, 1) == constm1_rtx
5564 && !REG_P (XEXP (x, 0))
5565 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5566 && REG_P (SUBREG_REG (XEXP (x, 0))))
5567 && nonzero_bits (XEXP (x, 0), mode) == 1)
5568 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5569 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5570 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5571 GET_MODE_PRECISION (mode) - 1),
5572 GET_MODE_PRECISION (mode) - 1);
5574 /* If we are adding two things that have no bits in common, convert
5575 the addition into an IOR. This will often be further simplified,
5576 for example in cases like ((a & 1) + (a & 2)), which can
5577 become a & 3. */
5579 if (HWI_COMPUTABLE_MODE_P (mode)
5580 && (nonzero_bits (XEXP (x, 0), mode)
5581 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5583 /* Try to simplify the expression further. */
5584 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5585 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5587 /* If we could, great. If not, do not go ahead with the IOR
5588 replacement, since PLUS appears in many special purpose
5589 address arithmetic instructions. */
5590 if (GET_CODE (temp) != CLOBBER
5591 && (GET_CODE (temp) != IOR
5592 || ((XEXP (temp, 0) != XEXP (x, 0)
5593 || XEXP (temp, 1) != XEXP (x, 1))
5594 && (XEXP (temp, 0) != XEXP (x, 1)
5595 || XEXP (temp, 1) != XEXP (x, 0)))))
5596 return temp;
5598 break;
5600 case MINUS:
5601 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5602 (and <foo> (const_int pow2-1)) */
5603 if (GET_CODE (XEXP (x, 1)) == AND
5604 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5605 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5606 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5607 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5608 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5609 break;
5611 case MULT:
5612 /* If we have (mult (plus A B) C), apply the distributive law and then
5613 the inverse distributive law to see if things simplify. This
5614 occurs mostly in addresses, often when unrolling loops. */
5616 if (GET_CODE (XEXP (x, 0)) == PLUS)
5618 rtx result = distribute_and_simplify_rtx (x, 0);
5619 if (result)
5620 return result;
5623 /* Try simplify a*(b/c) as (a*b)/c. */
5624 if (FLOAT_MODE_P (mode) && flag_associative_math
5625 && GET_CODE (XEXP (x, 0)) == DIV)
5627 rtx tem = simplify_binary_operation (MULT, mode,
5628 XEXP (XEXP (x, 0), 0),
5629 XEXP (x, 1));
5630 if (tem)
5631 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5633 break;
5635 case UDIV:
5636 /* If this is a divide by a power of two, treat it as a shift if
5637 its first operand is a shift. */
5638 if (CONST_INT_P (XEXP (x, 1))
5639 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5640 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5641 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5642 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5643 || GET_CODE (XEXP (x, 0)) == ROTATE
5644 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5645 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5646 break;
5648 case EQ: case NE:
5649 case GT: case GTU: case GE: case GEU:
5650 case LT: case LTU: case LE: case LEU:
5651 case UNEQ: case LTGT:
5652 case UNGT: case UNGE:
5653 case UNLT: case UNLE:
5654 case UNORDERED: case ORDERED:
5655 /* If the first operand is a condition code, we can't do anything
5656 with it. */
5657 if (GET_CODE (XEXP (x, 0)) == COMPARE
5658 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5659 && ! CC0_P (XEXP (x, 0))))
5661 rtx op0 = XEXP (x, 0);
5662 rtx op1 = XEXP (x, 1);
5663 enum rtx_code new_code;
5665 if (GET_CODE (op0) == COMPARE)
5666 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5668 /* Simplify our comparison, if possible. */
5669 new_code = simplify_comparison (code, &op0, &op1);
5671 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5672 if only the low-order bit is possibly nonzero in X (such as when
5673 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5674 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5675 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5676 (plus X 1).
5678 Remove any ZERO_EXTRACT we made when thinking this was a
5679 comparison. It may now be simpler to use, e.g., an AND. If a
5680 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5681 the call to make_compound_operation in the SET case.
5683 Don't apply these optimizations if the caller would
5684 prefer a comparison rather than a value.
5685 E.g., for the condition in an IF_THEN_ELSE most targets need
5686 an explicit comparison. */
5688 if (in_cond)
5691 else if (STORE_FLAG_VALUE == 1
5692 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5693 && op1 == const0_rtx
5694 && mode == GET_MODE (op0)
5695 && nonzero_bits (op0, mode) == 1)
5696 return gen_lowpart (mode,
5697 expand_compound_operation (op0));
5699 else if (STORE_FLAG_VALUE == 1
5700 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5701 && op1 == const0_rtx
5702 && mode == GET_MODE (op0)
5703 && (num_sign_bit_copies (op0, mode)
5704 == GET_MODE_PRECISION (mode)))
5706 op0 = expand_compound_operation (op0);
5707 return simplify_gen_unary (NEG, mode,
5708 gen_lowpart (mode, op0),
5709 mode);
5712 else if (STORE_FLAG_VALUE == 1
5713 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5714 && op1 == const0_rtx
5715 && mode == GET_MODE (op0)
5716 && nonzero_bits (op0, mode) == 1)
5718 op0 = expand_compound_operation (op0);
5719 return simplify_gen_binary (XOR, mode,
5720 gen_lowpart (mode, op0),
5721 const1_rtx);
5724 else if (STORE_FLAG_VALUE == 1
5725 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5726 && op1 == const0_rtx
5727 && mode == GET_MODE (op0)
5728 && (num_sign_bit_copies (op0, mode)
5729 == GET_MODE_PRECISION (mode)))
5731 op0 = expand_compound_operation (op0);
5732 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5735 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5736 those above. */
5737 if (in_cond)
5740 else if (STORE_FLAG_VALUE == -1
5741 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5742 && op1 == const0_rtx
5743 && (num_sign_bit_copies (op0, mode)
5744 == GET_MODE_PRECISION (mode)))
5745 return gen_lowpart (mode,
5746 expand_compound_operation (op0));
5748 else if (STORE_FLAG_VALUE == -1
5749 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5750 && op1 == const0_rtx
5751 && mode == GET_MODE (op0)
5752 && nonzero_bits (op0, mode) == 1)
5754 op0 = expand_compound_operation (op0);
5755 return simplify_gen_unary (NEG, mode,
5756 gen_lowpart (mode, op0),
5757 mode);
5760 else if (STORE_FLAG_VALUE == -1
5761 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5762 && op1 == const0_rtx
5763 && mode == GET_MODE (op0)
5764 && (num_sign_bit_copies (op0, mode)
5765 == GET_MODE_PRECISION (mode)))
5767 op0 = expand_compound_operation (op0);
5768 return simplify_gen_unary (NOT, mode,
5769 gen_lowpart (mode, op0),
5770 mode);
5773 /* If X is 0/1, (eq X 0) is X-1. */
5774 else if (STORE_FLAG_VALUE == -1
5775 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5776 && op1 == const0_rtx
5777 && mode == GET_MODE (op0)
5778 && nonzero_bits (op0, mode) == 1)
5780 op0 = expand_compound_operation (op0);
5781 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5784 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5785 one bit that might be nonzero, we can convert (ne x 0) to
5786 (ashift x c) where C puts the bit in the sign bit. Remove any
5787 AND with STORE_FLAG_VALUE when we are done, since we are only
5788 going to test the sign bit. */
5789 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5790 && HWI_COMPUTABLE_MODE_P (mode)
5791 && val_signbit_p (mode, STORE_FLAG_VALUE)
5792 && op1 == const0_rtx
5793 && mode == GET_MODE (op0)
5794 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5796 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5797 expand_compound_operation (op0),
5798 GET_MODE_PRECISION (mode) - 1 - i);
5799 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5800 return XEXP (x, 0);
5801 else
5802 return x;
5805 /* If the code changed, return a whole new comparison.
5806 We also need to avoid using SUBST in cases where
5807 simplify_comparison has widened a comparison with a CONST_INT,
5808 since in that case the wider CONST_INT may fail the sanity
5809 checks in do_SUBST. */
5810 if (new_code != code
5811 || (CONST_INT_P (op1)
5812 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
5813 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
5814 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5816 /* Otherwise, keep this operation, but maybe change its operands.
5817 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5818 SUBST (XEXP (x, 0), op0);
5819 SUBST (XEXP (x, 1), op1);
5821 break;
5823 case IF_THEN_ELSE:
5824 return simplify_if_then_else (x);
5826 case ZERO_EXTRACT:
5827 case SIGN_EXTRACT:
5828 case ZERO_EXTEND:
5829 case SIGN_EXTEND:
5830 /* If we are processing SET_DEST, we are done. */
5831 if (in_dest)
5832 return x;
5834 return expand_compound_operation (x);
5836 case SET:
5837 return simplify_set (x);
5839 case AND:
5840 case IOR:
5841 return simplify_logical (x);
5843 case ASHIFT:
5844 case LSHIFTRT:
5845 case ASHIFTRT:
5846 case ROTATE:
5847 case ROTATERT:
5848 /* If this is a shift by a constant amount, simplify it. */
5849 if (CONST_INT_P (XEXP (x, 1)))
5850 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5851 INTVAL (XEXP (x, 1)));
5853 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5854 SUBST (XEXP (x, 1),
5855 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5856 ((unsigned HOST_WIDE_INT) 1
5857 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5858 - 1,
5859 0));
5860 break;
5862 default:
5863 break;
5866 return x;
5869 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5871 static rtx
5872 simplify_if_then_else (rtx x)
5874 enum machine_mode mode = GET_MODE (x);
5875 rtx cond = XEXP (x, 0);
5876 rtx true_rtx = XEXP (x, 1);
5877 rtx false_rtx = XEXP (x, 2);
5878 enum rtx_code true_code = GET_CODE (cond);
5879 int comparison_p = COMPARISON_P (cond);
5880 rtx temp;
5881 int i;
5882 enum rtx_code false_code;
5883 rtx reversed;
5885 /* Simplify storing of the truth value. */
5886 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5887 return simplify_gen_relational (true_code, mode, VOIDmode,
5888 XEXP (cond, 0), XEXP (cond, 1));
5890 /* Also when the truth value has to be reversed. */
5891 if (comparison_p
5892 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5893 && (reversed = reversed_comparison (cond, mode)))
5894 return reversed;
5896 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5897 in it is being compared against certain values. Get the true and false
5898 comparisons and see if that says anything about the value of each arm. */
5900 if (comparison_p
5901 && ((false_code = reversed_comparison_code (cond, NULL))
5902 != UNKNOWN)
5903 && REG_P (XEXP (cond, 0)))
5905 HOST_WIDE_INT nzb;
5906 rtx from = XEXP (cond, 0);
5907 rtx true_val = XEXP (cond, 1);
5908 rtx false_val = true_val;
5909 int swapped = 0;
5911 /* If FALSE_CODE is EQ, swap the codes and arms. */
5913 if (false_code == EQ)
5915 swapped = 1, true_code = EQ, false_code = NE;
5916 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5919 /* If we are comparing against zero and the expression being tested has
5920 only a single bit that might be nonzero, that is its value when it is
5921 not equal to zero. Similarly if it is known to be -1 or 0. */
5923 if (true_code == EQ && true_val == const0_rtx
5924 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5926 false_code = EQ;
5927 false_val = gen_int_mode (nzb, GET_MODE (from));
5929 else if (true_code == EQ && true_val == const0_rtx
5930 && (num_sign_bit_copies (from, GET_MODE (from))
5931 == GET_MODE_PRECISION (GET_MODE (from))))
5933 false_code = EQ;
5934 false_val = constm1_rtx;
5937 /* Now simplify an arm if we know the value of the register in the
5938 branch and it is used in the arm. Be careful due to the potential
5939 of locally-shared RTL. */
5941 if (reg_mentioned_p (from, true_rtx))
5942 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5943 from, true_val),
5944 pc_rtx, pc_rtx, 0, 0, 0);
5945 if (reg_mentioned_p (from, false_rtx))
5946 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5947 from, false_val),
5948 pc_rtx, pc_rtx, 0, 0, 0);
5950 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5951 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5953 true_rtx = XEXP (x, 1);
5954 false_rtx = XEXP (x, 2);
5955 true_code = GET_CODE (cond);
5958 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5959 reversed, do so to avoid needing two sets of patterns for
5960 subtract-and-branch insns. Similarly if we have a constant in the true
5961 arm, the false arm is the same as the first operand of the comparison, or
5962 the false arm is more complicated than the true arm. */
5964 if (comparison_p
5965 && reversed_comparison_code (cond, NULL) != UNKNOWN
5966 && (true_rtx == pc_rtx
5967 || (CONSTANT_P (true_rtx)
5968 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5969 || true_rtx == const0_rtx
5970 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5971 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5972 && !OBJECT_P (false_rtx))
5973 || reg_mentioned_p (true_rtx, false_rtx)
5974 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5976 true_code = reversed_comparison_code (cond, NULL);
5977 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5978 SUBST (XEXP (x, 1), false_rtx);
5979 SUBST (XEXP (x, 2), true_rtx);
5981 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5982 cond = XEXP (x, 0);
5984 /* It is possible that the conditional has been simplified out. */
5985 true_code = GET_CODE (cond);
5986 comparison_p = COMPARISON_P (cond);
5989 /* If the two arms are identical, we don't need the comparison. */
5991 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5992 return true_rtx;
5994 /* Convert a == b ? b : a to "a". */
5995 if (true_code == EQ && ! side_effects_p (cond)
5996 && !HONOR_NANS (mode)
5997 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5998 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5999 return false_rtx;
6000 else if (true_code == NE && ! side_effects_p (cond)
6001 && !HONOR_NANS (mode)
6002 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6003 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6004 return true_rtx;
6006 /* Look for cases where we have (abs x) or (neg (abs X)). */
6008 if (GET_MODE_CLASS (mode) == MODE_INT
6009 && comparison_p
6010 && XEXP (cond, 1) == const0_rtx
6011 && GET_CODE (false_rtx) == NEG
6012 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6013 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6014 && ! side_effects_p (true_rtx))
6015 switch (true_code)
6017 case GT:
6018 case GE:
6019 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6020 case LT:
6021 case LE:
6022 return
6023 simplify_gen_unary (NEG, mode,
6024 simplify_gen_unary (ABS, mode, true_rtx, mode),
6025 mode);
6026 default:
6027 break;
6030 /* Look for MIN or MAX. */
6032 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6033 && comparison_p
6034 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6035 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6036 && ! side_effects_p (cond))
6037 switch (true_code)
6039 case GE:
6040 case GT:
6041 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6042 case LE:
6043 case LT:
6044 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6045 case GEU:
6046 case GTU:
6047 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6048 case LEU:
6049 case LTU:
6050 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6051 default:
6052 break;
6055 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6056 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6057 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6058 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6059 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6060 neither 1 or -1, but it isn't worth checking for. */
6062 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6063 && comparison_p
6064 && GET_MODE_CLASS (mode) == MODE_INT
6065 && ! side_effects_p (x))
6067 rtx t = make_compound_operation (true_rtx, SET);
6068 rtx f = make_compound_operation (false_rtx, SET);
6069 rtx cond_op0 = XEXP (cond, 0);
6070 rtx cond_op1 = XEXP (cond, 1);
6071 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6072 enum machine_mode m = mode;
6073 rtx z = 0, c1 = NULL_RTX;
6075 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6076 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6077 || GET_CODE (t) == ASHIFT
6078 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6079 && rtx_equal_p (XEXP (t, 0), f))
6080 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6082 /* If an identity-zero op is commutative, check whether there
6083 would be a match if we swapped the operands. */
6084 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6085 || GET_CODE (t) == XOR)
6086 && rtx_equal_p (XEXP (t, 1), f))
6087 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6088 else if (GET_CODE (t) == SIGN_EXTEND
6089 && (GET_CODE (XEXP (t, 0)) == PLUS
6090 || GET_CODE (XEXP (t, 0)) == MINUS
6091 || GET_CODE (XEXP (t, 0)) == IOR
6092 || GET_CODE (XEXP (t, 0)) == XOR
6093 || GET_CODE (XEXP (t, 0)) == ASHIFT
6094 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6095 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6096 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6097 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6098 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6099 && (num_sign_bit_copies (f, GET_MODE (f))
6100 > (unsigned int)
6101 (GET_MODE_PRECISION (mode)
6102 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6104 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6105 extend_op = SIGN_EXTEND;
6106 m = GET_MODE (XEXP (t, 0));
6108 else if (GET_CODE (t) == SIGN_EXTEND
6109 && (GET_CODE (XEXP (t, 0)) == PLUS
6110 || GET_CODE (XEXP (t, 0)) == IOR
6111 || GET_CODE (XEXP (t, 0)) == XOR)
6112 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6113 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6114 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6115 && (num_sign_bit_copies (f, GET_MODE (f))
6116 > (unsigned int)
6117 (GET_MODE_PRECISION (mode)
6118 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6120 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6121 extend_op = SIGN_EXTEND;
6122 m = GET_MODE (XEXP (t, 0));
6124 else if (GET_CODE (t) == ZERO_EXTEND
6125 && (GET_CODE (XEXP (t, 0)) == PLUS
6126 || GET_CODE (XEXP (t, 0)) == MINUS
6127 || GET_CODE (XEXP (t, 0)) == IOR
6128 || GET_CODE (XEXP (t, 0)) == XOR
6129 || GET_CODE (XEXP (t, 0)) == ASHIFT
6130 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6131 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6132 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6133 && HWI_COMPUTABLE_MODE_P (mode)
6134 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6135 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6136 && ((nonzero_bits (f, GET_MODE (f))
6137 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6138 == 0))
6140 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6141 extend_op = ZERO_EXTEND;
6142 m = GET_MODE (XEXP (t, 0));
6144 else if (GET_CODE (t) == ZERO_EXTEND
6145 && (GET_CODE (XEXP (t, 0)) == PLUS
6146 || GET_CODE (XEXP (t, 0)) == IOR
6147 || GET_CODE (XEXP (t, 0)) == XOR)
6148 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6149 && HWI_COMPUTABLE_MODE_P (mode)
6150 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6151 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6152 && ((nonzero_bits (f, GET_MODE (f))
6153 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6154 == 0))
6156 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6157 extend_op = ZERO_EXTEND;
6158 m = GET_MODE (XEXP (t, 0));
6161 if (z)
6163 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6164 cond_op0, cond_op1),
6165 pc_rtx, pc_rtx, 0, 0, 0);
6166 temp = simplify_gen_binary (MULT, m, temp,
6167 simplify_gen_binary (MULT, m, c1,
6168 const_true_rtx));
6169 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6170 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6172 if (extend_op != UNKNOWN)
6173 temp = simplify_gen_unary (extend_op, mode, temp, m);
6175 return temp;
6179 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6180 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6181 negation of a single bit, we can convert this operation to a shift. We
6182 can actually do this more generally, but it doesn't seem worth it. */
6184 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6185 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6186 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6187 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6188 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6189 == GET_MODE_PRECISION (mode))
6190 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6191 return
6192 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6193 gen_lowpart (mode, XEXP (cond, 0)), i);
6195 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6196 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6197 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6198 && GET_MODE (XEXP (cond, 0)) == mode
6199 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6200 == nonzero_bits (XEXP (cond, 0), mode)
6201 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6202 return XEXP (cond, 0);
6204 return x;
6207 /* Simplify X, a SET expression. Return the new expression. */
6209 static rtx
6210 simplify_set (rtx x)
6212 rtx src = SET_SRC (x);
6213 rtx dest = SET_DEST (x);
6214 enum machine_mode mode
6215 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6216 rtx other_insn;
6217 rtx *cc_use;
6219 /* (set (pc) (return)) gets written as (return). */
6220 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6221 return src;
6223 /* Now that we know for sure which bits of SRC we are using, see if we can
6224 simplify the expression for the object knowing that we only need the
6225 low-order bits. */
6227 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6229 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6230 SUBST (SET_SRC (x), src);
6233 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6234 the comparison result and try to simplify it unless we already have used
6235 undobuf.other_insn. */
6236 if ((GET_MODE_CLASS (mode) == MODE_CC
6237 || GET_CODE (src) == COMPARE
6238 || CC0_P (dest))
6239 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6240 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6241 && COMPARISON_P (*cc_use)
6242 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6244 enum rtx_code old_code = GET_CODE (*cc_use);
6245 enum rtx_code new_code;
6246 rtx op0, op1, tmp;
6247 int other_changed = 0;
6248 rtx inner_compare = NULL_RTX;
6249 enum machine_mode compare_mode = GET_MODE (dest);
6251 if (GET_CODE (src) == COMPARE)
6253 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6254 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6256 inner_compare = op0;
6257 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6260 else
6261 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6263 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6264 op0, op1);
6265 if (!tmp)
6266 new_code = old_code;
6267 else if (!CONSTANT_P (tmp))
6269 new_code = GET_CODE (tmp);
6270 op0 = XEXP (tmp, 0);
6271 op1 = XEXP (tmp, 1);
6273 else
6275 rtx pat = PATTERN (other_insn);
6276 undobuf.other_insn = other_insn;
6277 SUBST (*cc_use, tmp);
6279 /* Attempt to simplify CC user. */
6280 if (GET_CODE (pat) == SET)
6282 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6283 if (new_rtx != NULL_RTX)
6284 SUBST (SET_SRC (pat), new_rtx);
6287 /* Convert X into a no-op move. */
6288 SUBST (SET_DEST (x), pc_rtx);
6289 SUBST (SET_SRC (x), pc_rtx);
6290 return x;
6293 /* Simplify our comparison, if possible. */
6294 new_code = simplify_comparison (new_code, &op0, &op1);
6296 #ifdef SELECT_CC_MODE
6297 /* If this machine has CC modes other than CCmode, check to see if we
6298 need to use a different CC mode here. */
6299 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6300 compare_mode = GET_MODE (op0);
6301 else if (inner_compare
6302 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6303 && new_code == old_code
6304 && op0 == XEXP (inner_compare, 0)
6305 && op1 == XEXP (inner_compare, 1))
6306 compare_mode = GET_MODE (inner_compare);
6307 else
6308 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6310 #ifndef HAVE_cc0
6311 /* If the mode changed, we have to change SET_DEST, the mode in the
6312 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6313 a hard register, just build new versions with the proper mode. If it
6314 is a pseudo, we lose unless it is only time we set the pseudo, in
6315 which case we can safely change its mode. */
6316 if (compare_mode != GET_MODE (dest))
6318 if (can_change_dest_mode (dest, 0, compare_mode))
6320 unsigned int regno = REGNO (dest);
6321 rtx new_dest;
6323 if (regno < FIRST_PSEUDO_REGISTER)
6324 new_dest = gen_rtx_REG (compare_mode, regno);
6325 else
6327 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6328 new_dest = regno_reg_rtx[regno];
6331 SUBST (SET_DEST (x), new_dest);
6332 SUBST (XEXP (*cc_use, 0), new_dest);
6333 other_changed = 1;
6335 dest = new_dest;
6338 #endif /* cc0 */
6339 #endif /* SELECT_CC_MODE */
6341 /* If the code changed, we have to build a new comparison in
6342 undobuf.other_insn. */
6343 if (new_code != old_code)
6345 int other_changed_previously = other_changed;
6346 unsigned HOST_WIDE_INT mask;
6347 rtx old_cc_use = *cc_use;
6349 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6350 dest, const0_rtx));
6351 other_changed = 1;
6353 /* If the only change we made was to change an EQ into an NE or
6354 vice versa, OP0 has only one bit that might be nonzero, and OP1
6355 is zero, check if changing the user of the condition code will
6356 produce a valid insn. If it won't, we can keep the original code
6357 in that insn by surrounding our operation with an XOR. */
6359 if (((old_code == NE && new_code == EQ)
6360 || (old_code == EQ && new_code == NE))
6361 && ! other_changed_previously && op1 == const0_rtx
6362 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6363 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6365 rtx pat = PATTERN (other_insn), note = 0;
6367 if ((recog_for_combine (&pat, other_insn, &note) < 0
6368 && ! check_asm_operands (pat)))
6370 *cc_use = old_cc_use;
6371 other_changed = 0;
6373 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6374 op0, GEN_INT (mask));
6379 if (other_changed)
6380 undobuf.other_insn = other_insn;
6382 /* Otherwise, if we didn't previously have a COMPARE in the
6383 correct mode, we need one. */
6384 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6386 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6387 src = SET_SRC (x);
6389 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6391 SUBST (SET_SRC (x), op0);
6392 src = SET_SRC (x);
6394 /* Otherwise, update the COMPARE if needed. */
6395 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6397 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6398 src = SET_SRC (x);
6401 else
6403 /* Get SET_SRC in a form where we have placed back any
6404 compound expressions. Then do the checks below. */
6405 src = make_compound_operation (src, SET);
6406 SUBST (SET_SRC (x), src);
6409 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6410 and X being a REG or (subreg (reg)), we may be able to convert this to
6411 (set (subreg:m2 x) (op)).
6413 We can always do this if M1 is narrower than M2 because that means that
6414 we only care about the low bits of the result.
6416 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6417 perform a narrower operation than requested since the high-order bits will
6418 be undefined. On machine where it is defined, this transformation is safe
6419 as long as M1 and M2 have the same number of words. */
6421 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6422 && !OBJECT_P (SUBREG_REG (src))
6423 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6424 / UNITS_PER_WORD)
6425 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6426 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6427 #ifndef WORD_REGISTER_OPERATIONS
6428 && (GET_MODE_SIZE (GET_MODE (src))
6429 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6430 #endif
6431 #ifdef CANNOT_CHANGE_MODE_CLASS
6432 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6433 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6434 GET_MODE (SUBREG_REG (src)),
6435 GET_MODE (src)))
6436 #endif
6437 && (REG_P (dest)
6438 || (GET_CODE (dest) == SUBREG
6439 && REG_P (SUBREG_REG (dest)))))
6441 SUBST (SET_DEST (x),
6442 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6443 dest));
6444 SUBST (SET_SRC (x), SUBREG_REG (src));
6446 src = SET_SRC (x), dest = SET_DEST (x);
6449 #ifdef HAVE_cc0
6450 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6451 in SRC. */
6452 if (dest == cc0_rtx
6453 && GET_CODE (src) == SUBREG
6454 && subreg_lowpart_p (src)
6455 && (GET_MODE_PRECISION (GET_MODE (src))
6456 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6458 rtx inner = SUBREG_REG (src);
6459 enum machine_mode inner_mode = GET_MODE (inner);
6461 /* Here we make sure that we don't have a sign bit on. */
6462 if (val_signbit_known_clear_p (GET_MODE (src),
6463 nonzero_bits (inner, inner_mode)))
6465 SUBST (SET_SRC (x), inner);
6466 src = SET_SRC (x);
6469 #endif
6471 #ifdef LOAD_EXTEND_OP
6472 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6473 would require a paradoxical subreg. Replace the subreg with a
6474 zero_extend to avoid the reload that would otherwise be required. */
6476 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6477 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6478 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6479 && SUBREG_BYTE (src) == 0
6480 && paradoxical_subreg_p (src)
6481 && MEM_P (SUBREG_REG (src)))
6483 SUBST (SET_SRC (x),
6484 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6485 GET_MODE (src), SUBREG_REG (src)));
6487 src = SET_SRC (x);
6489 #endif
6491 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6492 are comparing an item known to be 0 or -1 against 0, use a logical
6493 operation instead. Check for one of the arms being an IOR of the other
6494 arm with some value. We compute three terms to be IOR'ed together. In
6495 practice, at most two will be nonzero. Then we do the IOR's. */
6497 if (GET_CODE (dest) != PC
6498 && GET_CODE (src) == IF_THEN_ELSE
6499 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6500 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6501 && XEXP (XEXP (src, 0), 1) == const0_rtx
6502 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6503 #ifdef HAVE_conditional_move
6504 && ! can_conditionally_move_p (GET_MODE (src))
6505 #endif
6506 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6507 GET_MODE (XEXP (XEXP (src, 0), 0)))
6508 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6509 && ! side_effects_p (src))
6511 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6512 ? XEXP (src, 1) : XEXP (src, 2));
6513 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6514 ? XEXP (src, 2) : XEXP (src, 1));
6515 rtx term1 = const0_rtx, term2, term3;
6517 if (GET_CODE (true_rtx) == IOR
6518 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6519 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6520 else if (GET_CODE (true_rtx) == IOR
6521 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6522 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6523 else if (GET_CODE (false_rtx) == IOR
6524 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6525 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6526 else if (GET_CODE (false_rtx) == IOR
6527 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6528 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6530 term2 = simplify_gen_binary (AND, GET_MODE (src),
6531 XEXP (XEXP (src, 0), 0), true_rtx);
6532 term3 = simplify_gen_binary (AND, GET_MODE (src),
6533 simplify_gen_unary (NOT, GET_MODE (src),
6534 XEXP (XEXP (src, 0), 0),
6535 GET_MODE (src)),
6536 false_rtx);
6538 SUBST (SET_SRC (x),
6539 simplify_gen_binary (IOR, GET_MODE (src),
6540 simplify_gen_binary (IOR, GET_MODE (src),
6541 term1, term2),
6542 term3));
6544 src = SET_SRC (x);
6547 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6548 whole thing fail. */
6549 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6550 return src;
6551 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6552 return dest;
6553 else
6554 /* Convert this into a field assignment operation, if possible. */
6555 return make_field_assignment (x);
6558 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6559 result. */
6561 static rtx
6562 simplify_logical (rtx x)
6564 enum machine_mode mode = GET_MODE (x);
6565 rtx op0 = XEXP (x, 0);
6566 rtx op1 = XEXP (x, 1);
6568 switch (GET_CODE (x))
6570 case AND:
6571 /* We can call simplify_and_const_int only if we don't lose
6572 any (sign) bits when converting INTVAL (op1) to
6573 "unsigned HOST_WIDE_INT". */
6574 if (CONST_INT_P (op1)
6575 && (HWI_COMPUTABLE_MODE_P (mode)
6576 || INTVAL (op1) > 0))
6578 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6579 if (GET_CODE (x) != AND)
6580 return x;
6582 op0 = XEXP (x, 0);
6583 op1 = XEXP (x, 1);
6586 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6587 apply the distributive law and then the inverse distributive
6588 law to see if things simplify. */
6589 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6591 rtx result = distribute_and_simplify_rtx (x, 0);
6592 if (result)
6593 return result;
6595 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6597 rtx result = distribute_and_simplify_rtx (x, 1);
6598 if (result)
6599 return result;
6601 break;
6603 case IOR:
6604 /* If we have (ior (and A B) C), apply the distributive law and then
6605 the inverse distributive law to see if things simplify. */
6607 if (GET_CODE (op0) == AND)
6609 rtx result = distribute_and_simplify_rtx (x, 0);
6610 if (result)
6611 return result;
6614 if (GET_CODE (op1) == AND)
6616 rtx result = distribute_and_simplify_rtx (x, 1);
6617 if (result)
6618 return result;
6620 break;
6622 default:
6623 gcc_unreachable ();
6626 return x;
6629 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6630 operations" because they can be replaced with two more basic operations.
6631 ZERO_EXTEND is also considered "compound" because it can be replaced with
6632 an AND operation, which is simpler, though only one operation.
6634 The function expand_compound_operation is called with an rtx expression
6635 and will convert it to the appropriate shifts and AND operations,
6636 simplifying at each stage.
6638 The function make_compound_operation is called to convert an expression
6639 consisting of shifts and ANDs into the equivalent compound expression.
6640 It is the inverse of this function, loosely speaking. */
6642 static rtx
6643 expand_compound_operation (rtx x)
6645 unsigned HOST_WIDE_INT pos = 0, len;
6646 int unsignedp = 0;
6647 unsigned int modewidth;
6648 rtx tem;
6650 switch (GET_CODE (x))
6652 case ZERO_EXTEND:
6653 unsignedp = 1;
6654 case SIGN_EXTEND:
6655 /* We can't necessarily use a const_int for a multiword mode;
6656 it depends on implicitly extending the value.
6657 Since we don't know the right way to extend it,
6658 we can't tell whether the implicit way is right.
6660 Even for a mode that is no wider than a const_int,
6661 we can't win, because we need to sign extend one of its bits through
6662 the rest of it, and we don't know which bit. */
6663 if (CONST_INT_P (XEXP (x, 0)))
6664 return x;
6666 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6667 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6668 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6669 reloaded. If not for that, MEM's would very rarely be safe.
6671 Reject MODEs bigger than a word, because we might not be able
6672 to reference a two-register group starting with an arbitrary register
6673 (and currently gen_lowpart might crash for a SUBREG). */
6675 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6676 return x;
6678 /* Reject MODEs that aren't scalar integers because turning vector
6679 or complex modes into shifts causes problems. */
6681 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6682 return x;
6684 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6685 /* If the inner object has VOIDmode (the only way this can happen
6686 is if it is an ASM_OPERANDS), we can't do anything since we don't
6687 know how much masking to do. */
6688 if (len == 0)
6689 return x;
6691 break;
6693 case ZERO_EXTRACT:
6694 unsignedp = 1;
6696 /* ... fall through ... */
6698 case SIGN_EXTRACT:
6699 /* If the operand is a CLOBBER, just return it. */
6700 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6701 return XEXP (x, 0);
6703 if (!CONST_INT_P (XEXP (x, 1))
6704 || !CONST_INT_P (XEXP (x, 2))
6705 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6706 return x;
6708 /* Reject MODEs that aren't scalar integers because turning vector
6709 or complex modes into shifts causes problems. */
6711 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6712 return x;
6714 len = INTVAL (XEXP (x, 1));
6715 pos = INTVAL (XEXP (x, 2));
6717 /* This should stay within the object being extracted, fail otherwise. */
6718 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6719 return x;
6721 if (BITS_BIG_ENDIAN)
6722 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6724 break;
6726 default:
6727 return x;
6729 /* Convert sign extension to zero extension, if we know that the high
6730 bit is not set, as this is easier to optimize. It will be converted
6731 back to cheaper alternative in make_extraction. */
6732 if (GET_CODE (x) == SIGN_EXTEND
6733 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6734 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6735 & ~(((unsigned HOST_WIDE_INT)
6736 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6737 >> 1))
6738 == 0)))
6740 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6741 rtx temp2 = expand_compound_operation (temp);
6743 /* Make sure this is a profitable operation. */
6744 if (set_src_cost (x, optimize_this_for_speed_p)
6745 > set_src_cost (temp2, optimize_this_for_speed_p))
6746 return temp2;
6747 else if (set_src_cost (x, optimize_this_for_speed_p)
6748 > set_src_cost (temp, optimize_this_for_speed_p))
6749 return temp;
6750 else
6751 return x;
6754 /* We can optimize some special cases of ZERO_EXTEND. */
6755 if (GET_CODE (x) == ZERO_EXTEND)
6757 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6758 know that the last value didn't have any inappropriate bits
6759 set. */
6760 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6761 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6762 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6763 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6764 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6765 return XEXP (XEXP (x, 0), 0);
6767 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6768 if (GET_CODE (XEXP (x, 0)) == SUBREG
6769 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6770 && subreg_lowpart_p (XEXP (x, 0))
6771 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6772 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6773 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6774 return SUBREG_REG (XEXP (x, 0));
6776 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6777 is a comparison and STORE_FLAG_VALUE permits. This is like
6778 the first case, but it works even when GET_MODE (x) is larger
6779 than HOST_WIDE_INT. */
6780 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6781 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6782 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6783 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6784 <= HOST_BITS_PER_WIDE_INT)
6785 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6786 return XEXP (XEXP (x, 0), 0);
6788 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6789 if (GET_CODE (XEXP (x, 0)) == SUBREG
6790 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6791 && subreg_lowpart_p (XEXP (x, 0))
6792 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6793 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6794 <= HOST_BITS_PER_WIDE_INT)
6795 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6796 return SUBREG_REG (XEXP (x, 0));
6800 /* If we reach here, we want to return a pair of shifts. The inner
6801 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6802 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6803 logical depending on the value of UNSIGNEDP.
6805 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6806 converted into an AND of a shift.
6808 We must check for the case where the left shift would have a negative
6809 count. This can happen in a case like (x >> 31) & 255 on machines
6810 that can't shift by a constant. On those machines, we would first
6811 combine the shift with the AND to produce a variable-position
6812 extraction. Then the constant of 31 would be substituted in
6813 to produce such a position. */
6815 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6816 if (modewidth >= pos + len)
6818 enum machine_mode mode = GET_MODE (x);
6819 tem = gen_lowpart (mode, XEXP (x, 0));
6820 if (!tem || GET_CODE (tem) == CLOBBER)
6821 return x;
6822 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6823 tem, modewidth - pos - len);
6824 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6825 mode, tem, modewidth - len);
6827 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6828 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6829 simplify_shift_const (NULL_RTX, LSHIFTRT,
6830 GET_MODE (x),
6831 XEXP (x, 0), pos),
6832 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6833 else
6834 /* Any other cases we can't handle. */
6835 return x;
6837 /* If we couldn't do this for some reason, return the original
6838 expression. */
6839 if (GET_CODE (tem) == CLOBBER)
6840 return x;
6842 return tem;
6845 /* X is a SET which contains an assignment of one object into
6846 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6847 or certain SUBREGS). If possible, convert it into a series of
6848 logical operations.
6850 We half-heartedly support variable positions, but do not at all
6851 support variable lengths. */
6853 static const_rtx
6854 expand_field_assignment (const_rtx x)
6856 rtx inner;
6857 rtx pos; /* Always counts from low bit. */
6858 int len;
6859 rtx mask, cleared, masked;
6860 enum machine_mode compute_mode;
6862 /* Loop until we find something we can't simplify. */
6863 while (1)
6865 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6866 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6868 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6869 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6870 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6872 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6873 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6875 inner = XEXP (SET_DEST (x), 0);
6876 len = INTVAL (XEXP (SET_DEST (x), 1));
6877 pos = XEXP (SET_DEST (x), 2);
6879 /* A constant position should stay within the width of INNER. */
6880 if (CONST_INT_P (pos)
6881 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6882 break;
6884 if (BITS_BIG_ENDIAN)
6886 if (CONST_INT_P (pos))
6887 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6888 - INTVAL (pos));
6889 else if (GET_CODE (pos) == MINUS
6890 && CONST_INT_P (XEXP (pos, 1))
6891 && (INTVAL (XEXP (pos, 1))
6892 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6893 /* If position is ADJUST - X, new position is X. */
6894 pos = XEXP (pos, 0);
6895 else
6896 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6897 GEN_INT (GET_MODE_PRECISION (
6898 GET_MODE (inner))
6899 - len),
6900 pos);
6904 /* A SUBREG between two modes that occupy the same numbers of words
6905 can be done by moving the SUBREG to the source. */
6906 else if (GET_CODE (SET_DEST (x)) == SUBREG
6907 /* We need SUBREGs to compute nonzero_bits properly. */
6908 && nonzero_sign_valid
6909 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6910 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6911 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6912 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6914 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6915 gen_lowpart
6916 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6917 SET_SRC (x)));
6918 continue;
6920 else
6921 break;
6923 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6924 inner = SUBREG_REG (inner);
6926 compute_mode = GET_MODE (inner);
6928 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6929 if (! SCALAR_INT_MODE_P (compute_mode))
6931 enum machine_mode imode;
6933 /* Don't do anything for vector or complex integral types. */
6934 if (! FLOAT_MODE_P (compute_mode))
6935 break;
6937 /* Try to find an integral mode to pun with. */
6938 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6939 if (imode == BLKmode)
6940 break;
6942 compute_mode = imode;
6943 inner = gen_lowpart (imode, inner);
6946 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6947 if (len >= HOST_BITS_PER_WIDE_INT)
6948 break;
6950 /* Now compute the equivalent expression. Make a copy of INNER
6951 for the SET_DEST in case it is a MEM into which we will substitute;
6952 we don't want shared RTL in that case. */
6953 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
6954 cleared = simplify_gen_binary (AND, compute_mode,
6955 simplify_gen_unary (NOT, compute_mode,
6956 simplify_gen_binary (ASHIFT,
6957 compute_mode,
6958 mask, pos),
6959 compute_mode),
6960 inner);
6961 masked = simplify_gen_binary (ASHIFT, compute_mode,
6962 simplify_gen_binary (
6963 AND, compute_mode,
6964 gen_lowpart (compute_mode, SET_SRC (x)),
6965 mask),
6966 pos);
6968 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6969 simplify_gen_binary (IOR, compute_mode,
6970 cleared, masked));
6973 return x;
6976 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6977 it is an RTX that represents the (variable) starting position; otherwise,
6978 POS is the (constant) starting bit position. Both are counted from the LSB.
6980 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
6982 IN_DEST is nonzero if this is a reference in the destination of a SET.
6983 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6984 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6985 be used.
6987 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6988 ZERO_EXTRACT should be built even for bits starting at bit 0.
6990 MODE is the desired mode of the result (if IN_DEST == 0).
6992 The result is an RTX for the extraction or NULL_RTX if the target
6993 can't handle it. */
6995 static rtx
6996 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6997 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6998 int in_dest, int in_compare)
7000 /* This mode describes the size of the storage area
7001 to fetch the overall value from. Within that, we
7002 ignore the POS lowest bits, etc. */
7003 enum machine_mode is_mode = GET_MODE (inner);
7004 enum machine_mode inner_mode;
7005 enum machine_mode wanted_inner_mode;
7006 enum machine_mode wanted_inner_reg_mode = word_mode;
7007 enum machine_mode pos_mode = word_mode;
7008 enum machine_mode extraction_mode = word_mode;
7009 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7010 rtx new_rtx = 0;
7011 rtx orig_pos_rtx = pos_rtx;
7012 HOST_WIDE_INT orig_pos;
7014 if (pos_rtx && CONST_INT_P (pos_rtx))
7015 pos = INTVAL (pos_rtx), pos_rtx = 0;
7017 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7019 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7020 consider just the QI as the memory to extract from.
7021 The subreg adds or removes high bits; its mode is
7022 irrelevant to the meaning of this extraction,
7023 since POS and LEN count from the lsb. */
7024 if (MEM_P (SUBREG_REG (inner)))
7025 is_mode = GET_MODE (SUBREG_REG (inner));
7026 inner = SUBREG_REG (inner);
7028 else if (GET_CODE (inner) == ASHIFT
7029 && CONST_INT_P (XEXP (inner, 1))
7030 && pos_rtx == 0 && pos == 0
7031 && len > UINTVAL (XEXP (inner, 1)))
7033 /* We're extracting the least significant bits of an rtx
7034 (ashift X (const_int C)), where LEN > C. Extract the
7035 least significant (LEN - C) bits of X, giving an rtx
7036 whose mode is MODE, then shift it left C times. */
7037 new_rtx = make_extraction (mode, XEXP (inner, 0),
7038 0, 0, len - INTVAL (XEXP (inner, 1)),
7039 unsignedp, in_dest, in_compare);
7040 if (new_rtx != 0)
7041 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7043 else if (GET_CODE (inner) == TRUNCATE)
7044 inner = XEXP (inner, 0);
7046 inner_mode = GET_MODE (inner);
7048 /* See if this can be done without an extraction. We never can if the
7049 width of the field is not the same as that of some integer mode. For
7050 registers, we can only avoid the extraction if the position is at the
7051 low-order bit and this is either not in the destination or we have the
7052 appropriate STRICT_LOW_PART operation available.
7054 For MEM, we can avoid an extract if the field starts on an appropriate
7055 boundary and we can change the mode of the memory reference. */
7057 if (tmode != BLKmode
7058 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7059 && !MEM_P (inner)
7060 && (inner_mode == tmode
7061 || !REG_P (inner)
7062 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7063 || reg_truncated_to_mode (tmode, inner))
7064 && (! in_dest
7065 || (REG_P (inner)
7066 && have_insn_for (STRICT_LOW_PART, tmode))))
7067 || (MEM_P (inner) && pos_rtx == 0
7068 && (pos
7069 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7070 : BITS_PER_UNIT)) == 0
7071 /* We can't do this if we are widening INNER_MODE (it
7072 may not be aligned, for one thing). */
7073 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7074 && (inner_mode == tmode
7075 || (! mode_dependent_address_p (XEXP (inner, 0),
7076 MEM_ADDR_SPACE (inner))
7077 && ! MEM_VOLATILE_P (inner))))))
7079 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7080 field. If the original and current mode are the same, we need not
7081 adjust the offset. Otherwise, we do if bytes big endian.
7083 If INNER is not a MEM, get a piece consisting of just the field
7084 of interest (in this case POS % BITS_PER_WORD must be 0). */
7086 if (MEM_P (inner))
7088 HOST_WIDE_INT offset;
7090 /* POS counts from lsb, but make OFFSET count in memory order. */
7091 if (BYTES_BIG_ENDIAN)
7092 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7093 else
7094 offset = pos / BITS_PER_UNIT;
7096 new_rtx = adjust_address_nv (inner, tmode, offset);
7098 else if (REG_P (inner))
7100 if (tmode != inner_mode)
7102 /* We can't call gen_lowpart in a DEST since we
7103 always want a SUBREG (see below) and it would sometimes
7104 return a new hard register. */
7105 if (pos || in_dest)
7107 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7109 if (WORDS_BIG_ENDIAN
7110 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7111 final_word = ((GET_MODE_SIZE (inner_mode)
7112 - GET_MODE_SIZE (tmode))
7113 / UNITS_PER_WORD) - final_word;
7115 final_word *= UNITS_PER_WORD;
7116 if (BYTES_BIG_ENDIAN &&
7117 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7118 final_word += (GET_MODE_SIZE (inner_mode)
7119 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7121 /* Avoid creating invalid subregs, for example when
7122 simplifying (x>>32)&255. */
7123 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7124 return NULL_RTX;
7126 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7128 else
7129 new_rtx = gen_lowpart (tmode, inner);
7131 else
7132 new_rtx = inner;
7134 else
7135 new_rtx = force_to_mode (inner, tmode,
7136 len >= HOST_BITS_PER_WIDE_INT
7137 ? ~(unsigned HOST_WIDE_INT) 0
7138 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7141 /* If this extraction is going into the destination of a SET,
7142 make a STRICT_LOW_PART unless we made a MEM. */
7144 if (in_dest)
7145 return (MEM_P (new_rtx) ? new_rtx
7146 : (GET_CODE (new_rtx) != SUBREG
7147 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7148 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7150 if (mode == tmode)
7151 return new_rtx;
7153 if (CONST_SCALAR_INT_P (new_rtx))
7154 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7155 mode, new_rtx, tmode);
7157 /* If we know that no extraneous bits are set, and that the high
7158 bit is not set, convert the extraction to the cheaper of
7159 sign and zero extension, that are equivalent in these cases. */
7160 if (flag_expensive_optimizations
7161 && (HWI_COMPUTABLE_MODE_P (tmode)
7162 && ((nonzero_bits (new_rtx, tmode)
7163 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7164 == 0)))
7166 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7167 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7169 /* Prefer ZERO_EXTENSION, since it gives more information to
7170 backends. */
7171 if (set_src_cost (temp, optimize_this_for_speed_p)
7172 <= set_src_cost (temp1, optimize_this_for_speed_p))
7173 return temp;
7174 return temp1;
7177 /* Otherwise, sign- or zero-extend unless we already are in the
7178 proper mode. */
7180 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7181 mode, new_rtx));
7184 /* Unless this is a COMPARE or we have a funny memory reference,
7185 don't do anything with zero-extending field extracts starting at
7186 the low-order bit since they are simple AND operations. */
7187 if (pos_rtx == 0 && pos == 0 && ! in_dest
7188 && ! in_compare && unsignedp)
7189 return 0;
7191 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7192 if the position is not a constant and the length is not 1. In all
7193 other cases, we would only be going outside our object in cases when
7194 an original shift would have been undefined. */
7195 if (MEM_P (inner)
7196 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7197 || (pos_rtx != 0 && len != 1)))
7198 return 0;
7200 enum extraction_pattern pattern = (in_dest ? EP_insv
7201 : unsignedp ? EP_extzv : EP_extv);
7203 /* If INNER is not from memory, we want it to have the mode of a register
7204 extraction pattern's structure operand, or word_mode if there is no
7205 such pattern. The same applies to extraction_mode and pos_mode
7206 and their respective operands.
7208 For memory, assume that the desired extraction_mode and pos_mode
7209 are the same as for a register operation, since at present we don't
7210 have named patterns for aligned memory structures. */
7211 struct extraction_insn insn;
7212 if (get_best_reg_extraction_insn (&insn, pattern,
7213 GET_MODE_BITSIZE (inner_mode), mode))
7215 wanted_inner_reg_mode = insn.struct_mode;
7216 pos_mode = insn.pos_mode;
7217 extraction_mode = insn.field_mode;
7220 /* Never narrow an object, since that might not be safe. */
7222 if (mode != VOIDmode
7223 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7224 extraction_mode = mode;
7226 if (!MEM_P (inner))
7227 wanted_inner_mode = wanted_inner_reg_mode;
7228 else
7230 /* Be careful not to go beyond the extracted object and maintain the
7231 natural alignment of the memory. */
7232 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7233 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7234 > GET_MODE_BITSIZE (wanted_inner_mode))
7236 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7237 gcc_assert (wanted_inner_mode != VOIDmode);
7241 orig_pos = pos;
7243 if (BITS_BIG_ENDIAN)
7245 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7246 BITS_BIG_ENDIAN style. If position is constant, compute new
7247 position. Otherwise, build subtraction.
7248 Note that POS is relative to the mode of the original argument.
7249 If it's a MEM we need to recompute POS relative to that.
7250 However, if we're extracting from (or inserting into) a register,
7251 we want to recompute POS relative to wanted_inner_mode. */
7252 int width = (MEM_P (inner)
7253 ? GET_MODE_BITSIZE (is_mode)
7254 : GET_MODE_BITSIZE (wanted_inner_mode));
7256 if (pos_rtx == 0)
7257 pos = width - len - pos;
7258 else
7259 pos_rtx
7260 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7261 /* POS may be less than 0 now, but we check for that below.
7262 Note that it can only be less than 0 if !MEM_P (inner). */
7265 /* If INNER has a wider mode, and this is a constant extraction, try to
7266 make it smaller and adjust the byte to point to the byte containing
7267 the value. */
7268 if (wanted_inner_mode != VOIDmode
7269 && inner_mode != wanted_inner_mode
7270 && ! pos_rtx
7271 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7272 && MEM_P (inner)
7273 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7274 && ! MEM_VOLATILE_P (inner))
7276 int offset = 0;
7278 /* The computations below will be correct if the machine is big
7279 endian in both bits and bytes or little endian in bits and bytes.
7280 If it is mixed, we must adjust. */
7282 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7283 adjust OFFSET to compensate. */
7284 if (BYTES_BIG_ENDIAN
7285 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7286 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7288 /* We can now move to the desired byte. */
7289 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7290 * GET_MODE_SIZE (wanted_inner_mode);
7291 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7293 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7294 && is_mode != wanted_inner_mode)
7295 offset = (GET_MODE_SIZE (is_mode)
7296 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7298 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7301 /* If INNER is not memory, get it into the proper mode. If we are changing
7302 its mode, POS must be a constant and smaller than the size of the new
7303 mode. */
7304 else if (!MEM_P (inner))
7306 /* On the LHS, don't create paradoxical subregs implicitely truncating
7307 the register unless TRULY_NOOP_TRUNCATION. */
7308 if (in_dest
7309 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7310 wanted_inner_mode))
7311 return NULL_RTX;
7313 if (GET_MODE (inner) != wanted_inner_mode
7314 && (pos_rtx != 0
7315 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7316 return NULL_RTX;
7318 if (orig_pos < 0)
7319 return NULL_RTX;
7321 inner = force_to_mode (inner, wanted_inner_mode,
7322 pos_rtx
7323 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7324 ? ~(unsigned HOST_WIDE_INT) 0
7325 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7326 << orig_pos),
7330 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7331 have to zero extend. Otherwise, we can just use a SUBREG. */
7332 if (pos_rtx != 0
7333 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7335 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7337 /* If we know that no extraneous bits are set, and that the high
7338 bit is not set, convert extraction to cheaper one - either
7339 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7340 cases. */
7341 if (flag_expensive_optimizations
7342 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7343 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7344 & ~(((unsigned HOST_WIDE_INT)
7345 GET_MODE_MASK (GET_MODE (pos_rtx)))
7346 >> 1))
7347 == 0)))
7349 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7351 /* Prefer ZERO_EXTENSION, since it gives more information to
7352 backends. */
7353 if (set_src_cost (temp1, optimize_this_for_speed_p)
7354 < set_src_cost (temp, optimize_this_for_speed_p))
7355 temp = temp1;
7357 pos_rtx = temp;
7360 /* Make POS_RTX unless we already have it and it is correct. If we don't
7361 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7362 be a CONST_INT. */
7363 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7364 pos_rtx = orig_pos_rtx;
7366 else if (pos_rtx == 0)
7367 pos_rtx = GEN_INT (pos);
7369 /* Make the required operation. See if we can use existing rtx. */
7370 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7371 extraction_mode, inner, GEN_INT (len), pos_rtx);
7372 if (! in_dest)
7373 new_rtx = gen_lowpart (mode, new_rtx);
7375 return new_rtx;
7378 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7379 with any other operations in X. Return X without that shift if so. */
7381 static rtx
7382 extract_left_shift (rtx x, int count)
7384 enum rtx_code code = GET_CODE (x);
7385 enum machine_mode mode = GET_MODE (x);
7386 rtx tem;
7388 switch (code)
7390 case ASHIFT:
7391 /* This is the shift itself. If it is wide enough, we will return
7392 either the value being shifted if the shift count is equal to
7393 COUNT or a shift for the difference. */
7394 if (CONST_INT_P (XEXP (x, 1))
7395 && INTVAL (XEXP (x, 1)) >= count)
7396 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7397 INTVAL (XEXP (x, 1)) - count);
7398 break;
7400 case NEG: case NOT:
7401 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7402 return simplify_gen_unary (code, mode, tem, mode);
7404 break;
7406 case PLUS: case IOR: case XOR: case AND:
7407 /* If we can safely shift this constant and we find the inner shift,
7408 make a new operation. */
7409 if (CONST_INT_P (XEXP (x, 1))
7410 && (UINTVAL (XEXP (x, 1))
7411 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7412 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7413 return simplify_gen_binary (code, mode, tem,
7414 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7416 break;
7418 default:
7419 break;
7422 return 0;
7425 /* Look at the expression rooted at X. Look for expressions
7426 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7427 Form these expressions.
7429 Return the new rtx, usually just X.
7431 Also, for machines like the VAX that don't have logical shift insns,
7432 try to convert logical to arithmetic shift operations in cases where
7433 they are equivalent. This undoes the canonicalizations to logical
7434 shifts done elsewhere.
7436 We try, as much as possible, to re-use rtl expressions to save memory.
7438 IN_CODE says what kind of expression we are processing. Normally, it is
7439 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7440 being kludges), it is MEM. When processing the arguments of a comparison
7441 or a COMPARE against zero, it is COMPARE. */
7444 make_compound_operation (rtx x, enum rtx_code in_code)
7446 enum rtx_code code = GET_CODE (x);
7447 enum machine_mode mode = GET_MODE (x);
7448 int mode_width = GET_MODE_PRECISION (mode);
7449 rtx rhs, lhs;
7450 enum rtx_code next_code;
7451 int i, j;
7452 rtx new_rtx = 0;
7453 rtx tem;
7454 const char *fmt;
7456 /* Select the code to be used in recursive calls. Once we are inside an
7457 address, we stay there. If we have a comparison, set to COMPARE,
7458 but once inside, go back to our default of SET. */
7460 next_code = (code == MEM ? MEM
7461 : ((code == PLUS || code == MINUS)
7462 && SCALAR_INT_MODE_P (mode)) ? MEM
7463 : ((code == COMPARE || COMPARISON_P (x))
7464 && XEXP (x, 1) == const0_rtx) ? COMPARE
7465 : in_code == COMPARE ? SET : in_code);
7467 /* Process depending on the code of this operation. If NEW is set
7468 nonzero, it will be returned. */
7470 switch (code)
7472 case ASHIFT:
7473 /* Convert shifts by constants into multiplications if inside
7474 an address. */
7475 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7476 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7477 && INTVAL (XEXP (x, 1)) >= 0
7478 && SCALAR_INT_MODE_P (mode))
7480 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7481 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7483 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7484 if (GET_CODE (new_rtx) == NEG)
7486 new_rtx = XEXP (new_rtx, 0);
7487 multval = -multval;
7489 multval = trunc_int_for_mode (multval, mode);
7490 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7492 break;
7494 case PLUS:
7495 lhs = XEXP (x, 0);
7496 rhs = XEXP (x, 1);
7497 lhs = make_compound_operation (lhs, next_code);
7498 rhs = make_compound_operation (rhs, next_code);
7499 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7500 && SCALAR_INT_MODE_P (mode))
7502 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7503 XEXP (lhs, 1));
7504 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7506 else if (GET_CODE (lhs) == MULT
7507 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7509 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7510 simplify_gen_unary (NEG, mode,
7511 XEXP (lhs, 1),
7512 mode));
7513 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7515 else
7517 SUBST (XEXP (x, 0), lhs);
7518 SUBST (XEXP (x, 1), rhs);
7519 goto maybe_swap;
7521 x = gen_lowpart (mode, new_rtx);
7522 goto maybe_swap;
7524 case MINUS:
7525 lhs = XEXP (x, 0);
7526 rhs = XEXP (x, 1);
7527 lhs = make_compound_operation (lhs, next_code);
7528 rhs = make_compound_operation (rhs, next_code);
7529 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7530 && SCALAR_INT_MODE_P (mode))
7532 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7533 XEXP (rhs, 1));
7534 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7536 else if (GET_CODE (rhs) == MULT
7537 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7539 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7540 simplify_gen_unary (NEG, mode,
7541 XEXP (rhs, 1),
7542 mode));
7543 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7545 else
7547 SUBST (XEXP (x, 0), lhs);
7548 SUBST (XEXP (x, 1), rhs);
7549 return x;
7551 return gen_lowpart (mode, new_rtx);
7553 case AND:
7554 /* If the second operand is not a constant, we can't do anything
7555 with it. */
7556 if (!CONST_INT_P (XEXP (x, 1)))
7557 break;
7559 /* If the constant is a power of two minus one and the first operand
7560 is a logical right shift, make an extraction. */
7561 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7562 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7564 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7565 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7566 0, in_code == COMPARE);
7569 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7570 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7571 && subreg_lowpart_p (XEXP (x, 0))
7572 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7573 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7575 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7576 next_code);
7577 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7578 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7579 0, in_code == COMPARE);
7581 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7582 else if ((GET_CODE (XEXP (x, 0)) == XOR
7583 || GET_CODE (XEXP (x, 0)) == IOR)
7584 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7585 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7586 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7588 /* Apply the distributive law, and then try to make extractions. */
7589 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7590 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7591 XEXP (x, 1)),
7592 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7593 XEXP (x, 1)));
7594 new_rtx = make_compound_operation (new_rtx, in_code);
7597 /* If we are have (and (rotate X C) M) and C is larger than the number
7598 of bits in M, this is an extraction. */
7600 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7601 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7602 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7603 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7605 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7606 new_rtx = make_extraction (mode, new_rtx,
7607 (GET_MODE_PRECISION (mode)
7608 - INTVAL (XEXP (XEXP (x, 0), 1))),
7609 NULL_RTX, i, 1, 0, in_code == COMPARE);
7612 /* On machines without logical shifts, if the operand of the AND is
7613 a logical shift and our mask turns off all the propagated sign
7614 bits, we can replace the logical shift with an arithmetic shift. */
7615 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7616 && !have_insn_for (LSHIFTRT, mode)
7617 && have_insn_for (ASHIFTRT, mode)
7618 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7619 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7620 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7621 && mode_width <= HOST_BITS_PER_WIDE_INT)
7623 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7625 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7626 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7627 SUBST (XEXP (x, 0),
7628 gen_rtx_ASHIFTRT (mode,
7629 make_compound_operation
7630 (XEXP (XEXP (x, 0), 0), next_code),
7631 XEXP (XEXP (x, 0), 1)));
7634 /* If the constant is one less than a power of two, this might be
7635 representable by an extraction even if no shift is present.
7636 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7637 we are in a COMPARE. */
7638 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7639 new_rtx = make_extraction (mode,
7640 make_compound_operation (XEXP (x, 0),
7641 next_code),
7642 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7644 /* If we are in a comparison and this is an AND with a power of two,
7645 convert this into the appropriate bit extract. */
7646 else if (in_code == COMPARE
7647 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7648 new_rtx = make_extraction (mode,
7649 make_compound_operation (XEXP (x, 0),
7650 next_code),
7651 i, NULL_RTX, 1, 1, 0, 1);
7653 break;
7655 case LSHIFTRT:
7656 /* If the sign bit is known to be zero, replace this with an
7657 arithmetic shift. */
7658 if (have_insn_for (ASHIFTRT, mode)
7659 && ! have_insn_for (LSHIFTRT, mode)
7660 && mode_width <= HOST_BITS_PER_WIDE_INT
7661 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7663 new_rtx = gen_rtx_ASHIFTRT (mode,
7664 make_compound_operation (XEXP (x, 0),
7665 next_code),
7666 XEXP (x, 1));
7667 break;
7670 /* ... fall through ... */
7672 case ASHIFTRT:
7673 lhs = XEXP (x, 0);
7674 rhs = XEXP (x, 1);
7676 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7677 this is a SIGN_EXTRACT. */
7678 if (CONST_INT_P (rhs)
7679 && GET_CODE (lhs) == ASHIFT
7680 && CONST_INT_P (XEXP (lhs, 1))
7681 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7682 && INTVAL (XEXP (lhs, 1)) >= 0
7683 && INTVAL (rhs) < mode_width)
7685 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7686 new_rtx = make_extraction (mode, new_rtx,
7687 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7688 NULL_RTX, mode_width - INTVAL (rhs),
7689 code == LSHIFTRT, 0, in_code == COMPARE);
7690 break;
7693 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7694 If so, try to merge the shifts into a SIGN_EXTEND. We could
7695 also do this for some cases of SIGN_EXTRACT, but it doesn't
7696 seem worth the effort; the case checked for occurs on Alpha. */
7698 if (!OBJECT_P (lhs)
7699 && ! (GET_CODE (lhs) == SUBREG
7700 && (OBJECT_P (SUBREG_REG (lhs))))
7701 && CONST_INT_P (rhs)
7702 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7703 && INTVAL (rhs) < mode_width
7704 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7705 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7706 0, NULL_RTX, mode_width - INTVAL (rhs),
7707 code == LSHIFTRT, 0, in_code == COMPARE);
7709 break;
7711 case SUBREG:
7712 /* Call ourselves recursively on the inner expression. If we are
7713 narrowing the object and it has a different RTL code from
7714 what it originally did, do this SUBREG as a force_to_mode. */
7716 rtx inner = SUBREG_REG (x), simplified;
7717 enum rtx_code subreg_code = in_code;
7719 /* If in_code is COMPARE, it isn't always safe to pass it through
7720 to the recursive make_compound_operation call. */
7721 if (subreg_code == COMPARE
7722 && (!subreg_lowpart_p (x)
7723 || GET_CODE (inner) == SUBREG
7724 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
7725 is (const_int 0), rather than
7726 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
7727 || (GET_CODE (inner) == AND
7728 && CONST_INT_P (XEXP (inner, 1))
7729 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7730 && exact_log2 (UINTVAL (XEXP (inner, 1)))
7731 >= GET_MODE_BITSIZE (mode))))
7732 subreg_code = SET;
7734 tem = make_compound_operation (inner, subreg_code);
7736 simplified
7737 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7738 if (simplified)
7739 tem = simplified;
7741 if (GET_CODE (tem) != GET_CODE (inner)
7742 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7743 && subreg_lowpart_p (x))
7745 rtx newer
7746 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7748 /* If we have something other than a SUBREG, we might have
7749 done an expansion, so rerun ourselves. */
7750 if (GET_CODE (newer) != SUBREG)
7751 newer = make_compound_operation (newer, in_code);
7753 /* force_to_mode can expand compounds. If it just re-expanded the
7754 compound, use gen_lowpart to convert to the desired mode. */
7755 if (rtx_equal_p (newer, x)
7756 /* Likewise if it re-expanded the compound only partially.
7757 This happens for SUBREG of ZERO_EXTRACT if they extract
7758 the same number of bits. */
7759 || (GET_CODE (newer) == SUBREG
7760 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7761 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7762 && GET_CODE (inner) == AND
7763 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7764 return gen_lowpart (GET_MODE (x), tem);
7766 return newer;
7769 if (simplified)
7770 return tem;
7772 break;
7774 default:
7775 break;
7778 if (new_rtx)
7780 x = gen_lowpart (mode, new_rtx);
7781 code = GET_CODE (x);
7784 /* Now recursively process each operand of this operation. We need to
7785 handle ZERO_EXTEND specially so that we don't lose track of the
7786 inner mode. */
7787 if (GET_CODE (x) == ZERO_EXTEND)
7789 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7790 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7791 new_rtx, GET_MODE (XEXP (x, 0)));
7792 if (tem)
7793 return tem;
7794 SUBST (XEXP (x, 0), new_rtx);
7795 return x;
7798 fmt = GET_RTX_FORMAT (code);
7799 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7800 if (fmt[i] == 'e')
7802 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7803 SUBST (XEXP (x, i), new_rtx);
7805 else if (fmt[i] == 'E')
7806 for (j = 0; j < XVECLEN (x, i); j++)
7808 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7809 SUBST (XVECEXP (x, i, j), new_rtx);
7812 maybe_swap:
7813 /* If this is a commutative operation, the changes to the operands
7814 may have made it noncanonical. */
7815 if (COMMUTATIVE_ARITH_P (x)
7816 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7818 tem = XEXP (x, 0);
7819 SUBST (XEXP (x, 0), XEXP (x, 1));
7820 SUBST (XEXP (x, 1), tem);
7823 return x;
7826 /* Given M see if it is a value that would select a field of bits
7827 within an item, but not the entire word. Return -1 if not.
7828 Otherwise, return the starting position of the field, where 0 is the
7829 low-order bit.
7831 *PLEN is set to the length of the field. */
7833 static int
7834 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7836 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7837 int pos = m ? ctz_hwi (m) : -1;
7838 int len = 0;
7840 if (pos >= 0)
7841 /* Now shift off the low-order zero bits and see if we have a
7842 power of two minus 1. */
7843 len = exact_log2 ((m >> pos) + 1);
7845 if (len <= 0)
7846 pos = -1;
7848 *plen = len;
7849 return pos;
7852 /* If X refers to a register that equals REG in value, replace these
7853 references with REG. */
7854 static rtx
7855 canon_reg_for_combine (rtx x, rtx reg)
7857 rtx op0, op1, op2;
7858 const char *fmt;
7859 int i;
7860 bool copied;
7862 enum rtx_code code = GET_CODE (x);
7863 switch (GET_RTX_CLASS (code))
7865 case RTX_UNARY:
7866 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7867 if (op0 != XEXP (x, 0))
7868 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7869 GET_MODE (reg));
7870 break;
7872 case RTX_BIN_ARITH:
7873 case RTX_COMM_ARITH:
7874 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7875 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7876 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7877 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7878 break;
7880 case RTX_COMPARE:
7881 case RTX_COMM_COMPARE:
7882 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7883 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7884 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7885 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7886 GET_MODE (op0), op0, op1);
7887 break;
7889 case RTX_TERNARY:
7890 case RTX_BITFIELD_OPS:
7891 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7892 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7893 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7894 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7895 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7896 GET_MODE (op0), op0, op1, op2);
7898 case RTX_OBJ:
7899 if (REG_P (x))
7901 if (rtx_equal_p (get_last_value (reg), x)
7902 || rtx_equal_p (reg, get_last_value (x)))
7903 return reg;
7904 else
7905 break;
7908 /* fall through */
7910 default:
7911 fmt = GET_RTX_FORMAT (code);
7912 copied = false;
7913 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7914 if (fmt[i] == 'e')
7916 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7917 if (op != XEXP (x, i))
7919 if (!copied)
7921 copied = true;
7922 x = copy_rtx (x);
7924 XEXP (x, i) = op;
7927 else if (fmt[i] == 'E')
7929 int j;
7930 for (j = 0; j < XVECLEN (x, i); j++)
7932 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7933 if (op != XVECEXP (x, i, j))
7935 if (!copied)
7937 copied = true;
7938 x = copy_rtx (x);
7940 XVECEXP (x, i, j) = op;
7945 break;
7948 return x;
7951 /* Return X converted to MODE. If the value is already truncated to
7952 MODE we can just return a subreg even though in the general case we
7953 would need an explicit truncation. */
7955 static rtx
7956 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7958 if (!CONST_INT_P (x)
7959 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7960 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
7961 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7963 /* Bit-cast X into an integer mode. */
7964 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7965 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7966 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7967 x, GET_MODE (x));
7970 return gen_lowpart (mode, x);
7973 /* See if X can be simplified knowing that we will only refer to it in
7974 MODE and will only refer to those bits that are nonzero in MASK.
7975 If other bits are being computed or if masking operations are done
7976 that select a superset of the bits in MASK, they can sometimes be
7977 ignored.
7979 Return a possibly simplified expression, but always convert X to
7980 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7982 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7983 are all off in X. This is used when X will be complemented, by either
7984 NOT, NEG, or XOR. */
7986 static rtx
7987 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7988 int just_select)
7990 enum rtx_code code = GET_CODE (x);
7991 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7992 enum machine_mode op_mode;
7993 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7994 rtx op0, op1, temp;
7996 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7997 code below will do the wrong thing since the mode of such an
7998 expression is VOIDmode.
8000 Also do nothing if X is a CLOBBER; this can happen if X was
8001 the return value from a call to gen_lowpart. */
8002 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8003 return x;
8005 /* We want to perform the operation in its present mode unless we know
8006 that the operation is valid in MODE, in which case we do the operation
8007 in MODE. */
8008 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8009 && have_insn_for (code, mode))
8010 ? mode : GET_MODE (x));
8012 /* It is not valid to do a right-shift in a narrower mode
8013 than the one it came in with. */
8014 if ((code == LSHIFTRT || code == ASHIFTRT)
8015 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8016 op_mode = GET_MODE (x);
8018 /* Truncate MASK to fit OP_MODE. */
8019 if (op_mode)
8020 mask &= GET_MODE_MASK (op_mode);
8022 /* When we have an arithmetic operation, or a shift whose count we
8023 do not know, we need to assume that all bits up to the highest-order
8024 bit in MASK will be needed. This is how we form such a mask. */
8025 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8026 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8027 else
8028 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8029 - 1);
8031 /* Determine what bits of X are guaranteed to be (non)zero. */
8032 nonzero = nonzero_bits (x, mode);
8034 /* If none of the bits in X are needed, return a zero. */
8035 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8036 x = const0_rtx;
8038 /* If X is a CONST_INT, return a new one. Do this here since the
8039 test below will fail. */
8040 if (CONST_INT_P (x))
8042 if (SCALAR_INT_MODE_P (mode))
8043 return gen_int_mode (INTVAL (x) & mask, mode);
8044 else
8046 x = GEN_INT (INTVAL (x) & mask);
8047 return gen_lowpart_common (mode, x);
8051 /* If X is narrower than MODE and we want all the bits in X's mode, just
8052 get X in the proper mode. */
8053 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8054 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8055 return gen_lowpart (mode, x);
8057 /* We can ignore the effect of a SUBREG if it narrows the mode or
8058 if the constant masks to zero all the bits the mode doesn't have. */
8059 if (GET_CODE (x) == SUBREG
8060 && subreg_lowpart_p (x)
8061 && ((GET_MODE_SIZE (GET_MODE (x))
8062 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8063 || (0 == (mask
8064 & GET_MODE_MASK (GET_MODE (x))
8065 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8066 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8068 /* The arithmetic simplifications here only work for scalar integer modes. */
8069 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8070 return gen_lowpart_or_truncate (mode, x);
8072 switch (code)
8074 case CLOBBER:
8075 /* If X is a (clobber (const_int)), return it since we know we are
8076 generating something that won't match. */
8077 return x;
8079 case SIGN_EXTEND:
8080 case ZERO_EXTEND:
8081 case ZERO_EXTRACT:
8082 case SIGN_EXTRACT:
8083 x = expand_compound_operation (x);
8084 if (GET_CODE (x) != code)
8085 return force_to_mode (x, mode, mask, next_select);
8086 break;
8088 case TRUNCATE:
8089 /* Similarly for a truncate. */
8090 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8092 case AND:
8093 /* If this is an AND with a constant, convert it into an AND
8094 whose constant is the AND of that constant with MASK. If it
8095 remains an AND of MASK, delete it since it is redundant. */
8097 if (CONST_INT_P (XEXP (x, 1)))
8099 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8100 mask & INTVAL (XEXP (x, 1)));
8102 /* If X is still an AND, see if it is an AND with a mask that
8103 is just some low-order bits. If so, and it is MASK, we don't
8104 need it. */
8106 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8107 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8108 == mask))
8109 x = XEXP (x, 0);
8111 /* If it remains an AND, try making another AND with the bits
8112 in the mode mask that aren't in MASK turned on. If the
8113 constant in the AND is wide enough, this might make a
8114 cheaper constant. */
8116 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8117 && GET_MODE_MASK (GET_MODE (x)) != mask
8118 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8120 unsigned HOST_WIDE_INT cval
8121 = UINTVAL (XEXP (x, 1))
8122 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8123 int width = GET_MODE_PRECISION (GET_MODE (x));
8124 rtx y;
8126 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8127 number, sign extend it. */
8128 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8129 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8130 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8132 y = simplify_gen_binary (AND, GET_MODE (x),
8133 XEXP (x, 0), GEN_INT (cval));
8134 if (set_src_cost (y, optimize_this_for_speed_p)
8135 < set_src_cost (x, optimize_this_for_speed_p))
8136 x = y;
8139 break;
8142 goto binop;
8144 case PLUS:
8145 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8146 low-order bits (as in an alignment operation) and FOO is already
8147 aligned to that boundary, mask C1 to that boundary as well.
8148 This may eliminate that PLUS and, later, the AND. */
8151 unsigned int width = GET_MODE_PRECISION (mode);
8152 unsigned HOST_WIDE_INT smask = mask;
8154 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8155 number, sign extend it. */
8157 if (width < HOST_BITS_PER_WIDE_INT
8158 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8159 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8161 if (CONST_INT_P (XEXP (x, 1))
8162 && exact_log2 (- smask) >= 0
8163 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8164 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8165 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8166 (INTVAL (XEXP (x, 1)) & smask)),
8167 mode, smask, next_select);
8170 /* ... fall through ... */
8172 case MULT:
8173 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8174 most significant bit in MASK since carries from those bits will
8175 affect the bits we are interested in. */
8176 mask = fuller_mask;
8177 goto binop;
8179 case MINUS:
8180 /* If X is (minus C Y) where C's least set bit is larger than any bit
8181 in the mask, then we may replace with (neg Y). */
8182 if (CONST_INT_P (XEXP (x, 0))
8183 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8184 & -INTVAL (XEXP (x, 0))))
8185 > mask))
8187 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8188 GET_MODE (x));
8189 return force_to_mode (x, mode, mask, next_select);
8192 /* Similarly, if C contains every bit in the fuller_mask, then we may
8193 replace with (not Y). */
8194 if (CONST_INT_P (XEXP (x, 0))
8195 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8197 x = simplify_gen_unary (NOT, GET_MODE (x),
8198 XEXP (x, 1), GET_MODE (x));
8199 return force_to_mode (x, mode, mask, next_select);
8202 mask = fuller_mask;
8203 goto binop;
8205 case IOR:
8206 case XOR:
8207 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8208 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8209 operation which may be a bitfield extraction. Ensure that the
8210 constant we form is not wider than the mode of X. */
8212 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8213 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8214 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8215 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8216 && CONST_INT_P (XEXP (x, 1))
8217 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8218 + floor_log2 (INTVAL (XEXP (x, 1))))
8219 < GET_MODE_PRECISION (GET_MODE (x)))
8220 && (UINTVAL (XEXP (x, 1))
8221 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8223 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8224 << INTVAL (XEXP (XEXP (x, 0), 1)));
8225 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8226 XEXP (XEXP (x, 0), 0), temp);
8227 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8228 XEXP (XEXP (x, 0), 1));
8229 return force_to_mode (x, mode, mask, next_select);
8232 binop:
8233 /* For most binary operations, just propagate into the operation and
8234 change the mode if we have an operation of that mode. */
8236 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8237 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8239 /* If we ended up truncating both operands, truncate the result of the
8240 operation instead. */
8241 if (GET_CODE (op0) == TRUNCATE
8242 && GET_CODE (op1) == TRUNCATE)
8244 op0 = XEXP (op0, 0);
8245 op1 = XEXP (op1, 0);
8248 op0 = gen_lowpart_or_truncate (op_mode, op0);
8249 op1 = gen_lowpart_or_truncate (op_mode, op1);
8251 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8252 x = simplify_gen_binary (code, op_mode, op0, op1);
8253 break;
8255 case ASHIFT:
8256 /* For left shifts, do the same, but just for the first operand.
8257 However, we cannot do anything with shifts where we cannot
8258 guarantee that the counts are smaller than the size of the mode
8259 because such a count will have a different meaning in a
8260 wider mode. */
8262 if (! (CONST_INT_P (XEXP (x, 1))
8263 && INTVAL (XEXP (x, 1)) >= 0
8264 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8265 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8266 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8267 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8268 break;
8270 /* If the shift count is a constant and we can do arithmetic in
8271 the mode of the shift, refine which bits we need. Otherwise, use the
8272 conservative form of the mask. */
8273 if (CONST_INT_P (XEXP (x, 1))
8274 && INTVAL (XEXP (x, 1)) >= 0
8275 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8276 && HWI_COMPUTABLE_MODE_P (op_mode))
8277 mask >>= INTVAL (XEXP (x, 1));
8278 else
8279 mask = fuller_mask;
8281 op0 = gen_lowpart_or_truncate (op_mode,
8282 force_to_mode (XEXP (x, 0), op_mode,
8283 mask, next_select));
8285 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8286 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8287 break;
8289 case LSHIFTRT:
8290 /* Here we can only do something if the shift count is a constant,
8291 this shift constant is valid for the host, and we can do arithmetic
8292 in OP_MODE. */
8294 if (CONST_INT_P (XEXP (x, 1))
8295 && INTVAL (XEXP (x, 1)) >= 0
8296 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8297 && HWI_COMPUTABLE_MODE_P (op_mode))
8299 rtx inner = XEXP (x, 0);
8300 unsigned HOST_WIDE_INT inner_mask;
8302 /* Select the mask of the bits we need for the shift operand. */
8303 inner_mask = mask << INTVAL (XEXP (x, 1));
8305 /* We can only change the mode of the shift if we can do arithmetic
8306 in the mode of the shift and INNER_MASK is no wider than the
8307 width of X's mode. */
8308 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8309 op_mode = GET_MODE (x);
8311 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8313 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8314 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8317 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8318 shift and AND produces only copies of the sign bit (C2 is one less
8319 than a power of two), we can do this with just a shift. */
8321 if (GET_CODE (x) == LSHIFTRT
8322 && CONST_INT_P (XEXP (x, 1))
8323 /* The shift puts one of the sign bit copies in the least significant
8324 bit. */
8325 && ((INTVAL (XEXP (x, 1))
8326 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8327 >= GET_MODE_PRECISION (GET_MODE (x)))
8328 && exact_log2 (mask + 1) >= 0
8329 /* Number of bits left after the shift must be more than the mask
8330 needs. */
8331 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8332 <= GET_MODE_PRECISION (GET_MODE (x)))
8333 /* Must be more sign bit copies than the mask needs. */
8334 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8335 >= exact_log2 (mask + 1)))
8336 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8337 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8338 - exact_log2 (mask + 1)));
8340 goto shiftrt;
8342 case ASHIFTRT:
8343 /* If we are just looking for the sign bit, we don't need this shift at
8344 all, even if it has a variable count. */
8345 if (val_signbit_p (GET_MODE (x), mask))
8346 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8348 /* If this is a shift by a constant, get a mask that contains those bits
8349 that are not copies of the sign bit. We then have two cases: If
8350 MASK only includes those bits, this can be a logical shift, which may
8351 allow simplifications. If MASK is a single-bit field not within
8352 those bits, we are requesting a copy of the sign bit and hence can
8353 shift the sign bit to the appropriate location. */
8355 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8356 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8358 int i;
8360 /* If the considered data is wider than HOST_WIDE_INT, we can't
8361 represent a mask for all its bits in a single scalar.
8362 But we only care about the lower bits, so calculate these. */
8364 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8366 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8368 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8369 is the number of bits a full-width mask would have set.
8370 We need only shift if these are fewer than nonzero can
8371 hold. If not, we must keep all bits set in nonzero. */
8373 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8374 < HOST_BITS_PER_WIDE_INT)
8375 nonzero >>= INTVAL (XEXP (x, 1))
8376 + HOST_BITS_PER_WIDE_INT
8377 - GET_MODE_PRECISION (GET_MODE (x)) ;
8379 else
8381 nonzero = GET_MODE_MASK (GET_MODE (x));
8382 nonzero >>= INTVAL (XEXP (x, 1));
8385 if ((mask & ~nonzero) == 0)
8387 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8388 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8389 if (GET_CODE (x) != ASHIFTRT)
8390 return force_to_mode (x, mode, mask, next_select);
8393 else if ((i = exact_log2 (mask)) >= 0)
8395 x = simplify_shift_const
8396 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8397 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8399 if (GET_CODE (x) != ASHIFTRT)
8400 return force_to_mode (x, mode, mask, next_select);
8404 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8405 even if the shift count isn't a constant. */
8406 if (mask == 1)
8407 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8408 XEXP (x, 0), XEXP (x, 1));
8410 shiftrt:
8412 /* If this is a zero- or sign-extension operation that just affects bits
8413 we don't care about, remove it. Be sure the call above returned
8414 something that is still a shift. */
8416 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8417 && CONST_INT_P (XEXP (x, 1))
8418 && INTVAL (XEXP (x, 1)) >= 0
8419 && (INTVAL (XEXP (x, 1))
8420 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8421 && GET_CODE (XEXP (x, 0)) == ASHIFT
8422 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8423 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8424 next_select);
8426 break;
8428 case ROTATE:
8429 case ROTATERT:
8430 /* If the shift count is constant and we can do computations
8431 in the mode of X, compute where the bits we care about are.
8432 Otherwise, we can't do anything. Don't change the mode of
8433 the shift or propagate MODE into the shift, though. */
8434 if (CONST_INT_P (XEXP (x, 1))
8435 && INTVAL (XEXP (x, 1)) >= 0)
8437 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8438 GET_MODE (x), GEN_INT (mask),
8439 XEXP (x, 1));
8440 if (temp && CONST_INT_P (temp))
8441 x = simplify_gen_binary (code, GET_MODE (x),
8442 force_to_mode (XEXP (x, 0), GET_MODE (x),
8443 INTVAL (temp), next_select),
8444 XEXP (x, 1));
8446 break;
8448 case NEG:
8449 /* If we just want the low-order bit, the NEG isn't needed since it
8450 won't change the low-order bit. */
8451 if (mask == 1)
8452 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8454 /* We need any bits less significant than the most significant bit in
8455 MASK since carries from those bits will affect the bits we are
8456 interested in. */
8457 mask = fuller_mask;
8458 goto unop;
8460 case NOT:
8461 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8462 same as the XOR case above. Ensure that the constant we form is not
8463 wider than the mode of X. */
8465 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8466 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8467 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8468 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8469 < GET_MODE_PRECISION (GET_MODE (x)))
8470 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8472 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8473 GET_MODE (x));
8474 temp = simplify_gen_binary (XOR, GET_MODE (x),
8475 XEXP (XEXP (x, 0), 0), temp);
8476 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8477 temp, XEXP (XEXP (x, 0), 1));
8479 return force_to_mode (x, mode, mask, next_select);
8482 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8483 use the full mask inside the NOT. */
8484 mask = fuller_mask;
8486 unop:
8487 op0 = gen_lowpart_or_truncate (op_mode,
8488 force_to_mode (XEXP (x, 0), mode, mask,
8489 next_select));
8490 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8491 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8492 break;
8494 case NE:
8495 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8496 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8497 which is equal to STORE_FLAG_VALUE. */
8498 if ((mask & ~STORE_FLAG_VALUE) == 0
8499 && XEXP (x, 1) == const0_rtx
8500 && GET_MODE (XEXP (x, 0)) == mode
8501 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8502 && (nonzero_bits (XEXP (x, 0), mode)
8503 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8504 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8506 break;
8508 case IF_THEN_ELSE:
8509 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8510 written in a narrower mode. We play it safe and do not do so. */
8512 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8513 force_to_mode (XEXP (x, 1), mode,
8514 mask, next_select));
8515 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8516 force_to_mode (XEXP (x, 2), mode,
8517 mask, next_select));
8518 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8519 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8520 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8521 op0, op1);
8522 break;
8524 default:
8525 break;
8528 /* Ensure we return a value of the proper mode. */
8529 return gen_lowpart_or_truncate (mode, x);
8532 /* Return nonzero if X is an expression that has one of two values depending on
8533 whether some other value is zero or nonzero. In that case, we return the
8534 value that is being tested, *PTRUE is set to the value if the rtx being
8535 returned has a nonzero value, and *PFALSE is set to the other alternative.
8537 If we return zero, we set *PTRUE and *PFALSE to X. */
8539 static rtx
8540 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8542 enum machine_mode mode = GET_MODE (x);
8543 enum rtx_code code = GET_CODE (x);
8544 rtx cond0, cond1, true0, true1, false0, false1;
8545 unsigned HOST_WIDE_INT nz;
8547 /* If we are comparing a value against zero, we are done. */
8548 if ((code == NE || code == EQ)
8549 && XEXP (x, 1) == const0_rtx)
8551 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8552 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8553 return XEXP (x, 0);
8556 /* If this is a unary operation whose operand has one of two values, apply
8557 our opcode to compute those values. */
8558 else if (UNARY_P (x)
8559 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8561 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8562 *pfalse = simplify_gen_unary (code, mode, false0,
8563 GET_MODE (XEXP (x, 0)));
8564 return cond0;
8567 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8568 make can't possibly match and would suppress other optimizations. */
8569 else if (code == COMPARE)
8572 /* If this is a binary operation, see if either side has only one of two
8573 values. If either one does or if both do and they are conditional on
8574 the same value, compute the new true and false values. */
8575 else if (BINARY_P (x))
8577 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8578 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8580 if ((cond0 != 0 || cond1 != 0)
8581 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8583 /* If if_then_else_cond returned zero, then true/false are the
8584 same rtl. We must copy one of them to prevent invalid rtl
8585 sharing. */
8586 if (cond0 == 0)
8587 true0 = copy_rtx (true0);
8588 else if (cond1 == 0)
8589 true1 = copy_rtx (true1);
8591 if (COMPARISON_P (x))
8593 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8594 true0, true1);
8595 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8596 false0, false1);
8598 else
8600 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8601 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8604 return cond0 ? cond0 : cond1;
8607 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8608 operands is zero when the other is nonzero, and vice-versa,
8609 and STORE_FLAG_VALUE is 1 or -1. */
8611 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8612 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8613 || code == UMAX)
8614 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8616 rtx op0 = XEXP (XEXP (x, 0), 1);
8617 rtx op1 = XEXP (XEXP (x, 1), 1);
8619 cond0 = XEXP (XEXP (x, 0), 0);
8620 cond1 = XEXP (XEXP (x, 1), 0);
8622 if (COMPARISON_P (cond0)
8623 && COMPARISON_P (cond1)
8624 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8625 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8626 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8627 || ((swap_condition (GET_CODE (cond0))
8628 == reversed_comparison_code (cond1, NULL))
8629 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8630 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8631 && ! side_effects_p (x))
8633 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8634 *pfalse = simplify_gen_binary (MULT, mode,
8635 (code == MINUS
8636 ? simplify_gen_unary (NEG, mode,
8637 op1, mode)
8638 : op1),
8639 const_true_rtx);
8640 return cond0;
8644 /* Similarly for MULT, AND and UMIN, except that for these the result
8645 is always zero. */
8646 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8647 && (code == MULT || code == AND || code == UMIN)
8648 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8650 cond0 = XEXP (XEXP (x, 0), 0);
8651 cond1 = XEXP (XEXP (x, 1), 0);
8653 if (COMPARISON_P (cond0)
8654 && COMPARISON_P (cond1)
8655 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8656 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8657 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8658 || ((swap_condition (GET_CODE (cond0))
8659 == reversed_comparison_code (cond1, NULL))
8660 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8661 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8662 && ! side_effects_p (x))
8664 *ptrue = *pfalse = const0_rtx;
8665 return cond0;
8670 else if (code == IF_THEN_ELSE)
8672 /* If we have IF_THEN_ELSE already, extract the condition and
8673 canonicalize it if it is NE or EQ. */
8674 cond0 = XEXP (x, 0);
8675 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8676 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8677 return XEXP (cond0, 0);
8678 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8680 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8681 return XEXP (cond0, 0);
8683 else
8684 return cond0;
8687 /* If X is a SUBREG, we can narrow both the true and false values
8688 if the inner expression, if there is a condition. */
8689 else if (code == SUBREG
8690 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8691 &true0, &false0)))
8693 true0 = simplify_gen_subreg (mode, true0,
8694 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8695 false0 = simplify_gen_subreg (mode, false0,
8696 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8697 if (true0 && false0)
8699 *ptrue = true0;
8700 *pfalse = false0;
8701 return cond0;
8705 /* If X is a constant, this isn't special and will cause confusions
8706 if we treat it as such. Likewise if it is equivalent to a constant. */
8707 else if (CONSTANT_P (x)
8708 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8711 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8712 will be least confusing to the rest of the compiler. */
8713 else if (mode == BImode)
8715 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8716 return x;
8719 /* If X is known to be either 0 or -1, those are the true and
8720 false values when testing X. */
8721 else if (x == constm1_rtx || x == const0_rtx
8722 || (mode != VOIDmode
8723 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8725 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8726 return x;
8729 /* Likewise for 0 or a single bit. */
8730 else if (HWI_COMPUTABLE_MODE_P (mode)
8731 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8733 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8734 return x;
8737 /* Otherwise fail; show no condition with true and false values the same. */
8738 *ptrue = *pfalse = x;
8739 return 0;
8742 /* Return the value of expression X given the fact that condition COND
8743 is known to be true when applied to REG as its first operand and VAL
8744 as its second. X is known to not be shared and so can be modified in
8745 place.
8747 We only handle the simplest cases, and specifically those cases that
8748 arise with IF_THEN_ELSE expressions. */
8750 static rtx
8751 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8753 enum rtx_code code = GET_CODE (x);
8754 rtx temp;
8755 const char *fmt;
8756 int i, j;
8758 if (side_effects_p (x))
8759 return x;
8761 /* If either operand of the condition is a floating point value,
8762 then we have to avoid collapsing an EQ comparison. */
8763 if (cond == EQ
8764 && rtx_equal_p (x, reg)
8765 && ! FLOAT_MODE_P (GET_MODE (x))
8766 && ! FLOAT_MODE_P (GET_MODE (val)))
8767 return val;
8769 if (cond == UNEQ && rtx_equal_p (x, reg))
8770 return val;
8772 /* If X is (abs REG) and we know something about REG's relationship
8773 with zero, we may be able to simplify this. */
8775 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8776 switch (cond)
8778 case GE: case GT: case EQ:
8779 return XEXP (x, 0);
8780 case LT: case LE:
8781 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8782 XEXP (x, 0),
8783 GET_MODE (XEXP (x, 0)));
8784 default:
8785 break;
8788 /* The only other cases we handle are MIN, MAX, and comparisons if the
8789 operands are the same as REG and VAL. */
8791 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8793 if (rtx_equal_p (XEXP (x, 0), val))
8794 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8796 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8798 if (COMPARISON_P (x))
8800 if (comparison_dominates_p (cond, code))
8801 return const_true_rtx;
8803 code = reversed_comparison_code (x, NULL);
8804 if (code != UNKNOWN
8805 && comparison_dominates_p (cond, code))
8806 return const0_rtx;
8807 else
8808 return x;
8810 else if (code == SMAX || code == SMIN
8811 || code == UMIN || code == UMAX)
8813 int unsignedp = (code == UMIN || code == UMAX);
8815 /* Do not reverse the condition when it is NE or EQ.
8816 This is because we cannot conclude anything about
8817 the value of 'SMAX (x, y)' when x is not equal to y,
8818 but we can when x equals y. */
8819 if ((code == SMAX || code == UMAX)
8820 && ! (cond == EQ || cond == NE))
8821 cond = reverse_condition (cond);
8823 switch (cond)
8825 case GE: case GT:
8826 return unsignedp ? x : XEXP (x, 1);
8827 case LE: case LT:
8828 return unsignedp ? x : XEXP (x, 0);
8829 case GEU: case GTU:
8830 return unsignedp ? XEXP (x, 1) : x;
8831 case LEU: case LTU:
8832 return unsignedp ? XEXP (x, 0) : x;
8833 default:
8834 break;
8839 else if (code == SUBREG)
8841 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8842 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8844 if (SUBREG_REG (x) != r)
8846 /* We must simplify subreg here, before we lose track of the
8847 original inner_mode. */
8848 new_rtx = simplify_subreg (GET_MODE (x), r,
8849 inner_mode, SUBREG_BYTE (x));
8850 if (new_rtx)
8851 return new_rtx;
8852 else
8853 SUBST (SUBREG_REG (x), r);
8856 return x;
8858 /* We don't have to handle SIGN_EXTEND here, because even in the
8859 case of replacing something with a modeless CONST_INT, a
8860 CONST_INT is already (supposed to be) a valid sign extension for
8861 its narrower mode, which implies it's already properly
8862 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8863 story is different. */
8864 else if (code == ZERO_EXTEND)
8866 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8867 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8869 if (XEXP (x, 0) != r)
8871 /* We must simplify the zero_extend here, before we lose
8872 track of the original inner_mode. */
8873 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8874 r, inner_mode);
8875 if (new_rtx)
8876 return new_rtx;
8877 else
8878 SUBST (XEXP (x, 0), r);
8881 return x;
8884 fmt = GET_RTX_FORMAT (code);
8885 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8887 if (fmt[i] == 'e')
8888 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8889 else if (fmt[i] == 'E')
8890 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8891 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8892 cond, reg, val));
8895 return x;
8898 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8899 assignment as a field assignment. */
8901 static int
8902 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8904 if (x == y || rtx_equal_p (x, y))
8905 return 1;
8907 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8908 return 0;
8910 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8911 Note that all SUBREGs of MEM are paradoxical; otherwise they
8912 would have been rewritten. */
8913 if (MEM_P (x) && GET_CODE (y) == SUBREG
8914 && MEM_P (SUBREG_REG (y))
8915 && rtx_equal_p (SUBREG_REG (y),
8916 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8917 return 1;
8919 if (MEM_P (y) && GET_CODE (x) == SUBREG
8920 && MEM_P (SUBREG_REG (x))
8921 && rtx_equal_p (SUBREG_REG (x),
8922 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8923 return 1;
8925 /* We used to see if get_last_value of X and Y were the same but that's
8926 not correct. In one direction, we'll cause the assignment to have
8927 the wrong destination and in the case, we'll import a register into this
8928 insn that might have already have been dead. So fail if none of the
8929 above cases are true. */
8930 return 0;
8933 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8934 Return that assignment if so.
8936 We only handle the most common cases. */
8938 static rtx
8939 make_field_assignment (rtx x)
8941 rtx dest = SET_DEST (x);
8942 rtx src = SET_SRC (x);
8943 rtx assign;
8944 rtx rhs, lhs;
8945 HOST_WIDE_INT c1;
8946 HOST_WIDE_INT pos;
8947 unsigned HOST_WIDE_INT len;
8948 rtx other;
8949 enum machine_mode mode;
8951 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8952 a clear of a one-bit field. We will have changed it to
8953 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8954 for a SUBREG. */
8956 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8957 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8958 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8959 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8961 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8962 1, 1, 1, 0);
8963 if (assign != 0)
8964 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8965 return x;
8968 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8969 && subreg_lowpart_p (XEXP (src, 0))
8970 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8971 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8972 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8973 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8974 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8975 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8977 assign = make_extraction (VOIDmode, dest, 0,
8978 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8979 1, 1, 1, 0);
8980 if (assign != 0)
8981 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8982 return x;
8985 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8986 one-bit field. */
8987 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8988 && XEXP (XEXP (src, 0), 0) == const1_rtx
8989 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8991 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8992 1, 1, 1, 0);
8993 if (assign != 0)
8994 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8995 return x;
8998 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8999 SRC is an AND with all bits of that field set, then we can discard
9000 the AND. */
9001 if (GET_CODE (dest) == ZERO_EXTRACT
9002 && CONST_INT_P (XEXP (dest, 1))
9003 && GET_CODE (src) == AND
9004 && CONST_INT_P (XEXP (src, 1)))
9006 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9007 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9008 unsigned HOST_WIDE_INT ze_mask;
9010 if (width >= HOST_BITS_PER_WIDE_INT)
9011 ze_mask = -1;
9012 else
9013 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9015 /* Complete overlap. We can remove the source AND. */
9016 if ((and_mask & ze_mask) == ze_mask)
9017 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9019 /* Partial overlap. We can reduce the source AND. */
9020 if ((and_mask & ze_mask) != and_mask)
9022 mode = GET_MODE (src);
9023 src = gen_rtx_AND (mode, XEXP (src, 0),
9024 gen_int_mode (and_mask & ze_mask, mode));
9025 return gen_rtx_SET (VOIDmode, dest, src);
9029 /* The other case we handle is assignments into a constant-position
9030 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9031 a mask that has all one bits except for a group of zero bits and
9032 OTHER is known to have zeros where C1 has ones, this is such an
9033 assignment. Compute the position and length from C1. Shift OTHER
9034 to the appropriate position, force it to the required mode, and
9035 make the extraction. Check for the AND in both operands. */
9037 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9038 return x;
9040 rhs = expand_compound_operation (XEXP (src, 0));
9041 lhs = expand_compound_operation (XEXP (src, 1));
9043 if (GET_CODE (rhs) == AND
9044 && CONST_INT_P (XEXP (rhs, 1))
9045 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9046 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9047 else if (GET_CODE (lhs) == AND
9048 && CONST_INT_P (XEXP (lhs, 1))
9049 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9050 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9051 else
9052 return x;
9054 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9055 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9056 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9057 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9058 return x;
9060 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9061 if (assign == 0)
9062 return x;
9064 /* The mode to use for the source is the mode of the assignment, or of
9065 what is inside a possible STRICT_LOW_PART. */
9066 mode = (GET_CODE (assign) == STRICT_LOW_PART
9067 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9069 /* Shift OTHER right POS places and make it the source, restricting it
9070 to the proper length and mode. */
9072 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9073 GET_MODE (src),
9074 other, pos),
9075 dest);
9076 src = force_to_mode (src, mode,
9077 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9078 ? ~(unsigned HOST_WIDE_INT) 0
9079 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9082 /* If SRC is masked by an AND that does not make a difference in
9083 the value being stored, strip it. */
9084 if (GET_CODE (assign) == ZERO_EXTRACT
9085 && CONST_INT_P (XEXP (assign, 1))
9086 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9087 && GET_CODE (src) == AND
9088 && CONST_INT_P (XEXP (src, 1))
9089 && UINTVAL (XEXP (src, 1))
9090 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9091 src = XEXP (src, 0);
9093 return gen_rtx_SET (VOIDmode, assign, src);
9096 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9097 if so. */
9099 static rtx
9100 apply_distributive_law (rtx x)
9102 enum rtx_code code = GET_CODE (x);
9103 enum rtx_code inner_code;
9104 rtx lhs, rhs, other;
9105 rtx tem;
9107 /* Distributivity is not true for floating point as it can change the
9108 value. So we don't do it unless -funsafe-math-optimizations. */
9109 if (FLOAT_MODE_P (GET_MODE (x))
9110 && ! flag_unsafe_math_optimizations)
9111 return x;
9113 /* The outer operation can only be one of the following: */
9114 if (code != IOR && code != AND && code != XOR
9115 && code != PLUS && code != MINUS)
9116 return x;
9118 lhs = XEXP (x, 0);
9119 rhs = XEXP (x, 1);
9121 /* If either operand is a primitive we can't do anything, so get out
9122 fast. */
9123 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9124 return x;
9126 lhs = expand_compound_operation (lhs);
9127 rhs = expand_compound_operation (rhs);
9128 inner_code = GET_CODE (lhs);
9129 if (inner_code != GET_CODE (rhs))
9130 return x;
9132 /* See if the inner and outer operations distribute. */
9133 switch (inner_code)
9135 case LSHIFTRT:
9136 case ASHIFTRT:
9137 case AND:
9138 case IOR:
9139 /* These all distribute except over PLUS. */
9140 if (code == PLUS || code == MINUS)
9141 return x;
9142 break;
9144 case MULT:
9145 if (code != PLUS && code != MINUS)
9146 return x;
9147 break;
9149 case ASHIFT:
9150 /* This is also a multiply, so it distributes over everything. */
9151 break;
9153 /* This used to handle SUBREG, but this turned out to be counter-
9154 productive, since (subreg (op ...)) usually is not handled by
9155 insn patterns, and this "optimization" therefore transformed
9156 recognizable patterns into unrecognizable ones. Therefore the
9157 SUBREG case was removed from here.
9159 It is possible that distributing SUBREG over arithmetic operations
9160 leads to an intermediate result than can then be optimized further,
9161 e.g. by moving the outer SUBREG to the other side of a SET as done
9162 in simplify_set. This seems to have been the original intent of
9163 handling SUBREGs here.
9165 However, with current GCC this does not appear to actually happen,
9166 at least on major platforms. If some case is found where removing
9167 the SUBREG case here prevents follow-on optimizations, distributing
9168 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9170 default:
9171 return x;
9174 /* Set LHS and RHS to the inner operands (A and B in the example
9175 above) and set OTHER to the common operand (C in the example).
9176 There is only one way to do this unless the inner operation is
9177 commutative. */
9178 if (COMMUTATIVE_ARITH_P (lhs)
9179 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9180 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9181 else if (COMMUTATIVE_ARITH_P (lhs)
9182 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9183 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9184 else if (COMMUTATIVE_ARITH_P (lhs)
9185 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9186 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9187 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9188 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9189 else
9190 return x;
9192 /* Form the new inner operation, seeing if it simplifies first. */
9193 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9195 /* There is one exception to the general way of distributing:
9196 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9197 if (code == XOR && inner_code == IOR)
9199 inner_code = AND;
9200 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9203 /* We may be able to continuing distributing the result, so call
9204 ourselves recursively on the inner operation before forming the
9205 outer operation, which we return. */
9206 return simplify_gen_binary (inner_code, GET_MODE (x),
9207 apply_distributive_law (tem), other);
9210 /* See if X is of the form (* (+ A B) C), and if so convert to
9211 (+ (* A C) (* B C)) and try to simplify.
9213 Most of the time, this results in no change. However, if some of
9214 the operands are the same or inverses of each other, simplifications
9215 will result.
9217 For example, (and (ior A B) (not B)) can occur as the result of
9218 expanding a bit field assignment. When we apply the distributive
9219 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9220 which then simplifies to (and (A (not B))).
9222 Note that no checks happen on the validity of applying the inverse
9223 distributive law. This is pointless since we can do it in the
9224 few places where this routine is called.
9226 N is the index of the term that is decomposed (the arithmetic operation,
9227 i.e. (+ A B) in the first example above). !N is the index of the term that
9228 is distributed, i.e. of C in the first example above. */
9229 static rtx
9230 distribute_and_simplify_rtx (rtx x, int n)
9232 enum machine_mode mode;
9233 enum rtx_code outer_code, inner_code;
9234 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9236 /* Distributivity is not true for floating point as it can change the
9237 value. So we don't do it unless -funsafe-math-optimizations. */
9238 if (FLOAT_MODE_P (GET_MODE (x))
9239 && ! flag_unsafe_math_optimizations)
9240 return NULL_RTX;
9242 decomposed = XEXP (x, n);
9243 if (!ARITHMETIC_P (decomposed))
9244 return NULL_RTX;
9246 mode = GET_MODE (x);
9247 outer_code = GET_CODE (x);
9248 distributed = XEXP (x, !n);
9250 inner_code = GET_CODE (decomposed);
9251 inner_op0 = XEXP (decomposed, 0);
9252 inner_op1 = XEXP (decomposed, 1);
9254 /* Special case (and (xor B C) (not A)), which is equivalent to
9255 (xor (ior A B) (ior A C)) */
9256 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9258 distributed = XEXP (distributed, 0);
9259 outer_code = IOR;
9262 if (n == 0)
9264 /* Distribute the second term. */
9265 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9266 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9268 else
9270 /* Distribute the first term. */
9271 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9272 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9275 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9276 new_op0, new_op1));
9277 if (GET_CODE (tmp) != outer_code
9278 && (set_src_cost (tmp, optimize_this_for_speed_p)
9279 < set_src_cost (x, optimize_this_for_speed_p)))
9280 return tmp;
9282 return NULL_RTX;
9285 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9286 in MODE. Return an equivalent form, if different from (and VAROP
9287 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9289 static rtx
9290 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9291 unsigned HOST_WIDE_INT constop)
9293 unsigned HOST_WIDE_INT nonzero;
9294 unsigned HOST_WIDE_INT orig_constop;
9295 rtx orig_varop;
9296 int i;
9298 orig_varop = varop;
9299 orig_constop = constop;
9300 if (GET_CODE (varop) == CLOBBER)
9301 return NULL_RTX;
9303 /* Simplify VAROP knowing that we will be only looking at some of the
9304 bits in it.
9306 Note by passing in CONSTOP, we guarantee that the bits not set in
9307 CONSTOP are not significant and will never be examined. We must
9308 ensure that is the case by explicitly masking out those bits
9309 before returning. */
9310 varop = force_to_mode (varop, mode, constop, 0);
9312 /* If VAROP is a CLOBBER, we will fail so return it. */
9313 if (GET_CODE (varop) == CLOBBER)
9314 return varop;
9316 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9317 to VAROP and return the new constant. */
9318 if (CONST_INT_P (varop))
9319 return gen_int_mode (INTVAL (varop) & constop, mode);
9321 /* See what bits may be nonzero in VAROP. Unlike the general case of
9322 a call to nonzero_bits, here we don't care about bits outside
9323 MODE. */
9325 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9327 /* Turn off all bits in the constant that are known to already be zero.
9328 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9329 which is tested below. */
9331 constop &= nonzero;
9333 /* If we don't have any bits left, return zero. */
9334 if (constop == 0)
9335 return const0_rtx;
9337 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9338 a power of two, we can replace this with an ASHIFT. */
9339 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9340 && (i = exact_log2 (constop)) >= 0)
9341 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9343 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9344 or XOR, then try to apply the distributive law. This may eliminate
9345 operations if either branch can be simplified because of the AND.
9346 It may also make some cases more complex, but those cases probably
9347 won't match a pattern either with or without this. */
9349 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9350 return
9351 gen_lowpart
9352 (mode,
9353 apply_distributive_law
9354 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9355 simplify_and_const_int (NULL_RTX,
9356 GET_MODE (varop),
9357 XEXP (varop, 0),
9358 constop),
9359 simplify_and_const_int (NULL_RTX,
9360 GET_MODE (varop),
9361 XEXP (varop, 1),
9362 constop))));
9364 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9365 the AND and see if one of the operands simplifies to zero. If so, we
9366 may eliminate it. */
9368 if (GET_CODE (varop) == PLUS
9369 && exact_log2 (constop + 1) >= 0)
9371 rtx o0, o1;
9373 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9374 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9375 if (o0 == const0_rtx)
9376 return o1;
9377 if (o1 == const0_rtx)
9378 return o0;
9381 /* Make a SUBREG if necessary. If we can't make it, fail. */
9382 varop = gen_lowpart (mode, varop);
9383 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9384 return NULL_RTX;
9386 /* If we are only masking insignificant bits, return VAROP. */
9387 if (constop == nonzero)
9388 return varop;
9390 if (varop == orig_varop && constop == orig_constop)
9391 return NULL_RTX;
9393 /* Otherwise, return an AND. */
9394 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9398 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9399 in MODE.
9401 Return an equivalent form, if different from X. Otherwise, return X. If
9402 X is zero, we are to always construct the equivalent form. */
9404 static rtx
9405 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9406 unsigned HOST_WIDE_INT constop)
9408 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9409 if (tem)
9410 return tem;
9412 if (!x)
9413 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9414 gen_int_mode (constop, mode));
9415 if (GET_MODE (x) != mode)
9416 x = gen_lowpart (mode, x);
9417 return x;
9420 /* Given a REG, X, compute which bits in X can be nonzero.
9421 We don't care about bits outside of those defined in MODE.
9423 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9424 a shift, AND, or zero_extract, we can do better. */
9426 static rtx
9427 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9428 const_rtx known_x ATTRIBUTE_UNUSED,
9429 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9430 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9431 unsigned HOST_WIDE_INT *nonzero)
9433 rtx tem;
9434 reg_stat_type *rsp;
9436 /* If X is a register whose nonzero bits value is current, use it.
9437 Otherwise, if X is a register whose value we can find, use that
9438 value. Otherwise, use the previously-computed global nonzero bits
9439 for this register. */
9441 rsp = &reg_stat[REGNO (x)];
9442 if (rsp->last_set_value != 0
9443 && (rsp->last_set_mode == mode
9444 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9445 && GET_MODE_CLASS (mode) == MODE_INT))
9446 && ((rsp->last_set_label >= label_tick_ebb_start
9447 && rsp->last_set_label < label_tick)
9448 || (rsp->last_set_label == label_tick
9449 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9450 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9451 && REG_N_SETS (REGNO (x)) == 1
9452 && !REGNO_REG_SET_P
9453 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9455 *nonzero &= rsp->last_set_nonzero_bits;
9456 return NULL;
9459 tem = get_last_value (x);
9461 if (tem)
9463 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9464 /* If X is narrower than MODE and TEM is a non-negative
9465 constant that would appear negative in the mode of X,
9466 sign-extend it for use in reg_nonzero_bits because some
9467 machines (maybe most) will actually do the sign-extension
9468 and this is the conservative approach.
9470 ??? For 2.5, try to tighten up the MD files in this regard
9471 instead of this kludge. */
9473 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9474 && CONST_INT_P (tem)
9475 && INTVAL (tem) > 0
9476 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9477 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9478 #endif
9479 return tem;
9481 else if (nonzero_sign_valid && rsp->nonzero_bits)
9483 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9485 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9486 /* We don't know anything about the upper bits. */
9487 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9488 *nonzero &= mask;
9491 return NULL;
9494 /* Return the number of bits at the high-order end of X that are known to
9495 be equal to the sign bit. X will be used in mode MODE; if MODE is
9496 VOIDmode, X will be used in its own mode. The returned value will always
9497 be between 1 and the number of bits in MODE. */
9499 static rtx
9500 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9501 const_rtx known_x ATTRIBUTE_UNUSED,
9502 enum machine_mode known_mode
9503 ATTRIBUTE_UNUSED,
9504 unsigned int known_ret ATTRIBUTE_UNUSED,
9505 unsigned int *result)
9507 rtx tem;
9508 reg_stat_type *rsp;
9510 rsp = &reg_stat[REGNO (x)];
9511 if (rsp->last_set_value != 0
9512 && rsp->last_set_mode == mode
9513 && ((rsp->last_set_label >= label_tick_ebb_start
9514 && rsp->last_set_label < label_tick)
9515 || (rsp->last_set_label == label_tick
9516 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9517 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9518 && REG_N_SETS (REGNO (x)) == 1
9519 && !REGNO_REG_SET_P
9520 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9522 *result = rsp->last_set_sign_bit_copies;
9523 return NULL;
9526 tem = get_last_value (x);
9527 if (tem != 0)
9528 return tem;
9530 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9531 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9532 *result = rsp->sign_bit_copies;
9534 return NULL;
9537 /* Return the number of "extended" bits there are in X, when interpreted
9538 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9539 unsigned quantities, this is the number of high-order zero bits.
9540 For signed quantities, this is the number of copies of the sign bit
9541 minus 1. In both case, this function returns the number of "spare"
9542 bits. For example, if two quantities for which this function returns
9543 at least 1 are added, the addition is known not to overflow.
9545 This function will always return 0 unless called during combine, which
9546 implies that it must be called from a define_split. */
9548 unsigned int
9549 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9551 if (nonzero_sign_valid == 0)
9552 return 0;
9554 return (unsignedp
9555 ? (HWI_COMPUTABLE_MODE_P (mode)
9556 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9557 - floor_log2 (nonzero_bits (x, mode)))
9558 : 0)
9559 : num_sign_bit_copies (x, mode) - 1);
9562 /* This function is called from `simplify_shift_const' to merge two
9563 outer operations. Specifically, we have already found that we need
9564 to perform operation *POP0 with constant *PCONST0 at the outermost
9565 position. We would now like to also perform OP1 with constant CONST1
9566 (with *POP0 being done last).
9568 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9569 the resulting operation. *PCOMP_P is set to 1 if we would need to
9570 complement the innermost operand, otherwise it is unchanged.
9572 MODE is the mode in which the operation will be done. No bits outside
9573 the width of this mode matter. It is assumed that the width of this mode
9574 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9576 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9577 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9578 result is simply *PCONST0.
9580 If the resulting operation cannot be expressed as one operation, we
9581 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9583 static int
9584 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9586 enum rtx_code op0 = *pop0;
9587 HOST_WIDE_INT const0 = *pconst0;
9589 const0 &= GET_MODE_MASK (mode);
9590 const1 &= GET_MODE_MASK (mode);
9592 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9593 if (op0 == AND)
9594 const1 &= const0;
9596 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9597 if OP0 is SET. */
9599 if (op1 == UNKNOWN || op0 == SET)
9600 return 1;
9602 else if (op0 == UNKNOWN)
9603 op0 = op1, const0 = const1;
9605 else if (op0 == op1)
9607 switch (op0)
9609 case AND:
9610 const0 &= const1;
9611 break;
9612 case IOR:
9613 const0 |= const1;
9614 break;
9615 case XOR:
9616 const0 ^= const1;
9617 break;
9618 case PLUS:
9619 const0 += const1;
9620 break;
9621 case NEG:
9622 op0 = UNKNOWN;
9623 break;
9624 default:
9625 break;
9629 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9630 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9631 return 0;
9633 /* If the two constants aren't the same, we can't do anything. The
9634 remaining six cases can all be done. */
9635 else if (const0 != const1)
9636 return 0;
9638 else
9639 switch (op0)
9641 case IOR:
9642 if (op1 == AND)
9643 /* (a & b) | b == b */
9644 op0 = SET;
9645 else /* op1 == XOR */
9646 /* (a ^ b) | b == a | b */
9648 break;
9650 case XOR:
9651 if (op1 == AND)
9652 /* (a & b) ^ b == (~a) & b */
9653 op0 = AND, *pcomp_p = 1;
9654 else /* op1 == IOR */
9655 /* (a | b) ^ b == a & ~b */
9656 op0 = AND, const0 = ~const0;
9657 break;
9659 case AND:
9660 if (op1 == IOR)
9661 /* (a | b) & b == b */
9662 op0 = SET;
9663 else /* op1 == XOR */
9664 /* (a ^ b) & b) == (~a) & b */
9665 *pcomp_p = 1;
9666 break;
9667 default:
9668 break;
9671 /* Check for NO-OP cases. */
9672 const0 &= GET_MODE_MASK (mode);
9673 if (const0 == 0
9674 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9675 op0 = UNKNOWN;
9676 else if (const0 == 0 && op0 == AND)
9677 op0 = SET;
9678 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9679 && op0 == AND)
9680 op0 = UNKNOWN;
9682 *pop0 = op0;
9684 /* ??? Slightly redundant with the above mask, but not entirely.
9685 Moving this above means we'd have to sign-extend the mode mask
9686 for the final test. */
9687 if (op0 != UNKNOWN && op0 != NEG)
9688 *pconst0 = trunc_int_for_mode (const0, mode);
9690 return 1;
9693 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9694 the shift in. The original shift operation CODE is performed on OP in
9695 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9696 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9697 result of the shift is subject to operation OUTER_CODE with operand
9698 OUTER_CONST. */
9700 static enum machine_mode
9701 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9702 enum machine_mode orig_mode, enum machine_mode mode,
9703 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9705 if (orig_mode == mode)
9706 return mode;
9707 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9709 /* In general we can't perform in wider mode for right shift and rotate. */
9710 switch (code)
9712 case ASHIFTRT:
9713 /* We can still widen if the bits brought in from the left are identical
9714 to the sign bit of ORIG_MODE. */
9715 if (num_sign_bit_copies (op, mode)
9716 > (unsigned) (GET_MODE_PRECISION (mode)
9717 - GET_MODE_PRECISION (orig_mode)))
9718 return mode;
9719 return orig_mode;
9721 case LSHIFTRT:
9722 /* Similarly here but with zero bits. */
9723 if (HWI_COMPUTABLE_MODE_P (mode)
9724 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9725 return mode;
9727 /* We can also widen if the bits brought in will be masked off. This
9728 operation is performed in ORIG_MODE. */
9729 if (outer_code == AND)
9731 int care_bits = low_bitmask_len (orig_mode, outer_const);
9733 if (care_bits >= 0
9734 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9735 return mode;
9737 /* fall through */
9739 case ROTATE:
9740 return orig_mode;
9742 case ROTATERT:
9743 gcc_unreachable ();
9745 default:
9746 return mode;
9750 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9751 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9752 if we cannot simplify it. Otherwise, return a simplified value.
9754 The shift is normally computed in the widest mode we find in VAROP, as
9755 long as it isn't a different number of words than RESULT_MODE. Exceptions
9756 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9758 static rtx
9759 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9760 rtx varop, int orig_count)
9762 enum rtx_code orig_code = code;
9763 rtx orig_varop = varop;
9764 int count;
9765 enum machine_mode mode = result_mode;
9766 enum machine_mode shift_mode, tmode;
9767 unsigned int mode_words
9768 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9769 /* We form (outer_op (code varop count) (outer_const)). */
9770 enum rtx_code outer_op = UNKNOWN;
9771 HOST_WIDE_INT outer_const = 0;
9772 int complement_p = 0;
9773 rtx new_rtx, x;
9775 /* Make sure and truncate the "natural" shift on the way in. We don't
9776 want to do this inside the loop as it makes it more difficult to
9777 combine shifts. */
9778 if (SHIFT_COUNT_TRUNCATED)
9779 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9781 /* If we were given an invalid count, don't do anything except exactly
9782 what was requested. */
9784 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9785 return NULL_RTX;
9787 count = orig_count;
9789 /* Unless one of the branches of the `if' in this loop does a `continue',
9790 we will `break' the loop after the `if'. */
9792 while (count != 0)
9794 /* If we have an operand of (clobber (const_int 0)), fail. */
9795 if (GET_CODE (varop) == CLOBBER)
9796 return NULL_RTX;
9798 /* Convert ROTATERT to ROTATE. */
9799 if (code == ROTATERT)
9801 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9802 code = ROTATE;
9803 if (VECTOR_MODE_P (result_mode))
9804 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9805 else
9806 count = bitsize - count;
9809 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9810 mode, outer_op, outer_const);
9812 /* Handle cases where the count is greater than the size of the mode
9813 minus 1. For ASHIFT, use the size minus one as the count (this can
9814 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9815 take the count modulo the size. For other shifts, the result is
9816 zero.
9818 Since these shifts are being produced by the compiler by combining
9819 multiple operations, each of which are defined, we know what the
9820 result is supposed to be. */
9822 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9824 if (code == ASHIFTRT)
9825 count = GET_MODE_PRECISION (shift_mode) - 1;
9826 else if (code == ROTATE || code == ROTATERT)
9827 count %= GET_MODE_PRECISION (shift_mode);
9828 else
9830 /* We can't simply return zero because there may be an
9831 outer op. */
9832 varop = const0_rtx;
9833 count = 0;
9834 break;
9838 /* If we discovered we had to complement VAROP, leave. Making a NOT
9839 here would cause an infinite loop. */
9840 if (complement_p)
9841 break;
9843 /* An arithmetic right shift of a quantity known to be -1 or 0
9844 is a no-op. */
9845 if (code == ASHIFTRT
9846 && (num_sign_bit_copies (varop, shift_mode)
9847 == GET_MODE_PRECISION (shift_mode)))
9849 count = 0;
9850 break;
9853 /* If we are doing an arithmetic right shift and discarding all but
9854 the sign bit copies, this is equivalent to doing a shift by the
9855 bitsize minus one. Convert it into that shift because it will often
9856 allow other simplifications. */
9858 if (code == ASHIFTRT
9859 && (count + num_sign_bit_copies (varop, shift_mode)
9860 >= GET_MODE_PRECISION (shift_mode)))
9861 count = GET_MODE_PRECISION (shift_mode) - 1;
9863 /* We simplify the tests below and elsewhere by converting
9864 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9865 `make_compound_operation' will convert it to an ASHIFTRT for
9866 those machines (such as VAX) that don't have an LSHIFTRT. */
9867 if (code == ASHIFTRT
9868 && val_signbit_known_clear_p (shift_mode,
9869 nonzero_bits (varop, shift_mode)))
9870 code = LSHIFTRT;
9872 if (((code == LSHIFTRT
9873 && HWI_COMPUTABLE_MODE_P (shift_mode)
9874 && !(nonzero_bits (varop, shift_mode) >> count))
9875 || (code == ASHIFT
9876 && HWI_COMPUTABLE_MODE_P (shift_mode)
9877 && !((nonzero_bits (varop, shift_mode) << count)
9878 & GET_MODE_MASK (shift_mode))))
9879 && !side_effects_p (varop))
9880 varop = const0_rtx;
9882 switch (GET_CODE (varop))
9884 case SIGN_EXTEND:
9885 case ZERO_EXTEND:
9886 case SIGN_EXTRACT:
9887 case ZERO_EXTRACT:
9888 new_rtx = expand_compound_operation (varop);
9889 if (new_rtx != varop)
9891 varop = new_rtx;
9892 continue;
9894 break;
9896 case MEM:
9897 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9898 minus the width of a smaller mode, we can do this with a
9899 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9900 if ((code == ASHIFTRT || code == LSHIFTRT)
9901 && ! mode_dependent_address_p (XEXP (varop, 0),
9902 MEM_ADDR_SPACE (varop))
9903 && ! MEM_VOLATILE_P (varop)
9904 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9905 MODE_INT, 1)) != BLKmode)
9907 new_rtx = adjust_address_nv (varop, tmode,
9908 BYTES_BIG_ENDIAN ? 0
9909 : count / BITS_PER_UNIT);
9911 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9912 : ZERO_EXTEND, mode, new_rtx);
9913 count = 0;
9914 continue;
9916 break;
9918 case SUBREG:
9919 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9920 the same number of words as what we've seen so far. Then store
9921 the widest mode in MODE. */
9922 if (subreg_lowpart_p (varop)
9923 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9924 > GET_MODE_SIZE (GET_MODE (varop)))
9925 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9926 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9927 == mode_words
9928 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9929 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9931 varop = SUBREG_REG (varop);
9932 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9933 mode = GET_MODE (varop);
9934 continue;
9936 break;
9938 case MULT:
9939 /* Some machines use MULT instead of ASHIFT because MULT
9940 is cheaper. But it is still better on those machines to
9941 merge two shifts into one. */
9942 if (CONST_INT_P (XEXP (varop, 1))
9943 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9945 varop
9946 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9947 XEXP (varop, 0),
9948 GEN_INT (exact_log2 (
9949 UINTVAL (XEXP (varop, 1)))));
9950 continue;
9952 break;
9954 case UDIV:
9955 /* Similar, for when divides are cheaper. */
9956 if (CONST_INT_P (XEXP (varop, 1))
9957 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9959 varop
9960 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9961 XEXP (varop, 0),
9962 GEN_INT (exact_log2 (
9963 UINTVAL (XEXP (varop, 1)))));
9964 continue;
9966 break;
9968 case ASHIFTRT:
9969 /* If we are extracting just the sign bit of an arithmetic
9970 right shift, that shift is not needed. However, the sign
9971 bit of a wider mode may be different from what would be
9972 interpreted as the sign bit in a narrower mode, so, if
9973 the result is narrower, don't discard the shift. */
9974 if (code == LSHIFTRT
9975 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9976 && (GET_MODE_BITSIZE (result_mode)
9977 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9979 varop = XEXP (varop, 0);
9980 continue;
9983 /* ... fall through ... */
9985 case LSHIFTRT:
9986 case ASHIFT:
9987 case ROTATE:
9988 /* Here we have two nested shifts. The result is usually the
9989 AND of a new shift with a mask. We compute the result below. */
9990 if (CONST_INT_P (XEXP (varop, 1))
9991 && INTVAL (XEXP (varop, 1)) >= 0
9992 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
9993 && HWI_COMPUTABLE_MODE_P (result_mode)
9994 && HWI_COMPUTABLE_MODE_P (mode)
9995 && !VECTOR_MODE_P (result_mode))
9997 enum rtx_code first_code = GET_CODE (varop);
9998 unsigned int first_count = INTVAL (XEXP (varop, 1));
9999 unsigned HOST_WIDE_INT mask;
10000 rtx mask_rtx;
10002 /* We have one common special case. We can't do any merging if
10003 the inner code is an ASHIFTRT of a smaller mode. However, if
10004 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10005 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10006 we can convert it to
10007 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10008 This simplifies certain SIGN_EXTEND operations. */
10009 if (code == ASHIFT && first_code == ASHIFTRT
10010 && count == (GET_MODE_PRECISION (result_mode)
10011 - GET_MODE_PRECISION (GET_MODE (varop))))
10013 /* C3 has the low-order C1 bits zero. */
10015 mask = GET_MODE_MASK (mode)
10016 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10018 varop = simplify_and_const_int (NULL_RTX, result_mode,
10019 XEXP (varop, 0), mask);
10020 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10021 varop, count);
10022 count = first_count;
10023 code = ASHIFTRT;
10024 continue;
10027 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10028 than C1 high-order bits equal to the sign bit, we can convert
10029 this to either an ASHIFT or an ASHIFTRT depending on the
10030 two counts.
10032 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10034 if (code == ASHIFTRT && first_code == ASHIFT
10035 && GET_MODE (varop) == shift_mode
10036 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10037 > first_count))
10039 varop = XEXP (varop, 0);
10040 count -= first_count;
10041 if (count < 0)
10043 count = -count;
10044 code = ASHIFT;
10047 continue;
10050 /* There are some cases we can't do. If CODE is ASHIFTRT,
10051 we can only do this if FIRST_CODE is also ASHIFTRT.
10053 We can't do the case when CODE is ROTATE and FIRST_CODE is
10054 ASHIFTRT.
10056 If the mode of this shift is not the mode of the outer shift,
10057 we can't do this if either shift is a right shift or ROTATE.
10059 Finally, we can't do any of these if the mode is too wide
10060 unless the codes are the same.
10062 Handle the case where the shift codes are the same
10063 first. */
10065 if (code == first_code)
10067 if (GET_MODE (varop) != result_mode
10068 && (code == ASHIFTRT || code == LSHIFTRT
10069 || code == ROTATE))
10070 break;
10072 count += first_count;
10073 varop = XEXP (varop, 0);
10074 continue;
10077 if (code == ASHIFTRT
10078 || (code == ROTATE && first_code == ASHIFTRT)
10079 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10080 || (GET_MODE (varop) != result_mode
10081 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10082 || first_code == ROTATE
10083 || code == ROTATE)))
10084 break;
10086 /* To compute the mask to apply after the shift, shift the
10087 nonzero bits of the inner shift the same way the
10088 outer shift will. */
10090 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10092 mask_rtx
10093 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10094 GEN_INT (count));
10096 /* Give up if we can't compute an outer operation to use. */
10097 if (mask_rtx == 0
10098 || !CONST_INT_P (mask_rtx)
10099 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10100 INTVAL (mask_rtx),
10101 result_mode, &complement_p))
10102 break;
10104 /* If the shifts are in the same direction, we add the
10105 counts. Otherwise, we subtract them. */
10106 if ((code == ASHIFTRT || code == LSHIFTRT)
10107 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10108 count += first_count;
10109 else
10110 count -= first_count;
10112 /* If COUNT is positive, the new shift is usually CODE,
10113 except for the two exceptions below, in which case it is
10114 FIRST_CODE. If the count is negative, FIRST_CODE should
10115 always be used */
10116 if (count > 0
10117 && ((first_code == ROTATE && code == ASHIFT)
10118 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10119 code = first_code;
10120 else if (count < 0)
10121 code = first_code, count = -count;
10123 varop = XEXP (varop, 0);
10124 continue;
10127 /* If we have (A << B << C) for any shift, we can convert this to
10128 (A << C << B). This wins if A is a constant. Only try this if
10129 B is not a constant. */
10131 else if (GET_CODE (varop) == code
10132 && CONST_INT_P (XEXP (varop, 0))
10133 && !CONST_INT_P (XEXP (varop, 1)))
10135 rtx new_rtx = simplify_const_binary_operation (code, mode,
10136 XEXP (varop, 0),
10137 GEN_INT (count));
10138 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10139 count = 0;
10140 continue;
10142 break;
10144 case NOT:
10145 if (VECTOR_MODE_P (mode))
10146 break;
10148 /* Make this fit the case below. */
10149 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10150 continue;
10152 case IOR:
10153 case AND:
10154 case XOR:
10155 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10156 with C the size of VAROP - 1 and the shift is logical if
10157 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10158 we have an (le X 0) operation. If we have an arithmetic shift
10159 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10160 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10162 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10163 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10164 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10165 && (code == LSHIFTRT || code == ASHIFTRT)
10166 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10167 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10169 count = 0;
10170 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10171 const0_rtx);
10173 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10174 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10176 continue;
10179 /* If we have (shift (logical)), move the logical to the outside
10180 to allow it to possibly combine with another logical and the
10181 shift to combine with another shift. This also canonicalizes to
10182 what a ZERO_EXTRACT looks like. Also, some machines have
10183 (and (shift)) insns. */
10185 if (CONST_INT_P (XEXP (varop, 1))
10186 /* We can't do this if we have (ashiftrt (xor)) and the
10187 constant has its sign bit set in shift_mode. */
10188 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10189 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10190 shift_mode))
10191 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10192 XEXP (varop, 1),
10193 GEN_INT (count))) != 0
10194 && CONST_INT_P (new_rtx)
10195 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10196 INTVAL (new_rtx), result_mode, &complement_p))
10198 varop = XEXP (varop, 0);
10199 continue;
10202 /* If we can't do that, try to simplify the shift in each arm of the
10203 logical expression, make a new logical expression, and apply
10204 the inverse distributive law. This also can't be done
10205 for some (ashiftrt (xor)). */
10206 if (CONST_INT_P (XEXP (varop, 1))
10207 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10208 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10209 shift_mode)))
10211 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10212 XEXP (varop, 0), count);
10213 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10214 XEXP (varop, 1), count);
10216 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10217 lhs, rhs);
10218 varop = apply_distributive_law (varop);
10220 count = 0;
10221 continue;
10223 break;
10225 case EQ:
10226 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10227 says that the sign bit can be tested, FOO has mode MODE, C is
10228 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10229 that may be nonzero. */
10230 if (code == LSHIFTRT
10231 && XEXP (varop, 1) == const0_rtx
10232 && GET_MODE (XEXP (varop, 0)) == result_mode
10233 && count == (GET_MODE_PRECISION (result_mode) - 1)
10234 && HWI_COMPUTABLE_MODE_P (result_mode)
10235 && STORE_FLAG_VALUE == -1
10236 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10237 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10238 &complement_p))
10240 varop = XEXP (varop, 0);
10241 count = 0;
10242 continue;
10244 break;
10246 case NEG:
10247 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10248 than the number of bits in the mode is equivalent to A. */
10249 if (code == LSHIFTRT
10250 && count == (GET_MODE_PRECISION (result_mode) - 1)
10251 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10253 varop = XEXP (varop, 0);
10254 count = 0;
10255 continue;
10258 /* NEG commutes with ASHIFT since it is multiplication. Move the
10259 NEG outside to allow shifts to combine. */
10260 if (code == ASHIFT
10261 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10262 &complement_p))
10264 varop = XEXP (varop, 0);
10265 continue;
10267 break;
10269 case PLUS:
10270 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10271 is one less than the number of bits in the mode is
10272 equivalent to (xor A 1). */
10273 if (code == LSHIFTRT
10274 && count == (GET_MODE_PRECISION (result_mode) - 1)
10275 && XEXP (varop, 1) == constm1_rtx
10276 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10277 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10278 &complement_p))
10280 count = 0;
10281 varop = XEXP (varop, 0);
10282 continue;
10285 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10286 that might be nonzero in BAR are those being shifted out and those
10287 bits are known zero in FOO, we can replace the PLUS with FOO.
10288 Similarly in the other operand order. This code occurs when
10289 we are computing the size of a variable-size array. */
10291 if ((code == ASHIFTRT || code == LSHIFTRT)
10292 && count < HOST_BITS_PER_WIDE_INT
10293 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10294 && (nonzero_bits (XEXP (varop, 1), result_mode)
10295 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10297 varop = XEXP (varop, 0);
10298 continue;
10300 else if ((code == ASHIFTRT || code == LSHIFTRT)
10301 && count < HOST_BITS_PER_WIDE_INT
10302 && HWI_COMPUTABLE_MODE_P (result_mode)
10303 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10304 >> count)
10305 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10306 & nonzero_bits (XEXP (varop, 1),
10307 result_mode)))
10309 varop = XEXP (varop, 1);
10310 continue;
10313 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10314 if (code == ASHIFT
10315 && CONST_INT_P (XEXP (varop, 1))
10316 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10317 XEXP (varop, 1),
10318 GEN_INT (count))) != 0
10319 && CONST_INT_P (new_rtx)
10320 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10321 INTVAL (new_rtx), result_mode, &complement_p))
10323 varop = XEXP (varop, 0);
10324 continue;
10327 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10328 signbit', and attempt to change the PLUS to an XOR and move it to
10329 the outer operation as is done above in the AND/IOR/XOR case
10330 leg for shift(logical). See details in logical handling above
10331 for reasoning in doing so. */
10332 if (code == LSHIFTRT
10333 && CONST_INT_P (XEXP (varop, 1))
10334 && mode_signbit_p (result_mode, XEXP (varop, 1))
10335 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10336 XEXP (varop, 1),
10337 GEN_INT (count))) != 0
10338 && CONST_INT_P (new_rtx)
10339 && merge_outer_ops (&outer_op, &outer_const, XOR,
10340 INTVAL (new_rtx), result_mode, &complement_p))
10342 varop = XEXP (varop, 0);
10343 continue;
10346 break;
10348 case MINUS:
10349 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10350 with C the size of VAROP - 1 and the shift is logical if
10351 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10352 we have a (gt X 0) operation. If the shift is arithmetic with
10353 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10354 we have a (neg (gt X 0)) operation. */
10356 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10357 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10358 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10359 && (code == LSHIFTRT || code == ASHIFTRT)
10360 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10361 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10362 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10364 count = 0;
10365 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10366 const0_rtx);
10368 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10369 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10371 continue;
10373 break;
10375 case TRUNCATE:
10376 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10377 if the truncate does not affect the value. */
10378 if (code == LSHIFTRT
10379 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10380 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10381 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10382 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10383 - GET_MODE_PRECISION (GET_MODE (varop)))))
10385 rtx varop_inner = XEXP (varop, 0);
10387 varop_inner
10388 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10389 XEXP (varop_inner, 0),
10390 GEN_INT
10391 (count + INTVAL (XEXP (varop_inner, 1))));
10392 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10393 count = 0;
10394 continue;
10396 break;
10398 default:
10399 break;
10402 break;
10405 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10406 outer_op, outer_const);
10408 /* We have now finished analyzing the shift. The result should be
10409 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10410 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10411 to the result of the shift. OUTER_CONST is the relevant constant,
10412 but we must turn off all bits turned off in the shift. */
10414 if (outer_op == UNKNOWN
10415 && orig_code == code && orig_count == count
10416 && varop == orig_varop
10417 && shift_mode == GET_MODE (varop))
10418 return NULL_RTX;
10420 /* Make a SUBREG if necessary. If we can't make it, fail. */
10421 varop = gen_lowpart (shift_mode, varop);
10422 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10423 return NULL_RTX;
10425 /* If we have an outer operation and we just made a shift, it is
10426 possible that we could have simplified the shift were it not
10427 for the outer operation. So try to do the simplification
10428 recursively. */
10430 if (outer_op != UNKNOWN)
10431 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10432 else
10433 x = NULL_RTX;
10435 if (x == NULL_RTX)
10436 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10438 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10439 turn off all the bits that the shift would have turned off. */
10440 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10441 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10442 GET_MODE_MASK (result_mode) >> orig_count);
10444 /* Do the remainder of the processing in RESULT_MODE. */
10445 x = gen_lowpart_or_truncate (result_mode, x);
10447 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10448 operation. */
10449 if (complement_p)
10450 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10452 if (outer_op != UNKNOWN)
10454 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10455 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10456 outer_const = trunc_int_for_mode (outer_const, result_mode);
10458 if (outer_op == AND)
10459 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10460 else if (outer_op == SET)
10462 /* This means that we have determined that the result is
10463 equivalent to a constant. This should be rare. */
10464 if (!side_effects_p (x))
10465 x = GEN_INT (outer_const);
10467 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10468 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10469 else
10470 x = simplify_gen_binary (outer_op, result_mode, x,
10471 GEN_INT (outer_const));
10474 return x;
10477 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10478 The result of the shift is RESULT_MODE. If we cannot simplify it,
10479 return X or, if it is NULL, synthesize the expression with
10480 simplify_gen_binary. Otherwise, return a simplified value.
10482 The shift is normally computed in the widest mode we find in VAROP, as
10483 long as it isn't a different number of words than RESULT_MODE. Exceptions
10484 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10486 static rtx
10487 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10488 rtx varop, int count)
10490 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10491 if (tem)
10492 return tem;
10494 if (!x)
10495 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10496 if (GET_MODE (x) != result_mode)
10497 x = gen_lowpart (result_mode, x);
10498 return x;
10502 /* Like recog, but we receive the address of a pointer to a new pattern.
10503 We try to match the rtx that the pointer points to.
10504 If that fails, we may try to modify or replace the pattern,
10505 storing the replacement into the same pointer object.
10507 Modifications include deletion or addition of CLOBBERs.
10509 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10510 the CLOBBERs are placed.
10512 The value is the final insn code from the pattern ultimately matched,
10513 or -1. */
10515 static int
10516 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10518 rtx pat = *pnewpat;
10519 rtx pat_without_clobbers;
10520 int insn_code_number;
10521 int num_clobbers_to_add = 0;
10522 int i;
10523 rtx notes = NULL_RTX;
10524 rtx old_notes, old_pat;
10525 int old_icode;
10527 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10528 we use to indicate that something didn't match. If we find such a
10529 thing, force rejection. */
10530 if (GET_CODE (pat) == PARALLEL)
10531 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10532 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10533 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10534 return -1;
10536 old_pat = PATTERN (insn);
10537 old_notes = REG_NOTES (insn);
10538 PATTERN (insn) = pat;
10539 REG_NOTES (insn) = NULL_RTX;
10541 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10542 if (dump_file && (dump_flags & TDF_DETAILS))
10544 if (insn_code_number < 0)
10545 fputs ("Failed to match this instruction:\n", dump_file);
10546 else
10547 fputs ("Successfully matched this instruction:\n", dump_file);
10548 print_rtl_single (dump_file, pat);
10551 /* If it isn't, there is the possibility that we previously had an insn
10552 that clobbered some register as a side effect, but the combined
10553 insn doesn't need to do that. So try once more without the clobbers
10554 unless this represents an ASM insn. */
10556 if (insn_code_number < 0 && ! check_asm_operands (pat)
10557 && GET_CODE (pat) == PARALLEL)
10559 int pos;
10561 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10562 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10564 if (i != pos)
10565 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10566 pos++;
10569 SUBST_INT (XVECLEN (pat, 0), pos);
10571 if (pos == 1)
10572 pat = XVECEXP (pat, 0, 0);
10574 PATTERN (insn) = pat;
10575 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10576 if (dump_file && (dump_flags & TDF_DETAILS))
10578 if (insn_code_number < 0)
10579 fputs ("Failed to match this instruction:\n", dump_file);
10580 else
10581 fputs ("Successfully matched this instruction:\n", dump_file);
10582 print_rtl_single (dump_file, pat);
10586 pat_without_clobbers = pat;
10588 PATTERN (insn) = old_pat;
10589 REG_NOTES (insn) = old_notes;
10591 /* Recognize all noop sets, these will be killed by followup pass. */
10592 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10593 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10595 /* If we had any clobbers to add, make a new pattern than contains
10596 them. Then check to make sure that all of them are dead. */
10597 if (num_clobbers_to_add)
10599 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10600 rtvec_alloc (GET_CODE (pat) == PARALLEL
10601 ? (XVECLEN (pat, 0)
10602 + num_clobbers_to_add)
10603 : num_clobbers_to_add + 1));
10605 if (GET_CODE (pat) == PARALLEL)
10606 for (i = 0; i < XVECLEN (pat, 0); i++)
10607 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10608 else
10609 XVECEXP (newpat, 0, 0) = pat;
10611 add_clobbers (newpat, insn_code_number);
10613 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10614 i < XVECLEN (newpat, 0); i++)
10616 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10617 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10618 return -1;
10619 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10621 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10622 notes = alloc_reg_note (REG_UNUSED,
10623 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10626 pat = newpat;
10629 if (insn_code_number >= 0
10630 && insn_code_number != NOOP_MOVE_INSN_CODE)
10632 old_pat = PATTERN (insn);
10633 old_notes = REG_NOTES (insn);
10634 old_icode = INSN_CODE (insn);
10635 PATTERN (insn) = pat;
10636 REG_NOTES (insn) = notes;
10638 /* Allow targets to reject combined insn. */
10639 if (!targetm.legitimate_combined_insn (insn))
10641 if (dump_file && (dump_flags & TDF_DETAILS))
10642 fputs ("Instruction not appropriate for target.",
10643 dump_file);
10645 /* Callers expect recog_for_combine to strip
10646 clobbers from the pattern on failure. */
10647 pat = pat_without_clobbers;
10648 notes = NULL_RTX;
10650 insn_code_number = -1;
10653 PATTERN (insn) = old_pat;
10654 REG_NOTES (insn) = old_notes;
10655 INSN_CODE (insn) = old_icode;
10658 *pnewpat = pat;
10659 *pnotes = notes;
10661 return insn_code_number;
10664 /* Like gen_lowpart_general but for use by combine. In combine it
10665 is not possible to create any new pseudoregs. However, it is
10666 safe to create invalid memory addresses, because combine will
10667 try to recognize them and all they will do is make the combine
10668 attempt fail.
10670 If for some reason this cannot do its job, an rtx
10671 (clobber (const_int 0)) is returned.
10672 An insn containing that will not be recognized. */
10674 static rtx
10675 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10677 enum machine_mode imode = GET_MODE (x);
10678 unsigned int osize = GET_MODE_SIZE (omode);
10679 unsigned int isize = GET_MODE_SIZE (imode);
10680 rtx result;
10682 if (omode == imode)
10683 return x;
10685 /* We can only support MODE being wider than a word if X is a
10686 constant integer or has a mode the same size. */
10687 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10688 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
10689 goto fail;
10691 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10692 won't know what to do. So we will strip off the SUBREG here and
10693 process normally. */
10694 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10696 x = SUBREG_REG (x);
10698 /* For use in case we fall down into the address adjustments
10699 further below, we need to adjust the known mode and size of
10700 x; imode and isize, since we just adjusted x. */
10701 imode = GET_MODE (x);
10703 if (imode == omode)
10704 return x;
10706 isize = GET_MODE_SIZE (imode);
10709 result = gen_lowpart_common (omode, x);
10711 if (result)
10712 return result;
10714 if (MEM_P (x))
10716 int offset = 0;
10718 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10719 address. */
10720 if (MEM_VOLATILE_P (x)
10721 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
10722 goto fail;
10724 /* If we want to refer to something bigger than the original memref,
10725 generate a paradoxical subreg instead. That will force a reload
10726 of the original memref X. */
10727 if (isize < osize)
10728 return gen_rtx_SUBREG (omode, x, 0);
10730 if (WORDS_BIG_ENDIAN)
10731 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10733 /* Adjust the address so that the address-after-the-data is
10734 unchanged. */
10735 if (BYTES_BIG_ENDIAN)
10736 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10738 return adjust_address_nv (x, omode, offset);
10741 /* If X is a comparison operator, rewrite it in a new mode. This
10742 probably won't match, but may allow further simplifications. */
10743 else if (COMPARISON_P (x))
10744 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10746 /* If we couldn't simplify X any other way, just enclose it in a
10747 SUBREG. Normally, this SUBREG won't match, but some patterns may
10748 include an explicit SUBREG or we may simplify it further in combine. */
10749 else
10751 int offset = 0;
10752 rtx res;
10754 offset = subreg_lowpart_offset (omode, imode);
10755 if (imode == VOIDmode)
10757 imode = int_mode_for_mode (omode);
10758 x = gen_lowpart_common (imode, x);
10759 if (x == NULL)
10760 goto fail;
10762 res = simplify_gen_subreg (omode, x, imode, offset);
10763 if (res)
10764 return res;
10767 fail:
10768 return gen_rtx_CLOBBER (omode, const0_rtx);
10771 /* Try to simplify a comparison between OP0 and a constant OP1,
10772 where CODE is the comparison code that will be tested, into a
10773 (CODE OP0 const0_rtx) form.
10775 The result is a possibly different comparison code to use.
10776 *POP1 may be updated. */
10778 static enum rtx_code
10779 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10781 enum machine_mode mode = GET_MODE (op0);
10782 unsigned int mode_width = GET_MODE_PRECISION (mode);
10783 HOST_WIDE_INT const_op = INTVAL (*pop1);
10785 /* Get the constant we are comparing against and turn off all bits
10786 not on in our mode. */
10787 if (mode != VOIDmode)
10788 const_op = trunc_int_for_mode (const_op, mode);
10790 /* If we are comparing against a constant power of two and the value
10791 being compared can only have that single bit nonzero (e.g., it was
10792 `and'ed with that bit), we can replace this with a comparison
10793 with zero. */
10794 if (const_op
10795 && (code == EQ || code == NE || code == GE || code == GEU
10796 || code == LT || code == LTU)
10797 && mode_width <= HOST_BITS_PER_WIDE_INT
10798 && exact_log2 (const_op) >= 0
10799 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10801 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10802 const_op = 0;
10805 /* Similarly, if we are comparing a value known to be either -1 or
10806 0 with -1, change it to the opposite comparison against zero. */
10807 if (const_op == -1
10808 && (code == EQ || code == NE || code == GT || code == LE
10809 || code == GEU || code == LTU)
10810 && num_sign_bit_copies (op0, mode) == mode_width)
10812 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10813 const_op = 0;
10816 /* Do some canonicalizations based on the comparison code. We prefer
10817 comparisons against zero and then prefer equality comparisons.
10818 If we can reduce the size of a constant, we will do that too. */
10819 switch (code)
10821 case LT:
10822 /* < C is equivalent to <= (C - 1) */
10823 if (const_op > 0)
10825 const_op -= 1;
10826 code = LE;
10827 /* ... fall through to LE case below. */
10829 else
10830 break;
10832 case LE:
10833 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10834 if (const_op < 0)
10836 const_op += 1;
10837 code = LT;
10840 /* If we are doing a <= 0 comparison on a value known to have
10841 a zero sign bit, we can replace this with == 0. */
10842 else if (const_op == 0
10843 && mode_width <= HOST_BITS_PER_WIDE_INT
10844 && (nonzero_bits (op0, mode)
10845 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10846 == 0)
10847 code = EQ;
10848 break;
10850 case GE:
10851 /* >= C is equivalent to > (C - 1). */
10852 if (const_op > 0)
10854 const_op -= 1;
10855 code = GT;
10856 /* ... fall through to GT below. */
10858 else
10859 break;
10861 case GT:
10862 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10863 if (const_op < 0)
10865 const_op += 1;
10866 code = GE;
10869 /* If we are doing a > 0 comparison on a value known to have
10870 a zero sign bit, we can replace this with != 0. */
10871 else if (const_op == 0
10872 && mode_width <= HOST_BITS_PER_WIDE_INT
10873 && (nonzero_bits (op0, mode)
10874 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10875 == 0)
10876 code = NE;
10877 break;
10879 case LTU:
10880 /* < C is equivalent to <= (C - 1). */
10881 if (const_op > 0)
10883 const_op -= 1;
10884 code = LEU;
10885 /* ... fall through ... */
10887 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10888 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10889 && (unsigned HOST_WIDE_INT) const_op
10890 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10892 const_op = 0;
10893 code = GE;
10894 break;
10896 else
10897 break;
10899 case LEU:
10900 /* unsigned <= 0 is equivalent to == 0 */
10901 if (const_op == 0)
10902 code = EQ;
10903 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10904 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10905 && (unsigned HOST_WIDE_INT) const_op
10906 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10908 const_op = 0;
10909 code = GE;
10911 break;
10913 case GEU:
10914 /* >= C is equivalent to > (C - 1). */
10915 if (const_op > 1)
10917 const_op -= 1;
10918 code = GTU;
10919 /* ... fall through ... */
10922 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10923 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10924 && (unsigned HOST_WIDE_INT) const_op
10925 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10927 const_op = 0;
10928 code = LT;
10929 break;
10931 else
10932 break;
10934 case GTU:
10935 /* unsigned > 0 is equivalent to != 0 */
10936 if (const_op == 0)
10937 code = NE;
10938 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10939 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10940 && (unsigned HOST_WIDE_INT) const_op
10941 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10943 const_op = 0;
10944 code = LT;
10946 break;
10948 default:
10949 break;
10952 *pop1 = GEN_INT (const_op);
10953 return code;
10956 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10957 comparison code that will be tested.
10959 The result is a possibly different comparison code to use. *POP0 and
10960 *POP1 may be updated.
10962 It is possible that we might detect that a comparison is either always
10963 true or always false. However, we do not perform general constant
10964 folding in combine, so this knowledge isn't useful. Such tautologies
10965 should have been detected earlier. Hence we ignore all such cases. */
10967 static enum rtx_code
10968 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10970 rtx op0 = *pop0;
10971 rtx op1 = *pop1;
10972 rtx tem, tem1;
10973 int i;
10974 enum machine_mode mode, tmode;
10976 /* Try a few ways of applying the same transformation to both operands. */
10977 while (1)
10979 #ifndef WORD_REGISTER_OPERATIONS
10980 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10981 so check specially. */
10982 if (code != GTU && code != GEU && code != LTU && code != LEU
10983 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10984 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10985 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10986 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10987 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10988 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10989 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10990 && CONST_INT_P (XEXP (op0, 1))
10991 && XEXP (op0, 1) == XEXP (op1, 1)
10992 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10993 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10994 && (INTVAL (XEXP (op0, 1))
10995 == (GET_MODE_PRECISION (GET_MODE (op0))
10996 - (GET_MODE_PRECISION
10997 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10999 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11000 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11002 #endif
11004 /* If both operands are the same constant shift, see if we can ignore the
11005 shift. We can if the shift is a rotate or if the bits shifted out of
11006 this shift are known to be zero for both inputs and if the type of
11007 comparison is compatible with the shift. */
11008 if (GET_CODE (op0) == GET_CODE (op1)
11009 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
11010 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11011 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11012 && (code != GT && code != LT && code != GE && code != LE))
11013 || (GET_CODE (op0) == ASHIFTRT
11014 && (code != GTU && code != LTU
11015 && code != GEU && code != LEU)))
11016 && CONST_INT_P (XEXP (op0, 1))
11017 && INTVAL (XEXP (op0, 1)) >= 0
11018 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11019 && XEXP (op0, 1) == XEXP (op1, 1))
11021 enum machine_mode mode = GET_MODE (op0);
11022 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11023 int shift_count = INTVAL (XEXP (op0, 1));
11025 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11026 mask &= (mask >> shift_count) << shift_count;
11027 else if (GET_CODE (op0) == ASHIFT)
11028 mask = (mask & (mask << shift_count)) >> shift_count;
11030 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11031 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11032 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11033 else
11034 break;
11037 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11038 SUBREGs are of the same mode, and, in both cases, the AND would
11039 be redundant if the comparison was done in the narrower mode,
11040 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11041 and the operand's possibly nonzero bits are 0xffffff01; in that case
11042 if we only care about QImode, we don't need the AND). This case
11043 occurs if the output mode of an scc insn is not SImode and
11044 STORE_FLAG_VALUE == 1 (e.g., the 386).
11046 Similarly, check for a case where the AND's are ZERO_EXTEND
11047 operations from some narrower mode even though a SUBREG is not
11048 present. */
11050 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11051 && CONST_INT_P (XEXP (op0, 1))
11052 && CONST_INT_P (XEXP (op1, 1)))
11054 rtx inner_op0 = XEXP (op0, 0);
11055 rtx inner_op1 = XEXP (op1, 0);
11056 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11057 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11058 int changed = 0;
11060 if (paradoxical_subreg_p (inner_op0)
11061 && GET_CODE (inner_op1) == SUBREG
11062 && (GET_MODE (SUBREG_REG (inner_op0))
11063 == GET_MODE (SUBREG_REG (inner_op1)))
11064 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11065 <= HOST_BITS_PER_WIDE_INT)
11066 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11067 GET_MODE (SUBREG_REG (inner_op0)))))
11068 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11069 GET_MODE (SUBREG_REG (inner_op1))))))
11071 op0 = SUBREG_REG (inner_op0);
11072 op1 = SUBREG_REG (inner_op1);
11074 /* The resulting comparison is always unsigned since we masked
11075 off the original sign bit. */
11076 code = unsigned_condition (code);
11078 changed = 1;
11081 else if (c0 == c1)
11082 for (tmode = GET_CLASS_NARROWEST_MODE
11083 (GET_MODE_CLASS (GET_MODE (op0)));
11084 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11085 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11087 op0 = gen_lowpart (tmode, inner_op0);
11088 op1 = gen_lowpart (tmode, inner_op1);
11089 code = unsigned_condition (code);
11090 changed = 1;
11091 break;
11094 if (! changed)
11095 break;
11098 /* If both operands are NOT, we can strip off the outer operation
11099 and adjust the comparison code for swapped operands; similarly for
11100 NEG, except that this must be an equality comparison. */
11101 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11102 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11103 && (code == EQ || code == NE)))
11104 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11106 else
11107 break;
11110 /* If the first operand is a constant, swap the operands and adjust the
11111 comparison code appropriately, but don't do this if the second operand
11112 is already a constant integer. */
11113 if (swap_commutative_operands_p (op0, op1))
11115 tem = op0, op0 = op1, op1 = tem;
11116 code = swap_condition (code);
11119 /* We now enter a loop during which we will try to simplify the comparison.
11120 For the most part, we only are concerned with comparisons with zero,
11121 but some things may really be comparisons with zero but not start
11122 out looking that way. */
11124 while (CONST_INT_P (op1))
11126 enum machine_mode mode = GET_MODE (op0);
11127 unsigned int mode_width = GET_MODE_PRECISION (mode);
11128 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11129 int equality_comparison_p;
11130 int sign_bit_comparison_p;
11131 int unsigned_comparison_p;
11132 HOST_WIDE_INT const_op;
11134 /* We only want to handle integral modes. This catches VOIDmode,
11135 CCmode, and the floating-point modes. An exception is that we
11136 can handle VOIDmode if OP0 is a COMPARE or a comparison
11137 operation. */
11139 if (GET_MODE_CLASS (mode) != MODE_INT
11140 && ! (mode == VOIDmode
11141 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11142 break;
11144 /* Try to simplify the compare to constant, possibly changing the
11145 comparison op, and/or changing op1 to zero. */
11146 code = simplify_compare_const (code, op0, &op1);
11147 const_op = INTVAL (op1);
11149 /* Compute some predicates to simplify code below. */
11151 equality_comparison_p = (code == EQ || code == NE);
11152 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11153 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11154 || code == GEU);
11156 /* If this is a sign bit comparison and we can do arithmetic in
11157 MODE, say that we will only be needing the sign bit of OP0. */
11158 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11159 op0 = force_to_mode (op0, mode,
11160 (unsigned HOST_WIDE_INT) 1
11161 << (GET_MODE_PRECISION (mode) - 1),
11164 /* Now try cases based on the opcode of OP0. If none of the cases
11165 does a "continue", we exit this loop immediately after the
11166 switch. */
11168 switch (GET_CODE (op0))
11170 case ZERO_EXTRACT:
11171 /* If we are extracting a single bit from a variable position in
11172 a constant that has only a single bit set and are comparing it
11173 with zero, we can convert this into an equality comparison
11174 between the position and the location of the single bit. */
11175 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11176 have already reduced the shift count modulo the word size. */
11177 if (!SHIFT_COUNT_TRUNCATED
11178 && CONST_INT_P (XEXP (op0, 0))
11179 && XEXP (op0, 1) == const1_rtx
11180 && equality_comparison_p && const_op == 0
11181 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11183 if (BITS_BIG_ENDIAN)
11184 i = BITS_PER_WORD - 1 - i;
11186 op0 = XEXP (op0, 2);
11187 op1 = GEN_INT (i);
11188 const_op = i;
11190 /* Result is nonzero iff shift count is equal to I. */
11191 code = reverse_condition (code);
11192 continue;
11195 /* ... fall through ... */
11197 case SIGN_EXTRACT:
11198 tem = expand_compound_operation (op0);
11199 if (tem != op0)
11201 op0 = tem;
11202 continue;
11204 break;
11206 case NOT:
11207 /* If testing for equality, we can take the NOT of the constant. */
11208 if (equality_comparison_p
11209 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11211 op0 = XEXP (op0, 0);
11212 op1 = tem;
11213 continue;
11216 /* If just looking at the sign bit, reverse the sense of the
11217 comparison. */
11218 if (sign_bit_comparison_p)
11220 op0 = XEXP (op0, 0);
11221 code = (code == GE ? LT : GE);
11222 continue;
11224 break;
11226 case NEG:
11227 /* If testing for equality, we can take the NEG of the constant. */
11228 if (equality_comparison_p
11229 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11231 op0 = XEXP (op0, 0);
11232 op1 = tem;
11233 continue;
11236 /* The remaining cases only apply to comparisons with zero. */
11237 if (const_op != 0)
11238 break;
11240 /* When X is ABS or is known positive,
11241 (neg X) is < 0 if and only if X != 0. */
11243 if (sign_bit_comparison_p
11244 && (GET_CODE (XEXP (op0, 0)) == ABS
11245 || (mode_width <= HOST_BITS_PER_WIDE_INT
11246 && (nonzero_bits (XEXP (op0, 0), mode)
11247 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11248 == 0)))
11250 op0 = XEXP (op0, 0);
11251 code = (code == LT ? NE : EQ);
11252 continue;
11255 /* If we have NEG of something whose two high-order bits are the
11256 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11257 if (num_sign_bit_copies (op0, mode) >= 2)
11259 op0 = XEXP (op0, 0);
11260 code = swap_condition (code);
11261 continue;
11263 break;
11265 case ROTATE:
11266 /* If we are testing equality and our count is a constant, we
11267 can perform the inverse operation on our RHS. */
11268 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11269 && (tem = simplify_binary_operation (ROTATERT, mode,
11270 op1, XEXP (op0, 1))) != 0)
11272 op0 = XEXP (op0, 0);
11273 op1 = tem;
11274 continue;
11277 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11278 a particular bit. Convert it to an AND of a constant of that
11279 bit. This will be converted into a ZERO_EXTRACT. */
11280 if (const_op == 0 && sign_bit_comparison_p
11281 && CONST_INT_P (XEXP (op0, 1))
11282 && mode_width <= HOST_BITS_PER_WIDE_INT)
11284 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11285 ((unsigned HOST_WIDE_INT) 1
11286 << (mode_width - 1
11287 - INTVAL (XEXP (op0, 1)))));
11288 code = (code == LT ? NE : EQ);
11289 continue;
11292 /* Fall through. */
11294 case ABS:
11295 /* ABS is ignorable inside an equality comparison with zero. */
11296 if (const_op == 0 && equality_comparison_p)
11298 op0 = XEXP (op0, 0);
11299 continue;
11301 break;
11303 case SIGN_EXTEND:
11304 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11305 (compare FOO CONST) if CONST fits in FOO's mode and we
11306 are either testing inequality or have an unsigned
11307 comparison with ZERO_EXTEND or a signed comparison with
11308 SIGN_EXTEND. But don't do it if we don't have a compare
11309 insn of the given mode, since we'd have to revert it
11310 later on, and then we wouldn't know whether to sign- or
11311 zero-extend. */
11312 mode = GET_MODE (XEXP (op0, 0));
11313 if (GET_MODE_CLASS (mode) == MODE_INT
11314 && ! unsigned_comparison_p
11315 && HWI_COMPUTABLE_MODE_P (mode)
11316 && trunc_int_for_mode (const_op, mode) == const_op
11317 && have_insn_for (COMPARE, mode))
11319 op0 = XEXP (op0, 0);
11320 continue;
11322 break;
11324 case SUBREG:
11325 /* Check for the case where we are comparing A - C1 with C2, that is
11327 (subreg:MODE (plus (A) (-C1))) op (C2)
11329 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11330 comparison in the wider mode. One of the following two conditions
11331 must be true in order for this to be valid:
11333 1. The mode extension results in the same bit pattern being added
11334 on both sides and the comparison is equality or unsigned. As
11335 C2 has been truncated to fit in MODE, the pattern can only be
11336 all 0s or all 1s.
11338 2. The mode extension results in the sign bit being copied on
11339 each side.
11341 The difficulty here is that we have predicates for A but not for
11342 (A - C1) so we need to check that C1 is within proper bounds so
11343 as to perturbate A as little as possible. */
11345 if (mode_width <= HOST_BITS_PER_WIDE_INT
11346 && subreg_lowpart_p (op0)
11347 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11348 && GET_CODE (SUBREG_REG (op0)) == PLUS
11349 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11351 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11352 rtx a = XEXP (SUBREG_REG (op0), 0);
11353 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11355 if ((c1 > 0
11356 && (unsigned HOST_WIDE_INT) c1
11357 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11358 && (equality_comparison_p || unsigned_comparison_p)
11359 /* (A - C1) zero-extends if it is positive and sign-extends
11360 if it is negative, C2 both zero- and sign-extends. */
11361 && ((0 == (nonzero_bits (a, inner_mode)
11362 & ~GET_MODE_MASK (mode))
11363 && const_op >= 0)
11364 /* (A - C1) sign-extends if it is positive and 1-extends
11365 if it is negative, C2 both sign- and 1-extends. */
11366 || (num_sign_bit_copies (a, inner_mode)
11367 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11368 - mode_width)
11369 && const_op < 0)))
11370 || ((unsigned HOST_WIDE_INT) c1
11371 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11372 /* (A - C1) always sign-extends, like C2. */
11373 && num_sign_bit_copies (a, inner_mode)
11374 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11375 - (mode_width - 1))))
11377 op0 = SUBREG_REG (op0);
11378 continue;
11382 /* If the inner mode is narrower and we are extracting the low part,
11383 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11384 if (subreg_lowpart_p (op0)
11385 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11386 /* Fall through */ ;
11387 else
11388 break;
11390 /* ... fall through ... */
11392 case ZERO_EXTEND:
11393 mode = GET_MODE (XEXP (op0, 0));
11394 if (GET_MODE_CLASS (mode) == MODE_INT
11395 && (unsigned_comparison_p || equality_comparison_p)
11396 && HWI_COMPUTABLE_MODE_P (mode)
11397 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11398 && const_op >= 0
11399 && have_insn_for (COMPARE, mode))
11401 op0 = XEXP (op0, 0);
11402 continue;
11404 break;
11406 case PLUS:
11407 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11408 this for equality comparisons due to pathological cases involving
11409 overflows. */
11410 if (equality_comparison_p
11411 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11412 op1, XEXP (op0, 1))))
11414 op0 = XEXP (op0, 0);
11415 op1 = tem;
11416 continue;
11419 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11420 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11421 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11423 op0 = XEXP (XEXP (op0, 0), 0);
11424 code = (code == LT ? EQ : NE);
11425 continue;
11427 break;
11429 case MINUS:
11430 /* We used to optimize signed comparisons against zero, but that
11431 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11432 arrive here as equality comparisons, or (GEU, LTU) are
11433 optimized away. No need to special-case them. */
11435 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11436 (eq B (minus A C)), whichever simplifies. We can only do
11437 this for equality comparisons due to pathological cases involving
11438 overflows. */
11439 if (equality_comparison_p
11440 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11441 XEXP (op0, 1), op1)))
11443 op0 = XEXP (op0, 0);
11444 op1 = tem;
11445 continue;
11448 if (equality_comparison_p
11449 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11450 XEXP (op0, 0), op1)))
11452 op0 = XEXP (op0, 1);
11453 op1 = tem;
11454 continue;
11457 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11458 of bits in X minus 1, is one iff X > 0. */
11459 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11460 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11461 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11462 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11464 op0 = XEXP (op0, 1);
11465 code = (code == GE ? LE : GT);
11466 continue;
11468 break;
11470 case XOR:
11471 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11472 if C is zero or B is a constant. */
11473 if (equality_comparison_p
11474 && 0 != (tem = simplify_binary_operation (XOR, mode,
11475 XEXP (op0, 1), op1)))
11477 op0 = XEXP (op0, 0);
11478 op1 = tem;
11479 continue;
11481 break;
11483 case EQ: case NE:
11484 case UNEQ: case LTGT:
11485 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11486 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11487 case UNORDERED: case ORDERED:
11488 /* We can't do anything if OP0 is a condition code value, rather
11489 than an actual data value. */
11490 if (const_op != 0
11491 || CC0_P (XEXP (op0, 0))
11492 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11493 break;
11495 /* Get the two operands being compared. */
11496 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11497 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11498 else
11499 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11501 /* Check for the cases where we simply want the result of the
11502 earlier test or the opposite of that result. */
11503 if (code == NE || code == EQ
11504 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11505 && (code == LT || code == GE)))
11507 enum rtx_code new_code;
11508 if (code == LT || code == NE)
11509 new_code = GET_CODE (op0);
11510 else
11511 new_code = reversed_comparison_code (op0, NULL);
11513 if (new_code != UNKNOWN)
11515 code = new_code;
11516 op0 = tem;
11517 op1 = tem1;
11518 continue;
11521 break;
11523 case IOR:
11524 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11525 iff X <= 0. */
11526 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11527 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11528 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11530 op0 = XEXP (op0, 1);
11531 code = (code == GE ? GT : LE);
11532 continue;
11534 break;
11536 case AND:
11537 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11538 will be converted to a ZERO_EXTRACT later. */
11539 if (const_op == 0 && equality_comparison_p
11540 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11541 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11543 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11544 XEXP (XEXP (op0, 0), 1));
11545 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11546 continue;
11549 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11550 zero and X is a comparison and C1 and C2 describe only bits set
11551 in STORE_FLAG_VALUE, we can compare with X. */
11552 if (const_op == 0 && equality_comparison_p
11553 && mode_width <= HOST_BITS_PER_WIDE_INT
11554 && CONST_INT_P (XEXP (op0, 1))
11555 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11556 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11557 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11558 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11560 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11561 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11562 if ((~STORE_FLAG_VALUE & mask) == 0
11563 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11564 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11565 && COMPARISON_P (tem))))
11567 op0 = XEXP (XEXP (op0, 0), 0);
11568 continue;
11572 /* If we are doing an equality comparison of an AND of a bit equal
11573 to the sign bit, replace this with a LT or GE comparison of
11574 the underlying value. */
11575 if (equality_comparison_p
11576 && const_op == 0
11577 && CONST_INT_P (XEXP (op0, 1))
11578 && mode_width <= HOST_BITS_PER_WIDE_INT
11579 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11580 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11582 op0 = XEXP (op0, 0);
11583 code = (code == EQ ? GE : LT);
11584 continue;
11587 /* If this AND operation is really a ZERO_EXTEND from a narrower
11588 mode, the constant fits within that mode, and this is either an
11589 equality or unsigned comparison, try to do this comparison in
11590 the narrower mode.
11592 Note that in:
11594 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11595 -> (ne:DI (reg:SI 4) (const_int 0))
11597 unless TRULY_NOOP_TRUNCATION allows it or the register is
11598 known to hold a value of the required mode the
11599 transformation is invalid. */
11600 if ((equality_comparison_p || unsigned_comparison_p)
11601 && CONST_INT_P (XEXP (op0, 1))
11602 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11603 & GET_MODE_MASK (mode))
11604 + 1)) >= 0
11605 && const_op >> i == 0
11606 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11607 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11608 || (REG_P (XEXP (op0, 0))
11609 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11611 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11612 continue;
11615 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11616 fits in both M1 and M2 and the SUBREG is either paradoxical
11617 or represents the low part, permute the SUBREG and the AND
11618 and try again. */
11619 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11621 unsigned HOST_WIDE_INT c1;
11622 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11623 /* Require an integral mode, to avoid creating something like
11624 (AND:SF ...). */
11625 if (SCALAR_INT_MODE_P (tmode)
11626 /* It is unsafe to commute the AND into the SUBREG if the
11627 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11628 not defined. As originally written the upper bits
11629 have a defined value due to the AND operation.
11630 However, if we commute the AND inside the SUBREG then
11631 they no longer have defined values and the meaning of
11632 the code has been changed. */
11633 && (0
11634 #ifdef WORD_REGISTER_OPERATIONS
11635 || (mode_width > GET_MODE_PRECISION (tmode)
11636 && mode_width <= BITS_PER_WORD)
11637 #endif
11638 || (mode_width <= GET_MODE_PRECISION (tmode)
11639 && subreg_lowpart_p (XEXP (op0, 0))))
11640 && CONST_INT_P (XEXP (op0, 1))
11641 && mode_width <= HOST_BITS_PER_WIDE_INT
11642 && HWI_COMPUTABLE_MODE_P (tmode)
11643 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11644 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11645 && c1 != mask
11646 && c1 != GET_MODE_MASK (tmode))
11648 op0 = simplify_gen_binary (AND, tmode,
11649 SUBREG_REG (XEXP (op0, 0)),
11650 gen_int_mode (c1, tmode));
11651 op0 = gen_lowpart (mode, op0);
11652 continue;
11656 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11657 if (const_op == 0 && equality_comparison_p
11658 && XEXP (op0, 1) == const1_rtx
11659 && GET_CODE (XEXP (op0, 0)) == NOT)
11661 op0 = simplify_and_const_int (NULL_RTX, mode,
11662 XEXP (XEXP (op0, 0), 0), 1);
11663 code = (code == NE ? EQ : NE);
11664 continue;
11667 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11668 (eq (and (lshiftrt X) 1) 0).
11669 Also handle the case where (not X) is expressed using xor. */
11670 if (const_op == 0 && equality_comparison_p
11671 && XEXP (op0, 1) == const1_rtx
11672 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11674 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11675 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11677 if (GET_CODE (shift_op) == NOT
11678 || (GET_CODE (shift_op) == XOR
11679 && CONST_INT_P (XEXP (shift_op, 1))
11680 && CONST_INT_P (shift_count)
11681 && HWI_COMPUTABLE_MODE_P (mode)
11682 && (UINTVAL (XEXP (shift_op, 1))
11683 == (unsigned HOST_WIDE_INT) 1
11684 << INTVAL (shift_count))))
11687 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11688 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11689 code = (code == NE ? EQ : NE);
11690 continue;
11693 break;
11695 case ASHIFT:
11696 /* If we have (compare (ashift FOO N) (const_int C)) and
11697 the high order N bits of FOO (N+1 if an inequality comparison)
11698 are known to be zero, we can do this by comparing FOO with C
11699 shifted right N bits so long as the low-order N bits of C are
11700 zero. */
11701 if (CONST_INT_P (XEXP (op0, 1))
11702 && INTVAL (XEXP (op0, 1)) >= 0
11703 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11704 < HOST_BITS_PER_WIDE_INT)
11705 && (((unsigned HOST_WIDE_INT) const_op
11706 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11707 - 1)) == 0)
11708 && mode_width <= HOST_BITS_PER_WIDE_INT
11709 && (nonzero_bits (XEXP (op0, 0), mode)
11710 & ~(mask >> (INTVAL (XEXP (op0, 1))
11711 + ! equality_comparison_p))) == 0)
11713 /* We must perform a logical shift, not an arithmetic one,
11714 as we want the top N bits of C to be zero. */
11715 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11717 temp >>= INTVAL (XEXP (op0, 1));
11718 op1 = gen_int_mode (temp, mode);
11719 op0 = XEXP (op0, 0);
11720 continue;
11723 /* If we are doing a sign bit comparison, it means we are testing
11724 a particular bit. Convert it to the appropriate AND. */
11725 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11726 && mode_width <= HOST_BITS_PER_WIDE_INT)
11728 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11729 ((unsigned HOST_WIDE_INT) 1
11730 << (mode_width - 1
11731 - INTVAL (XEXP (op0, 1)))));
11732 code = (code == LT ? NE : EQ);
11733 continue;
11736 /* If this an equality comparison with zero and we are shifting
11737 the low bit to the sign bit, we can convert this to an AND of the
11738 low-order bit. */
11739 if (const_op == 0 && equality_comparison_p
11740 && CONST_INT_P (XEXP (op0, 1))
11741 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11743 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11744 continue;
11746 break;
11748 case ASHIFTRT:
11749 /* If this is an equality comparison with zero, we can do this
11750 as a logical shift, which might be much simpler. */
11751 if (equality_comparison_p && const_op == 0
11752 && CONST_INT_P (XEXP (op0, 1)))
11754 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11755 XEXP (op0, 0),
11756 INTVAL (XEXP (op0, 1)));
11757 continue;
11760 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11761 do the comparison in a narrower mode. */
11762 if (! unsigned_comparison_p
11763 && CONST_INT_P (XEXP (op0, 1))
11764 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11765 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11766 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11767 MODE_INT, 1)) != BLKmode
11768 && (((unsigned HOST_WIDE_INT) const_op
11769 + (GET_MODE_MASK (tmode) >> 1) + 1)
11770 <= GET_MODE_MASK (tmode)))
11772 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11773 continue;
11776 /* Likewise if OP0 is a PLUS of a sign extension with a
11777 constant, which is usually represented with the PLUS
11778 between the shifts. */
11779 if (! unsigned_comparison_p
11780 && CONST_INT_P (XEXP (op0, 1))
11781 && GET_CODE (XEXP (op0, 0)) == PLUS
11782 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11783 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11784 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11785 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11786 MODE_INT, 1)) != BLKmode
11787 && (((unsigned HOST_WIDE_INT) const_op
11788 + (GET_MODE_MASK (tmode) >> 1) + 1)
11789 <= GET_MODE_MASK (tmode)))
11791 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11792 rtx add_const = XEXP (XEXP (op0, 0), 1);
11793 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11794 add_const, XEXP (op0, 1));
11796 op0 = simplify_gen_binary (PLUS, tmode,
11797 gen_lowpart (tmode, inner),
11798 new_const);
11799 continue;
11802 /* ... fall through ... */
11803 case LSHIFTRT:
11804 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11805 the low order N bits of FOO are known to be zero, we can do this
11806 by comparing FOO with C shifted left N bits so long as no
11807 overflow occurs. Even if the low order N bits of FOO aren't known
11808 to be zero, if the comparison is >= or < we can use the same
11809 optimization and for > or <= by setting all the low
11810 order N bits in the comparison constant. */
11811 if (CONST_INT_P (XEXP (op0, 1))
11812 && INTVAL (XEXP (op0, 1)) > 0
11813 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11814 && mode_width <= HOST_BITS_PER_WIDE_INT
11815 && (((unsigned HOST_WIDE_INT) const_op
11816 + (GET_CODE (op0) != LSHIFTRT
11817 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11818 + 1)
11819 : 0))
11820 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11822 unsigned HOST_WIDE_INT low_bits
11823 = (nonzero_bits (XEXP (op0, 0), mode)
11824 & (((unsigned HOST_WIDE_INT) 1
11825 << INTVAL (XEXP (op0, 1))) - 1));
11826 if (low_bits == 0 || !equality_comparison_p)
11828 /* If the shift was logical, then we must make the condition
11829 unsigned. */
11830 if (GET_CODE (op0) == LSHIFTRT)
11831 code = unsigned_condition (code);
11833 const_op <<= INTVAL (XEXP (op0, 1));
11834 if (low_bits != 0
11835 && (code == GT || code == GTU
11836 || code == LE || code == LEU))
11837 const_op
11838 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11839 op1 = GEN_INT (const_op);
11840 op0 = XEXP (op0, 0);
11841 continue;
11845 /* If we are using this shift to extract just the sign bit, we
11846 can replace this with an LT or GE comparison. */
11847 if (const_op == 0
11848 && (equality_comparison_p || sign_bit_comparison_p)
11849 && CONST_INT_P (XEXP (op0, 1))
11850 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11852 op0 = XEXP (op0, 0);
11853 code = (code == NE || code == GT ? LT : GE);
11854 continue;
11856 break;
11858 default:
11859 break;
11862 break;
11865 /* Now make any compound operations involved in this comparison. Then,
11866 check for an outmost SUBREG on OP0 that is not doing anything or is
11867 paradoxical. The latter transformation must only be performed when
11868 it is known that the "extra" bits will be the same in op0 and op1 or
11869 that they don't matter. There are three cases to consider:
11871 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11872 care bits and we can assume they have any convenient value. So
11873 making the transformation is safe.
11875 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11876 In this case the upper bits of op0 are undefined. We should not make
11877 the simplification in that case as we do not know the contents of
11878 those bits.
11880 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11881 UNKNOWN. In that case we know those bits are zeros or ones. We must
11882 also be sure that they are the same as the upper bits of op1.
11884 We can never remove a SUBREG for a non-equality comparison because
11885 the sign bit is in a different place in the underlying object. */
11887 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11888 op1 = make_compound_operation (op1, SET);
11890 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11891 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11892 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11893 && (code == NE || code == EQ))
11895 if (paradoxical_subreg_p (op0))
11897 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11898 implemented. */
11899 if (REG_P (SUBREG_REG (op0)))
11901 op0 = SUBREG_REG (op0);
11902 op1 = gen_lowpart (GET_MODE (op0), op1);
11905 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11906 <= HOST_BITS_PER_WIDE_INT)
11907 && (nonzero_bits (SUBREG_REG (op0),
11908 GET_MODE (SUBREG_REG (op0)))
11909 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11911 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11913 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11914 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11915 op0 = SUBREG_REG (op0), op1 = tem;
11919 /* We now do the opposite procedure: Some machines don't have compare
11920 insns in all modes. If OP0's mode is an integer mode smaller than a
11921 word and we can't do a compare in that mode, see if there is a larger
11922 mode for which we can do the compare. There are a number of cases in
11923 which we can use the wider mode. */
11925 mode = GET_MODE (op0);
11926 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11927 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11928 && ! have_insn_for (COMPARE, mode))
11929 for (tmode = GET_MODE_WIDER_MODE (mode);
11930 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
11931 tmode = GET_MODE_WIDER_MODE (tmode))
11932 if (have_insn_for (COMPARE, tmode))
11934 int zero_extended;
11936 /* If this is a test for negative, we can make an explicit
11937 test of the sign bit. Test this first so we can use
11938 a paradoxical subreg to extend OP0. */
11940 if (op1 == const0_rtx && (code == LT || code == GE)
11941 && HWI_COMPUTABLE_MODE_P (mode))
11943 op0 = simplify_gen_binary (AND, tmode,
11944 gen_lowpart (tmode, op0),
11945 GEN_INT ((unsigned HOST_WIDE_INT) 1
11946 << (GET_MODE_BITSIZE (mode)
11947 - 1)));
11948 code = (code == LT) ? NE : EQ;
11949 break;
11952 /* If the only nonzero bits in OP0 and OP1 are those in the
11953 narrower mode and this is an equality or unsigned comparison,
11954 we can use the wider mode. Similarly for sign-extended
11955 values, in which case it is true for all comparisons. */
11956 zero_extended = ((code == EQ || code == NE
11957 || code == GEU || code == GTU
11958 || code == LEU || code == LTU)
11959 && (nonzero_bits (op0, tmode)
11960 & ~GET_MODE_MASK (mode)) == 0
11961 && ((CONST_INT_P (op1)
11962 || (nonzero_bits (op1, tmode)
11963 & ~GET_MODE_MASK (mode)) == 0)));
11965 if (zero_extended
11966 || ((num_sign_bit_copies (op0, tmode)
11967 > (unsigned int) (GET_MODE_PRECISION (tmode)
11968 - GET_MODE_PRECISION (mode)))
11969 && (num_sign_bit_copies (op1, tmode)
11970 > (unsigned int) (GET_MODE_PRECISION (tmode)
11971 - GET_MODE_PRECISION (mode)))))
11973 /* If OP0 is an AND and we don't have an AND in MODE either,
11974 make a new AND in the proper mode. */
11975 if (GET_CODE (op0) == AND
11976 && !have_insn_for (AND, mode))
11977 op0 = simplify_gen_binary (AND, tmode,
11978 gen_lowpart (tmode,
11979 XEXP (op0, 0)),
11980 gen_lowpart (tmode,
11981 XEXP (op0, 1)));
11982 else
11984 if (zero_extended)
11986 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11987 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11989 else
11991 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11992 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11994 break;
11999 /* If this machine only supports a subset of valid comparisons, see if we
12000 can convert an unsupported one into a supported one. */
12001 target_canonicalize_comparison (&code, &op0, &op1, 0);
12003 *pop0 = op0;
12004 *pop1 = op1;
12006 return code;
12009 /* Utility function for record_value_for_reg. Count number of
12010 rtxs in X. */
12011 static int
12012 count_rtxs (rtx x)
12014 enum rtx_code code = GET_CODE (x);
12015 const char *fmt;
12016 int i, j, ret = 1;
12018 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12019 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12021 rtx x0 = XEXP (x, 0);
12022 rtx x1 = XEXP (x, 1);
12024 if (x0 == x1)
12025 return 1 + 2 * count_rtxs (x0);
12027 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12028 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12029 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12030 return 2 + 2 * count_rtxs (x0)
12031 + count_rtxs (x == XEXP (x1, 0)
12032 ? XEXP (x1, 1) : XEXP (x1, 0));
12034 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12035 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12036 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12037 return 2 + 2 * count_rtxs (x1)
12038 + count_rtxs (x == XEXP (x0, 0)
12039 ? XEXP (x0, 1) : XEXP (x0, 0));
12042 fmt = GET_RTX_FORMAT (code);
12043 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12044 if (fmt[i] == 'e')
12045 ret += count_rtxs (XEXP (x, i));
12046 else if (fmt[i] == 'E')
12047 for (j = 0; j < XVECLEN (x, i); j++)
12048 ret += count_rtxs (XVECEXP (x, i, j));
12050 return ret;
12053 /* Utility function for following routine. Called when X is part of a value
12054 being stored into last_set_value. Sets last_set_table_tick
12055 for each register mentioned. Similar to mention_regs in cse.c */
12057 static void
12058 update_table_tick (rtx x)
12060 enum rtx_code code = GET_CODE (x);
12061 const char *fmt = GET_RTX_FORMAT (code);
12062 int i, j;
12064 if (code == REG)
12066 unsigned int regno = REGNO (x);
12067 unsigned int endregno = END_REGNO (x);
12068 unsigned int r;
12070 for (r = regno; r < endregno; r++)
12072 reg_stat_type *rsp = &reg_stat[r];
12073 rsp->last_set_table_tick = label_tick;
12076 return;
12079 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12080 if (fmt[i] == 'e')
12082 /* Check for identical subexpressions. If x contains
12083 identical subexpression we only have to traverse one of
12084 them. */
12085 if (i == 0 && ARITHMETIC_P (x))
12087 /* Note that at this point x1 has already been
12088 processed. */
12089 rtx x0 = XEXP (x, 0);
12090 rtx x1 = XEXP (x, 1);
12092 /* If x0 and x1 are identical then there is no need to
12093 process x0. */
12094 if (x0 == x1)
12095 break;
12097 /* If x0 is identical to a subexpression of x1 then while
12098 processing x1, x0 has already been processed. Thus we
12099 are done with x. */
12100 if (ARITHMETIC_P (x1)
12101 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12102 break;
12104 /* If x1 is identical to a subexpression of x0 then we
12105 still have to process the rest of x0. */
12106 if (ARITHMETIC_P (x0)
12107 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12109 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12110 break;
12114 update_table_tick (XEXP (x, i));
12116 else if (fmt[i] == 'E')
12117 for (j = 0; j < XVECLEN (x, i); j++)
12118 update_table_tick (XVECEXP (x, i, j));
12121 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12122 are saying that the register is clobbered and we no longer know its
12123 value. If INSN is zero, don't update reg_stat[].last_set; this is
12124 only permitted with VALUE also zero and is used to invalidate the
12125 register. */
12127 static void
12128 record_value_for_reg (rtx reg, rtx insn, rtx value)
12130 unsigned int regno = REGNO (reg);
12131 unsigned int endregno = END_REGNO (reg);
12132 unsigned int i;
12133 reg_stat_type *rsp;
12135 /* If VALUE contains REG and we have a previous value for REG, substitute
12136 the previous value. */
12137 if (value && insn && reg_overlap_mentioned_p (reg, value))
12139 rtx tem;
12141 /* Set things up so get_last_value is allowed to see anything set up to
12142 our insn. */
12143 subst_low_luid = DF_INSN_LUID (insn);
12144 tem = get_last_value (reg);
12146 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12147 it isn't going to be useful and will take a lot of time to process,
12148 so just use the CLOBBER. */
12150 if (tem)
12152 if (ARITHMETIC_P (tem)
12153 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12154 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12155 tem = XEXP (tem, 0);
12156 else if (count_occurrences (value, reg, 1) >= 2)
12158 /* If there are two or more occurrences of REG in VALUE,
12159 prevent the value from growing too much. */
12160 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12161 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12164 value = replace_rtx (copy_rtx (value), reg, tem);
12168 /* For each register modified, show we don't know its value, that
12169 we don't know about its bitwise content, that its value has been
12170 updated, and that we don't know the location of the death of the
12171 register. */
12172 for (i = regno; i < endregno; i++)
12174 rsp = &reg_stat[i];
12176 if (insn)
12177 rsp->last_set = insn;
12179 rsp->last_set_value = 0;
12180 rsp->last_set_mode = VOIDmode;
12181 rsp->last_set_nonzero_bits = 0;
12182 rsp->last_set_sign_bit_copies = 0;
12183 rsp->last_death = 0;
12184 rsp->truncated_to_mode = VOIDmode;
12187 /* Mark registers that are being referenced in this value. */
12188 if (value)
12189 update_table_tick (value);
12191 /* Now update the status of each register being set.
12192 If someone is using this register in this block, set this register
12193 to invalid since we will get confused between the two lives in this
12194 basic block. This makes using this register always invalid. In cse, we
12195 scan the table to invalidate all entries using this register, but this
12196 is too much work for us. */
12198 for (i = regno; i < endregno; i++)
12200 rsp = &reg_stat[i];
12201 rsp->last_set_label = label_tick;
12202 if (!insn
12203 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12204 rsp->last_set_invalid = 1;
12205 else
12206 rsp->last_set_invalid = 0;
12209 /* The value being assigned might refer to X (like in "x++;"). In that
12210 case, we must replace it with (clobber (const_int 0)) to prevent
12211 infinite loops. */
12212 rsp = &reg_stat[regno];
12213 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12215 value = copy_rtx (value);
12216 if (!get_last_value_validate (&value, insn, label_tick, 1))
12217 value = 0;
12220 /* For the main register being modified, update the value, the mode, the
12221 nonzero bits, and the number of sign bit copies. */
12223 rsp->last_set_value = value;
12225 if (value)
12227 enum machine_mode mode = GET_MODE (reg);
12228 subst_low_luid = DF_INSN_LUID (insn);
12229 rsp->last_set_mode = mode;
12230 if (GET_MODE_CLASS (mode) == MODE_INT
12231 && HWI_COMPUTABLE_MODE_P (mode))
12232 mode = nonzero_bits_mode;
12233 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12234 rsp->last_set_sign_bit_copies
12235 = num_sign_bit_copies (value, GET_MODE (reg));
12239 /* Called via note_stores from record_dead_and_set_regs to handle one
12240 SET or CLOBBER in an insn. DATA is the instruction in which the
12241 set is occurring. */
12243 static void
12244 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12246 rtx record_dead_insn = (rtx) data;
12248 if (GET_CODE (dest) == SUBREG)
12249 dest = SUBREG_REG (dest);
12251 if (!record_dead_insn)
12253 if (REG_P (dest))
12254 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12255 return;
12258 if (REG_P (dest))
12260 /* If we are setting the whole register, we know its value. Otherwise
12261 show that we don't know the value. We can handle SUBREG in
12262 some cases. */
12263 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12264 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12265 else if (GET_CODE (setter) == SET
12266 && GET_CODE (SET_DEST (setter)) == SUBREG
12267 && SUBREG_REG (SET_DEST (setter)) == dest
12268 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12269 && subreg_lowpart_p (SET_DEST (setter)))
12270 record_value_for_reg (dest, record_dead_insn,
12271 gen_lowpart (GET_MODE (dest),
12272 SET_SRC (setter)));
12273 else
12274 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12276 else if (MEM_P (dest)
12277 /* Ignore pushes, they clobber nothing. */
12278 && ! push_operand (dest, GET_MODE (dest)))
12279 mem_last_set = DF_INSN_LUID (record_dead_insn);
12282 /* Update the records of when each REG was most recently set or killed
12283 for the things done by INSN. This is the last thing done in processing
12284 INSN in the combiner loop.
12286 We update reg_stat[], in particular fields last_set, last_set_value,
12287 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12288 last_death, and also the similar information mem_last_set (which insn
12289 most recently modified memory) and last_call_luid (which insn was the
12290 most recent subroutine call). */
12292 static void
12293 record_dead_and_set_regs (rtx insn)
12295 rtx link;
12296 unsigned int i;
12298 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12300 if (REG_NOTE_KIND (link) == REG_DEAD
12301 && REG_P (XEXP (link, 0)))
12303 unsigned int regno = REGNO (XEXP (link, 0));
12304 unsigned int endregno = END_REGNO (XEXP (link, 0));
12306 for (i = regno; i < endregno; i++)
12308 reg_stat_type *rsp;
12310 rsp = &reg_stat[i];
12311 rsp->last_death = insn;
12314 else if (REG_NOTE_KIND (link) == REG_INC)
12315 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12318 if (CALL_P (insn))
12320 hard_reg_set_iterator hrsi;
12321 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12323 reg_stat_type *rsp;
12325 rsp = &reg_stat[i];
12326 rsp->last_set_invalid = 1;
12327 rsp->last_set = insn;
12328 rsp->last_set_value = 0;
12329 rsp->last_set_mode = VOIDmode;
12330 rsp->last_set_nonzero_bits = 0;
12331 rsp->last_set_sign_bit_copies = 0;
12332 rsp->last_death = 0;
12333 rsp->truncated_to_mode = VOIDmode;
12336 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12338 /* We can't combine into a call pattern. Remember, though, that
12339 the return value register is set at this LUID. We could
12340 still replace a register with the return value from the
12341 wrong subroutine call! */
12342 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12344 else
12345 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12348 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12349 register present in the SUBREG, so for each such SUBREG go back and
12350 adjust nonzero and sign bit information of the registers that are
12351 known to have some zero/sign bits set.
12353 This is needed because when combine blows the SUBREGs away, the
12354 information on zero/sign bits is lost and further combines can be
12355 missed because of that. */
12357 static void
12358 record_promoted_value (rtx insn, rtx subreg)
12360 struct insn_link *links;
12361 rtx set;
12362 unsigned int regno = REGNO (SUBREG_REG (subreg));
12363 enum machine_mode mode = GET_MODE (subreg);
12365 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12366 return;
12368 for (links = LOG_LINKS (insn); links;)
12370 reg_stat_type *rsp;
12372 insn = links->insn;
12373 set = single_set (insn);
12375 if (! set || !REG_P (SET_DEST (set))
12376 || REGNO (SET_DEST (set)) != regno
12377 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12379 links = links->next;
12380 continue;
12383 rsp = &reg_stat[regno];
12384 if (rsp->last_set == insn)
12386 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12387 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12390 if (REG_P (SET_SRC (set)))
12392 regno = REGNO (SET_SRC (set));
12393 links = LOG_LINKS (insn);
12395 else
12396 break;
12400 /* Check if X, a register, is known to contain a value already
12401 truncated to MODE. In this case we can use a subreg to refer to
12402 the truncated value even though in the generic case we would need
12403 an explicit truncation. */
12405 static bool
12406 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12408 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12409 enum machine_mode truncated = rsp->truncated_to_mode;
12411 if (truncated == 0
12412 || rsp->truncation_label < label_tick_ebb_start)
12413 return false;
12414 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12415 return true;
12416 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12417 return true;
12418 return false;
12421 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12422 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12423 might be able to turn a truncate into a subreg using this information.
12424 Return -1 if traversing *P is complete or 0 otherwise. */
12426 static int
12427 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12429 rtx x = *p;
12430 enum machine_mode truncated_mode;
12431 reg_stat_type *rsp;
12433 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12435 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12436 truncated_mode = GET_MODE (x);
12438 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12439 return -1;
12441 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12442 return -1;
12444 x = SUBREG_REG (x);
12446 /* ??? For hard-regs we now record everything. We might be able to
12447 optimize this using last_set_mode. */
12448 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12449 truncated_mode = GET_MODE (x);
12450 else
12451 return 0;
12453 rsp = &reg_stat[REGNO (x)];
12454 if (rsp->truncated_to_mode == 0
12455 || rsp->truncation_label < label_tick_ebb_start
12456 || (GET_MODE_SIZE (truncated_mode)
12457 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12459 rsp->truncated_to_mode = truncated_mode;
12460 rsp->truncation_label = label_tick;
12463 return -1;
12466 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12467 the modes they are used in. This can help truning TRUNCATEs into
12468 SUBREGs. */
12470 static void
12471 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12473 for_each_rtx (x, record_truncated_value, NULL);
12476 /* Scan X for promoted SUBREGs. For each one found,
12477 note what it implies to the registers used in it. */
12479 static void
12480 check_promoted_subreg (rtx insn, rtx x)
12482 if (GET_CODE (x) == SUBREG
12483 && SUBREG_PROMOTED_VAR_P (x)
12484 && REG_P (SUBREG_REG (x)))
12485 record_promoted_value (insn, x);
12486 else
12488 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12489 int i, j;
12491 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12492 switch (format[i])
12494 case 'e':
12495 check_promoted_subreg (insn, XEXP (x, i));
12496 break;
12497 case 'V':
12498 case 'E':
12499 if (XVEC (x, i) != 0)
12500 for (j = 0; j < XVECLEN (x, i); j++)
12501 check_promoted_subreg (insn, XVECEXP (x, i, j));
12502 break;
12507 /* Verify that all the registers and memory references mentioned in *LOC are
12508 still valid. *LOC was part of a value set in INSN when label_tick was
12509 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12510 the invalid references with (clobber (const_int 0)) and return 1. This
12511 replacement is useful because we often can get useful information about
12512 the form of a value (e.g., if it was produced by a shift that always
12513 produces -1 or 0) even though we don't know exactly what registers it
12514 was produced from. */
12516 static int
12517 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12519 rtx x = *loc;
12520 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12521 int len = GET_RTX_LENGTH (GET_CODE (x));
12522 int i, j;
12524 if (REG_P (x))
12526 unsigned int regno = REGNO (x);
12527 unsigned int endregno = END_REGNO (x);
12528 unsigned int j;
12530 for (j = regno; j < endregno; j++)
12532 reg_stat_type *rsp = &reg_stat[j];
12533 if (rsp->last_set_invalid
12534 /* If this is a pseudo-register that was only set once and not
12535 live at the beginning of the function, it is always valid. */
12536 || (! (regno >= FIRST_PSEUDO_REGISTER
12537 && REG_N_SETS (regno) == 1
12538 && (!REGNO_REG_SET_P
12539 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12540 && rsp->last_set_label > tick))
12542 if (replace)
12543 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12544 return replace;
12548 return 1;
12550 /* If this is a memory reference, make sure that there were no stores after
12551 it that might have clobbered the value. We don't have alias info, so we
12552 assume any store invalidates it. Moreover, we only have local UIDs, so
12553 we also assume that there were stores in the intervening basic blocks. */
12554 else if (MEM_P (x) && !MEM_READONLY_P (x)
12555 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12557 if (replace)
12558 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12559 return replace;
12562 for (i = 0; i < len; i++)
12564 if (fmt[i] == 'e')
12566 /* Check for identical subexpressions. If x contains
12567 identical subexpression we only have to traverse one of
12568 them. */
12569 if (i == 1 && ARITHMETIC_P (x))
12571 /* Note that at this point x0 has already been checked
12572 and found valid. */
12573 rtx x0 = XEXP (x, 0);
12574 rtx x1 = XEXP (x, 1);
12576 /* If x0 and x1 are identical then x is also valid. */
12577 if (x0 == x1)
12578 return 1;
12580 /* If x1 is identical to a subexpression of x0 then
12581 while checking x0, x1 has already been checked. Thus
12582 it is valid and so as x. */
12583 if (ARITHMETIC_P (x0)
12584 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12585 return 1;
12587 /* If x0 is identical to a subexpression of x1 then x is
12588 valid iff the rest of x1 is valid. */
12589 if (ARITHMETIC_P (x1)
12590 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12591 return
12592 get_last_value_validate (&XEXP (x1,
12593 x0 == XEXP (x1, 0) ? 1 : 0),
12594 insn, tick, replace);
12597 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12598 replace) == 0)
12599 return 0;
12601 else if (fmt[i] == 'E')
12602 for (j = 0; j < XVECLEN (x, i); j++)
12603 if (get_last_value_validate (&XVECEXP (x, i, j),
12604 insn, tick, replace) == 0)
12605 return 0;
12608 /* If we haven't found a reason for it to be invalid, it is valid. */
12609 return 1;
12612 /* Get the last value assigned to X, if known. Some registers
12613 in the value may be replaced with (clobber (const_int 0)) if their value
12614 is known longer known reliably. */
12616 static rtx
12617 get_last_value (const_rtx x)
12619 unsigned int regno;
12620 rtx value;
12621 reg_stat_type *rsp;
12623 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12624 then convert it to the desired mode. If this is a paradoxical SUBREG,
12625 we cannot predict what values the "extra" bits might have. */
12626 if (GET_CODE (x) == SUBREG
12627 && subreg_lowpart_p (x)
12628 && !paradoxical_subreg_p (x)
12629 && (value = get_last_value (SUBREG_REG (x))) != 0)
12630 return gen_lowpart (GET_MODE (x), value);
12632 if (!REG_P (x))
12633 return 0;
12635 regno = REGNO (x);
12636 rsp = &reg_stat[regno];
12637 value = rsp->last_set_value;
12639 /* If we don't have a value, or if it isn't for this basic block and
12640 it's either a hard register, set more than once, or it's a live
12641 at the beginning of the function, return 0.
12643 Because if it's not live at the beginning of the function then the reg
12644 is always set before being used (is never used without being set).
12645 And, if it's set only once, and it's always set before use, then all
12646 uses must have the same last value, even if it's not from this basic
12647 block. */
12649 if (value == 0
12650 || (rsp->last_set_label < label_tick_ebb_start
12651 && (regno < FIRST_PSEUDO_REGISTER
12652 || REG_N_SETS (regno) != 1
12653 || REGNO_REG_SET_P
12654 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12655 return 0;
12657 /* If the value was set in a later insn than the ones we are processing,
12658 we can't use it even if the register was only set once. */
12659 if (rsp->last_set_label == label_tick
12660 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12661 return 0;
12663 /* If the value has all its registers valid, return it. */
12664 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12665 return value;
12667 /* Otherwise, make a copy and replace any invalid register with
12668 (clobber (const_int 0)). If that fails for some reason, return 0. */
12670 value = copy_rtx (value);
12671 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12672 return value;
12674 return 0;
12677 /* Return nonzero if expression X refers to a REG or to memory
12678 that is set in an instruction more recent than FROM_LUID. */
12680 static int
12681 use_crosses_set_p (const_rtx x, int from_luid)
12683 const char *fmt;
12684 int i;
12685 enum rtx_code code = GET_CODE (x);
12687 if (code == REG)
12689 unsigned int regno = REGNO (x);
12690 unsigned endreg = END_REGNO (x);
12692 #ifdef PUSH_ROUNDING
12693 /* Don't allow uses of the stack pointer to be moved,
12694 because we don't know whether the move crosses a push insn. */
12695 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12696 return 1;
12697 #endif
12698 for (; regno < endreg; regno++)
12700 reg_stat_type *rsp = &reg_stat[regno];
12701 if (rsp->last_set
12702 && rsp->last_set_label == label_tick
12703 && DF_INSN_LUID (rsp->last_set) > from_luid)
12704 return 1;
12706 return 0;
12709 if (code == MEM && mem_last_set > from_luid)
12710 return 1;
12712 fmt = GET_RTX_FORMAT (code);
12714 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12716 if (fmt[i] == 'E')
12718 int j;
12719 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12720 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12721 return 1;
12723 else if (fmt[i] == 'e'
12724 && use_crosses_set_p (XEXP (x, i), from_luid))
12725 return 1;
12727 return 0;
12730 /* Define three variables used for communication between the following
12731 routines. */
12733 static unsigned int reg_dead_regno, reg_dead_endregno;
12734 static int reg_dead_flag;
12736 /* Function called via note_stores from reg_dead_at_p.
12738 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12739 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12741 static void
12742 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12744 unsigned int regno, endregno;
12746 if (!REG_P (dest))
12747 return;
12749 regno = REGNO (dest);
12750 endregno = END_REGNO (dest);
12751 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12752 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12755 /* Return nonzero if REG is known to be dead at INSN.
12757 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12758 referencing REG, it is dead. If we hit a SET referencing REG, it is
12759 live. Otherwise, see if it is live or dead at the start of the basic
12760 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12761 must be assumed to be always live. */
12763 static int
12764 reg_dead_at_p (rtx reg, rtx insn)
12766 basic_block block;
12767 unsigned int i;
12769 /* Set variables for reg_dead_at_p_1. */
12770 reg_dead_regno = REGNO (reg);
12771 reg_dead_endregno = END_REGNO (reg);
12773 reg_dead_flag = 0;
12775 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12776 we allow the machine description to decide whether use-and-clobber
12777 patterns are OK. */
12778 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12780 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12781 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12782 return 0;
12785 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12786 beginning of basic block. */
12787 block = BLOCK_FOR_INSN (insn);
12788 for (;;)
12790 if (INSN_P (insn))
12792 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12793 if (reg_dead_flag)
12794 return reg_dead_flag == 1 ? 1 : 0;
12796 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12797 return 1;
12800 if (insn == BB_HEAD (block))
12801 break;
12803 insn = PREV_INSN (insn);
12806 /* Look at live-in sets for the basic block that we were in. */
12807 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12808 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12809 return 0;
12811 return 1;
12814 /* Note hard registers in X that are used. */
12816 static void
12817 mark_used_regs_combine (rtx x)
12819 RTX_CODE code = GET_CODE (x);
12820 unsigned int regno;
12821 int i;
12823 switch (code)
12825 case LABEL_REF:
12826 case SYMBOL_REF:
12827 case CONST:
12828 CASE_CONST_ANY:
12829 case PC:
12830 case ADDR_VEC:
12831 case ADDR_DIFF_VEC:
12832 case ASM_INPUT:
12833 #ifdef HAVE_cc0
12834 /* CC0 must die in the insn after it is set, so we don't need to take
12835 special note of it here. */
12836 case CC0:
12837 #endif
12838 return;
12840 case CLOBBER:
12841 /* If we are clobbering a MEM, mark any hard registers inside the
12842 address as used. */
12843 if (MEM_P (XEXP (x, 0)))
12844 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12845 return;
12847 case REG:
12848 regno = REGNO (x);
12849 /* A hard reg in a wide mode may really be multiple registers.
12850 If so, mark all of them just like the first. */
12851 if (regno < FIRST_PSEUDO_REGISTER)
12853 /* None of this applies to the stack, frame or arg pointers. */
12854 if (regno == STACK_POINTER_REGNUM
12855 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12856 || regno == HARD_FRAME_POINTER_REGNUM
12857 #endif
12858 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12859 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12860 #endif
12861 || regno == FRAME_POINTER_REGNUM)
12862 return;
12864 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12866 return;
12868 case SET:
12870 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12871 the address. */
12872 rtx testreg = SET_DEST (x);
12874 while (GET_CODE (testreg) == SUBREG
12875 || GET_CODE (testreg) == ZERO_EXTRACT
12876 || GET_CODE (testreg) == STRICT_LOW_PART)
12877 testreg = XEXP (testreg, 0);
12879 if (MEM_P (testreg))
12880 mark_used_regs_combine (XEXP (testreg, 0));
12882 mark_used_regs_combine (SET_SRC (x));
12884 return;
12886 default:
12887 break;
12890 /* Recursively scan the operands of this expression. */
12893 const char *fmt = GET_RTX_FORMAT (code);
12895 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12897 if (fmt[i] == 'e')
12898 mark_used_regs_combine (XEXP (x, i));
12899 else if (fmt[i] == 'E')
12901 int j;
12903 for (j = 0; j < XVECLEN (x, i); j++)
12904 mark_used_regs_combine (XVECEXP (x, i, j));
12910 /* Remove register number REGNO from the dead registers list of INSN.
12912 Return the note used to record the death, if there was one. */
12915 remove_death (unsigned int regno, rtx insn)
12917 rtx note = find_regno_note (insn, REG_DEAD, regno);
12919 if (note)
12920 remove_note (insn, note);
12922 return note;
12925 /* For each register (hardware or pseudo) used within expression X, if its
12926 death is in an instruction with luid between FROM_LUID (inclusive) and
12927 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12928 list headed by PNOTES.
12930 That said, don't move registers killed by maybe_kill_insn.
12932 This is done when X is being merged by combination into TO_INSN. These
12933 notes will then be distributed as needed. */
12935 static void
12936 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12937 rtx *pnotes)
12939 const char *fmt;
12940 int len, i;
12941 enum rtx_code code = GET_CODE (x);
12943 if (code == REG)
12945 unsigned int regno = REGNO (x);
12946 rtx where_dead = reg_stat[regno].last_death;
12948 /* Don't move the register if it gets killed in between from and to. */
12949 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12950 && ! reg_referenced_p (x, maybe_kill_insn))
12951 return;
12953 if (where_dead
12954 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12955 && DF_INSN_LUID (where_dead) >= from_luid
12956 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12958 rtx note = remove_death (regno, where_dead);
12960 /* It is possible for the call above to return 0. This can occur
12961 when last_death points to I2 or I1 that we combined with.
12962 In that case make a new note.
12964 We must also check for the case where X is a hard register
12965 and NOTE is a death note for a range of hard registers
12966 including X. In that case, we must put REG_DEAD notes for
12967 the remaining registers in place of NOTE. */
12969 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12970 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12971 > GET_MODE_SIZE (GET_MODE (x))))
12973 unsigned int deadregno = REGNO (XEXP (note, 0));
12974 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12975 unsigned int ourend = END_HARD_REGNO (x);
12976 unsigned int i;
12978 for (i = deadregno; i < deadend; i++)
12979 if (i < regno || i >= ourend)
12980 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12983 /* If we didn't find any note, or if we found a REG_DEAD note that
12984 covers only part of the given reg, and we have a multi-reg hard
12985 register, then to be safe we must check for REG_DEAD notes
12986 for each register other than the first. They could have
12987 their own REG_DEAD notes lying around. */
12988 else if ((note == 0
12989 || (note != 0
12990 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12991 < GET_MODE_SIZE (GET_MODE (x)))))
12992 && regno < FIRST_PSEUDO_REGISTER
12993 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12995 unsigned int ourend = END_HARD_REGNO (x);
12996 unsigned int i, offset;
12997 rtx oldnotes = 0;
12999 if (note)
13000 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13001 else
13002 offset = 1;
13004 for (i = regno + offset; i < ourend; i++)
13005 move_deaths (regno_reg_rtx[i],
13006 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13009 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13011 XEXP (note, 1) = *pnotes;
13012 *pnotes = note;
13014 else
13015 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13018 return;
13021 else if (GET_CODE (x) == SET)
13023 rtx dest = SET_DEST (x);
13025 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13027 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13028 that accesses one word of a multi-word item, some
13029 piece of everything register in the expression is used by
13030 this insn, so remove any old death. */
13031 /* ??? So why do we test for equality of the sizes? */
13033 if (GET_CODE (dest) == ZERO_EXTRACT
13034 || GET_CODE (dest) == STRICT_LOW_PART
13035 || (GET_CODE (dest) == SUBREG
13036 && (((GET_MODE_SIZE (GET_MODE (dest))
13037 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13038 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13039 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13041 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13042 return;
13045 /* If this is some other SUBREG, we know it replaces the entire
13046 value, so use that as the destination. */
13047 if (GET_CODE (dest) == SUBREG)
13048 dest = SUBREG_REG (dest);
13050 /* If this is a MEM, adjust deaths of anything used in the address.
13051 For a REG (the only other possibility), the entire value is
13052 being replaced so the old value is not used in this insn. */
13054 if (MEM_P (dest))
13055 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13056 to_insn, pnotes);
13057 return;
13060 else if (GET_CODE (x) == CLOBBER)
13061 return;
13063 len = GET_RTX_LENGTH (code);
13064 fmt = GET_RTX_FORMAT (code);
13066 for (i = 0; i < len; i++)
13068 if (fmt[i] == 'E')
13070 int j;
13071 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13072 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13073 to_insn, pnotes);
13075 else if (fmt[i] == 'e')
13076 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13080 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13081 pattern of an insn. X must be a REG. */
13083 static int
13084 reg_bitfield_target_p (rtx x, rtx body)
13086 int i;
13088 if (GET_CODE (body) == SET)
13090 rtx dest = SET_DEST (body);
13091 rtx target;
13092 unsigned int regno, tregno, endregno, endtregno;
13094 if (GET_CODE (dest) == ZERO_EXTRACT)
13095 target = XEXP (dest, 0);
13096 else if (GET_CODE (dest) == STRICT_LOW_PART)
13097 target = SUBREG_REG (XEXP (dest, 0));
13098 else
13099 return 0;
13101 if (GET_CODE (target) == SUBREG)
13102 target = SUBREG_REG (target);
13104 if (!REG_P (target))
13105 return 0;
13107 tregno = REGNO (target), regno = REGNO (x);
13108 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13109 return target == x;
13111 endtregno = end_hard_regno (GET_MODE (target), tregno);
13112 endregno = end_hard_regno (GET_MODE (x), regno);
13114 return endregno > tregno && regno < endtregno;
13117 else if (GET_CODE (body) == PARALLEL)
13118 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13119 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13120 return 1;
13122 return 0;
13125 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13126 as appropriate. I3 and I2 are the insns resulting from the combination
13127 insns including FROM (I2 may be zero).
13129 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13130 not need REG_DEAD notes because they are being substituted for. This
13131 saves searching in the most common cases.
13133 Each note in the list is either ignored or placed on some insns, depending
13134 on the type of note. */
13136 static void
13137 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13138 rtx elim_i1, rtx elim_i0)
13140 rtx note, next_note;
13141 rtx tem;
13143 for (note = notes; note; note = next_note)
13145 rtx place = 0, place2 = 0;
13147 next_note = XEXP (note, 1);
13148 switch (REG_NOTE_KIND (note))
13150 case REG_BR_PROB:
13151 case REG_BR_PRED:
13152 /* Doesn't matter much where we put this, as long as it's somewhere.
13153 It is preferable to keep these notes on branches, which is most
13154 likely to be i3. */
13155 place = i3;
13156 break;
13158 case REG_NON_LOCAL_GOTO:
13159 if (JUMP_P (i3))
13160 place = i3;
13161 else
13163 gcc_assert (i2 && JUMP_P (i2));
13164 place = i2;
13166 break;
13168 case REG_EH_REGION:
13169 /* These notes must remain with the call or trapping instruction. */
13170 if (CALL_P (i3))
13171 place = i3;
13172 else if (i2 && CALL_P (i2))
13173 place = i2;
13174 else
13176 gcc_assert (cfun->can_throw_non_call_exceptions);
13177 if (may_trap_p (i3))
13178 place = i3;
13179 else if (i2 && may_trap_p (i2))
13180 place = i2;
13181 /* ??? Otherwise assume we've combined things such that we
13182 can now prove that the instructions can't trap. Drop the
13183 note in this case. */
13185 break;
13187 case REG_ARGS_SIZE:
13188 /* ??? How to distribute between i3-i1. Assume i3 contains the
13189 entire adjustment. Assert i3 contains at least some adjust. */
13190 if (!noop_move_p (i3))
13192 int old_size, args_size = INTVAL (XEXP (note, 0));
13193 /* fixup_args_size_notes looks at REG_NORETURN note,
13194 so ensure the note is placed there first. */
13195 if (CALL_P (i3))
13197 rtx *np;
13198 for (np = &next_note; *np; np = &XEXP (*np, 1))
13199 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13201 rtx n = *np;
13202 *np = XEXP (n, 1);
13203 XEXP (n, 1) = REG_NOTES (i3);
13204 REG_NOTES (i3) = n;
13205 break;
13208 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13209 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13210 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13211 gcc_assert (old_size != args_size
13212 || (CALL_P (i3)
13213 && !ACCUMULATE_OUTGOING_ARGS
13214 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13216 break;
13218 case REG_NORETURN:
13219 case REG_SETJMP:
13220 case REG_TM:
13221 /* These notes must remain with the call. It should not be
13222 possible for both I2 and I3 to be a call. */
13223 if (CALL_P (i3))
13224 place = i3;
13225 else
13227 gcc_assert (i2 && CALL_P (i2));
13228 place = i2;
13230 break;
13232 case REG_UNUSED:
13233 /* Any clobbers for i3 may still exist, and so we must process
13234 REG_UNUSED notes from that insn.
13236 Any clobbers from i2 or i1 can only exist if they were added by
13237 recog_for_combine. In that case, recog_for_combine created the
13238 necessary REG_UNUSED notes. Trying to keep any original
13239 REG_UNUSED notes from these insns can cause incorrect output
13240 if it is for the same register as the original i3 dest.
13241 In that case, we will notice that the register is set in i3,
13242 and then add a REG_UNUSED note for the destination of i3, which
13243 is wrong. However, it is possible to have REG_UNUSED notes from
13244 i2 or i1 for register which were both used and clobbered, so
13245 we keep notes from i2 or i1 if they will turn into REG_DEAD
13246 notes. */
13248 /* If this register is set or clobbered in I3, put the note there
13249 unless there is one already. */
13250 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13252 if (from_insn != i3)
13253 break;
13255 if (! (REG_P (XEXP (note, 0))
13256 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13257 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13258 place = i3;
13260 /* Otherwise, if this register is used by I3, then this register
13261 now dies here, so we must put a REG_DEAD note here unless there
13262 is one already. */
13263 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13264 && ! (REG_P (XEXP (note, 0))
13265 ? find_regno_note (i3, REG_DEAD,
13266 REGNO (XEXP (note, 0)))
13267 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13269 PUT_REG_NOTE_KIND (note, REG_DEAD);
13270 place = i3;
13272 break;
13274 case REG_EQUAL:
13275 case REG_EQUIV:
13276 case REG_NOALIAS:
13277 /* These notes say something about results of an insn. We can
13278 only support them if they used to be on I3 in which case they
13279 remain on I3. Otherwise they are ignored.
13281 If the note refers to an expression that is not a constant, we
13282 must also ignore the note since we cannot tell whether the
13283 equivalence is still true. It might be possible to do
13284 slightly better than this (we only have a problem if I2DEST
13285 or I1DEST is present in the expression), but it doesn't
13286 seem worth the trouble. */
13288 if (from_insn == i3
13289 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13290 place = i3;
13291 break;
13293 case REG_INC:
13294 /* These notes say something about how a register is used. They must
13295 be present on any use of the register in I2 or I3. */
13296 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13297 place = i3;
13299 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13301 if (place)
13302 place2 = i2;
13303 else
13304 place = i2;
13306 break;
13308 case REG_LABEL_TARGET:
13309 case REG_LABEL_OPERAND:
13310 /* This can show up in several ways -- either directly in the
13311 pattern, or hidden off in the constant pool with (or without?)
13312 a REG_EQUAL note. */
13313 /* ??? Ignore the without-reg_equal-note problem for now. */
13314 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13315 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13316 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13317 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13318 place = i3;
13320 if (i2
13321 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13322 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13323 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13324 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13326 if (place)
13327 place2 = i2;
13328 else
13329 place = i2;
13332 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13333 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13334 there. */
13335 if (place && JUMP_P (place)
13336 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13337 && (JUMP_LABEL (place) == NULL
13338 || JUMP_LABEL (place) == XEXP (note, 0)))
13340 rtx label = JUMP_LABEL (place);
13342 if (!label)
13343 JUMP_LABEL (place) = XEXP (note, 0);
13344 else if (LABEL_P (label))
13345 LABEL_NUSES (label)--;
13348 if (place2 && JUMP_P (place2)
13349 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13350 && (JUMP_LABEL (place2) == NULL
13351 || JUMP_LABEL (place2) == XEXP (note, 0)))
13353 rtx label = JUMP_LABEL (place2);
13355 if (!label)
13356 JUMP_LABEL (place2) = XEXP (note, 0);
13357 else if (LABEL_P (label))
13358 LABEL_NUSES (label)--;
13359 place2 = 0;
13361 break;
13363 case REG_NONNEG:
13364 /* This note says something about the value of a register prior
13365 to the execution of an insn. It is too much trouble to see
13366 if the note is still correct in all situations. It is better
13367 to simply delete it. */
13368 break;
13370 case REG_DEAD:
13371 /* If we replaced the right hand side of FROM_INSN with a
13372 REG_EQUAL note, the original use of the dying register
13373 will not have been combined into I3 and I2. In such cases,
13374 FROM_INSN is guaranteed to be the first of the combined
13375 instructions, so we simply need to search back before
13376 FROM_INSN for the previous use or set of this register,
13377 then alter the notes there appropriately.
13379 If the register is used as an input in I3, it dies there.
13380 Similarly for I2, if it is nonzero and adjacent to I3.
13382 If the register is not used as an input in either I3 or I2
13383 and it is not one of the registers we were supposed to eliminate,
13384 there are two possibilities. We might have a non-adjacent I2
13385 or we might have somehow eliminated an additional register
13386 from a computation. For example, we might have had A & B where
13387 we discover that B will always be zero. In this case we will
13388 eliminate the reference to A.
13390 In both cases, we must search to see if we can find a previous
13391 use of A and put the death note there. */
13393 if (from_insn
13394 && from_insn == i2mod
13395 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13396 tem = from_insn;
13397 else
13399 if (from_insn
13400 && CALL_P (from_insn)
13401 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13402 place = from_insn;
13403 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13404 place = i3;
13405 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13406 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13407 place = i2;
13408 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13409 && !(i2mod
13410 && reg_overlap_mentioned_p (XEXP (note, 0),
13411 i2mod_old_rhs)))
13412 || rtx_equal_p (XEXP (note, 0), elim_i1)
13413 || rtx_equal_p (XEXP (note, 0), elim_i0))
13414 break;
13415 tem = i3;
13418 if (place == 0)
13420 basic_block bb = this_basic_block;
13422 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13424 if (!NONDEBUG_INSN_P (tem))
13426 if (tem == BB_HEAD (bb))
13427 break;
13428 continue;
13431 /* If the register is being set at TEM, see if that is all
13432 TEM is doing. If so, delete TEM. Otherwise, make this
13433 into a REG_UNUSED note instead. Don't delete sets to
13434 global register vars. */
13435 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13436 || !global_regs[REGNO (XEXP (note, 0))])
13437 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13439 rtx set = single_set (tem);
13440 rtx inner_dest = 0;
13441 #ifdef HAVE_cc0
13442 rtx cc0_setter = NULL_RTX;
13443 #endif
13445 if (set != 0)
13446 for (inner_dest = SET_DEST (set);
13447 (GET_CODE (inner_dest) == STRICT_LOW_PART
13448 || GET_CODE (inner_dest) == SUBREG
13449 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13450 inner_dest = XEXP (inner_dest, 0))
13453 /* Verify that it was the set, and not a clobber that
13454 modified the register.
13456 CC0 targets must be careful to maintain setter/user
13457 pairs. If we cannot delete the setter due to side
13458 effects, mark the user with an UNUSED note instead
13459 of deleting it. */
13461 if (set != 0 && ! side_effects_p (SET_SRC (set))
13462 && rtx_equal_p (XEXP (note, 0), inner_dest)
13463 #ifdef HAVE_cc0
13464 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13465 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13466 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13467 #endif
13470 /* Move the notes and links of TEM elsewhere.
13471 This might delete other dead insns recursively.
13472 First set the pattern to something that won't use
13473 any register. */
13474 rtx old_notes = REG_NOTES (tem);
13476 PATTERN (tem) = pc_rtx;
13477 REG_NOTES (tem) = NULL;
13479 distribute_notes (old_notes, tem, tem, NULL_RTX,
13480 NULL_RTX, NULL_RTX, NULL_RTX);
13481 distribute_links (LOG_LINKS (tem));
13483 SET_INSN_DELETED (tem);
13484 if (tem == i2)
13485 i2 = NULL_RTX;
13487 #ifdef HAVE_cc0
13488 /* Delete the setter too. */
13489 if (cc0_setter)
13491 PATTERN (cc0_setter) = pc_rtx;
13492 old_notes = REG_NOTES (cc0_setter);
13493 REG_NOTES (cc0_setter) = NULL;
13495 distribute_notes (old_notes, cc0_setter,
13496 cc0_setter, NULL_RTX,
13497 NULL_RTX, NULL_RTX, NULL_RTX);
13498 distribute_links (LOG_LINKS (cc0_setter));
13500 SET_INSN_DELETED (cc0_setter);
13501 if (cc0_setter == i2)
13502 i2 = NULL_RTX;
13504 #endif
13506 else
13508 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13510 /* If there isn't already a REG_UNUSED note, put one
13511 here. Do not place a REG_DEAD note, even if
13512 the register is also used here; that would not
13513 match the algorithm used in lifetime analysis
13514 and can cause the consistency check in the
13515 scheduler to fail. */
13516 if (! find_regno_note (tem, REG_UNUSED,
13517 REGNO (XEXP (note, 0))))
13518 place = tem;
13519 break;
13522 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13523 || (CALL_P (tem)
13524 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13526 place = tem;
13528 /* If we are doing a 3->2 combination, and we have a
13529 register which formerly died in i3 and was not used
13530 by i2, which now no longer dies in i3 and is used in
13531 i2 but does not die in i2, and place is between i2
13532 and i3, then we may need to move a link from place to
13533 i2. */
13534 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13535 && from_insn
13536 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13537 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13539 struct insn_link *links = LOG_LINKS (place);
13540 LOG_LINKS (place) = NULL;
13541 distribute_links (links);
13543 break;
13546 if (tem == BB_HEAD (bb))
13547 break;
13552 /* If the register is set or already dead at PLACE, we needn't do
13553 anything with this note if it is still a REG_DEAD note.
13554 We check here if it is set at all, not if is it totally replaced,
13555 which is what `dead_or_set_p' checks, so also check for it being
13556 set partially. */
13558 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13560 unsigned int regno = REGNO (XEXP (note, 0));
13561 reg_stat_type *rsp = &reg_stat[regno];
13563 if (dead_or_set_p (place, XEXP (note, 0))
13564 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13566 /* Unless the register previously died in PLACE, clear
13567 last_death. [I no longer understand why this is
13568 being done.] */
13569 if (rsp->last_death != place)
13570 rsp->last_death = 0;
13571 place = 0;
13573 else
13574 rsp->last_death = place;
13576 /* If this is a death note for a hard reg that is occupying
13577 multiple registers, ensure that we are still using all
13578 parts of the object. If we find a piece of the object
13579 that is unused, we must arrange for an appropriate REG_DEAD
13580 note to be added for it. However, we can't just emit a USE
13581 and tag the note to it, since the register might actually
13582 be dead; so we recourse, and the recursive call then finds
13583 the previous insn that used this register. */
13585 if (place && regno < FIRST_PSEUDO_REGISTER
13586 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13588 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13589 int all_used = 1;
13590 unsigned int i;
13592 for (i = regno; i < endregno; i++)
13593 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13594 && ! find_regno_fusage (place, USE, i))
13595 || dead_or_set_regno_p (place, i))
13596 all_used = 0;
13598 if (! all_used)
13600 /* Put only REG_DEAD notes for pieces that are
13601 not already dead or set. */
13603 for (i = regno; i < endregno;
13604 i += hard_regno_nregs[i][reg_raw_mode[i]])
13606 rtx piece = regno_reg_rtx[i];
13607 basic_block bb = this_basic_block;
13609 if (! dead_or_set_p (place, piece)
13610 && ! reg_bitfield_target_p (piece,
13611 PATTERN (place)))
13613 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13614 NULL_RTX);
13616 distribute_notes (new_note, place, place,
13617 NULL_RTX, NULL_RTX, NULL_RTX,
13618 NULL_RTX);
13620 else if (! refers_to_regno_p (i, i + 1,
13621 PATTERN (place), 0)
13622 && ! find_regno_fusage (place, USE, i))
13623 for (tem = PREV_INSN (place); ;
13624 tem = PREV_INSN (tem))
13626 if (!NONDEBUG_INSN_P (tem))
13628 if (tem == BB_HEAD (bb))
13629 break;
13630 continue;
13632 if (dead_or_set_p (tem, piece)
13633 || reg_bitfield_target_p (piece,
13634 PATTERN (tem)))
13636 add_reg_note (tem, REG_UNUSED, piece);
13637 break;
13643 place = 0;
13647 break;
13649 default:
13650 /* Any other notes should not be present at this point in the
13651 compilation. */
13652 gcc_unreachable ();
13655 if (place)
13657 XEXP (note, 1) = REG_NOTES (place);
13658 REG_NOTES (place) = note;
13661 if (place2)
13662 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13666 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13667 I3, I2, and I1 to new locations. This is also called to add a link
13668 pointing at I3 when I3's destination is changed. */
13670 static void
13671 distribute_links (struct insn_link *links)
13673 struct insn_link *link, *next_link;
13675 for (link = links; link; link = next_link)
13677 rtx place = 0;
13678 rtx insn;
13679 rtx set, reg;
13681 next_link = link->next;
13683 /* If the insn that this link points to is a NOTE or isn't a single
13684 set, ignore it. In the latter case, it isn't clear what we
13685 can do other than ignore the link, since we can't tell which
13686 register it was for. Such links wouldn't be used by combine
13687 anyway.
13689 It is not possible for the destination of the target of the link to
13690 have been changed by combine. The only potential of this is if we
13691 replace I3, I2, and I1 by I3 and I2. But in that case the
13692 destination of I2 also remains unchanged. */
13694 if (NOTE_P (link->insn)
13695 || (set = single_set (link->insn)) == 0)
13696 continue;
13698 reg = SET_DEST (set);
13699 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13700 || GET_CODE (reg) == STRICT_LOW_PART)
13701 reg = XEXP (reg, 0);
13703 /* A LOG_LINK is defined as being placed on the first insn that uses
13704 a register and points to the insn that sets the register. Start
13705 searching at the next insn after the target of the link and stop
13706 when we reach a set of the register or the end of the basic block.
13708 Note that this correctly handles the link that used to point from
13709 I3 to I2. Also note that not much searching is typically done here
13710 since most links don't point very far away. */
13712 for (insn = NEXT_INSN (link->insn);
13713 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13714 || BB_HEAD (this_basic_block->next_bb) != insn));
13715 insn = NEXT_INSN (insn))
13716 if (DEBUG_INSN_P (insn))
13717 continue;
13718 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13720 if (reg_referenced_p (reg, PATTERN (insn)))
13721 place = insn;
13722 break;
13724 else if (CALL_P (insn)
13725 && find_reg_fusage (insn, USE, reg))
13727 place = insn;
13728 break;
13730 else if (INSN_P (insn) && reg_set_p (reg, insn))
13731 break;
13733 /* If we found a place to put the link, place it there unless there
13734 is already a link to the same insn as LINK at that point. */
13736 if (place)
13738 struct insn_link *link2;
13740 FOR_EACH_LOG_LINK (link2, place)
13741 if (link2->insn == link->insn)
13742 break;
13744 if (link2 == NULL)
13746 link->next = LOG_LINKS (place);
13747 LOG_LINKS (place) = link;
13749 /* Set added_links_insn to the earliest insn we added a
13750 link to. */
13751 if (added_links_insn == 0
13752 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13753 added_links_insn = place;
13759 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13760 Check whether the expression pointer to by LOC is a register or
13761 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13762 Otherwise return zero. */
13764 static int
13765 unmentioned_reg_p_1 (rtx *loc, void *expr)
13767 rtx x = *loc;
13769 if (x != NULL_RTX
13770 && (REG_P (x) || MEM_P (x))
13771 && ! reg_mentioned_p (x, (rtx) expr))
13772 return 1;
13773 return 0;
13776 /* Check for any register or memory mentioned in EQUIV that is not
13777 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13778 of EXPR where some registers may have been replaced by constants. */
13780 static bool
13781 unmentioned_reg_p (rtx equiv, rtx expr)
13783 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13786 DEBUG_FUNCTION void
13787 dump_combine_stats (FILE *file)
13789 fprintf
13790 (file,
13791 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13792 combine_attempts, combine_merges, combine_extras, combine_successes);
13795 void
13796 dump_combine_total_stats (FILE *file)
13798 fprintf
13799 (file,
13800 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13801 total_attempts, total_merges, total_extras, total_successes);
13804 static bool
13805 gate_handle_combine (void)
13807 return (optimize > 0);
13810 /* Try combining insns through substitution. */
13811 static unsigned int
13812 rest_of_handle_combine (void)
13814 int rebuild_jump_labels_after_combine;
13816 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13817 df_note_add_problem ();
13818 df_analyze ();
13820 regstat_init_n_sets_and_refs ();
13822 rebuild_jump_labels_after_combine
13823 = combine_instructions (get_insns (), max_reg_num ());
13825 /* Combining insns may have turned an indirect jump into a
13826 direct jump. Rebuild the JUMP_LABEL fields of jumping
13827 instructions. */
13828 if (rebuild_jump_labels_after_combine)
13830 timevar_push (TV_JUMP);
13831 rebuild_jump_labels (get_insns ());
13832 cleanup_cfg (0);
13833 timevar_pop (TV_JUMP);
13836 regstat_free_n_sets_and_refs ();
13837 return 0;
13840 struct rtl_opt_pass pass_combine =
13843 RTL_PASS,
13844 "combine", /* name */
13845 OPTGROUP_NONE, /* optinfo_flags */
13846 gate_handle_combine, /* gate */
13847 rest_of_handle_combine, /* execute */
13848 NULL, /* sub */
13849 NULL, /* next */
13850 0, /* static_pass_number */
13851 TV_COMBINE, /* tv_id */
13852 PROP_cfglayout, /* properties_required */
13853 0, /* properties_provided */
13854 0, /* properties_destroyed */
13855 0, /* todo_flags_start */
13856 TODO_df_finish | TODO_verify_rtl_sharing |
13857 TODO_ggc_collect, /* todo_flags_finish */