Initial revision
[official-gcc.git] / gcc / flow.c
blob3ca1dcf256f95ea924f97a9839cf8db659a0befe
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 88, 92-96, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler.
23 It computes data flow information
24 which tells combine_instructions which insns to consider combining
25 and controls register allocation.
27 Additional data flow information that is too bulky to record
28 is generated during the analysis, and is used at that time to
29 create autoincrement and autodecrement addressing.
31 The first step is dividing the function into basic blocks.
32 find_basic_blocks does this. Then life_analysis determines
33 where each register is live and where it is dead.
35 ** find_basic_blocks **
37 find_basic_blocks divides the current function's rtl
38 into basic blocks. It records the beginnings and ends of the
39 basic blocks in the vectors basic_block_head and basic_block_end,
40 and the number of blocks in n_basic_blocks.
42 find_basic_blocks also finds any unreachable loops
43 and deletes them.
45 ** life_analysis **
47 life_analysis is called immediately after find_basic_blocks.
48 It uses the basic block information to determine where each
49 hard or pseudo register is live.
51 ** live-register info **
53 The information about where each register is live is in two parts:
54 the REG_NOTES of insns, and the vector basic_block_live_at_start.
56 basic_block_live_at_start has an element for each basic block,
57 and the element is a bit-vector with a bit for each hard or pseudo
58 register. The bit is 1 if the register is live at the beginning
59 of the basic block.
61 Two types of elements can be added to an insn's REG_NOTES.
62 A REG_DEAD note is added to an insn's REG_NOTES for any register
63 that meets both of two conditions: The value in the register is not
64 needed in subsequent insns and the insn does not replace the value in
65 the register (in the case of multi-word hard registers, the value in
66 each register must be replaced by the insn to avoid a REG_DEAD note).
68 In the vast majority of cases, an object in a REG_DEAD note will be
69 used somewhere in the insn. The (rare) exception to this is if an
70 insn uses a multi-word hard register and only some of the registers are
71 needed in subsequent insns. In that case, REG_DEAD notes will be
72 provided for those hard registers that are not subsequently needed.
73 Partial REG_DEAD notes of this type do not occur when an insn sets
74 only some of the hard registers used in such a multi-word operand;
75 omitting REG_DEAD notes for objects stored in an insn is optional and
76 the desire to do so does not justify the complexity of the partial
77 REG_DEAD notes.
79 REG_UNUSED notes are added for each register that is set by the insn
80 but is unused subsequently (if every register set by the insn is unused
81 and the insn does not reference memory or have some other side-effect,
82 the insn is deleted instead). If only part of a multi-word hard
83 register is used in a subsequent insn, REG_UNUSED notes are made for
84 the parts that will not be used.
86 To determine which registers are live after any insn, one can
87 start from the beginning of the basic block and scan insns, noting
88 which registers are set by each insn and which die there.
90 ** Other actions of life_analysis **
92 life_analysis sets up the LOG_LINKS fields of insns because the
93 information needed to do so is readily available.
95 life_analysis deletes insns whose only effect is to store a value
96 that is never used.
98 life_analysis notices cases where a reference to a register as
99 a memory address can be combined with a preceding or following
100 incrementation or decrementation of the register. The separate
101 instruction to increment or decrement is deleted and the address
102 is changed to a POST_INC or similar rtx.
104 Each time an incrementing or decrementing address is created,
105 a REG_INC element is added to the insn's REG_NOTES list.
107 life_analysis fills in certain vectors containing information about
108 register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
109 reg_n_calls_crosses and reg_basic_block. */
111 #include <stdio.h>
112 #include "config.h"
113 #include "rtl.h"
114 #include "basic-block.h"
115 #include "insn-config.h"
116 #include "regs.h"
117 #include "hard-reg-set.h"
118 #include "flags.h"
119 #include "output.h"
120 #include "except.h"
122 #include "obstack.h"
123 #define obstack_chunk_alloc xmalloc
124 #define obstack_chunk_free free
126 /* The contents of the current function definition are allocated
127 in this obstack, and all are freed at the end of the function.
128 For top-level functions, this is temporary_obstack.
129 Separate obstacks are made for nested functions. */
131 extern struct obstack *function_obstack;
133 /* List of labels that must never be deleted. */
134 extern rtx forced_labels;
136 /* Get the basic block number of an insn.
137 This info should not be expected to remain available
138 after the end of life_analysis. */
140 /* This is the limit of the allocated space in the following two arrays. */
142 static int max_uid_for_flow;
144 #define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
146 /* This is where the BLOCK_NUM values are really stored.
147 This is set up by find_basic_blocks and used there and in life_analysis,
148 and then freed. */
150 static int *uid_block_number;
152 /* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
154 #define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
155 static char *uid_volatile;
157 /* Number of basic blocks in the current function. */
159 int n_basic_blocks;
161 /* Maximum register number used in this function, plus one. */
163 int max_regno;
165 /* Maximum number of SCRATCH rtx's used in any basic block of this
166 function. */
168 int max_scratch;
170 /* Number of SCRATCH rtx's in the current block. */
172 static int num_scratch;
174 /* Indexed by n, giving various register information */
176 reg_info *reg_n_info;
178 /* Element N is the next insn that uses (hard or pseudo) register number N
179 within the current basic block; or zero, if there is no such insn.
180 This is valid only during the final backward scan in propagate_block. */
182 static rtx *reg_next_use;
184 /* Size of a regset for the current function,
185 in (1) bytes and (2) elements. */
187 int regset_bytes;
188 int regset_size;
190 /* Element N is first insn in basic block N.
191 This info lasts until we finish compiling the function. */
193 rtx *basic_block_head;
195 /* Element N is last insn in basic block N.
196 This info lasts until we finish compiling the function. */
198 rtx *basic_block_end;
200 /* Element N is a regset describing the registers live
201 at the start of basic block N.
202 This info lasts until we finish compiling the function. */
204 regset *basic_block_live_at_start;
206 /* Regset of regs live when calls to `setjmp'-like functions happen. */
208 regset regs_live_at_setjmp;
210 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
211 that have to go in the same hard reg.
212 The first two regs in the list are a pair, and the next two
213 are another pair, etc. */
214 rtx regs_may_share;
216 /* Element N is nonzero if control can drop into basic block N
217 from the preceding basic block. Freed after life_analysis. */
219 static char *basic_block_drops_in;
221 /* Element N is depth within loops of the last insn in basic block number N.
222 Freed after life_analysis. */
224 static short *basic_block_loop_depth;
226 /* Element N nonzero if basic block N can actually be reached.
227 Vector exists only during find_basic_blocks. */
229 static char *block_live_static;
231 /* Depth within loops of basic block being scanned for lifetime analysis,
232 plus one. This is the weight attached to references to registers. */
234 static int loop_depth;
236 /* During propagate_block, this is non-zero if the value of CC0 is live. */
238 static int cc0_live;
240 /* During propagate_block, this contains the last MEM stored into. It
241 is used to eliminate consecutive stores to the same location. */
243 static rtx last_mem_set;
245 /* Set of registers that may be eliminable. These are handled specially
246 in updating regs_ever_live. */
248 static HARD_REG_SET elim_reg_set;
250 /* Forward declarations */
251 static void find_basic_blocks PROTO((rtx, rtx));
252 static int jmp_uses_reg_or_mem PROTO((rtx));
253 static void mark_label_ref PROTO((rtx, rtx, int));
254 static void life_analysis PROTO((rtx, int));
255 void allocate_for_life_analysis PROTO((void));
256 void init_regset_vector PROTO((regset *, int, struct obstack *));
257 void free_regset_vector PROTO((regset *, int));
258 static void propagate_block PROTO((regset, rtx, rtx, int,
259 regset, int));
260 static rtx flow_delete_insn PROTO((rtx));
261 static int insn_dead_p PROTO((rtx, regset, int));
262 static int libcall_dead_p PROTO((rtx, regset, rtx, rtx));
263 static void mark_set_regs PROTO((regset, regset, rtx,
264 rtx, regset));
265 static void mark_set_1 PROTO((regset, regset, rtx,
266 rtx, regset));
267 static void find_auto_inc PROTO((regset, rtx, rtx));
268 static void mark_used_regs PROTO((regset, regset, rtx, int, rtx));
269 static int try_pre_increment_1 PROTO((rtx));
270 static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT));
271 void dump_flow_info PROTO((FILE *));
273 /* Find basic blocks of the current function and perform data flow analysis.
274 F is the first insn of the function and NREGS the number of register numbers
275 in use. */
277 void
278 flow_analysis (f, nregs, file)
279 rtx f;
280 int nregs;
281 FILE *file;
283 register rtx insn;
284 register int i;
285 rtx nonlocal_label_list = nonlocal_label_rtx_list ();
287 #ifdef ELIMINABLE_REGS
288 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
289 #endif
291 /* Record which registers will be eliminated. We use this in
292 mark_used_regs. */
294 CLEAR_HARD_REG_SET (elim_reg_set);
296 #ifdef ELIMINABLE_REGS
297 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
298 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
299 #else
300 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
301 #endif
303 /* Count the basic blocks. Also find maximum insn uid value used. */
306 register RTX_CODE prev_code = JUMP_INSN;
307 register RTX_CODE code;
309 max_uid_for_flow = 0;
311 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
313 code = GET_CODE (insn);
314 if (INSN_UID (insn) > max_uid_for_flow)
315 max_uid_for_flow = INSN_UID (insn);
316 if (code == CODE_LABEL
317 || (GET_RTX_CLASS (code) == 'i'
318 && (prev_code == JUMP_INSN
319 || (prev_code == CALL_INSN
320 && nonlocal_label_list != 0)
321 || prev_code == BARRIER)))
322 i++;
324 if (code == CALL_INSN && find_reg_note (insn, REG_RETVAL, NULL_RTX))
325 code = INSN;
327 if (code != NOTE)
328 prev_code = code;
332 #ifdef AUTO_INC_DEC
333 /* Leave space for insns we make in some cases for auto-inc. These cases
334 are rare, so we don't need too much space. */
335 max_uid_for_flow += max_uid_for_flow / 10;
336 #endif
338 /* Allocate some tables that last till end of compiling this function
339 and some needed only in find_basic_blocks and life_analysis. */
341 n_basic_blocks = i;
342 basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
343 basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
344 basic_block_drops_in = (char *) alloca (n_basic_blocks);
345 basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
346 uid_block_number
347 = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int));
348 uid_volatile = (char *) alloca (max_uid_for_flow + 1);
349 bzero (uid_volatile, max_uid_for_flow + 1);
351 find_basic_blocks (f, nonlocal_label_list);
352 life_analysis (f, nregs);
353 if (file)
354 dump_flow_info (file);
356 basic_block_drops_in = 0;
357 uid_block_number = 0;
358 basic_block_loop_depth = 0;
361 /* Find all basic blocks of the function whose first insn is F.
362 Store the correct data in the tables that describe the basic blocks,
363 set up the chains of references for each CODE_LABEL, and
364 delete any entire basic blocks that cannot be reached.
366 NONLOCAL_LABEL_LIST is the same local variable from flow_analysis. */
368 static void
369 find_basic_blocks (f, nonlocal_label_list)
370 rtx f, nonlocal_label_list;
372 register rtx insn;
373 register int i;
374 register char *block_live = (char *) alloca (n_basic_blocks);
375 register char *block_marked = (char *) alloca (n_basic_blocks);
376 /* List of label_refs to all labels whose addresses are taken
377 and used as data. */
378 rtx label_value_list;
379 int label_value_list_marked_live;
380 rtx x, note;
381 enum rtx_code prev_code, code;
382 int depth, pass;
384 pass = 1;
385 restart:
387 label_value_list = 0;
388 label_value_list_marked_live = 0;
389 block_live_static = block_live;
390 bzero (block_live, n_basic_blocks);
391 bzero (block_marked, n_basic_blocks);
393 /* Initialize with just block 0 reachable and no blocks marked. */
394 if (n_basic_blocks > 0)
395 block_live[0] = 1;
397 /* Initialize the ref chain of each label to 0. Record where all the
398 blocks start and end and their depth in loops. For each insn, record
399 the block it is in. Also mark as reachable any blocks headed by labels
400 that must not be deleted. */
402 for (insn = f, i = -1, prev_code = JUMP_INSN, depth = 1;
403 insn; insn = NEXT_INSN (insn))
405 code = GET_CODE (insn);
406 if (code == NOTE)
408 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
409 depth++;
410 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
411 depth--;
414 /* A basic block starts at label, or after something that can jump. */
415 else if (code == CODE_LABEL
416 || (GET_RTX_CLASS (code) == 'i'
417 && (prev_code == JUMP_INSN
418 || (prev_code == CALL_INSN
419 && nonlocal_label_list != 0
420 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
421 || prev_code == BARRIER)))
423 basic_block_head[++i] = insn;
424 basic_block_end[i] = insn;
425 basic_block_loop_depth[i] = depth;
427 if (code == CODE_LABEL)
429 LABEL_REFS (insn) = insn;
430 /* Any label that cannot be deleted
431 is considered to start a reachable block. */
432 if (LABEL_PRESERVE_P (insn))
433 block_live[i] = 1;
437 else if (GET_RTX_CLASS (code) == 'i')
439 basic_block_end[i] = insn;
440 basic_block_loop_depth[i] = depth;
443 if (GET_RTX_CLASS (code) == 'i')
445 /* Make a list of all labels referred to other than by jumps. */
446 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
447 if (REG_NOTE_KIND (note) == REG_LABEL)
448 label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
449 label_value_list);
452 BLOCK_NUM (insn) = i;
454 if (code != NOTE)
455 prev_code = code;
458 /* During the second pass, `n_basic_blocks' is only an upper bound.
459 Only perform the sanity check for the first pass, and on the second
460 pass ensure `n_basic_blocks' is set to the correct value. */
461 if (pass == 1 && i + 1 != n_basic_blocks)
462 abort ();
463 n_basic_blocks = i + 1;
465 for (x = forced_labels; x; x = XEXP (x, 1))
466 if (! LABEL_REF_NONLOCAL_P (x))
467 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
469 for (x = exception_handler_labels; x; x = XEXP (x, 1))
470 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
472 /* Record which basic blocks control can drop in to. */
474 for (i = 0; i < n_basic_blocks; i++)
476 for (insn = PREV_INSN (basic_block_head[i]);
477 insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
480 basic_block_drops_in[i] = insn && GET_CODE (insn) != BARRIER;
483 /* Now find which basic blocks can actually be reached
484 and put all jump insns' LABEL_REFS onto the ref-chains
485 of their target labels. */
487 if (n_basic_blocks > 0)
489 int something_marked = 1;
490 int deleted;
492 /* Find all indirect jump insns and mark them as possibly jumping to all
493 the labels whose addresses are explicitly used. This is because,
494 when there are computed gotos, we can't tell which labels they jump
495 to, of all the possibilities.
497 Tablejumps and casesi insns are OK and we can recognize them by
498 a (use (label_ref)). */
500 for (insn = f; insn; insn = NEXT_INSN (insn))
501 if (GET_CODE (insn) == JUMP_INSN)
503 rtx pat = PATTERN (insn);
504 int computed_jump = 0;
506 if (GET_CODE (pat) == PARALLEL)
508 int len = XVECLEN (pat, 0);
509 int has_use_labelref = 0;
511 for (i = len - 1; i >= 0; i--)
512 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
513 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
514 == LABEL_REF))
515 has_use_labelref = 1;
517 if (! has_use_labelref)
518 for (i = len - 1; i >= 0; i--)
519 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
520 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
521 && jmp_uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
522 computed_jump = 1;
524 else if (GET_CODE (pat) == SET
525 && SET_DEST (pat) == pc_rtx
526 && jmp_uses_reg_or_mem (SET_SRC (pat)))
527 computed_jump = 1;
529 if (computed_jump)
531 if (label_value_list_marked_live == 0)
533 label_value_list_marked_live = 1;
535 /* This could be made smarter by only considering
536 these live, if the computed goto is live. */
538 /* Don't delete the labels (in this function) that
539 are referenced by non-jump instructions. */
541 for (x = label_value_list; x; x = XEXP (x, 1))
542 if (! LABEL_REF_NONLOCAL_P (x))
543 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
546 for (x = label_value_list; x; x = XEXP (x, 1))
547 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
548 insn, 0);
550 for (x = forced_labels; x; x = XEXP (x, 1))
551 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
552 insn, 0);
556 /* Find all call insns and mark them as possibly jumping
557 to all the nonlocal goto handler labels. */
559 for (insn = f; insn; insn = NEXT_INSN (insn))
560 if (GET_CODE (insn) == CALL_INSN
561 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
563 for (x = nonlocal_label_list; x; x = XEXP (x, 1))
564 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
565 insn, 0);
567 /* ??? This could be made smarter:
568 in some cases it's possible to tell that certain
569 calls will not do a nonlocal goto.
571 For example, if the nested functions that do the
572 nonlocal gotos do not have their addresses taken, then
573 only calls to those functions or to other nested
574 functions that use them could possibly do nonlocal
575 gotos. */
578 /* All blocks associated with labels in label_value_list are
579 trivially considered as marked live, if the list is empty.
580 We do this to speed up the below code. */
582 if (label_value_list == 0)
583 label_value_list_marked_live = 1;
585 /* Pass over all blocks, marking each block that is reachable
586 and has not yet been marked.
587 Keep doing this until, in one pass, no blocks have been marked.
588 Then blocks_live and blocks_marked are identical and correct.
589 In addition, all jumps actually reachable have been marked. */
591 while (something_marked)
593 something_marked = 0;
594 for (i = 0; i < n_basic_blocks; i++)
595 if (block_live[i] && !block_marked[i])
597 block_marked[i] = 1;
598 something_marked = 1;
599 if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
600 block_live[i + 1] = 1;
601 insn = basic_block_end[i];
602 if (GET_CODE (insn) == JUMP_INSN)
603 mark_label_ref (PATTERN (insn), insn, 0);
605 if (label_value_list_marked_live == 0)
606 /* Now that we know that this block is live, mark as
607 live, all the blocks that we might be able to get
608 to as live. */
610 for (insn = basic_block_head[i];
611 insn != NEXT_INSN (basic_block_end[i]);
612 insn = NEXT_INSN (insn))
614 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
616 for (note = REG_NOTES (insn);
617 note;
618 note = XEXP (note, 1))
619 if (REG_NOTE_KIND (note) == REG_LABEL)
621 x = XEXP (note, 0);
622 block_live[BLOCK_NUM (x)] = 1;
629 /* ??? See if we have a "live" basic block that is not reachable.
630 This can happen if it is headed by a label that is preserved or
631 in one of the label lists, but no call or computed jump is in
632 the loop. It's not clear if we can delete the block or not,
633 but don't for now. However, we will mess up register status if
634 it remains unreachable, so add a fake reachability from the
635 previous block. */
637 for (i = 1; i < n_basic_blocks; i++)
638 if (block_live[i] && ! basic_block_drops_in[i]
639 && GET_CODE (basic_block_head[i]) == CODE_LABEL
640 && LABEL_REFS (basic_block_head[i]) == basic_block_head[i])
641 basic_block_drops_in[i] = 1;
643 /* Now delete the code for any basic blocks that can't be reached.
644 They can occur because jump_optimize does not recognize
645 unreachable loops as unreachable. */
647 deleted = 0;
648 for (i = 0; i < n_basic_blocks; i++)
649 if (!block_live[i])
651 deleted++;
653 /* Delete the insns in a (non-live) block. We physically delete
654 every non-note insn except the start and end (so
655 basic_block_head/end needn't be updated), we turn the latter
656 into NOTE_INSN_DELETED notes.
657 We use to "delete" the insns by turning them into notes, but
658 we may be deleting lots of insns that subsequent passes would
659 otherwise have to process. Secondly, lots of deleted blocks in
660 a row can really slow down propagate_block since it will
661 otherwise process insn-turned-notes multiple times when it
662 looks for loop begin/end notes. */
663 if (basic_block_head[i] != basic_block_end[i])
665 /* It would be quicker to delete all of these with a single
666 unchaining, rather than one at a time, but we need to keep
667 the NOTE's. */
668 insn = NEXT_INSN (basic_block_head[i]);
669 while (insn != basic_block_end[i])
671 if (GET_CODE (insn) == BARRIER)
672 abort ();
673 else if (GET_CODE (insn) != NOTE)
674 insn = flow_delete_insn (insn);
675 else
676 insn = NEXT_INSN (insn);
679 insn = basic_block_head[i];
680 if (GET_CODE (insn) != NOTE)
682 /* Turn the head into a deleted insn note. */
683 if (GET_CODE (insn) == BARRIER)
684 abort ();
685 PUT_CODE (insn, NOTE);
686 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
687 NOTE_SOURCE_FILE (insn) = 0;
689 insn = basic_block_end[i];
690 if (GET_CODE (insn) != NOTE)
692 /* Turn the tail into a deleted insn note. */
693 if (GET_CODE (insn) == BARRIER)
694 abort ();
695 PUT_CODE (insn, NOTE);
696 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
697 NOTE_SOURCE_FILE (insn) = 0;
699 /* BARRIERs are between basic blocks, not part of one.
700 Delete a BARRIER if the preceding jump is deleted.
701 We cannot alter a BARRIER into a NOTE
702 because it is too short; but we can really delete
703 it because it is not part of a basic block. */
704 if (NEXT_INSN (insn) != 0
705 && GET_CODE (NEXT_INSN (insn)) == BARRIER)
706 delete_insn (NEXT_INSN (insn));
708 /* Each time we delete some basic blocks,
709 see if there is a jump around them that is
710 being turned into a no-op. If so, delete it. */
712 if (block_live[i - 1])
714 register int j;
715 for (j = i + 1; j < n_basic_blocks; j++)
716 if (block_live[j])
718 rtx label;
719 insn = basic_block_end[i - 1];
720 if (GET_CODE (insn) == JUMP_INSN
721 /* An unconditional jump is the only possibility
722 we must check for, since a conditional one
723 would make these blocks live. */
724 && simplejump_p (insn)
725 && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
726 && INSN_UID (label) != 0
727 && BLOCK_NUM (label) == j)
729 PUT_CODE (insn, NOTE);
730 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
731 NOTE_SOURCE_FILE (insn) = 0;
732 if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
733 abort ();
734 delete_insn (NEXT_INSN (insn));
736 break;
741 /* There are pathological cases where one function calling hundreds of
742 nested inline functions can generate lots and lots of unreachable
743 blocks that jump can't delete. Since we don't use sparse matrices
744 a lot of memory will be needed to compile such functions.
745 Implementing sparse matrices is a fair bit of work and it is not
746 clear that they win more than they lose (we don't want to
747 unnecessarily slow down compilation of normal code). By making
748 another pass for the pathological case, we can greatly speed up
749 their compilation without hurting normal code. This works because
750 all the insns in the unreachable blocks have either been deleted or
751 turned into notes.
752 Note that we're talking about reducing memory usage by 10's of
753 megabytes and reducing compilation time by several minutes. */
754 /* ??? The choice of when to make another pass is a bit arbitrary,
755 and was derived from empirical data. */
756 if (pass == 1
757 && deleted > 200)
759 pass++;
760 n_basic_blocks -= deleted;
761 /* `n_basic_blocks' may not be correct at this point: two previously
762 separate blocks may now be merged. That's ok though as we
763 recalculate it during the second pass. It certainly can't be
764 any larger than the current value. */
765 goto restart;
770 /* Subroutines of find_basic_blocks. */
772 /* Return 1 if X, the SRC_SRC of SET of (pc) contain a REG or MEM that is
773 not in the constant pool and not in the condition of an IF_THEN_ELSE. */
775 static int
776 jmp_uses_reg_or_mem (x)
777 rtx x;
779 enum rtx_code code = GET_CODE (x);
780 int i, j;
781 char *fmt;
783 switch (code)
785 case CONST:
786 case LABEL_REF:
787 case PC:
788 return 0;
790 case REG:
791 return 1;
793 case MEM:
794 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
795 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
797 case IF_THEN_ELSE:
798 return (jmp_uses_reg_or_mem (XEXP (x, 1))
799 || jmp_uses_reg_or_mem (XEXP (x, 2)));
801 case PLUS: case MINUS: case MULT:
802 return (jmp_uses_reg_or_mem (XEXP (x, 0))
803 || jmp_uses_reg_or_mem (XEXP (x, 1)));
806 fmt = GET_RTX_FORMAT (code);
807 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
809 if (fmt[i] == 'e'
810 && jmp_uses_reg_or_mem (XEXP (x, i)))
811 return 1;
813 if (fmt[i] == 'E')
814 for (j = 0; j < XVECLEN (x, i); j++)
815 if (jmp_uses_reg_or_mem (XVECEXP (x, i, j)))
816 return 1;
819 return 0;
822 /* Check expression X for label references;
823 if one is found, add INSN to the label's chain of references.
825 CHECKDUP means check for and avoid creating duplicate references
826 from the same insn. Such duplicates do no serious harm but
827 can slow life analysis. CHECKDUP is set only when duplicates
828 are likely. */
830 static void
831 mark_label_ref (x, insn, checkdup)
832 rtx x, insn;
833 int checkdup;
835 register RTX_CODE code;
836 register int i;
837 register char *fmt;
839 /* We can be called with NULL when scanning label_value_list. */
840 if (x == 0)
841 return;
843 code = GET_CODE (x);
844 if (code == LABEL_REF)
846 register rtx label = XEXP (x, 0);
847 register rtx y;
848 if (GET_CODE (label) != CODE_LABEL)
849 abort ();
850 /* If the label was never emitted, this insn is junk,
851 but avoid a crash trying to refer to BLOCK_NUM (label).
852 This can happen as a result of a syntax error
853 and a diagnostic has already been printed. */
854 if (INSN_UID (label) == 0)
855 return;
856 CONTAINING_INSN (x) = insn;
857 /* if CHECKDUP is set, check for duplicate ref from same insn
858 and don't insert. */
859 if (checkdup)
860 for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
861 if (CONTAINING_INSN (y) == insn)
862 return;
863 LABEL_NEXTREF (x) = LABEL_REFS (label);
864 LABEL_REFS (label) = x;
865 block_live_static[BLOCK_NUM (label)] = 1;
866 return;
869 fmt = GET_RTX_FORMAT (code);
870 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
872 if (fmt[i] == 'e')
873 mark_label_ref (XEXP (x, i), insn, 0);
874 if (fmt[i] == 'E')
876 register int j;
877 for (j = 0; j < XVECLEN (x, i); j++)
878 mark_label_ref (XVECEXP (x, i, j), insn, 1);
883 /* Delete INSN by patching it out.
884 Return the next insn. */
886 static rtx
887 flow_delete_insn (insn)
888 rtx insn;
890 /* ??? For the moment we assume we don't have to watch for NULLs here
891 since the start/end of basic blocks aren't deleted like this. */
892 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
893 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
894 return NEXT_INSN (insn);
897 /* Determine which registers are live at the start of each
898 basic block of the function whose first insn is F.
899 NREGS is the number of registers used in F.
900 We allocate the vector basic_block_live_at_start
901 and the regsets that it points to, and fill them with the data.
902 regset_size and regset_bytes are also set here. */
904 static void
905 life_analysis (f, nregs)
906 rtx f;
907 int nregs;
909 int first_pass;
910 int changed;
911 /* For each basic block, a bitmask of regs
912 live on exit from the block. */
913 regset *basic_block_live_at_end;
914 /* For each basic block, a bitmask of regs
915 live on entry to a successor-block of this block.
916 If this does not match basic_block_live_at_end,
917 that must be updated, and the block must be rescanned. */
918 regset *basic_block_new_live_at_end;
919 /* For each basic block, a bitmask of regs
920 whose liveness at the end of the basic block
921 can make a difference in which regs are live on entry to the block.
922 These are the regs that are set within the basic block,
923 possibly excluding those that are used after they are set. */
924 regset *basic_block_significant;
925 register int i;
926 rtx insn;
928 struct obstack flow_obstack;
930 gcc_obstack_init (&flow_obstack);
932 max_regno = nregs;
934 bzero (regs_ever_live, sizeof regs_ever_live);
936 /* Allocate and zero out many data structures
937 that will record the data from lifetime analysis. */
939 allocate_for_life_analysis ();
941 reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
942 bzero ((char *) reg_next_use, nregs * sizeof (rtx));
944 /* Set up several regset-vectors used internally within this function.
945 Their meanings are documented above, with their declarations. */
947 basic_block_live_at_end
948 = (regset *) alloca (n_basic_blocks * sizeof (regset));
950 /* Don't use alloca since that leads to a crash rather than an error message
951 if there isn't enough space.
952 Don't use oballoc since we may need to allocate other things during
953 this function on the temporary obstack. */
954 init_regset_vector (basic_block_live_at_end, n_basic_blocks, &flow_obstack);
956 basic_block_new_live_at_end
957 = (regset *) alloca (n_basic_blocks * sizeof (regset));
958 init_regset_vector (basic_block_new_live_at_end, n_basic_blocks,
959 &flow_obstack);
961 basic_block_significant
962 = (regset *) alloca (n_basic_blocks * sizeof (regset));
963 init_regset_vector (basic_block_significant, n_basic_blocks, &flow_obstack);
965 /* Record which insns refer to any volatile memory
966 or for any reason can't be deleted just because they are dead stores.
967 Also, delete any insns that copy a register to itself. */
969 for (insn = f; insn; insn = NEXT_INSN (insn))
971 enum rtx_code code1 = GET_CODE (insn);
972 if (code1 == CALL_INSN)
973 INSN_VOLATILE (insn) = 1;
974 else if (code1 == INSN || code1 == JUMP_INSN)
976 /* Delete (in effect) any obvious no-op moves. */
977 if (GET_CODE (PATTERN (insn)) == SET
978 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
979 && GET_CODE (SET_SRC (PATTERN (insn))) == REG
980 && (REGNO (SET_DEST (PATTERN (insn)))
981 == REGNO (SET_SRC (PATTERN (insn))))
982 /* Insns carrying these notes are useful later on. */
983 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
985 PUT_CODE (insn, NOTE);
986 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
987 NOTE_SOURCE_FILE (insn) = 0;
989 /* Delete (in effect) any obvious no-op moves. */
990 else if (GET_CODE (PATTERN (insn)) == SET
991 && GET_CODE (SET_DEST (PATTERN (insn))) == SUBREG
992 && GET_CODE (SUBREG_REG (SET_DEST (PATTERN (insn)))) == REG
993 && GET_CODE (SET_SRC (PATTERN (insn))) == SUBREG
994 && GET_CODE (SUBREG_REG (SET_SRC (PATTERN (insn)))) == REG
995 && (REGNO (SUBREG_REG (SET_DEST (PATTERN (insn))))
996 == REGNO (SUBREG_REG (SET_SRC (PATTERN (insn)))))
997 && SUBREG_WORD (SET_DEST (PATTERN (insn))) ==
998 SUBREG_WORD (SET_SRC (PATTERN (insn)))
999 /* Insns carrying these notes are useful later on. */
1000 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
1002 PUT_CODE (insn, NOTE);
1003 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1004 NOTE_SOURCE_FILE (insn) = 0;
1006 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1008 /* If nothing but SETs of registers to themselves,
1009 this insn can also be deleted. */
1010 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1012 rtx tem = XVECEXP (PATTERN (insn), 0, i);
1014 if (GET_CODE (tem) == USE
1015 || GET_CODE (tem) == CLOBBER)
1016 continue;
1018 if (GET_CODE (tem) != SET
1019 || GET_CODE (SET_DEST (tem)) != REG
1020 || GET_CODE (SET_SRC (tem)) != REG
1021 || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
1022 break;
1025 if (i == XVECLEN (PATTERN (insn), 0)
1026 /* Insns carrying these notes are useful later on. */
1027 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
1029 PUT_CODE (insn, NOTE);
1030 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1031 NOTE_SOURCE_FILE (insn) = 0;
1033 else
1034 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1036 else if (GET_CODE (PATTERN (insn)) != USE)
1037 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1038 /* A SET that makes space on the stack cannot be dead.
1039 (Such SETs occur only for allocating variable-size data,
1040 so they will always have a PLUS or MINUS according to the
1041 direction of stack growth.)
1042 Even if this function never uses this stack pointer value,
1043 signal handlers do! */
1044 else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
1045 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1046 #ifdef STACK_GROWS_DOWNWARD
1047 && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
1048 #else
1049 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1050 #endif
1051 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
1052 INSN_VOLATILE (insn) = 1;
1056 if (n_basic_blocks > 0)
1057 #ifdef EXIT_IGNORE_STACK
1058 if (! EXIT_IGNORE_STACK
1059 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
1060 #endif
1062 /* If exiting needs the right stack value,
1063 consider the stack pointer live at the end of the function. */
1064 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
1065 STACK_POINTER_REGNUM);
1066 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
1067 STACK_POINTER_REGNUM);
1070 /* Mark the frame pointer is needed at the end of the function. If
1071 we end up eliminating it, it will be removed from the live list
1072 of each basic block by reload. */
1074 if (n_basic_blocks > 0)
1076 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
1077 FRAME_POINTER_REGNUM);
1078 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
1079 FRAME_POINTER_REGNUM);
1080 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1081 /* If they are different, also mark the hard frame pointer as live */
1082 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
1083 HARD_FRAME_POINTER_REGNUM);
1084 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
1085 HARD_FRAME_POINTER_REGNUM);
1086 #endif
1089 /* Mark all global registers and all registers used by the epilogue
1090 as being live at the end of the function since they may be
1091 referenced by our caller. */
1093 if (n_basic_blocks > 0)
1094 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1095 if (global_regs[i]
1096 #ifdef EPILOGUE_USES
1097 || EPILOGUE_USES (i)
1098 #endif
1101 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1], i);
1102 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1], i);
1105 /* Propagate life info through the basic blocks
1106 around the graph of basic blocks.
1108 This is a relaxation process: each time a new register
1109 is live at the end of the basic block, we must scan the block
1110 to determine which registers are, as a consequence, live at the beginning
1111 of that block. These registers must then be marked live at the ends
1112 of all the blocks that can transfer control to that block.
1113 The process continues until it reaches a fixed point. */
1115 first_pass = 1;
1116 changed = 1;
1117 while (changed)
1119 changed = 0;
1120 for (i = n_basic_blocks - 1; i >= 0; i--)
1122 int consider = first_pass;
1123 int must_rescan = first_pass;
1124 register int j;
1126 if (!first_pass)
1128 /* Set CONSIDER if this block needs thinking about at all
1129 (that is, if the regs live now at the end of it
1130 are not the same as were live at the end of it when
1131 we last thought about it).
1132 Set must_rescan if it needs to be thought about
1133 instruction by instruction (that is, if any additional
1134 reg that is live at the end now but was not live there before
1135 is one of the significant regs of this basic block). */
1137 EXECUTE_IF_AND_COMPL_IN_REG_SET
1138 (basic_block_new_live_at_end[i],
1139 basic_block_live_at_end[i], 0, j,
1141 consider = 1;
1142 if (REGNO_REG_SET_P (basic_block_significant[i], j))
1144 must_rescan = 1;
1145 goto done;
1148 done:
1149 if (! consider)
1150 continue;
1153 /* The live_at_start of this block may be changing,
1154 so another pass will be required after this one. */
1155 changed = 1;
1157 if (! must_rescan)
1159 /* No complete rescan needed;
1160 just record those variables newly known live at end
1161 as live at start as well. */
1162 IOR_AND_COMPL_REG_SET (basic_block_live_at_start[i],
1163 basic_block_new_live_at_end[i],
1164 basic_block_live_at_end[i]);
1166 IOR_AND_COMPL_REG_SET (basic_block_live_at_end[i],
1167 basic_block_new_live_at_end[i],
1168 basic_block_live_at_end[i]);
1170 else
1172 /* Update the basic_block_live_at_start
1173 by propagation backwards through the block. */
1174 COPY_REG_SET (basic_block_live_at_end[i],
1175 basic_block_new_live_at_end[i]);
1176 COPY_REG_SET (basic_block_live_at_start[i],
1177 basic_block_live_at_end[i]);
1178 propagate_block (basic_block_live_at_start[i],
1179 basic_block_head[i], basic_block_end[i], 0,
1180 first_pass ? basic_block_significant[i]
1181 : (regset) 0,
1186 register rtx jump, head;
1188 /* Update the basic_block_new_live_at_end's of the block
1189 that falls through into this one (if any). */
1190 head = basic_block_head[i];
1191 if (basic_block_drops_in[i])
1192 IOR_REG_SET (basic_block_new_live_at_end[i-1],
1193 basic_block_live_at_start[i]);
1195 /* Update the basic_block_new_live_at_end's of
1196 all the blocks that jump to this one. */
1197 if (GET_CODE (head) == CODE_LABEL)
1198 for (jump = LABEL_REFS (head);
1199 jump != head;
1200 jump = LABEL_NEXTREF (jump))
1202 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
1203 IOR_REG_SET (basic_block_new_live_at_end[from_block],
1204 basic_block_live_at_start[i]);
1207 #ifdef USE_C_ALLOCA
1208 alloca (0);
1209 #endif
1211 first_pass = 0;
1214 /* The only pseudos that are live at the beginning of the function are
1215 those that were not set anywhere in the function. local-alloc doesn't
1216 know how to handle these correctly, so mark them as not local to any
1217 one basic block. */
1219 if (n_basic_blocks > 0)
1220 EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[0],
1221 FIRST_PSEUDO_REGISTER, i,
1223 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
1226 /* Now the life information is accurate.
1227 Make one more pass over each basic block
1228 to delete dead stores, create autoincrement addressing
1229 and record how many times each register is used, is set, or dies.
1231 To save time, we operate directly in basic_block_live_at_end[i],
1232 thus destroying it (in fact, converting it into a copy of
1233 basic_block_live_at_start[i]). This is ok now because
1234 basic_block_live_at_end[i] is no longer used past this point. */
1236 max_scratch = 0;
1238 for (i = 0; i < n_basic_blocks; i++)
1240 propagate_block (basic_block_live_at_end[i],
1241 basic_block_head[i], basic_block_end[i], 1,
1242 (regset) 0, i);
1243 #ifdef USE_C_ALLOCA
1244 alloca (0);
1245 #endif
1248 #if 0
1249 /* Something live during a setjmp should not be put in a register
1250 on certain machines which restore regs from stack frames
1251 rather than from the jmpbuf.
1252 But we don't need to do this for the user's variables, since
1253 ANSI says only volatile variables need this. */
1254 #ifdef LONGJMP_RESTORE_FROM_STACK
1255 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
1256 FIRST_PSEUDO_REGISTER, i,
1258 if (regno_reg_rtx[i] != 0
1259 && ! REG_USERVAR_P (regno_reg_rtx[i]))
1261 REG_LIVE_LENGTH (i) = -1;
1262 REG_BASIC_BLOCK (i) = -1;
1265 #endif
1266 #endif
1268 /* We have a problem with any pseudoreg that
1269 lives across the setjmp. ANSI says that if a
1270 user variable does not change in value
1271 between the setjmp and the longjmp, then the longjmp preserves it.
1272 This includes longjmp from a place where the pseudo appears dead.
1273 (In principle, the value still exists if it is in scope.)
1274 If the pseudo goes in a hard reg, some other value may occupy
1275 that hard reg where this pseudo is dead, thus clobbering the pseudo.
1276 Conclusion: such a pseudo must not go in a hard reg. */
1277 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
1278 FIRST_PSEUDO_REGISTER, i,
1280 if (regno_reg_rtx[i] != 0)
1282 REG_LIVE_LENGTH (i) = -1;
1283 REG_BASIC_BLOCK (i) = -1;
1288 free_regset_vector (basic_block_live_at_end, n_basic_blocks);
1289 free_regset_vector (basic_block_new_live_at_end, n_basic_blocks);
1290 free_regset_vector (basic_block_significant, n_basic_blocks);
1291 basic_block_live_at_end = (regset *)0;
1292 basic_block_new_live_at_end = (regset *)0;
1293 basic_block_significant = (regset *)0;
1295 obstack_free (&flow_obstack, NULL_PTR);
1298 /* Subroutines of life analysis. */
1300 /* Allocate the permanent data structures that represent the results
1301 of life analysis. Not static since used also for stupid life analysis. */
1303 void
1304 allocate_for_life_analysis ()
1306 register int i;
1308 /* Recalculate the register space, in case it has grown. Old style
1309 vector oriented regsets would set regset_{size,bytes} here also. */
1310 allocate_reg_info (max_regno, FALSE, FALSE);
1312 /* Because both reg_scan and flow_analysis want to set up the REG_N_SETS
1313 information, explicitly reset it here. The allocation should have
1314 already happened on the previous reg_scan pass. Make sure in case
1315 some more registers were allocated. */
1316 for (i = 0; i < max_regno; i++)
1317 REG_N_SETS (i) = 0;
1319 basic_block_live_at_start
1320 = (regset *) oballoc (n_basic_blocks * sizeof (regset));
1321 init_regset_vector (basic_block_live_at_start, n_basic_blocks,
1322 function_obstack);
1324 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (function_obstack);
1325 CLEAR_REG_SET (regs_live_at_setjmp);
1328 /* Make each element of VECTOR point at a regset. The vector has
1329 NELTS elements, and space is allocated from the ALLOC_OBSTACK
1330 obstack. */
1332 void
1333 init_regset_vector (vector, nelts, alloc_obstack)
1334 regset *vector;
1335 int nelts;
1336 struct obstack *alloc_obstack;
1338 register int i;
1340 for (i = 0; i < nelts; i++)
1342 vector[i] = OBSTACK_ALLOC_REG_SET (alloc_obstack);
1343 CLEAR_REG_SET (vector[i]);
1347 /* Release any additional space allocated for each element of VECTOR point
1348 other than the regset header itself. The vector has NELTS elements. */
1350 void
1351 free_regset_vector (vector, nelts)
1352 regset *vector;
1353 int nelts;
1355 register int i;
1357 for (i = 0; i < nelts; i++)
1358 FREE_REG_SET (vector[i]);
1361 /* Compute the registers live at the beginning of a basic block
1362 from those live at the end.
1364 When called, OLD contains those live at the end.
1365 On return, it contains those live at the beginning.
1366 FIRST and LAST are the first and last insns of the basic block.
1368 FINAL is nonzero if we are doing the final pass which is not
1369 for computing the life info (since that has already been done)
1370 but for acting on it. On this pass, we delete dead stores,
1371 set up the logical links and dead-variables lists of instructions,
1372 and merge instructions for autoincrement and autodecrement addresses.
1374 SIGNIFICANT is nonzero only the first time for each basic block.
1375 If it is nonzero, it points to a regset in which we store
1376 a 1 for each register that is set within the block.
1378 BNUM is the number of the basic block. */
1380 static void
1381 propagate_block (old, first, last, final, significant, bnum)
1382 register regset old;
1383 rtx first;
1384 rtx last;
1385 int final;
1386 regset significant;
1387 int bnum;
1389 register rtx insn;
1390 rtx prev;
1391 regset live;
1392 regset dead;
1394 /* The following variables are used only if FINAL is nonzero. */
1395 /* This vector gets one element for each reg that has been live
1396 at any point in the basic block that has been scanned so far.
1397 SOMETIMES_MAX says how many elements are in use so far. */
1398 register int *regs_sometimes_live;
1399 int sometimes_max = 0;
1400 /* This regset has 1 for each reg that we have seen live so far.
1401 It and REGS_SOMETIMES_LIVE are updated together. */
1402 regset maxlive;
1404 /* The loop depth may change in the middle of a basic block. Since we
1405 scan from end to beginning, we start with the depth at the end of the
1406 current basic block, and adjust as we pass ends and starts of loops. */
1407 loop_depth = basic_block_loop_depth[bnum];
1409 dead = ALLOCA_REG_SET ();
1410 live = ALLOCA_REG_SET ();
1412 cc0_live = 0;
1413 last_mem_set = 0;
1415 /* Include any notes at the end of the block in the scan.
1416 This is in case the block ends with a call to setjmp. */
1418 while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
1420 /* Look for loop boundaries, we are going forward here. */
1421 last = NEXT_INSN (last);
1422 if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
1423 loop_depth++;
1424 else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
1425 loop_depth--;
1428 if (final)
1430 register int i;
1432 num_scratch = 0;
1433 maxlive = ALLOCA_REG_SET ();
1434 COPY_REG_SET (maxlive, old);
1435 regs_sometimes_live = (int *) alloca (max_regno * sizeof (int));
1437 /* Process the regs live at the end of the block.
1438 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
1439 Also mark them as not local to any one basic block. */
1440 EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
1442 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
1443 regs_sometimes_live[sometimes_max] = i;
1444 sometimes_max++;
1448 /* Scan the block an insn at a time from end to beginning. */
1450 for (insn = last; ; insn = prev)
1452 prev = PREV_INSN (insn);
1454 if (GET_CODE (insn) == NOTE)
1456 /* Look for loop boundaries, remembering that we are going
1457 backwards. */
1458 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1459 loop_depth++;
1460 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1461 loop_depth--;
1463 /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
1464 Abort now rather than setting register status incorrectly. */
1465 if (loop_depth == 0)
1466 abort ();
1468 /* If this is a call to `setjmp' et al,
1469 warn if any non-volatile datum is live. */
1471 if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
1472 IOR_REG_SET (regs_live_at_setjmp, old);
1475 /* Update the life-status of regs for this insn.
1476 First DEAD gets which regs are set in this insn
1477 then LIVE gets which regs are used in this insn.
1478 Then the regs live before the insn
1479 are those live after, with DEAD regs turned off,
1480 and then LIVE regs turned on. */
1482 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1484 register int i;
1485 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1486 int insn_is_dead
1487 = (insn_dead_p (PATTERN (insn), old, 0)
1488 /* Don't delete something that refers to volatile storage! */
1489 && ! INSN_VOLATILE (insn));
1490 int libcall_is_dead
1491 = (insn_is_dead && note != 0
1492 && libcall_dead_p (PATTERN (insn), old, note, insn));
1494 /* If an instruction consists of just dead store(s) on final pass,
1495 "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
1496 We could really delete it with delete_insn, but that
1497 can cause trouble for first or last insn in a basic block. */
1498 if (final && insn_is_dead)
1500 PUT_CODE (insn, NOTE);
1501 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1502 NOTE_SOURCE_FILE (insn) = 0;
1504 /* CC0 is now known to be dead. Either this insn used it,
1505 in which case it doesn't anymore, or clobbered it,
1506 so the next insn can't use it. */
1507 cc0_live = 0;
1509 /* If this insn is copying the return value from a library call,
1510 delete the entire library call. */
1511 if (libcall_is_dead)
1513 rtx first = XEXP (note, 0);
1514 rtx p = insn;
1515 while (INSN_DELETED_P (first))
1516 first = NEXT_INSN (first);
1517 while (p != first)
1519 p = PREV_INSN (p);
1520 PUT_CODE (p, NOTE);
1521 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
1522 NOTE_SOURCE_FILE (p) = 0;
1525 goto flushed;
1528 CLEAR_REG_SET (dead);
1529 CLEAR_REG_SET (live);
1531 /* See if this is an increment or decrement that can be
1532 merged into a following memory address. */
1533 #ifdef AUTO_INC_DEC
1535 register rtx x = PATTERN (insn);
1536 /* Does this instruction increment or decrement a register? */
1537 if (final && GET_CODE (x) == SET
1538 && GET_CODE (SET_DEST (x)) == REG
1539 && (GET_CODE (SET_SRC (x)) == PLUS
1540 || GET_CODE (SET_SRC (x)) == MINUS)
1541 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1542 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1543 /* Ok, look for a following memory ref we can combine with.
1544 If one is found, change the memory ref to a PRE_INC
1545 or PRE_DEC, cancel this insn, and return 1.
1546 Return 0 if nothing has been done. */
1547 && try_pre_increment_1 (insn))
1548 goto flushed;
1550 #endif /* AUTO_INC_DEC */
1552 /* If this is not the final pass, and this insn is copying the
1553 value of a library call and it's dead, don't scan the
1554 insns that perform the library call, so that the call's
1555 arguments are not marked live. */
1556 if (libcall_is_dead)
1558 /* Mark the dest reg as `significant'. */
1559 mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
1561 insn = XEXP (note, 0);
1562 prev = PREV_INSN (insn);
1564 else if (GET_CODE (PATTERN (insn)) == SET
1565 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1566 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1567 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1568 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1569 /* We have an insn to pop a constant amount off the stack.
1570 (Such insns use PLUS regardless of the direction of the stack,
1571 and any insn to adjust the stack by a constant is always a pop.)
1572 These insns, if not dead stores, have no effect on life. */
1574 else
1576 /* LIVE gets the regs used in INSN;
1577 DEAD gets those set by it. Dead insns don't make anything
1578 live. */
1580 mark_set_regs (old, dead, PATTERN (insn),
1581 final ? insn : NULL_RTX, significant);
1583 /* If an insn doesn't use CC0, it becomes dead since we
1584 assume that every insn clobbers it. So show it dead here;
1585 mark_used_regs will set it live if it is referenced. */
1586 cc0_live = 0;
1588 if (! insn_is_dead)
1589 mark_used_regs (old, live, PATTERN (insn), final, insn);
1591 /* Sometimes we may have inserted something before INSN (such as
1592 a move) when we make an auto-inc. So ensure we will scan
1593 those insns. */
1594 #ifdef AUTO_INC_DEC
1595 prev = PREV_INSN (insn);
1596 #endif
1598 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1600 register int i;
1602 rtx note;
1604 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1605 note;
1606 note = XEXP (note, 1))
1607 if (GET_CODE (XEXP (note, 0)) == USE)
1608 mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
1609 final, insn);
1611 /* Each call clobbers all call-clobbered regs that are not
1612 global or fixed. Note that the function-value reg is a
1613 call-clobbered reg, and mark_set_regs has already had
1614 a chance to handle it. */
1616 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1617 if (call_used_regs[i] && ! global_regs[i]
1618 && ! fixed_regs[i])
1619 SET_REGNO_REG_SET (dead, i);
1621 /* The stack ptr is used (honorarily) by a CALL insn. */
1622 SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
1624 /* Calls may also reference any of the global registers,
1625 so they are made live. */
1626 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1627 if (global_regs[i])
1628 mark_used_regs (old, live,
1629 gen_rtx (REG, reg_raw_mode[i], i),
1630 final, insn);
1632 /* Calls also clobber memory. */
1633 last_mem_set = 0;
1636 /* Update OLD for the registers used or set. */
1637 AND_COMPL_REG_SET (old, dead);
1638 IOR_REG_SET (old, live);
1640 if (GET_CODE (insn) == CALL_INSN && final)
1642 /* Any regs live at the time of a call instruction
1643 must not go in a register clobbered by calls.
1644 Find all regs now live and record this for them. */
1646 register int *p = regs_sometimes_live;
1648 for (i = 0; i < sometimes_max; i++, p++)
1649 if (REGNO_REG_SET_P (old, *p))
1650 REG_N_CALLS_CROSSED (*p)++;
1654 /* On final pass, add any additional sometimes-live regs
1655 into MAXLIVE and REGS_SOMETIMES_LIVE.
1656 Also update counts of how many insns each reg is live at. */
1658 if (final)
1660 register int regno;
1661 register int *p;
1663 EXECUTE_IF_AND_COMPL_IN_REG_SET
1664 (live, maxlive, 0, regno,
1666 regs_sometimes_live[sometimes_max++] = regno;
1667 SET_REGNO_REG_SET (maxlive, regno);
1670 p = regs_sometimes_live;
1671 for (i = 0; i < sometimes_max; i++)
1673 regno = *p++;
1674 if (REGNO_REG_SET_P (old, regno))
1675 REG_LIVE_LENGTH (regno)++;
1679 flushed: ;
1680 if (insn == first)
1681 break;
1684 FREE_REG_SET (dead);
1685 FREE_REG_SET (live);
1686 if (final)
1687 FREE_REG_SET (maxlive);
1689 if (num_scratch > max_scratch)
1690 max_scratch = num_scratch;
1693 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
1694 (SET expressions whose destinations are registers dead after the insn).
1695 NEEDED is the regset that says which regs are alive after the insn.
1697 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. */
1699 static int
1700 insn_dead_p (x, needed, call_ok)
1701 rtx x;
1702 regset needed;
1703 int call_ok;
1705 register RTX_CODE code = GET_CODE (x);
1706 /* If setting something that's a reg or part of one,
1707 see if that register's altered value will be live. */
1709 if (code == SET)
1711 register rtx r = SET_DEST (x);
1712 /* A SET that is a subroutine call cannot be dead. */
1713 if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
1714 return 0;
1716 #ifdef HAVE_cc0
1717 if (GET_CODE (r) == CC0)
1718 return ! cc0_live;
1719 #endif
1721 if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
1722 && rtx_equal_p (r, last_mem_set))
1723 return 1;
1725 while (GET_CODE (r) == SUBREG
1726 || GET_CODE (r) == STRICT_LOW_PART
1727 || GET_CODE (r) == ZERO_EXTRACT
1728 || GET_CODE (r) == SIGN_EXTRACT)
1729 r = SUBREG_REG (r);
1731 if (GET_CODE (r) == REG)
1733 register int regno = REGNO (r);
1735 /* Don't delete insns to set global regs. */
1736 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1737 /* Make sure insns to set frame pointer aren't deleted. */
1738 || regno == FRAME_POINTER_REGNUM
1739 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1740 || regno == HARD_FRAME_POINTER_REGNUM
1741 #endif
1742 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1743 /* Make sure insns to set arg pointer are never deleted
1744 (if the arg pointer isn't fixed, there will be a USE for
1745 it, so we can treat it normally). */
1746 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1747 #endif
1748 || REGNO_REG_SET_P (needed, regno))
1749 return 0;
1751 /* If this is a hard register, verify that subsequent words are
1752 not needed. */
1753 if (regno < FIRST_PSEUDO_REGISTER)
1755 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
1757 while (--n > 0)
1758 if (REGNO_REG_SET_P (needed, regno+n))
1759 return 0;
1762 return 1;
1765 /* If performing several activities,
1766 insn is dead if each activity is individually dead.
1767 Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
1768 that's inside a PARALLEL doesn't make the insn worth keeping. */
1769 else if (code == PARALLEL)
1771 register int i = XVECLEN (x, 0);
1772 for (i--; i >= 0; i--)
1774 rtx elt = XVECEXP (x, 0, i);
1775 if (!insn_dead_p (elt, needed, call_ok)
1776 && GET_CODE (elt) != CLOBBER
1777 && GET_CODE (elt) != USE)
1778 return 0;
1780 return 1;
1782 /* We do not check CLOBBER or USE here.
1783 An insn consisting of just a CLOBBER or just a USE
1784 should not be deleted. */
1785 return 0;
1788 /* If X is the pattern of the last insn in a libcall, and assuming X is dead,
1789 return 1 if the entire library call is dead.
1790 This is true if X copies a register (hard or pseudo)
1791 and if the hard return reg of the call insn is dead.
1792 (The caller should have tested the destination of X already for death.)
1794 If this insn doesn't just copy a register, then we don't
1795 have an ordinary libcall. In that case, cse could not have
1796 managed to substitute the source for the dest later on,
1797 so we can assume the libcall is dead.
1799 NEEDED is the bit vector of pseudoregs live before this insn.
1800 NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
1802 static int
1803 libcall_dead_p (x, needed, note, insn)
1804 rtx x;
1805 regset needed;
1806 rtx note;
1807 rtx insn;
1809 register RTX_CODE code = GET_CODE (x);
1811 if (code == SET)
1813 register rtx r = SET_SRC (x);
1814 if (GET_CODE (r) == REG)
1816 rtx call = XEXP (note, 0);
1817 register int i;
1819 /* Find the call insn. */
1820 while (call != insn && GET_CODE (call) != CALL_INSN)
1821 call = NEXT_INSN (call);
1823 /* If there is none, do nothing special,
1824 since ordinary death handling can understand these insns. */
1825 if (call == insn)
1826 return 0;
1828 /* See if the hard reg holding the value is dead.
1829 If this is a PARALLEL, find the call within it. */
1830 call = PATTERN (call);
1831 if (GET_CODE (call) == PARALLEL)
1833 for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
1834 if (GET_CODE (XVECEXP (call, 0, i)) == SET
1835 && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
1836 break;
1838 /* This may be a library call that is returning a value
1839 via invisible pointer. Do nothing special, since
1840 ordinary death handling can understand these insns. */
1841 if (i < 0)
1842 return 0;
1844 call = XVECEXP (call, 0, i);
1847 return insn_dead_p (call, needed, 1);
1850 return 1;
1853 /* Return 1 if register REGNO was used before it was set.
1854 In other words, if it is live at function entry.
1855 Don't count global register variables or variables in registers
1856 that can be used for function arg passing, though. */
1859 regno_uninitialized (regno)
1860 int regno;
1862 if (n_basic_blocks == 0
1863 || (regno < FIRST_PSEUDO_REGISTER
1864 && (global_regs[regno] || FUNCTION_ARG_REGNO_P (regno))))
1865 return 0;
1867 return REGNO_REG_SET_P (basic_block_live_at_start[0], regno);
1870 /* 1 if register REGNO was alive at a place where `setjmp' was called
1871 and was set more than once or is an argument.
1872 Such regs may be clobbered by `longjmp'. */
1875 regno_clobbered_at_setjmp (regno)
1876 int regno;
1878 if (n_basic_blocks == 0)
1879 return 0;
1881 return ((REG_N_SETS (regno) > 1
1882 || REGNO_REG_SET_P (basic_block_live_at_start[0], regno))
1883 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
1886 /* Process the registers that are set within X.
1887 Their bits are set to 1 in the regset DEAD,
1888 because they are dead prior to this insn.
1890 If INSN is nonzero, it is the insn being processed
1891 and the fact that it is nonzero implies this is the FINAL pass
1892 in propagate_block. In this case, various info about register
1893 usage is stored, LOG_LINKS fields of insns are set up. */
1895 static void
1896 mark_set_regs (needed, dead, x, insn, significant)
1897 regset needed;
1898 regset dead;
1899 rtx x;
1900 rtx insn;
1901 regset significant;
1903 register RTX_CODE code = GET_CODE (x);
1905 if (code == SET || code == CLOBBER)
1906 mark_set_1 (needed, dead, x, insn, significant);
1907 else if (code == PARALLEL)
1909 register int i;
1910 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1912 code = GET_CODE (XVECEXP (x, 0, i));
1913 if (code == SET || code == CLOBBER)
1914 mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
1919 /* Process a single SET rtx, X. */
1921 static void
1922 mark_set_1 (needed, dead, x, insn, significant)
1923 regset needed;
1924 regset dead;
1925 rtx x;
1926 rtx insn;
1927 regset significant;
1929 register int regno;
1930 register rtx reg = SET_DEST (x);
1932 /* Modifying just one hardware register of a multi-reg value
1933 or just a byte field of a register
1934 does not mean the value from before this insn is now dead.
1935 But it does mean liveness of that register at the end of the block
1936 is significant.
1938 Within mark_set_1, however, we treat it as if the register is
1939 indeed modified. mark_used_regs will, however, also treat this
1940 register as being used. Thus, we treat these insns as setting a
1941 new value for the register as a function of its old value. This
1942 cases LOG_LINKS to be made appropriately and this will help combine. */
1944 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1945 || GET_CODE (reg) == SIGN_EXTRACT
1946 || GET_CODE (reg) == STRICT_LOW_PART)
1947 reg = XEXP (reg, 0);
1949 /* If we are writing into memory or into a register mentioned in the
1950 address of the last thing stored into memory, show we don't know
1951 what the last store was. If we are writing memory, save the address
1952 unless it is volatile. */
1953 if (GET_CODE (reg) == MEM
1954 || (GET_CODE (reg) == REG
1955 && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
1956 last_mem_set = 0;
1958 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
1959 /* There are no REG_INC notes for SP, so we can't assume we'll see
1960 everything that invalidates it. To be safe, don't eliminate any
1961 stores though SP; none of them should be redundant anyway. */
1962 && ! reg_mentioned_p (stack_pointer_rtx, reg))
1963 last_mem_set = reg;
1965 if (GET_CODE (reg) == REG
1966 && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
1967 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1968 && regno != HARD_FRAME_POINTER_REGNUM
1969 #endif
1970 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1971 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1972 #endif
1973 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1974 /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
1976 int some_needed = REGNO_REG_SET_P (needed, regno);
1977 int some_not_needed = ! some_needed;
1979 /* Mark it as a significant register for this basic block. */
1980 if (significant)
1981 SET_REGNO_REG_SET (significant, regno);
1983 /* Mark it as as dead before this insn. */
1984 SET_REGNO_REG_SET (dead, regno);
1986 /* A hard reg in a wide mode may really be multiple registers.
1987 If so, mark all of them just like the first. */
1988 if (regno < FIRST_PSEUDO_REGISTER)
1990 int n;
1992 /* Nothing below is needed for the stack pointer; get out asap.
1993 Eg, log links aren't needed, since combine won't use them. */
1994 if (regno == STACK_POINTER_REGNUM)
1995 return;
1997 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1998 while (--n > 0)
2000 int regno_n = regno + n;
2001 int needed_regno = REGNO_REG_SET_P (needed, regno_n);
2002 if (significant)
2003 SET_REGNO_REG_SET (significant, regno_n);
2005 SET_REGNO_REG_SET (dead, regno_n);
2006 some_needed |= needed_regno;
2007 some_not_needed |= ! needed_regno;
2010 /* Additional data to record if this is the final pass. */
2011 if (insn)
2013 register rtx y = reg_next_use[regno];
2014 register int blocknum = BLOCK_NUM (insn);
2016 /* If this is a hard reg, record this function uses the reg. */
2018 if (regno < FIRST_PSEUDO_REGISTER)
2020 register int i;
2021 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
2023 for (i = regno; i < endregno; i++)
2025 /* The next use is no longer "next", since a store
2026 intervenes. */
2027 reg_next_use[i] = 0;
2029 regs_ever_live[i] = 1;
2030 REG_N_SETS (i)++;
2033 else
2035 /* The next use is no longer "next", since a store
2036 intervenes. */
2037 reg_next_use[regno] = 0;
2039 /* Keep track of which basic blocks each reg appears in. */
2041 if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
2042 REG_BASIC_BLOCK (regno) = blocknum;
2043 else if (REG_BASIC_BLOCK (regno) != blocknum)
2044 REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
2046 /* Count (weighted) references, stores, etc. This counts a
2047 register twice if it is modified, but that is correct. */
2048 REG_N_SETS (regno)++;
2050 REG_N_REFS (regno) += loop_depth;
2052 /* The insns where a reg is live are normally counted
2053 elsewhere, but we want the count to include the insn
2054 where the reg is set, and the normal counting mechanism
2055 would not count it. */
2056 REG_LIVE_LENGTH (regno)++;
2059 if (! some_not_needed)
2061 /* Make a logical link from the next following insn
2062 that uses this register, back to this insn.
2063 The following insns have already been processed.
2065 We don't build a LOG_LINK for hard registers containing
2066 in ASM_OPERANDs. If these registers get replaced,
2067 we might wind up changing the semantics of the insn,
2068 even if reload can make what appear to be valid assignments
2069 later. */
2070 if (y && (BLOCK_NUM (y) == blocknum)
2071 && (regno >= FIRST_PSEUDO_REGISTER
2072 || asm_noperands (PATTERN (y)) < 0))
2073 LOG_LINKS (y)
2074 = gen_rtx (INSN_LIST, VOIDmode, insn, LOG_LINKS (y));
2076 else if (! some_needed)
2078 /* Note that dead stores have already been deleted when possible
2079 If we get here, we have found a dead store that cannot
2080 be eliminated (because the same insn does something useful).
2081 Indicate this by marking the reg being set as dying here. */
2082 REG_NOTES (insn)
2083 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2084 REG_N_DEATHS (REGNO (reg))++;
2086 else
2088 /* This is a case where we have a multi-word hard register
2089 and some, but not all, of the words of the register are
2090 needed in subsequent insns. Write REG_UNUSED notes
2091 for those parts that were not needed. This case should
2092 be rare. */
2094 int i;
2096 for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
2097 i >= 0; i--)
2098 if (!REGNO_REG_SET_P (needed, regno + i))
2099 REG_NOTES (insn)
2100 = gen_rtx (EXPR_LIST, REG_UNUSED,
2101 gen_rtx (REG, reg_raw_mode[regno + i],
2102 regno + i),
2103 REG_NOTES (insn));
2107 else if (GET_CODE (reg) == REG)
2108 reg_next_use[regno] = 0;
2110 /* If this is the last pass and this is a SCRATCH, show it will be dying
2111 here and count it. */
2112 else if (GET_CODE (reg) == SCRATCH && insn != 0)
2114 REG_NOTES (insn)
2115 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2116 num_scratch++;
2120 #ifdef AUTO_INC_DEC
2122 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
2123 reference. */
2125 static void
2126 find_auto_inc (needed, x, insn)
2127 regset needed;
2128 rtx x;
2129 rtx insn;
2131 rtx addr = XEXP (x, 0);
2132 HOST_WIDE_INT offset = 0;
2133 rtx set;
2135 /* Here we detect use of an index register which might be good for
2136 postincrement, postdecrement, preincrement, or predecrement. */
2138 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2139 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
2141 if (GET_CODE (addr) == REG)
2143 register rtx y;
2144 register int size = GET_MODE_SIZE (GET_MODE (x));
2145 rtx use;
2146 rtx incr;
2147 int regno = REGNO (addr);
2149 /* Is the next use an increment that might make auto-increment? */
2150 if ((incr = reg_next_use[regno]) != 0
2151 && (set = single_set (incr)) != 0
2152 && GET_CODE (set) == SET
2153 && BLOCK_NUM (incr) == BLOCK_NUM (insn)
2154 /* Can't add side effects to jumps; if reg is spilled and
2155 reloaded, there's no way to store back the altered value. */
2156 && GET_CODE (insn) != JUMP_INSN
2157 && (y = SET_SRC (set), GET_CODE (y) == PLUS)
2158 && XEXP (y, 0) == addr
2159 && GET_CODE (XEXP (y, 1)) == CONST_INT
2160 && (0
2161 #ifdef HAVE_POST_INCREMENT
2162 || (INTVAL (XEXP (y, 1)) == size && offset == 0)
2163 #endif
2164 #ifdef HAVE_POST_DECREMENT
2165 || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
2166 #endif
2167 #ifdef HAVE_PRE_INCREMENT
2168 || (INTVAL (XEXP (y, 1)) == size && offset == size)
2169 #endif
2170 #ifdef HAVE_PRE_DECREMENT
2171 || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
2172 #endif
2174 /* Make sure this reg appears only once in this insn. */
2175 && (use = find_use_as_address (PATTERN (insn), addr, offset),
2176 use != 0 && use != (rtx) 1))
2178 rtx q = SET_DEST (set);
2179 enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
2180 ? (offset ? PRE_INC : POST_INC)
2181 : (offset ? PRE_DEC : POST_DEC));
2183 if (dead_or_set_p (incr, addr))
2185 /* This is the simple case. Try to make the auto-inc. If
2186 we can't, we are done. Otherwise, we will do any
2187 needed updates below. */
2188 if (! validate_change (insn, &XEXP (x, 0),
2189 gen_rtx (inc_code, Pmode, addr),
2191 return;
2193 else if (GET_CODE (q) == REG
2194 /* PREV_INSN used here to check the semi-open interval
2195 [insn,incr). */
2196 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
2197 /* We must also check for sets of q as q may be
2198 a call clobbered hard register and there may
2199 be a call between PREV_INSN (insn) and incr. */
2200 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
2202 /* We have *p followed sometime later by q = p+size.
2203 Both p and q must be live afterward,
2204 and q is not used between INSN and it's assignment.
2205 Change it to q = p, ...*q..., q = q+size.
2206 Then fall into the usual case. */
2207 rtx insns, temp;
2209 start_sequence ();
2210 emit_move_insn (q, addr);
2211 insns = get_insns ();
2212 end_sequence ();
2214 /* If anything in INSNS have UID's that don't fit within the
2215 extra space we allocate earlier, we can't make this auto-inc.
2216 This should never happen. */
2217 for (temp = insns; temp; temp = NEXT_INSN (temp))
2219 if (INSN_UID (temp) > max_uid_for_flow)
2220 return;
2221 BLOCK_NUM (temp) = BLOCK_NUM (insn);
2224 /* If we can't make the auto-inc, or can't make the
2225 replacement into Y, exit. There's no point in making
2226 the change below if we can't do the auto-inc and doing
2227 so is not correct in the pre-inc case. */
2229 validate_change (insn, &XEXP (x, 0),
2230 gen_rtx (inc_code, Pmode, q),
2232 validate_change (incr, &XEXP (y, 0), q, 1);
2233 if (! apply_change_group ())
2234 return;
2236 /* We now know we'll be doing this change, so emit the
2237 new insn(s) and do the updates. */
2238 emit_insns_before (insns, insn);
2240 if (basic_block_head[BLOCK_NUM (insn)] == insn)
2241 basic_block_head[BLOCK_NUM (insn)] = insns;
2243 /* INCR will become a NOTE and INSN won't contain a
2244 use of ADDR. If a use of ADDR was just placed in
2245 the insn before INSN, make that the next use.
2246 Otherwise, invalidate it. */
2247 if (GET_CODE (PREV_INSN (insn)) == INSN
2248 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
2249 && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
2250 reg_next_use[regno] = PREV_INSN (insn);
2251 else
2252 reg_next_use[regno] = 0;
2254 addr = q;
2255 regno = REGNO (q);
2257 /* REGNO is now used in INCR which is below INSN, but
2258 it previously wasn't live here. If we don't mark
2259 it as needed, we'll put a REG_DEAD note for it
2260 on this insn, which is incorrect. */
2261 SET_REGNO_REG_SET (needed, regno);
2263 /* If there are any calls between INSN and INCR, show
2264 that REGNO now crosses them. */
2265 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
2266 if (GET_CODE (temp) == CALL_INSN)
2267 REG_N_CALLS_CROSSED (regno)++;
2269 else
2270 return;
2272 /* If we haven't returned, it means we were able to make the
2273 auto-inc, so update the status. First, record that this insn
2274 has an implicit side effect. */
2276 REG_NOTES (insn)
2277 = gen_rtx (EXPR_LIST, REG_INC, addr, REG_NOTES (insn));
2279 /* Modify the old increment-insn to simply copy
2280 the already-incremented value of our register. */
2281 if (! validate_change (incr, &SET_SRC (set), addr, 0))
2282 abort ();
2284 /* If that makes it a no-op (copying the register into itself) delete
2285 it so it won't appear to be a "use" and a "set" of this
2286 register. */
2287 if (SET_DEST (set) == addr)
2289 PUT_CODE (incr, NOTE);
2290 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
2291 NOTE_SOURCE_FILE (incr) = 0;
2294 if (regno >= FIRST_PSEUDO_REGISTER)
2296 /* Count an extra reference to the reg. When a reg is
2297 incremented, spilling it is worse, so we want to make
2298 that less likely. */
2299 REG_N_REFS (regno) += loop_depth;
2301 /* Count the increment as a setting of the register,
2302 even though it isn't a SET in rtl. */
2303 REG_N_SETS (regno)++;
2308 #endif /* AUTO_INC_DEC */
2310 /* Scan expression X and store a 1-bit in LIVE for each reg it uses.
2311 This is done assuming the registers needed from X
2312 are those that have 1-bits in NEEDED.
2314 On the final pass, FINAL is 1. This means try for autoincrement
2315 and count the uses and deaths of each pseudo-reg.
2317 INSN is the containing instruction. If INSN is dead, this function is not
2318 called. */
2320 static void
2321 mark_used_regs (needed, live, x, final, insn)
2322 regset needed;
2323 regset live;
2324 rtx x;
2325 int final;
2326 rtx insn;
2328 register RTX_CODE code;
2329 register int regno;
2330 int i;
2332 retry:
2333 code = GET_CODE (x);
2334 switch (code)
2336 case LABEL_REF:
2337 case SYMBOL_REF:
2338 case CONST_INT:
2339 case CONST:
2340 case CONST_DOUBLE:
2341 case PC:
2342 case ADDR_VEC:
2343 case ADDR_DIFF_VEC:
2344 case ASM_INPUT:
2345 return;
2347 #ifdef HAVE_cc0
2348 case CC0:
2349 cc0_live = 1;
2350 return;
2351 #endif
2353 case CLOBBER:
2354 /* If we are clobbering a MEM, mark any registers inside the address
2355 as being used. */
2356 if (GET_CODE (XEXP (x, 0)) == MEM)
2357 mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
2358 return;
2360 case MEM:
2361 /* Invalidate the data for the last MEM stored, but only if MEM is
2362 something that can be stored into. */
2363 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2364 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
2365 ; /* needn't clear last_mem_set */
2366 else
2367 last_mem_set = 0;
2369 #ifdef AUTO_INC_DEC
2370 if (final)
2371 find_auto_inc (needed, x, insn);
2372 #endif
2373 break;
2375 case SUBREG:
2376 if (GET_CODE (SUBREG_REG (x)) == REG
2377 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
2378 && (GET_MODE_SIZE (GET_MODE (x))
2379 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
2380 REG_CHANGES_SIZE (REGNO (SUBREG_REG (x))) = 1;
2382 /* While we're here, optimize this case. */
2383 x = SUBREG_REG (x);
2385 /* In case the SUBREG is not of a register, don't optimize */
2386 if (GET_CODE (x) != REG)
2388 mark_used_regs (needed, live, x, final, insn);
2389 return;
2392 /* ... fall through ... */
2394 case REG:
2395 /* See a register other than being set
2396 => mark it as needed. */
2398 regno = REGNO (x);
2400 int some_needed = REGNO_REG_SET_P (needed, regno);
2401 int some_not_needed = ! some_needed;
2403 SET_REGNO_REG_SET (live, regno);
2405 /* A hard reg in a wide mode may really be multiple registers.
2406 If so, mark all of them just like the first. */
2407 if (regno < FIRST_PSEUDO_REGISTER)
2409 int n;
2411 /* For stack ptr or fixed arg pointer,
2412 nothing below can be necessary, so waste no more time. */
2413 if (regno == STACK_POINTER_REGNUM
2414 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2415 || regno == HARD_FRAME_POINTER_REGNUM
2416 #endif
2417 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2418 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2419 #endif
2420 || regno == FRAME_POINTER_REGNUM)
2422 /* If this is a register we are going to try to eliminate,
2423 don't mark it live here. If we are successful in
2424 eliminating it, it need not be live unless it is used for
2425 pseudos, in which case it will have been set live when
2426 it was allocated to the pseudos. If the register will not
2427 be eliminated, reload will set it live at that point. */
2429 if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
2430 regs_ever_live[regno] = 1;
2431 return;
2433 /* No death notes for global register variables;
2434 their values are live after this function exits. */
2435 if (global_regs[regno])
2437 if (final)
2438 reg_next_use[regno] = insn;
2439 return;
2442 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2443 while (--n > 0)
2445 int regno_n = regno + n;
2446 int needed_regno = REGNO_REG_SET_P (needed, regno_n);
2448 SET_REGNO_REG_SET (live, regno_n);
2449 some_needed |= needed_regno;
2450 some_not_needed |= ! needed_regno;
2453 if (final)
2455 /* Record where each reg is used, so when the reg
2456 is set we know the next insn that uses it. */
2458 reg_next_use[regno] = insn;
2460 if (regno < FIRST_PSEUDO_REGISTER)
2462 /* If a hard reg is being used,
2463 record that this function does use it. */
2465 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
2466 if (i == 0)
2467 i = 1;
2469 regs_ever_live[regno + --i] = 1;
2470 while (i > 0);
2472 else
2474 /* Keep track of which basic block each reg appears in. */
2476 register int blocknum = BLOCK_NUM (insn);
2478 if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
2479 REG_BASIC_BLOCK (regno) = blocknum;
2480 else if (REG_BASIC_BLOCK (regno) != blocknum)
2481 REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
2483 /* Count (weighted) number of uses of each reg. */
2485 REG_N_REFS (regno) += loop_depth;
2488 /* Record and count the insns in which a reg dies.
2489 If it is used in this insn and was dead below the insn
2490 then it dies in this insn. If it was set in this insn,
2491 we do not make a REG_DEAD note; likewise if we already
2492 made such a note. */
2494 if (some_not_needed
2495 && ! dead_or_set_p (insn, x)
2496 #if 0
2497 && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
2498 #endif
2501 /* Check for the case where the register dying partially
2502 overlaps the register set by this insn. */
2503 if (regno < FIRST_PSEUDO_REGISTER
2504 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
2506 int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2507 while (--n >= 0)
2508 some_needed |= dead_or_set_regno_p (insn, regno + n);
2511 /* If none of the words in X is needed, make a REG_DEAD
2512 note. Otherwise, we must make partial REG_DEAD notes. */
2513 if (! some_needed)
2515 REG_NOTES (insn)
2516 = gen_rtx (EXPR_LIST, REG_DEAD, x, REG_NOTES (insn));
2517 REG_N_DEATHS (regno)++;
2519 else
2521 int i;
2523 /* Don't make a REG_DEAD note for a part of a register
2524 that is set in the insn. */
2526 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
2527 i >= 0; i--)
2528 if (!REGNO_REG_SET_P (needed, regno + i)
2529 && ! dead_or_set_regno_p (insn, regno + i))
2530 REG_NOTES (insn)
2531 = gen_rtx (EXPR_LIST, REG_DEAD,
2532 gen_rtx (REG, reg_raw_mode[regno + i],
2533 regno + i),
2534 REG_NOTES (insn));
2539 return;
2541 case SET:
2543 register rtx testreg = SET_DEST (x);
2544 int mark_dest = 0;
2546 /* If storing into MEM, don't show it as being used. But do
2547 show the address as being used. */
2548 if (GET_CODE (testreg) == MEM)
2550 #ifdef AUTO_INC_DEC
2551 if (final)
2552 find_auto_inc (needed, testreg, insn);
2553 #endif
2554 mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
2555 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2556 return;
2559 /* Storing in STRICT_LOW_PART is like storing in a reg
2560 in that this SET might be dead, so ignore it in TESTREG.
2561 but in some other ways it is like using the reg.
2563 Storing in a SUBREG or a bit field is like storing the entire
2564 register in that if the register's value is not used
2565 then this SET is not needed. */
2566 while (GET_CODE (testreg) == STRICT_LOW_PART
2567 || GET_CODE (testreg) == ZERO_EXTRACT
2568 || GET_CODE (testreg) == SIGN_EXTRACT
2569 || GET_CODE (testreg) == SUBREG)
2571 if (GET_CODE (testreg) == SUBREG
2572 && GET_CODE (SUBREG_REG (testreg)) == REG
2573 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
2574 && (GET_MODE_SIZE (GET_MODE (testreg))
2575 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
2576 REG_CHANGES_SIZE (REGNO (SUBREG_REG (testreg))) = 1;
2578 /* Modifying a single register in an alternate mode
2579 does not use any of the old value. But these other
2580 ways of storing in a register do use the old value. */
2581 if (GET_CODE (testreg) == SUBREG
2582 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
2584 else
2585 mark_dest = 1;
2587 testreg = XEXP (testreg, 0);
2590 /* If this is a store into a register,
2591 recursively scan the value being stored. */
2593 if (GET_CODE (testreg) == REG
2594 && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
2595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2596 && regno != HARD_FRAME_POINTER_REGNUM
2597 #endif
2598 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2599 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2600 #endif
2602 /* We used to exclude global_regs here, but that seems wrong.
2603 Storing in them is like storing in mem. */
2605 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2606 if (mark_dest)
2607 mark_used_regs (needed, live, SET_DEST (x), final, insn);
2608 return;
2611 break;
2613 case RETURN:
2614 /* If exiting needs the right stack value, consider this insn as
2615 using the stack pointer. In any event, consider it as using
2616 all global registers and all registers used by return. */
2618 #ifdef EXIT_IGNORE_STACK
2619 if (! EXIT_IGNORE_STACK
2620 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
2621 #endif
2622 SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
2624 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2625 if (global_regs[i]
2626 #ifdef EPILOGUE_USES
2627 || EPILOGUE_USES (i)
2628 #endif
2630 SET_REGNO_REG_SET (live, i);
2631 break;
2634 /* Recursively scan the operands of this expression. */
2637 register char *fmt = GET_RTX_FORMAT (code);
2638 register int i;
2640 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2642 if (fmt[i] == 'e')
2644 /* Tail recursive case: save a function call level. */
2645 if (i == 0)
2647 x = XEXP (x, 0);
2648 goto retry;
2650 mark_used_regs (needed, live, XEXP (x, i), final, insn);
2652 else if (fmt[i] == 'E')
2654 register int j;
2655 for (j = 0; j < XVECLEN (x, i); j++)
2656 mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
2662 #ifdef AUTO_INC_DEC
2664 static int
2665 try_pre_increment_1 (insn)
2666 rtx insn;
2668 /* Find the next use of this reg. If in same basic block,
2669 make it do pre-increment or pre-decrement if appropriate. */
2670 rtx x = PATTERN (insn);
2671 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
2672 * INTVAL (XEXP (SET_SRC (x), 1)));
2673 int regno = REGNO (SET_DEST (x));
2674 rtx y = reg_next_use[regno];
2675 if (y != 0
2676 && BLOCK_NUM (y) == BLOCK_NUM (insn)
2677 /* Don't do this if the reg dies, or gets set in y; a standard addressing
2678 mode would be better. */
2679 && ! dead_or_set_p (y, SET_DEST (x))
2680 && try_pre_increment (y, SET_DEST (PATTERN (insn)),
2681 amount))
2683 /* We have found a suitable auto-increment
2684 and already changed insn Y to do it.
2685 So flush this increment-instruction. */
2686 PUT_CODE (insn, NOTE);
2687 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2688 NOTE_SOURCE_FILE (insn) = 0;
2689 /* Count a reference to this reg for the increment
2690 insn we are deleting. When a reg is incremented.
2691 spilling it is worse, so we want to make that
2692 less likely. */
2693 if (regno >= FIRST_PSEUDO_REGISTER)
2695 REG_N_REFS (regno) += loop_depth;
2696 REG_N_SETS (regno)++;
2698 return 1;
2700 return 0;
2703 /* Try to change INSN so that it does pre-increment or pre-decrement
2704 addressing on register REG in order to add AMOUNT to REG.
2705 AMOUNT is negative for pre-decrement.
2706 Returns 1 if the change could be made.
2707 This checks all about the validity of the result of modifying INSN. */
2709 static int
2710 try_pre_increment (insn, reg, amount)
2711 rtx insn, reg;
2712 HOST_WIDE_INT amount;
2714 register rtx use;
2716 /* Nonzero if we can try to make a pre-increment or pre-decrement.
2717 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
2718 int pre_ok = 0;
2719 /* Nonzero if we can try to make a post-increment or post-decrement.
2720 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
2721 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
2722 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
2723 int post_ok = 0;
2725 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
2726 int do_post = 0;
2728 /* From the sign of increment, see which possibilities are conceivable
2729 on this target machine. */
2730 #ifdef HAVE_PRE_INCREMENT
2731 if (amount > 0)
2732 pre_ok = 1;
2733 #endif
2734 #ifdef HAVE_POST_INCREMENT
2735 if (amount > 0)
2736 post_ok = 1;
2737 #endif
2739 #ifdef HAVE_PRE_DECREMENT
2740 if (amount < 0)
2741 pre_ok = 1;
2742 #endif
2743 #ifdef HAVE_POST_DECREMENT
2744 if (amount < 0)
2745 post_ok = 1;
2746 #endif
2748 if (! (pre_ok || post_ok))
2749 return 0;
2751 /* It is not safe to add a side effect to a jump insn
2752 because if the incremented register is spilled and must be reloaded
2753 there would be no way to store the incremented value back in memory. */
2755 if (GET_CODE (insn) == JUMP_INSN)
2756 return 0;
2758 use = 0;
2759 if (pre_ok)
2760 use = find_use_as_address (PATTERN (insn), reg, 0);
2761 if (post_ok && (use == 0 || use == (rtx) 1))
2763 use = find_use_as_address (PATTERN (insn), reg, -amount);
2764 do_post = 1;
2767 if (use == 0 || use == (rtx) 1)
2768 return 0;
2770 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
2771 return 0;
2773 /* See if this combination of instruction and addressing mode exists. */
2774 if (! validate_change (insn, &XEXP (use, 0),
2775 gen_rtx (amount > 0
2776 ? (do_post ? POST_INC : PRE_INC)
2777 : (do_post ? POST_DEC : PRE_DEC),
2778 Pmode, reg), 0))
2779 return 0;
2781 /* Record that this insn now has an implicit side effect on X. */
2782 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_INC, reg, REG_NOTES (insn));
2783 return 1;
2786 #endif /* AUTO_INC_DEC */
2788 /* Find the place in the rtx X where REG is used as a memory address.
2789 Return the MEM rtx that so uses it.
2790 If PLUSCONST is nonzero, search instead for a memory address equivalent to
2791 (plus REG (const_int PLUSCONST)).
2793 If such an address does not appear, return 0.
2794 If REG appears more than once, or is used other than in such an address,
2795 return (rtx)1. */
2798 find_use_as_address (x, reg, plusconst)
2799 register rtx x;
2800 rtx reg;
2801 HOST_WIDE_INT plusconst;
2803 enum rtx_code code = GET_CODE (x);
2804 char *fmt = GET_RTX_FORMAT (code);
2805 register int i;
2806 register rtx value = 0;
2807 register rtx tem;
2809 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
2810 return x;
2812 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
2813 && XEXP (XEXP (x, 0), 0) == reg
2814 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2815 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
2816 return x;
2818 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
2820 /* If REG occurs inside a MEM used in a bit-field reference,
2821 that is unacceptable. */
2822 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
2823 return (rtx) (HOST_WIDE_INT) 1;
2826 if (x == reg)
2827 return (rtx) (HOST_WIDE_INT) 1;
2829 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2831 if (fmt[i] == 'e')
2833 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
2834 if (value == 0)
2835 value = tem;
2836 else if (tem != 0)
2837 return (rtx) (HOST_WIDE_INT) 1;
2839 if (fmt[i] == 'E')
2841 register int j;
2842 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2844 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
2845 if (value == 0)
2846 value = tem;
2847 else if (tem != 0)
2848 return (rtx) (HOST_WIDE_INT) 1;
2853 return value;
2856 /* Write information about registers and basic blocks into FILE.
2857 This is part of making a debugging dump. */
2859 void
2860 dump_flow_info (file)
2861 FILE *file;
2863 register int i;
2864 static char *reg_class_names[] = REG_CLASS_NAMES;
2866 fprintf (file, "%d registers.\n", max_regno);
2868 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2869 if (REG_N_REFS (i))
2871 enum reg_class class, altclass;
2872 fprintf (file, "\nRegister %d used %d times across %d insns",
2873 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
2874 if (REG_BASIC_BLOCK (i) >= 0)
2875 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
2876 if (REG_N_DEATHS (i) != 1)
2877 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
2878 if (REG_N_CALLS_CROSSED (i) == 1)
2879 fprintf (file, "; crosses 1 call");
2880 else if (REG_N_CALLS_CROSSED (i))
2881 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
2882 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
2883 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
2884 class = reg_preferred_class (i);
2885 altclass = reg_alternate_class (i);
2886 if (class != GENERAL_REGS || altclass != ALL_REGS)
2888 if (altclass == ALL_REGS || class == ALL_REGS)
2889 fprintf (file, "; pref %s", reg_class_names[(int) class]);
2890 else if (altclass == NO_REGS)
2891 fprintf (file, "; %s or none", reg_class_names[(int) class]);
2892 else
2893 fprintf (file, "; pref %s, else %s",
2894 reg_class_names[(int) class],
2895 reg_class_names[(int) altclass]);
2897 if (REGNO_POINTER_FLAG (i))
2898 fprintf (file, "; pointer");
2899 fprintf (file, ".\n");
2901 fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
2902 for (i = 0; i < n_basic_blocks; i++)
2904 register rtx head, jump;
2905 register int regno;
2906 fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
2908 INSN_UID (basic_block_head[i]),
2909 INSN_UID (basic_block_end[i]));
2910 /* The control flow graph's storage is freed
2911 now when flow_analysis returns.
2912 Don't try to print it if it is gone. */
2913 if (basic_block_drops_in)
2915 fprintf (file, "Reached from blocks: ");
2916 head = basic_block_head[i];
2917 if (GET_CODE (head) == CODE_LABEL)
2918 for (jump = LABEL_REFS (head);
2919 jump != head;
2920 jump = LABEL_NEXTREF (jump))
2922 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
2923 fprintf (file, " %d", from_block);
2925 if (basic_block_drops_in[i])
2926 fprintf (file, " previous");
2928 fprintf (file, "\nRegisters live at start:");
2929 for (regno = 0; regno < max_regno; regno++)
2930 if (REGNO_REG_SET_P (basic_block_live_at_start[i], regno))
2931 fprintf (file, " %d", regno);
2932 fprintf (file, "\n");
2934 fprintf (file, "\n");