Initial revision
[official-gcc.git] / gcc / config / vax / vax.h
blob1d4d67ddb38266c21d88c0a9cab9de3166a530fa
1 /* Definitions of target machine for GNU compiler. Vax version.
2 Copyright (C) 1987, 88, 91, 93-96, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* Names to predefine in the preprocessor for this target machine. */
24 #define CPP_PREDEFINES "-Dvax -D__vax__ -Dunix -Asystem(unix) -Asystem(bsd) -Acpu(vax) -Amachine(vax)"
26 /* If using g-format floating point, alter math.h. */
28 #define CPP_SPEC "%{mg:-DGFLOAT}"
30 /* Choose proper libraries depending on float format.
31 Note that there are no profiling libraries for g-format.
32 Also use -lg for the sake of dbx. */
34 #define LIB_SPEC "%{g:-lg}\
35 %{mg:%{lm:-lmg} -lcg \
36 %{p:%eprofiling not supported with -mg\n}\
37 %{pg:%eprofiling not supported with -mg\n}}\
38 %{!mg:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
40 /* Print subsidiary information on the compiler version in use. */
42 #ifndef TARGET_NAME /* A more specific value might be supplied via -D. */
43 #define TARGET_NAME "vax"
44 #endif
45 #define TARGET_VERSION fprintf (stderr, " (%s)", TARGET_NAME)
47 /* Run-time compilation parameters selecting different hardware subsets. */
49 extern int target_flags;
51 /* Macros used in the machine description to test the flags. */
53 /* Nonzero if compiling code that Unix assembler can assemble. */
54 #define TARGET_UNIX_ASM (target_flags & 1)
56 /* Nonzero if compiling with VAX-11 "C" style structure alignment */
57 #define TARGET_VAXC_ALIGNMENT (target_flags & 2)
59 /* Nonzero if compiling with `G'-format floating point */
60 #define TARGET_G_FLOAT (target_flags & 4)
62 /* Macro to define tables used to set the flags.
63 This is a list in braces of pairs in braces,
64 each pair being { "NAME", VALUE }
65 where VALUE is the bits to set or minus the bits to clear.
66 An empty string NAME is used to identify the default VALUE. */
68 #define TARGET_SWITCHES \
69 { {"unix", 1}, \
70 {"gnu", -1}, \
71 {"vaxc-alignment", 2}, \
72 {"g", 4}, \
73 {"g-float", 4}, \
74 {"d", -4}, \
75 {"d-float", -4}, \
76 { "", TARGET_DEFAULT}}
78 /* Default target_flags if no switches specified. */
80 #ifndef TARGET_DEFAULT
81 #define TARGET_DEFAULT 1
82 #endif
84 /* Target machine storage layout */
86 /* Define for software floating point emulation of VAX format
87 when cross compiling from a non-VAX host. */
88 /* #define REAL_ARITHMETIC */
90 /* Define this if most significant bit is lowest numbered
91 in instructions that operate on numbered bit-fields.
92 This is not true on the vax. */
93 #define BITS_BIG_ENDIAN 0
95 /* Define this if most significant byte of a word is the lowest numbered. */
96 /* That is not true on the vax. */
97 #define BYTES_BIG_ENDIAN 0
99 /* Define this if most significant word of a multiword number is the lowest
100 numbered. */
101 /* This is not true on the vax. */
102 #define WORDS_BIG_ENDIAN 0
104 /* Number of bits in an addressable storage unit */
105 #define BITS_PER_UNIT 8
107 /* Width in bits of a "word", which is the contents of a machine register.
108 Note that this is not necessarily the width of data type `int';
109 if using 16-bit ints on a 68000, this would still be 32.
110 But on a machine with 16-bit registers, this would be 16. */
111 #define BITS_PER_WORD 32
113 /* Width of a word, in units (bytes). */
114 #define UNITS_PER_WORD 4
116 /* Width in bits of a pointer.
117 See also the macro `Pmode' defined below. */
118 #define POINTER_SIZE 32
120 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
121 #define PARM_BOUNDARY 32
123 /* Allocation boundary (in *bits*) for the code of a function. */
124 #define FUNCTION_BOUNDARY 16
126 /* Alignment of field after `int : 0' in a structure. */
127 #define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
129 /* Every structure's size must be a multiple of this. */
130 #define STRUCTURE_SIZE_BOUNDARY 8
132 /* A bitfield declared as `int' forces `int' alignment for the struct. */
133 #define PCC_BITFIELD_TYPE_MATTERS (! TARGET_VAXC_ALIGNMENT)
135 /* No data type wants to be aligned rounder than this. */
136 #define BIGGEST_ALIGNMENT 32
138 /* No structure field wants to be aligned rounder than this. */
139 #define BIGGEST_FIELD_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
141 /* Set this nonzero if move instructions will actually fail to work
142 when given unaligned data. */
143 #define STRICT_ALIGNMENT 0
145 /* Let's keep the stack somewhat aligned. */
146 #define STACK_BOUNDARY 32
148 /* Standard register usage. */
150 /* Number of actual hardware registers.
151 The hardware registers are assigned numbers for the compiler
152 from 0 to just below FIRST_PSEUDO_REGISTER.
153 All registers that the compiler knows about must be given numbers,
154 even those that are not normally considered general registers. */
155 #define FIRST_PSEUDO_REGISTER 16
157 /* 1 for registers that have pervasive standard uses
158 and are not available for the register allocator.
159 On the vax, these are the AP, FP, SP and PC. */
160 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
162 /* 1 for registers not available across function calls.
163 These must include the FIXED_REGISTERS and also any
164 registers that can be used without being saved.
165 The latter must include the registers where values are returned
166 and the register where structure-value addresses are passed.
167 Aside from that, you can include as many other registers as you like. */
168 #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
170 /* Return number of consecutive hard regs needed starting at reg REGNO
171 to hold something of mode MODE.
172 This is ordinarily the length in words of a value of mode MODE
173 but can be less for certain modes in special long registers.
174 On the vax, all registers are one word long. */
175 #define HARD_REGNO_NREGS(REGNO, MODE) \
176 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
178 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
179 On the vax, all registers can hold all modes. */
180 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
182 /* Value is 1 if it is a good idea to tie two pseudo registers
183 when one has mode MODE1 and one has mode MODE2.
184 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
185 for any hard reg, then this must be 0 for correct output. */
186 #define MODES_TIEABLE_P(MODE1, MODE2) 1
188 /* Specify the registers used for certain standard purposes.
189 The values of these macros are register numbers. */
191 /* Vax pc is overloaded on a register. */
192 #define PC_REGNUM 15
194 /* Register to use for pushing function arguments. */
195 #define STACK_POINTER_REGNUM 14
197 /* Base register for access to local variables of the function. */
198 #define FRAME_POINTER_REGNUM 13
200 /* Value should be nonzero if functions must have frame pointers.
201 Zero means the frame pointer need not be set up (and parms
202 may be accessed via the stack pointer) in functions that seem suitable.
203 This is computed in `reload', in reload1.c. */
204 #define FRAME_POINTER_REQUIRED 1
206 /* Base register for access to arguments of the function. */
207 #define ARG_POINTER_REGNUM 12
209 /* Register in which static-chain is passed to a function. */
210 #define STATIC_CHAIN_REGNUM 0
212 /* Register in which address to store a structure value
213 is passed to a function. */
214 #define STRUCT_VALUE_REGNUM 1
216 /* Define the classes of registers for register constraints in the
217 machine description. Also define ranges of constants.
219 One of the classes must always be named ALL_REGS and include all hard regs.
220 If there is more than one class, another class must be named NO_REGS
221 and contain no registers.
223 The name GENERAL_REGS must be the name of a class (or an alias for
224 another name such as ALL_REGS). This is the class of registers
225 that is allowed by "g" or "r" in a register constraint.
226 Also, registers outside this class are allocated only when
227 instructions express preferences for them.
229 The classes must be numbered in nondecreasing order; that is,
230 a larger-numbered class must never be contained completely
231 in a smaller-numbered class.
233 For any two classes, it is very desirable that there be another
234 class that represents their union. */
236 /* The vax has only one kind of registers, so NO_REGS and ALL_REGS
237 are the only classes. */
239 enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
241 #define N_REG_CLASSES (int) LIM_REG_CLASSES
243 /* Since GENERAL_REGS is the same class as ALL_REGS,
244 don't give it a different class number; just make it an alias. */
246 #define GENERAL_REGS ALL_REGS
248 /* Give names of register classes as strings for dump file. */
250 #define REG_CLASS_NAMES \
251 {"NO_REGS", "ALL_REGS" }
253 /* Define which registers fit in which classes.
254 This is an initializer for a vector of HARD_REG_SET
255 of length N_REG_CLASSES. */
257 #define REG_CLASS_CONTENTS {0, 0xffff}
259 /* The same information, inverted:
260 Return the class number of the smallest class containing
261 reg number REGNO. This could be a conditional expression
262 or could index an array. */
264 #define REGNO_REG_CLASS(REGNO) ALL_REGS
266 /* The class value for index registers, and the one for base regs. */
268 #define INDEX_REG_CLASS ALL_REGS
269 #define BASE_REG_CLASS ALL_REGS
271 /* Get reg_class from a letter such as appears in the machine description. */
273 #define REG_CLASS_FROM_LETTER(C) NO_REGS
275 /* The letters I, J, K, L and M in a register constraint string
276 can be used to stand for particular ranges of immediate operands.
277 This macro defines what the ranges are.
278 C is the letter, and VALUE is a constant value.
279 Return 1 if VALUE is in the range specified by C.
281 `I' is the constant zero. */
283 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
284 ((C) == 'I' ? (VALUE) == 0 \
285 : 0)
287 /* Similar, but for floating constants, and defining letters G and H.
288 Here VALUE is the CONST_DOUBLE rtx itself.
290 `G' is a floating-point zero. */
292 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
293 ((C) == 'G' ? ((VALUE) == CONST0_RTX (DFmode) \
294 || (VALUE) == CONST0_RTX (SFmode)) \
295 : 0)
297 /* Optional extra constraints for this machine.
299 For the VAX, `Q' means that OP is a MEM that does not have a mode-dependent
300 address. */
302 #define EXTRA_CONSTRAINT(OP, C) \
303 ((C) == 'Q' \
304 ? GET_CODE (OP) == MEM && ! mode_dependent_address_p (XEXP (OP, 0)) \
305 : 0)
307 /* Given an rtx X being reloaded into a reg required to be
308 in class CLASS, return the class of reg to actually use.
309 In general this is just CLASS; but on some machines
310 in some cases it is preferable to use a more restrictive class. */
312 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
314 /* Return the maximum number of consecutive registers
315 needed to represent mode MODE in a register of class CLASS. */
316 /* On the vax, this is always the size of MODE in words,
317 since all registers are the same size. */
318 #define CLASS_MAX_NREGS(CLASS, MODE) \
319 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
321 /* Stack layout; function entry, exit and calling. */
323 /* Define this if pushing a word on the stack
324 makes the stack pointer a smaller address. */
325 #define STACK_GROWS_DOWNWARD
327 /* Define this if longjmp restores from saved registers
328 rather than from what setjmp saved. */
329 #define LONGJMP_RESTORE_FROM_STACK
331 /* Define this if the nominal address of the stack frame
332 is at the high-address end of the local variables;
333 that is, each additional local variable allocated
334 goes at a more negative offset in the frame. */
335 #define FRAME_GROWS_DOWNWARD
337 /* Offset within stack frame to start allocating local variables at.
338 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
339 first local allocated. Otherwise, it is the offset to the BEGINNING
340 of the first local allocated. */
341 #define STARTING_FRAME_OFFSET 0
343 /* Given an rtx for the address of a frame,
344 return an rtx for the address of the word in the frame
345 that holds the dynamic chain--the previous frame's address. */
346 #define DYNAMIC_CHAIN_ADDRESS(frame) \
347 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 12))
349 /* If we generate an insn to push BYTES bytes,
350 this says how many the stack pointer really advances by.
351 On the vax, -(sp) pushes only the bytes of the operands. */
352 #define PUSH_ROUNDING(BYTES) (BYTES)
354 /* Offset of first parameter from the argument pointer register value. */
355 #define FIRST_PARM_OFFSET(FNDECL) 4
357 /* Value is the number of bytes of arguments automatically
358 popped when returning from a subroutine call.
359 FUNDECL is the declaration node of the function (as a tree),
360 FUNTYPE is the data type of the function (as a tree),
361 or for a library call it is an identifier node for the subroutine name.
362 SIZE is the number of bytes of arguments passed on the stack.
364 On the Vax, the RET insn always pops all the args for any function. */
366 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
368 /* Define how to find the value returned by a function.
369 VALTYPE is the data type of the value (as a tree).
370 If the precise function being called is known, FUNC is its FUNCTION_DECL;
371 otherwise, FUNC is 0. */
373 /* On the Vax the return value is in R0 regardless. */
375 #define FUNCTION_VALUE(VALTYPE, FUNC) \
376 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
378 /* Define how to find the value returned by a library function
379 assuming the value has mode MODE. */
381 /* On the Vax the return value is in R0 regardless. */
383 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
385 /* Define this if PCC uses the nonreentrant convention for returning
386 structure and union values. */
388 #define PCC_STATIC_STRUCT_RETURN
390 /* 1 if N is a possible register number for a function value.
391 On the Vax, R0 is the only register thus used. */
393 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
395 /* 1 if N is a possible register number for function argument passing.
396 On the Vax, no registers are used in this way. */
398 #define FUNCTION_ARG_REGNO_P(N) 0
400 /* Define a data type for recording info about an argument list
401 during the scan of that argument list. This data type should
402 hold all necessary information about the function itself
403 and about the args processed so far, enough to enable macros
404 such as FUNCTION_ARG to determine where the next arg should go.
406 On the vax, this is a single integer, which is a number of bytes
407 of arguments scanned so far. */
409 #define CUMULATIVE_ARGS int
411 /* Initialize a variable CUM of type CUMULATIVE_ARGS
412 for a call to a function whose data type is FNTYPE.
413 For a library call, FNTYPE is 0.
415 On the vax, the offset starts at 0. */
417 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
418 ((CUM) = 0)
420 /* Update the data in CUM to advance over an argument
421 of mode MODE and data type TYPE.
422 (TYPE is null for libcalls where that information may not be available.) */
424 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
425 ((CUM) += ((MODE) != BLKmode \
426 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
427 : (int_size_in_bytes (TYPE) + 3) & ~3))
429 /* Define where to put the arguments to a function.
430 Value is zero to push the argument on the stack,
431 or a hard register in which to store the argument.
433 MODE is the argument's machine mode.
434 TYPE is the data type of the argument (as a tree).
435 This is null for libcalls where that information may
436 not be available.
437 CUM is a variable of type CUMULATIVE_ARGS which gives info about
438 the preceding args and about the function being called.
439 NAMED is nonzero if this argument is a named parameter
440 (otherwise it is an extra parameter matching an ellipsis). */
442 /* On the vax all args are pushed. */
444 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
446 /* This macro generates the assembly code for function entry.
447 FILE is a stdio stream to output the code to.
448 SIZE is an int: how many units of temporary storage to allocate,
449 adjusted by STARTING_FRAME_OFFSET to accomodate vms.h.
450 Refer to the array `regs_ever_live' to determine which registers
451 to save; `regs_ever_live[I]' is nonzero if register number I
452 is ever used in the function. This macro is responsible for
453 knowing which registers should not be saved even if used. */
455 #define FUNCTION_PROLOGUE(FILE, SIZE) \
456 { register int regno; \
457 register int mask = 0; \
458 register int size = SIZE - STARTING_FRAME_OFFSET; \
459 extern char call_used_regs[]; \
460 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
461 if (regs_ever_live[regno] && !call_used_regs[regno]) \
462 mask |= 1 << regno; \
463 fprintf (FILE, "\t.word 0x%x\n", mask); \
464 MAYBE_VMS_FUNCTION_PROLOGUE(FILE) \
465 if ((size) >= 64) fprintf (FILE, "\tmovab %d(sp),sp\n", -size);\
466 else if (size) fprintf (FILE, "\tsubl2 $%d,sp\n", (size)); }
468 /* vms.h redefines this. */
469 #define MAYBE_VMS_FUNCTION_PROLOGUE(FILE)
471 /* Output assembler code to FILE to increment profiler label # LABELNO
472 for profiling a function entry. */
474 #define FUNCTION_PROFILER(FILE, LABELNO) \
475 fprintf (FILE, "\tmovab LP%d,r0\n\tjsb mcount\n", (LABELNO));
477 /* Output assembler code to FILE to initialize this source file's
478 basic block profiling info, if that has not already been done. */
480 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
481 fprintf (FILE, "\ttstl LPBX0\n\tjneq LPI%d\n\tpushal LPBX0\n\tcalls $1,__bb_init_func\nLPI%d:\n", \
482 LABELNO, LABELNO);
484 /* Output assembler code to FILE to increment the entry-count for
485 the BLOCKNO'th basic block in this source file. This is a real pain in the
486 sphincter on a VAX, since we do not want to change any of the bits in the
487 processor status word. The way it is done here, it is pushed onto the stack
488 before any flags have changed, and then the stack is fixed up to account for
489 the fact that the instruction to restore the flags only reads a word.
490 It may seem a bit clumsy, but at least it works.
493 #define BLOCK_PROFILER(FILE, BLOCKNO) \
494 fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
495 4 * BLOCKNO)
497 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
498 the stack pointer does not matter. The value is tested only in
499 functions that have frame pointers.
500 No definition is equivalent to always zero. */
502 #define EXIT_IGNORE_STACK 1
504 /* This macro generates the assembly code for function exit,
505 on machines that need it. If FUNCTION_EPILOGUE is not defined
506 then individual return instructions are generated for each
507 return statement. Args are same as for FUNCTION_PROLOGUE. */
509 /* #define FUNCTION_EPILOGUE(FILE, SIZE) */
511 /* Store in the variable DEPTH the initial difference between the
512 frame pointer reg contents and the stack pointer reg contents,
513 as of the start of the function body. This depends on the layout
514 of the fixed parts of the stack frame and on how registers are saved.
516 On the Vax, FRAME_POINTER_REQUIRED is always 1, so the definition of this
517 macro doesn't matter. But it must be defined. */
519 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
521 /* Output assembler code for a block containing the constant parts
522 of a trampoline, leaving space for the variable parts. */
524 /* On the vax, the trampoline contains an entry mask and two instructions:
525 .word NN
526 movl $STATIC,r0 (store the functions static chain)
527 jmp *$FUNCTION (jump to function code at address FUNCTION) */
529 #define TRAMPOLINE_TEMPLATE(FILE) \
531 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
532 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8fd0)); \
533 ASM_OUTPUT_INT (FILE, const0_rtx); \
534 ASM_OUTPUT_BYTE (FILE, 0x50+STATIC_CHAIN_REGNUM); \
535 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x9f17)); \
536 ASM_OUTPUT_INT (FILE, const0_rtx); \
539 /* Length in units of the trampoline for entering a nested function. */
541 #define TRAMPOLINE_SIZE 15
543 /* Emit RTL insns to initialize the variable parts of a trampoline.
544 FNADDR is an RTX for the address of the function's pure code.
545 CXT is an RTX for the static chain value for the function. */
547 /* We copy the register-mask from the function's pure code
548 to the start of the trampoline. */
549 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
551 emit_insn (gen_rtx (ASM_INPUT, VOIDmode, \
552 "movpsl -(sp)\n\tpushal 1(pc)\n\trei")); \
553 emit_move_insn (gen_rtx (MEM, HImode, TRAMP), \
554 gen_rtx (MEM, HImode, FNADDR)); \
555 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), CXT);\
556 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 11)), \
557 plus_constant (FNADDR, 2)); \
560 /* Byte offset of return address in a stack frame. The "saved PC" field
561 is in element [4] when treating the frame as an array of longwords. */
563 #define RETURN_ADDRESS_OFFSET (4 * UNITS_PER_WORD) /* 16 */
565 /* A C expression whose value is RTL representing the value of the return
566 address for the frame COUNT steps up from the current frame.
567 FRAMEADDR is already the frame pointer of the COUNT frame, so we
568 can ignore COUNT. */
570 #define RETURN_ADDR_RTX(COUNT, FRAME) \
571 ((COUNT == 0) \
572 ? gen_rtx (MEM, Pmode, plus_constant (FRAME, RETURN_ADDRESS_OFFSET)) \
573 : (rtx) 0)
576 /* Addressing modes, and classification of registers for them. */
578 #define HAVE_POST_INCREMENT
579 /* #define HAVE_POST_DECREMENT */
581 #define HAVE_PRE_DECREMENT
582 /* #define HAVE_PRE_INCREMENT */
584 /* Macros to check register numbers against specific register classes. */
586 /* These assume that REGNO is a hard or pseudo reg number.
587 They give nonzero only if REGNO is a hard reg of the suitable class
588 or a pseudo reg currently allocated to a suitable hard reg.
589 Since they use reg_renumber, they are safe only once reg_renumber
590 has been allocated, which happens in local-alloc.c. */
592 #define REGNO_OK_FOR_INDEX_P(regno) \
593 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
594 #define REGNO_OK_FOR_BASE_P(regno) \
595 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
597 /* Maximum number of registers that can appear in a valid memory address. */
599 #define MAX_REGS_PER_ADDRESS 2
601 /* 1 if X is an rtx for a constant that is a valid address. */
603 #define CONSTANT_ADDRESS_P(X) \
604 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
605 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
606 || GET_CODE (X) == HIGH)
608 /* Nonzero if the constant value X is a legitimate general operand.
609 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
611 #define LEGITIMATE_CONSTANT_P(X) 1
613 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
614 and check its validity for a certain class.
615 We have two alternate definitions for each of them.
616 The usual definition accepts all pseudo regs; the other rejects
617 them unless they have been allocated suitable hard regs.
618 The symbol REG_OK_STRICT causes the latter definition to be used.
620 Most source files want to accept pseudo regs in the hope that
621 they will get allocated to the class that the insn wants them to be in.
622 Source files for reload pass need to be strict.
623 After reload, it makes no difference, since pseudo regs have
624 been eliminated by then. */
626 #ifndef REG_OK_STRICT
628 /* Nonzero if X is a hard reg that can be used as an index
629 or if it is a pseudo reg. */
630 #define REG_OK_FOR_INDEX_P(X) 1
631 /* Nonzero if X is a hard reg that can be used as a base reg
632 or if it is a pseudo reg. */
633 #define REG_OK_FOR_BASE_P(X) 1
635 #else
637 /* Nonzero if X is a hard reg that can be used as an index. */
638 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
639 /* Nonzero if X is a hard reg that can be used as a base reg. */
640 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
642 #endif
644 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
645 that is a valid memory address for an instruction.
646 The MODE argument is the machine mode for the MEM expression
647 that wants to use this address.
649 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
650 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
652 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS
654 /* Zero if this contains a (CONST (PLUS (SYMBOL_REF) (...))) and the
655 symbol in the SYMBOL_REF is an external symbol. */
657 #define INDIRECTABLE_CONSTANT_P(X) \
658 (! (GET_CODE ((X)) == CONST \
659 && GET_CODE (XEXP ((X), 0)) == PLUS \
660 && GET_CODE (XEXP (XEXP ((X), 0), 0)) == SYMBOL_REF \
661 && SYMBOL_REF_FLAG (XEXP (XEXP ((X), 0), 0))))
663 /* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
664 are no SYMBOL_REFs for external symbols present. */
666 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) \
667 (GET_CODE (X) == LABEL_REF \
668 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_FLAG (X)) \
669 || (GET_CODE (X) == CONST && INDIRECTABLE_CONSTANT_P(X)) \
670 || GET_CODE (X) == CONST_INT)
673 /* Non-zero if X is an address which can be indirected. External symbols
674 could be in a sharable image library, so we disallow those. */
676 #define INDIRECTABLE_ADDRESS_P(X) \
677 (INDIRECTABLE_CONSTANT_ADDRESS_P (X) \
678 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
679 || (GET_CODE (X) == PLUS \
680 && GET_CODE (XEXP (X, 0)) == REG \
681 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
682 && INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))))
684 #else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
686 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) CONSTANT_ADDRESS_P(X)
688 /* Non-zero if X is an address which can be indirected. */
689 #define INDIRECTABLE_ADDRESS_P(X) \
690 (CONSTANT_ADDRESS_P (X) \
691 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
692 || (GET_CODE (X) == PLUS \
693 && GET_CODE (XEXP (X, 0)) == REG \
694 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
695 && CONSTANT_ADDRESS_P (XEXP (X, 1))))
697 #endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
699 /* Go to ADDR if X is a valid address not using indexing.
700 (This much is the easy part.) */
701 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
702 { register rtx xfoob = (X); \
703 if (GET_CODE (xfoob) == REG) \
705 extern rtx *reg_equiv_mem; \
706 if (! reload_in_progress \
707 || reg_equiv_mem[REGNO (xfoob)] == 0 \
708 || INDIRECTABLE_ADDRESS_P (reg_equiv_mem[REGNO (xfoob)])) \
709 goto ADDR; \
711 if (CONSTANT_ADDRESS_P (xfoob)) goto ADDR; \
712 if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
713 xfoob = XEXP (X, 0); \
714 if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
715 goto ADDR; \
716 if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
717 && GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob)) \
718 goto ADDR; }
720 /* 1 if PROD is either a reg times size of mode MODE
721 or just a reg, if MODE is just one byte.
722 This macro's expansion uses the temporary variables xfoo0 and xfoo1
723 that must be declared in the surrounding context. */
724 #define INDEX_TERM_P(PROD, MODE) \
725 (GET_MODE_SIZE (MODE) == 1 \
726 ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
727 : (GET_CODE (PROD) == MULT \
728 && \
729 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
730 ((GET_CODE (xfoo0) == CONST_INT \
731 && INTVAL (xfoo0) == GET_MODE_SIZE (MODE) \
732 && GET_CODE (xfoo1) == REG \
733 && REG_OK_FOR_INDEX_P (xfoo1)) \
734 || \
735 (GET_CODE (xfoo1) == CONST_INT \
736 && INTVAL (xfoo1) == GET_MODE_SIZE (MODE) \
737 && GET_CODE (xfoo0) == REG \
738 && REG_OK_FOR_INDEX_P (xfoo0))))))
740 /* Go to ADDR if X is the sum of a register
741 and a valid index term for mode MODE. */
742 #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
743 { register rtx xfooa; \
744 if (GET_CODE (X) == PLUS) \
745 { if (GET_CODE (XEXP (X, 0)) == REG \
746 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
747 && (xfooa = XEXP (X, 1), \
748 INDEX_TERM_P (xfooa, MODE))) \
749 goto ADDR; \
750 if (GET_CODE (XEXP (X, 1)) == REG \
751 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
752 && (xfooa = XEXP (X, 0), \
753 INDEX_TERM_P (xfooa, MODE))) \
754 goto ADDR; } }
756 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
757 { register rtx xfoo, xfoo0, xfoo1; \
758 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
759 if (GET_CODE (X) == PLUS) \
760 { /* Handle <address>[index] represented with index-sum outermost */\
761 xfoo = XEXP (X, 0); \
762 if (INDEX_TERM_P (xfoo, MODE)) \
763 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
764 xfoo = XEXP (X, 1); \
765 if (INDEX_TERM_P (xfoo, MODE)) \
766 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
767 /* Handle offset(reg)[index] with offset added outermost */ \
768 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 0))) \
769 { if (GET_CODE (XEXP (X, 1)) == REG \
770 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
771 goto ADDR; \
772 GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
773 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))) \
774 { if (GET_CODE (XEXP (X, 0)) == REG \
775 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
776 goto ADDR; \
777 GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
779 /* Try machine-dependent ways of modifying an illegitimate address
780 to be legitimate. If we find one, return the new, valid address.
781 This macro is used in only one place: `memory_address' in explow.c.
783 OLDX is the address as it was before break_out_memory_refs was called.
784 In some cases it is useful to look at this to decide what needs to be done.
786 MODE and WIN are passed so that this macro can use
787 GO_IF_LEGITIMATE_ADDRESS.
789 It is always safe for this macro to do nothing. It exists to recognize
790 opportunities to optimize the output.
792 For the vax, nothing needs to be done. */
794 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
796 /* Go to LABEL if ADDR (a legitimate address expression)
797 has an effect that depends on the machine mode it is used for.
798 On the VAX, the predecrement and postincrement address depend thus
799 (the amount of decrement or increment being the length of the operand)
800 and all indexed address depend thus (because the index scale factor
801 is the length of the operand). */
802 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
803 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
804 goto LABEL; \
805 if (GET_CODE (ADDR) == PLUS) \
806 { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
807 && GET_CODE (XEXP (ADDR, 1)) == REG); \
808 else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
809 && GET_CODE (XEXP (ADDR, 0)) == REG); \
810 else goto LABEL; }}
812 /* Specify the machine mode that this machine uses
813 for the index in the tablejump instruction. */
814 #define CASE_VECTOR_MODE HImode
816 /* Define this if the case instruction expects the table
817 to contain offsets from the address of the table.
818 Do not define this if the table should contain absolute addresses. */
819 #define CASE_VECTOR_PC_RELATIVE
821 /* Define this if the case instruction drops through after the table
822 when the index is out of range. Don't define it if the case insn
823 jumps to the default label instead. */
824 #define CASE_DROPS_THROUGH
826 /* Specify the tree operation to be used to convert reals to integers. */
827 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
829 /* This is the kind of divide that is easiest to do in the general case. */
830 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
832 /* Define this as 1 if `char' should by default be signed; else as 0. */
833 #define DEFAULT_SIGNED_CHAR 1
835 /* This flag, if defined, says the same insns that convert to a signed fixnum
836 also convert validly to an unsigned one. */
837 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
839 /* Max number of bytes we can move from memory to memory
840 in one reasonably fast instruction. */
841 #define MOVE_MAX 8
843 /* Define this if zero-extension is slow (more than one real instruction). */
844 /* #define SLOW_ZERO_EXTEND */
846 /* Nonzero if access to memory by bytes is slow and undesirable. */
847 #define SLOW_BYTE_ACCESS 0
849 /* Define if shifts truncate the shift count
850 which implies one can omit a sign-extension or zero-extension
851 of a shift count. */
852 /* #define SHIFT_COUNT_TRUNCATED */
854 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
855 is done just by pretending it is already truncated. */
856 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
858 /* Specify the machine mode that pointers have.
859 After generation of rtl, the compiler makes no further distinction
860 between pointers and any other objects of this machine mode. */
861 #define Pmode SImode
863 /* A function address in a call instruction
864 is a byte address (for indexing purposes)
865 so give the MEM rtx a byte's mode. */
866 #define FUNCTION_MODE QImode
868 /* This machine doesn't use IEEE floats. */
870 #define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
872 /* Compute the cost of computing a constant rtl expression RTX
873 whose rtx-code is CODE. The body of this macro is a portion
874 of a switch statement. If the code is computed here,
875 return it with a return statement. Otherwise, break from the switch. */
877 /* On a VAX, constants from 0..63 are cheap because they can use the
878 1 byte literal constant format. compare to -1 should be made cheap
879 so that decrement-and-branch insns can be formed more easily (if
880 the value -1 is copied to a register some decrement-and-branch patterns
881 will not match). */
883 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
884 case CONST_INT: \
885 if (INTVAL (RTX) == 0) return 0; \
886 if ((OUTER_CODE) == AND) \
887 return ((unsigned) ~INTVAL (RTX) <= 077) ? 1 : 2; \
888 if ((unsigned) INTVAL (RTX) <= 077) return 1; \
889 if ((OUTER_CODE) == COMPARE && INTVAL (RTX) == -1) \
890 return 1; \
891 if ((OUTER_CODE) == PLUS && (unsigned) -INTVAL (RTX) <= 077)\
892 return 1; \
893 case CONST: \
894 case LABEL_REF: \
895 case SYMBOL_REF: \
896 return 3; \
897 case CONST_DOUBLE: \
898 if (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
899 return vax_float_literal (RTX) ? 5 : 8; \
900 else \
901 return (((CONST_DOUBLE_HIGH (RTX) == 0 \
902 && (unsigned) CONST_DOUBLE_LOW (RTX) < 64) \
903 || ((OUTER_CODE) == PLUS \
904 && CONST_DOUBLE_HIGH (RTX) == -1 \
905 && (unsigned)-CONST_DOUBLE_LOW (RTX) < 64)) \
906 ? 2 : 5);
908 #define RTX_COSTS(RTX,CODE,OUTER_CODE) case FIX: case FLOAT: \
909 case MULT: case DIV: case UDIV: case MOD: case UMOD: \
910 case ASHIFT: case LSHIFTRT: case ASHIFTRT: \
911 case ROTATE: case ROTATERT: case PLUS: case MINUS: case IOR: \
912 case XOR: case AND: case NEG: case NOT: case ZERO_EXTRACT: \
913 case SIGN_EXTRACT: case MEM: return vax_rtx_cost(RTX)
915 #define ADDRESS_COST(RTX) (1 + (GET_CODE (RTX) == REG ? 0 : vax_address_cost(RTX)))
917 /* Specify the cost of a branch insn; roughly the number of extra insns that
918 should be added to avoid a branch.
920 Branches are extremely cheap on the VAX while the shift insns often
921 used to replace branches can be expensive. */
923 #define BRANCH_COST 0
926 * We can use the BSD C library routines for the libgcc calls that are
927 * still generated, since that's what they boil down to anyways.
930 #define UDIVSI3_LIBCALL "*udiv"
931 #define UMODSI3_LIBCALL "*urem"
933 /* Check a `double' value for validity for a particular machine mode. */
935 /* note that it is very hard to accidentally create a number that fits in a
936 double but not in a float, since their ranges are almost the same */
938 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
939 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
941 /* For future reference:
942 D Float: 9 bit, sign magnitude, excess 128 binary exponent
943 normalized 56 bit fraction, redundant bit not represented
944 approximately 16 decimal digits of precision
946 The values to use if we trust decimal to binary conversions:
947 #define MAX_D_FLOAT 1.7014118346046923e+38
948 #define MIN_D_FLOAT .29387358770557188e-38
950 G float: 12 bit, sign magnitude, excess 1024 binary exponent
951 normalized 53 bit fraction, redundant bit not represented
952 approximately 15 decimal digits precision
954 The values to use if we trust decimal to binary conversions:
955 #define MAX_G_FLOAT .898846567431157e+308
956 #define MIN_G_FLOAT .556268464626800e-308
959 /* Tell final.c how to eliminate redundant test instructions. */
961 /* Here we define machine-dependent flags and fields in cc_status
962 (see `conditions.h'). No extra ones are needed for the vax. */
964 /* Store in cc_status the expressions
965 that the condition codes will describe
966 after execution of an instruction whose pattern is EXP.
967 Do not alter them if the instruction would not alter the cc's. */
969 #define NOTICE_UPDATE_CC(EXP, INSN) \
970 { if (GET_CODE (EXP) == SET) \
971 { if (GET_CODE (SET_SRC (EXP)) == CALL) \
972 CC_STATUS_INIT; \
973 else if (GET_CODE (SET_DEST (EXP)) != ZERO_EXTRACT \
974 && GET_CODE (SET_DEST (EXP)) != PC) \
975 { cc_status.flags = 0; \
976 cc_status.value1 = SET_DEST (EXP); \
977 cc_status.value2 = SET_SRC (EXP); } } \
978 else if (GET_CODE (EXP) == PARALLEL \
979 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
981 if (GET_CODE (SET_SRC (XVECEXP (EXP, 0, 0))) == CALL) \
982 CC_STATUS_INIT; \
983 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
984 { cc_status.flags = 0; \
985 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
986 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
987 else \
988 /* PARALLELs whose first element sets the PC are aob, \
989 sob insns. They do change the cc's. */ \
990 CC_STATUS_INIT; } \
991 else CC_STATUS_INIT; \
992 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
993 && cc_status.value2 \
994 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
995 cc_status.value2 = 0; \
996 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
997 && cc_status.value2 \
998 && GET_CODE (cc_status.value2) == MEM) \
999 cc_status.value2 = 0; }
1000 /* Actual condition, one line up, should be that value2's address
1001 depends on value1, but that is too much of a pain. */
1003 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1004 { if (cc_status.flags & CC_NO_OVERFLOW) \
1005 return NO_OV; \
1006 return NORMAL; }
1008 /* Control the assembler format that we output. */
1010 /* Output at beginning of assembler file. */
1012 #define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
1014 /* Output to assembler file text saying following lines
1015 may contain character constants, extra white space, comments, etc. */
1017 #define ASM_APP_ON "#APP\n"
1019 /* Output to assembler file text saying following lines
1020 no longer contain unusual constructs. */
1022 #define ASM_APP_OFF "#NO_APP\n"
1024 /* Output before read-only data. */
1026 #define TEXT_SECTION_ASM_OP ".text"
1028 /* Output before writable data. */
1030 #define DATA_SECTION_ASM_OP ".data"
1032 /* How to refer to registers in assembler output.
1033 This sequence is indexed by compiler's hard-register-number (see above). */
1035 #define REGISTER_NAMES \
1036 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
1037 "r9", "r10", "r11", "ap", "fp", "sp", "pc"}
1039 /* This is BSD, so it wants DBX format. */
1041 #define DBX_DEBUGGING_INFO
1043 /* How to renumber registers for dbx and gdb.
1044 Vax needs no change in the numeration. */
1046 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1048 /* Do not break .stabs pseudos into continuations. */
1050 #define DBX_CONTIN_LENGTH 0
1052 /* This is the char to use for continuation (in case we need to turn
1053 continuation back on). */
1055 #define DBX_CONTIN_CHAR '?'
1057 /* Don't use the `xsfoo;' construct in DBX output; this system
1058 doesn't support it. */
1060 #define DBX_NO_XREFS
1062 /* Output the .stabs for a C `static' variable in the data section. */
1063 #define DBX_STATIC_STAB_DATA_SECTION
1065 /* Vax specific: which type character is used for type double? */
1067 #define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
1069 /* This is how to output the definition of a user-level label named NAME,
1070 such as the label on a static function or variable NAME. */
1072 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1073 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1075 /* This is how to output a command to make the user-level label named NAME
1076 defined for reference from other files. */
1078 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1079 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1081 /* The prefix to add to user-visible assembler symbols. */
1083 #define USER_LABEL_PREFIX "_"
1085 /* This is how to output an internal numbered label where
1086 PREFIX is the class of label and NUM is the number within the class. */
1088 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1089 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1091 /* This is how to store into the string LABEL
1092 the symbol_ref name of an internal numbered label where
1093 PREFIX is the class of label and NUM is the number within the class.
1094 This is suitable for output with `assemble_name'. */
1096 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1097 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1099 /* This is how to output an assembler line defining a `double' constant.
1100 It is .dfloat or .gfloat, depending. */
1102 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1103 do { char dstr[30]; \
1104 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", dstr); \
1105 fprintf (FILE, "\t.%cfloat 0%c%s\n", ASM_DOUBLE_CHAR, \
1106 ASM_DOUBLE_CHAR, dstr); \
1107 } while (0);
1109 /* This is how to output an assembler line defining a `float' constant. */
1111 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1112 do { char dstr[30]; \
1113 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", dstr); \
1114 fprintf (FILE, "\t.float 0f%s\n", dstr); } while (0);
1116 /* This is how to output an assembler line defining an `int' constant. */
1118 #define ASM_OUTPUT_INT(FILE,VALUE) \
1119 ( fprintf (FILE, "\t.long "), \
1120 output_addr_const (FILE, (VALUE)), \
1121 fprintf (FILE, "\n"))
1123 /* Likewise for `char' and `short' constants. */
1125 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1126 ( fprintf (FILE, "\t.word "), \
1127 output_addr_const (FILE, (VALUE)), \
1128 fprintf (FILE, "\n"))
1130 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1131 ( fprintf (FILE, "\t.byte "), \
1132 output_addr_const (FILE, (VALUE)), \
1133 fprintf (FILE, "\n"))
1135 /* This is how to output an assembler line for a numeric constant byte. */
1137 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1138 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1140 /* This is how to output an insn to push a register on the stack.
1141 It need not be very fast code. */
1143 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1144 fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
1146 /* This is how to output an insn to pop a register from the stack.
1147 It need not be very fast code. */
1149 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1150 fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
1152 /* This is how to output an element of a case-vector that is absolute.
1153 (The Vax does not use such vectors,
1154 but we must define this macro anyway.) */
1156 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1157 fprintf (FILE, "\t.long L%d\n", VALUE)
1159 /* This is how to output an element of a case-vector that is relative. */
1161 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1162 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1164 /* This is how to output an assembler line
1165 that says to advance the location counter
1166 to a multiple of 2**LOG bytes. */
1168 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1169 fprintf (FILE, "\t.align %d\n", (LOG))
1171 /* This is how to output an assembler line
1172 that says to advance the location counter by SIZE bytes. */
1174 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1175 fprintf (FILE, "\t.space %u\n", (SIZE))
1177 /* This says how to output an assembler line
1178 to define a global common symbol. */
1180 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1181 ( fputs (".comm ", (FILE)), \
1182 assemble_name ((FILE), (NAME)), \
1183 fprintf ((FILE), ",%u\n", (ROUNDED)))
1185 /* This says how to output an assembler line
1186 to define a local common symbol. */
1188 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1189 ( fputs (".lcomm ", (FILE)), \
1190 assemble_name ((FILE), (NAME)), \
1191 fprintf ((FILE), ",%u\n", (ROUNDED)))
1193 /* Store in OUTPUT a string (made with alloca) containing
1194 an assembler-name for a local static variable named NAME.
1195 LABELNO is an integer which is different for each call. */
1197 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1198 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1199 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1201 /* When debugging, we want to output an extra dummy label so that gas
1202 can distinguish between D_float and G_float prior to processing the
1203 .stabs directive identifying type double. */
1205 #define ASM_IDENTIFY_LANGUAGE(FILE) \
1206 do { \
1207 output_lang_identify (FILE); \
1208 if (write_symbols == DBX_DEBUG) \
1209 fprintf (FILE, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR); \
1210 } while (0)
1212 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1213 Used for C++ multiple inheritance.
1214 .mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask
1215 addl2 $DELTA, 4(ap) #adjust first argument
1216 jmp FUNCTION+2 #jump beyond FUNCTION's entry mask
1218 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1219 do { \
1220 fprintf (FILE, "\t.word 0x0ffc\n"); \
1221 fprintf (FILE, "\taddl2 $%d,4(ap)\n", DELTA); \
1222 fprintf (FILE, "\tjmp "); \
1223 assemble_name (FILE, IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (FUNCTION))); \
1224 fprintf (FILE, "+2\n"); \
1225 } while (0)
1227 /* Define the parentheses used to group arithmetic operations
1228 in assembler code. */
1230 #define ASM_OPEN_PAREN "("
1231 #define ASM_CLOSE_PAREN ")"
1233 /* Define results of standard character escape sequences. */
1234 #define TARGET_BELL 007
1235 #define TARGET_BS 010
1236 #define TARGET_TAB 011
1237 #define TARGET_NEWLINE 012
1238 #define TARGET_VT 013
1239 #define TARGET_FF 014
1240 #define TARGET_CR 015
1242 /* Print an instruction operand X on file FILE.
1243 CODE is the code from the %-spec that requested printing this operand;
1244 if `%z3' was used to print operand 3, then CODE is 'z'.
1246 VAX operand formatting codes:
1248 letter print
1249 C reverse branch condition
1250 D 64-bit immediate operand
1251 B the low 8 bits of the complement of a constant operand
1252 H the low 16 bits of the complement of a constant operand
1253 M a mask for the N highest bits of a word
1254 N the complement of a constant integer operand
1255 P constant operand plus 1
1256 R 32 - constant operand
1257 b the low 8 bits of a negated constant operand
1258 h the low 16 bits of a negated constant operand
1259 # 'd' or 'g' depending on whether dfloat or gfloat is used */
1261 /* The purpose of D is to get around a quirk or bug in vax assembler
1262 whereby -1 in a 64-bit immediate operand means 0x00000000ffffffff,
1263 which is not a 64-bit minus one. */
1265 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1266 ((CODE) == '#')
1268 #define PRINT_OPERAND(FILE, X, CODE) \
1269 { extern char *rev_cond_name (); \
1270 if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE); \
1271 else if (CODE == 'C') \
1272 fputs (rev_cond_name (X), FILE); \
1273 else if (CODE == 'D' && GET_CODE (X) == CONST_INT && INTVAL (X) < 0) \
1274 fprintf (FILE, "$0xffffffff%08x", INTVAL (X)); \
1275 else if (CODE == 'P' && GET_CODE (X) == CONST_INT) \
1276 fprintf (FILE, "$%d", INTVAL (X) + 1); \
1277 else if (CODE == 'N' && GET_CODE (X) == CONST_INT) \
1278 fprintf (FILE, "$%d", ~ INTVAL (X)); \
1279 /* rotl instruction cannot deal with negative arguments. */ \
1280 else if (CODE == 'R' && GET_CODE (X) == CONST_INT) \
1281 fprintf (FILE, "$%d", 32 - INTVAL (X)); \
1282 else if (CODE == 'H' && GET_CODE (X) == CONST_INT) \
1283 fprintf (FILE, "$%d", 0xffff & ~ INTVAL (X)); \
1284 else if (CODE == 'h' && GET_CODE (X) == CONST_INT) \
1285 fprintf (FILE, "$%d", (short) - INTVAL (x)); \
1286 else if (CODE == 'B' && GET_CODE (X) == CONST_INT) \
1287 fprintf (FILE, "$%d", 0xff & ~ INTVAL (X)); \
1288 else if (CODE == 'b' && GET_CODE (X) == CONST_INT) \
1289 fprintf (FILE, "$%d", 0xff & - INTVAL (X)); \
1290 else if (CODE == 'M' && GET_CODE (X) == CONST_INT) \
1291 fprintf (FILE, "$%d", ~((1 << INTVAL (x)) - 1)); \
1292 else if (GET_CODE (X) == REG) \
1293 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1294 else if (GET_CODE (X) == MEM) \
1295 output_address (XEXP (X, 0)); \
1296 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
1297 { REAL_VALUE_TYPE r; char dstr[30]; \
1298 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1299 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1300 fprintf (FILE, "$0f%s", dstr); } \
1301 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode) \
1302 { REAL_VALUE_TYPE r; char dstr[30]; \
1303 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1304 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1305 fprintf (FILE, "$0%c%s", ASM_DOUBLE_CHAR, dstr); } \
1306 else { putc ('$', FILE); output_addr_const (FILE, X); }}
1308 /* Print a memory operand whose address is X, on file FILE.
1309 This uses a function in output-vax.c. */
1311 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1312 print_operand_address (FILE, ADDR)