Initial revision
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob60b4c529e82d9e4915062574d412261e92552077
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
27 /* Names to predefine in the preprocessor for this target machine. */
29 #define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \
30 -Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
32 /* Print subsidiary information on the compiler version in use. */
33 #define TARGET_VERSION ;
35 /* Default string to use for cpu if not specified. */
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT ((char *)0)
38 #endif
40 /* Tell the assembler to assume that all undefined names are external.
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
48 /* #define ASM_SPEC "-u %(asm_cpu)" */
50 /* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
53 #define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
55 /* Common CPP definitions used by CPP_SPEC amonst the various targets
56 for handling -mcpu=xxx switches. */
57 #define CPP_CPU_SPEC \
58 "%{!mcpu*: \
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
64 %{mcpu=common: -D_ARCH_COM} \
65 %{mcpu=power: -D_ARCH_PWR} \
66 %{mcpu=power2: -D_ARCH_PWR2} \
67 %{mcpu=powerpc: -D_ARCH_PPC} \
68 %{mcpu=rios: -D_ARCH_PWR} \
69 %{mcpu=rios1: -D_ARCH_PWR} \
70 %{mcpu=rios2: -D_ARCH_PWR2} \
71 %{mcpu=rsc: -D_ARCH_PWR} \
72 %{mcpu=rsc1: -D_ARCH_PWR} \
73 %{mcpu=403: -D_ARCH_PPC} \
74 %{mcpu=505: -D_ARCH_PPC} \
75 %{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
76 %{mcpu=602: -D_ARCH_PPC} \
77 %{mcpu=603: -D_ARCH_PPC} \
78 %{mcpu=603e: -D_ARCH_PPC} \
79 %{mcpu=604: -D_ARCH_PPC} \
80 %{mcpu=620: -D_ARCH_PPC} \
81 %{mcpu=821: -D_ARCH_PPC} \
82 %{mcpu=860: -D_ARCH_PPC}"
84 #ifndef CPP_DEFAULT_SPEC
85 #define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
86 #endif
88 #ifndef CPP_SYSV_SPEC
89 #define CPP_SYSV_SPEC ""
90 #endif
92 #ifndef CPP_ENDIAN_SPEC
93 #define CPP_ENDIAN_SPEC ""
94 #endif
96 #ifndef CPP_ENDIAN_DEFAULT_SPEC
97 #define CPP_ENDIAN_DEFAULT_SPEC ""
98 #endif
100 #ifndef CPP_SYSV_DEFAULT_SPEC
101 #define CPP_SYSV_DEFAULT_SPEC ""
102 #endif
104 /* Common ASM definitions used by ASM_SPEC amonst the various targets
105 for handling -mcpu=xxx switches. */
106 #define ASM_CPU_SPEC \
107 "%{!mcpu*: \
108 %{mpower: %{!mpower2: -mpwr}} \
109 %{mpower2: -mpwrx} \
110 %{mpowerpc*: -mppc} \
111 %{mno-power: %{!mpowerpc*: -mcom}} \
112 %{!mno-power: %{!mpower2: %(asm_default)}}} \
113 %{mcpu=common: -mcom} \
114 %{mcpu=power: -mpwr} \
115 %{mcpu=power2: -mpwrx} \
116 %{mcpu=powerpc: -mppc} \
117 %{mcpu=rios: -mpwr} \
118 %{mcpu=rios1: -mpwr} \
119 %{mcpu=rios2: -mpwrx} \
120 %{mcpu=rsc: -mpwr} \
121 %{mcpu=rsc1: -mpwr} \
122 %{mcpu=403: -mppc} \
123 %{mcpu=505: -mppc} \
124 %{mcpu=601: -m601} \
125 %{mcpu=602: -mppc} \
126 %{mcpu=603: -mppc} \
127 %{mcpu=603e: -mppc} \
128 %{mcpu=604: -mppc} \
129 %{mcpu=620: -mppc} \
130 %{mcpu=821: -mppc} \
131 %{mcpu=860: -mppc}"
133 #ifndef ASM_DEFAULT_SPEC
134 #define ASM_DEFAULT_SPEC ""
135 #endif
137 /* This macro defines names of additional specifications to put in the specs
138 that can be used in various specifications like CC1_SPEC. Its definition
139 is an initializer with a subgrouping for each command option.
141 Each subgrouping contains a string constant, that defines the
142 specification name, and a string constant that used by the GNU CC driver
143 program.
145 Do not define this macro if it does not need to do anything. */
147 #ifndef SUBTARGET_EXTRA_SPECS
148 #define SUBTARGET_EXTRA_SPECS
149 #endif
151 #define EXTRA_SPECS \
152 { "cpp_cpu", CPP_CPU_SPEC }, \
153 { "cpp_default", CPP_DEFAULT_SPEC }, \
154 { "cpp_sysv", CPP_SYSV_SPEC }, \
155 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
156 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
157 { "cpp_endian", CPP_ENDIAN_SPEC }, \
158 { "asm_cpu", ASM_CPU_SPEC }, \
159 { "asm_default", ASM_DEFAULT_SPEC }, \
160 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
161 { "link_libg", LINK_LIBG_SPEC }, \
162 SUBTARGET_EXTRA_SPECS
164 /* Default location of syscalls.exp under AIX */
165 #ifndef CROSS_COMPILE
166 #define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
167 #else
168 #define LINK_SYSCALLS_SPEC ""
169 #endif
171 /* Default location of libg.exp under AIX */
172 #ifndef CROSS_COMPILE
173 #define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
174 #else
175 #define LINK_LIBG_SPEC ""
176 #endif
178 /* Define the options for the binder: Start text at 512, align all segments
179 to 512 bytes, and warn if there is text relocation.
181 The -bhalt:4 option supposedly changes the level at which ld will abort,
182 but it also suppresses warnings about multiply defined symbols and is
183 used by the AIX cc command. So we use it here.
185 -bnodelcsect undoes a poor choice of default relating to multiply-defined
186 csects. See AIX documentation for more information about this.
188 -bM:SRE tells the linker that the output file is Shared REusable. Note
189 that to actually build a shared library you will also need to specify an
190 export list with the -Wl,-bE option. */
192 #define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
193 %{static:-bnso %(link_syscalls) } \
194 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
196 /* Profiled library versions are used by linking with special directories. */
197 #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
198 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
200 /* gcc must do the search itself to find libgcc.a, not use -l. */
201 #define LIBGCC_SPEC "libgcc.a%s"
203 /* Don't turn -B into -L if the argument specifies a relative file name. */
204 #define RELATIVE_PREFIX_NOT_LINKDIR
206 /* Architecture type. */
208 extern int target_flags;
210 /* Use POWER architecture instructions and MQ register. */
211 #define MASK_POWER 0x00000001
213 /* Use POWER2 extensions to POWER architecture. */
214 #define MASK_POWER2 0x00000002
216 /* Use PowerPC architecture instructions. */
217 #define MASK_POWERPC 0x00000004
219 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
220 #define MASK_PPC_GPOPT 0x00000008
222 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
223 #define MASK_PPC_GFXOPT 0x00000010
225 /* Use PowerPC-64 architecture instructions. */
226 #define MASK_POWERPC64 0x00000020
228 /* Use revised mnemonic names defined for PowerPC architecture. */
229 #define MASK_NEW_MNEMONICS 0x00000040
231 /* Disable placing fp constants in the TOC; can be turned on when the
232 TOC overflows. */
233 #define MASK_NO_FP_IN_TOC 0x00000080
235 /* Disable placing symbol+offset constants in the TOC; can be turned on when
236 the TOC overflows. */
237 #define MASK_NO_SUM_IN_TOC 0x00000100
239 /* Output only one TOC entry per module. Normally linking fails if
240 there are more than 16K unique variables/constants in an executable. With
241 this option, linking fails only if there are more than 16K modules, or
242 if there are more than 16K unique variables/constant in a single module.
244 This is at the cost of having 2 extra loads and one extra store per
245 function, and one less allocatable register. */
246 #define MASK_MINIMAL_TOC 0x00000200
248 /* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
249 #define MASK_64BIT 0x00000400
251 /* Disable use of FPRs. */
252 #define MASK_SOFT_FLOAT 0x00000800
254 /* Enable load/store multiple, even on powerpc */
255 #define MASK_MULTIPLE 0x00001000
256 #define MASK_MULTIPLE_SET 0x00002000
258 /* Use string instructions for block moves */
259 #define MASK_STRING 0x00004000
260 #define MASK_STRING_SET 0x00008000
262 /* Disable update form of load/store */
263 #define MASK_NO_UPDATE 0x00010000
265 /* Disable fused multiply/add operations */
266 #define MASK_NO_FUSED_MADD 0x00020000
268 #define TARGET_POWER (target_flags & MASK_POWER)
269 #define TARGET_POWER2 (target_flags & MASK_POWER2)
270 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
271 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
272 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
273 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
274 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
275 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
276 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
277 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
278 #define TARGET_64BIT (target_flags & MASK_64BIT)
279 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
280 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
281 #define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
282 #define TARGET_STRING (target_flags & MASK_STRING)
283 #define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
284 #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
285 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
287 #define TARGET_32BIT (! TARGET_64BIT)
288 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
289 #define TARGET_UPDATE (! TARGET_NO_UPDATE)
290 #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
292 /* Pseudo target to indicate whether the object format is ELF
293 (to get around not having conditional compilation in the md file) */
294 #ifndef TARGET_ELF
295 #define TARGET_ELF 0
296 #endif
298 /* If this isn't V.4, don't support -mno-toc. */
299 #ifndef TARGET_NO_TOC
300 #define TARGET_NO_TOC 0
301 #define TARGET_TOC 1
302 #endif
304 /* Pseudo target to say whether this is Windows NT */
305 #ifndef TARGET_WINDOWS_NT
306 #define TARGET_WINDOWS_NT 0
307 #endif
309 /* Pseudo target to say whether this is MAC */
310 #ifndef TARGET_MACOS
311 #define TARGET_MACOS 0
312 #endif
314 /* Pseudo target to say whether this is AIX */
315 #ifndef TARGET_AIX
316 #if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
317 #define TARGET_AIX 0
318 #else
319 #define TARGET_AIX 1
320 #endif
321 #endif
323 #ifndef TARGET_XL_CALL
324 #define TARGET_XL_CALL 0
325 #endif
327 /* Run-time compilation parameters selecting different hardware subsets.
329 Macro to define tables used to set the flags.
330 This is a list in braces of pairs in braces,
331 each pair being { "NAME", VALUE }
332 where VALUE is the bits to set or minus the bits to clear.
333 An empty string NAME is used to identify the default VALUE. */
335 /* This is meant to be redefined in the host dependent files */
336 #ifndef SUBTARGET_SWITCHES
337 #define SUBTARGET_SWITCHES
338 #endif
340 #define TARGET_SWITCHES \
341 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
342 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
343 | MASK_POWER2)}, \
344 {"no-power2", - MASK_POWER2}, \
345 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
346 | MASK_STRING)}, \
347 {"powerpc", MASK_POWERPC}, \
348 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
349 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
350 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
351 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
352 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
353 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
354 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
355 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
356 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
357 | MASK_MINIMAL_TOC)}, \
358 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
359 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
360 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
361 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
362 {"minimal-toc", MASK_MINIMAL_TOC}, \
363 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
364 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
365 {"hard-float", - MASK_SOFT_FLOAT}, \
366 {"soft-float", MASK_SOFT_FLOAT}, \
367 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
368 {"no-multiple", - MASK_MULTIPLE}, \
369 {"no-multiple", MASK_MULTIPLE_SET}, \
370 {"string", MASK_STRING | MASK_STRING_SET}, \
371 {"no-string", - MASK_STRING}, \
372 {"no-string", MASK_STRING_SET}, \
373 {"update", - MASK_NO_UPDATE}, \
374 {"no-update", MASK_NO_UPDATE}, \
375 {"fused-madd", - MASK_NO_FUSED_MADD}, \
376 {"no-fused-madd", MASK_NO_FUSED_MADD}, \
377 SUBTARGET_SWITCHES \
378 {"", TARGET_DEFAULT}}
380 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
382 /* Processor type. */
383 enum processor_type
384 {PROCESSOR_RIOS1,
385 PROCESSOR_RIOS2,
386 PROCESSOR_MPCCORE,
387 PROCESSOR_PPC403,
388 PROCESSOR_PPC601,
389 PROCESSOR_PPC603,
390 PROCESSOR_PPC604,
391 PROCESSOR_PPC620};
393 extern enum processor_type rs6000_cpu;
395 /* Recast the processor type to the cpu attribute. */
396 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
398 /* Define generic processor types based upon current deployment. */
399 #define PROCESSOR_COMMON PROCESSOR_PPC601
400 #define PROCESSOR_POWER PROCESSOR_RIOS1
401 #define PROCESSOR_POWERPC PROCESSOR_PPC604
403 /* Define the default processor. This is overridden by other tm.h files. */
404 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
406 /* Specify the dialect of assembler to use. New mnemonics is dialect one
407 and the old mnemonics are dialect zero. */
408 #define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
410 /* This macro is similar to `TARGET_SWITCHES' but defines names of
411 command options that have values. Its definition is an
412 initializer with a subgrouping for each command option.
414 Each subgrouping contains a string constant, that defines the
415 fixed part of the option name, and the address of a variable.
416 The variable, type `char *', is set to the variable part of the
417 given option if the fixed part matches. The actual option name
418 is made by appending `-m' to the specified name.
420 Here is an example which defines `-mshort-data-NUMBER'. If the
421 given option is `-mshort-data-512', the variable `m88k_short_data'
422 will be set to the string `"512"'.
424 extern char *m88k_short_data;
425 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
427 /* This is meant to be overriden in target specific files. */
428 #ifndef SUBTARGET_OPTIONS
429 #define SUBTARGET_OPTIONS
430 #endif
432 #define TARGET_OPTIONS \
434 {"cpu=", &rs6000_select[1].string}, \
435 {"tune=", &rs6000_select[2].string}, \
436 {"debug-", &rs6000_debug_name}, \
437 {"debug=", &rs6000_debug_name}, \
438 SUBTARGET_OPTIONS \
441 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
442 struct rs6000_cpu_select
444 char *string;
445 char *name;
446 int set_tune_p;
447 int set_arch_p;
450 extern struct rs6000_cpu_select rs6000_select[];
452 /* Debug support */
453 extern char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
454 extern int rs6000_debug_stack; /* debug stack applications */
455 extern int rs6000_debug_arg; /* debug argument handling */
457 #define TARGET_DEBUG_STACK rs6000_debug_stack
458 #define TARGET_DEBUG_ARG rs6000_debug_arg
460 /* Sometimes certain combinations of command options do not make sense
461 on a particular target machine. You can define a macro
462 `OVERRIDE_OPTIONS' to take account of this. This macro, if
463 defined, is executed once just after all the command options have
464 been parsed.
466 On the RS/6000 this is used to define the target cpu type. */
468 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
470 /* Show we can debug even without a frame pointer. */
471 #define CAN_DEBUG_WITHOUT_FP
473 /* target machine storage layout */
475 /* Define to support cross compilation to an RS6000 target. */
476 #define REAL_ARITHMETIC
478 /* Define this macro if it is advisable to hold scalars in registers
479 in a wider mode than that declared by the program. In such cases,
480 the value is constrained to be within the bounds of the declared
481 type, but kept valid in the wider mode. The signedness of the
482 extension may differ from that of the type. */
484 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
485 if (GET_MODE_CLASS (MODE) == MODE_INT \
486 && GET_MODE_SIZE (MODE) < 4) \
487 (MODE) = SImode;
489 /* Define this if most significant bit is lowest numbered
490 in instructions that operate on numbered bit-fields. */
491 /* That is true on RS/6000. */
492 #define BITS_BIG_ENDIAN 1
494 /* Define this if most significant byte of a word is the lowest numbered. */
495 /* That is true on RS/6000. */
496 #define BYTES_BIG_ENDIAN 1
498 /* Define this if most significant word of a multiword number is lowest
499 numbered.
501 For RS/6000 we can decide arbitrarily since there are no machine
502 instructions for them. Might as well be consistent with bits and bytes. */
503 #define WORDS_BIG_ENDIAN 1
505 /* number of bits in an addressable storage unit */
506 #define BITS_PER_UNIT 8
508 /* Width in bits of a "word", which is the contents of a machine register.
509 Note that this is not necessarily the width of data type `int';
510 if using 16-bit ints on a 68000, this would still be 32.
511 But on a machine with 16-bit registers, this would be 16. */
512 #define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
513 #define MAX_BITS_PER_WORD 64
515 /* Width of a word, in units (bytes). */
516 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
517 #define MIN_UNITS_PER_WORD 4
518 #define UNITS_PER_FP_WORD 8
520 /* Type used for ptrdiff_t, as a string used in a declaration. */
521 #define PTRDIFF_TYPE "int"
523 /* Type used for wchar_t, as a string used in a declaration. */
524 #define WCHAR_TYPE "short unsigned int"
526 /* Width of wchar_t in bits. */
527 #define WCHAR_TYPE_SIZE 16
529 /* A C expression for the size in bits of the type `short' on the
530 target machine. If you don't define this, the default is half a
531 word. (If this would be less than one storage unit, it is
532 rounded up to one unit.) */
533 #define SHORT_TYPE_SIZE 16
535 /* A C expression for the size in bits of the type `int' on the
536 target machine. If you don't define this, the default is one
537 word. */
538 #define INT_TYPE_SIZE 32
540 /* A C expression for the size in bits of the type `long' on the
541 target machine. If you don't define this, the default is one
542 word. */
543 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
544 #define MAX_LONG_TYPE_SIZE 64
546 /* A C expression for the size in bits of the type `long long' on the
547 target machine. If you don't define this, the default is two
548 words. */
549 #define LONG_LONG_TYPE_SIZE 64
551 /* A C expression for the size in bits of the type `char' on the
552 target machine. If you don't define this, the default is one
553 quarter of a word. (If this would be less than one storage unit,
554 it is rounded up to one unit.) */
555 #define CHAR_TYPE_SIZE BITS_PER_UNIT
557 /* A C expression for the size in bits of the type `float' on the
558 target machine. If you don't define this, the default is one
559 word. */
560 #define FLOAT_TYPE_SIZE 32
562 /* A C expression for the size in bits of the type `double' on the
563 target machine. If you don't define this, the default is two
564 words. */
565 #define DOUBLE_TYPE_SIZE 64
567 /* A C expression for the size in bits of the type `long double' on
568 the target machine. If you don't define this, the default is two
569 words. */
570 #define LONG_DOUBLE_TYPE_SIZE 64
572 /* Width in bits of a pointer.
573 See also the macro `Pmode' defined below. */
574 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
576 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
577 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
579 /* Boundary (in *bits*) on which stack pointer should be aligned. */
580 #define STACK_BOUNDARY 64
582 /* Allocation boundary (in *bits*) for the code of a function. */
583 #define FUNCTION_BOUNDARY 32
585 /* No data type wants to be aligned rounder than this. */
586 #define BIGGEST_ALIGNMENT 64
588 /* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
589 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
590 (DECL_MODE (FIELD) != DFmode ? (COMPUTED) : MIN ((COMPUTED), 32))
592 /* Alignment of field after `int : 0' in a structure. */
593 #define EMPTY_FIELD_BOUNDARY 32
595 /* Every structure's size must be a multiple of this. */
596 #define STRUCTURE_SIZE_BOUNDARY 8
598 /* A bitfield declared as `int' forces `int' alignment for the struct. */
599 #define PCC_BITFIELD_TYPE_MATTERS 1
601 /* AIX increases natural record alignment to doubleword if the first
602 field is an FP double while the FP fields remain word aligned. */
603 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
604 ((TREE_CODE (STRUCT) == RECORD_TYPE \
605 || TREE_CODE (STRUCT) == UNION_TYPE \
606 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
607 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
608 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
609 : MAX ((COMPUTED), (SPECIFIED)))
611 /* Make strings word-aligned so strcpy from constants will be faster. */
612 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
613 (TREE_CODE (EXP) == STRING_CST \
614 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
616 /* Make arrays of chars word-aligned for the same reasons. */
617 #define DATA_ALIGNMENT(TYPE, ALIGN) \
618 (TREE_CODE (TYPE) == ARRAY_TYPE \
619 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
620 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
622 /* Non-zero if move instructions will actually fail to work
623 when given unaligned data. */
624 #define STRICT_ALIGNMENT 0
626 /* Standard register usage. */
628 /* Number of actual hardware registers.
629 The hardware registers are assigned numbers for the compiler
630 from 0 to just below FIRST_PSEUDO_REGISTER.
631 All registers that the compiler knows about must be given numbers,
632 even those that are not normally considered general registers.
634 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
635 an MQ register, a count register, a link register, and 8 condition
636 register fields, which we view here as separate registers.
638 In addition, the difference between the frame and argument pointers is
639 a function of the number of registers saved, so we need to have a
640 register for AP that will later be eliminated in favor of SP or FP.
641 This is a normal register, but it is fixed.
643 We also create a pseudo register for float/int conversions, that will
644 really represent the memory location used. It is represented here as
645 a register, in order to work around problems in allocating stack storage
646 in inline functions. */
648 #define FIRST_PSEUDO_REGISTER 77
650 /* 1 for registers that have pervasive standard uses
651 and are not available for the register allocator.
653 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
655 cr5 is not supposed to be used.
657 On System V implementations, r13 is fixed and not available for use. */
659 #ifndef FIXED_R13
660 #define FIXED_R13 0
661 #endif
663 #define FIXED_REGISTERS \
664 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
665 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
666 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
667 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
668 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
670 /* 1 for registers not available across function calls.
671 These must include the FIXED_REGISTERS and also any
672 registers that can be used without being saved.
673 The latter must include the registers where values are returned
674 and the register where structure-value addresses are passed.
675 Aside from that, you can include as many other registers as you like. */
677 #define CALL_USED_REGISTERS \
678 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
679 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
680 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
681 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
682 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
684 /* List the order in which to allocate registers. Each register must be
685 listed once, even those in FIXED_REGISTERS.
687 We allocate in the following order:
688 fp0 (not saved or used for anything)
689 fp13 - fp2 (not saved; incoming fp arg registers)
690 fp1 (not saved; return value)
691 fp31 - fp14 (saved; order given to save least number)
692 cr1, cr6, cr7 (not saved or special)
693 cr0 (not saved, but used for arithmetic operations)
694 cr2, cr3, cr4 (saved)
695 r0 (not saved; cannot be base reg)
696 r9 (not saved; best for TImode)
697 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
698 r3 (not saved; return value register)
699 r31 - r13 (saved; order given to save least number)
700 r12 (not saved; if used for DImode or DFmode would use r13)
701 mq (not saved; best to use it if we can)
702 ctr (not saved; when we have the choice ctr is better)
703 lr (saved)
704 cr5, r1, r2, ap (fixed) */
706 #define REG_ALLOC_ORDER \
707 {32, \
708 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
709 33, \
710 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
711 50, 49, 48, 47, 46, \
712 69, 74, 75, 68, 70, 71, 72, \
713 0, \
714 9, 11, 10, 8, 7, 6, 5, 4, \
715 3, \
716 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
717 18, 17, 16, 15, 14, 13, 12, \
718 64, 66, 65, \
719 73, 1, 2, 67, 76}
721 /* True if register is floating-point. */
722 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
724 /* True if register is a condition register. */
725 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
727 /* True if register is an integer register. */
728 #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
730 /* True if register is the temporary memory location used for int/float
731 conversion. */
732 #define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
734 /* Return number of consecutive hard regs needed starting at reg REGNO
735 to hold something of mode MODE.
736 This is ordinarily the length in words of a value of mode MODE
737 but can be less for certain modes in special long registers.
739 On RS/6000, ordinary registers hold 32 bits worth;
740 a single floating point register holds 64 bits worth. */
742 #define HARD_REGNO_NREGS(REGNO, MODE) \
743 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
744 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
745 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
747 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
748 For POWER and PowerPC, the GPRs can hold any mode, but the float
749 registers only can hold floating modes and DImode, and CR register only
750 can hold CC modes. We cannot put TImode anywhere except general
751 register and it must be able to fit within the register set. */
753 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
754 (FP_REGNO_P (REGNO) ? \
755 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
756 || (GET_MODE_CLASS (MODE) == MODE_INT \
757 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
758 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
759 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
760 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
761 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
762 : 1)
764 /* Value is 1 if it is a good idea to tie two pseudo registers
765 when one has mode MODE1 and one has mode MODE2.
766 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
767 for any hard reg, then this must be 0 for correct output. */
768 #define MODES_TIEABLE_P(MODE1, MODE2) \
769 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
770 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
771 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
772 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
773 : GET_MODE_CLASS (MODE1) == MODE_CC \
774 ? GET_MODE_CLASS (MODE2) == MODE_CC \
775 : GET_MODE_CLASS (MODE2) == MODE_CC \
776 ? GET_MODE_CLASS (MODE1) == MODE_CC \
777 : 1)
779 /* A C expression returning the cost of moving data from a register of class
780 CLASS1 to one of CLASS2.
782 On the RS/6000, copying between floating-point and fixed-point
783 registers is expensive. */
785 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
786 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
787 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
788 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
789 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
790 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
791 || (CLASS1) == LINK_OR_CTR_REGS) \
792 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
793 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
794 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
795 : 2)
797 /* A C expressions returning the cost of moving data of MODE from a register to
798 or from memory.
800 On the RS/6000, bump this up a bit. */
802 #define MEMORY_MOVE_COST(MODE) \
803 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
804 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
805 ? 3 : 2) \
806 + 4)
808 /* Specify the cost of a branch insn; roughly the number of extra insns that
809 should be added to avoid a branch.
811 Set this to 3 on the RS/6000 since that is roughly the average cost of an
812 unscheduled conditional branch. */
814 #define BRANCH_COST 3
816 /* A C statement (sans semicolon) to update the integer variable COST
817 based on the relationship between INSN that is dependent on
818 DEP_INSN through the dependence LINK. The default is to make no
819 adjustment to COST. On the RS/6000, ignore the cost of anti- and
820 output-dependencies. In fact, output dependencies on the CR do have
821 a cost, but it is probably not worthwhile to track it. */
823 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
824 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
826 /* Define this macro to change register usage conditional on target flags.
827 Set MQ register fixed (already call_used) if not POWER architecture
828 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
829 Conditionally disable FPRs. */
831 #define CONDITIONAL_REGISTER_USAGE \
833 if (! TARGET_POWER) \
834 fixed_regs[64] = 1; \
835 if (TARGET_SOFT_FLOAT) \
836 for (i = 32; i < 64; i++) \
837 fixed_regs[i] = call_used_regs[i] = 1; \
840 /* Specify the registers used for certain standard purposes.
841 The values of these macros are register numbers. */
843 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
844 /* #define PC_REGNUM */
846 /* Register to use for pushing function arguments. */
847 #define STACK_POINTER_REGNUM 1
849 /* Base register for access to local variables of the function. */
850 #define FRAME_POINTER_REGNUM 31
852 /* Value should be nonzero if functions must have frame pointers.
853 Zero means the frame pointer need not be set up (and parms
854 may be accessed via the stack pointer) in functions that seem suitable.
855 This is computed in `reload', in reload1.c. */
856 #define FRAME_POINTER_REQUIRED 0
858 /* Base register for access to arguments of the function. */
859 #define ARG_POINTER_REGNUM 67
861 /* Place to put static chain when calling a function that requires it. */
862 #define STATIC_CHAIN_REGNUM 11
864 /* count register number for special purposes */
865 #define COUNT_REGISTER_REGNUM 66
867 /* Special register that represents memory, used for float/int conversions. */
868 #define FPMEM_REGNUM 76
870 /* Register to use as a placeholder for the GOT/allocated TOC register.
871 FINALIZE_PIC will change all uses of this register to a an appropriate
872 pseudo register when it adds the code to setup the GOT. We use r2
873 because it is a reserved register in all of the ABI's. */
874 #define GOT_TOC_REGNUM 2
876 /* Place that structure value return address is placed.
878 On the RS/6000, it is passed as an extra parameter. */
879 #define STRUCT_VALUE 0
881 /* Define the classes of registers for register constraints in the
882 machine description. Also define ranges of constants.
884 One of the classes must always be named ALL_REGS and include all hard regs.
885 If there is more than one class, another class must be named NO_REGS
886 and contain no registers.
888 The name GENERAL_REGS must be the name of a class (or an alias for
889 another name such as ALL_REGS). This is the class of registers
890 that is allowed by "g" or "r" in a register constraint.
891 Also, registers outside this class are allocated only when
892 instructions express preferences for them.
894 The classes must be numbered in nondecreasing order; that is,
895 a larger-numbered class must never be contained completely
896 in a smaller-numbered class.
898 For any two classes, it is very desirable that there be another
899 class that represents their union. */
901 /* The RS/6000 has three types of registers, fixed-point, floating-point,
902 and condition registers, plus three special registers, MQ, CTR, and the
903 link register.
905 However, r0 is special in that it cannot be used as a base register.
906 So make a class for registers valid as base registers.
908 Also, cr0 is the only condition code register that can be used in
909 arithmetic insns, so make a separate class for it.
911 There is a special 'registrer' (76), which is not a register, but a
912 placeholder for memory allocated to convert between floating point and
913 integral types. This works around a problem where if we allocate memory
914 with allocate_stack_{local,temp} and the function is an inline function, the
915 memory allocated will clobber memory in the caller. So we use a special
916 register, and if that is used, we allocate stack space for it. */
918 enum reg_class
920 NO_REGS,
921 BASE_REGS,
922 GENERAL_REGS,
923 FLOAT_REGS,
924 NON_SPECIAL_REGS,
925 MQ_REGS,
926 LINK_REGS,
927 CTR_REGS,
928 LINK_OR_CTR_REGS,
929 SPECIAL_REGS,
930 SPEC_OR_GEN_REGS,
931 CR0_REGS,
932 CR_REGS,
933 NON_FLOAT_REGS,
934 FPMEM_REGS,
935 FLOAT_OR_FPMEM_REGS,
936 ALL_REGS,
937 LIM_REG_CLASSES
940 #define N_REG_CLASSES (int) LIM_REG_CLASSES
942 /* Give names of register classes as strings for dump file. */
944 #define REG_CLASS_NAMES \
946 "NO_REGS", \
947 "BASE_REGS", \
948 "GENERAL_REGS", \
949 "FLOAT_REGS", \
950 "NON_SPECIAL_REGS", \
951 "MQ_REGS", \
952 "LINK_REGS", \
953 "CTR_REGS", \
954 "LINK_OR_CTR_REGS", \
955 "SPECIAL_REGS", \
956 "SPEC_OR_GEN_REGS", \
957 "CR0_REGS", \
958 "CR_REGS", \
959 "NON_FLOAT_REGS", \
960 "FPMEM_REGS", \
961 "FLOAT_OR_FPMEM_REGS", \
962 "ALL_REGS" \
965 /* Define which registers fit in which classes.
966 This is an initializer for a vector of HARD_REG_SET
967 of length N_REG_CLASSES. */
969 #define REG_CLASS_CONTENTS \
971 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
972 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
973 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
974 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
975 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
976 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
977 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
978 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
979 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
980 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
981 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
982 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
983 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
984 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
985 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
986 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
987 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
990 /* The same information, inverted:
991 Return the class number of the smallest class containing
992 reg number REGNO. This could be a conditional expression
993 or could index an array. */
995 #define REGNO_REG_CLASS(REGNO) \
996 ((REGNO) == 0 ? GENERAL_REGS \
997 : (REGNO) < 32 ? BASE_REGS \
998 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
999 : (REGNO) == 68 ? CR0_REGS \
1000 : CR_REGNO_P (REGNO) ? CR_REGS \
1001 : (REGNO) == 64 ? MQ_REGS \
1002 : (REGNO) == 65 ? LINK_REGS \
1003 : (REGNO) == 66 ? CTR_REGS \
1004 : (REGNO) == 67 ? BASE_REGS \
1005 : (REGNO) == 76 ? FPMEM_REGS \
1006 : NO_REGS)
1008 /* The class value for index registers, and the one for base regs. */
1009 #define INDEX_REG_CLASS GENERAL_REGS
1010 #define BASE_REG_CLASS BASE_REGS
1012 /* Get reg_class from a letter such as appears in the machine description. */
1014 #define REG_CLASS_FROM_LETTER(C) \
1015 ((C) == 'f' ? FLOAT_REGS \
1016 : (C) == 'b' ? BASE_REGS \
1017 : (C) == 'h' ? SPECIAL_REGS \
1018 : (C) == 'q' ? MQ_REGS \
1019 : (C) == 'c' ? CTR_REGS \
1020 : (C) == 'l' ? LINK_REGS \
1021 : (C) == 'x' ? CR0_REGS \
1022 : (C) == 'y' ? CR_REGS \
1023 : (C) == 'z' ? FPMEM_REGS \
1024 : NO_REGS)
1026 /* The letters I, J, K, L, M, N, and P in a register constraint string
1027 can be used to stand for particular ranges of immediate operands.
1028 This macro defines what the ranges are.
1029 C is the letter, and VALUE is a constant value.
1030 Return 1 if VALUE is in the range specified by C.
1032 `I' is signed 16-bit constants
1033 `J' is a constant with only the high-order 16 bits non-zero
1034 `K' is a constant with only the low-order 16 bits non-zero
1035 `L' is a constant that can be placed into a mask operand
1036 `M' is a constant that is greater than 31
1037 `N' is a constant that is an exact power of two
1038 `O' is the constant zero
1039 `P' is a constant whose negation is a signed 16-bit constant */
1041 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1042 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1043 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
1044 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
1045 : (C) == 'L' ? mask_constant (VALUE) \
1046 : (C) == 'M' ? (VALUE) > 31 \
1047 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1048 : (C) == 'O' ? (VALUE) == 0 \
1049 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x1000 \
1050 : 0)
1052 /* Similar, but for floating constants, and defining letters G and H.
1053 Here VALUE is the CONST_DOUBLE rtx itself.
1055 We flag for special constants when we can copy the constant into
1056 a general register in two insns for DF/DI and one insn for SF.
1058 'H' is used for DI/DF constants that take 3 insns. */
1060 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1061 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1062 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1063 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1064 : 0)
1066 /* Optional extra constraints for this machine.
1068 'Q' means that is a memory operand that is just an offset from a reg.
1069 'R' is for AIX TOC entries.
1070 'S' is for Windows NT SYMBOL_REFs
1071 'T' is for Windows NT LABEL_REFs.
1072 'U' is for V.4 small data references. */
1074 #define EXTRA_CONSTRAINT(OP, C) \
1075 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1076 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
1077 : (C) == 'S' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == SYMBOL_REF)\
1078 : (C) == 'T' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == LABEL_REF) \
1079 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1080 && small_data_operand (OP, GET_MODE (OP))) \
1081 : 0)
1083 /* Given an rtx X being reloaded into a reg required to be
1084 in class CLASS, return the class of reg to actually use.
1085 In general this is just CLASS; but on some machines
1086 in some cases it is preferable to use a more restrictive class.
1088 On the RS/6000, we have to return NO_REGS when we want to reload a
1089 floating-point CONST_DOUBLE to force it to be copied to memory. */
1091 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1092 ((GET_CODE (X) == CONST_DOUBLE \
1093 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1094 ? NO_REGS : (CLASS))
1096 /* Return the register class of a scratch register needed to copy IN into
1097 or out of a register in CLASS in MODE. If it can be done directly,
1098 NO_REGS is returned. */
1100 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1101 secondary_reload_class (CLASS, MODE, IN)
1103 /* If we are copying between FP registers and anything else, we need a memory
1104 location. */
1106 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1107 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1109 /* Return the maximum number of consecutive registers
1110 needed to represent mode MODE in a register of class CLASS.
1112 On RS/6000, this is the size of MODE in words,
1113 except in the FP regs, where a single reg is enough for two words. */
1114 #define CLASS_MAX_NREGS(CLASS, MODE) \
1115 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1116 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
1117 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1118 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1120 /* If defined, gives a class of registers that cannot be used as the
1121 operand of a SUBREG that changes the size of the object. */
1123 #define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
1125 /* Stack layout; function entry, exit and calling. */
1127 /* Enumeration to give which calling sequence to use. */
1128 enum rs6000_abi {
1129 ABI_NONE,
1130 ABI_AIX, /* IBM's AIX */
1131 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1132 ABI_V4, /* System V.4/eabi */
1133 ABI_NT, /* Windows/NT */
1134 ABI_SOLARIS /* Solaris */
1137 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1139 /* Default ABI to compile code for */
1140 #ifndef DEFAULT_ABI
1141 #define DEFAULT_ABI ABI_AIX
1142 /* The prefix to add to user-visible assembler symbols. */
1143 #define USER_LABEL_PREFIX "."
1144 #endif
1146 /* Structure used to define the rs6000 stack */
1147 typedef struct rs6000_stack {
1148 int first_gp_reg_save; /* first callee saved GP register used */
1149 int first_fp_reg_save; /* first callee saved FP register used */
1150 int lr_save_p; /* true if the link reg needs to be saved */
1151 int cr_save_p; /* true if the CR reg needs to be saved */
1152 int toc_save_p; /* true if the TOC needs to be saved */
1153 int push_p; /* true if we need to allocate stack space */
1154 int calls_p; /* true if the function makes any calls */
1155 int main_p; /* true if this is main */
1156 int main_save_p; /* true if this is main and we need to save args */
1157 int fpmem_p; /* true if float/int conversion temp needed */
1158 enum rs6000_abi abi; /* which ABI to use */
1159 int gp_save_offset; /* offset to save GP regs from initial SP */
1160 int fp_save_offset; /* offset to save FP regs from initial SP */
1161 int lr_save_offset; /* offset to save LR from initial SP */
1162 int cr_save_offset; /* offset to save CR from initial SP */
1163 int toc_save_offset; /* offset to save the TOC pointer */
1164 int varargs_save_offset; /* offset to save the varargs registers */
1165 int main_save_offset; /* offset to save main's args */
1166 int fpmem_offset; /* offset for float/int conversion temp */
1167 int reg_size; /* register size (4 or 8) */
1168 int varargs_size; /* size to hold V.4 args passed in regs */
1169 int vars_size; /* variable save area size */
1170 int parm_size; /* outgoing parameter size */
1171 int main_size; /* size to hold saving main's args */
1172 int save_size; /* save area size */
1173 int fixed_size; /* fixed size of stack frame */
1174 int gp_size; /* size of saved GP registers */
1175 int fp_size; /* size of saved FP registers */
1176 int cr_size; /* size to hold CR if not in save_size */
1177 int lr_size; /* size to hold LR if not in save_size */
1178 int fpmem_size; /* size to hold float/int conversion */
1179 int toc_size; /* size to hold TOC if not in save_size */
1180 int total_size; /* total bytes allocated for stack */
1181 } rs6000_stack_t;
1183 /* Define this if pushing a word on the stack
1184 makes the stack pointer a smaller address. */
1185 #define STACK_GROWS_DOWNWARD
1187 /* Define this if the nominal address of the stack frame
1188 is at the high-address end of the local variables;
1189 that is, each additional local variable allocated
1190 goes at a more negative offset in the frame.
1192 On the RS/6000, we grow upwards, from the area after the outgoing
1193 arguments. */
1194 /* #define FRAME_GROWS_DOWNWARD */
1196 /* Size of the outgoing register save area */
1197 #define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
1199 /* Size of the fixed area on the stack */
1200 #define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
1202 /* Address to save the TOC register */
1203 #define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, 20)
1205 /* Offset & size for fpmem stack locations used for converting between
1206 float and integral types. */
1207 extern int rs6000_fpmem_offset;
1208 extern int rs6000_fpmem_size;
1210 /* Size of the V.4 varargs area if needed */
1211 #define RS6000_VARARGS_AREA 0
1213 /* Whether a V.4 varargs area is needed */
1214 extern int rs6000_sysv_varargs_p;
1216 /* Align an address */
1217 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1219 /* Initialize data used by insn expanders. This is called from
1220 init_emit, once for each function, before code is generated. */
1221 #define INIT_EXPANDERS rs6000_init_expanders ()
1223 /* Size of V.4 varargs area in bytes */
1224 #define RS6000_VARARGS_SIZE \
1225 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1227 /* Offset of V.4 varargs area */
1228 #define RS6000_VARARGS_OFFSET \
1229 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
1230 + RS6000_SAVE_AREA)
1232 /* Offset within stack frame to start allocating local variables at.
1233 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1234 first local allocated. Otherwise, it is the offset to the BEGINNING
1235 of the first local allocated.
1237 On the RS/6000, the frame pointer is the same as the stack pointer,
1238 except for dynamic allocations. So we start after the fixed area and
1239 outgoing parameter area. */
1241 #define STARTING_FRAME_OFFSET \
1242 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
1243 + RS6000_VARARGS_AREA \
1244 + RS6000_SAVE_AREA)
1246 /* Offset from the stack pointer register to an item dynamically
1247 allocated on the stack, e.g., by `alloca'.
1249 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1250 length of the outgoing arguments. The default is correct for most
1251 machines. See `function.c' for details. */
1252 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1253 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
1254 + (STACK_POINTER_OFFSET))
1256 /* If we generate an insn to push BYTES bytes,
1257 this says how many the stack pointer really advances by.
1258 On RS/6000, don't define this because there are no push insns. */
1259 /* #define PUSH_ROUNDING(BYTES) */
1261 /* Offset of first parameter from the argument pointer register value.
1262 On the RS/6000, we define the argument pointer to the start of the fixed
1263 area. */
1264 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1266 /* Define this if stack space is still allocated for a parameter passed
1267 in a register. The value is the number of bytes allocated to this
1268 area. */
1269 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1271 /* Define this if the above stack space is to be considered part of the
1272 space allocated by the caller. */
1273 #define OUTGOING_REG_PARM_STACK_SPACE
1275 /* This is the difference between the logical top of stack and the actual sp.
1277 For the RS/6000, sp points past the fixed area. */
1278 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1280 /* Define this if the maximum size of all the outgoing args is to be
1281 accumulated and pushed during the prologue. The amount can be
1282 found in the variable current_function_outgoing_args_size. */
1283 #define ACCUMULATE_OUTGOING_ARGS
1285 /* Value is the number of bytes of arguments automatically
1286 popped when returning from a subroutine call.
1287 FUNDECL is the declaration node of the function (as a tree),
1288 FUNTYPE is the data type of the function (as a tree),
1289 or for a library call it is an identifier node for the subroutine name.
1290 SIZE is the number of bytes of arguments passed on the stack. */
1292 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1294 /* Define how to find the value returned by a function.
1295 VALTYPE is the data type of the value (as a tree).
1296 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1297 otherwise, FUNC is 0.
1299 On RS/6000 an integer value is in r3 and a floating-point value is in
1300 fp1, unless -msoft-float. */
1302 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1303 gen_rtx (REG, TYPE_MODE (VALTYPE), \
1304 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
1306 /* Define how to find the value returned by a library function
1307 assuming the value has mode MODE. */
1309 #define LIBCALL_VALUE(MODE) \
1310 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
1312 /* The definition of this macro implies that there are cases where
1313 a scalar value cannot be returned in registers.
1315 For the RS/6000, any structure or union type is returned in memory, except for
1316 Solaris, which returns structures <= 8 bytes in registers. */
1318 #define RETURN_IN_MEMORY(TYPE) \
1319 (TYPE_MODE (TYPE) == BLKmode \
1320 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
1322 /* Minimum and maximum general purpose registers used to hold arguments. */
1323 #define GP_ARG_MIN_REG 3
1324 #define GP_ARG_MAX_REG 10
1325 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1327 /* Minimum and maximum floating point registers used to hold arguments. */
1328 #define FP_ARG_MIN_REG 33
1329 #define FP_ARG_AIX_MAX_REG 45
1330 #define FP_ARG_V4_MAX_REG 40
1331 #define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
1332 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1334 /* Return registers */
1335 #define GP_ARG_RETURN GP_ARG_MIN_REG
1336 #define FP_ARG_RETURN FP_ARG_MIN_REG
1338 /* Flags for the call/call_value rtl operations set up by function_arg */
1339 #define CALL_NORMAL 0x00000000 /* no special processing */
1340 #define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1341 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1342 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1343 #define CALL_LONG 0x00000008 /* always call indirect */
1345 /* Define cutoff for using external functions to save floating point */
1346 #define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1348 /* 1 if N is a possible register number for a function value
1349 as seen by the caller.
1351 On RS/6000, this is r3 and fp1. */
1352 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
1354 /* 1 if N is a possible register number for function argument passing.
1355 On RS/6000, these are r3-r10 and fp1-fp13. */
1356 #define FUNCTION_ARG_REGNO_P(N) \
1357 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1358 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
1361 /* Define a data type for recording info about an argument list
1362 during the scan of that argument list. This data type should
1363 hold all necessary information about the function itself
1364 and about the args processed so far, enough to enable macros
1365 such as FUNCTION_ARG to determine where the next arg should go.
1367 On the RS/6000, this is a structure. The first element is the number of
1368 total argument words, the second is used to store the next
1369 floating-point register number, and the third says how many more args we
1370 have prototype types for.
1372 The System V.4 varargs/stdarg support requires that this structure's size
1373 be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE,
1374 ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */
1376 typedef struct rs6000_args
1378 int words; /* # words uses for passing GP registers */
1379 int fregno; /* next available FP register */
1380 int nargs_prototype; /* # args left in the current prototype */
1381 int orig_nargs; /* Original value of nargs_prototype */
1382 int varargs_offset; /* offset of the varargs save area */
1383 int prototype; /* Whether a prototype was defined */
1384 int call_cookie; /* Do special things for this call */
1385 } CUMULATIVE_ARGS;
1387 /* Define intermediate macro to compute the size (in registers) of an argument
1388 for the RS/6000. */
1390 #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1391 (! (NAMED) ? 0 \
1392 : (MODE) != BLKmode \
1393 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1394 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1396 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1397 for a call to a function whose data type is FNTYPE.
1398 For a library call, FNTYPE is 0. */
1400 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1401 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1403 /* Similar, but when scanning the definition of a procedure. We always
1404 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1406 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1407 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1409 /* Update the data in CUM to advance over an argument
1410 of mode MODE and data type TYPE.
1411 (TYPE is null for libcalls where that information may not be available.) */
1413 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1414 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1416 /* Non-zero if we can use a floating-point register to pass this arg. */
1417 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1418 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1419 && (CUM).fregno <= FP_ARG_MAX_REG \
1420 && TARGET_HARD_FLOAT)
1422 /* Determine where to put an argument to a function.
1423 Value is zero to push the argument on the stack,
1424 or a hard register in which to store the argument.
1426 MODE is the argument's machine mode.
1427 TYPE is the data type of the argument (as a tree).
1428 This is null for libcalls where that information may
1429 not be available.
1430 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1431 the preceding args and about the function being called.
1432 NAMED is nonzero if this argument is a named parameter
1433 (otherwise it is an extra parameter matching an ellipsis).
1435 On RS/6000 the first eight words of non-FP are normally in registers
1436 and the rest are pushed. The first 13 FP args are in registers.
1438 If this is floating-point and no prototype is specified, we use
1439 both an FP and integer register (or possibly FP reg and stack). Library
1440 functions (when TYPE is zero) always have the proper types for args,
1441 so we can pass the FP value just in one register. emit_library_function
1442 doesn't support EXPR_LIST anyway. */
1444 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1445 function_arg (&CUM, MODE, TYPE, NAMED)
1447 /* For an arg passed partly in registers and partly in memory,
1448 this is the number of registers used.
1449 For args passed entirely in registers or entirely in memory, zero. */
1451 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1452 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1454 /* A C expression that indicates when an argument must be passed by
1455 reference. If nonzero for an argument, a copy of that argument is
1456 made in memory and a pointer to the argument is passed instead of
1457 the argument itself. The pointer is passed in whatever way is
1458 appropriate for passing a pointer to that type. */
1460 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1461 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1463 /* If defined, a C expression that gives the alignment boundary, in bits,
1464 of an argument with the specified mode and type. If it is not defined,
1465 PARM_BOUNDARY is used for all arguments. */
1467 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1468 function_arg_boundary (MODE, TYPE)
1470 /* Perform any needed actions needed for a function that is receiving a
1471 variable number of arguments.
1473 CUM is as above.
1475 MODE and TYPE are the mode and type of the current parameter.
1477 PRETEND_SIZE is a variable that should be set to the amount of stack
1478 that must be pushed by the prolog to pretend that our caller pushed
1481 Normally, this macro will push all remaining incoming registers on the
1482 stack and set PRETEND_SIZE to the length of the registers pushed. */
1484 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1485 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1487 /* If defined, is a C expression that produces the machine-specific
1488 code for a call to `__builtin_saveregs'. This code will be moved
1489 to the very beginning of the function, before any parameter access
1490 are made. The return value of this function should be an RTX that
1491 contains the value to use as the return of `__builtin_saveregs'.
1493 The argument ARGS is a `tree_list' containing the arguments that
1494 were passed to `__builtin_saveregs'.
1496 If this macro is not defined, the compiler will output an ordinary
1497 call to the library function `__builtin_saveregs'. */
1499 #define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1500 expand_builtin_saveregs (ARGS)
1502 /* This macro generates the assembly code for function entry.
1503 FILE is a stdio stream to output the code to.
1504 SIZE is an int: how many units of temporary storage to allocate.
1505 Refer to the array `regs_ever_live' to determine which registers
1506 to save; `regs_ever_live[I]' is nonzero if register number I
1507 is ever used in the function. This macro is responsible for
1508 knowing which registers should not be saved even if used. */
1510 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1512 /* Output assembler code to FILE to increment profiler label # LABELNO
1513 for profiling a function entry. */
1515 #define FUNCTION_PROFILER(FILE, LABELNO) \
1516 output_function_profiler ((FILE), (LABELNO));
1518 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1519 the stack pointer does not matter. No definition is equivalent to
1520 always zero.
1522 On the RS/6000, this is non-zero because we can restore the stack from
1523 its backpointer, which we maintain. */
1524 #define EXIT_IGNORE_STACK 1
1526 /* This macro generates the assembly code for function exit,
1527 on machines that need it. If FUNCTION_EPILOGUE is not defined
1528 then individual return instructions are generated for each
1529 return statement. Args are same as for FUNCTION_PROLOGUE.
1531 The function epilogue should not depend on the current stack pointer!
1532 It should use the frame pointer only. This is mandatory because
1533 of alloca; we also take advantage of it to omit stack adjustments
1534 before returning. */
1536 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1538 /* TRAMPOLINE_TEMPLATE deleted */
1540 /* Length in units of the trampoline for entering a nested function. */
1542 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1544 /* Emit RTL insns to initialize the variable parts of a trampoline.
1545 FNADDR is an RTX for the address of the function's pure code.
1546 CXT is an RTX for the static chain value for the function. */
1548 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1549 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1551 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1552 with arguments ARGS is a valid machine specific attribute for DECL.
1553 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1555 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1556 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1558 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1559 with arguments ARGS is a valid machine specific attribute for TYPE.
1560 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1562 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1563 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1565 /* If defined, a C expression whose value is zero if the attributes on
1566 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1567 two if they are nearly compatible (which causes a warning to be
1568 generated). */
1570 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1571 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1573 /* If defined, a C statement that assigns default attributes to newly
1574 defined TYPE. */
1576 #define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1577 (rs6000_set_default_type_attributes (TYPE))
1580 /* Definitions for __builtin_return_address and __builtin_frame_address.
1581 __builtin_return_address (0) should give link register (65), enable
1582 this. */
1583 /* This should be uncommented, so that the link register is used, but
1584 currently this would result in unmatched insns and spilling fixed
1585 registers so we'll leave it for another day. When these problems are
1586 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1587 (mrs) */
1588 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1590 /* Number of bytes into the frame return addresses can be found. See
1591 rs6000_stack_info in rs6000.c for more information on how the different
1592 abi's store the return address. */
1593 #define RETURN_ADDRESS_OFFSET \
1594 ((DEFAULT_ABI == ABI_AIX \
1595 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
1596 (DEFAULT_ABI == ABI_V4 \
1597 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
1598 (DEFAULT_ABI == ABI_NT) ? -4 : \
1599 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
1601 /* The current return address is in link register (65). The return address
1602 of anything farther back is accessed normally at an offset of 8 from the
1603 frame pointer. */
1604 #define RETURN_ADDR_RTX(count, frame) \
1605 ((count == -1) \
1606 ? gen_rtx (REG, Pmode, 65) \
1607 : gen_rtx (MEM, Pmode, \
1608 memory_address (Pmode, \
1609 plus_constant (copy_to_reg (gen_rtx (MEM, Pmode, \
1610 memory_address (Pmode, frame))), \
1611 RETURN_ADDRESS_OFFSET))))
1613 /* Definitions for register eliminations.
1615 We have two registers that can be eliminated on the RS/6000. First, the
1616 frame pointer register can often be eliminated in favor of the stack
1617 pointer register. Secondly, the argument pointer register can always be
1618 eliminated; it is replaced with either the stack or frame pointer.
1620 In addition, we use the elimination mechanism to see if r30 is needed
1621 Initially we assume that it isn't. If it is, we spill it. This is done
1622 by making it an eliminable register. We replace it with itself so that
1623 if it isn't needed, then existing uses won't be modified. */
1625 /* This is an array of structures. Each structure initializes one pair
1626 of eliminable registers. The "from" register number is given first,
1627 followed by "to". Eliminations of the same "from" register are listed
1628 in order of preference. */
1629 #define ELIMINABLE_REGS \
1630 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1631 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1632 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1633 { 30, 30} }
1635 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1636 Frame pointer elimination is automatically handled.
1638 For the RS/6000, if frame pointer elimination is being done, we would like
1639 to convert ap into fp, not sp.
1641 We need r30 if -mminimal-toc was specified, and there are constant pool
1642 references. */
1644 #define CAN_ELIMINATE(FROM, TO) \
1645 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1646 ? ! frame_pointer_needed \
1647 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1648 : 1)
1650 /* Define the offset between two registers, one to be eliminated, and the other
1651 its replacement, at the start of a routine. */
1652 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1654 rs6000_stack_t *info = rs6000_stack_info (); \
1656 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1657 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1658 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1659 (OFFSET) = info->total_size; \
1660 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1661 (OFFSET) = (info->push_p) ? info->total_size : 0; \
1662 else if ((FROM) == 30) \
1663 (OFFSET) = 0; \
1664 else \
1665 abort (); \
1668 /* Addressing modes, and classification of registers for them. */
1670 /* #define HAVE_POST_INCREMENT */
1671 /* #define HAVE_POST_DECREMENT */
1673 #define HAVE_PRE_DECREMENT
1674 #define HAVE_PRE_INCREMENT
1676 /* Macros to check register numbers against specific register classes. */
1678 /* These assume that REGNO is a hard or pseudo reg number.
1679 They give nonzero only if REGNO is a hard reg of the suitable class
1680 or a pseudo reg currently allocated to a suitable hard reg.
1681 Since they use reg_renumber, they are safe only once reg_renumber
1682 has been allocated, which happens in local-alloc.c. */
1684 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1685 ((REGNO) < FIRST_PSEUDO_REGISTER \
1686 ? (REGNO) <= 31 || (REGNO) == 67 \
1687 : (reg_renumber[REGNO] >= 0 \
1688 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1690 #define REGNO_OK_FOR_BASE_P(REGNO) \
1691 ((REGNO) < FIRST_PSEUDO_REGISTER \
1692 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1693 : (reg_renumber[REGNO] > 0 \
1694 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1696 /* Maximum number of registers that can appear in a valid memory address. */
1698 #define MAX_REGS_PER_ADDRESS 2
1700 /* Recognize any constant value that is a valid address. */
1702 #define CONSTANT_ADDRESS_P(X) \
1703 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1704 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1705 || GET_CODE (X) == HIGH)
1707 /* Nonzero if the constant value X is a legitimate general operand.
1708 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1710 On the RS/6000, all integer constants are acceptable, most won't be valid
1711 for particular insns, though. Only easy FP constants are
1712 acceptable. */
1714 #define LEGITIMATE_CONSTANT_P(X) \
1715 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1716 || easy_fp_constant (X, GET_MODE (X)))
1718 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1719 and check its validity for a certain class.
1720 We have two alternate definitions for each of them.
1721 The usual definition accepts all pseudo regs; the other rejects
1722 them unless they have been allocated suitable hard regs.
1723 The symbol REG_OK_STRICT causes the latter definition to be used.
1725 Most source files want to accept pseudo regs in the hope that
1726 they will get allocated to the class that the insn wants them to be in.
1727 Source files for reload pass need to be strict.
1728 After reload, it makes no difference, since pseudo regs have
1729 been eliminated by then. */
1731 #ifndef REG_OK_STRICT
1733 /* Nonzero if X is a hard reg that can be used as an index
1734 or if it is a pseudo reg. */
1735 #define REG_OK_FOR_INDEX_P(X) \
1736 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1738 /* Nonzero if X is a hard reg that can be used as a base reg
1739 or if it is a pseudo reg. */
1740 #define REG_OK_FOR_BASE_P(X) \
1741 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1743 #else
1745 /* Nonzero if X is a hard reg that can be used as an index. */
1746 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1747 /* Nonzero if X is a hard reg that can be used as a base reg. */
1748 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1750 #endif
1752 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1753 that is a valid memory address for an instruction.
1754 The MODE argument is the machine mode for the MEM expression
1755 that wants to use this address.
1757 On the RS/6000, there are four valid address: a SYMBOL_REF that
1758 refers to a constant pool entry of an address (or the sum of it
1759 plus a constant), a short (16-bit signed) constant plus a register,
1760 the sum of two registers, or a register indirect, possibly with an
1761 auto-increment. For DFmode and DImode with an constant plus register,
1762 we must ensure that both words are addressable or PowerPC64 with offset
1763 word aligned. */
1765 #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
1766 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1767 && CONSTANT_POOL_ADDRESS_P (X) \
1768 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1770 /* TARGET_64BIT TOC64 guaranteed to have 64 bit alignment. */
1771 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1772 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
1773 || (TARGET_TOC \
1774 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1775 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1776 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1778 #define LEGITIMATE_SMALL_DATA_P(MODE, X) \
1779 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1780 && !flag_pic && !TARGET_TOC \
1781 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1782 && small_data_operand (X, MODE))
1784 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1785 (GET_CODE (X) == CONST_INT \
1786 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1788 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1789 (GET_CODE (X) == PLUS \
1790 && GET_CODE (XEXP (X, 0)) == REG \
1791 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1792 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1793 && (((MODE) != DFmode && (MODE) != DImode) \
1794 || (TARGET_32BIT \
1795 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1796 : ! (INTVAL (XEXP (X, 1)) & 3))) \
1797 && ((MODE) != TImode \
1798 || (TARGET_32BIT \
1799 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1800 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1801 && ! (INTVAL (XEXP (X, 1)) & 3)))))
1803 #define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1804 (GET_CODE (X) == PLUS \
1805 && GET_CODE (XEXP (X, 0)) == REG \
1806 && GET_CODE (XEXP (X, 1)) == REG \
1807 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1808 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1809 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1810 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1812 #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1813 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1815 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1816 (TARGET_ELF \
1817 && !flag_pic && !TARGET_TOC \
1818 && (MODE) != DImode \
1819 && (MODE) != TImode \
1820 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1821 && GET_CODE (X) == LO_SUM \
1822 && GET_CODE (XEXP (X, 0)) == REG \
1823 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1824 && CONSTANT_P (XEXP (X, 1)))
1826 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1827 { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1828 goto ADDR; \
1829 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
1830 && TARGET_UPDATE \
1831 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1832 goto ADDR; \
1833 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1834 goto ADDR; \
1835 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1836 goto ADDR; \
1837 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1838 goto ADDR; \
1839 if ((MODE) != TImode \
1840 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1841 && (TARGET_64BIT || (MODE) != DImode) \
1842 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1843 goto ADDR; \
1844 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1845 goto ADDR; \
1848 /* Try machine-dependent ways of modifying an illegitimate address
1849 to be legitimate. If we find one, return the new, valid address.
1850 This macro is used in only one place: `memory_address' in explow.c.
1852 OLDX is the address as it was before break_out_memory_refs was called.
1853 In some cases it is useful to look at this to decide what needs to be done.
1855 MODE and WIN are passed so that this macro can use
1856 GO_IF_LEGITIMATE_ADDRESS.
1858 It is always safe for this macro to do nothing. It exists to recognize
1859 opportunities to optimize the output.
1861 On RS/6000, first check for the sum of a register with a constant
1862 integer that is out of range. If so, generate code to add the
1863 constant with the low-order 16 bits masked to the register and force
1864 this result into another register (this can be done with `cau').
1865 Then generate an address of REG+(CONST&0xffff), allowing for the
1866 possibility of bit 16 being a one.
1868 Then check for the sum of a register and something not constant, try to
1869 load the other things into a register and return the sum. */
1871 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1872 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1873 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1874 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1875 { HOST_WIDE_INT high_int, low_int; \
1876 rtx sum; \
1877 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
1878 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1879 if (low_int & 0x8000) \
1880 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
1881 sum = force_operand (gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1882 GEN_INT (high_int)), 0); \
1883 (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (low_int)); \
1884 goto WIN; \
1886 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1887 && GET_CODE (XEXP (X, 1)) != CONST_INT \
1888 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1889 && (TARGET_64BIT || (MODE) != DImode) \
1890 && (MODE) != TImode) \
1892 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1893 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
1894 goto WIN; \
1896 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
1897 && !flag_pic \
1898 && GET_CODE (X) != CONST_INT \
1899 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
1900 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1901 && (MODE) != DImode && (MODE) != TImode) \
1903 rtx reg = gen_reg_rtx (Pmode); \
1904 emit_insn (gen_elf_high (reg, (X))); \
1905 (X) = gen_rtx (LO_SUM, Pmode, reg, (X)); \
1909 /* Go to LABEL if ADDR (a legitimate address expression)
1910 has an effect that depends on the machine mode it is used for.
1912 On the RS/6000 this is true if the address is valid with a zero offset
1913 but not with an offset of four (this means it cannot be used as an
1914 address for DImode or DFmode) or is a pre-increment or decrement. Since
1915 we know it is valid, we just check for an address that is not valid with
1916 an offset of four. */
1918 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1919 { if (GET_CODE (ADDR) == PLUS \
1920 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
1921 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
1922 (TARGET_32BIT ? 4 : 8))) \
1923 goto LABEL; \
1924 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
1925 goto LABEL; \
1926 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
1927 goto LABEL; \
1928 if (GET_CODE (ADDR) == LO_SUM) \
1929 goto LABEL; \
1932 /* The register number of the register used to address a table of
1933 static data addresses in memory. In some cases this register is
1934 defined by a processor's "application binary interface" (ABI).
1935 When this macro is defined, RTL is generated for this register
1936 once, as with the stack pointer and frame pointer registers. If
1937 this macro is not defined, it is up to the machine-dependent files
1938 to allocate such a register (if necessary). */
1940 /* #define PIC_OFFSET_TABLE_REGNUM */
1942 /* Define this macro if the register defined by
1943 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1944 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
1946 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1948 /* By generating position-independent code, when two different
1949 programs (A and B) share a common library (libC.a), the text of
1950 the library can be shared whether or not the library is linked at
1951 the same address for both programs. In some of these
1952 environments, position-independent code requires not only the use
1953 of different addressing modes, but also special code to enable the
1954 use of these addressing modes.
1956 The `FINALIZE_PIC' macro serves as a hook to emit these special
1957 codes once the function is being compiled into assembly code, but
1958 not before. (It is not done before, because in the case of
1959 compiling an inline function, it would lead to multiple PIC
1960 prologues being included in functions which used inline functions
1961 and were compiled to assembly language.) */
1963 #define FINALIZE_PIC rs6000_finalize_pic ()
1965 /* A C expression that is nonzero if X is a legitimate immediate
1966 operand on the target machine when generating position independent
1967 code. You can assume that X satisfies `CONSTANT_P', so you need
1968 not check this. You can also assume FLAG_PIC is true, so you need
1969 not check it either. You need not define this macro if all
1970 constants (including `SYMBOL_REF') can be immediate operands when
1971 generating position independent code. */
1973 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1975 /* In rare cases, correct code generation requires extra machine
1976 dependent processing between the second jump optimization pass and
1977 delayed branch scheduling. On those machines, define this macro
1978 as a C statement to act on the code starting at INSN.
1980 On the RS/6000, we use it to make sure the GOT_TOC register marker
1981 that FINALIZE_PIC is supposed to remove actually got removed. */
1983 #define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
1986 /* Define this if some processing needs to be done immediately before
1987 emitting code for an insn. */
1989 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1991 /* Specify the machine mode that this machine uses
1992 for the index in the tablejump instruction. */
1993 #define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
1995 /* Define this if the tablejump instruction expects the table
1996 to contain offsets from the address of the table.
1997 Do not define this if the table should contain absolute addresses. */
1998 #define CASE_VECTOR_PC_RELATIVE
2000 /* Specify the tree operation to be used to convert reals to integers. */
2001 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2003 /* This is the kind of divide that is easiest to do in the general case. */
2004 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2006 /* Define this as 1 if `char' should by default be signed; else as 0. */
2007 #define DEFAULT_SIGNED_CHAR 0
2009 /* This flag, if defined, says the same insns that convert to a signed fixnum
2010 also convert validly to an unsigned one. */
2012 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2014 /* Max number of bytes we can move from memory to memory
2015 in one reasonably fast instruction. */
2016 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2017 #define MAX_MOVE_MAX 8
2019 /* Nonzero if access to memory by bytes is no faster than for words.
2020 Also non-zero if doing byte operations (specifically shifts) in registers
2021 is undesirable. */
2022 #define SLOW_BYTE_ACCESS 1
2024 /* Define if operations between registers always perform the operation
2025 on the full register even if a narrower mode is specified. */
2026 #define WORD_REGISTER_OPERATIONS
2028 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2029 will either zero-extend or sign-extend. The value of this macro should
2030 be the code that says which one of the two operations is implicitly
2031 done, NIL if none. */
2032 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2034 /* Define if loading short immediate values into registers sign extends. */
2035 #define SHORT_IMMEDIATES_SIGN_EXTEND
2037 /* The RS/6000 uses the XCOFF format. */
2039 #define XCOFF_DEBUGGING_INFO
2041 /* Define if the object format being used is COFF or a superset. */
2042 #define OBJECT_FORMAT_COFF
2044 /* Define the magic numbers that we recognize as COFF. */
2046 #define MY_ISCOFF(magic) \
2047 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC)
2049 /* This is the only version of nm that collect2 can work with. */
2050 #define REAL_NM_FILE_NAME "/usr/ucb/nm"
2052 /* We don't have GAS for the RS/6000 yet, so don't write out special
2053 .stabs in cc1plus. */
2055 #define FASCIST_ASSEMBLER
2057 #ifndef ASM_OUTPUT_CONSTRUCTOR
2058 #define ASM_OUTPUT_CONSTRUCTOR(file, name)
2059 #endif
2060 #ifndef ASM_OUTPUT_DESTRUCTOR
2061 #define ASM_OUTPUT_DESTRUCTOR(file, name)
2062 #endif
2064 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2065 is done just by pretending it is already truncated. */
2066 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2068 /* Specify the machine mode that pointers have.
2069 After generation of rtl, the compiler makes no further distinction
2070 between pointers and any other objects of this machine mode. */
2071 #define Pmode (TARGET_32BIT ? SImode : DImode)
2073 /* Mode of a function address in a call instruction (for indexing purposes).
2075 Doesn't matter on RS/6000. */
2076 #define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2078 /* Define this if addresses of constant functions
2079 shouldn't be put through pseudo regs where they can be cse'd.
2080 Desirable on machines where ordinary constants are expensive
2081 but a CALL with constant address is cheap. */
2082 #define NO_FUNCTION_CSE
2084 /* Define this to be nonzero if shift instructions ignore all but the low-order
2085 few bits.
2087 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2088 have been dropped from the PowerPC architecture. */
2090 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2092 /* Use atexit for static constructors/destructors, instead of defining
2093 our own exit function. */
2094 #define HAVE_ATEXIT
2096 /* Compute the cost of computing a constant rtl expression RTX
2097 whose rtx-code is CODE. The body of this macro is a portion
2098 of a switch statement. If the code is computed here,
2099 return it with a return statement. Otherwise, break from the switch.
2101 On the RS/6000, if it is valid in the insn, it is free. So this
2102 always returns 0. */
2104 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2105 case CONST_INT: \
2106 case CONST: \
2107 case LABEL_REF: \
2108 case SYMBOL_REF: \
2109 case CONST_DOUBLE: \
2110 case HIGH: \
2111 return 0;
2113 /* Provide the costs of a rtl expression. This is in the body of a
2114 switch on CODE. */
2116 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2117 case PLUS: \
2118 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2119 && (unsigned HOST_WIDE_INT) ((INTVAL (XEXP (X, 1)) \
2120 + 0x8000) >= 0x10000)) \
2121 ? COSTS_N_INSNS (2) \
2122 : COSTS_N_INSNS (1)); \
2123 case AND: \
2124 return ((non_and_cint_operand (XEXP (X, 1), SImode)) \
2125 ? COSTS_N_INSNS (2) \
2126 : COSTS_N_INSNS (1)); \
2127 case IOR: \
2128 case XOR: \
2129 return ((non_logical_cint_operand (XEXP (X, 1), SImode)) \
2130 ? COSTS_N_INSNS (2) \
2131 : COSTS_N_INSNS (1)); \
2132 case MULT: \
2133 switch (rs6000_cpu) \
2135 case PROCESSOR_RIOS1: \
2136 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2137 ? COSTS_N_INSNS (5) \
2138 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2139 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2140 case PROCESSOR_RIOS2: \
2141 case PROCESSOR_MPCCORE: \
2142 return COSTS_N_INSNS (2); \
2143 case PROCESSOR_PPC601: \
2144 return COSTS_N_INSNS (5); \
2145 case PROCESSOR_PPC603: \
2146 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2147 ? COSTS_N_INSNS (5) \
2148 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2149 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2150 case PROCESSOR_PPC403: \
2151 case PROCESSOR_PPC604: \
2152 case PROCESSOR_PPC620: \
2153 return COSTS_N_INSNS (4); \
2155 case DIV: \
2156 case MOD: \
2157 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2158 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2159 return COSTS_N_INSNS (2); \
2160 /* otherwise fall through to normal divide. */ \
2161 case UDIV: \
2162 case UMOD: \
2163 switch (rs6000_cpu) \
2165 case PROCESSOR_RIOS1: \
2166 return COSTS_N_INSNS (19); \
2167 case PROCESSOR_RIOS2: \
2168 return COSTS_N_INSNS (13); \
2169 case PROCESSOR_MPCCORE: \
2170 return COSTS_N_INSNS (6); \
2171 case PROCESSOR_PPC403: \
2172 return COSTS_N_INSNS (33); \
2173 case PROCESSOR_PPC601: \
2174 return COSTS_N_INSNS (36); \
2175 case PROCESSOR_PPC603: \
2176 return COSTS_N_INSNS (37); \
2177 case PROCESSOR_PPC604: \
2178 case PROCESSOR_PPC620: \
2179 return COSTS_N_INSNS (20); \
2181 case FFS: \
2182 return COSTS_N_INSNS (4); \
2183 case MEM: \
2184 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2185 return 5;
2187 /* Compute the cost of an address. This is meant to approximate the size
2188 and/or execution delay of an insn using that address. If the cost is
2189 approximated by the RTL complexity, including CONST_COSTS above, as
2190 is usually the case for CISC machines, this macro should not be defined.
2191 For aggressively RISCy machines, only one insn format is allowed, so
2192 this macro should be a constant. The value of this macro only matters
2193 for valid addresses.
2195 For the RS/6000, everything is cost 0. */
2197 #define ADDRESS_COST(RTX) 0
2199 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2200 should be adjusted to reflect any required changes. This macro is used when
2201 there is some systematic length adjustment required that would be difficult
2202 to express in the length attribute. */
2204 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2206 /* Add any extra modes needed to represent the condition code.
2208 For the RS/6000, we need separate modes when unsigned (logical) comparisons
2209 are being done and we need a separate mode for floating-point. We also
2210 use a mode for the case when we are comparing the results of two
2211 comparisons. */
2213 #define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
2215 /* Define the names for the modes specified above. */
2216 #define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
2218 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2219 return the mode to be used for the comparison. For floating-point, CCFPmode
2220 should be used. CCUNSmode should be used for unsigned comparisons.
2221 CCEQmode should be used when we are doing an inequality comparison on
2222 the result of a comparison. CCmode should be used in all other cases. */
2224 #define SELECT_CC_MODE(OP,X,Y) \
2225 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2226 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2227 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2228 ? CCEQmode : CCmode))
2230 /* Define the information needed to generate branch and scc insns. This is
2231 stored from the compare operation. Note that we can't use "rtx" here
2232 since it hasn't been defined! */
2234 extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2235 extern int rs6000_compare_fp_p;
2237 /* Set to non-zero by "fix" operation to indicate that itrunc and
2238 uitrunc must be defined. */
2240 extern int rs6000_trunc_used;
2242 /* Function names to call to do floating point truncation. */
2244 #define RS6000_ITRUNC "__itrunc"
2245 #define RS6000_UITRUNC "__uitrunc"
2247 /* Prefix and suffix to use to saving floating point */
2248 #ifndef SAVE_FP_PREFIX
2249 #define SAVE_FP_PREFIX "._savef"
2250 #define SAVE_FP_SUFFIX ""
2251 #endif
2253 /* Prefix and suffix to use to restoring floating point */
2254 #ifndef RESTORE_FP_PREFIX
2255 #define RESTORE_FP_PREFIX "._restf"
2256 #define RESTORE_FP_SUFFIX ""
2257 #endif
2259 /* Function name to call to do profiling. */
2260 #define RS6000_MCOUNT ".__mcount"
2263 /* Control the assembler format that we output. */
2265 /* A C string constant describing how to begin a comment in the target
2266 assembler language. The compiler assumes that the comment will end at
2267 the end of the line. */
2268 #define ASM_COMMENT_START " #"
2270 /* Output at beginning of assembler file.
2272 Initialize the section names for the RS/6000 at this point.
2274 Specify filename to assembler.
2276 We want to go into the TOC section so at least one .toc will be emitted.
2277 Also, in order to output proper .bs/.es pairs, we need at least one static
2278 [RW] section emitted.
2280 We then switch back to text to force the gcc2_compiled. label and the space
2281 allocated after it (when profiling) into the text section.
2283 Finally, declare mcount when profiling to make the assembler happy. */
2285 #define ASM_FILE_START(FILE) \
2287 rs6000_gen_section_name (&xcoff_bss_section_name, \
2288 main_input_filename, ".bss_"); \
2289 rs6000_gen_section_name (&xcoff_private_data_section_name, \
2290 main_input_filename, ".rw_"); \
2291 rs6000_gen_section_name (&xcoff_read_only_section_name, \
2292 main_input_filename, ".ro_"); \
2294 output_file_directive (FILE, main_input_filename); \
2295 toc_section (); \
2296 if (write_symbols != NO_DEBUG) \
2297 private_data_section (); \
2298 text_section (); \
2299 if (profile_flag) \
2300 fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \
2301 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
2304 /* Output at end of assembler file.
2306 On the RS/6000, referencing data should automatically pull in text. */
2308 #define ASM_FILE_END(FILE) \
2310 text_section (); \
2311 fputs ("_section_.text:\n", FILE); \
2312 data_section (); \
2313 fputs ("\t.long _section_.text\n", FILE); \
2316 /* We define this to prevent the name mangler from putting dollar signs into
2317 function names. */
2319 #define NO_DOLLAR_IN_LABEL
2321 /* We define this to 0 so that gcc will never accept a dollar sign in a
2322 variable name. This is needed because the AIX assembler will not accept
2323 dollar signs. */
2325 #define DOLLARS_IN_IDENTIFIERS 0
2327 /* Implicit library calls should use memcpy, not bcopy, etc. */
2329 #define TARGET_MEM_FUNCTIONS
2331 /* Define the extra sections we need. We define three: one is the read-only
2332 data section which is used for constants. This is a csect whose name is
2333 derived from the name of the input file. The second is for initialized
2334 global variables. This is a csect whose name is that of the variable.
2335 The third is the TOC. */
2337 #define EXTRA_SECTIONS \
2338 read_only_data, private_data, read_only_private_data, toc, bss
2340 /* Define the name of our readonly data section. */
2342 #define READONLY_DATA_SECTION read_only_data_section
2345 /* Define the name of the section to use for the exception tables.
2346 TODO: test and see if we can use read_only_data_section, if so,
2347 remove this. */
2349 #define EXCEPTION_SECTION data_section
2351 /* If we are referencing a function that is static or is known to be
2352 in this file, make the SYMBOL_REF special. We can use this to indicate
2353 that we can branch to this function without emitting a no-op after the
2354 call. */
2356 #define ENCODE_SECTION_INFO(DECL) \
2357 if (TREE_CODE (DECL) == FUNCTION_DECL \
2358 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2359 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2361 /* Indicate that jump tables go in the text section. */
2363 #define JUMP_TABLES_IN_TEXT_SECTION
2365 /* Define the routines to implement these extra sections. */
2367 #define EXTRA_SECTION_FUNCTIONS \
2369 void \
2370 read_only_data_section () \
2372 if (in_section != read_only_data) \
2374 fprintf (asm_out_file, ".csect %s[RO]\n", \
2375 xcoff_read_only_section_name); \
2376 in_section = read_only_data; \
2380 void \
2381 private_data_section () \
2383 if (in_section != private_data) \
2385 fprintf (asm_out_file, ".csect %s[RW]\n", \
2386 xcoff_private_data_section_name); \
2388 in_section = private_data; \
2392 void \
2393 read_only_private_data_section () \
2395 if (in_section != read_only_private_data) \
2397 fprintf (asm_out_file, ".csect %s[RO]\n", \
2398 xcoff_private_data_section_name); \
2399 in_section = read_only_private_data; \
2403 void \
2404 toc_section () \
2406 if (TARGET_MINIMAL_TOC) \
2408 /* toc_section is always called at least once from ASM_FILE_START, \
2409 so this is guaranteed to always be defined once and only once \
2410 in each file. */ \
2411 if (! toc_initialized) \
2413 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2414 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
2415 toc_initialized = 1; \
2418 if (in_section != toc) \
2419 fputs (".csect toc_table[RW]\n", asm_out_file); \
2421 else \
2423 if (in_section != toc) \
2424 fputs (".toc\n", asm_out_file); \
2426 in_section = toc; \
2429 /* Flag to say the TOC is initialized */
2430 extern int toc_initialized;
2432 /* This macro produces the initial definition of a function name.
2433 On the RS/6000, we need to place an extra '.' in the function name and
2434 output the function descriptor.
2436 The csect for the function will have already been created by the
2437 `text_section' call previously done. We do have to go back to that
2438 csect, however. */
2440 /* ??? What do the 16 and 044 in the .function line really mean? */
2442 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2443 { if (TREE_PUBLIC (DECL)) \
2445 fputs ("\t.globl .", FILE); \
2446 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2447 putc ('\n', FILE); \
2449 else \
2451 fputs ("\t.lglobl .", FILE); \
2452 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2453 putc ('\n', FILE); \
2455 fputs (".csect ", FILE); \
2456 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2457 fputs ("[DS]\n", FILE); \
2458 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2459 fputs (":\n", FILE); \
2460 fputs ((TARGET_32BIT) ? "\t.long ." : "\t.llong .", FILE); \
2461 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2462 fputs (", TOC[tc0], 0\n", FILE); \
2463 fputs (".csect .text[PR]\n.", FILE); \
2464 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2465 fputs (":\n", FILE); \
2466 if (write_symbols == XCOFF_DEBUG) \
2467 xcoffout_declare_function (FILE, DECL, NAME); \
2470 /* Return non-zero if this entry is to be written into the constant pool
2471 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2472 containing one of them. If -mfp-in-toc (the default), we also do
2473 this for floating-point constants. We actually can only do this
2474 if the FP formats of the target and host machines are the same, but
2475 we can't check that since not every file that uses
2476 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2478 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2479 (TARGET_TOC \
2480 && (GET_CODE (X) == SYMBOL_REF \
2481 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2482 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2483 || GET_CODE (X) == LABEL_REF \
2484 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2485 && GET_CODE (X) == CONST_DOUBLE \
2486 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2487 && BITS_PER_WORD == HOST_BITS_PER_INT)))
2489 /* Select section for constant in constant pool.
2491 On RS/6000, all constants are in the private read-only data area.
2492 However, if this is being placed in the TOC it must be output as a
2493 toc entry. */
2495 #define SELECT_RTX_SECTION(MODE, X) \
2496 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2497 toc_section (); \
2498 else \
2499 read_only_private_data_section (); \
2502 /* Macro to output a special constant pool entry. Go to WIN if we output
2503 it. Otherwise, it is written the usual way.
2505 On the RS/6000, toc entries are handled this way. */
2507 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2508 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2510 output_toc (FILE, X, LABELNO); \
2511 goto WIN; \
2515 /* Select the section for an initialized data object.
2517 On the RS/6000, we have a special section for all variables except those
2518 that are static. */
2520 #define SELECT_SECTION(EXP,RELOC) \
2522 if ((TREE_CODE (EXP) == STRING_CST \
2523 && !flag_writable_strings) \
2524 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
2525 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
2526 && DECL_INITIAL (EXP) \
2527 && (DECL_INITIAL (EXP) == error_mark_node \
2528 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2529 && ! (RELOC))) \
2531 if (TREE_PUBLIC (EXP)) \
2532 read_only_data_section (); \
2533 else \
2534 read_only_private_data_section (); \
2536 else \
2538 if (TREE_PUBLIC (EXP)) \
2539 data_section (); \
2540 else \
2541 private_data_section (); \
2545 /* This outputs NAME to FILE up to the first null or '['. */
2547 #define RS6000_OUTPUT_BASENAME(FILE, NAME) \
2549 char *_p; \
2551 STRIP_NAME_ENCODING (_p, (NAME)); \
2552 assemble_name ((FILE), _p); \
2555 /* Remove any trailing [DS] or the like from the symbol name. */
2557 #define STRIP_NAME_ENCODING(VAR,NAME) \
2558 do \
2560 char *_name = (NAME); \
2561 int _len; \
2562 if (_name[0] == '*') \
2563 _name++; \
2564 _len = strlen (_name); \
2565 if (_name[_len - 1] != ']') \
2566 (VAR) = _name; \
2567 else \
2569 (VAR) = (char *) alloca (_len + 1); \
2570 strcpy ((VAR), _name); \
2571 (VAR)[_len - 4] = '\0'; \
2574 while (0)
2576 /* Output something to declare an external symbol to the assembler. Most
2577 assemblers don't need this.
2579 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2580 name. Normally we write this out along with the name. In the few cases
2581 where we can't, it gets stripped off. */
2583 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2584 { rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2585 if ((TREE_CODE (DECL) == VAR_DECL \
2586 || TREE_CODE (DECL) == FUNCTION_DECL) \
2587 && (NAME)[strlen (NAME) - 1] != ']') \
2589 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2590 strcpy (_name, XSTR (_symref, 0)); \
2591 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2592 XSTR (_symref, 0) = _name; \
2594 fputs ("\t.extern ", FILE); \
2595 assemble_name (FILE, XSTR (_symref, 0)); \
2596 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2598 fputs ("\n\t.extern .", FILE); \
2599 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2601 putc ('\n', FILE); \
2604 /* Similar, but for libcall. We only have to worry about the function name,
2605 not that of the descriptor. */
2607 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
2608 { fputs ("\t.extern .", FILE); \
2609 assemble_name (FILE, XSTR (FUN, 0)); \
2610 putc ('\n', FILE); \
2613 /* Output to assembler file text saying following lines
2614 may contain character constants, extra white space, comments, etc. */
2616 #define ASM_APP_ON ""
2618 /* Output to assembler file text saying following lines
2619 no longer contain unusual constructs. */
2621 #define ASM_APP_OFF ""
2623 /* Output before instructions. */
2625 #define TEXT_SECTION_ASM_OP ".csect .text[PR]"
2627 /* Output before writable data. */
2629 #define DATA_SECTION_ASM_OP ".csect .data[RW]"
2631 /* How to refer to registers in assembler output.
2632 This sequence is indexed by compiler's hard-register-number (see above). */
2634 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2636 #define REGISTER_NAMES \
2638 &rs6000_reg_names[ 0][0], /* r0 */ \
2639 &rs6000_reg_names[ 1][0], /* r1 */ \
2640 &rs6000_reg_names[ 2][0], /* r2 */ \
2641 &rs6000_reg_names[ 3][0], /* r3 */ \
2642 &rs6000_reg_names[ 4][0], /* r4 */ \
2643 &rs6000_reg_names[ 5][0], /* r5 */ \
2644 &rs6000_reg_names[ 6][0], /* r6 */ \
2645 &rs6000_reg_names[ 7][0], /* r7 */ \
2646 &rs6000_reg_names[ 8][0], /* r8 */ \
2647 &rs6000_reg_names[ 9][0], /* r9 */ \
2648 &rs6000_reg_names[10][0], /* r10 */ \
2649 &rs6000_reg_names[11][0], /* r11 */ \
2650 &rs6000_reg_names[12][0], /* r12 */ \
2651 &rs6000_reg_names[13][0], /* r13 */ \
2652 &rs6000_reg_names[14][0], /* r14 */ \
2653 &rs6000_reg_names[15][0], /* r15 */ \
2654 &rs6000_reg_names[16][0], /* r16 */ \
2655 &rs6000_reg_names[17][0], /* r17 */ \
2656 &rs6000_reg_names[18][0], /* r18 */ \
2657 &rs6000_reg_names[19][0], /* r19 */ \
2658 &rs6000_reg_names[20][0], /* r20 */ \
2659 &rs6000_reg_names[21][0], /* r21 */ \
2660 &rs6000_reg_names[22][0], /* r22 */ \
2661 &rs6000_reg_names[23][0], /* r23 */ \
2662 &rs6000_reg_names[24][0], /* r24 */ \
2663 &rs6000_reg_names[25][0], /* r25 */ \
2664 &rs6000_reg_names[26][0], /* r26 */ \
2665 &rs6000_reg_names[27][0], /* r27 */ \
2666 &rs6000_reg_names[28][0], /* r28 */ \
2667 &rs6000_reg_names[29][0], /* r29 */ \
2668 &rs6000_reg_names[30][0], /* r30 */ \
2669 &rs6000_reg_names[31][0], /* r31 */ \
2671 &rs6000_reg_names[32][0], /* fr0 */ \
2672 &rs6000_reg_names[33][0], /* fr1 */ \
2673 &rs6000_reg_names[34][0], /* fr2 */ \
2674 &rs6000_reg_names[35][0], /* fr3 */ \
2675 &rs6000_reg_names[36][0], /* fr4 */ \
2676 &rs6000_reg_names[37][0], /* fr5 */ \
2677 &rs6000_reg_names[38][0], /* fr6 */ \
2678 &rs6000_reg_names[39][0], /* fr7 */ \
2679 &rs6000_reg_names[40][0], /* fr8 */ \
2680 &rs6000_reg_names[41][0], /* fr9 */ \
2681 &rs6000_reg_names[42][0], /* fr10 */ \
2682 &rs6000_reg_names[43][0], /* fr11 */ \
2683 &rs6000_reg_names[44][0], /* fr12 */ \
2684 &rs6000_reg_names[45][0], /* fr13 */ \
2685 &rs6000_reg_names[46][0], /* fr14 */ \
2686 &rs6000_reg_names[47][0], /* fr15 */ \
2687 &rs6000_reg_names[48][0], /* fr16 */ \
2688 &rs6000_reg_names[49][0], /* fr17 */ \
2689 &rs6000_reg_names[50][0], /* fr18 */ \
2690 &rs6000_reg_names[51][0], /* fr19 */ \
2691 &rs6000_reg_names[52][0], /* fr20 */ \
2692 &rs6000_reg_names[53][0], /* fr21 */ \
2693 &rs6000_reg_names[54][0], /* fr22 */ \
2694 &rs6000_reg_names[55][0], /* fr23 */ \
2695 &rs6000_reg_names[56][0], /* fr24 */ \
2696 &rs6000_reg_names[57][0], /* fr25 */ \
2697 &rs6000_reg_names[58][0], /* fr26 */ \
2698 &rs6000_reg_names[59][0], /* fr27 */ \
2699 &rs6000_reg_names[60][0], /* fr28 */ \
2700 &rs6000_reg_names[61][0], /* fr29 */ \
2701 &rs6000_reg_names[62][0], /* fr30 */ \
2702 &rs6000_reg_names[63][0], /* fr31 */ \
2704 &rs6000_reg_names[64][0], /* mq */ \
2705 &rs6000_reg_names[65][0], /* lr */ \
2706 &rs6000_reg_names[66][0], /* ctr */ \
2707 &rs6000_reg_names[67][0], /* ap */ \
2709 &rs6000_reg_names[68][0], /* cr0 */ \
2710 &rs6000_reg_names[69][0], /* cr1 */ \
2711 &rs6000_reg_names[70][0], /* cr2 */ \
2712 &rs6000_reg_names[71][0], /* cr3 */ \
2713 &rs6000_reg_names[72][0], /* cr4 */ \
2714 &rs6000_reg_names[73][0], /* cr5 */ \
2715 &rs6000_reg_names[74][0], /* cr6 */ \
2716 &rs6000_reg_names[75][0], /* cr7 */ \
2718 &rs6000_reg_names[76][0], /* fpmem */ \
2721 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2722 following for it. Switch to use the alternate names since
2723 they are more mnemonic. */
2725 #define DEBUG_REGISTER_NAMES \
2727 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2728 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2729 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2730 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2731 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2732 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2733 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2734 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2735 "mq", "lr", "ctr", "ap", \
2736 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2737 "fpmem" \
2740 /* Table of additional register names to use in user input. */
2742 #define ADDITIONAL_REGISTER_NAMES \
2743 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
2744 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
2745 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
2746 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
2747 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
2748 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
2749 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
2750 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
2751 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
2752 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
2753 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
2754 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
2755 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
2756 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
2757 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
2758 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
2759 /* no additional names for: mq, lr, ctr, ap */ \
2760 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
2761 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
2762 "cc", 68, "sp", 1, "toc", 2 }
2764 /* How to renumber registers for dbx and gdb. */
2766 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2768 /* Text to write out after a CALL that may be replaced by glue code by
2769 the loader. This depends on the AIX version. */
2770 #define RS6000_CALL_GLUE "cror 31,31,31"
2772 /* This is how to output the definition of a user-level label named NAME,
2773 such as the label on a static function or variable NAME. */
2775 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2776 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2778 /* This is how to output a command to make the user-level label named NAME
2779 defined for reference from other files. */
2781 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2782 do { fputs ("\t.globl ", FILE); \
2783 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2785 /* This is how to output a reference to a user-level label named NAME.
2786 `assemble_name' uses this. */
2788 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2789 fputs (NAME, FILE)
2791 /* This is how to output an internal numbered label where
2792 PREFIX is the class of label and NUM is the number within the class. */
2794 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2795 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2797 /* This is how to output an internal label prefix. rs6000.c uses this
2798 when generating traceback tables. */
2800 #define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2801 fprintf (FILE, "%s..", PREFIX)
2803 /* This is how to output a label for a jump table. Arguments are the same as
2804 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2805 passed. */
2807 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2808 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2810 /* This is how to store into the string LABEL
2811 the symbol_ref name of an internal numbered label where
2812 PREFIX is the class of label and NUM is the number within the class.
2813 This is suitable for output with `assemble_name'. */
2815 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2816 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
2818 /* This is how to output an assembler line defining a `double' constant. */
2820 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2822 if (REAL_VALUE_ISINF (VALUE) \
2823 || REAL_VALUE_ISNAN (VALUE) \
2824 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2826 long t[2]; \
2827 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2828 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2829 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2831 else \
2833 char str[30]; \
2834 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2835 fprintf (FILE, "\t.double 0d%s\n", str); \
2839 /* This is how to output an assembler line defining a `float' constant. */
2841 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2843 if (REAL_VALUE_ISINF (VALUE) \
2844 || REAL_VALUE_ISNAN (VALUE) \
2845 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2847 long t; \
2848 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2849 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2851 else \
2853 char str[30]; \
2854 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2855 fprintf (FILE, "\t.float 0d%s\n", str); \
2859 /* This is how to output an assembler line defining an `int' constant. */
2861 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2862 do { \
2863 if (TARGET_32BIT) \
2865 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
2866 UNITS_PER_WORD, 1); \
2867 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
2868 UNITS_PER_WORD, 1); \
2870 else \
2872 fputs ("\t.llong ", FILE); \
2873 output_addr_const (FILE, (VALUE)); \
2874 putc ('\n', FILE); \
2876 } while (0)
2878 #define ASM_OUTPUT_INT(FILE,VALUE) \
2879 ( fputs ("\t.long ", FILE), \
2880 output_addr_const (FILE, (VALUE)), \
2881 putc ('\n', FILE))
2883 /* Likewise for `char' and `short' constants. */
2885 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2886 ( fputs ("\t.short ", FILE), \
2887 output_addr_const (FILE, (VALUE)), \
2888 putc ('\n', FILE))
2890 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2891 ( fputs ("\t.byte ", FILE), \
2892 output_addr_const (FILE, (VALUE)), \
2893 putc ('\n', FILE))
2895 /* This is how to output an assembler line for a numeric constant byte. */
2897 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2898 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
2900 /* This is how to output an assembler line to define N characters starting
2901 at P to FILE. */
2903 #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
2905 /* This is how to output code to push a register on the stack.
2906 It need not be very fast code. */
2908 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2909 do { \
2910 extern char *reg_names[]; \
2911 asm_fprintf (FILE, "\{tstu|stwu} %s,-4(%s)\n", reg_names[REGNO], \
2912 reg_names[1]); \
2913 } while (0)
2915 /* This is how to output an insn to pop a register from the stack.
2916 It need not be very fast code. */
2918 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2919 do { \
2920 extern char *reg_names[]; \
2921 asm_fprintf (FILE, "\t{l|lwz} %s,0(%s)\n\t{ai|addic} %s,%s,4\n", \
2922 reg_names[REGNO], reg_names[1], reg_names[1], \
2923 reg_names[1]); \
2924 } while (0)
2926 /* This is how to output an element of a case-vector that is absolute.
2927 (RS/6000 does not use such vectors, but we must define this macro
2928 anyway.) */
2930 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2931 do { char buf[100]; \
2932 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
2933 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2934 assemble_name (FILE, buf); \
2935 putc ('\n', FILE); \
2936 } while (0)
2938 /* This is how to output an element of a case-vector that is relative. */
2940 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2941 do { char buf[100]; \
2942 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
2943 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2944 assemble_name (FILE, buf); \
2945 putc ('-', FILE); \
2946 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2947 assemble_name (FILE, buf); \
2948 putc ('\n', FILE); \
2949 } while (0)
2951 /* This is how to output an assembler line
2952 that says to advance the location counter
2953 to a multiple of 2**LOG bytes. */
2955 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2956 if ((LOG) != 0) \
2957 fprintf (FILE, "\t.align %d\n", (LOG))
2959 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2960 fprintf (FILE, "\t.space %d\n", (SIZE))
2962 /* This says how to output an assembler line
2963 to define a global common symbol. */
2965 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
2966 do { fputs (".comm ", (FILE)); \
2967 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2968 if ( (SIZE) > 4) \
2969 fprintf ((FILE), ",%d,3\n", (SIZE)); \
2970 else \
2971 fprintf( (FILE), ",%d\n", (SIZE)); \
2972 } while (0)
2974 /* This says how to output an assembler line
2975 to define a local common symbol. */
2977 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2978 do { fputs (".lcomm ", (FILE)); \
2979 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2980 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
2981 } while (0)
2983 /* Store in OUTPUT a string (made with alloca) containing
2984 an assembler-name for a local static variable named NAME.
2985 LABELNO is an integer which is different for each call. */
2987 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2988 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2989 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2991 /* Define the parentheses used to group arithmetic operations
2992 in assembler code. */
2994 #define ASM_OPEN_PAREN "("
2995 #define ASM_CLOSE_PAREN ")"
2997 /* Define results of standard character escape sequences. */
2998 #define TARGET_BELL 007
2999 #define TARGET_BS 010
3000 #define TARGET_TAB 011
3001 #define TARGET_NEWLINE 012
3002 #define TARGET_VT 013
3003 #define TARGET_FF 014
3004 #define TARGET_CR 015
3006 /* Print operand X (an rtx) in assembler syntax to file FILE.
3007 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3008 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3010 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3012 /* Define which CODE values are valid. */
3014 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3015 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
3017 /* Print a memory address as an operand to reference that memory location. */
3019 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3021 /* Define the codes that are matched by predicates in rs6000.c. */
3023 #define PREDICATE_CODES \
3024 {"short_cint_operand", {CONST_INT}}, \
3025 {"u_short_cint_operand", {CONST_INT}}, \
3026 {"non_short_cint_operand", {CONST_INT}}, \
3027 {"gpc_reg_operand", {SUBREG, REG}}, \
3028 {"cc_reg_operand", {SUBREG, REG}}, \
3029 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
3030 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
3031 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
3032 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
3033 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
3034 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
3035 {"easy_fp_constant", {CONST_DOUBLE}}, \
3036 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
3037 {"lwa_operand", {SUBREG, MEM, REG}}, \
3038 {"volatile_mem_operand", {MEM}}, \
3039 {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \
3040 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
3041 {"add_operand", {SUBREG, REG, CONST_INT}}, \
3042 {"non_add_cint_operand", {CONST_INT}}, \
3043 {"and_operand", {SUBREG, REG, CONST_INT}}, \
3044 {"non_and_cint_operand", {CONST_INT}}, \
3045 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
3046 {"non_logical_cint_operand", {CONST_INT}}, \
3047 {"mask_operand", {CONST_INT}}, \
3048 {"count_register_operand", {REG}}, \
3049 {"fpmem_operand", {REG}}, \
3050 {"call_operand", {SYMBOL_REF, REG}}, \
3051 {"current_file_function_operand", {SYMBOL_REF}}, \
3052 {"input_operand", {SUBREG, MEM, REG, CONST_INT, SYMBOL_REF}}, \
3053 {"load_multiple_operation", {PARALLEL}}, \
3054 {"store_multiple_operation", {PARALLEL}}, \
3055 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
3056 GT, LEU, LTU, GEU, GTU}}, \
3057 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
3058 GT, LEU, LTU, GEU, GTU}},
3061 /* uncomment for disabling the corresponding default options */
3062 /* #define MACHINE_no_sched_interblock */
3063 /* #define MACHINE_no_sched_speculative */
3064 /* #define MACHINE_no_sched_speculative_load */
3066 /* indicate that issue rate is defined for this machine
3067 (no need to use the default) */
3068 #define MACHINE_issue_rate
3070 /* General flags. */
3071 extern int flag_pic;
3072 extern int optimize;
3073 extern int flag_expensive_optimizations;
3074 extern int frame_pointer_needed;
3076 /* Declare functions in rs6000.c */
3077 extern void output_options ();
3078 extern void rs6000_override_options ();
3079 extern void rs6000_file_start ();
3080 extern struct rtx_def *rs6000_float_const ();
3081 extern struct rtx_def *rs6000_immed_double_const ();
3082 extern struct rtx_def *rs6000_got_register ();
3083 extern int direct_return ();
3084 extern int any_operand ();
3085 extern int short_cint_operand ();
3086 extern int u_short_cint_operand ();
3087 extern int non_short_cint_operand ();
3088 extern int gpc_reg_operand ();
3089 extern int cc_reg_operand ();
3090 extern int reg_or_short_operand ();
3091 extern int reg_or_neg_short_operand ();
3092 extern int reg_or_u_short_operand ();
3093 extern int reg_or_cint_operand ();
3094 extern int got_operand ();
3095 extern int got_no_const_operand ();
3096 extern int num_insns_constant ();
3097 extern int easy_fp_constant ();
3098 extern int volatile_mem_operand ();
3099 extern int offsettable_addr_operand ();
3100 extern int mem_or_easy_const_operand ();
3101 extern int add_operand ();
3102 extern int non_add_cint_operand ();
3103 extern int logical_operand ();
3104 extern int non_logical_operand ();
3105 extern int mask_constant ();
3106 extern int mask_operand ();
3107 extern int and_operand ();
3108 extern int count_register_operand ();
3109 extern int fpmem_operand ();
3110 extern int non_and_cint_operand ();
3111 extern int reg_or_mem_operand ();
3112 extern int lwa_operand ();
3113 extern int call_operand ();
3114 extern int current_file_function_operand ();
3115 extern int input_operand ();
3116 extern int small_data_operand ();
3117 extern void init_cumulative_args ();
3118 extern void function_arg_advance ();
3119 extern int function_arg_boundary ();
3120 extern struct rtx_def *function_arg ();
3121 extern int function_arg_partial_nregs ();
3122 extern int function_arg_pass_by_reference ();
3123 extern void setup_incoming_varargs ();
3124 extern struct rtx_def *expand_builtin_saveregs ();
3125 extern struct rtx_def *rs6000_stack_temp ();
3126 extern int expand_block_move ();
3127 extern int load_multiple_operation ();
3128 extern int store_multiple_operation ();
3129 extern int branch_comparison_operator ();
3130 extern int scc_comparison_operator ();
3131 extern int includes_lshift_p ();
3132 extern int includes_rshift_p ();
3133 extern int registers_ok_for_quad_peep ();
3134 extern int addrs_ok_for_quad_peep ();
3135 extern enum reg_class secondary_reload_class ();
3136 extern int ccr_bit ();
3137 extern void rs6000_finalize_pic ();
3138 extern void rs6000_reorg ();
3139 extern void rs6000_save_machine_status ();
3140 extern void rs6000_restore_machine_status ();
3141 extern void rs6000_init_expanders ();
3142 extern void print_operand ();
3143 extern void print_operand_address ();
3144 extern int first_reg_to_save ();
3145 extern int first_fp_reg_to_save ();
3146 extern int rs6000_makes_calls ();
3147 extern rs6000_stack_t *rs6000_stack_info ();
3148 extern void output_prolog ();
3149 extern void output_epilog ();
3150 extern void output_toc ();
3151 extern void output_ascii ();
3152 extern void rs6000_gen_section_name ();
3153 extern void output_function_profiler ();
3154 extern int rs6000_adjust_cost ();
3155 extern void rs6000_trampoline_template ();
3156 extern int rs6000_trampoline_size ();
3157 extern void rs6000_initialize_trampoline ();
3158 extern int rs6000_comp_type_attributes ();
3159 extern int rs6000_valid_decl_attribute_p ();
3160 extern int rs6000_valid_type_attribute_p ();
3161 extern void rs6000_set_default_type_attributes ();
3162 extern struct rtx_def *rs6000_dll_import_ref ();
3163 extern struct rtx_def *rs6000_longcall_ref ();
3165 /* See nonlocal_goto_receiver for when this must be set. */
3167 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_TOC && TARGET_MINIMAL_TOC)