Initial revision
[official-gcc.git] / gcc / config / i370 / i370.h
blob576a44912f75f00be9d850a90cf13b53357aae67
1 /* Definitions of target machine for GNU compiler. System/370 version.
2 Copyright (C) 1989, 1993, 1995, 1996 Free Software Foundation, Inc.
3 Contributed by Jan Stein (jan@cd.chalmers.se).
4 Modified for C/370 MVS by Dave Pitts (dpitts@nyx.cs.du.edu)
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 #ifdef sun
24 #include <sys/types.h>
25 #include <ctype.h>
26 #endif
27 #include <time.h>
29 #define TARGET_VERSION printf (" (370/MVS)");
31 /* Options for the preprocessor for this target machine. */
33 #define CPP_SPEC "-trigraphs"
35 /* Names to predefine in the preprocessor for this target machine. */
37 #define CPP_PREDEFINES "-DGCC -Dgcc -DMVS -Dmvs -Asystem(mvs) -Acpu(i370) -Amachine(i370)"
39 /* Run-time compilation parameters selecting different hardware subsets. */
41 extern int target_flags;
43 /* The sizes of the code and literals on the current page. */
45 extern int mvs_page_code, mvs_page_lit;
47 /* The current page number and the base page number for the function. */
49 extern int mvs_page_num, function_base_page;
51 /* True if a label has been emitted. */
53 extern int mvs_label_emitted;
55 /* The name of the current function. */
57 extern char *mvs_function_name;
59 /* The length of the function name malloc'd area. */
61 extern int mvs_function_name_length;
63 /* The amount of space used for outgoing arguments. */
65 extern int current_function_outgoing_args_size;
67 /* Compile using char instructions (mvc, nc, oc, xc). On 4341 use this since
68 these are more than twice as fast as load-op-store.
69 On 3090 don't use this since load-op-store is much faster. */
71 #define TARGET_CHAR_INSTRUCTIONS (target_flags & 1)
73 /* Default target switches */
75 #define TARGET_DEFAULT 1
77 /* Macro to define tables used to set the flags. This is a list in braces
78 of pairs in braces, each pair being { "NAME", VALUE }
79 where VALUE is the bits to set or minus the bits to clear.
80 An empty string NAME is used to identify the default VALUE. */
82 #define TARGET_SWITCHES \
83 { { "char-instructions", 1}, \
84 { "no-char-instructions", -1}, \
85 { "", TARGET_DEFAULT} }
87 /* To use IBM supplied macro function prologue and epilogue, define the
88 following to 1. Should only be needed if IBM changes the definition
89 of their prologue and epilogue. */
91 #define MACROPROLOGUE 0
92 #define MACROEPILOGUE 0
94 /* Target machine storage layout */
96 /* Define this if most significant bit is lowest numbered in instructions
97 that operate on numbered bit-fields. */
99 #define BITS_BIG_ENDIAN 1
101 /* Define this if most significant byte of a word is the lowest numbered. */
103 #define BYTES_BIG_ENDIAN 1
105 /* Define this if MS word of a multiword is the lowest numbered. */
107 #define WORDS_BIG_ENDIAN 1
109 /* Number of bits in an addressable storage unit. */
111 #define BITS_PER_UNIT 8
113 /* Width in bits of a "word", which is the contents of a machine register. */
115 #define BITS_PER_WORD 32
117 /* Width of a word, in units (bytes). */
119 #define UNITS_PER_WORD 4
121 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */
123 #define POINTER_SIZE 32
125 /* Allocation boundary (in *bits*) for storing pointers in memory. */
127 #define POINTER_BOUNDARY 32
129 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
131 #define PARM_BOUNDARY 32
133 /* Boundary (in *bits*) on which stack pointer should be aligned. */
135 #define STACK_BOUNDARY 32
137 /* Allocation boundary (in *bits*) for the code of a function. */
139 #define FUNCTION_BOUNDARY 32
141 /* There is no point aligning anything to a rounder boundary than this. */
143 #define BIGGEST_ALIGNMENT 64
145 /* Alignment of field after `int : 0' in a structure. */
147 #define EMPTY_FIELD_BOUNDARY 32
149 /* Define this if move instructions will actually fail to work when given
150 unaligned data. */
152 #define STRICT_ALIGNMENT 0
154 /* Define target floating point format. */
156 #define TARGET_FLOAT_FORMAT IBM_FLOAT_FORMAT
158 /* Define character mapping for cross-compiling. */
160 #define TARGET_EBCDIC 1
162 #ifdef HOST_EBCDIC
163 #define MAP_CHARACTER(c) ((char)(c))
164 #else
165 #define MAP_CHARACTER(c) ((char)mvs_map_char (c))
166 #endif
168 /* Define maximum length of page minus page escape overhead. */
170 #define MAX_MVS_PAGE_LENGTH 4080
172 /* Define if special allocation order desired. */
174 #define REG_ALLOC_ORDER \
175 { 0, 1, 2, 3, 14, 15, 12, 10, 9, 8, 7, 6, 5, 4, 16, 17, 18, 19, 11, 13 }
177 /* Standard register usage. */
179 /* Number of actual hardware registers. The hardware registers are
180 assigned numbers for the compiler from 0 to just below
181 FIRST_PSEUDO_REGISTER.
182 All registers that the compiler knows about must be given numbers,
183 even those that are not normally considered general registers.
184 For the 370, we give the data registers numbers 0-15,
185 and the floating point registers numbers 16-19. */
187 #define FIRST_PSEUDO_REGISTER 20
189 /* Define base and page registers. */
191 #define BASE_REGISTER 3
192 #define PAGE_REGISTER 4
194 /* 1 for registers that have pervasive standard uses and are not available
195 for the register allocator. On the 370 under C/370, R13 is stack (DSA)
196 pointer, R12 is the TCA pointer, R3 is the base register, R4 is the page
197 origin table pointer and R11 is the arg pointer. */
199 #define FIXED_REGISTERS \
200 { 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0 }
201 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19*/
203 /* 1 for registers not available across function calls. These must include
204 the FIXED_REGISTERS and also any registers that can be used without being
205 saved.
206 The latter must include the registers where values are returned
207 and the register where structure-value addresses are passed.
208 NOTE: all floating registers are undefined across calls. */
210 #define CALL_USED_REGISTERS \
211 { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
212 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19*/
214 /* Return number of consecutive hard regs needed starting at reg REGNO
215 to hold something of mode MODE.
216 This is ordinarily the length in words of a value of mode MODE
217 but can be less for certain modes in special long registers. */
219 #define HARD_REGNO_NREGS(REGNO, MODE) \
220 ((REGNO) > 15 ? 1 : (GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD)
222 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
223 On the 370, the cpu registers can hold QI, HI, SI, SF and DF. The
224 even registers can hold DI. The floating point registers can hold
225 either SF or DF. */
227 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
228 ((REGNO) < 16 ? ((REGNO) & 1) == 0 || (MODE) != DImode \
229 : (MODE) == SFmode || (MODE) == DFmode)
231 /* Value is 1 if it is a good idea to tie two pseudo registers when one has
232 mode MODE1 and one has mode MODE2.
233 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
234 for any hard reg, then this must be 0 for correct output. */
236 #define MODES_TIEABLE_P(MODE1, MODE2) \
237 (((MODE1) == SFmode || (MODE1) == DFmode) \
238 == ((MODE2) == SFmode || (MODE2) == DFmode))
240 /* Mark external references. */
242 #define ENCODE_SECTION_INFO(decl) \
243 if (DECL_EXTERNAL (decl) && TREE_PUBLIC (decl)) \
244 SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1;
246 /* Specify the registers used for certain standard purposes.
247 The values of these macros are register numbers. */
249 /* 370 PC isn't overloaded on a register. */
251 /* #define PC_REGNUM */
253 /* Register to use for pushing function arguments. */
255 #define STACK_POINTER_REGNUM 13
257 /* Base register for access to local variables of the function. */
259 #define FRAME_POINTER_REGNUM 13
261 /* Value should be nonzero if functions must have frame pointers.
262 Zero means the frame pointer need not be set up (and parms may be
263 accessed via the stack pointer) in functions that seem suitable.
264 This is computed in `reload', in reload1.c. */
266 #define FRAME_POINTER_REQUIRED 1
268 /* Base register for access to arguments of the function. */
270 #define ARG_POINTER_REGNUM 11
272 /* Register in which static-chain is passed to a function. */
274 #define STATIC_CHAIN_REGNUM 10
276 /* Register in which address to store a structure value is passed to
277 a function. */
279 #define STRUCT_VALUE_REGNUM 1
281 /* Define the classes of registers for register constraints in the
282 machine description. Also define ranges of constants.
284 One of the classes must always be named ALL_REGS and include all hard regs.
285 If there is more than one class, another class must be named NO_REGS
286 and contain no registers.
288 The name GENERAL_REGS must be the name of a class (or an alias for
289 another name such as ALL_REGS). This is the class of registers
290 that is allowed by "g" or "r" in a register constraint.
291 Also, registers outside this class are allocated only when
292 instructions express preferences for them.
294 The classes must be numbered in nondecreasing order; that is,
295 a larger-numbered class must never be contained completely
296 in a smaller-numbered class.
298 For any two classes, it is very desirable that there be another
299 class that represents their union. */
301 enum reg_class
303 NO_REGS, ADDR_REGS, DATA_REGS,
304 FP_REGS, ALL_REGS, LIM_REG_CLASSES
307 #define GENERAL_REGS DATA_REGS
308 #define N_REG_CLASSES (int) LIM_REG_CLASSES
310 /* Give names of register classes as strings for dump file. */
312 #define REG_CLASS_NAMES \
313 { "NO_REGS", "ADDR_REGS", "DATA_REGS", "FP_REGS", "ALL_REGS" }
315 /* Define which registers fit in which classes. This is an initializer for
316 a vector of HARD_REG_SET of length N_REG_CLASSES. */
318 #define REG_CLASS_CONTENTS {0, 0x0fffe, 0x0ffff, 0xf0000, 0xfffff}
320 /* The same information, inverted:
321 Return the class number of the smallest class containing
322 reg number REGNO. This could be a conditional expression
323 or could index an array. */
325 #define REGNO_REG_CLASS(REGNO) \
326 ((REGNO) >= 16 ? FP_REGS : (REGNO) != 0 ? ADDR_REGS : DATA_REGS)
328 /* The class value for index registers, and the one for base regs. */
330 #define INDEX_REG_CLASS ADDR_REGS
331 #define BASE_REG_CLASS ADDR_REGS
333 /* Get reg_class from a letter such as appears in the machine description. */
335 #define REG_CLASS_FROM_LETTER(C) \
336 ((C) == 'a' ? ADDR_REGS : \
337 ((C) == 'd' ? DATA_REGS : \
338 ((C) == 'f' ? FP_REGS : NO_REGS)))
340 /* The letters I, J, K, L and M in a register constraint string can be used
341 to stand for particular ranges of immediate operands.
342 This macro defines what the ranges are.
343 C is the letter, and VALUE is a constant value.
344 Return 1 if VALUE is in the range specified by C. */
346 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
347 ((C) == 'I' ? (unsigned) (VALUE) < 256 : \
348 (C) == 'J' ? (unsigned) (VALUE) < 4096 : \
349 (C) == 'K' ? (VALUE) >= -32768 && (VALUE) < 32768 : 0)
351 /* Similar, but for floating constants, and defining letters G and H.
352 Here VALUE is the CONST_DOUBLE rtx itself. */
354 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
356 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
357 return the class of reg to actually use. In general this is just CLASS;
358 but on some machines in some cases it is preferable to use a more
359 restrictive class. */
361 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
362 (GET_CODE(X) == CONST_DOUBLE ? FP_REGS : \
363 GET_CODE(X) == CONST_INT ? DATA_REGS : \
364 GET_CODE(X) == LABEL_REF || \
365 GET_CODE(X) == SYMBOL_REF || \
366 GET_CODE(X) == CONST ? ADDR_REGS : (CLASS))
368 /* Return the maximum number of consecutive registers needed to represent
369 mode MODE in a register of class CLASS. */
371 #define CLASS_MAX_NREGS(CLASS, MODE) \
372 ((CLASS) == FP_REGS ? 1 : \
373 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
375 /* Stack layout; function entry, exit and calling. */
377 /* Define this if pushing a word on the stack makes the stack pointer a
378 smaller address. */
380 /* #define STACK_GROWS_DOWNWARD */
382 /* Define this if the nominal address of the stack frame is at the
383 high-address end of the local variables; that is, each additional local
384 variable allocated goes at a more negative offset in the frame. */
386 /* #define FRAME_GROWS_DOWNWARD */
388 /* Offset within stack frame to start allocating local variables at.
389 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
390 first local allocated. Otherwise, it is the offset to the BEGINNING
391 of the first local allocated. */
393 #define STARTING_FRAME_OFFSET \
394 (STACK_POINTER_OFFSET + current_function_outgoing_args_size)
396 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = STARTING_FRAME_OFFSET
398 /* If we generate an insn to push BYTES bytes, this says how many the stack
399 pointer really advances by. On the 370, we have no push instruction. */
401 /* #define PUSH_ROUNDING(BYTES) */
403 /* Accumulate the outgoing argument count so we can request the right
404 DSA size and determine stack offset. */
406 #define ACCUMULATE_OUTGOING_ARGS
408 /* Define offset from stack pointer, to location where a parm can be
409 pushed. */
411 #define STACK_POINTER_OFFSET 148
413 /* Offset of first parameter from the argument pointer register value. */
415 #define FIRST_PARM_OFFSET(FNDECL) 0
417 /* 1 if N is a possible register number for function argument passing.
418 On the 370, no registers are used in this way. */
420 #define FUNCTION_ARG_REGNO_P(N) 0
422 /* Define a data type for recording info about an argument list during
423 the scan of that argument list. This data type should hold all
424 necessary information about the function itself and about the args
425 processed so far, enough to enable macros such as FUNCTION_ARG to
426 determine where the next arg should go. */
428 #define CUMULATIVE_ARGS int
430 /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to
431 a function whose data type is FNTYPE.
432 For a library call, FNTYPE is 0. */
434 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) ((CUM) = 0)
436 /* Update the data in CUM to advance over an argument of mode MODE and
437 data type TYPE. (TYPE is null for libcalls where that information
438 may not be available.) */
440 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
441 ((CUM) += ((MODE) == DFmode || (MODE) == SFmode \
442 ? 256 \
443 : (MODE) != BLKmode \
444 ? (GET_MODE_SIZE (MODE) + 3) / 4 \
445 : (int_size_in_bytes (TYPE) + 3) / 4))
447 /* Define where to put the arguments to a function. Value is zero to push
448 the argument on the stack, or a hard register in which to store the
449 argument. */
451 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
453 /* For an arg passed partly in registers and partly in memory, this is the
454 number of registers used. For args passed entirely in registers or
455 entirely in memory, zero. */
457 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
459 /* Define if returning from a function call automatically pops the
460 arguments described by the number-of-args field in the call. */
462 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
464 /* Define how to find the value returned by a function. VALTYPE is the
465 data type of the value (as a tree).
466 If the precise function being called is known, FUNC is its FUNCTION_DECL;
467 otherwise, FUNC is 15. */
469 #define RET_REG(MODE) ((MODE) == DFmode || (MODE) == SFmode ? 16 : 15)
471 /* On the 370 the return value is in R15 or R16. */
473 #define FUNCTION_VALUE(VALTYPE, FUNC) \
474 gen_rtx(REG, TYPE_MODE (VALTYPE), RET_REG(TYPE_MODE(VALTYPE)))
476 /* Define how to find the value returned by a library function assuming
477 the value has mode MODE. */
479 #define LIBCALL_VALUE(MODE) gen_rtx(REG, MODE, RET_REG(MODE))
481 /* 1 if N is a possible register number for a function value.
482 On the 370 under C/370, R15 and R16 are thus used. */
484 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 15 || (N) == 16)
486 /* This macro definition sets up a default value for `main' to return. */
488 #define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node)
490 /* This macro generates the assembly code for function entry.
491 All of the C/370 environment is preserved. */
493 #if MACROPROLOGUE == 1
494 #define FUNCTION_PROLOGUE(FILE, LSIZE) \
496 fprintf (FILE, "\tEDCPRLG USRDSAL=%d,BASEREG=%d\n", \
497 STACK_POINTER_OFFSET + LSIZE - 120 + \
498 current_function_outgoing_args_size, BASE_REGISTER); \
499 fprintf (FILE, "PG%d\tEQU\t*\n", mvs_page_num ); \
500 fprintf (FILE, "\tLR\t11,1\n"); \
501 fprintf (FILE, "\tL\t%d,=A(PGT%d)\n", PAGE_REGISTER, mvs_page_num); \
502 mvs_page_code = 6; \
503 mvs_page_lit = 4; \
504 mvs_check_page (FILE, 0, 0); \
505 function_base_page = mvs_page_num; \
507 #else /* MACROPROLOGUE != 1 */
508 #define FUNCTION_PROLOGUE(FILE, LSIZE) \
510 static int function_label_index = 1; \
511 static int function_first = 0; \
512 static int function_year, function_month, function_day; \
513 static int function_hour, function_minute, function_second; \
514 int i; \
515 if (!function_first) \
517 struct tm *function_time; \
518 time_t lcltime; \
519 time (&lcltime); \
520 function_time = localtime (&lcltime); \
521 function_year = function_time->tm_year + 1900; \
522 function_month = function_time->tm_mon + 1; \
523 function_day = function_time->tm_mday; \
524 function_hour = function_time->tm_hour; \
525 function_minute = function_time->tm_min; \
526 function_second = function_time->tm_sec; \
527 fprintf (FILE, "PPA2\tDS\t0F\n"); \
528 fprintf (FILE, "\tDC\tX'03',X'00',X'33',X'00'\n"); \
529 fprintf (FILE, "\tDC\tV(CEESTART),A(0)\n"); \
530 fprintf (FILE, "\tDC\tA(CEETIMES)\n"); \
531 fprintf (FILE, "CEETIMES\tDS\t0F\n"); \
532 fprintf (FILE, "\tDC\tCL4'%d',CL4'%02d%02d',CL6'%02d%02d00'\n", \
533 function_year, function_month, function_day, \
534 function_hour, function_minute, function_second); \
535 fprintf (FILE, "\tDC\tCL2'01',CL4'0100'\n"); \
537 fprintf (FILE, "$DSD%03d\tDSECT\n", function_label_index); \
538 fprintf (FILE, "\tDS\tD\n"); \
539 fprintf (FILE, "\tDS\tCL(%d)\n", STACK_POINTER_OFFSET + LSIZE \
540 + current_function_outgoing_args_size); \
541 fprintf (FILE, "\tORG\t$DSD%03d\n", function_label_index); \
542 fprintf (FILE, "\tDS\tCL(120+8)\n"); \
543 fprintf (FILE, "\tORG\n"); \
544 fprintf (FILE, "\tDS\t0D\n"); \
545 fprintf (FILE, "$DSL%03d\tEQU\t*-$DSD%03d-8\n", function_label_index, \
546 function_label_index); \
547 fprintf (FILE, "\tDS\t0H\n"); \
548 assemble_name (FILE, mvs_function_name); \
549 fprintf (FILE, "\tEQU\t*\n"); \
550 fprintf (FILE, "\tUSING\t*,15\n"); \
551 fprintf (FILE, "\tB\tFPL%03d\n", function_label_index); \
552 fprintf (FILE, "\tDC\tAL1(FPL%03d+4-*)\n", function_label_index + 1); \
553 fprintf (FILE, "\tDC\tX'CE',X'A0',AL1(16)\n"); \
554 fprintf (FILE, "\tDC\tAL4(PPA2)\n"); \
555 fprintf (FILE, "\tDC\tAL4(0)\n"); \
556 fprintf (FILE, "\tDC\tAL4($DSL%03d)\n", function_label_index); \
557 fprintf (FILE, "FPL%03d\tEQU\t*\n", function_label_index + 1); \
558 fprintf (FILE, "\tDC\tAL2(%d),C'%s'\n", strlen (mvs_function_name), \
559 mvs_function_name); \
560 fprintf (FILE, "FPL%03d\tDS\t0H\n", function_label_index); \
561 fprintf (FILE, "\tSTM\t14,12,12(13)\n"); \
562 fprintf (FILE, "\tL\t2,76(,13)\n"); \
563 fprintf (FILE, "\tL\t0,16(,15)\n"); \
564 fprintf (FILE, "\tALR\t0,2\n"); \
565 fprintf (FILE, "\tCL\t0,12(,12)\n"); \
566 fprintf (FILE, "\tBNH\t*+10\n"); \
567 fprintf (FILE, "\tL\t15,116(,12)\n"); \
568 fprintf (FILE, "\tBALR\t14,15\n"); \
569 fprintf (FILE, "\tL\t15,72(,13)\n"); \
570 fprintf (FILE, "\tSTM\t15,0,72(2)\n"); \
571 fprintf (FILE, "\tMVI\t0(2),X'10'\n"); \
572 fprintf (FILE, "\tST\t2,8(,13)\n "); \
573 fprintf (FILE, "\tST\t13,4(,2)\n "); \
574 fprintf (FILE, "\tLR\t13,2\n"); \
575 fprintf (FILE, "\tDROP\t15\n"); \
576 fprintf (FILE, "\tBALR\t%d,0\n", BASE_REGISTER); \
577 fprintf (FILE, "PG%d\tEQU\t*\n", mvs_page_num ); \
578 fprintf (FILE, "\tUSING\t*,%d\n", BASE_REGISTER); \
579 fprintf (FILE, "\tLR\t11,1\n"); \
580 fprintf (FILE, "\tL\t%d,=A(PGT%d)\n", PAGE_REGISTER, mvs_page_num); \
581 mvs_page_code = 4; \
582 mvs_page_lit = 4; \
583 mvs_check_page (FILE, 0, 0); \
584 function_base_page = mvs_page_num; \
585 function_first = 1; \
586 function_label_index += 2; \
588 #endif /* MACROPROLOGUE */
590 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
592 if (strlen (NAME) * 2 > mvs_function_name_length) \
594 if (mvs_function_name) \
595 free (mvs_function_name); \
596 mvs_function_name = 0; \
598 if (!mvs_function_name) \
600 mvs_function_name_length = strlen (NAME) * 2; \
601 mvs_function_name = (char *) malloc (mvs_function_name_length); \
602 if (mvs_function_name == 0) \
604 fatal ("virtual memory exceeded"); \
605 abort (); \
608 if (!strcmp (NAME, "main")) \
609 strcpy (mvs_function_name, "gccmain"); \
610 else \
611 strcpy (mvs_function_name, NAME); \
614 /* This macro generates the assembly code for function exit, on machines
615 that need it. If FUNCTION_EPILOGUE is not defined then individual
616 return instructions are generated for each return statement. Args are
617 same as for FUNCTION_PROLOGUE.
619 The function epilogue should not depend on the current stack pointer!
620 It should use the frame pointer only. This is mandatory because
621 of alloca; we also take advantage of it to omit stack adjustments
622 before returning. */
624 #if MACROEPILOGUE == 1
625 #define FUNCTION_EPILOGUE(FILE, LSIZE) \
627 int i; \
628 check_label_emit(); \
629 mvs_check_page (FILE,14,0); \
630 fprintf (FILE, "\tEDCEPIL\n"); \
631 mvs_page_num++; \
632 fprintf (FILE, "\tDS\t0F\n" ); \
633 fprintf (FILE, "\tLTORG\n"); \
634 fprintf (FILE, "\tDS\t0F\n"); \
635 fprintf (FILE, "PGT%d\tEQU\t*\n", function_base_page); \
636 mvs_free_label(); \
637 for ( i = function_base_page; i < mvs_page_num; i++ ) \
638 fprintf (FILE, "\tDC\tA(PG%d)\n", i); \
640 #else /* MACROEPILOGUE != 1 */
641 #define FUNCTION_EPILOGUE(FILE, LSIZE) \
643 int i; \
644 check_label_emit(); \
645 mvs_check_page (FILE,14,0); \
646 fprintf (FILE, "\tL\t13,4(,13)\n"); \
647 fprintf (FILE, "\tL\t14,12(,13)\n"); \
648 fprintf (FILE, "\tLM\t2,12,28(13)\n"); \
649 fprintf (FILE, "\tBALR\t1,14\n"); \
650 fprintf (FILE, "\tDC\tA("); \
651 mvs_page_num++; \
652 assemble_name (FILE, mvs_function_name); \
653 fprintf (FILE, ")\n" ); \
654 fprintf (FILE, "\tDS\t0F\n" ); \
655 fprintf (FILE, "\tLTORG\n"); \
656 fprintf (FILE, "\tDS\t0F\n"); \
657 fprintf (FILE, "PGT%d\tEQU\t*\n", function_base_page); \
658 mvs_free_label(); \
659 for ( i = function_base_page; i < mvs_page_num; i++ ) \
660 fprintf (FILE, "\tDC\tA(PG%d)\n", i); \
662 #endif /* MACROEPILOGUE */
665 /* Output assembler code for a block containing the constant parts of a
666 trampoline, leaving space for the variable parts.
668 On the 370, the trampoline contains these instructions:
670 BALR 14,0
671 USING *,14
672 L STATIC_CHAIN_REGISTER,X
673 L 15,Y
674 BR 15
675 X DS 0F
676 Y DS 0F */
678 #define TRAMPOLINE_TEMPLATE(FILE) \
680 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x05E0)); \
681 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x5800 | \
682 STATIC_CHAIN_REGNUM << 4)); \
683 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0xE00A)); \
684 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x58F0)); \
685 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0xE00E)); \
686 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x07FF)); \
687 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
688 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
689 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
690 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
693 /* Length in units of the trampoline for entering a nested function. */
695 #define TRAMPOLINE_SIZE 20
697 /* Emit RTL insns to initialize the variable parts of a trampoline. */
699 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
701 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), CXT); \
702 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), FNADDR); \
705 /* Output assembler code to FILE to increment profiler label # LABELNO
706 for profiling a function entry. */
708 #define FUNCTION_PROFILER(FILE, LABELNO) \
709 fprintf (FILE, "Error: No profiling available.\n")
711 /* Define EXIT_IGNORE_STACK if, when returning from a function, the stack
712 pointer does not matter (provided there is a frame pointer). */
714 #define EXIT_IGNORE_STACK 1
716 /* Addressing modes, and classification of registers for them. */
718 /* #define HAVE_POST_INCREMENT */
719 /* #define HAVE_POST_DECREMENT */
721 /* #define HAVE_PRE_DECREMENT */
722 /* #define HAVE_PRE_INCREMENT */
724 /* These assume that REGNO is a hard or pseudo reg number. They give
725 nonzero only if REGNO is a hard reg of the suitable class or a pseudo
726 reg currently allocated to a suitable hard reg.
727 These definitions are NOT overridden anywhere. */
729 #define REGNO_OK_FOR_INDEX_P(REGNO) \
730 (((REGNO) > 0 && (REGNO) < 16) \
731 || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
733 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P(REGNO)
735 #define REGNO_OK_FOR_DATA_P(REGNO) \
736 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
738 #define REGNO_OK_FOR_FP_P(REGNO) \
739 ((unsigned) ((REGNO) - 16) < 4 || (unsigned) (reg_renumber[REGNO] - 16) < 4)
741 /* Now macros that check whether X is a register and also,
742 strictly, whether it is in a specified class. */
744 /* 1 if X is a data register. */
746 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
748 /* 1 if X is an fp register. */
750 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
752 /* 1 if X is an address register. */
754 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
756 /* Maximum number of registers that can appear in a valid memory address. */
758 #define MAX_REGS_PER_ADDRESS 2
760 /* Recognize any constant value that is a valid address. */
762 #define CONSTANT_ADDRESS_P(X) \
763 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
764 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE \
765 || (GET_CODE (X) == CONST \
766 && GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \
767 || (GET_CODE (X) == CONST \
768 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
769 && !SYMBOL_REF_FLAG (XEXP (XEXP (X, 0), 0))))
771 /* Nonzero if the constant value X is a legitimate general operand.
772 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
774 #define LEGITIMATE_CONSTANT_P(X) 1
776 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
777 its validity for a certain class. We have two alternate definitions
778 for each of them. The usual definition accepts all pseudo regs; the
779 other rejects them all. The symbol REG_OK_STRICT causes the latter
780 definition to be used.
782 Most source files want to accept pseudo regs in the hope that they will
783 get allocated to the class that the insn wants them to be in.
784 Some source files that are used after register allocation
785 need to be strict. */
787 #ifndef REG_OK_STRICT
789 /* Nonzero if X is a hard reg that can be used as an index or if it is
790 a pseudo reg. */
792 #define REG_OK_FOR_INDEX_P(X) \
793 ((REGNO(X) > 0 && REGNO(X) < 16) || REGNO(X) >= 20)
795 /* Nonzero if X is a hard reg that can be used as a base reg or if it is
796 a pseudo reg. */
798 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P(X)
800 #else /* REG_OK_STRICT */
802 /* Nonzero if X is a hard reg that can be used as an index. */
804 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P(REGNO(X))
806 /* Nonzero if X is a hard reg that can be used as a base reg. */
808 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P(REGNO(X))
810 #endif /* REG_OK_STRICT */
812 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
813 valid memory address for an instruction.
814 The MODE argument is the machine mode for the MEM expression
815 that wants to use this address.
817 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
818 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
820 #define COUNT_REGS(X, REGS, FAIL) \
821 if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
822 REGS += 1; \
823 else if (GET_CODE (X) != CONST_INT || (unsigned) INTVAL (X) >= 4096) \
824 goto FAIL;
826 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
828 if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
829 goto ADDR; \
830 if (GET_CODE (X) == PLUS) \
832 int regs = 0; \
833 rtx x0 = XEXP (X, 0); \
834 rtx x1 = XEXP (X, 1); \
835 if (GET_CODE (x0) == PLUS) \
837 COUNT_REGS (XEXP (x0, 0), regs, FAIL); \
838 COUNT_REGS (XEXP (x0, 1), regs, FAIL); \
839 COUNT_REGS (x1, regs, FAIL); \
840 if (regs == 2) \
841 goto ADDR; \
843 else if (GET_CODE (x1) == PLUS) \
845 COUNT_REGS (x0, regs, FAIL); \
846 COUNT_REGS (XEXP (x1, 0), regs, FAIL); \
847 COUNT_REGS (XEXP (x1, 1), regs, FAIL); \
848 if (regs == 2) \
849 goto ADDR; \
851 else \
853 COUNT_REGS (x0, regs, FAIL); \
854 COUNT_REGS (x1, regs, FAIL); \
855 if (regs != 0) \
856 goto ADDR; \
859 FAIL: ; \
862 /* The 370 has no mode dependent addresses. */
864 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
866 /* Try machine-dependent ways of modifying an illegitimate address
867 to be legitimate. If we find one, return the new, valid address.
868 This macro is used in only one place: `memory_address' in explow.c. */
870 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
872 if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
873 (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
874 copy_to_mode_reg (SImode, XEXP (X, 1))); \
875 if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
876 (X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \
877 copy_to_mode_reg (SImode, XEXP (X, 0))); \
878 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
879 (X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \
880 force_operand (XEXP (X, 0), 0)); \
881 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
882 (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
883 force_operand (XEXP (X, 1), 0)); \
884 if (memory_address_p (MODE, X)) \
885 goto WIN; \
888 /* Specify the machine mode that this machine uses for the index in the
889 tablejump instruction. */
891 #define CASE_VECTOR_MODE SImode
893 /* Define this if the tablejump instruction expects the table to contain
894 offsets from the address of the table.
895 Do not define this if the table should contain absolute addresses. */
897 /* #define CASE_VECTOR_PC_RELATIVE */
899 /* Specify the tree operation to be used to convert reals to integers. */
901 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
903 /* Define this if fixuns_trunc is the same as fix_trunc. */
905 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
907 /* We use "unsigned char" as default. */
909 #define DEFAULT_SIGNED_CHAR 0
911 /* This is the kind of divide that is easiest to do in the general case. */
913 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
915 /* Max number of bytes we can move from memory to memory in one reasonably
916 fast instruction. */
918 #define MOVE_MAX 256
920 /* Define this if zero-extension is slow (more than one real instruction). */
922 #define SLOW_ZERO_EXTEND
924 /* Nonzero if access to memory by bytes is slow and undesirable. */
926 #define SLOW_BYTE_ACCESS 1
928 /* Define if shifts truncate the shift count which implies one can omit
929 a sign-extension or zero-extension of a shift count. */
931 /* #define SHIFT_COUNT_TRUNCATED */
933 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
934 is done just by pretending it is already truncated. */
936 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) (OUTPREC != 16)
938 /* We assume that the store-condition-codes instructions store 0 for false
939 and some other value for true. This is the value stored for true. */
941 /* #define STORE_FLAG_VALUE -1 */
943 /* When a prototype says `char' or `short', really pass an `int'. */
945 #define PROMOTE_PROTOTYPES
947 /* Don't perform CSE on function addresses. */
949 #define NO_FUNCTION_CSE
951 /* Specify the machine mode that pointers have.
952 After generation of rtl, the compiler makes no further distinction
953 between pointers and any other objects of this machine mode. */
955 #define Pmode SImode
957 /* A function address in a call instruction is a byte address (for
958 indexing purposes) so give the MEM rtx a byte's mode. */
960 #define FUNCTION_MODE QImode
962 /* Compute the cost of computing a constant rtl expression RTX whose
963 rtx-code is CODE. The body of this macro is a portion of a switch
964 statement. If the code is computed here, return it with a return
965 statement. Otherwise, break from the switch. */
967 #define CONST_COSTS(RTX, CODE, OUTERCODE) \
968 case CONST_INT: \
969 if ((unsigned) INTVAL (RTX) < 0xfff) return 1; \
970 case CONST: \
971 case LABEL_REF: \
972 case SYMBOL_REF: \
973 return 2; \
974 case CONST_DOUBLE: \
975 return 4;
977 /* Tell final.c how to eliminate redundant test instructions. */
979 /* Here we define machine-dependent flags and fields in cc_status
980 (see `conditions.h'). */
982 /* Store in cc_status the expressions that the condition codes will
983 describe after execution of an instruction whose pattern is EXP.
984 Do not alter them if the instruction would not alter the cc's.
986 On the 370, load insns do not alter the cc's. However, in some
987 cases these instructions can make it possibly invalid to use the
988 saved cc's. In those cases we clear out some or all of the saved
989 cc's so they won't be used. */
991 #define NOTICE_UPDATE_CC(EXP, INSN) \
993 rtx exp = (EXP); \
994 if (GET_CODE (exp) == PARALLEL) /* Check this */ \
995 exp = XVECEXP (exp, 0, 0); \
996 if (GET_CODE (exp) != SET) \
997 CC_STATUS_INIT; \
998 else \
1000 if (XEXP (exp, 0) == cc0_rtx) \
1002 cc_status.value1 = XEXP (exp, 0); \
1003 cc_status.value2 = XEXP (exp, 1); \
1004 cc_status.flags = 0; \
1006 else \
1008 if (cc_status.value1 \
1009 && reg_mentioned_p (XEXP (exp, 0), cc_status.value1)) \
1010 cc_status.value1 = 0; \
1011 if (cc_status.value2 \
1012 && reg_mentioned_p (XEXP (exp, 0), cc_status.value2)) \
1013 cc_status.value2 = 0; \
1014 switch (GET_CODE (XEXP (exp, 1))) \
1016 case PLUS: case MINUS: case MULT: /* case UMULT: */ \
1017 case DIV: case UDIV: case NEG: case ASHIFT: \
1018 case ASHIFTRT: case AND: case IOR: case XOR: \
1019 case ABS: case NOT: \
1020 CC_STATUS_SET (XEXP (exp, 0), XEXP (exp, 1)); \
1027 #define CC_STATUS_SET(V1, V2) \
1029 cc_status.flags = 0; \
1030 cc_status.value1 = (V1); \
1031 cc_status.value2 = (V2); \
1032 if (cc_status.value1 \
1033 && reg_mentioned_p (cc_status.value1, cc_status.value2)) \
1034 cc_status.value2 = 0; \
1037 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1038 { if (cc_status.flags & CC_NO_OVERFLOW) return NO_OV; return NORMAL; }
1040 /* Control the assembler format that we output. */
1042 #define TEXT_SECTION_ASM_OP "* Program text area"
1043 #define DATA_SECTION_ASM_OP "* Program data area"
1044 #define INIT_SECTION_ASM_OP "* Program initialization area"
1045 #define CTOR_LIST_BEGIN /* NO OP */
1046 #define CTOR_LIST_END /* NO OP */
1048 /* How to refer to registers in assembler output. This sequence is
1049 indexed by compiler's hard-register-number (see above). */
1051 #define REGISTER_NAMES \
1052 { "0", "1", "2", "3", "4", "5", "6", "7", \
1053 "8", "9", "10", "11", "12", "13", "14", "15", \
1054 "0", "2", "4", "6" \
1057 /* How to renumber registers for dbx and gdb. */
1059 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1061 #define ASM_FILE_START(FILE) fputs ("\tCSECT\n", FILE);
1062 #define ASM_FILE_END(FILE) fputs ("\tEND\n", FILE);
1063 #define ASM_IDENTIFY_GCC(FILE)
1064 #define ASM_COMMENT_START "*"
1065 #define ASM_APP_OFF ""
1066 #define ASM_APP_ON ""
1068 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1069 { assemble_name (FILE, NAME); fputs ("\tEQU\t*\n", FILE); }
1071 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) /* NO OP */
1073 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1074 { fputs ("\tENTRY\t", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE); }
1076 /* MVS externals are limited to 8 characters, upper case only.
1077 The '_' is mapped to '@', except for MVS functions, then '#'. */
1079 #define MAX_MVS_LABEL_SIZE 8
1081 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1083 char *bp, ch, temp[MAX_MVS_LABEL_SIZE + 1]; \
1084 if (strlen (NAME) > MAX_MVS_LABEL_SIZE) \
1086 strncpy (temp, NAME, MAX_MVS_LABEL_SIZE); \
1087 temp[MAX_MVS_LABEL_SIZE] = '\0'; \
1089 else \
1090 strcpy (temp,NAME); \
1091 if (!strcmp (temp,"main")) \
1092 strcpy (temp,"gccmain"); \
1093 if (mvs_function_check (temp)) \
1094 ch = '#'; \
1095 else \
1096 ch = '@'; \
1097 for (bp = temp; *bp; bp++) \
1099 if (islower (*bp)) *bp = toupper (*bp); \
1100 if (*bp == '_') *bp = ch; \
1102 fprintf (FILE, "%s", temp); \
1105 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1106 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1108 /* Generate internal label. Since we can branch here from off page, we
1109 must reload the base register. */
1111 #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
1113 if (!strcmp (PREFIX,"L")) \
1115 mvs_add_label(NUM); \
1116 mvs_label_emitted = 1; \
1118 fprintf (FILE, "%s%d\tEQU\t*\n", PREFIX, NUM); \
1121 /* Generate case label. */
1123 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, TABLE) \
1124 fprintf (FILE, "%s%d\tEQU\t*\n", PREFIX, NUM)
1126 /* This is how to output an element of a case-vector that is absolute. */
1128 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1129 mvs_check_page (FILE, 4, 0); \
1130 fprintf (FILE, "\tDC\tA(L%d)\n", VALUE)
1132 /* This is how to output an element of a case-vector that is relative. */
1134 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1135 mvs_check_page (FILE, 4, 0); \
1136 fprintf (FILE, "\tDC\tA(L%d-L%d)\n", VALUE, REL)
1138 /* This is how to output an insn to push a register on the stack.
1139 It need not be very fast code. */
1141 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1142 mvs_check_page (FILE, 8, 4); \
1143 fprintf (FILE, "\tS\t13,=F'4'\n\tST\t%s,%d(13)\n", \
1144 reg_names[REGNO], STACK_POINTER_OFFSET)
1146 /* This is how to output an insn to pop a register from the stack.
1147 It need not be very fast code. */
1149 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1150 mvs_check_page (FILE, 8, 0); \
1151 fprintf (FILE, "\tL\t%s,%d(13)\n\tLA\t13,4(13)\n", \
1152 reg_names[REGNO], STACK_POINTER_OFFSET)
1154 /* This is how to output an assembler line defining a `double' constant. */
1156 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1157 fprintf (FILE, "\tDC\tD'%.18G'\n", (VALUE))
1159 /* This is how to output an assembler line defining a `float' constant. */
1161 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1162 fprintf (FILE, "\tDC\tE'%.9G'\n", (VALUE))
1164 /* This outputs an integer, if not a CONST_INT must be address constant. */
1166 #define ASM_OUTPUT_INT(FILE, EXP) \
1168 if (GET_CODE (EXP) == CONST_INT) \
1170 fprintf (FILE, "\tDC\tF'"); \
1171 output_addr_const (FILE, EXP); \
1172 fprintf (FILE, "'\n"); \
1174 else \
1176 fprintf (FILE, "\tDC\tA("); \
1177 output_addr_const (FILE, EXP); \
1178 fprintf (FILE, ")\n"); \
1182 /* This outputs a short integer. */
1184 #define ASM_OUTPUT_SHORT(FILE, EXP) \
1186 fprintf (FILE, "\tDC\tX'%04X'\n", INTVAL(EXP) & 0xFFFF); \
1189 /* This outputs a byte sized integer. */
1191 #define ASM_OUTPUT_CHAR(FILE, EXP) \
1192 fprintf (FILE, "\tDC\tX'%02X'\n", INTVAL (EXP) )
1194 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
1195 fprintf (FILE, "\tDC\tX'%02X'\n", VALUE)
1197 /* This outputs a text string. The string are chopped up to fit into
1198 an 80 byte record. Also, control and special characters, interpreted
1199 by the IBM assembler, are output numerically. */
1201 #define MVS_ASCII_TEXT_LENGTH 48
1203 #define ASM_OUTPUT_ASCII(FILE, PTR, LEN) \
1205 int i, j; \
1206 int c; \
1207 for (j = 0, i = 0; i < LEN; j++, i++) \
1209 c = PTR[i]; \
1210 if (iscntrl (c) || c == '&') \
1212 if (j % MVS_ASCII_TEXT_LENGTH != 0 ) \
1213 fprintf (FILE, "'\n"); \
1214 j = -1; \
1215 if (c == '&') c = MAP_CHARACTER (c); \
1216 fprintf (FILE, "\tDC\tX'%X'\n", c ); \
1218 else \
1220 if (j % MVS_ASCII_TEXT_LENGTH == 0) \
1221 fprintf (FILE, "\tDC\tC'"); \
1222 if ( c == '\'' ) \
1223 fprintf (FILE, "%c%c", c, c); \
1224 else \
1225 fprintf (FILE, "%c", c); \
1226 if (j % MVS_ASCII_TEXT_LENGTH == MVS_ASCII_TEXT_LENGTH - 1) \
1227 fprintf (FILE, "'\n" ); \
1230 if (j % MVS_ASCII_TEXT_LENGTH != 0) \
1231 fprintf (FILE, "'\n"); \
1234 /* This is how to output an assembler line that says to advance the
1235 location counter to a multiple of 2**LOG bytes. */
1237 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
1238 if (LOG) \
1240 if ((LOG) == 1) \
1241 fprintf (FILE, "\tDS\t0H\n" ); \
1242 else \
1243 fprintf (FILE, "\tDS\t0F\n" ); \
1246 /* The maximum length of memory that the IBM assembler will allow in one
1247 DS operation. */
1249 #define MAX_CHUNK 32767
1251 /* A C statement to output to the stdio stream FILE an assembler
1252 instruction to advance the location counter by SIZE bytes. Those
1253 bytes should be zero when loaded. */
1255 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1257 int s, k; \
1258 for (s = (SIZE); s > 0; s -= MAX_CHUNK) \
1260 if (s > MAX_CHUNK) \
1261 k = MAX_CHUNK; \
1262 else \
1263 k = s; \
1264 fprintf (FILE, "\tDS\tXL%d\n", k); \
1268 /* A C statement (sans semicolon) to output to the stdio stream
1269 FILE the assembler definition of a common-label named NAME whose
1270 size is SIZE bytes. The variable ROUNDED is the size rounded up
1271 to whatever alignment the caller wants. */
1273 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1275 fputs ("\tENTRY\t", FILE); \
1276 assemble_name (FILE, NAME); \
1277 fputs ("\n", FILE); \
1278 fprintf (FILE, "\tDS\t0F\n"); \
1279 ASM_OUTPUT_LABEL (FILE,NAME); \
1280 ASM_OUTPUT_SKIP (FILE,SIZE); \
1283 /* A C statement (sans semicolon) to output to the stdio stream
1284 FILE the assembler definition of a local-common-label named NAME
1285 whose size is SIZE bytes. The variable ROUNDED is the size
1286 rounded up to whatever alignment the caller wants. */
1288 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1290 fprintf (FILE, "\tDS\t0F\n"); \
1291 ASM_OUTPUT_LABEL (FILE,NAME); \
1292 ASM_OUTPUT_SKIP (FILE,SIZE); \
1295 /* Store in OUTPUT a string (made with alloca) containing an
1296 assembler-name for a local static variable named NAME.
1297 LABELNO is an integer which is different for each call. */
1299 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1301 (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10); \
1302 sprintf ((OUTPUT), "%s%d", (NAME), (LABELNO)); \
1305 /* Define the parentheses used to group arithmetic operations
1306 in assembler code. */
1308 #define ASM_OPEN_PAREN "("
1309 #define ASM_CLOSE_PAREN ")"
1311 /* Define results of standard character escape sequences. */
1313 #define TARGET_BELL 47
1314 #define TARGET_BS 22
1315 #define TARGET_TAB 5
1316 #define TARGET_NEWLINE 21
1317 #define TARGET_VT 11
1318 #define TARGET_FF 12
1319 #define TARGET_CR 13
1321 /* Print operand X (an rtx) in assembler syntax to file FILE.
1322 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1323 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1325 #define PRINT_OPERAND(FILE, X, CODE) \
1327 switch (GET_CODE (X)) \
1329 static char curreg[4]; \
1330 case REG: \
1331 if (CODE == 'N') \
1332 strcpy (curreg, reg_names[REGNO (X) + 1]); \
1333 else \
1334 strcpy (curreg, reg_names[REGNO (X)]); \
1335 fprintf (FILE, "%s", curreg); \
1336 break; \
1337 case MEM: \
1339 rtx addr = XEXP (X, 0); \
1340 if (CODE == 'O') \
1342 if (GET_CODE (addr) == PLUS) \
1343 fprintf (FILE, "%d", INTVAL (XEXP (addr, 1))); \
1344 else \
1345 fprintf (FILE, "0"); \
1347 else if (CODE == 'R') \
1349 if (GET_CODE (addr) == PLUS) \
1350 fprintf (FILE, "%s", reg_names[REGNO (XEXP (addr, 0))]);\
1351 else \
1352 fprintf (FILE, "%s", reg_names[REGNO (addr)]); \
1354 else \
1355 output_address (XEXP (X, 0)); \
1357 break; \
1358 case SYMBOL_REF: \
1359 case LABEL_REF: \
1360 mvs_page_lit += 4; \
1361 if (SYMBOL_REF_FLAG (X)) fprintf (FILE, "=V("); \
1362 else fprintf (FILE, "=A("); \
1363 output_addr_const (FILE, X); \
1364 fprintf (FILE, ")"); \
1365 break; \
1366 case CONST_INT: \
1367 if (CODE == 'B') \
1368 fprintf (FILE, "%d", INTVAL (X) & 0xff); \
1369 else if (CODE == 'X') \
1370 fprintf (FILE, "%02X", INTVAL (X) & 0xff); \
1371 else if (CODE == 'h') \
1372 fprintf (FILE, "%d", (INTVAL (X) << 16) >> 16); \
1373 else if (CODE == 'H') \
1375 mvs_page_lit += 2; \
1376 fprintf (FILE, "=H'%d'", (INTVAL (X) << 16) >> 16); \
1378 else \
1380 mvs_page_lit += 4; \
1381 fprintf (FILE, "=F'%d'", INTVAL (X)); \
1383 break; \
1384 case CONST_DOUBLE: \
1385 if (GET_MODE (X) == DImode) \
1387 if (CODE == 'M') \
1389 mvs_page_lit += 4; \
1390 fprintf (FILE, "=XL4'%08X'", CONST_DOUBLE_LOW (X)); \
1392 else if (CODE == 'L') \
1394 mvs_page_lit += 4; \
1395 fprintf (FILE, "=XL4'%08X'", CONST_DOUBLE_HIGH (X)); \
1397 else \
1399 mvs_page_lit += 8; \
1400 fprintf (FILE, "=XL8'%08X%08X'", CONST_DOUBLE_LOW (X), \
1401 CONST_DOUBLE_HIGH (X)); \
1404 else \
1406 union { double d; int i[2]; } u; \
1407 u.i[0] = CONST_DOUBLE_LOW (X); \
1408 u.i[1] = CONST_DOUBLE_HIGH (X); \
1409 if (GET_MODE (X) == SFmode) \
1411 mvs_page_lit += 4; \
1412 fprintf (FILE, "=E'%.9G'", u.d); \
1414 else \
1416 mvs_page_lit += 8; \
1417 fprintf (FILE, "=D'%.18G'", u.d); \
1420 break; \
1421 case CONST: \
1422 if (GET_CODE (XEXP (X, 0)) == PLUS \
1423 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
1425 mvs_page_lit += 4; \
1426 if (SYMBOL_REF_FLAG (XEXP (XEXP (X, 0), 0))) \
1428 fprintf (FILE, "=V("); \
1429 ASM_OUTPUT_LABELREF (FILE, \
1430 XSTR (XEXP (XEXP (X, 0), 0), 0)); \
1431 fprintf (FILE, ")\n\tA\t%s,=F'%d'", curreg, \
1432 INTVAL (XEXP (XEXP (X, 0), 1))); \
1434 else \
1436 fprintf (FILE, "=A("); \
1437 output_addr_const (FILE, X); \
1438 fprintf (FILE, ")"); \
1441 else \
1443 mvs_page_lit += 4; \
1444 fprintf (FILE, "=F'"); \
1445 output_addr_const (FILE, X); \
1446 fprintf (FILE, "'"); \
1448 break; \
1449 default: \
1450 abort(); \
1454 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1456 rtx breg, xreg, offset, plus; \
1458 switch (GET_CODE (ADDR)) \
1460 case REG: \
1461 fprintf (FILE, "0(%s)", reg_names[REGNO (ADDR)]); \
1462 break; \
1463 case PLUS: \
1464 breg = 0; \
1465 xreg = 0; \
1466 offset = 0; \
1467 if (GET_CODE (XEXP (ADDR, 0)) == PLUS) \
1469 if (GET_CODE (XEXP (ADDR, 1)) == REG) \
1470 breg = XEXP (ADDR, 1); \
1471 else \
1472 offset = XEXP (ADDR, 1); \
1473 plus = XEXP (ADDR, 0); \
1475 else \
1477 if (GET_CODE (XEXP (ADDR, 0)) == REG) \
1478 breg = XEXP (ADDR, 0); \
1479 else \
1480 offset = XEXP (ADDR, 0); \
1481 plus = XEXP (ADDR, 1); \
1483 if (GET_CODE (plus) == PLUS) \
1485 if (GET_CODE (XEXP (plus, 0)) == REG) \
1487 if (breg) \
1488 xreg = XEXP (plus, 0); \
1489 else \
1490 breg = XEXP (plus, 0); \
1492 else \
1494 offset = XEXP (plus, 0); \
1496 if (GET_CODE (XEXP (plus, 1)) == REG) \
1498 if (breg) \
1499 xreg = XEXP (plus, 1); \
1500 else \
1501 breg = XEXP (plus, 1); \
1503 else \
1505 offset = XEXP (plus, 1); \
1508 else if (GET_CODE (plus) == REG) \
1510 if (breg) \
1511 xreg = plus; \
1512 else \
1513 breg = plus; \
1515 else \
1517 offset = plus; \
1519 if (offset) \
1521 if (GET_CODE (offset) == LABEL_REF) \
1522 fprintf (FILE, "L%d", \
1523 CODE_LABEL_NUMBER (XEXP (offset, 0))); \
1524 else \
1525 output_addr_const (FILE, offset); \
1527 else \
1528 fprintf (FILE, "0"); \
1529 if (xreg) \
1530 fprintf (FILE, "(%s,%s)", \
1531 reg_names[REGNO (xreg)], reg_names[REGNO (breg)]); \
1532 else \
1533 fprintf (FILE, "(%s)", reg_names[REGNO (breg)]); \
1534 break; \
1535 default: \
1536 mvs_page_lit += 4; \
1537 if (SYMBOL_REF_FLAG (ADDR)) fprintf (FILE, "=V("); \
1538 else fprintf (FILE, "=A("); \
1539 output_addr_const (FILE, ADDR); \
1540 fprintf (FILE, ")"); \
1541 break; \