Fix gnat.dg/opt39.adb on hppa.
[official-gcc.git] / gcc / tree-ssa-loop-im.cc
blob86ce6acb0231e7c03b07bf7307e54d9e56be750e
1 /* Loop invariant motion.
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "tree-affine.h"
41 #include "tree-ssa-propagate.h"
42 #include "trans-mem.h"
43 #include "gimple-fold.h"
44 #include "tree-scalar-evolution.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "alias.h"
47 #include "builtins.h"
48 #include "tree-dfa.h"
49 #include "tree-ssa.h"
50 #include "dbgcnt.h"
52 /* TODO: Support for predicated code motion. I.e.
54 while (1)
56 if (cond)
58 a = inv;
59 something;
63 Where COND and INV are invariants, but evaluating INV may trap or be
64 invalid from some other reason if !COND. This may be transformed to
66 if (cond)
67 a = inv;
68 while (1)
70 if (cond)
71 something;
72 } */
74 /* The auxiliary data kept for each statement. */
76 struct lim_aux_data
78 class loop *max_loop; /* The outermost loop in that the statement
79 is invariant. */
81 class loop *tgt_loop; /* The loop out of that we want to move the
82 invariant. */
84 class loop *always_executed_in;
85 /* The outermost loop for that we are sure
86 the statement is executed if the loop
87 is entered. */
89 unsigned cost; /* Cost of the computation performed by the
90 statement. */
92 unsigned ref; /* The simple_mem_ref in this stmt or 0. */
94 vec<gimple *> depends; /* Vector of statements that must be also
95 hoisted out of the loop when this statement
96 is hoisted; i.e. those that define the
97 operands of the statement and are inside of
98 the MAX_LOOP loop. */
101 /* Maps statements to their lim_aux_data. */
103 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
105 /* Description of a memory reference location. */
107 struct mem_ref_loc
109 tree *ref; /* The reference itself. */
110 gimple *stmt; /* The statement in that it occurs. */
114 /* Description of a memory reference. */
116 class im_mem_ref
118 public:
119 unsigned id : 30; /* ID assigned to the memory reference
120 (its index in memory_accesses.refs_list) */
121 unsigned ref_canonical : 1; /* Whether mem.ref was canonicalized. */
122 unsigned ref_decomposed : 1; /* Whether the ref was hashed from mem. */
123 hashval_t hash; /* Its hash value. */
125 /* The memory access itself and associated caching of alias-oracle
126 query meta-data. We are using mem.ref == error_mark_node for the
127 case the reference is represented by its single access stmt
128 in accesses_in_loop[0]. */
129 ao_ref mem;
131 bitmap stored; /* The set of loops in that this memory location
132 is stored to. */
133 bitmap loaded; /* The set of loops in that this memory location
134 is loaded from. */
135 vec<mem_ref_loc> accesses_in_loop;
136 /* The locations of the accesses. */
138 /* The following set is computed on demand. */
139 bitmap_head dep_loop; /* The set of loops in that the memory
140 reference is {in,}dependent in
141 different modes. */
144 /* We use six bits per loop in the ref->dep_loop bitmap to record
145 the dep_kind x dep_state combinations. */
147 enum dep_kind { lim_raw, sm_war, sm_waw };
148 enum dep_state { dep_unknown, dep_independent, dep_dependent };
150 /* coldest outermost loop for given loop. */
151 vec<class loop *> coldest_outermost_loop;
152 /* hotter outer loop nearest to given loop. */
153 vec<class loop *> hotter_than_inner_loop;
155 /* Populate the loop dependence cache of REF for LOOP, KIND with STATE. */
157 static void
158 record_loop_dependence (class loop *loop, im_mem_ref *ref,
159 dep_kind kind, dep_state state)
161 gcc_assert (state != dep_unknown);
162 unsigned bit = 6 * loop->num + kind * 2 + state == dep_dependent ? 1 : 0;
163 bitmap_set_bit (&ref->dep_loop, bit);
166 /* Query the loop dependence cache of REF for LOOP, KIND. */
168 static dep_state
169 query_loop_dependence (class loop *loop, im_mem_ref *ref, dep_kind kind)
171 unsigned first_bit = 6 * loop->num + kind * 2;
172 if (bitmap_bit_p (&ref->dep_loop, first_bit))
173 return dep_independent;
174 else if (bitmap_bit_p (&ref->dep_loop, first_bit + 1))
175 return dep_dependent;
176 return dep_unknown;
179 /* Mem_ref hashtable helpers. */
181 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
183 typedef ao_ref *compare_type;
184 static inline hashval_t hash (const im_mem_ref *);
185 static inline bool equal (const im_mem_ref *, const ao_ref *);
188 /* A hash function for class im_mem_ref object OBJ. */
190 inline hashval_t
191 mem_ref_hasher::hash (const im_mem_ref *mem)
193 return mem->hash;
196 /* An equality function for class im_mem_ref object MEM1 with
197 memory reference OBJ2. */
199 inline bool
200 mem_ref_hasher::equal (const im_mem_ref *mem1, const ao_ref *obj2)
202 if (obj2->max_size_known_p ())
203 return (mem1->ref_decomposed
204 && ((TREE_CODE (mem1->mem.base) == MEM_REF
205 && TREE_CODE (obj2->base) == MEM_REF
206 && operand_equal_p (TREE_OPERAND (mem1->mem.base, 0),
207 TREE_OPERAND (obj2->base, 0), 0)
208 && known_eq (mem_ref_offset (mem1->mem.base) * BITS_PER_UNIT + mem1->mem.offset,
209 mem_ref_offset (obj2->base) * BITS_PER_UNIT + obj2->offset))
210 || (operand_equal_p (mem1->mem.base, obj2->base, 0)
211 && known_eq (mem1->mem.offset, obj2->offset)))
212 && known_eq (mem1->mem.size, obj2->size)
213 && known_eq (mem1->mem.max_size, obj2->max_size)
214 && mem1->mem.volatile_p == obj2->volatile_p
215 && (mem1->mem.ref_alias_set == obj2->ref_alias_set
216 /* We are not canonicalizing alias-sets but for the
217 special-case we didn't canonicalize yet and the
218 incoming ref is a alias-set zero MEM we pick
219 the correct one already. */
220 || (!mem1->ref_canonical
221 && (TREE_CODE (obj2->ref) == MEM_REF
222 || TREE_CODE (obj2->ref) == TARGET_MEM_REF)
223 && obj2->ref_alias_set == 0)
224 /* Likewise if there's a canonical ref with alias-set zero. */
225 || (mem1->ref_canonical && mem1->mem.ref_alias_set == 0))
226 && types_compatible_p (TREE_TYPE (mem1->mem.ref),
227 TREE_TYPE (obj2->ref)));
228 else
229 return operand_equal_p (mem1->mem.ref, obj2->ref, 0);
233 /* Description of memory accesses in loops. */
235 static struct
237 /* The hash table of memory references accessed in loops. */
238 hash_table<mem_ref_hasher> *refs;
240 /* The list of memory references. */
241 vec<im_mem_ref *> refs_list;
243 /* The set of memory references accessed in each loop. */
244 vec<bitmap_head> refs_loaded_in_loop;
246 /* The set of memory references stored in each loop. */
247 vec<bitmap_head> refs_stored_in_loop;
249 /* The set of memory references stored in each loop, including subloops . */
250 vec<bitmap_head> all_refs_stored_in_loop;
252 /* Cache for expanding memory addresses. */
253 hash_map<tree, name_expansion *> *ttae_cache;
254 } memory_accesses;
256 /* Obstack for the bitmaps in the above data structures. */
257 static bitmap_obstack lim_bitmap_obstack;
258 static obstack mem_ref_obstack;
260 static bool ref_indep_loop_p (class loop *, im_mem_ref *, dep_kind);
261 static bool ref_always_accessed_p (class loop *, im_mem_ref *, bool);
262 static bool refs_independent_p (im_mem_ref *, im_mem_ref *, bool = true);
264 /* Minimum cost of an expensive expression. */
265 #define LIM_EXPENSIVE ((unsigned) param_lim_expensive)
267 /* The outermost loop for which execution of the header guarantees that the
268 block will be executed. */
269 #define ALWAYS_EXECUTED_IN(BB) ((class loop *) (BB)->aux)
270 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
272 /* ID of the shared unanalyzable mem. */
273 #define UNANALYZABLE_MEM_ID 0
275 /* Whether the reference was analyzable. */
276 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
278 static struct lim_aux_data *
279 init_lim_data (gimple *stmt)
281 lim_aux_data *p = XCNEW (struct lim_aux_data);
282 lim_aux_data_map->put (stmt, p);
284 return p;
287 static struct lim_aux_data *
288 get_lim_data (gimple *stmt)
290 lim_aux_data **p = lim_aux_data_map->get (stmt);
291 if (!p)
292 return NULL;
294 return *p;
297 /* Releases the memory occupied by DATA. */
299 static void
300 free_lim_aux_data (struct lim_aux_data *data)
302 data->depends.release ();
303 free (data);
306 static void
307 clear_lim_data (gimple *stmt)
309 lim_aux_data **p = lim_aux_data_map->get (stmt);
310 if (!p)
311 return;
313 free_lim_aux_data (*p);
314 *p = NULL;
318 /* The possibilities of statement movement. */
319 enum move_pos
321 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
322 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
323 become executed -- memory accesses, ... */
324 MOVE_POSSIBLE /* Unlimited movement. */
328 /* If it is possible to hoist the statement STMT unconditionally,
329 returns MOVE_POSSIBLE.
330 If it is possible to hoist the statement STMT, but we must avoid making
331 it executed if it would not be executed in the original program (e.g.
332 because it may trap), return MOVE_PRESERVE_EXECUTION.
333 Otherwise return MOVE_IMPOSSIBLE. */
335 static enum move_pos
336 movement_possibility_1 (gimple *stmt)
338 tree lhs;
339 enum move_pos ret = MOVE_POSSIBLE;
341 if (flag_unswitch_loops
342 && gimple_code (stmt) == GIMPLE_COND)
344 /* If we perform unswitching, force the operands of the invariant
345 condition to be moved out of the loop. */
346 return MOVE_POSSIBLE;
349 if (gimple_code (stmt) == GIMPLE_PHI
350 && gimple_phi_num_args (stmt) <= 2
351 && !virtual_operand_p (gimple_phi_result (stmt))
352 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
353 return MOVE_POSSIBLE;
355 if (gimple_get_lhs (stmt) == NULL_TREE)
356 return MOVE_IMPOSSIBLE;
358 if (gimple_vdef (stmt))
359 return MOVE_IMPOSSIBLE;
361 if (stmt_ends_bb_p (stmt)
362 || gimple_has_volatile_ops (stmt)
363 || gimple_has_side_effects (stmt)
364 || stmt_could_throw_p (cfun, stmt))
365 return MOVE_IMPOSSIBLE;
367 if (is_gimple_call (stmt))
369 /* While pure or const call is guaranteed to have no side effects, we
370 cannot move it arbitrarily. Consider code like
372 char *s = something ();
374 while (1)
376 if (s)
377 t = strlen (s);
378 else
379 t = 0;
382 Here the strlen call cannot be moved out of the loop, even though
383 s is invariant. In addition to possibly creating a call with
384 invalid arguments, moving out a function call that is not executed
385 may cause performance regressions in case the call is costly and
386 not executed at all. */
387 ret = MOVE_PRESERVE_EXECUTION;
388 lhs = gimple_call_lhs (stmt);
390 else if (is_gimple_assign (stmt))
391 lhs = gimple_assign_lhs (stmt);
392 else
393 return MOVE_IMPOSSIBLE;
395 if (TREE_CODE (lhs) == SSA_NAME
396 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
397 return MOVE_IMPOSSIBLE;
399 if (TREE_CODE (lhs) != SSA_NAME
400 || gimple_could_trap_p (stmt))
401 return MOVE_PRESERVE_EXECUTION;
403 /* Non local loads in a transaction cannot be hoisted out. Well,
404 unless the load happens on every path out of the loop, but we
405 don't take this into account yet. */
406 if (flag_tm
407 && gimple_in_transaction (stmt)
408 && gimple_assign_single_p (stmt))
410 tree rhs = gimple_assign_rhs1 (stmt);
411 if (DECL_P (rhs) && is_global_var (rhs))
413 if (dump_file)
415 fprintf (dump_file, "Cannot hoist conditional load of ");
416 print_generic_expr (dump_file, rhs, TDF_SLIM);
417 fprintf (dump_file, " because it is in a transaction.\n");
419 return MOVE_IMPOSSIBLE;
423 return ret;
426 static enum move_pos
427 movement_possibility (gimple *stmt)
429 enum move_pos pos = movement_possibility_1 (stmt);
430 if (pos == MOVE_POSSIBLE)
432 use_operand_p use_p;
433 ssa_op_iter ssa_iter;
434 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, ssa_iter, SSA_OP_USE)
435 if (TREE_CODE (USE_FROM_PTR (use_p)) == SSA_NAME
436 && ssa_name_maybe_undef_p (USE_FROM_PTR (use_p)))
437 return MOVE_PRESERVE_EXECUTION;
439 return pos;
443 /* Compare the profile count inequality of bb and loop's preheader, it is
444 three-state as stated in profile-count.h, FALSE is returned if inequality
445 cannot be decided. */
446 bool
447 bb_colder_than_loop_preheader (basic_block bb, class loop *loop)
449 gcc_assert (bb && loop);
450 return bb->count < loop_preheader_edge (loop)->src->count;
453 /* Check coldest loop between OUTERMOST_LOOP and LOOP by comparing profile
454 count.
455 It does three steps check:
456 1) Check whether CURR_BB is cold in it's own loop_father, if it is cold, just
457 return NULL which means it should not be moved out at all;
458 2) CURR_BB is NOT cold, check if pre-computed COLDEST_LOOP is outside of
459 OUTERMOST_LOOP, if it is inside of OUTERMOST_LOOP, return the COLDEST_LOOP;
460 3) If COLDEST_LOOP is outside of OUTERMOST_LOOP, check whether there is a
461 hotter loop between OUTERMOST_LOOP and loop in pre-computed
462 HOTTER_THAN_INNER_LOOP, return it's nested inner loop, otherwise return
463 OUTERMOST_LOOP.
464 At last, the coldest_loop is inside of OUTERMOST_LOOP, just return it as
465 the hoist target. */
467 static class loop *
468 get_coldest_out_loop (class loop *outermost_loop, class loop *loop,
469 basic_block curr_bb)
471 gcc_assert (outermost_loop == loop
472 || flow_loop_nested_p (outermost_loop, loop));
474 /* If bb_colder_than_loop_preheader returns false due to three-state
475 comparision, OUTERMOST_LOOP is returned finally to preserve the behavior.
476 Otherwise, return the coldest loop between OUTERMOST_LOOP and LOOP. */
477 if (curr_bb && bb_colder_than_loop_preheader (curr_bb, loop))
478 return NULL;
480 class loop *coldest_loop = coldest_outermost_loop[loop->num];
481 if (loop_depth (coldest_loop) < loop_depth (outermost_loop))
483 class loop *hotter_loop = hotter_than_inner_loop[loop->num];
484 if (!hotter_loop
485 || loop_depth (hotter_loop) < loop_depth (outermost_loop))
486 return outermost_loop;
488 /* hotter_loop is between OUTERMOST_LOOP and LOOP like:
489 [loop tree root, ..., coldest_loop, ..., outermost_loop, ...,
490 hotter_loop, second_coldest_loop, ..., loop]
491 return second_coldest_loop to be the hoist target. */
492 class loop *aloop;
493 for (aloop = hotter_loop->inner; aloop; aloop = aloop->next)
494 if (aloop == loop || flow_loop_nested_p (aloop, loop))
495 return aloop;
497 return coldest_loop;
500 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
501 loop to that we could move the expression using DEF if it did not have
502 other operands, i.e. the outermost loop enclosing LOOP in that the value
503 of DEF is invariant. */
505 static class loop *
506 outermost_invariant_loop (tree def, class loop *loop)
508 gimple *def_stmt;
509 basic_block def_bb;
510 class loop *max_loop;
511 struct lim_aux_data *lim_data;
513 if (!def)
514 return superloop_at_depth (loop, 1);
516 if (TREE_CODE (def) != SSA_NAME)
518 gcc_assert (is_gimple_min_invariant (def));
519 return superloop_at_depth (loop, 1);
522 def_stmt = SSA_NAME_DEF_STMT (def);
523 def_bb = gimple_bb (def_stmt);
524 if (!def_bb)
525 return superloop_at_depth (loop, 1);
527 max_loop = find_common_loop (loop, def_bb->loop_father);
529 lim_data = get_lim_data (def_stmt);
530 if (lim_data != NULL && lim_data->max_loop != NULL)
531 max_loop = find_common_loop (max_loop,
532 loop_outer (lim_data->max_loop));
533 if (max_loop == loop)
534 return NULL;
535 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
537 return max_loop;
540 /* DATA is a structure containing information associated with a statement
541 inside LOOP. DEF is one of the operands of this statement.
543 Find the outermost loop enclosing LOOP in that value of DEF is invariant
544 and record this in DATA->max_loop field. If DEF itself is defined inside
545 this loop as well (i.e. we need to hoist it out of the loop if we want
546 to hoist the statement represented by DATA), record the statement in that
547 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
548 add the cost of the computation of DEF to the DATA->cost.
550 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
552 static bool
553 add_dependency (tree def, struct lim_aux_data *data, class loop *loop,
554 bool add_cost)
556 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
557 basic_block def_bb = gimple_bb (def_stmt);
558 class loop *max_loop;
559 struct lim_aux_data *def_data;
561 if (!def_bb)
562 return true;
564 max_loop = outermost_invariant_loop (def, loop);
565 if (!max_loop)
566 return false;
568 if (flow_loop_nested_p (data->max_loop, max_loop))
569 data->max_loop = max_loop;
571 def_data = get_lim_data (def_stmt);
572 if (!def_data)
573 return true;
575 if (add_cost
576 /* Only add the cost if the statement defining DEF is inside LOOP,
577 i.e. if it is likely that by moving the invariants dependent
578 on it, we will be able to avoid creating a new register for
579 it (since it will be only used in these dependent invariants). */
580 && def_bb->loop_father == loop)
581 data->cost += def_data->cost;
583 data->depends.safe_push (def_stmt);
585 return true;
588 /* Returns an estimate for a cost of statement STMT. The values here
589 are just ad-hoc constants, similar to costs for inlining. */
591 static unsigned
592 stmt_cost (gimple *stmt)
594 /* Always try to create possibilities for unswitching. */
595 if (gimple_code (stmt) == GIMPLE_COND
596 || gimple_code (stmt) == GIMPLE_PHI)
597 return LIM_EXPENSIVE;
599 /* We should be hoisting calls if possible. */
600 if (is_gimple_call (stmt))
602 tree fndecl;
604 /* Unless the call is a builtin_constant_p; this always folds to a
605 constant, so moving it is useless. */
606 fndecl = gimple_call_fndecl (stmt);
607 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_CONSTANT_P))
608 return 0;
610 return LIM_EXPENSIVE;
613 /* Hoisting memory references out should almost surely be a win. */
614 if (gimple_references_memory_p (stmt))
615 return LIM_EXPENSIVE;
617 if (gimple_code (stmt) != GIMPLE_ASSIGN)
618 return 1;
620 switch (gimple_assign_rhs_code (stmt))
622 case MULT_EXPR:
623 case WIDEN_MULT_EXPR:
624 case WIDEN_MULT_PLUS_EXPR:
625 case WIDEN_MULT_MINUS_EXPR:
626 case DOT_PROD_EXPR:
627 case TRUNC_DIV_EXPR:
628 case CEIL_DIV_EXPR:
629 case FLOOR_DIV_EXPR:
630 case ROUND_DIV_EXPR:
631 case EXACT_DIV_EXPR:
632 case CEIL_MOD_EXPR:
633 case FLOOR_MOD_EXPR:
634 case ROUND_MOD_EXPR:
635 case TRUNC_MOD_EXPR:
636 case RDIV_EXPR:
637 /* Division and multiplication are usually expensive. */
638 return LIM_EXPENSIVE;
640 case LSHIFT_EXPR:
641 case RSHIFT_EXPR:
642 case WIDEN_LSHIFT_EXPR:
643 case LROTATE_EXPR:
644 case RROTATE_EXPR:
645 /* Shifts and rotates are usually expensive. */
646 return LIM_EXPENSIVE;
648 case CONSTRUCTOR:
649 /* Make vector construction cost proportional to the number
650 of elements. */
651 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
653 case SSA_NAME:
654 case PAREN_EXPR:
655 /* Whether or not something is wrapped inside a PAREN_EXPR
656 should not change move cost. Nor should an intermediate
657 unpropagated SSA name copy. */
658 return 0;
660 default:
661 return 1;
665 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
666 REF is independent. If REF is not independent in LOOP, NULL is returned
667 instead. */
669 static class loop *
670 outermost_indep_loop (class loop *outer, class loop *loop, im_mem_ref *ref)
672 class loop *aloop;
674 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
675 return NULL;
677 for (aloop = outer;
678 aloop != loop;
679 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
680 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
681 && ref_indep_loop_p (aloop, ref, lim_raw))
682 return aloop;
684 if (ref_indep_loop_p (loop, ref, lim_raw))
685 return loop;
686 else
687 return NULL;
690 /* If there is a simple load or store to a memory reference in STMT, returns
691 the location of the memory reference, and sets IS_STORE according to whether
692 it is a store or load. Otherwise, returns NULL. */
694 static tree *
695 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
697 tree *lhs, *rhs;
699 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
700 if (!gimple_assign_single_p (stmt))
701 return NULL;
703 lhs = gimple_assign_lhs_ptr (stmt);
704 rhs = gimple_assign_rhs1_ptr (stmt);
706 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
708 *is_store = false;
709 return rhs;
711 else if (gimple_vdef (stmt)
712 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
714 *is_store = true;
715 return lhs;
717 else
718 return NULL;
721 /* From a controlling predicate in DOM determine the arguments from
722 the PHI node PHI that are chosen if the predicate evaluates to
723 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
724 they are non-NULL. Returns true if the arguments can be determined,
725 else return false. */
727 static bool
728 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
729 tree *true_arg_p, tree *false_arg_p)
731 edge te, fe;
732 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
733 &te, &fe))
734 return false;
736 if (true_arg_p)
737 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
738 if (false_arg_p)
739 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
741 return true;
744 /* Determine the outermost loop to that it is possible to hoist a statement
745 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
746 the outermost loop in that the value computed by STMT is invariant.
747 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
748 we preserve the fact whether STMT is executed. It also fills other related
749 information to LIM_DATA (STMT).
751 The function returns false if STMT cannot be hoisted outside of the loop it
752 is defined in, and true otherwise. */
754 static bool
755 determine_max_movement (gimple *stmt, bool must_preserve_exec)
757 basic_block bb = gimple_bb (stmt);
758 class loop *loop = bb->loop_father;
759 class loop *level;
760 struct lim_aux_data *lim_data = get_lim_data (stmt);
761 tree val;
762 ssa_op_iter iter;
764 if (must_preserve_exec)
765 level = ALWAYS_EXECUTED_IN (bb);
766 else
767 level = superloop_at_depth (loop, 1);
768 lim_data->max_loop = get_coldest_out_loop (level, loop, bb);
769 if (!lim_data->max_loop)
770 return false;
772 if (gphi *phi = dyn_cast <gphi *> (stmt))
774 use_operand_p use_p;
775 unsigned min_cost = UINT_MAX;
776 unsigned total_cost = 0;
777 struct lim_aux_data *def_data;
779 /* We will end up promoting dependencies to be unconditionally
780 evaluated. For this reason the PHI cost (and thus the
781 cost we remove from the loop by doing the invariant motion)
782 is that of the cheapest PHI argument dependency chain. */
783 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
785 val = USE_FROM_PTR (use_p);
787 if (TREE_CODE (val) != SSA_NAME)
789 /* Assign const 1 to constants. */
790 min_cost = MIN (min_cost, 1);
791 total_cost += 1;
792 continue;
794 if (!add_dependency (val, lim_data, loop, false))
795 return false;
797 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
798 if (gimple_bb (def_stmt)
799 && gimple_bb (def_stmt)->loop_father == loop)
801 def_data = get_lim_data (def_stmt);
802 if (def_data)
804 min_cost = MIN (min_cost, def_data->cost);
805 total_cost += def_data->cost;
810 min_cost = MIN (min_cost, total_cost);
811 lim_data->cost += min_cost;
813 if (gimple_phi_num_args (phi) > 1)
815 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
816 gimple *cond;
817 if (gsi_end_p (gsi_last_bb (dom)))
818 return false;
819 cond = gsi_stmt (gsi_last_bb (dom));
820 if (gimple_code (cond) != GIMPLE_COND)
821 return false;
822 /* Verify that this is an extended form of a diamond and
823 the PHI arguments are completely controlled by the
824 predicate in DOM. */
825 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
826 return false;
828 /* Fold in dependencies and cost of the condition. */
829 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
831 if (!add_dependency (val, lim_data, loop, false))
832 return false;
833 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
834 if (def_data)
835 lim_data->cost += def_data->cost;
838 /* We want to avoid unconditionally executing very expensive
839 operations. As costs for our dependencies cannot be
840 negative just claim we are not invariand for this case.
841 We also are not sure whether the control-flow inside the
842 loop will vanish. */
843 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
844 && !(min_cost != 0
845 && total_cost / min_cost <= 2))
846 return false;
848 /* Assume that the control-flow in the loop will vanish.
849 ??? We should verify this and not artificially increase
850 the cost if that is not the case. */
851 lim_data->cost += stmt_cost (stmt);
854 return true;
857 /* A stmt that receives abnormal edges cannot be hoisted. */
858 if (is_a <gcall *> (stmt)
859 && (gimple_call_flags (stmt) & ECF_RETURNS_TWICE))
860 return false;
862 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
863 if (!add_dependency (val, lim_data, loop, true))
864 return false;
866 if (gimple_vuse (stmt))
868 im_mem_ref *ref
869 = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
870 if (ref
871 && MEM_ANALYZABLE (ref))
873 lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
874 loop, ref);
875 if (!lim_data->max_loop)
876 return false;
878 else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
879 return false;
882 lim_data->cost += stmt_cost (stmt);
884 return true;
887 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
888 and that one of the operands of this statement is computed by STMT.
889 Ensure that STMT (together with all the statements that define its
890 operands) is hoisted at least out of the loop LEVEL. */
892 static void
893 set_level (gimple *stmt, class loop *orig_loop, class loop *level)
895 class loop *stmt_loop = gimple_bb (stmt)->loop_father;
896 struct lim_aux_data *lim_data;
897 gimple *dep_stmt;
898 unsigned i;
900 stmt_loop = find_common_loop (orig_loop, stmt_loop);
901 lim_data = get_lim_data (stmt);
902 if (lim_data != NULL && lim_data->tgt_loop != NULL)
903 stmt_loop = find_common_loop (stmt_loop,
904 loop_outer (lim_data->tgt_loop));
905 if (flow_loop_nested_p (stmt_loop, level))
906 return;
908 gcc_assert (level == lim_data->max_loop
909 || flow_loop_nested_p (lim_data->max_loop, level));
911 lim_data->tgt_loop = level;
912 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
913 set_level (dep_stmt, orig_loop, level);
916 /* Determines an outermost loop from that we want to hoist the statement STMT.
917 For now we chose the outermost possible loop. TODO -- use profiling
918 information to set it more sanely. */
920 static void
921 set_profitable_level (gimple *stmt)
923 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
926 /* Returns true if STMT is a call that has side effects. */
928 static bool
929 nonpure_call_p (gimple *stmt)
931 if (gimple_code (stmt) != GIMPLE_CALL)
932 return false;
934 return gimple_has_side_effects (stmt);
937 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
939 static gimple *
940 rewrite_reciprocal (gimple_stmt_iterator *bsi)
942 gassign *stmt, *stmt1, *stmt2;
943 tree name, lhs, type;
944 tree real_one;
945 gimple_stmt_iterator gsi;
947 stmt = as_a <gassign *> (gsi_stmt (*bsi));
948 lhs = gimple_assign_lhs (stmt);
949 type = TREE_TYPE (lhs);
951 real_one = build_one_cst (type);
953 name = make_temp_ssa_name (type, NULL, "reciptmp");
954 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
955 gimple_assign_rhs2 (stmt));
956 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
957 gimple_assign_rhs1 (stmt));
959 /* Replace division stmt with reciprocal and multiply stmts.
960 The multiply stmt is not invariant, so update iterator
961 and avoid rescanning. */
962 gsi = *bsi;
963 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
964 gsi_replace (&gsi, stmt2, true);
966 /* Continue processing with invariant reciprocal statement. */
967 return stmt1;
970 /* Check if the pattern at *BSI is a bittest of the form
971 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
973 static gimple *
974 rewrite_bittest (gimple_stmt_iterator *bsi)
976 gassign *stmt;
977 gimple *stmt1;
978 gassign *stmt2;
979 gimple *use_stmt;
980 gcond *cond_stmt;
981 tree lhs, name, t, a, b;
982 use_operand_p use;
984 stmt = as_a <gassign *> (gsi_stmt (*bsi));
985 lhs = gimple_assign_lhs (stmt);
987 /* Verify that the single use of lhs is a comparison against zero. */
988 if (TREE_CODE (lhs) != SSA_NAME
989 || !single_imm_use (lhs, &use, &use_stmt))
990 return stmt;
991 cond_stmt = dyn_cast <gcond *> (use_stmt);
992 if (!cond_stmt)
993 return stmt;
994 if (gimple_cond_lhs (cond_stmt) != lhs
995 || (gimple_cond_code (cond_stmt) != NE_EXPR
996 && gimple_cond_code (cond_stmt) != EQ_EXPR)
997 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
998 return stmt;
1000 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
1001 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
1002 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
1003 return stmt;
1005 /* There is a conversion in between possibly inserted by fold. */
1006 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
1008 t = gimple_assign_rhs1 (stmt1);
1009 if (TREE_CODE (t) != SSA_NAME
1010 || !has_single_use (t))
1011 return stmt;
1012 stmt1 = SSA_NAME_DEF_STMT (t);
1013 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
1014 return stmt;
1017 /* Verify that B is loop invariant but A is not. Verify that with
1018 all the stmt walking we are still in the same loop. */
1019 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
1020 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
1021 return stmt;
1023 a = gimple_assign_rhs1 (stmt1);
1024 b = gimple_assign_rhs2 (stmt1);
1026 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
1027 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
1029 gimple_stmt_iterator rsi;
1031 /* 1 << B */
1032 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1033 build_int_cst (TREE_TYPE (a), 1), b);
1034 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1035 stmt1 = gimple_build_assign (name, t);
1037 /* A & (1 << B) */
1038 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1039 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1040 stmt2 = gimple_build_assign (name, t);
1042 /* Replace the SSA_NAME we compare against zero. Adjust
1043 the type of zero accordingly. */
1044 SET_USE (use, name);
1045 gimple_cond_set_rhs (cond_stmt,
1046 build_int_cst_type (TREE_TYPE (name),
1047 0));
1049 /* Don't use gsi_replace here, none of the new assignments sets
1050 the variable originally set in stmt. Move bsi to stmt1, and
1051 then remove the original stmt, so that we get a chance to
1052 retain debug info for it. */
1053 rsi = *bsi;
1054 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1055 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1056 gimple *to_release = gsi_stmt (rsi);
1057 gsi_remove (&rsi, true);
1058 release_defs (to_release);
1060 return stmt1;
1063 return stmt;
1066 /* Determine the outermost loops in that statements in basic block BB are
1067 invariant, and record them to the LIM_DATA associated with the
1068 statements. */
1070 static void
1071 compute_invariantness (basic_block bb)
1073 enum move_pos pos;
1074 gimple_stmt_iterator bsi;
1075 gimple *stmt;
1076 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1077 class loop *outermost = ALWAYS_EXECUTED_IN (bb);
1078 struct lim_aux_data *lim_data;
1080 if (!loop_outer (bb->loop_father))
1081 return;
1083 if (dump_file && (dump_flags & TDF_DETAILS))
1084 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1085 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1087 /* Look at PHI nodes, but only if there is at most two.
1088 ??? We could relax this further by post-processing the inserted
1089 code and transforming adjacent cond-exprs with the same predicate
1090 to control flow again. */
1091 bsi = gsi_start_phis (bb);
1092 if (!gsi_end_p (bsi)
1093 && ((gsi_next (&bsi), gsi_end_p (bsi))
1094 || (gsi_next (&bsi), gsi_end_p (bsi))))
1095 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1097 stmt = gsi_stmt (bsi);
1099 pos = movement_possibility (stmt);
1100 if (pos == MOVE_IMPOSSIBLE)
1101 continue;
1103 lim_data = get_lim_data (stmt);
1104 if (! lim_data)
1105 lim_data = init_lim_data (stmt);
1106 lim_data->always_executed_in = outermost;
1108 if (!determine_max_movement (stmt, false))
1110 lim_data->max_loop = NULL;
1111 continue;
1114 if (dump_file && (dump_flags & TDF_DETAILS))
1116 print_gimple_stmt (dump_file, stmt, 2);
1117 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1118 loop_depth (lim_data->max_loop),
1119 lim_data->cost);
1122 if (lim_data->cost >= LIM_EXPENSIVE)
1123 set_profitable_level (stmt);
1126 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1128 stmt = gsi_stmt (bsi);
1130 pos = movement_possibility (stmt);
1131 if (pos == MOVE_IMPOSSIBLE)
1133 if (nonpure_call_p (stmt))
1135 maybe_never = true;
1136 outermost = NULL;
1138 /* Make sure to note always_executed_in for stores to make
1139 store-motion work. */
1140 else if (stmt_makes_single_store (stmt))
1142 struct lim_aux_data *lim_data = get_lim_data (stmt);
1143 if (! lim_data)
1144 lim_data = init_lim_data (stmt);
1145 lim_data->always_executed_in = outermost;
1147 continue;
1150 if (is_gimple_assign (stmt)
1151 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1152 == GIMPLE_BINARY_RHS))
1154 tree op0 = gimple_assign_rhs1 (stmt);
1155 tree op1 = gimple_assign_rhs2 (stmt);
1156 class loop *ol1 = outermost_invariant_loop (op1,
1157 loop_containing_stmt (stmt));
1159 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1160 to be hoisted out of loop, saving expensive divide. */
1161 if (pos == MOVE_POSSIBLE
1162 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1163 && flag_unsafe_math_optimizations
1164 && !flag_trapping_math
1165 && ol1 != NULL
1166 && outermost_invariant_loop (op0, ol1) == NULL)
1167 stmt = rewrite_reciprocal (&bsi);
1169 /* If the shift count is invariant, convert (A >> B) & 1 to
1170 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1171 saving an expensive shift. */
1172 if (pos == MOVE_POSSIBLE
1173 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1174 && integer_onep (op1)
1175 && TREE_CODE (op0) == SSA_NAME
1176 && has_single_use (op0))
1177 stmt = rewrite_bittest (&bsi);
1180 lim_data = get_lim_data (stmt);
1181 if (! lim_data)
1182 lim_data = init_lim_data (stmt);
1183 lim_data->always_executed_in = outermost;
1185 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1186 continue;
1188 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1190 lim_data->max_loop = NULL;
1191 continue;
1194 if (dump_file && (dump_flags & TDF_DETAILS))
1196 print_gimple_stmt (dump_file, stmt, 2);
1197 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1198 loop_depth (lim_data->max_loop),
1199 lim_data->cost);
1202 if (lim_data->cost >= LIM_EXPENSIVE)
1203 set_profitable_level (stmt);
1207 /* Hoist the statements in basic block BB out of the loops prescribed by
1208 data stored in LIM_DATA structures associated with each statement. Callback
1209 for walk_dominator_tree. */
1211 unsigned int
1212 move_computations_worker (basic_block bb)
1214 class loop *level;
1215 unsigned cost = 0;
1216 struct lim_aux_data *lim_data;
1217 unsigned int todo = 0;
1219 if (!loop_outer (bb->loop_father))
1220 return todo;
1222 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1224 gassign *new_stmt;
1225 gphi *stmt = bsi.phi ();
1227 lim_data = get_lim_data (stmt);
1228 if (lim_data == NULL)
1230 gsi_next (&bsi);
1231 continue;
1234 cost = lim_data->cost;
1235 level = lim_data->tgt_loop;
1236 clear_lim_data (stmt);
1238 if (!level)
1240 gsi_next (&bsi);
1241 continue;
1244 if (dump_file && (dump_flags & TDF_DETAILS))
1246 fprintf (dump_file, "Moving PHI node\n");
1247 print_gimple_stmt (dump_file, stmt, 0);
1248 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1249 cost, level->num);
1252 if (gimple_phi_num_args (stmt) == 1)
1254 tree arg = PHI_ARG_DEF (stmt, 0);
1255 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1256 TREE_CODE (arg), arg);
1258 else
1260 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1261 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1262 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1263 /* Get the PHI arguments corresponding to the true and false
1264 edges of COND. */
1265 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1266 gcc_assert (arg0 && arg1);
1267 t = make_ssa_name (boolean_type_node);
1268 new_stmt = gimple_build_assign (t, gimple_cond_code (cond),
1269 gimple_cond_lhs (cond),
1270 gimple_cond_rhs (cond));
1271 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1272 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1273 COND_EXPR, t, arg0, arg1);
1274 todo |= TODO_cleanup_cfg;
1276 if (!ALWAYS_EXECUTED_IN (bb)
1277 || (ALWAYS_EXECUTED_IN (bb) != level
1278 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))
1279 reset_flow_sensitive_info (gimple_assign_lhs (new_stmt));
1280 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1281 remove_phi_node (&bsi, false);
1284 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1286 edge e;
1288 gimple *stmt = gsi_stmt (bsi);
1290 lim_data = get_lim_data (stmt);
1291 if (lim_data == NULL)
1293 gsi_next (&bsi);
1294 continue;
1297 cost = lim_data->cost;
1298 level = lim_data->tgt_loop;
1299 clear_lim_data (stmt);
1301 if (!level)
1303 gsi_next (&bsi);
1304 continue;
1307 /* We do not really want to move conditionals out of the loop; we just
1308 placed it here to force its operands to be moved if necessary. */
1309 if (gimple_code (stmt) == GIMPLE_COND)
1311 gsi_next (&bsi);
1312 continue;
1315 if (dump_file && (dump_flags & TDF_DETAILS))
1317 fprintf (dump_file, "Moving statement\n");
1318 print_gimple_stmt (dump_file, stmt, 0);
1319 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1320 cost, level->num);
1323 e = loop_preheader_edge (level);
1324 gcc_assert (!gimple_vdef (stmt));
1325 if (gimple_vuse (stmt))
1327 /* The new VUSE is the one from the virtual PHI in the loop
1328 header or the one already present. */
1329 gphi_iterator gsi2;
1330 for (gsi2 = gsi_start_phis (e->dest);
1331 !gsi_end_p (gsi2); gsi_next (&gsi2))
1333 gphi *phi = gsi2.phi ();
1334 if (virtual_operand_p (gimple_phi_result (phi)))
1336 SET_USE (gimple_vuse_op (stmt),
1337 PHI_ARG_DEF_FROM_EDGE (phi, e));
1338 break;
1342 gsi_remove (&bsi, false);
1343 if (gimple_has_lhs (stmt)
1344 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1345 && (!ALWAYS_EXECUTED_IN (bb)
1346 || !(ALWAYS_EXECUTED_IN (bb) == level
1347 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1348 reset_flow_sensitive_info (gimple_get_lhs (stmt));
1349 /* In case this is a stmt that is not unconditionally executed
1350 when the target loop header is executed and the stmt may
1351 invoke undefined integer or pointer overflow rewrite it to
1352 unsigned arithmetic. */
1353 if (is_gimple_assign (stmt)
1354 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1355 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1356 && arith_code_with_undefined_signed_overflow
1357 (gimple_assign_rhs_code (stmt))
1358 && (!ALWAYS_EXECUTED_IN (bb)
1359 || !(ALWAYS_EXECUTED_IN (bb) == level
1360 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1361 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1362 else
1363 gsi_insert_on_edge (e, stmt);
1366 return todo;
1369 /* Checks whether the statement defining variable *INDEX can be hoisted
1370 out of the loop passed in DATA. Callback for for_each_index. */
1372 static bool
1373 may_move_till (tree ref, tree *index, void *data)
1375 class loop *loop = (class loop *) data, *max_loop;
1377 /* If REF is an array reference, check also that the step and the lower
1378 bound is invariant in LOOP. */
1379 if (TREE_CODE (ref) == ARRAY_REF)
1381 tree step = TREE_OPERAND (ref, 3);
1382 tree lbound = TREE_OPERAND (ref, 2);
1384 max_loop = outermost_invariant_loop (step, loop);
1385 if (!max_loop)
1386 return false;
1388 max_loop = outermost_invariant_loop (lbound, loop);
1389 if (!max_loop)
1390 return false;
1393 max_loop = outermost_invariant_loop (*index, loop);
1394 if (!max_loop)
1395 return false;
1397 return true;
1400 /* If OP is SSA NAME, force the statement that defines it to be
1401 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1403 static void
1404 force_move_till_op (tree op, class loop *orig_loop, class loop *loop)
1406 gimple *stmt;
1408 if (!op
1409 || is_gimple_min_invariant (op))
1410 return;
1412 gcc_assert (TREE_CODE (op) == SSA_NAME);
1414 stmt = SSA_NAME_DEF_STMT (op);
1415 if (gimple_nop_p (stmt))
1416 return;
1418 set_level (stmt, orig_loop, loop);
1421 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1422 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1423 for_each_index. */
1425 struct fmt_data
1427 class loop *loop;
1428 class loop *orig_loop;
1431 static bool
1432 force_move_till (tree ref, tree *index, void *data)
1434 struct fmt_data *fmt_data = (struct fmt_data *) data;
1436 if (TREE_CODE (ref) == ARRAY_REF)
1438 tree step = TREE_OPERAND (ref, 3);
1439 tree lbound = TREE_OPERAND (ref, 2);
1441 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1442 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1445 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1447 return true;
1450 /* A function to free the mem_ref object OBJ. */
1452 static void
1453 memref_free (class im_mem_ref *mem)
1455 mem->accesses_in_loop.release ();
1458 /* Allocates and returns a memory reference description for MEM whose hash
1459 value is HASH and id is ID. */
1461 static im_mem_ref *
1462 mem_ref_alloc (ao_ref *mem, unsigned hash, unsigned id)
1464 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, class im_mem_ref);
1465 if (mem)
1466 ref->mem = *mem;
1467 else
1468 ao_ref_init (&ref->mem, error_mark_node);
1469 ref->id = id;
1470 ref->ref_canonical = false;
1471 ref->ref_decomposed = false;
1472 ref->hash = hash;
1473 ref->stored = NULL;
1474 ref->loaded = NULL;
1475 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1476 ref->accesses_in_loop.create (1);
1478 return ref;
1481 /* Records memory reference location *LOC in LOOP to the memory reference
1482 description REF. The reference occurs in statement STMT. */
1484 static void
1485 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1487 mem_ref_loc aref;
1488 aref.stmt = stmt;
1489 aref.ref = loc;
1490 ref->accesses_in_loop.safe_push (aref);
1493 /* Set the LOOP bit in REF stored bitmap and allocate that if
1494 necessary. Return whether a bit was changed. */
1496 static bool
1497 set_ref_stored_in_loop (im_mem_ref *ref, class loop *loop)
1499 if (!ref->stored)
1500 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1501 return bitmap_set_bit (ref->stored, loop->num);
1504 /* Marks reference REF as stored in LOOP. */
1506 static void
1507 mark_ref_stored (im_mem_ref *ref, class loop *loop)
1509 while (loop != current_loops->tree_root
1510 && set_ref_stored_in_loop (ref, loop))
1511 loop = loop_outer (loop);
1514 /* Set the LOOP bit in REF loaded bitmap and allocate that if
1515 necessary. Return whether a bit was changed. */
1517 static bool
1518 set_ref_loaded_in_loop (im_mem_ref *ref, class loop *loop)
1520 if (!ref->loaded)
1521 ref->loaded = BITMAP_ALLOC (&lim_bitmap_obstack);
1522 return bitmap_set_bit (ref->loaded, loop->num);
1525 /* Marks reference REF as loaded in LOOP. */
1527 static void
1528 mark_ref_loaded (im_mem_ref *ref, class loop *loop)
1530 while (loop != current_loops->tree_root
1531 && set_ref_loaded_in_loop (ref, loop))
1532 loop = loop_outer (loop);
1535 /* Gathers memory references in statement STMT in LOOP, storing the
1536 information about them in the memory_accesses structure. Marks
1537 the vops accessed through unrecognized statements there as
1538 well. */
1540 static void
1541 gather_mem_refs_stmt (class loop *loop, gimple *stmt)
1543 tree *mem = NULL;
1544 hashval_t hash;
1545 im_mem_ref **slot;
1546 im_mem_ref *ref;
1547 bool is_stored;
1548 unsigned id;
1550 if (!gimple_vuse (stmt))
1551 return;
1553 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1554 if (!mem && is_gimple_assign (stmt))
1556 /* For aggregate copies record distinct references but use them
1557 only for disambiguation purposes. */
1558 id = memory_accesses.refs_list.length ();
1559 ref = mem_ref_alloc (NULL, 0, id);
1560 memory_accesses.refs_list.safe_push (ref);
1561 if (dump_file && (dump_flags & TDF_DETAILS))
1563 fprintf (dump_file, "Unhandled memory reference %u: ", id);
1564 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1566 record_mem_ref_loc (ref, stmt, mem);
1567 is_stored = gimple_vdef (stmt);
1569 else if (!mem)
1571 /* We use the shared mem_ref for all unanalyzable refs. */
1572 id = UNANALYZABLE_MEM_ID;
1573 ref = memory_accesses.refs_list[id];
1574 if (dump_file && (dump_flags & TDF_DETAILS))
1576 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1577 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1579 is_stored = gimple_vdef (stmt);
1581 else
1583 /* We are looking for equal refs that might differ in structure
1584 such as a.b vs. MEM[&a + 4]. So we key off the ao_ref but
1585 make sure we can canonicalize the ref in the hashtable if
1586 non-operand_equal_p refs are found. For the lookup we mark
1587 the case we want strict equality with aor.max_size == -1. */
1588 ao_ref aor;
1589 ao_ref_init (&aor, *mem);
1590 ao_ref_base (&aor);
1591 ao_ref_alias_set (&aor);
1592 HOST_WIDE_INT offset, size, max_size;
1593 poly_int64 saved_maxsize = aor.max_size, mem_off;
1594 tree mem_base;
1595 bool ref_decomposed;
1596 if (aor.max_size_known_p ()
1597 && aor.offset.is_constant (&offset)
1598 && aor.size.is_constant (&size)
1599 && aor.max_size.is_constant (&max_size)
1600 && size == max_size
1601 && (size % BITS_PER_UNIT) == 0
1602 /* We're canonicalizing to a MEM where TYPE_SIZE specifies the
1603 size. Make sure this is consistent with the extraction. */
1604 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (*mem)))
1605 && known_eq (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (*mem))),
1606 aor.size)
1607 && (mem_base = get_addr_base_and_unit_offset (aor.ref, &mem_off)))
1609 ref_decomposed = true;
1610 tree base = ao_ref_base (&aor);
1611 poly_int64 moffset;
1612 HOST_WIDE_INT mcoffset;
1613 if (TREE_CODE (base) == MEM_REF
1614 && (mem_ref_offset (base) * BITS_PER_UNIT + offset).to_shwi (&moffset)
1615 && moffset.is_constant (&mcoffset))
1617 hash = iterative_hash_expr (TREE_OPERAND (base, 0), 0);
1618 hash = iterative_hash_host_wide_int (mcoffset, hash);
1620 else
1622 hash = iterative_hash_expr (base, 0);
1623 hash = iterative_hash_host_wide_int (offset, hash);
1625 hash = iterative_hash_host_wide_int (size, hash);
1627 else
1629 ref_decomposed = false;
1630 hash = iterative_hash_expr (aor.ref, 0);
1631 aor.max_size = -1;
1633 slot = memory_accesses.refs->find_slot_with_hash (&aor, hash, INSERT);
1634 aor.max_size = saved_maxsize;
1635 if (*slot)
1637 if (!(*slot)->ref_canonical
1638 && !operand_equal_p (*mem, (*slot)->mem.ref, 0))
1640 /* If we didn't yet canonicalize the hashtable ref (which
1641 we'll end up using for code insertion) and hit a second
1642 equal ref that is not structurally equivalent create
1643 a canonical ref which is a bare MEM_REF. */
1644 if (TREE_CODE (*mem) == MEM_REF
1645 || TREE_CODE (*mem) == TARGET_MEM_REF)
1647 (*slot)->mem.ref = *mem;
1648 (*slot)->mem.base_alias_set = ao_ref_base_alias_set (&aor);
1650 else
1652 tree ref_alias_type = reference_alias_ptr_type (*mem);
1653 unsigned int ref_align = get_object_alignment (*mem);
1654 tree ref_type = TREE_TYPE (*mem);
1655 tree tmp = build1 (ADDR_EXPR, ptr_type_node,
1656 unshare_expr (mem_base));
1657 if (TYPE_ALIGN (ref_type) != ref_align)
1658 ref_type = build_aligned_type (ref_type, ref_align);
1659 (*slot)->mem.ref
1660 = fold_build2 (MEM_REF, ref_type, tmp,
1661 build_int_cst (ref_alias_type, mem_off));
1662 if ((*slot)->mem.volatile_p)
1663 TREE_THIS_VOLATILE ((*slot)->mem.ref) = 1;
1664 gcc_checking_assert (TREE_CODE ((*slot)->mem.ref) == MEM_REF
1665 && is_gimple_mem_ref_addr
1666 (TREE_OPERAND ((*slot)->mem.ref,
1667 0)));
1668 (*slot)->mem.base_alias_set = (*slot)->mem.ref_alias_set;
1670 (*slot)->ref_canonical = true;
1672 ref = *slot;
1673 id = ref->id;
1675 else
1677 id = memory_accesses.refs_list.length ();
1678 ref = mem_ref_alloc (&aor, hash, id);
1679 ref->ref_decomposed = ref_decomposed;
1680 memory_accesses.refs_list.safe_push (ref);
1681 *slot = ref;
1683 if (dump_file && (dump_flags & TDF_DETAILS))
1685 fprintf (dump_file, "Memory reference %u: ", id);
1686 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1687 fprintf (dump_file, "\n");
1691 record_mem_ref_loc (ref, stmt, mem);
1693 if (is_stored)
1695 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1696 mark_ref_stored (ref, loop);
1698 /* A not simple memory op is also a read when it is a write. */
1699 if (!is_stored || id == UNANALYZABLE_MEM_ID
1700 || ref->mem.ref == error_mark_node)
1702 bitmap_set_bit (&memory_accesses.refs_loaded_in_loop[loop->num], ref->id);
1703 mark_ref_loaded (ref, loop);
1705 init_lim_data (stmt)->ref = ref->id;
1706 return;
1709 static unsigned *bb_loop_postorder;
1711 /* qsort sort function to sort blocks after their loop fathers postorder. */
1713 static int
1714 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_,
1715 void *bb_loop_postorder_)
1717 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1718 basic_block bb1 = *(const basic_block *)bb1_;
1719 basic_block bb2 = *(const basic_block *)bb2_;
1720 class loop *loop1 = bb1->loop_father;
1721 class loop *loop2 = bb2->loop_father;
1722 if (loop1->num == loop2->num)
1723 return bb1->index - bb2->index;
1724 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1727 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1729 static int
1730 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_,
1731 void *bb_loop_postorder_)
1733 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1734 const mem_ref_loc *loc1 = (const mem_ref_loc *)loc1_;
1735 const mem_ref_loc *loc2 = (const mem_ref_loc *)loc2_;
1736 class loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1737 class loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1738 if (loop1->num == loop2->num)
1739 return 0;
1740 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1743 /* Gathers memory references in loops. */
1745 static void
1746 analyze_memory_references (bool store_motion)
1748 gimple_stmt_iterator bsi;
1749 basic_block bb, *bbs;
1750 class loop *outer;
1751 unsigned i, n;
1753 /* Collect all basic-blocks in loops and sort them after their
1754 loops postorder. */
1755 i = 0;
1756 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1757 FOR_EACH_BB_FN (bb, cfun)
1758 if (bb->loop_father != current_loops->tree_root)
1759 bbs[i++] = bb;
1760 n = i;
1761 gcc_sort_r (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp,
1762 bb_loop_postorder);
1764 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1765 That results in better locality for all the bitmaps. It also
1766 automatically sorts the location list of gathered memory references
1767 after their loop postorder number allowing to binary-search it. */
1768 for (i = 0; i < n; ++i)
1770 basic_block bb = bbs[i];
1771 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1772 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1775 /* Verify the list of gathered memory references is sorted after their
1776 loop postorder number. */
1777 if (flag_checking)
1779 im_mem_ref *ref;
1780 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1781 for (unsigned j = 1; j < ref->accesses_in_loop.length (); ++j)
1782 gcc_assert (sort_locs_in_loop_postorder_cmp
1783 (&ref->accesses_in_loop[j-1], &ref->accesses_in_loop[j],
1784 bb_loop_postorder) <= 0);
1787 free (bbs);
1789 if (!store_motion)
1790 return;
1792 /* Propagate the information about accessed memory references up
1793 the loop hierarchy. */
1794 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1796 /* Finalize the overall touched references (including subloops). */
1797 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1798 &memory_accesses.refs_stored_in_loop[loop->num]);
1800 /* Propagate the information about accessed memory references up
1801 the loop hierarchy. */
1802 outer = loop_outer (loop);
1803 if (outer == current_loops->tree_root)
1804 continue;
1806 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1807 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1811 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1812 tree_to_aff_combination_expand. */
1814 static bool
1815 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1816 hash_map<tree, name_expansion *> **ttae_cache,
1817 bool tbaa_p)
1819 gcc_checking_assert (mem1->mem.ref != error_mark_node
1820 && mem2->mem.ref != error_mark_node);
1822 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1823 object and their offset differ in such a way that the locations cannot
1824 overlap, then they cannot alias. */
1825 poly_widest_int size1, size2;
1826 aff_tree off1, off2;
1828 /* Perform basic offset and type-based disambiguation. */
1829 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, tbaa_p))
1830 return false;
1832 /* The expansion of addresses may be a bit expensive, thus we only do
1833 the check at -O2 and higher optimization levels. */
1834 if (optimize < 2)
1835 return true;
1837 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1838 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1839 aff_combination_expand (&off1, ttae_cache);
1840 aff_combination_expand (&off2, ttae_cache);
1841 aff_combination_scale (&off1, -1);
1842 aff_combination_add (&off2, &off1);
1844 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1845 return false;
1847 return true;
1850 /* Compare function for bsearch searching for reference locations
1851 in a loop. */
1853 static int
1854 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_,
1855 void *bb_loop_postorder_)
1857 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1858 class loop *loop = (class loop *)const_cast<void *>(loop_);
1859 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1860 class loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1861 if (loop->num == loc_loop->num
1862 || flow_loop_nested_p (loop, loc_loop))
1863 return 0;
1864 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1865 ? -1 : 1);
1868 /* Iterates over all locations of REF in LOOP and its subloops calling
1869 fn.operator() with the location as argument. When that operator
1870 returns true the iteration is stopped and true is returned.
1871 Otherwise false is returned. */
1873 template <typename FN>
1874 static bool
1875 for_all_locs_in_loop (class loop *loop, im_mem_ref *ref, FN fn)
1877 unsigned i;
1878 mem_ref_loc *loc;
1880 /* Search for the cluster of locs in the accesses_in_loop vector
1881 which is sorted after postorder index of the loop father. */
1882 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp,
1883 bb_loop_postorder);
1884 if (!loc)
1885 return false;
1887 /* We have found one location inside loop or its sub-loops. Iterate
1888 both forward and backward to cover the whole cluster. */
1889 i = loc - ref->accesses_in_loop.address ();
1890 while (i > 0)
1892 --i;
1893 mem_ref_loc *l = &ref->accesses_in_loop[i];
1894 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1895 break;
1896 if (fn (l))
1897 return true;
1899 for (i = loc - ref->accesses_in_loop.address ();
1900 i < ref->accesses_in_loop.length (); ++i)
1902 mem_ref_loc *l = &ref->accesses_in_loop[i];
1903 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1904 break;
1905 if (fn (l))
1906 return true;
1909 return false;
1912 /* Rewrites location LOC by TMP_VAR. */
1914 class rewrite_mem_ref_loc
1916 public:
1917 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1918 bool operator () (mem_ref_loc *loc);
1919 tree tmp_var;
1922 bool
1923 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1925 *loc->ref = tmp_var;
1926 update_stmt (loc->stmt);
1927 return false;
1930 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1932 static void
1933 rewrite_mem_refs (class loop *loop, im_mem_ref *ref, tree tmp_var)
1935 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1938 /* Stores the first reference location in LOCP. */
1940 class first_mem_ref_loc_1
1942 public:
1943 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1944 bool operator () (mem_ref_loc *loc);
1945 mem_ref_loc **locp;
1948 bool
1949 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1951 *locp = loc;
1952 return true;
1955 /* Returns the first reference location to REF in LOOP. */
1957 static mem_ref_loc *
1958 first_mem_ref_loc (class loop *loop, im_mem_ref *ref)
1960 mem_ref_loc *locp = NULL;
1961 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1962 return locp;
1965 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1966 MEM along edge EX.
1968 The store is only done if MEM has changed. We do this so no
1969 changes to MEM occur on code paths that did not originally store
1970 into it.
1972 The common case for execute_sm will transform:
1974 for (...) {
1975 if (foo)
1976 stuff;
1977 else
1978 MEM = TMP_VAR;
1981 into:
1983 lsm = MEM;
1984 for (...) {
1985 if (foo)
1986 stuff;
1987 else
1988 lsm = TMP_VAR;
1990 MEM = lsm;
1992 This function will generate:
1994 lsm = MEM;
1996 lsm_flag = false;
1998 for (...) {
1999 if (foo)
2000 stuff;
2001 else {
2002 lsm = TMP_VAR;
2003 lsm_flag = true;
2006 if (lsm_flag) <--
2007 MEM = lsm; <-- (X)
2009 In case MEM and TMP_VAR are NULL the function will return the then
2010 block so the caller can insert (X) and other related stmts.
2013 static basic_block
2014 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
2015 edge preheader, hash_set <basic_block> *flag_bbs,
2016 edge &append_cond_position, edge &last_cond_fallthru)
2018 basic_block new_bb, then_bb, old_dest;
2019 bool loop_has_only_one_exit;
2020 edge then_old_edge;
2021 gimple_stmt_iterator gsi;
2022 gimple *stmt;
2023 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
2025 profile_count count_sum = profile_count::zero ();
2026 int nbbs = 0, ncount = 0;
2027 profile_probability flag_probability = profile_probability::uninitialized ();
2029 /* Flag is set in FLAG_BBS. Determine probability that flag will be true
2030 at loop exit.
2032 This code may look fancy, but it cannot update profile very realistically
2033 because we do not know the probability that flag will be true at given
2034 loop exit.
2036 We look for two interesting extremes
2037 - when exit is dominated by block setting the flag, we know it will
2038 always be true. This is a common case.
2039 - when all blocks setting the flag have very low frequency we know
2040 it will likely be false.
2041 In all other cases we default to 2/3 for flag being true. */
2043 for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
2044 it != flag_bbs->end (); ++it)
2046 if ((*it)->count.initialized_p ())
2047 count_sum += (*it)->count, ncount ++;
2048 if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
2049 flag_probability = profile_probability::always ();
2050 nbbs++;
2053 profile_probability cap = profile_probability::always ().apply_scale (2, 3);
2055 if (flag_probability.initialized_p ())
2057 else if (ncount == nbbs
2058 && preheader->count () >= count_sum && preheader->count ().nonzero_p ())
2060 flag_probability = count_sum.probability_in (preheader->count ());
2061 if (flag_probability > cap)
2062 flag_probability = cap;
2065 if (!flag_probability.initialized_p ())
2066 flag_probability = cap;
2068 /* ?? Insert store after previous store if applicable. See note
2069 below. */
2070 if (append_cond_position)
2071 ex = append_cond_position;
2073 loop_has_only_one_exit = single_pred_p (ex->dest);
2075 if (loop_has_only_one_exit)
2076 ex = split_block_after_labels (ex->dest);
2077 else
2079 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
2080 !gsi_end_p (gpi); gsi_next (&gpi))
2082 gphi *phi = gpi.phi ();
2083 if (virtual_operand_p (gimple_phi_result (phi)))
2084 continue;
2086 /* When the destination has a non-virtual PHI node with multiple
2087 predecessors make sure we preserve the PHI structure by
2088 forcing a forwarder block so that hoisting of that PHI will
2089 still work. */
2090 split_edge (ex);
2091 break;
2095 old_dest = ex->dest;
2096 new_bb = split_edge (ex);
2097 then_bb = create_empty_bb (new_bb);
2098 then_bb->count = new_bb->count.apply_probability (flag_probability);
2099 if (irr)
2100 then_bb->flags = BB_IRREDUCIBLE_LOOP;
2101 add_bb_to_loop (then_bb, new_bb->loop_father);
2103 gsi = gsi_start_bb (new_bb);
2104 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
2105 NULL_TREE, NULL_TREE);
2106 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2108 /* Insert actual store. */
2109 if (mem)
2111 gsi = gsi_start_bb (then_bb);
2112 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
2113 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2116 edge e1 = single_succ_edge (new_bb);
2117 edge e2 = make_edge (new_bb, then_bb,
2118 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
2119 e2->probability = flag_probability;
2121 e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
2122 e1->flags &= ~EDGE_FALLTHRU;
2124 e1->probability = flag_probability.invert ();
2126 then_old_edge = make_single_succ_edge (then_bb, old_dest,
2127 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
2129 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
2131 if (append_cond_position)
2133 basic_block prevbb = last_cond_fallthru->src;
2134 redirect_edge_succ (last_cond_fallthru, new_bb);
2135 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
2136 set_immediate_dominator (CDI_DOMINATORS, old_dest,
2137 recompute_dominator (CDI_DOMINATORS, old_dest));
2140 /* ?? Because stores may alias, they must happen in the exact
2141 sequence they originally happened. Save the position right after
2142 the (_lsm) store we just created so we can continue appending after
2143 it and maintain the original order. */
2144 append_cond_position = then_old_edge;
2145 last_cond_fallthru = find_edge (new_bb, old_dest);
2147 if (!loop_has_only_one_exit)
2148 for (gphi_iterator gpi = gsi_start_phis (old_dest);
2149 !gsi_end_p (gpi); gsi_next (&gpi))
2151 gphi *phi = gpi.phi ();
2152 unsigned i;
2154 for (i = 0; i < gimple_phi_num_args (phi); i++)
2155 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
2157 tree arg = gimple_phi_arg_def (phi, i);
2158 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
2159 update_stmt (phi);
2163 return then_bb;
2166 /* When REF is set on the location, set flag indicating the store. */
2168 class sm_set_flag_if_changed
2170 public:
2171 sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
2172 : flag (flag_), bbs (bbs_) {}
2173 bool operator () (mem_ref_loc *loc);
2174 tree flag;
2175 hash_set <basic_block> *bbs;
2178 bool
2179 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
2181 /* Only set the flag for writes. */
2182 if (is_gimple_assign (loc->stmt)
2183 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
2185 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
2186 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
2187 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2188 bbs->add (gimple_bb (stmt));
2190 return false;
2193 /* Helper function for execute_sm. On every location where REF is
2194 set, set an appropriate flag indicating the store. */
2196 static tree
2197 execute_sm_if_changed_flag_set (class loop *loop, im_mem_ref *ref,
2198 hash_set <basic_block> *bbs)
2200 tree flag;
2201 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
2202 flag = create_tmp_reg (boolean_type_node, str);
2203 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
2204 return flag;
2207 struct sm_aux
2209 tree tmp_var;
2210 tree store_flag;
2211 hash_set <basic_block> flag_bbs;
2214 /* Executes store motion of memory reference REF from LOOP.
2215 Exits from the LOOP are stored in EXITS. The initialization of the
2216 temporary variable is put to the preheader of the loop, and assignments
2217 to the reference from the temporary variable are emitted to exits. */
2219 static void
2220 execute_sm (class loop *loop, im_mem_ref *ref,
2221 hash_map<im_mem_ref *, sm_aux *> &aux_map, bool maybe_mt,
2222 bool use_other_flag_var)
2224 gassign *load;
2225 struct fmt_data fmt_data;
2226 struct lim_aux_data *lim_data;
2227 bool multi_threaded_model_p = false;
2228 gimple_stmt_iterator gsi;
2229 sm_aux *aux = new sm_aux;
2231 if (dump_file && (dump_flags & TDF_DETAILS))
2233 fprintf (dump_file, "Executing store motion of ");
2234 print_generic_expr (dump_file, ref->mem.ref);
2235 fprintf (dump_file, " from loop %d\n", loop->num);
2238 aux->tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
2239 get_lsm_tmp_name (ref->mem.ref, ~0));
2241 fmt_data.loop = loop;
2242 fmt_data.orig_loop = loop;
2243 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
2245 bool always_stored = ref_always_accessed_p (loop, ref, true);
2246 if (maybe_mt
2247 && (bb_in_transaction (loop_preheader_edge (loop)->src)
2248 || (! flag_store_data_races && ! always_stored)))
2249 multi_threaded_model_p = true;
2251 if (multi_threaded_model_p && !use_other_flag_var)
2252 aux->store_flag
2253 = execute_sm_if_changed_flag_set (loop, ref, &aux->flag_bbs);
2254 else
2255 aux->store_flag = NULL_TREE;
2257 /* Remember variable setup. */
2258 aux_map.put (ref, aux);
2260 rewrite_mem_refs (loop, ref, aux->tmp_var);
2262 /* Emit the load code on a random exit edge or into the latch if
2263 the loop does not exit, so that we are sure it will be processed
2264 by move_computations after all dependencies. */
2265 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2267 /* Avoid doing a load if there was no load of the ref in the loop.
2268 Esp. when the ref is not always stored we cannot optimize it
2269 away later. But when it is not always stored we must use a conditional
2270 store then. */
2271 if ((!always_stored && !multi_threaded_model_p)
2272 || (ref->loaded && bitmap_bit_p (ref->loaded, loop->num)))
2273 load = gimple_build_assign (aux->tmp_var, unshare_expr (ref->mem.ref));
2274 else
2276 /* If not emitting a load mark the uninitialized state on the
2277 loop entry as not to be warned for. */
2278 tree uninit = create_tmp_reg (TREE_TYPE (aux->tmp_var));
2279 suppress_warning (uninit, OPT_Wuninitialized);
2280 load = gimple_build_assign (aux->tmp_var, uninit);
2282 lim_data = init_lim_data (load);
2283 lim_data->max_loop = loop;
2284 lim_data->tgt_loop = loop;
2285 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2287 if (aux->store_flag)
2289 load = gimple_build_assign (aux->store_flag, boolean_false_node);
2290 lim_data = init_lim_data (load);
2291 lim_data->max_loop = loop;
2292 lim_data->tgt_loop = loop;
2293 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2297 /* sm_ord is used for ordinary stores we can retain order with respect
2298 to other stores
2299 sm_unord is used for conditional executed stores which need to be
2300 able to execute in arbitrary order with respect to other stores
2301 sm_other is used for stores we do not try to apply store motion to. */
2302 enum sm_kind { sm_ord, sm_unord, sm_other };
2303 struct seq_entry
2305 seq_entry () {}
2306 seq_entry (unsigned f, sm_kind k, tree fr = NULL)
2307 : first (f), second (k), from (fr) {}
2308 unsigned first;
2309 sm_kind second;
2310 tree from;
2313 static void
2314 execute_sm_exit (class loop *loop, edge ex, vec<seq_entry> &seq,
2315 hash_map<im_mem_ref *, sm_aux *> &aux_map, sm_kind kind,
2316 edge &append_cond_position, edge &last_cond_fallthru)
2318 /* Sink the stores to exit from the loop. */
2319 for (unsigned i = seq.length (); i > 0; --i)
2321 im_mem_ref *ref = memory_accesses.refs_list[seq[i-1].first];
2322 if (seq[i-1].second == sm_other)
2324 gcc_assert (kind == sm_ord && seq[i-1].from != NULL_TREE);
2325 if (dump_file && (dump_flags & TDF_DETAILS))
2327 fprintf (dump_file, "Re-issueing dependent store of ");
2328 print_generic_expr (dump_file, ref->mem.ref);
2329 fprintf (dump_file, " from loop %d on exit %d -> %d\n",
2330 loop->num, ex->src->index, ex->dest->index);
2332 gassign *store = gimple_build_assign (unshare_expr (ref->mem.ref),
2333 seq[i-1].from);
2334 gsi_insert_on_edge (ex, store);
2336 else
2338 sm_aux *aux = *aux_map.get (ref);
2339 if (!aux->store_flag || kind == sm_ord)
2341 gassign *store;
2342 store = gimple_build_assign (unshare_expr (ref->mem.ref),
2343 aux->tmp_var);
2344 gsi_insert_on_edge (ex, store);
2346 else
2347 execute_sm_if_changed (ex, ref->mem.ref, aux->tmp_var,
2348 aux->store_flag,
2349 loop_preheader_edge (loop), &aux->flag_bbs,
2350 append_cond_position, last_cond_fallthru);
2355 /* Push the SM candidate at index PTR in the sequence SEQ down until
2356 we hit the next SM candidate. Return true if that went OK and
2357 false if we could not disambiguate agains another unrelated ref.
2358 Update *AT to the index where the candidate now resides. */
2360 static bool
2361 sm_seq_push_down (vec<seq_entry> &seq, unsigned ptr, unsigned *at)
2363 *at = ptr;
2364 for (; ptr > 0; --ptr)
2366 seq_entry &new_cand = seq[ptr];
2367 seq_entry &against = seq[ptr-1];
2368 if (against.second == sm_ord
2369 || (against.second == sm_other && against.from != NULL_TREE))
2370 /* Found the tail of the sequence. */
2371 break;
2372 /* We may not ignore self-dependences here. */
2373 if (new_cand.first == against.first
2374 || !refs_independent_p (memory_accesses.refs_list[new_cand.first],
2375 memory_accesses.refs_list[against.first],
2376 false))
2377 /* ??? Prune new_cand from the list of refs to apply SM to. */
2378 return false;
2379 std::swap (new_cand, against);
2380 *at = ptr - 1;
2382 return true;
2385 /* Computes the sequence of stores from candidates in REFS_NOT_IN_SEQ to SEQ
2386 walking backwards from VDEF (or the end of BB if VDEF is NULL). */
2388 static int
2389 sm_seq_valid_bb (class loop *loop, basic_block bb, tree vdef,
2390 vec<seq_entry> &seq, bitmap refs_not_in_seq,
2391 bitmap refs_not_supported, bool forked,
2392 bitmap fully_visited)
2394 if (!vdef)
2395 for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
2396 gsi_prev (&gsi))
2398 vdef = gimple_vdef (gsi_stmt (gsi));
2399 if (vdef)
2400 break;
2402 if (!vdef)
2404 gphi *vphi = get_virtual_phi (bb);
2405 if (vphi)
2406 vdef = gimple_phi_result (vphi);
2408 if (!vdef)
2410 if (single_pred_p (bb))
2411 /* This handles the perfect nest case. */
2412 return sm_seq_valid_bb (loop, single_pred (bb), vdef,
2413 seq, refs_not_in_seq, refs_not_supported,
2414 forked, fully_visited);
2415 return 0;
2419 gimple *def = SSA_NAME_DEF_STMT (vdef);
2420 if (gimple_bb (def) != bb)
2422 /* If we forked by processing a PHI do not allow our walk to
2423 merge again until we handle that robustly. */
2424 if (forked)
2426 /* Mark refs_not_in_seq as unsupported. */
2427 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2428 return 1;
2430 /* Otherwise it doesn't really matter if we end up in different
2431 BBs. */
2432 bb = gimple_bb (def);
2434 if (gphi *phi = dyn_cast <gphi *> (def))
2436 /* Handle CFG merges. Until we handle forks (gimple_bb (def) != bb)
2437 this is still linear.
2438 Eventually we want to cache intermediate results per BB
2439 (but we can't easily cache for different exits?). */
2440 /* Stop at PHIs with possible backedges. */
2441 if (bb == bb->loop_father->header
2442 || bb->flags & BB_IRREDUCIBLE_LOOP)
2444 /* Mark refs_not_in_seq as unsupported. */
2445 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2446 return 1;
2448 if (gimple_phi_num_args (phi) == 1)
2449 return sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
2450 gimple_phi_arg_def (phi, 0), seq,
2451 refs_not_in_seq, refs_not_supported,
2452 false, fully_visited);
2453 if (bitmap_bit_p (fully_visited,
2454 SSA_NAME_VERSION (gimple_phi_result (phi))))
2455 return 1;
2456 auto_vec<seq_entry> first_edge_seq;
2457 auto_bitmap tem_refs_not_in_seq (&lim_bitmap_obstack);
2458 int eret;
2459 bitmap_copy (tem_refs_not_in_seq, refs_not_in_seq);
2460 eret = sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
2461 gimple_phi_arg_def (phi, 0),
2462 first_edge_seq,
2463 tem_refs_not_in_seq, refs_not_supported,
2464 true, fully_visited);
2465 if (eret != 1)
2466 return -1;
2467 /* Simplify our lives by pruning the sequence of !sm_ord. */
2468 while (!first_edge_seq.is_empty ()
2469 && first_edge_seq.last ().second != sm_ord)
2470 first_edge_seq.pop ();
2471 for (unsigned int i = 1; i < gimple_phi_num_args (phi); ++i)
2473 tree vuse = gimple_phi_arg_def (phi, i);
2474 edge e = gimple_phi_arg_edge (phi, i);
2475 auto_vec<seq_entry> edge_seq;
2476 bitmap_and_compl (tem_refs_not_in_seq,
2477 refs_not_in_seq, refs_not_supported);
2478 /* If we've marked all refs we search for as unsupported
2479 we can stop processing and use the sequence as before
2480 the PHI. */
2481 if (bitmap_empty_p (tem_refs_not_in_seq))
2482 return 1;
2483 eret = sm_seq_valid_bb (loop, e->src, vuse, edge_seq,
2484 tem_refs_not_in_seq, refs_not_supported,
2485 true, fully_visited);
2486 if (eret != 1)
2487 return -1;
2488 /* Simplify our lives by pruning the sequence of !sm_ord. */
2489 while (!edge_seq.is_empty ()
2490 && edge_seq.last ().second != sm_ord)
2491 edge_seq.pop ();
2492 unsigned min_len = MIN(first_edge_seq.length (),
2493 edge_seq.length ());
2494 /* Incrementally merge seqs into first_edge_seq. */
2495 int first_uneq = -1;
2496 auto_vec<seq_entry, 2> extra_refs;
2497 for (unsigned int i = 0; i < min_len; ++i)
2499 /* ??? We can more intelligently merge when we face different
2500 order by additional sinking operations in one sequence.
2501 For now we simply mark them as to be processed by the
2502 not order-preserving SM code. */
2503 if (first_edge_seq[i].first != edge_seq[i].first)
2505 if (first_edge_seq[i].second == sm_ord)
2506 bitmap_set_bit (refs_not_supported,
2507 first_edge_seq[i].first);
2508 if (edge_seq[i].second == sm_ord)
2509 bitmap_set_bit (refs_not_supported, edge_seq[i].first);
2510 first_edge_seq[i].second = sm_other;
2511 first_edge_seq[i].from = NULL_TREE;
2512 /* Record the dropped refs for later processing. */
2513 if (first_uneq == -1)
2514 first_uneq = i;
2515 extra_refs.safe_push (seq_entry (edge_seq[i].first,
2516 sm_other, NULL_TREE));
2518 /* sm_other prevails. */
2519 else if (first_edge_seq[i].second != edge_seq[i].second)
2521 /* Make sure the ref is marked as not supported. */
2522 bitmap_set_bit (refs_not_supported,
2523 first_edge_seq[i].first);
2524 first_edge_seq[i].second = sm_other;
2525 first_edge_seq[i].from = NULL_TREE;
2527 else if (first_edge_seq[i].second == sm_other
2528 && first_edge_seq[i].from != NULL_TREE
2529 && (edge_seq[i].from == NULL_TREE
2530 || !operand_equal_p (first_edge_seq[i].from,
2531 edge_seq[i].from, 0)))
2532 first_edge_seq[i].from = NULL_TREE;
2534 /* Any excess elements become sm_other since they are now
2535 coonditionally executed. */
2536 if (first_edge_seq.length () > edge_seq.length ())
2538 for (unsigned i = edge_seq.length ();
2539 i < first_edge_seq.length (); ++i)
2541 if (first_edge_seq[i].second == sm_ord)
2542 bitmap_set_bit (refs_not_supported,
2543 first_edge_seq[i].first);
2544 first_edge_seq[i].second = sm_other;
2547 else if (edge_seq.length () > first_edge_seq.length ())
2549 if (first_uneq == -1)
2550 first_uneq = first_edge_seq.length ();
2551 for (unsigned i = first_edge_seq.length ();
2552 i < edge_seq.length (); ++i)
2554 if (edge_seq[i].second == sm_ord)
2555 bitmap_set_bit (refs_not_supported, edge_seq[i].first);
2556 extra_refs.safe_push (seq_entry (edge_seq[i].first,
2557 sm_other, NULL_TREE));
2560 /* Put unmerged refs at first_uneq to force dependence checking
2561 on them. */
2562 if (first_uneq != -1)
2564 /* Missing ordered_splice_at. */
2565 if ((unsigned)first_uneq == first_edge_seq.length ())
2566 first_edge_seq.safe_splice (extra_refs);
2567 else
2569 unsigned fes_length = first_edge_seq.length ();
2570 first_edge_seq.safe_grow (fes_length
2571 + extra_refs.length ());
2572 memmove (&first_edge_seq[first_uneq + extra_refs.length ()],
2573 &first_edge_seq[first_uneq],
2574 (fes_length - first_uneq) * sizeof (seq_entry));
2575 memcpy (&first_edge_seq[first_uneq],
2576 extra_refs.address (),
2577 extra_refs.length () * sizeof (seq_entry));
2581 /* Use the sequence from the first edge and push SMs down. */
2582 for (unsigned i = 0; i < first_edge_seq.length (); ++i)
2584 unsigned id = first_edge_seq[i].first;
2585 seq.safe_push (first_edge_seq[i]);
2586 unsigned new_idx;
2587 if ((first_edge_seq[i].second == sm_ord
2588 || (first_edge_seq[i].second == sm_other
2589 && first_edge_seq[i].from != NULL_TREE))
2590 && !sm_seq_push_down (seq, seq.length () - 1, &new_idx))
2592 if (first_edge_seq[i].second == sm_ord)
2593 bitmap_set_bit (refs_not_supported, id);
2594 /* Mark it sm_other. */
2595 seq[new_idx].second = sm_other;
2596 seq[new_idx].from = NULL_TREE;
2599 bitmap_set_bit (fully_visited,
2600 SSA_NAME_VERSION (gimple_phi_result (phi)));
2601 return 1;
2603 lim_aux_data *data = get_lim_data (def);
2604 gcc_assert (data);
2605 if (data->ref == UNANALYZABLE_MEM_ID)
2606 return -1;
2607 /* Stop at memory references which we can't move. */
2608 else if (memory_accesses.refs_list[data->ref]->mem.ref == error_mark_node
2609 || TREE_THIS_VOLATILE
2610 (memory_accesses.refs_list[data->ref]->mem.ref))
2612 /* Mark refs_not_in_seq as unsupported. */
2613 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2614 return 1;
2616 /* One of the stores we want to apply SM to and we've not yet seen. */
2617 else if (bitmap_clear_bit (refs_not_in_seq, data->ref))
2619 seq.safe_push (seq_entry (data->ref, sm_ord));
2621 /* 1) push it down the queue until a SMed
2622 and not ignored ref is reached, skipping all not SMed refs
2623 and ignored refs via non-TBAA disambiguation. */
2624 unsigned new_idx;
2625 if (!sm_seq_push_down (seq, seq.length () - 1, &new_idx)
2626 /* If that fails but we did not fork yet continue, we'll see
2627 to re-materialize all of the stores in the sequence then.
2628 Further stores will only be pushed up to this one. */
2629 && forked)
2631 bitmap_set_bit (refs_not_supported, data->ref);
2632 /* Mark it sm_other. */
2633 seq[new_idx].second = sm_other;
2636 /* 2) check whether we've seen all refs we want to SM and if so
2637 declare success for the active exit */
2638 if (bitmap_empty_p (refs_not_in_seq))
2639 return 1;
2641 else
2642 /* Another store not part of the final sequence. Simply push it. */
2643 seq.safe_push (seq_entry (data->ref, sm_other,
2644 gimple_assign_rhs1 (def)));
2646 vdef = gimple_vuse (def);
2648 while (1);
2651 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2652 edges of the LOOP. */
2654 static void
2655 hoist_memory_references (class loop *loop, bitmap mem_refs,
2656 const vec<edge> &exits)
2658 im_mem_ref *ref;
2659 unsigned i;
2660 bitmap_iterator bi;
2662 /* There's a special case we can use ordered re-materialization for
2663 conditionally excuted stores which is when all stores in the loop
2664 happen in the same basic-block. In that case we know we'll reach
2665 all stores and thus can simply process that BB and emit a single
2666 conditional block of ordered materializations. See PR102436. */
2667 basic_block single_store_bb = NULL;
2668 EXECUTE_IF_SET_IN_BITMAP (&memory_accesses.all_refs_stored_in_loop[loop->num],
2669 0, i, bi)
2671 bool fail = false;
2672 ref = memory_accesses.refs_list[i];
2673 for (auto loc : ref->accesses_in_loop)
2674 if (!gimple_vdef (loc.stmt))
2676 else if (!single_store_bb)
2678 single_store_bb = gimple_bb (loc.stmt);
2679 bool conditional = false;
2680 for (edge e : exits)
2681 if (!dominated_by_p (CDI_DOMINATORS, e->src, single_store_bb))
2683 /* Conditional as seen from e. */
2684 conditional = true;
2685 break;
2687 if (!conditional)
2689 fail = true;
2690 break;
2693 else if (single_store_bb != gimple_bb (loc.stmt))
2695 fail = true;
2696 break;
2698 if (fail)
2700 single_store_bb = NULL;
2701 break;
2704 if (single_store_bb)
2706 /* Analyze the single block with stores. */
2707 auto_bitmap fully_visited;
2708 auto_bitmap refs_not_supported;
2709 auto_bitmap refs_not_in_seq;
2710 auto_vec<seq_entry> seq;
2711 bitmap_copy (refs_not_in_seq, mem_refs);
2712 int res = sm_seq_valid_bb (loop, single_store_bb, NULL_TREE,
2713 seq, refs_not_in_seq, refs_not_supported,
2714 false, fully_visited);
2715 if (res != 1)
2717 /* Unhandled refs can still fail this. */
2718 bitmap_clear (mem_refs);
2719 return;
2722 /* We cannot handle sm_other since we neither remember the
2723 stored location nor the value at the point we execute them. */
2724 for (unsigned i = 0; i < seq.length (); ++i)
2726 unsigned new_i;
2727 if (seq[i].second == sm_other
2728 && seq[i].from != NULL_TREE)
2729 seq[i].from = NULL_TREE;
2730 else if ((seq[i].second == sm_ord
2731 || (seq[i].second == sm_other
2732 && seq[i].from != NULL_TREE))
2733 && !sm_seq_push_down (seq, i, &new_i))
2735 bitmap_set_bit (refs_not_supported, seq[new_i].first);
2736 seq[new_i].second = sm_other;
2737 seq[new_i].from = NULL_TREE;
2740 bitmap_and_compl_into (mem_refs, refs_not_supported);
2741 if (bitmap_empty_p (mem_refs))
2742 return;
2744 /* Prune seq. */
2745 while (seq.last ().second == sm_other
2746 && seq.last ().from == NULL_TREE)
2747 seq.pop ();
2749 hash_map<im_mem_ref *, sm_aux *> aux_map;
2751 /* Execute SM but delay the store materialization for ordered
2752 sequences on exit. */
2753 bool first_p = true;
2754 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2756 ref = memory_accesses.refs_list[i];
2757 execute_sm (loop, ref, aux_map, true, !first_p);
2758 first_p = false;
2761 /* Get at the single flag variable we eventually produced. */
2762 im_mem_ref *ref
2763 = memory_accesses.refs_list[bitmap_first_set_bit (mem_refs)];
2764 sm_aux *aux = *aux_map.get (ref);
2766 /* Materialize ordered store sequences on exits. */
2767 edge e;
2768 FOR_EACH_VEC_ELT (exits, i, e)
2770 edge append_cond_position = NULL;
2771 edge last_cond_fallthru = NULL;
2772 edge insert_e = e;
2773 /* Construct the single flag variable control flow and insert
2774 the ordered seq of stores in the then block. With
2775 -fstore-data-races we can do the stores unconditionally. */
2776 if (aux->store_flag)
2777 insert_e
2778 = single_pred_edge
2779 (execute_sm_if_changed (e, NULL_TREE, NULL_TREE,
2780 aux->store_flag,
2781 loop_preheader_edge (loop),
2782 &aux->flag_bbs, append_cond_position,
2783 last_cond_fallthru));
2784 execute_sm_exit (loop, insert_e, seq, aux_map, sm_ord,
2785 append_cond_position, last_cond_fallthru);
2786 gsi_commit_one_edge_insert (insert_e, NULL);
2789 for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
2790 iter != aux_map.end (); ++iter)
2791 delete (*iter).second;
2793 return;
2796 /* To address PR57359 before actually applying store-motion check
2797 the candidates found for validity with regards to reordering
2798 relative to other stores which we until here disambiguated using
2799 TBAA which isn't valid.
2800 What matters is the order of the last stores to the mem_refs
2801 with respect to the other stores of the loop at the point of the
2802 loop exits. */
2804 /* For each exit compute the store order, pruning from mem_refs
2805 on the fly. */
2806 /* The complexity of this is at least
2807 O(number of exits * number of SM refs) but more approaching
2808 O(number of exits * number of SM refs * number of stores). */
2809 /* ??? Somehow do this in a single sweep over the loop body. */
2810 auto_vec<std::pair<edge, vec<seq_entry> > > sms;
2811 auto_bitmap refs_not_supported (&lim_bitmap_obstack);
2812 edge e;
2813 FOR_EACH_VEC_ELT (exits, i, e)
2815 vec<seq_entry> seq;
2816 seq.create (4);
2817 auto_bitmap refs_not_in_seq (&lim_bitmap_obstack);
2818 bitmap_and_compl (refs_not_in_seq, mem_refs, refs_not_supported);
2819 if (bitmap_empty_p (refs_not_in_seq))
2821 seq.release ();
2822 break;
2824 auto_bitmap fully_visited;
2825 int res = sm_seq_valid_bb (loop, e->src, NULL_TREE,
2826 seq, refs_not_in_seq,
2827 refs_not_supported, false,
2828 fully_visited);
2829 if (res != 1)
2831 bitmap_copy (refs_not_supported, mem_refs);
2832 seq.release ();
2833 break;
2835 sms.safe_push (std::make_pair (e, seq));
2838 /* Prune pruned mem_refs from earlier processed exits. */
2839 bool changed = !bitmap_empty_p (refs_not_supported);
2840 while (changed)
2842 changed = false;
2843 std::pair<edge, vec<seq_entry> > *seq;
2844 FOR_EACH_VEC_ELT (sms, i, seq)
2846 bool need_to_push = false;
2847 for (unsigned i = 0; i < seq->second.length (); ++i)
2849 sm_kind kind = seq->second[i].second;
2850 if (kind == sm_other && seq->second[i].from == NULL_TREE)
2851 break;
2852 unsigned id = seq->second[i].first;
2853 unsigned new_idx;
2854 if (kind == sm_ord
2855 && bitmap_bit_p (refs_not_supported, id))
2857 seq->second[i].second = sm_other;
2858 gcc_assert (seq->second[i].from == NULL_TREE);
2859 need_to_push = true;
2861 else if (need_to_push
2862 && !sm_seq_push_down (seq->second, i, &new_idx))
2864 /* We need to push down both sm_ord and sm_other
2865 but for the latter we need to disqualify all
2866 following refs. */
2867 if (kind == sm_ord)
2869 if (bitmap_set_bit (refs_not_supported, id))
2870 changed = true;
2871 seq->second[new_idx].second = sm_other;
2873 else
2875 for (unsigned j = seq->second.length () - 1;
2876 j > new_idx; --j)
2877 if (seq->second[j].second == sm_ord
2878 && bitmap_set_bit (refs_not_supported,
2879 seq->second[j].first))
2880 changed = true;
2881 seq->second.truncate (new_idx);
2882 break;
2888 std::pair<edge, vec<seq_entry> > *seq;
2889 FOR_EACH_VEC_ELT (sms, i, seq)
2891 /* Prune sm_other from the end. */
2892 while (!seq->second.is_empty ()
2893 && seq->second.last ().second == sm_other)
2894 seq->second.pop ();
2895 /* Prune duplicates from the start. */
2896 auto_bitmap seen (&lim_bitmap_obstack);
2897 unsigned j, k;
2898 for (j = k = 0; j < seq->second.length (); ++j)
2899 if (bitmap_set_bit (seen, seq->second[j].first))
2901 if (k != j)
2902 seq->second[k] = seq->second[j];
2903 ++k;
2905 seq->second.truncate (k);
2906 /* And verify. */
2907 seq_entry *e;
2908 FOR_EACH_VEC_ELT (seq->second, j, e)
2909 gcc_assert (e->second == sm_ord
2910 || (e->second == sm_other && e->from != NULL_TREE));
2913 /* Verify dependence for refs we cannot handle with the order preserving
2914 code (refs_not_supported) or prune them from mem_refs. */
2915 auto_vec<seq_entry> unord_refs;
2916 EXECUTE_IF_SET_IN_BITMAP (refs_not_supported, 0, i, bi)
2918 ref = memory_accesses.refs_list[i];
2919 if (!ref_indep_loop_p (loop, ref, sm_waw))
2920 bitmap_clear_bit (mem_refs, i);
2921 /* We've now verified store order for ref with respect to all other
2922 stores in the loop does not matter. */
2923 else
2924 unord_refs.safe_push (seq_entry (i, sm_unord));
2927 hash_map<im_mem_ref *, sm_aux *> aux_map;
2929 /* Execute SM but delay the store materialization for ordered
2930 sequences on exit. */
2931 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2933 ref = memory_accesses.refs_list[i];
2934 execute_sm (loop, ref, aux_map, bitmap_bit_p (refs_not_supported, i),
2935 false);
2938 /* Materialize ordered store sequences on exits. */
2939 FOR_EACH_VEC_ELT (exits, i, e)
2941 edge append_cond_position = NULL;
2942 edge last_cond_fallthru = NULL;
2943 if (i < sms.length ())
2945 gcc_assert (sms[i].first == e);
2946 execute_sm_exit (loop, e, sms[i].second, aux_map, sm_ord,
2947 append_cond_position, last_cond_fallthru);
2948 sms[i].second.release ();
2950 if (!unord_refs.is_empty ())
2951 execute_sm_exit (loop, e, unord_refs, aux_map, sm_unord,
2952 append_cond_position, last_cond_fallthru);
2953 /* Commit edge inserts here to preserve the order of stores
2954 when an exit exits multiple loops. */
2955 gsi_commit_one_edge_insert (e, NULL);
2958 for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
2959 iter != aux_map.end (); ++iter)
2960 delete (*iter).second;
2963 class ref_always_accessed
2965 public:
2966 ref_always_accessed (class loop *loop_, bool stored_p_)
2967 : loop (loop_), stored_p (stored_p_) {}
2968 bool operator () (mem_ref_loc *loc);
2969 class loop *loop;
2970 bool stored_p;
2973 bool
2974 ref_always_accessed::operator () (mem_ref_loc *loc)
2976 class loop *must_exec;
2978 struct lim_aux_data *lim_data = get_lim_data (loc->stmt);
2979 if (!lim_data)
2980 return false;
2982 /* If we require an always executed store make sure the statement
2983 is a store. */
2984 if (stored_p)
2986 tree lhs = gimple_get_lhs (loc->stmt);
2987 if (!lhs
2988 || !(DECL_P (lhs) || REFERENCE_CLASS_P (lhs)))
2989 return false;
2992 must_exec = lim_data->always_executed_in;
2993 if (!must_exec)
2994 return false;
2996 if (must_exec == loop
2997 || flow_loop_nested_p (must_exec, loop))
2998 return true;
3000 return false;
3003 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
3004 make sure REF is always stored to in LOOP. */
3006 static bool
3007 ref_always_accessed_p (class loop *loop, im_mem_ref *ref, bool stored_p)
3009 return for_all_locs_in_loop (loop, ref,
3010 ref_always_accessed (loop, stored_p));
3013 /* Returns true if REF1 and REF2 are independent. */
3015 static bool
3016 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2, bool tbaa_p)
3018 if (ref1 == ref2)
3019 return true;
3021 if (dump_file && (dump_flags & TDF_DETAILS))
3022 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
3023 ref1->id, ref2->id);
3025 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache, tbaa_p))
3027 if (dump_file && (dump_flags & TDF_DETAILS))
3028 fprintf (dump_file, "dependent.\n");
3029 return false;
3031 else
3033 if (dump_file && (dump_flags & TDF_DETAILS))
3034 fprintf (dump_file, "independent.\n");
3035 return true;
3039 /* Returns true if REF is independent on all other accessess in LOOP.
3040 KIND specifies the kind of dependence to consider.
3041 lim_raw assumes REF is not stored in LOOP and disambiguates RAW
3042 dependences so if true REF can be hoisted out of LOOP
3043 sm_war disambiguates a store REF against all other loads to see
3044 whether the store can be sunk across loads out of LOOP
3045 sm_waw disambiguates a store REF against all other stores to see
3046 whether the store can be sunk across stores out of LOOP. */
3048 static bool
3049 ref_indep_loop_p (class loop *loop, im_mem_ref *ref, dep_kind kind)
3051 bool indep_p = true;
3052 bitmap refs_to_check;
3054 if (kind == sm_war)
3055 refs_to_check = &memory_accesses.refs_loaded_in_loop[loop->num];
3056 else
3057 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
3059 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID)
3060 || ref->mem.ref == error_mark_node)
3061 indep_p = false;
3062 else
3064 /* tri-state, { unknown, independent, dependent } */
3065 dep_state state = query_loop_dependence (loop, ref, kind);
3066 if (state != dep_unknown)
3067 return state == dep_independent ? true : false;
3069 class loop *inner = loop->inner;
3070 while (inner)
3072 if (!ref_indep_loop_p (inner, ref, kind))
3074 indep_p = false;
3075 break;
3077 inner = inner->next;
3080 if (indep_p)
3082 unsigned i;
3083 bitmap_iterator bi;
3084 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
3086 im_mem_ref *aref = memory_accesses.refs_list[i];
3087 if (aref->mem.ref == error_mark_node)
3089 gimple *stmt = aref->accesses_in_loop[0].stmt;
3090 if ((kind == sm_war
3091 && ref_maybe_used_by_stmt_p (stmt, &ref->mem,
3092 kind != sm_waw))
3093 || stmt_may_clobber_ref_p_1 (stmt, &ref->mem,
3094 kind != sm_waw))
3096 indep_p = false;
3097 break;
3100 else if (!refs_independent_p (ref, aref, kind != sm_waw))
3102 indep_p = false;
3103 break;
3109 if (dump_file && (dump_flags & TDF_DETAILS))
3110 fprintf (dump_file, "Querying %s dependencies of ref %u in loop %d: %s\n",
3111 kind == lim_raw ? "RAW" : (kind == sm_war ? "SM WAR" : "SM WAW"),
3112 ref->id, loop->num, indep_p ? "independent" : "dependent");
3114 /* Record the computed result in the cache. */
3115 record_loop_dependence (loop, ref, kind,
3116 indep_p ? dep_independent : dep_dependent);
3118 return indep_p;
3121 class ref_in_loop_hot_body
3123 public:
3124 ref_in_loop_hot_body (class loop *loop_) : l (loop_) {}
3125 bool operator () (mem_ref_loc *loc);
3126 class loop *l;
3129 /* Check the coldest loop between loop L and innermost loop. If there is one
3130 cold loop between L and INNER_LOOP, store motion can be performed, otherwise
3131 no cold loop means no store motion. get_coldest_out_loop also handles cases
3132 when l is inner_loop. */
3133 bool
3134 ref_in_loop_hot_body::operator () (mem_ref_loc *loc)
3136 basic_block curr_bb = gimple_bb (loc->stmt);
3137 class loop *inner_loop = curr_bb->loop_father;
3138 return get_coldest_out_loop (l, inner_loop, curr_bb);
3142 /* Returns true if we can perform store motion of REF from LOOP. */
3144 static bool
3145 can_sm_ref_p (class loop *loop, im_mem_ref *ref)
3147 tree base;
3149 /* Can't hoist unanalyzable refs. */
3150 if (!MEM_ANALYZABLE (ref))
3151 return false;
3153 /* Can't hoist/sink aggregate copies. */
3154 if (ref->mem.ref == error_mark_node)
3155 return false;
3157 /* It should be movable. */
3158 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
3159 || TREE_THIS_VOLATILE (ref->mem.ref)
3160 || !for_each_index (&ref->mem.ref, may_move_till, loop))
3161 return false;
3163 /* If it can throw fail, we do not properly update EH info. */
3164 if (tree_could_throw_p (ref->mem.ref))
3165 return false;
3167 /* If it can trap, it must be always executed in LOOP.
3168 Readonly memory locations may trap when storing to them, but
3169 tree_could_trap_p is a predicate for rvalues, so check that
3170 explicitly. */
3171 base = get_base_address (ref->mem.ref);
3172 if ((tree_could_trap_p (ref->mem.ref)
3173 || (DECL_P (base) && TREE_READONLY (base)))
3174 /* ??? We can at least use false here, allowing loads? We
3175 are forcing conditional stores if the ref is not always
3176 stored to later anyway. So this would only guard
3177 the load we need to emit. Thus when the ref is not
3178 loaded we can elide this completely? */
3179 && !ref_always_accessed_p (loop, ref, true))
3180 return false;
3182 /* Verify all loads of ref can be hoisted. */
3183 if (ref->loaded
3184 && bitmap_bit_p (ref->loaded, loop->num)
3185 && !ref_indep_loop_p (loop, ref, lim_raw))
3186 return false;
3188 /* Verify the candidate can be disambiguated against all loads,
3189 that is, we can elide all in-loop stores. Disambiguation
3190 against stores is done later when we cannot guarantee preserving
3191 the order of stores. */
3192 if (!ref_indep_loop_p (loop, ref, sm_war))
3193 return false;
3195 /* Verify whether the candidate is hot for LOOP. Only do store motion if the
3196 candidate's profile count is hot. Statement in cold BB shouldn't be moved
3197 out of it's loop_father. */
3198 if (!for_all_locs_in_loop (loop, ref, ref_in_loop_hot_body (loop)))
3199 return false;
3201 return true;
3204 /* Marks the references in LOOP for that store motion should be performed
3205 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
3206 motion was performed in one of the outer loops. */
3208 static void
3209 find_refs_for_sm (class loop *loop, bitmap sm_executed, bitmap refs_to_sm)
3211 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
3212 unsigned i;
3213 bitmap_iterator bi;
3214 im_mem_ref *ref;
3216 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
3218 ref = memory_accesses.refs_list[i];
3219 if (can_sm_ref_p (loop, ref) && dbg_cnt (lim))
3220 bitmap_set_bit (refs_to_sm, i);
3224 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
3225 for a store motion optimization (i.e. whether we can insert statement
3226 on its exits). */
3228 static bool
3229 loop_suitable_for_sm (class loop *loop ATTRIBUTE_UNUSED,
3230 const vec<edge> &exits)
3232 unsigned i;
3233 edge ex;
3235 FOR_EACH_VEC_ELT (exits, i, ex)
3236 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
3237 return false;
3239 return true;
3242 /* Try to perform store motion for all memory references modified inside
3243 LOOP. SM_EXECUTED is the bitmap of the memory references for that
3244 store motion was executed in one of the outer loops. */
3246 static void
3247 store_motion_loop (class loop *loop, bitmap sm_executed)
3249 auto_vec<edge> exits = get_loop_exit_edges (loop);
3250 class loop *subloop;
3251 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
3253 if (loop_suitable_for_sm (loop, exits))
3255 find_refs_for_sm (loop, sm_executed, sm_in_loop);
3256 if (!bitmap_empty_p (sm_in_loop))
3257 hoist_memory_references (loop, sm_in_loop, exits);
3260 bitmap_ior_into (sm_executed, sm_in_loop);
3261 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
3262 store_motion_loop (subloop, sm_executed);
3263 bitmap_and_compl_into (sm_executed, sm_in_loop);
3264 BITMAP_FREE (sm_in_loop);
3267 /* Try to perform store motion for all memory references modified inside
3268 loops. */
3270 static void
3271 do_store_motion (void)
3273 class loop *loop;
3274 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
3276 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
3277 store_motion_loop (loop, sm_executed);
3279 BITMAP_FREE (sm_executed);
3282 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
3283 for each such basic block bb records the outermost loop for that execution
3284 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
3285 blocks that contain a nonpure call. */
3287 static void
3288 fill_always_executed_in_1 (class loop *loop, sbitmap contains_call)
3290 basic_block bb = NULL, last = NULL;
3291 edge e;
3292 class loop *inn_loop = loop;
3294 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
3296 auto_vec<basic_block, 64> worklist;
3297 worklist.reserve_exact (loop->num_nodes);
3298 worklist.quick_push (loop->header);
3301 edge_iterator ei;
3302 bb = worklist.pop ();
3304 if (!flow_bb_inside_loop_p (inn_loop, bb))
3306 /* When we are leaving a possibly infinite inner loop
3307 we have to stop processing. */
3308 if (!finite_loop_p (inn_loop))
3309 break;
3310 /* If the loop was finite we can continue with processing
3311 the loop we exited to. */
3312 inn_loop = bb->loop_father;
3315 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
3316 last = bb;
3318 if (bitmap_bit_p (contains_call, bb->index))
3319 break;
3321 /* If LOOP exits from this BB stop processing. */
3322 FOR_EACH_EDGE (e, ei, bb->succs)
3323 if (!flow_bb_inside_loop_p (loop, e->dest))
3324 break;
3325 if (e)
3326 break;
3328 /* A loop might be infinite (TODO use simple loop analysis
3329 to disprove this if possible). */
3330 if (bb->flags & BB_IRREDUCIBLE_LOOP)
3331 break;
3333 if (bb->loop_father->header == bb)
3334 /* Record that we enter into a subloop since it might not
3335 be finite. */
3336 /* ??? Entering into a not always executed subloop makes
3337 fill_always_executed_in quadratic in loop depth since
3338 we walk those loops N times. This is not a problem
3339 in practice though, see PR102253 for a worst-case testcase. */
3340 inn_loop = bb->loop_father;
3342 /* Walk the body of LOOP sorted by dominance relation. Additionally,
3343 if a basic block S dominates the latch, then only blocks dominated
3344 by S are after it.
3345 This is get_loop_body_in_dom_order using a worklist algorithm and
3346 stopping once we are no longer interested in visiting further
3347 blocks. */
3348 unsigned old_len = worklist.length ();
3349 unsigned postpone = 0;
3350 for (basic_block son = first_dom_son (CDI_DOMINATORS, bb);
3351 son;
3352 son = next_dom_son (CDI_DOMINATORS, son))
3354 if (!flow_bb_inside_loop_p (loop, son))
3355 continue;
3356 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
3357 postpone = worklist.length ();
3358 worklist.quick_push (son);
3360 if (postpone)
3361 /* Postponing the block that dominates the latch means
3362 processing it last and thus putting it earliest in the
3363 worklist. */
3364 std::swap (worklist[old_len], worklist[postpone]);
3366 while (!worklist.is_empty ());
3368 while (1)
3370 if (dump_enabled_p ())
3371 dump_printf (MSG_NOTE, "BB %d is always executed in loop %d\n",
3372 last->index, loop->num);
3373 SET_ALWAYS_EXECUTED_IN (last, loop);
3374 if (last == loop->header)
3375 break;
3376 last = get_immediate_dominator (CDI_DOMINATORS, last);
3380 for (loop = loop->inner; loop; loop = loop->next)
3381 fill_always_executed_in_1 (loop, contains_call);
3384 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
3385 for each such basic block bb records the outermost loop for that execution
3386 of its header implies execution of bb. */
3388 static void
3389 fill_always_executed_in (void)
3391 basic_block bb;
3392 class loop *loop;
3394 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
3395 bitmap_clear (contains_call);
3396 FOR_EACH_BB_FN (bb, cfun)
3398 gimple_stmt_iterator gsi;
3399 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3401 if (nonpure_call_p (gsi_stmt (gsi)))
3402 break;
3405 if (!gsi_end_p (gsi))
3406 bitmap_set_bit (contains_call, bb->index);
3409 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
3410 fill_always_executed_in_1 (loop, contains_call);
3413 /* Find the coldest loop preheader for LOOP, also find the nearest hotter loop
3414 to LOOP. Then recursively iterate each inner loop. */
3416 void
3417 fill_coldest_and_hotter_out_loop (class loop *coldest_loop,
3418 class loop *hotter_loop, class loop *loop)
3420 if (bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
3421 coldest_loop))
3422 coldest_loop = loop;
3424 coldest_outermost_loop[loop->num] = coldest_loop;
3426 hotter_than_inner_loop[loop->num] = NULL;
3427 class loop *outer_loop = loop_outer (loop);
3428 if (hotter_loop
3429 && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
3430 hotter_loop))
3431 hotter_than_inner_loop[loop->num] = hotter_loop;
3433 if (outer_loop && outer_loop != current_loops->tree_root
3434 && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
3435 outer_loop))
3436 hotter_than_inner_loop[loop->num] = outer_loop;
3438 if (dump_enabled_p ())
3440 dump_printf (MSG_NOTE, "loop %d's coldest_outermost_loop is %d, ",
3441 loop->num, coldest_loop->num);
3442 if (hotter_than_inner_loop[loop->num])
3443 dump_printf (MSG_NOTE, "hotter_than_inner_loop is %d\n",
3444 hotter_than_inner_loop[loop->num]->num);
3445 else
3446 dump_printf (MSG_NOTE, "hotter_than_inner_loop is NULL\n");
3449 class loop *inner_loop;
3450 for (inner_loop = loop->inner; inner_loop; inner_loop = inner_loop->next)
3451 fill_coldest_and_hotter_out_loop (coldest_loop,
3452 hotter_than_inner_loop[loop->num],
3453 inner_loop);
3456 /* Compute the global information needed by the loop invariant motion pass. */
3458 static void
3459 tree_ssa_lim_initialize (bool store_motion)
3461 unsigned i;
3463 bitmap_obstack_initialize (&lim_bitmap_obstack);
3464 gcc_obstack_init (&mem_ref_obstack);
3465 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
3467 if (flag_tm)
3468 compute_transaction_bits ();
3470 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
3471 memory_accesses.refs_list.create (100);
3472 /* Allocate a special, unanalyzable mem-ref with ID zero. */
3473 memory_accesses.refs_list.quick_push
3474 (mem_ref_alloc (NULL, 0, UNANALYZABLE_MEM_ID));
3476 memory_accesses.refs_loaded_in_loop.create (number_of_loops (cfun));
3477 memory_accesses.refs_loaded_in_loop.quick_grow (number_of_loops (cfun));
3478 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
3479 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
3480 if (store_motion)
3482 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
3483 memory_accesses.all_refs_stored_in_loop.quick_grow
3484 (number_of_loops (cfun));
3487 for (i = 0; i < number_of_loops (cfun); i++)
3489 bitmap_initialize (&memory_accesses.refs_loaded_in_loop[i],
3490 &lim_bitmap_obstack);
3491 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
3492 &lim_bitmap_obstack);
3493 if (store_motion)
3494 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
3495 &lim_bitmap_obstack);
3498 memory_accesses.ttae_cache = NULL;
3500 /* Initialize bb_loop_postorder with a mapping from loop->num to
3501 its postorder index. */
3502 i = 0;
3503 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
3504 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
3505 bb_loop_postorder[loop->num] = i++;
3508 /* Cleans up after the invariant motion pass. */
3510 static void
3511 tree_ssa_lim_finalize (void)
3513 basic_block bb;
3514 unsigned i;
3515 im_mem_ref *ref;
3517 FOR_EACH_BB_FN (bb, cfun)
3518 SET_ALWAYS_EXECUTED_IN (bb, NULL);
3520 bitmap_obstack_release (&lim_bitmap_obstack);
3521 delete lim_aux_data_map;
3523 delete memory_accesses.refs;
3524 memory_accesses.refs = NULL;
3526 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
3527 memref_free (ref);
3528 memory_accesses.refs_list.release ();
3529 obstack_free (&mem_ref_obstack, NULL);
3531 memory_accesses.refs_loaded_in_loop.release ();
3532 memory_accesses.refs_stored_in_loop.release ();
3533 memory_accesses.all_refs_stored_in_loop.release ();
3535 if (memory_accesses.ttae_cache)
3536 free_affine_expand_cache (&memory_accesses.ttae_cache);
3538 free (bb_loop_postorder);
3540 coldest_outermost_loop.release ();
3541 hotter_than_inner_loop.release ();
3544 /* Moves invariants from loops. Only "expensive" invariants are moved out --
3545 i.e. those that are likely to be win regardless of the register pressure.
3546 Only perform store motion if STORE_MOTION is true. */
3548 unsigned int
3549 loop_invariant_motion_in_fun (function *fun, bool store_motion)
3551 unsigned int todo = 0;
3553 tree_ssa_lim_initialize (store_motion);
3555 mark_ssa_maybe_undefs ();
3557 /* Gathers information about memory accesses in the loops. */
3558 analyze_memory_references (store_motion);
3560 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
3561 fill_always_executed_in ();
3563 /* Pre-compute coldest outermost loop and nearest hotter loop of each loop.
3565 class loop *loop;
3566 coldest_outermost_loop.create (number_of_loops (cfun));
3567 coldest_outermost_loop.safe_grow_cleared (number_of_loops (cfun));
3568 hotter_than_inner_loop.create (number_of_loops (cfun));
3569 hotter_than_inner_loop.safe_grow_cleared (number_of_loops (cfun));
3570 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
3571 fill_coldest_and_hotter_out_loop (loop, NULL, loop);
3573 int *rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
3574 int n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3576 /* For each statement determine the outermost loop in that it is
3577 invariant and cost for computing the invariant. */
3578 for (int i = 0; i < n; ++i)
3579 compute_invariantness (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
3581 /* Execute store motion. Force the necessary invariants to be moved
3582 out of the loops as well. */
3583 if (store_motion)
3584 do_store_motion ();
3586 free (rpo);
3587 rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
3588 n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3590 /* Move the expressions that are expensive enough. */
3591 for (int i = 0; i < n; ++i)
3592 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
3594 free (rpo);
3596 gsi_commit_edge_inserts ();
3597 if (need_ssa_update_p (fun))
3598 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3600 tree_ssa_lim_finalize ();
3602 return todo;
3605 /* Loop invariant motion pass. */
3607 namespace {
3609 const pass_data pass_data_lim =
3611 GIMPLE_PASS, /* type */
3612 "lim", /* name */
3613 OPTGROUP_LOOP, /* optinfo_flags */
3614 TV_LIM, /* tv_id */
3615 PROP_cfg, /* properties_required */
3616 0, /* properties_provided */
3617 0, /* properties_destroyed */
3618 0, /* todo_flags_start */
3619 0, /* todo_flags_finish */
3622 class pass_lim : public gimple_opt_pass
3624 public:
3625 pass_lim (gcc::context *ctxt)
3626 : gimple_opt_pass (pass_data_lim, ctxt)
3629 /* opt_pass methods: */
3630 opt_pass * clone () final override { return new pass_lim (m_ctxt); }
3631 bool gate (function *) final override { return flag_tree_loop_im != 0; }
3632 unsigned int execute (function *) final override;
3634 }; // class pass_lim
3636 unsigned int
3637 pass_lim::execute (function *fun)
3639 bool in_loop_pipeline = scev_initialized_p ();
3640 if (!in_loop_pipeline)
3641 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
3643 if (number_of_loops (fun) <= 1)
3644 return 0;
3645 unsigned int todo = loop_invariant_motion_in_fun (fun, flag_move_loop_stores);
3647 if (!in_loop_pipeline)
3648 loop_optimizer_finalize ();
3649 else
3650 scev_reset ();
3651 return todo;
3654 } // anon namespace
3656 gimple_opt_pass *
3657 make_pass_lim (gcc::context *ctxt)
3659 return new pass_lim (ctxt);