* config/alpha/alpha.md, config/arm/arm.c, config/arm/arm.h,
[official-gcc.git] / gcc / config / s390 / s390.h
blobc4fd6fb7f2bbf0616d5f72f3e5ebe311e9fb1306
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4 Ulrich Weigand (uweigand@de.ibm.com).
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #ifndef _S390_H
23 #define _S390_H
25 #define TARGET_VERSION fprintf (stderr, " (S/390)");
27 extern int flag_pic;
29 /* Run-time compilation parameters selecting different hardware subsets. */
31 extern int target_flags;
33 /* Target macros checked at runtime of compiler. */
35 #define TARGET_HARD_FLOAT (target_flags & 1)
36 #define TARGET_BACKCHAIN (target_flags & 2)
37 #define TARGET_SMALL_EXEC (target_flags & 4)
38 #define TARGET_DEBUG_ARG (target_flags & 8)
39 #define TARGET_64BIT (target_flags & 16)
40 #define TARGET_MVCLE (target_flags & 32)
42 #define TARGET_DEFAULT 0x3
43 #define TARGET_SOFT_FLOAT (!(target_flags & 1))
45 /* Macro to define tables used to set the flags. This is a list in braces
46 of pairs in braces, each pair being { "NAME", VALUE }
47 where VALUE is the bits to set or minus the bits to clear.
48 An empty string NAME is used to identify the default VALUE. */
50 #define TARGET_SWITCHES \
51 { { "hard-float", 1, N_("Use hardware fp")}, \
52 { "soft-float", -1, N_("Don't use hardware fp")}, \
53 { "backchain", 2, N_("Set backchain")}, \
54 { "no-backchain", -2, N_("Don't set backchain (faster, but debug harder")}, \
55 { "small-exec", 4, N_("Use bras for execucable < 64k")}, \
56 { "no-small-exec",-4, N_("Don't use bras")}, \
57 { "debug", 8, N_("Additional debug prints")}, \
58 { "no-debug", -8, N_("Don't print additional debug prints")}, \
59 { "64", 16, N_("64 bit mode")}, \
60 { "31", -16, N_("31 bit mode")}, \
61 { "mvcle", 32, N_("mvcle use")}, \
62 { "no-mvcle", -32, N_("mvc&ex")}, \
63 { "", TARGET_DEFAULT, 0 } }
65 /* Define this to change the optimizations performed by default. */
66 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
68 /* Defines for REAL_ARITHMETIC. */
69 #define IEEE_FLOAT 1
70 #define TARGET_IBM_FLOAT 0
71 #define TARGET_IEEE_FLOAT 1
73 /* The current function count for create unique internal labels. */
75 extern int s390_function_count;
77 /* The amount of space used for outgoing arguments. */
79 extern int current_function_outgoing_args_size;
81 /* Target machine storage layout. */
83 /* Define this if most significant bit is lowest numbered in instructions
84 that operate on numbered bit-fields. */
86 #define BITS_BIG_ENDIAN 1
88 /* Define this if most significant byte of a word is the lowest numbered. */
90 #define BYTES_BIG_ENDIAN 1
92 /* Define this if MS word of a multiword is the lowest numbered. */
94 #define WORDS_BIG_ENDIAN 1
96 /* Number of bits in an addressable storage unit. */
98 #define BITS_PER_UNIT 8
100 /* Width in bits of a "word", which is the contents of a machine register. */
102 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
103 #define MAX_BITS_PER_WORD 64
105 /* Width of a word, in units (bytes). */
107 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
108 #define MIN_UNITS_PER_WORD 4
110 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */
112 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
114 /* A C expression for the size in bits of the type `short' on the
115 target machine. If you don't define this, the default is half a
116 word. (If this would be less than one storage unit, it is
117 rounded up to one unit.) */
118 #define SHORT_TYPE_SIZE 16
120 /* A C expression for the size in bits of the type `int' on the
121 target machine. If you don't define this, the default is one
122 word. */
123 #define INT_TYPE_SIZE 32
125 /* A C expression for the size in bits of the type `long' on the
126 target machine. If you don't define this, the default is one
127 word. */
128 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
129 #define MAX_LONG_TYPE_SIZE 64
131 /* A C expression for the size in bits of the type `long long' on the
132 target machine. If you don't define this, the default is two
133 words. */
134 #define LONG_LONG_TYPE_SIZE 64
136 /* Right now we only support two floating point formats, the
137 32 and 64 bit ieee formats. */
139 #define FLOAT_TYPE_SIZE 32
140 #define DOUBLE_TYPE_SIZE 64
141 #define LONG_DOUBLE_TYPE_SIZE 64
143 /* Define this macro if it is advisable to hold scalars in registers
144 in a wider mode than that declared by the program. In such cases,
145 the value is constrained to be within the bounds of the declared
146 type, but kept valid in the wider mode. The signedness of the
147 extension may differ from that of the type. */
149 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
150 if (INTEGRAL_MODE_P (MODE) && \
151 GET_MODE_SIZE (MODE) < UNITS_PER_WORD) { \
152 (MODE) = Pmode; \
155 /* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
156 extensions applied to char/short functions arguments. Defining
157 PROMOTE_FUNCTION_RETURN does the same for function returns. */
159 #define PROMOTE_FUNCTION_ARGS
160 #define PROMOTE_FUNCTION_RETURN
161 #define PROMOTE_FOR_CALL_ONLY
163 /* Allocation boundary (in *bits*) for storing pointers in memory. */
165 #define POINTER_BOUNDARY 32
167 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
169 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
171 /* Boundary (in *bits*) on which stack pointer should be aligned. */
173 #define STACK_BOUNDARY 64
175 /* Allocation boundary (in *bits*) for the code of a function. */
177 #define FUNCTION_BOUNDARY 32
179 /* There is no point aligning anything to a rounder boundary than this. */
181 #define BIGGEST_ALIGNMENT 64
183 /* Alignment of field after `int : 0' in a structure. */
185 #define EMPTY_FIELD_BOUNDARY 32
187 /* Alignment on even addresses for LARL instruction. */
189 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
191 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
193 /* Define this if move instructions will actually fail to work when given
194 unaligned data. */
196 #define STRICT_ALIGNMENT 0
198 /* real arithmetic */
200 #define REAL_ARITHMETIC
202 /* Define target floating point format. */
204 #undef TARGET_FLOAT_FORMAT
205 #ifdef IEEE_FLOAT
206 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
207 #else
208 #define TARGET_FLOAT_FORMAT IBM_FLOAT_FORMAT
209 #endif
211 /* Define if special allocation order desired. */
213 #define REG_ALLOC_ORDER \
214 { 1, 2, 3, 4, 5, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, \
215 16, 17, 18, 19, 20, 21, 22, 23, \
216 24, 25, 26, 27, 28, 29, 30, 31, \
217 15, 32, 33 }
219 /* Standard register usage. */
221 #define INT_REGNO_P(N) ( (int)(N) >= 0 && (N) < 16 )
222 #ifdef IEEE_FLOAT
223 #define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 32 )
224 #else
225 #define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 20 )
226 #endif
227 #define CC_REGNO_P(N) ( (N) == 33 )
229 /* Number of actual hardware registers. The hardware registers are
230 assigned numbers for the compiler from 0 to just below
231 FIRST_PSEUDO_REGISTER.
232 All registers that the compiler knows about must be given numbers,
233 even those that are not normally considered general registers.
234 For the 390, we give the data registers numbers 0-15,
235 and the floating point registers numbers 16-19.
236 G5 and following have 16 IEEE floating point register,
237 which get numbers 16-31. */
239 #define FIRST_PSEUDO_REGISTER 34
241 /* The following register have a fix usage
242 GPR 12: GOT register points to the GOT, setup in prologue,
243 GOT contains pointer to variables in shared libraries
244 GPR 13: Base register setup in prologue to point to the
245 literal table of each function
246 GPR 14: Return registers holds the return address
247 GPR 15: Stack pointer */
249 #define PIC_OFFSET_TABLE_REGNUM 12
250 #define BASE_REGISTER 13
251 #define RETURN_REGNUM 14
252 #define STACK_POINTER_REGNUM 15
254 #define FIXED_REGISTERS \
255 { 0, 0, 0, 0, \
256 0, 0, 0, 0, \
257 0, 0, 0, 0, \
258 0, 1, 1, 1, \
259 0, 0, 0, 0, \
260 0, 0, 0, 0, \
261 0, 0, 0, 0, \
262 0, 0, 0, 0, \
263 1, 1 }
265 /* 1 for registers not available across function calls. These must include
266 the FIXED_REGISTERS and also any registers that can be used without being
267 saved.
268 The latter must include the registers where values are returned
269 and the register where structure-value addresses are passed. */
271 #define CALL_USED_REGISTERS \
272 { 1, 1, 1, 1, \
273 1, 1, 0, 0, \
274 0, 0, 0, 0, \
275 0, 1, 1, 1, \
276 1, 1, 0, 0, \
277 1, 1, 1, 1, \
278 1, 1, 1, 1, \
279 1, 1, 1, 1, \
280 1, 1 }
282 /* If not pic code, gpr 12 can be used. */
284 #define CONDITIONAL_REGISTER_USAGE \
285 do \
287 if (flag_pic) \
289 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
290 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
292 } while (0)
294 /* The following register have a special usage
295 GPR 11: Frame pointer if needed to point to automatic variables.
296 GPR 32: In functions with more the 5 args this register
297 points to that arguments, it is always eliminated
298 with stack- or frame-pointer.
299 GPR 33: Condition code 'register' */
301 #define FRAME_POINTER_REGNUM 11
303 #define ARG_POINTER_REGNUM 32
305 #define CC_REGNUM 33
307 /* We use the register %r0 to pass the static chain to a nested function.
309 Note: It is assumed that this register is call-clobbered!
310 We can't use any of the function-argument registers either,
311 and register 1 is needed by the trampoline code, so we have
312 no other choice but using this one ... */
314 #define STATIC_CHAIN_REGNUM 0
316 /* Return number of consecutive hard regs needed starting at reg REGNO
317 to hold something of mode MODE.
318 This is ordinarily the length in words of a value of mode MODE
319 but can be less for certain modes in special long registers. */
321 #define HARD_REGNO_NREGS(REGNO, MODE) \
322 (FLOAT_REGNO_P(REGNO)? \
323 (GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
324 INT_REGNO_P(REGNO)? \
325 ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
328 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
329 The gprs can hold QI, HI, SI, SF, DF, SC and DC.
330 Even gprs can hold DI.
331 The floating point registers can hold DF, SF, DC and SC. */
333 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
334 (FLOAT_REGNO_P(REGNO)? \
335 (GET_MODE_CLASS(MODE) == MODE_FLOAT || \
336 GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT) : \
337 INT_REGNO_P(REGNO)? \
338 (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1)) : \
339 CC_REGNO_P(REGNO)? \
340 GET_MODE_CLASS (MODE) == MODE_CC : \
343 /* Value is 1 if it is a good idea to tie two pseudo registers when one has
344 mode MODE1 and one has mode MODE2.
345 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
346 for any hard reg, then this must be 0 for correct output. */
348 #define MODES_TIEABLE_P(MODE1, MODE2) \
349 (((MODE1) == SFmode || (MODE1) == DFmode) \
350 == ((MODE2) == SFmode || (MODE2) == DFmode))
353 /* Define this macro if references to a symbol must be treated
354 differently depending on something about the variable or
355 function named by the symbol (such as what section it is in).
357 On s390, if using PIC, mark a SYMBOL_REF for a non-global symbol
358 so that we may access it directly in the GOT. */
360 #define ENCODE_SECTION_INFO(DECL) \
361 do \
363 if (flag_pic) \
365 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
366 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
368 if (GET_CODE (rtl) == MEM) \
370 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
371 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
372 || ! TREE_PUBLIC (DECL)); \
376 while (0)
379 /* This is an array of structures. Each structure initializes one pair
380 of eliminable registers. The "from" register number is given first,
381 followed by "to". Eliminations of the same "from" register are listed
382 in order of preference. */
384 #define ELIMINABLE_REGS \
385 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
386 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
387 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}}
389 #define CAN_ELIMINATE(FROM, TO) (1)
391 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
392 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
393 { (OFFSET) = 0; } \
394 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
395 { (OFFSET) = s390_arg_frame_offset (); } \
396 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
397 { (OFFSET) = s390_arg_frame_offset (); } \
400 #define CAN_DEBUG_WITHOUT_FP
402 /* Value should be nonzero if functions must have frame pointers.
403 Zero means the frame pointer need not be set up (and parms may be
404 accessed via the stack pointer) in functions that seem suitable.
405 This is computed in `reload', in reload1.c. */
407 #define FRAME_POINTER_REQUIRED 0
409 /* Define the classes of registers for register constraints in the
410 machine description. Also define ranges of constants.
412 One of the classes must always be named ALL_REGS and include all hard regs.
413 If there is more than one class, another class must be named NO_REGS
414 and contain no registers.
416 The name GENERAL_REGS must be the name of a class (or an alias for
417 another name such as ALL_REGS). This is the class of registers
418 that is allowed by "g" or "r" in a register constraint.
419 Also, registers outside this class are allocated only when
420 instructions express preferences for them.
422 The classes must be numbered in nondecreasing order; that is,
423 a larger-numbered class must never be contained completely
424 in a smaller-numbered class.
426 For any two classes, it is very desirable that there be another
427 class that represents their union. */
429 /*#define SMALL_REGISTER_CLASSES 1*/
431 enum reg_class
433 NO_REGS, ADDR_REGS, GENERAL_REGS,
434 FP_REGS, ALL_REGS, LIM_REG_CLASSES
437 #define N_REG_CLASSES (int) LIM_REG_CLASSES
439 /* Give names of register classes as strings for dump file. */
441 #define REG_CLASS_NAMES \
442 { "NO_REGS","ADDR_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
444 /* Define which registers fit in which classes. This is an initializer for
445 a vector of HARD_REG_SET of length N_REG_CLASSES.
446 G5 and latter have 16 register and support IEEE floating point operations. */
448 #define REG_CLASS_CONTENTS \
450 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
451 { 0x0000fffe, 0x00000001 }, /* ADDR_REGS */ \
452 { 0x0000ffff, 0x00000001 }, /* GENERAL_REGS */ \
453 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
454 { 0xffffffff, 0x00000003 }, /* ALL_REGS */ \
458 /* The same information, inverted:
459 Return the class number of the smallest class containing
460 reg number REGNO. This could be a conditional expression
461 or could index an array. */
463 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
465 extern enum reg_class regclass_map[]; /* smalled class containing REGNO */
467 /* The class value for index registers, and the one for base regs. */
469 #define INDEX_REG_CLASS ADDR_REGS
470 #define BASE_REG_CLASS ADDR_REGS
472 /* Get reg_class from a letter such as appears in the machine description. */
474 #define REG_CLASS_FROM_LETTER(C) \
475 ((C) == 'a' ? ADDR_REGS : \
476 (C) == 'd' ? GENERAL_REGS : \
477 (C) == 'f' ? FP_REGS : NO_REGS)
479 /* The letters I, J, K, L and M in a register constraint string can be used
480 to stand for particular ranges of immediate operands.
481 This macro defines what the ranges are.
482 C is the letter, and VALUE is a constant value.
483 Return 1 if VALUE is in the range specified by C. */
485 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
486 ((C) == 'I' ? (unsigned long) (VALUE) < 256 : \
487 (C) == 'J' ? (unsigned long) (VALUE) < 4096 : \
488 (C) == 'K' ? (VALUE) >= -32768 && (VALUE) < 32768 : \
489 (C) == 'L' ? (unsigned long) (VALUE) < 65536 : 0)
491 /* Similar, but for floating constants, and defining letters G and H.
492 Here VALUE is the CONST_DOUBLE rtx itself. */
494 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
496 /* 'Q' means a memory-reference for a S-type operand. */
498 #define EXTRA_CONSTRAINT(OP, C) \
499 ((C) == 'Q' ? s_operand (OP, GET_MODE (OP)) : \
500 (C) == 'S' ? larl_operand (OP, GET_MODE (OP)) : 0)
502 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
503 return the class of reg to actually use. In general this is just CLASS;
504 but on some machines in some cases it is preferable to use a more
505 restrictive class. */
507 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
508 (GET_CODE (X) == CONST_DOUBLE ? \
509 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? FP_REGS : ADDR_REGS) :\
510 (GET_CODE (X) == CONST_INT ? \
511 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? FP_REGS : ADDR_REGS) :\
512 GET_CODE (X) == PLUS || \
513 GET_CODE (X) == LABEL_REF || \
514 GET_CODE (X) == SYMBOL_REF || \
515 GET_CODE (X) == CONST ? ADDR_REGS : (CLASS)))
517 /* Return the maximum number of consecutive registers needed to represent
518 mode MODE in a register of class CLASS. */
520 #define CLASS_MAX_NREGS(CLASS, MODE) \
521 ((CLASS) == FP_REGS ? \
522 (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
523 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
525 /* If we are copying between FP registers and anything else, we need a memory
526 location. */
528 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
529 ((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
531 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
532 because the movsi and movsf patterns don't handle r/f moves. */
534 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
535 (GET_MODE_BITSIZE (MODE) < 32 \
536 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
537 : MODE)
540 /* A C expression whose value is nonzero if pseudos that have been
541 assigned to registers of class CLASS would likely be spilled
542 because registers of CLASS are needed for spill registers.
544 The default value of this macro returns 1 if CLASS has exactly one
545 register and zero otherwise. On most machines, this default
546 should be used. Only define this macro to some other expression
547 if pseudo allocated by `local-alloc.c' end up in memory because
548 their hard registers were needed for spill registers. If this
549 macro returns nonzero for those classes, those pseudos will only
550 be allocated by `global.c', which knows how to reallocate the
551 pseudo to another register. If there would not be another
552 register available for reallocation, you should not change the
553 definition of this macro since the only effect of such a
554 definition would be to slow down register allocation. */
556 /* Stack layout; function entry, exit and calling. */
558 /* The current return address is on Offset 56 of the current frame
559 if we are in an leaf_function. Otherwise we have to go one stack
560 back.
561 The return address of anything farther back is accessed normally
562 at an offset of 56 from the frame pointer.
564 FIXME: builtin_return_addr does not work correctly in a leaf
565 function, we need to find way to find out, if we
566 are in a leaf function
569 #define _RETURN_ADDR_OFFSET (TARGET_64BIT ? 112 : 56)
571 #define RETURN_ADDR_RTX(count, frame) \
572 gen_rtx (MEM, Pmode, \
573 memory_address (Pmode, \
574 plus_constant ( \
575 copy_to_reg (gen_rtx (MEM, Pmode, \
576 memory_address (Pmode, frame))), \
577 _RETURN_ADDR_OFFSET)));
579 /* The following macros will turn on dwarf2 exception hndling
580 Other code location for this exception handling are
581 in s390.md (eh_return insn) and in linux.c in the prologue. */
583 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
585 /* We have 31 bit mode. */
587 #define MASK_RETURN_ADDR (GEN_INT (0x7fffffff))
589 /* Location, from where return address to load. */
591 #define DWARF_FRAME_RETURN_COLUMN 14
593 /* Describe how we implement __builtin_eh_return. */
594 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
595 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
596 #define EH_RETURN_HANDLER_RTX \
597 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, \
598 TARGET_64BIT? -48 : -40))
600 /* Define this if pushing a word on the stack makes the stack pointer a
601 smaller address. */
603 #define STACK_GROWS_DOWNWARD
605 /* Define this if the nominal address of the stack frame is at the
606 high-address end of the local variables; that is, each additional local
607 variable allocated goes at a more negative offset in the frame. */
609 /* #define FRAME_GROWS_DOWNWARD */
611 /* Offset from stack-pointer to first location of outgoing args. */
613 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
615 /* Offset within stack frame to start allocating local variables at.
616 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
617 first local allocated. Otherwise, it is the offset to the BEGINNING
618 of the first local allocated. */
620 #define STARTING_FRAME_OFFSET \
621 (STACK_POINTER_OFFSET + current_function_outgoing_args_size)
623 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
625 /* If we generate an insn to push BYTES bytes, this says how many the stack
626 pointer really advances by. On S/390, we have no push instruction. */
628 /* #define PUSH_ROUNDING(BYTES) */
630 /* Accumulate the outgoing argument count so we can request the right
631 DSA size and determine stack offset. */
633 #define ACCUMULATE_OUTGOING_ARGS 1
635 /* Offset from the stack pointer register to an item dynamically
636 allocated on the stack, e.g., by `alloca'.
638 The default value for this macro is `STACK_POINTER_OFFSET' plus the
639 length of the outgoing arguments. The default is correct for most
640 machines. See `function.c' for details. */
641 #define STACK_DYNAMIC_OFFSET(FUNDECL) (STARTING_FRAME_OFFSET)
643 /* Offset of first parameter from the argument pointer register value.
644 On the S/390, we define the argument pointer to the start of the fixed
645 area. */
646 #define FIRST_PARM_OFFSET(FNDECL) 0
648 /* Define this if stack space is still allocated for a parameter passed
649 in a register. The value is the number of bytes allocated to this
650 area. */
651 /* #define REG_PARM_STACK_SPACE(FNDECL) 32 */
653 /* Define this if the above stack space is to be considered part of the
654 space allocated by the caller. */
655 /* #define OUTGOING_REG_PARM_STACK_SPACE */
657 /* 1 if N is a possible register number for function argument passing.
658 On S390, general registers 2 - 6 and floating point register 0 and 2
659 are used in this way. */
661 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
662 (N) == 16 || (N) == 17)
664 /* Define a data type for recording info about an argument list during
665 the scan of that argument list. This data type should hold all
666 necessary information about the function itself and about the args
667 processed so far, enough to enable macros such as FUNCTION_ARG to
668 determine where the next arg should go. */
670 typedef struct s390_arg_structure
672 int gprs; /* gpr so far */
673 int fprs; /* fpr so far */
675 CUMULATIVE_ARGS;
678 /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to
679 a function whose data type is FNTYPE.
680 For a library call, FNTYPE is 0. */
682 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN) \
683 ((CUM).gprs=0, (CUM).fprs=0)
685 /* Update the data in CUM to advance over an argument of mode MODE and
686 data type TYPE. (TYPE is null for libcalls where that information
687 may not be available.) */
689 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
690 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
692 /* Define where to put the arguments to a function. Value is zero to push
693 the argument on the stack, or a hard register in which to store the
694 argument. */
696 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
697 s390_function_arg (&CUM, MODE, TYPE, NAMED)
699 /* Define where to expect the arguments of a function. Value is zero, if
700 the argument is on the stack, or a hard register in which the argument
701 is stored. It is the same like FUNCTION_ARG, except for unnamed args
702 That means, that all in case of varargs used, the arguments are expected
703 from the stack.
704 S/390 has already space on the stack for args coming in registers,
705 they are pushed in prologue, if needed. */
708 /* Define the `__builtin_va_list' type. */
710 #define BUILD_VA_LIST_TYPE(VALIST) \
711 (VALIST) = s390_build_va_list ()
713 /* Implement `va_start' for varargs and stdarg. */
715 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
716 s390_va_start (stdarg, valist, nextarg)
718 /* Implement `va_arg'. */
720 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
721 s390_va_arg (valist, type)
723 /* For an arg passed partly in registers and partly in memory, this is the
724 number of registers used. For args passed entirely in registers or
725 entirely in memory, zero. */
727 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
730 /* Define if returning from a function call automatically pops the
731 arguments described by the number-of-args field in the call. */
733 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
736 /* Define how to find the value returned by a function. VALTYPE is the
737 data type of the value (as a tree).
738 If the precise function being called is known, FUNC is its FUNCTION_DECL;
739 otherwise, FUNC is 15. */
741 #define RET_REG(MODE) ((GET_MODE_CLASS (MODE) == MODE_INT \
742 || TARGET_SOFT_FLOAT ) ? 2 : 16)
745 /* for structs the address is passed, and the Callee makes a
746 copy, only if needed */
748 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
749 s390_function_arg_pass_by_reference (MODE, TYPE)
752 /* Register 2 (and 3) for integral values
753 or floating point register 0 (and 2) for fp values are used. */
755 #define FUNCTION_VALUE(VALTYPE, FUNC) \
756 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
757 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
758 || POINTER_TYPE_P (VALTYPE) \
759 ? word_mode : TYPE_MODE (VALTYPE), \
760 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 16 : 2)
762 /* Define how to find the value returned by a library function assuming
763 the value has mode MODE. */
765 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RET_REG (MODE))
767 /* 1 if N is a possible register number for a function value. */
769 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
771 /* The definition of this macro implies that there are cases where
772 a scalar value cannot be returned in registers. */
774 #define RETURN_IN_MEMORY(type) \
775 (TYPE_MODE (type) == BLKmode || \
776 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_INT || \
777 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT)
779 /* Mode of stack savearea.
780 FUNCTION is VOIDmode because calling convention maintains SP.
781 BLOCK needs Pmode for SP.
782 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
784 #define STACK_SAVEAREA_MODE(LEVEL) \
785 (LEVEL == SAVE_FUNCTION ? VOIDmode \
786 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
788 /* Structure value address is passed as invisible first argument (gpr 2). */
790 #define STRUCT_VALUE 0
792 /* This macro definition sets up a default value for `main' to return. */
794 #define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node)
796 /* Length in units of the trampoline for entering a nested function. */
798 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 36 : 20)
800 /* Initialize the dynamic part of trampoline. */
802 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
803 s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
805 /* Template for constant part of trampoline. */
807 #define TRAMPOLINE_TEMPLATE(FILE) \
808 s390_trampoline_template (FILE)
810 /* Output assembler code to FILE to increment profiler label # LABELNO
811 for profiling a function entry. */
813 #define FUNCTION_PROFILER(FILE, LABELNO) \
814 do { \
815 extern rtx s390_profile[]; \
816 extern int s390_pool_count; \
817 static char label[128]; \
818 fprintf (FILE, "# function profiler \n"); \
819 if (TARGET_64BIT) \
821 rtx tmp[1]; \
822 output_asm_insn ("stg\t14,8(15)", tmp); \
823 sprintf (label, "%sP%d", LPREFIX, LABELNO); \
824 tmp[0] = gen_rtx_SYMBOL_REF (Pmode, label); \
825 SYMBOL_REF_FLAG (tmp[0]) = 1; \
826 output_asm_insn ("larl\t1,%0", tmp); \
827 tmp[0] = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); \
828 if (flag_pic) \
830 tmp[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, tmp[0]), 113); \
831 tmp[0] = gen_rtx_CONST (Pmode, tmp[0]); \
833 output_asm_insn ("brasl\t14,%0", tmp); \
834 output_asm_insn ("lg\t14,8(15)", tmp); \
836 else \
838 output_asm_insn ("l 14,4(15)", s390_profile); \
839 s390_pool_count = 0; \
840 output_asm_insn ("st 14,4(15)", s390_profile); \
841 output_asm_insn ("l 14,%4", s390_profile); \
842 output_asm_insn ("l 1,%9", s390_profile); \
843 if (flag_pic) \
845 output_asm_insn ("ar 1,13", s390_profile); \
846 output_asm_insn ("bas 14,0(14,13)", s390_profile); \
848 else \
850 output_asm_insn ("basr 14,14", s390_profile); \
852 output_asm_insn ("l 14,4(15)", s390_profile); \
854 } while (0)
856 /* #define PROFILE_BEFORE_PROLOGUE */
858 /* There are three profiling modes for basic blocks available.
859 The modes are selected at compile time by using the options
860 -a or -ax of the gnu compiler.
861 The variable `profile_block_flag' will be set according to the
862 selected option.
864 profile_block_flag == 0, no option used:
866 No profiling done.
868 profile_block_flag == 1, -a option used.
870 Count frequency of execution of every basic block.
872 profile_block_flag == 2, -ax option used.
874 Generate code to allow several different profiling modes at run time.
875 Available modes are:
876 Produce a trace of all basic blocks.
877 Count frequency of jump instructions executed.
878 In every mode it is possible to start profiling upon entering
879 certain functions and to disable profiling of some other functions.
881 The result of basic-block profiling will be written to a file `bb.out'.
882 If the -ax option is used parameters for the profiling will be read
883 from file `bb.in'.
887 /* The following macro shall output assembler code to FILE
888 to initialize basic-block profiling.
890 If profile_block_flag == 2
892 Output code to call the subroutine `__bb_init_trace_func'
893 and pass two parameters to it. The first parameter is
894 the address of a block allocated in the object module.
895 The second parameter is the number of the first basic block
896 of the function.
898 The name of the block is a local symbol made with this statement:
900 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
902 Of course, since you are writing the definition of
903 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
904 can take a short cut in the definition of this macro and use the
905 name that you know will result.
907 The number of the first basic block of the function is
908 passed to the macro in BLOCK_OR_LABEL.
910 If described in a virtual assembler language the code to be
911 output looks like:
913 parameter1 <- LPBX0
914 parameter2 <- BLOCK_OR_LABEL
915 call __bb_init_trace_func
917 else if profile_block_flag != 0
919 Output code to call the subroutine `__bb_init_func'
920 and pass one single parameter to it, which is the same
921 as the first parameter to `__bb_init_trace_func'.
923 The first word of this parameter is a flag which will be nonzero if
924 the object module has already been initialized. So test this word
925 first, and do not call `__bb_init_func' if the flag is nonzero.
926 Note: When profile_block_flag == 2 the test need not be done
927 but `__bb_init_trace_func' *must* be called.
929 BLOCK_OR_LABEL may be used to generate a label number as a
930 branch destination in case `__bb_init_func' will not be called.
932 If described in a virtual assembler language the code to be
933 output looks like:
935 cmp (LPBX0),0
936 jne local_label
937 parameter1 <- LPBX0
938 call __bb_init_func
939 local_label:
943 #undef FUNCTION_BLOCK_PROFILER
944 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
945 do \
947 if (TARGET_64BIT) \
949 rtx tmp[1]; \
950 fprintf (FILE, "# function block profiler %d \n", profile_block_flag); \
951 output_asm_insn ("ipm 0", tmp); \
952 output_asm_insn ("aghi 15,-224", tmp); \
953 output_asm_insn ("stmg 14,5,160(15)", tmp); \
954 output_asm_insn ("larl 2,.LPBX0", tmp); \
955 switch (profile_block_flag) \
957 case 2: \
958 if (BLOCK_OR_LABEL < 0x10000) { \
959 tmp[0] = gen_rtx_CONST_INT (Pmode, (BLOCK_OR_LABEL)); \
960 output_asm_insn ("llill 3,%x0", tmp); \
961 } else { \
962 int bo = BLOCK_OR_LABEL; \
963 tmp[0] = gen_rtx_CONST_INT (Pmode, bo&0x7fff); \
964 output_asm_insn ("llill 3,%x0", tmp); \
965 tmp[0] = gen_rtx_CONST_INT (Pmode, (bo&0xffff0000)>>16); \
966 output_asm_insn ("iilh 3,%x0", tmp); \
968 tmp[0] = gen_rtx_SYMBOL_REF (Pmode, "__bb_init_trace_func"); \
969 if (flag_pic) \
971 tmp[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, tmp[0]), 113); \
972 tmp[0] = gen_rtx_CONST (Pmode, tmp[0]); \
974 output_asm_insn ("brasl\t14,%0", tmp); \
975 break; \
976 default: \
977 output_asm_insn ("cli 7(2),0", tmp); \
978 output_asm_insn ("jne 2f", tmp); \
979 tmp[0] = gen_rtx_SYMBOL_REF (Pmode, "__bb_init_func"); \
980 if (flag_pic) \
982 tmp[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, tmp[0]), 113); \
983 tmp[0] = gen_rtx_CONST (Pmode, tmp[0]); \
985 output_asm_insn ("brasl\t14,%0", tmp); \
986 break; \
988 output_asm_insn ("2:", tmp); \
989 output_asm_insn ("lmg 14,5,160(15)", tmp); \
990 output_asm_insn ("aghi 15,224", tmp); \
991 output_asm_insn ("spm 0", tmp); \
993 else \
995 extern rtx s390_profile[]; \
996 fprintf (FILE, "# function block profiler %d \n", profile_block_flag); \
997 output_asm_insn ("ipm 0", s390_profile); \
998 output_asm_insn ("ahi 15,-128", s390_profile); \
999 output_asm_insn ("stm 14,5,96(15)", s390_profile); \
1000 output_asm_insn ("l 2,%6", s390_profile); \
1001 if (flag_pic) \
1002 output_asm_insn ("ar 2,13", s390_profile); \
1003 switch (profile_block_flag) \
1005 case 2: \
1006 output_asm_insn ("l 4,%1", s390_profile); \
1007 if (BLOCK_OR_LABEL < 0x8000) { \
1008 s390_profile[8] = gen_rtx_CONST_INT (Pmode, (BLOCK_OR_LABEL)); \
1009 output_asm_insn ("lhi 3,%8", s390_profile); \
1010 } else { \
1011 int bo = BLOCK_OR_LABEL; \
1012 s390_profile[8] = gen_rtx_CONST_INT (Pmode, (bo&0xffff8000)>>15); \
1013 output_asm_insn ("lhi 3,%8", s390_profile); \
1014 output_asm_insn ("sll 3,15", s390_profile); \
1015 s390_profile[8] = gen_rtx_CONST_INT (Pmode, bo&0x7fff); \
1016 output_asm_insn ("ahi 3,%8", s390_profile); \
1018 break; \
1019 default: \
1020 output_asm_insn ("l 4,%0", s390_profile); \
1021 output_asm_insn ("cli 3(2),0", s390_profile); \
1022 output_asm_insn ("jne 2f", s390_profile); \
1023 break; \
1025 if (flag_pic) \
1026 output_asm_insn ("bas 14,0(4,13)", s390_profile); \
1027 else \
1028 output_asm_insn ("basr 14,4", s390_profile); \
1029 output_asm_insn ("2:", s390_profile); \
1030 output_asm_insn ("lm 14,5,96(15)", s390_profile); \
1031 output_asm_insn ("ahi 15,128", s390_profile); \
1032 output_asm_insn ("spm 0", s390_profile); \
1034 } while (0)
1036 /* The following macro shall output assembler code to FILE
1037 to increment a counter associated with basic block number BLOCKNO.
1039 If profile_block_flag == 2
1041 Output code to initialize the global structure `__bb' and
1042 call the function `__bb_trace_func' which will increment the
1043 counter.
1045 `__bb' consists of two words. In the first word the number
1046 of the basic block has to be stored. In the second word
1047 the address of a block allocated in the object module
1048 has to be stored.
1050 The basic block number is given by BLOCKNO.
1052 The address of the block is given by the label created with
1054 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1056 by FUNCTION_BLOCK_PROFILER.
1058 Of course, since you are writing the definition of
1059 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1060 can take a short cut in the definition of this macro and use the
1061 name that you know will result.
1063 If described in a virtual assembler language the code to be
1064 output looks like:
1066 move BLOCKNO -> (__bb)
1067 move LPBX0 -> (__bb+4)
1068 call __bb_trace_func
1070 Note that function `__bb_trace_func' must not change the
1071 machine state, especially the flag register. To grant
1072 this, you must output code to save and restore registers
1073 either in this macro or in the macros MACHINE_STATE_SAVE
1074 and MACHINE_STATE_RESTORE. The last two macros will be
1075 used in the function `__bb_trace_func', so you must make
1076 sure that the function prologue does not change any
1077 register prior to saving it with MACHINE_STATE_SAVE.
1079 else if profile_block_flag != 0
1081 Output code to increment the counter directly.
1082 Basic blocks are numbered separately from zero within each
1083 compiled object module. The count associated with block number
1084 BLOCKNO is at index BLOCKNO in an array of words; the name of
1085 this array is a local symbol made with this statement:
1087 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
1089 Of course, since you are writing the definition of
1090 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1091 can take a short cut in the definition of this macro and use the
1092 name that you know will result.
1094 If described in a virtual assembler language the code to be
1095 output looks like:
1097 inc (LPBX2+4*BLOCKNO)
1101 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1102 do \
1104 if (TARGET_64BIT) \
1106 rtx tmp[1]; \
1107 fprintf (FILE, "# block profiler %d block %d \n", \
1108 profile_block_flag, BLOCKNO); \
1109 output_asm_insn ("ipm 14", tmp); \
1110 output_asm_insn ("aghi 15,-224", tmp); \
1111 output_asm_insn ("stmg 14,5,160(15)", tmp); \
1112 output_asm_insn ("larl 2,_bb", tmp); \
1113 if ((BLOCKNO*8) < 0x10000) { \
1114 tmp[0] = gen_rtx_CONST_INT (Pmode, (BLOCKNO*8)); \
1115 output_asm_insn ("llill 3,%x0", tmp); \
1116 } else { \
1117 int bo = BLOCKNO*8; \
1118 tmp[0] = gen_rtx_CONST_INT (Pmode, bo&0xffff); \
1119 output_asm_insn ("llill 3,%x0", tmp); \
1120 tmp[0] = gen_rtx_CONST_INT (Pmode, (bo&0xffff0000)>>16); \
1121 output_asm_insn ("iilh 3,%x0", tmp); \
1123 switch (profile_block_flag) \
1125 case 2: \
1126 output_asm_insn ("stg 3,0(2)", tmp); \
1127 output_asm_insn ("larl 3,.LPBX0", tmp); \
1128 output_asm_insn ("stg 3,0(2)", tmp); \
1129 tmp[0] = gen_rtx_SYMBOL_REF (Pmode, "__bb_trace_func"); \
1130 if (flag_pic) \
1132 tmp[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, tmp[0]), 113); \
1133 tmp[0] = gen_rtx_CONST (Pmode, tmp[0]); \
1135 output_asm_insn ("brasl\t14,%0", tmp); \
1136 break; \
1137 default: \
1138 output_asm_insn ("larl 2,.LPBX2", tmp); \
1139 output_asm_insn ("la 2,0(2,3)", tmp); \
1140 output_asm_insn ("lg 3,0(2)", tmp); \
1141 output_asm_insn ("aghi 3,1", tmp); \
1142 output_asm_insn ("stg 3,0(2)", tmp); \
1143 break; \
1145 output_asm_insn ("lmg 14,5,160(15)", tmp); \
1146 output_asm_insn ("ahi 15,224", tmp); \
1147 output_asm_insn ("spm 14", tmp); \
1149 else \
1151 extern rtx s390_profile[]; \
1152 fprintf (FILE, "# block profiler %d block %d \n", \
1153 profile_block_flag,BLOCKNO); \
1154 output_asm_insn ("ipm 14", s390_profile); \
1155 output_asm_insn ("ahi 15,-128", s390_profile); \
1156 output_asm_insn ("stm 14,5,96(15)", s390_profile); \
1157 switch (profile_block_flag) \
1159 case 2: \
1160 output_asm_insn ("l 4,%2", s390_profile); \
1161 output_asm_insn ("l 2,%5", s390_profile); \
1162 if (flag_pic) \
1163 output_asm_insn ("ar 2,13", s390_profile); \
1164 if (BLOCKNO < 0x8000) { \
1165 s390_profile[7] = gen_rtx_CONST_INT (Pmode, (BLOCKNO)*4); \
1166 output_asm_insn ("lhi 3,%8", s390_profile); \
1167 } else { \
1168 int bo = BLOCKNO; \
1169 s390_profile[8] = gen_rtx_CONST_INT (Pmode, (bo&0xffff8000)>>15); \
1170 output_asm_insn ("lhi 3,%8", s390_profile); \
1171 output_asm_insn ("sll 3,15", s390_profile); \
1172 s390_profile[8] = gen_rtx_CONST_INT (Pmode, bo&0x7fff); \
1173 output_asm_insn ("ahi 3,%7", s390_profile); \
1175 output_asm_insn ("st 3,0(2)", s390_profile); \
1176 output_asm_insn ("mvc 0(4,2),%5", s390_profile); \
1177 if (flag_pic) \
1178 output_asm_insn ("bas 14,0(4,13)", s390_profile); \
1179 else \
1180 output_asm_insn ("basr 14,4", s390_profile); \
1181 break; \
1182 default: \
1183 if (BLOCKNO < 0x2000) { \
1184 s390_profile[8] = gen_rtx_CONST_INT (Pmode, (BLOCKNO)*4); \
1185 output_asm_insn ("lhi 2,%8", s390_profile); \
1186 } else { \
1187 int bo = BLOCKNO*4; \
1188 s390_profile[8] = gen_rtx_CONST_INT (Pmode, (bo&0xffff8000)>>15); \
1189 output_asm_insn ("lhi 2,%8", s390_profile); \
1190 output_asm_insn ("sll 2,15", s390_profile); \
1191 s390_profile[8] = gen_rtx_CONST_INT (Pmode, bo&0x7fff); \
1192 output_asm_insn ("ahi 2,%8", s390_profile); \
1194 output_asm_insn ("a 2,%7", s390_profile); \
1195 if (flag_pic) \
1196 output_asm_insn ("l 3,0(2,13)", s390_profile); \
1197 else \
1198 output_asm_insn ("l 3,0(2)", s390_profile); \
1199 output_asm_insn ("ahi 3,1", s390_profile); \
1200 if (flag_pic) \
1201 output_asm_insn ("st 3,0(2,13)", s390_profile); \
1202 else \
1203 output_asm_insn ("st 3,0(2)", s390_profile); \
1204 break; \
1206 output_asm_insn ("lm 14,5,96(15)", s390_profile); \
1207 output_asm_insn ("ahi 15,128", s390_profile); \
1208 output_asm_insn ("spm 14", s390_profile); \
1210 } while (0)
1213 /* The following macro shall output assembler code to FILE
1214 to indicate a return from function during basic-block profiling.
1216 If profiling_block_flag == 2:
1218 Output assembler code to call function `__bb_trace_ret'.
1220 Note that function `__bb_trace_ret' must not change the
1221 machine state, especially the flag register. To grant
1222 this, you must output code to save and restore registers
1223 either in this macro or in the macros MACHINE_STATE_SAVE_RET
1224 and MACHINE_STATE_RESTORE_RET. The last two macros will be
1225 used in the function `__bb_trace_ret', so you must make
1226 sure that the function prologue does not change any
1227 register prior to saving it with MACHINE_STATE_SAVE_RET.
1229 else if profiling_block_flag != 0:
1231 The macro will not be used, so it need not distinguish
1232 these cases.
1235 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1236 do { \
1237 if (TARGET_64BIT) \
1239 rtx tmp[1]; \
1240 fprintf (FILE, "# block profiler exit \n"); \
1241 output_asm_insn ("ipm 14", tmp); \
1242 output_asm_insn ("aghi 15,-224", tmp); \
1243 output_asm_insn ("stmg 14,5,160(15)", tmp); \
1244 tmp[0] = gen_rtx_SYMBOL_REF (Pmode, "__bb_trace_ret"); \
1245 if (flag_pic) \
1247 tmp[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, tmp[0]), 113); \
1248 tmp[0] = gen_rtx_CONST (Pmode, tmp[0]); \
1250 output_asm_insn ("brasl 14,%0", tmp); \
1251 output_asm_insn ("lmg 14,5,160(15)", tmp); \
1252 output_asm_insn ("aghi 15,224", tmp); \
1253 output_asm_insn ("spm 14", tmp); \
1255 else \
1257 extern rtx s390_profile[]; \
1258 fprintf (FILE, "# block profiler exit \n"); \
1259 output_asm_insn ("ipm 14", s390_profile); \
1260 output_asm_insn ("ahi 15,-128", s390_profile); \
1261 output_asm_insn ("stm 14,5,96(15)", s390_profile); \
1262 output_asm_insn ("l 4,%3", s390_profile); \
1263 if (flag_pic) \
1264 output_asm_insn ("bas 14,0(4,13)", s390_profile); \
1265 else \
1266 output_asm_insn ("basr 14,4", s390_profile); \
1267 output_asm_insn ("lm 14,5,96(15)", s390_profile); \
1268 output_asm_insn ("ahi 15,128", s390_profile); \
1269 output_asm_insn ("spm 14", s390_profile); \
1271 } while (0)
1273 /* The function `__bb_trace_func' is called in every basic block
1274 and is not allowed to change the machine state. Saving (restoring)
1275 the state can either be done in the BLOCK_PROFILER macro,
1276 before calling function (rsp. after returning from function)
1277 `__bb_trace_func', or it can be done inside the function by
1278 defining the macros:
1280 MACHINE_STATE_SAVE(ID)
1281 MACHINE_STATE_RESTORE(ID)
1283 In the latter case care must be taken, that the prologue code
1284 of function `__bb_trace_func' does not already change the
1285 state prior to saving it with MACHINE_STATE_SAVE.
1287 The parameter `ID' is a string identifying a unique macro use.
1289 On the s390 all save/restore is done in macros above
1293 #define MACHINE_STATE_SAVE(ID) \
1294 fprintf (FILE, "\tahi 15,-128 # save state\n"); \
1295 fprintf (FILE, "\tstm 14,5,96(15)\n"); \
1297 #define MACHINE_STATE_RESTORE(ID) \
1298 fprintf (FILE, "\tlm 14,5,96(15) # restore state\n"); \
1299 fprintf (FILE, "\tahi 15,128\n"); \
1303 /* Define EXIT_IGNORE_STACK if, when returning from a function, the stack
1304 pointer does not matter (provided there is a frame pointer). */
1306 #define EXIT_IGNORE_STACK 1
1308 /* Addressing modes, and classification of registers for them. */
1310 /* #define HAVE_POST_INCREMENT */
1311 /* #define HAVE_POST_DECREMENT */
1313 /* #define HAVE_PRE_DECREMENT */
1314 /* #define HAVE_PRE_INCREMENT */
1316 /* These assume that REGNO is a hard or pseudo reg number. They give
1317 nonzero only if REGNO is a hard reg of the suitable class or a pseudo
1318 reg currently allocated to a suitable hard reg.
1319 These definitions are NOT overridden anywhere. */
1321 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1322 (((REGNO) > 0 && (REGNO) < 16) || (REGNO) == ARG_POINTER_REGNUM \
1323 /* || (REGNO) == FRAME_POINTER_REGNUM */ \
1324 || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
1326 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1328 #define REGNO_OK_FOR_DATA_P(REGNO) \
1329 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
1331 #define REGNO_OK_FOR_FP_P(REGNO) \
1332 FLOAT_REGNO_P (REGNO)
1334 /* Now macros that check whether X is a register and also,
1335 strictly, whether it is in a specified class. */
1337 /* 1 if X is a data register. */
1339 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
1341 /* 1 if X is an fp register. */
1343 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1345 /* 1 if X is an address register. */
1347 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
1349 /* Maximum number of registers that can appear in a valid memory address. */
1351 #define MAX_REGS_PER_ADDRESS 2
1353 /* Recognize any constant value that is a valid address. */
1355 #define CONSTANT_ADDRESS_P(X) 0
1357 #define SYMBOLIC_CONST(X) \
1358 (GET_CODE (X) == SYMBOL_REF \
1359 || GET_CODE (X) == LABEL_REF \
1360 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1362 /* General operand is everything except SYMBOL_REF, CONST and CONST_DOUBLE
1363 they have to be forced to constant pool
1364 CONST_INT have to be forced into constant pool, if greater than
1365 64k. Depending on the insn they have to be force into constant pool
1366 for smaller value; in this case we have to work with nonimmediate operand. */
1368 #define LEGITIMATE_PIC_OPERAND_P(X) \
1369 legitimate_pic_operand_p (X)
1371 /* Nonzero if the constant value X is a legitimate general operand.
1372 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1374 #define LEGITIMATE_CONSTANT_P(X) \
1375 legitimate_constant_p (X)
1377 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
1378 its validity for a certain class. We have two alternate definitions
1379 for each of them. The usual definition accepts all pseudo regs; the
1380 other rejects them all. The symbol REG_OK_STRICT causes the latter
1381 definition to be used.
1383 Most source files want to accept pseudo regs in the hope that they will
1384 get allocated to the class that the insn wants them to be in.
1385 Some source files that are used after register allocation
1386 need to be strict. */
1389 * Nonzero if X is a hard reg that can be used as an index or if it is
1390 * a pseudo reg.
1393 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1394 ((GET_MODE (X) == Pmode) && \
1395 ((REGNO (X) > 0 && REGNO (X) < 16) || \
1396 (REGNO (X) == ARG_POINTER_REGNUM) || \
1397 (REGNO (X) >= FIRST_PSEUDO_REGISTER)))
1399 /* Nonzero if X is a hard reg that can be used as a base reg or if it is
1400 a pseudo reg. */
1402 #define REG_OK_FOR_BASE_NONSTRICT_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1404 /* Nonzero if X is a hard reg that can be used as an index. */
1406 #define REG_OK_FOR_INDEX_STRICT_P(X) \
1407 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
1409 /* Nonzero if X is a hard reg that can be used as a base reg. */
1411 #define REG_OK_FOR_BASE_STRICT_P(X) \
1412 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
1415 #ifndef REG_OK_STRICT
1416 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1417 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1418 #else
1419 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1420 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1421 #endif
1424 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1425 valid memory address for an instruction.
1426 The MODE argument is the machine mode for the MEM expression
1427 that wants to use this address.
1429 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1430 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
1432 #ifdef REG_OK_STRICT
1433 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1435 if (legitimate_address_p (MODE, X, 1)) \
1436 goto ADDR; \
1438 #else
1439 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1441 if (legitimate_address_p (MODE, X, 0)) \
1442 goto ADDR; \
1444 #endif
1447 /* S/390 has no mode dependent addresses. */
1449 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
1451 /* Try machine-dependent ways of modifying an illegitimate address
1452 to be legitimate. If we find one, return the new, valid address.
1453 This macro is used in only one place: `memory_address' in explow.c. */
1455 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1457 (X) = legitimize_address (X, OLDX, MODE); \
1458 if (memory_address_p (MODE, X)) \
1459 goto WIN; \
1462 /* Specify the machine mode that this machine uses for the index in the
1463 tablejump instruction. */
1465 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
1467 /* Define this if the tablejump instruction expects the table to contain
1468 offsets from the address of the table.
1469 Do not define this if the table should contain absolute addresses. */
1471 /* #define CASE_VECTOR_PC_RELATIVE */
1473 /* Load from integral MODE < SI from memory into register makes sign_extend
1474 or zero_extend
1475 In our case sign_extension happens for Halfwords, other no extension. */
1477 #define LOAD_EXTEND_OP(MODE) \
1478 (TARGET_64BIT ? ((MODE) == QImode ? ZERO_EXTEND : \
1479 (MODE) == HImode ? SIGN_EXTEND : NIL) \
1480 : ((MODE) == HImode ? SIGN_EXTEND : NIL))
1482 /* Specify the tree operation to be used to convert reals to integers. */
1484 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1486 /* Define this if fixuns_trunc is the same as fix_trunc. */
1488 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1490 /* We use "unsigned char" as default. */
1492 #define DEFAULT_SIGNED_CHAR 0
1494 /* This is the kind of divide that is easiest to do in the general case. */
1496 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1498 /* Max number of bytes we can move from memory to memory in one reasonably
1499 fast instruction. */
1501 #define MOVE_MAX 256
1503 /* Define this if zero-extension is slow (more than one real instruction). */
1505 #define SLOW_ZERO_EXTEND
1507 /* Nonzero if access to memory by bytes is slow and undesirable. */
1509 #define SLOW_BYTE_ACCESS 1
1511 /* Define if shifts truncate the shift count which implies one can omit
1512 a sign-extension or zero-extension of a shift count. */
1514 /* #define SHIFT_COUNT_TRUNCATED */
1516 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1517 is done just by pretending it is already truncated. */
1519 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1521 /* We assume that the store-condition-codes instructions store 0 for false
1522 and some other value for true. This is the value stored for true. */
1524 /* #define STORE_FLAG_VALUE -1 */
1526 /* When a prototype says `char' or `short', really pass an `int'. */
1528 #define PROMOTE_PROTOTYPES 1
1530 /* Don't perform CSE on function addresses. */
1532 #define NO_FUNCTION_CSE
1534 /* Specify the machine mode that pointers have.
1535 After generation of rtl, the compiler makes no further distinction
1536 between pointers and any other objects of this machine mode. */
1538 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
1540 /* A function address in a call instruction is a byte address (for
1541 indexing purposes) so give the MEM rtx a byte's mode. */
1543 #define FUNCTION_MODE QImode
1546 /* A part of a C `switch' statement that describes the relative costs
1547 of constant RTL expressions. It must contain `case' labels for
1548 expression codes `const_int', `const', `symbol_ref', `label_ref'
1549 and `const_double'. Each case must ultimately reach a `return'
1550 statement to return the relative cost of the use of that kind of
1551 constant value in an expression. The cost may depend on the
1552 precise value of the constant, which is available for examination
1553 in X, and the rtx code of the expression in which it is contained,
1554 found in OUTER_CODE.
1556 CODE is the expression code--redundant, since it can be obtained
1557 with `GET_CODE (X)'. */
1558 /* Force_const_mem does not work out of reload, because the saveable_obstack
1559 is set to reload_obstack, which does not live long enough.
1560 Because of this we cannot use force_const_mem in addsi3.
1561 This leads to problems with gen_add2_insn with a constant greater
1562 than a short. Because of that we give an addition of greater
1563 constants a cost of 3 (reload1.c 10096). */
1566 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1567 case CONST: \
1568 if ((GET_CODE (XEXP (RTX, 0)) == MINUS) && \
1569 (GET_CODE (XEXP (XEXP (RTX, 0), 1)) != CONST_INT)) \
1570 return 1000; \
1571 case CONST_INT: \
1572 if ((OUTER_CODE == PLUS) && \
1573 ((INTVAL (RTX) > 32767) || \
1574 (INTVAL (RTX) < -32768))) \
1575 return COSTS_N_INSNS (3); \
1576 case LABEL_REF: \
1577 case SYMBOL_REF: \
1578 case CONST_DOUBLE: \
1579 return 0; \
1582 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1583 This can be used, for example, to indicate how costly a multiply
1584 instruction is. In writing this macro, you can use the construct
1585 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1586 instructions. OUTER_CODE is the code of the expression in which X
1587 is contained.
1589 This macro is optional; do not define it if the default cost
1590 assumptions are adequate for the target machine. */
1592 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1593 case ASHIFT: \
1594 case ASHIFTRT: \
1595 case LSHIFTRT: \
1596 case PLUS: \
1597 case AND: \
1598 case IOR: \
1599 case XOR: \
1600 case MINUS: \
1601 case NEG: \
1602 case NOT: \
1603 return 1; \
1604 case MULT: \
1605 if (GET_MODE (XEXP (X, 0)) == DImode) \
1606 return 40; \
1607 else \
1608 return 7; \
1609 case DIV: \
1610 case UDIV: \
1611 case MOD: \
1612 case UMOD: \
1613 return 33;
1616 /* An expression giving the cost of an addressing mode that contains
1617 ADDRESS. If not defined, the cost is computed from the ADDRESS
1618 expression and the `CONST_COSTS' values.
1620 For most CISC machines, the default cost is a good approximation
1621 of the true cost of the addressing mode. However, on RISC
1622 machines, all instructions normally have the same length and
1623 execution time. Hence all addresses will have equal costs.
1625 In cases where more than one form of an address is known, the form
1626 with the lowest cost will be used. If multiple forms have the
1627 same, lowest, cost, the one that is the most complex will be used.
1629 For example, suppose an address that is equal to the sum of a
1630 register and a constant is used twice in the same basic block.
1631 When this macro is not defined, the address will be computed in a
1632 register and memory references will be indirect through that
1633 register. On machines where the cost of the addressing mode
1634 containing the sum is no higher than that of a simple indirect
1635 reference, this will produce an additional instruction and
1636 possibly require an additional register. Proper specification of
1637 this macro eliminates this overhead for such machines.
1639 Similar use of this macro is made in strength reduction of loops.
1641 ADDRESS need not be valid as an address. In such a case, the cost
1642 is not relevant and can be any value; invalid addresses need not be
1643 assigned a different cost.
1645 On machines where an address involving more than one register is as
1646 cheap as an address computation involving only one register,
1647 defining `ADDRESS_COST' to reflect this can cause two registers to
1648 be live over a region of code where only one would have been if
1649 `ADDRESS_COST' were not defined in that manner. This effect should
1650 be considered in the definition of this macro. Equivalent costs
1651 should probably only be given to addresses with different numbers
1652 of registers on machines with lots of registers.
1654 This macro will normally either not be defined or be defined as a
1655 constant.
1657 On s390 symbols are expensive if compiled with fpic
1658 lifetimes. */
1660 #define ADDRESS_COST(RTX) \
1661 ((flag_pic && GET_CODE (RTX) == SYMBOL_REF) ? 2 : 1)
1663 /* On s390, copy between fprs and gprs is expensive. */
1665 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1666 (((CLASS1 != CLASS2) && \
1667 (CLASS1 == FP_REGS || CLASS2 == FP_REGS)) ? 10 : 1)
1670 /* A C expression for the cost of moving data of mode M between a
1671 register and memory. A value of 2 is the default; this cost is
1672 relative to those in `REGISTER_MOVE_COST'.
1674 If moving between registers and memory is more expensive than
1675 between two registers, you should define this macro to express the
1676 relative cost. */
1678 #define MEMORY_MOVE_COST(M, C, I) 1
1680 /* A C expression for the cost of a branch instruction. A value of 1
1681 is the default; other values are interpreted relative to that. */
1683 #define BRANCH_COST 1
1685 /* Add any extra modes needed to represent the condition code. */
1686 #define EXTRA_CC_MODES \
1687 CC (CCZmode, "CCZ") \
1688 CC (CCAmode, "CCA") \
1689 CC (CCLmode, "CCL") \
1690 CC (CCUmode, "CCU") \
1691 CC (CCSmode, "CCS") \
1692 CC (CCTmode, "CCT")
1694 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1695 return the mode to be used for the comparison. */
1697 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
1700 /* Define the information needed to generate branch and scc insns. This is
1701 stored from the compare operation. Note that we can't use "rtx" here
1702 since it hasn't been defined! */
1704 extern struct rtx_def *s390_compare_op0, *s390_compare_op1;
1707 /* How to refer to registers in assembler output. This sequence is
1708 indexed by compiler's hard-register-number (see above). */
1710 #define REGISTER_NAMES \
1711 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
1712 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
1713 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
1714 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
1715 "%ap", "%cc" \
1718 /* implicit call of memcpy, not bcopy */
1720 #define TARGET_MEM_FUNCTIONS
1722 /* Print operand X (an rtx) in assembler syntax to file FILE.
1723 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1724 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1726 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1728 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1731 /* Define the codes that are matched by predicates in aux-output.c. */
1733 #define PREDICATE_CODES \
1734 {"s_operand", { MEM }}, \
1735 {"bras_sym_operand",{ SYMBOL_REF, CONST }}, \
1736 {"r_or_s_operand", { MEM, SUBREG, REG }}, \
1737 {"r_or_im8_operand", { CONST_INT, SUBREG, REG }}, \
1738 {"r_or_s_or_im8_operand", { MEM, SUBREG, REG, CONST_INT }}, \
1739 {"r_or_x_or_im16_operand", { MEM, SUBREG, REG, CONST_INT }}, \
1740 {"const0_operand", { CONST_INT, CONST_DOUBLE }}, \
1741 {"const1_operand", { CONST_INT, CONST_DOUBLE }}, \
1742 {"tmxx_operand", { CONST_INT, MEM }},
1745 /* Constant Pool for all symbols operands which are changed with
1746 force_const_mem during insn generation (expand_insn). */
1748 extern struct rtx_def *s390_pool_start_insn;
1749 extern int s390_pool_count;
1750 extern int s390_nr_constants;
1752 /* Function is splitted in chunk, if literal pool could overflow
1753 Value need to be lowered, if problems with displacement overflow. */
1755 #define S390_REL_MAX 55000
1756 #define S390_CHUNK_MAX 0x2000
1757 #define S390_CHUNK_OV 0x8000
1758 #define S390_POOL_MAX 0xe00
1760 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, fndecl, size) \
1762 register rtx insn; \
1763 struct pool_constant *pool; \
1765 if (s390_pool_count == -1) \
1767 s390_nr_constants = 0; \
1768 for (pool = first_pool; pool; pool = pool->next) \
1769 if (pool->mark) s390_nr_constants++; \
1770 return; \
1772 if (first_pool == 0) { \
1773 s390_asm_output_pool_prologue (FILE, FUNNAME, fndecl, size); \
1774 return; \
1776 for (pool = first_pool; pool; pool = pool->next) \
1777 pool->mark = 0; \
1779 insn = s390_pool_start_insn; \
1781 if (insn==NULL_RTX) \
1782 insn = get_insns (); \
1783 else \
1784 insn = NEXT_INSN (insn); \
1785 for (; insn; insn = NEXT_INSN (insn)) { \
1786 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { \
1787 if (s390_stop_dump_lit_p (insn)) { \
1788 mark_constants (PATTERN (insn)); \
1789 break; \
1790 } else \
1791 mark_constants (PATTERN (insn)); \
1795 /* Mark entries referenced by other entries */ \
1796 for (pool = first_pool; pool; pool = pool->next) \
1797 if (pool->mark) \
1798 mark_constants (pool->constant); \
1800 s390_asm_output_pool_prologue (FILE, FUNNAME, fndecl, size); \
1803 /* We need to return, because otherwise the pool is deleted of the
1804 constant pool after the first output. */
1806 #define ASM_OUTPUT_POOL_EPILOGUE(FILE, FUNNAME, fndecl, size) return;
1808 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, EXP, MODE, ALIGN, LABELNO, WIN) \
1810 if ((s390_pool_count == 0) || (s390_pool_count > 0 && LABELNO >= 0)) \
1812 fprintf (FILE, ".LC%d:\n", LABELNO); \
1813 LABELNO = ~LABELNO; \
1815 if (s390_pool_count > 0) \
1817 fprintf (FILE, ".LC%d_%X:\n", ~LABELNO, s390_pool_count); \
1820 /* Output the value of the constant itself. */ \
1821 switch (GET_MODE_CLASS (MODE)) \
1823 case MODE_FLOAT: \
1824 if (GET_CODE (EXP) != CONST_DOUBLE) \
1825 abort (); \
1827 memcpy ((char *) &u, (char *) &CONST_DOUBLE_LOW (EXP), sizeof u); \
1828 assemble_real (u.d, MODE, ALIGN); \
1829 break; \
1831 case MODE_INT: \
1832 case MODE_PARTIAL_INT: \
1833 if (flag_pic \
1834 && (GET_CODE (EXP) == CONST \
1835 || GET_CODE (EXP) == SYMBOL_REF \
1836 || GET_CODE (EXP) == LABEL_REF )) \
1838 fprintf (FILE, "%s\t",TARGET_64BIT ? ASM_QUAD : ASM_LONG); \
1839 s390_output_symbolic_const (FILE, EXP); \
1840 fputc ('\n', (FILE)); \
1842 else \
1843 assemble_integer (EXP, GET_MODE_SIZE (MODE), ALIGN, 1); \
1844 break; \
1846 default: \
1847 abort (); \
1849 goto WIN; \
1852 #endif