PR tree-optimization/78496
[official-gcc.git] / gcc / reload1.c
blob4dc118ef9f3364e54f84e4b82c972b9f5063ce6d
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
100 /* Widest width in which each pseudo reg is referred to (via subreg). */
101 static unsigned int *reg_max_ref_width;
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
202 /* Width allocated so far for that stack slot. */
203 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
260 struct elim_table
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 HOST_WIDE_INT offset; /* Current offset between the two regs. */
270 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
280 static struct elim_table *reg_eliminate = 0;
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
290 ELIMINABLE_REGS;
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
314 static int first_label_num;
315 static char *offsets_known_at;
316 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
318 vec<reg_equivs_t, va_gc> *reg_equivs;
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
333 /* Number of labels in the current function. */
335 static int num_labels;
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, int);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
412 void
413 init_reload (void)
415 int i;
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
429 while (memory_address_p (QImode, tem))
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
440 /* See if reg+reg is a valid (and offsettable) address. */
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
476 struct insn_chain *c;
478 if (unused_insn_chains == 0)
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
484 else
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
502 unsigned int regno;
503 reg_set_iterator rsi;
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
507 int r = reg_renumber[regno];
509 if (r < 0)
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
533 if (! x)
534 return;
536 code = GET_CODE (x);
537 if (code == REG)
539 unsigned int regno = REGNO (x);
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
567 return;
569 else if (code == MEM)
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
588 static bool
589 has_nonexceptional_receiver (void)
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
612 bb = *--tos;
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
617 basic_block src = e->src;
619 if (!(src->flags & BB_REACHABLE))
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
626 free (worklist);
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
657 /* Global variables used by reload and its subroutines. */
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
719 if (can_throw_internal (insn))
720 return false;
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
731 return false;
734 /* Main entry point for the reload pass.
736 FIRST is the first insn of the function being compiled.
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
748 bool
749 reload (rtx_insn *first, int global)
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
760 failure = 0;
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
771 #ifdef SECONDARY_MEMORY_NEEDED
772 /* Initialize the secondary memory table. */
773 clear_secondary_mem ();
774 #endif
776 /* We don't have a stack slot for any spill reg yet. */
777 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
778 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
780 /* Initialize the save area information for caller-save, in case some
781 are needed. */
782 init_save_areas ();
784 /* Compute which hard registers are now in use
785 as homes for pseudo registers.
786 This is done here rather than (eg) in global_alloc
787 because this point is reached even if not optimizing. */
788 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
789 mark_home_live (i);
791 /* A function that has a nonlocal label that can reach the exit
792 block via non-exceptional paths must save all call-saved
793 registers. */
794 if (cfun->has_nonlocal_label
795 && has_nonexceptional_receiver ())
796 crtl->saves_all_registers = 1;
798 if (crtl->saves_all_registers)
799 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
800 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
801 df_set_regs_ever_live (i, true);
803 /* Find all the pseudo registers that didn't get hard regs
804 but do have known equivalent constants or memory slots.
805 These include parameters (known equivalent to parameter slots)
806 and cse'd or loop-moved constant memory addresses.
808 Record constant equivalents in reg_equiv_constant
809 so they will be substituted by find_reloads.
810 Record memory equivalents in reg_mem_equiv so they can
811 be substituted eventually by altering the REG-rtx's. */
813 grow_reg_equivs ();
814 reg_old_renumber = XCNEWVEC (short, max_regno);
815 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
816 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
817 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
819 CLEAR_HARD_REG_SET (bad_spill_regs_global);
821 init_eliminable_invariants (first, true);
822 init_elim_table ();
824 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
825 stack slots to the pseudos that lack hard regs or equivalents.
826 Do not touch virtual registers. */
828 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
829 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
830 temp_pseudo_reg_arr[n++] = i;
832 if (ira_conflicts_p)
833 /* Ask IRA to order pseudo-registers for better stack slot
834 sharing. */
835 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
837 for (i = 0; i < n; i++)
838 alter_reg (temp_pseudo_reg_arr[i], -1, false);
840 /* If we have some registers we think can be eliminated, scan all insns to
841 see if there is an insn that sets one of these registers to something
842 other than itself plus a constant. If so, the register cannot be
843 eliminated. Doing this scan here eliminates an extra pass through the
844 main reload loop in the most common case where register elimination
845 cannot be done. */
846 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
847 if (INSN_P (insn))
848 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
850 maybe_fix_stack_asms ();
852 insns_need_reload = 0;
853 something_needs_elimination = 0;
855 /* Initialize to -1, which means take the first spill register. */
856 last_spill_reg = -1;
858 /* Spill any hard regs that we know we can't eliminate. */
859 CLEAR_HARD_REG_SET (used_spill_regs);
860 /* There can be multiple ways to eliminate a register;
861 they should be listed adjacently.
862 Elimination for any register fails only if all possible ways fail. */
863 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
865 int from = ep->from;
866 int can_eliminate = 0;
869 can_eliminate |= ep->can_eliminate;
870 ep++;
872 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
873 if (! can_eliminate)
874 spill_hard_reg (from, 1);
877 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
878 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
880 finish_spills (global);
882 /* From now on, we may need to generate moves differently. We may also
883 allow modifications of insns which cause them to not be recognized.
884 Any such modifications will be cleaned up during reload itself. */
885 reload_in_progress = 1;
887 /* This loop scans the entire function each go-round
888 and repeats until one repetition spills no additional hard regs. */
889 for (;;)
891 int something_changed;
892 HOST_WIDE_INT starting_frame_size;
894 starting_frame_size = get_frame_size ();
895 something_was_spilled = false;
897 set_initial_elim_offsets ();
898 set_initial_label_offsets ();
900 /* For each pseudo register that has an equivalent location defined,
901 try to eliminate any eliminable registers (such as the frame pointer)
902 assuming initial offsets for the replacement register, which
903 is the normal case.
905 If the resulting location is directly addressable, substitute
906 the MEM we just got directly for the old REG.
908 If it is not addressable but is a constant or the sum of a hard reg
909 and constant, it is probably not addressable because the constant is
910 out of range, in that case record the address; we will generate
911 hairy code to compute the address in a register each time it is
912 needed. Similarly if it is a hard register, but one that is not
913 valid as an address register.
915 If the location is not addressable, but does not have one of the
916 above forms, assign a stack slot. We have to do this to avoid the
917 potential of producing lots of reloads if, e.g., a location involves
918 a pseudo that didn't get a hard register and has an equivalent memory
919 location that also involves a pseudo that didn't get a hard register.
921 Perhaps at some point we will improve reload_when_needed handling
922 so this problem goes away. But that's very hairy. */
924 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
925 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
927 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
928 NULL_RTX);
930 if (strict_memory_address_addr_space_p
931 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
932 MEM_ADDR_SPACE (x)))
933 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
934 else if (CONSTANT_P (XEXP (x, 0))
935 || (REG_P (XEXP (x, 0))
936 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
937 || (GET_CODE (XEXP (x, 0)) == PLUS
938 && REG_P (XEXP (XEXP (x, 0), 0))
939 && (REGNO (XEXP (XEXP (x, 0), 0))
940 < FIRST_PSEUDO_REGISTER)
941 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
942 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
943 else
945 /* Make a new stack slot. Then indicate that something
946 changed so we go back and recompute offsets for
947 eliminable registers because the allocation of memory
948 below might change some offset. reg_equiv_{mem,address}
949 will be set up for this pseudo on the next pass around
950 the loop. */
951 reg_equiv_memory_loc (i) = 0;
952 reg_equiv_init (i) = 0;
953 alter_reg (i, -1, true);
957 if (caller_save_needed)
958 setup_save_areas ();
960 if (starting_frame_size && crtl->stack_alignment_needed)
962 /* If we have a stack frame, we must align it now. The
963 stack size may be a part of the offset computation for
964 register elimination. So if this changes the stack size,
965 then repeat the elimination bookkeeping. We don't
966 realign when there is no stack, as that will cause a
967 stack frame when none is needed should
968 STARTING_FRAME_OFFSET not be already aligned to
969 STACK_BOUNDARY. */
970 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
972 /* If we allocated another stack slot, redo elimination bookkeeping. */
973 if (something_was_spilled || starting_frame_size != get_frame_size ())
975 if (update_eliminables_and_spill ())
976 finish_spills (0);
977 continue;
980 if (caller_save_needed)
982 save_call_clobbered_regs ();
983 /* That might have allocated new insn_chain structures. */
984 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
987 calculate_needs_all_insns (global);
989 if (! ira_conflicts_p)
990 /* Don't do it for IRA. We need this info because we don't
991 change live_throughout and dead_or_set for chains when IRA
992 is used. */
993 CLEAR_REG_SET (&spilled_pseudos);
995 something_changed = 0;
997 /* If we allocated any new memory locations, make another pass
998 since it might have changed elimination offsets. */
999 if (something_was_spilled || starting_frame_size != get_frame_size ())
1000 something_changed = 1;
1002 /* Even if the frame size remained the same, we might still have
1003 changed elimination offsets, e.g. if find_reloads called
1004 force_const_mem requiring the back end to allocate a constant
1005 pool base register that needs to be saved on the stack. */
1006 else if (!verify_initial_elim_offsets ())
1007 something_changed = 1;
1009 if (update_eliminables_and_spill ())
1011 finish_spills (0);
1012 something_changed = 1;
1014 else
1016 select_reload_regs ();
1017 if (failure)
1018 goto failed;
1019 if (insns_need_reload)
1020 something_changed |= finish_spills (global);
1023 if (! something_changed)
1024 break;
1026 if (caller_save_needed)
1027 delete_caller_save_insns ();
1029 obstack_free (&reload_obstack, reload_firstobj);
1032 /* If global-alloc was run, notify it of any register eliminations we have
1033 done. */
1034 if (global)
1035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1036 if (ep->can_eliminate)
1037 mark_elimination (ep->from, ep->to);
1039 remove_init_insns ();
1041 /* Use the reload registers where necessary
1042 by generating move instructions to move the must-be-register
1043 values into or out of the reload registers. */
1045 if (insns_need_reload != 0 || something_needs_elimination
1046 || something_needs_operands_changed)
1048 HOST_WIDE_INT old_frame_size = get_frame_size ();
1050 reload_as_needed (global);
1052 gcc_assert (old_frame_size == get_frame_size ());
1054 gcc_assert (verify_initial_elim_offsets ());
1057 /* If we were able to eliminate the frame pointer, show that it is no
1058 longer live at the start of any basic block. If it ls live by
1059 virtue of being in a pseudo, that pseudo will be marked live
1060 and hence the frame pointer will be known to be live via that
1061 pseudo. */
1063 if (! frame_pointer_needed)
1064 FOR_EACH_BB_FN (bb, cfun)
1065 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1067 /* Come here (with failure set nonzero) if we can't get enough spill
1068 regs. */
1069 failed:
1071 CLEAR_REG_SET (&changed_allocation_pseudos);
1072 CLEAR_REG_SET (&spilled_pseudos);
1073 reload_in_progress = 0;
1075 /* Now eliminate all pseudo regs by modifying them into
1076 their equivalent memory references.
1077 The REG-rtx's for the pseudos are modified in place,
1078 so all insns that used to refer to them now refer to memory.
1080 For a reg that has a reg_equiv_address, all those insns
1081 were changed by reloading so that no insns refer to it any longer;
1082 but the DECL_RTL of a variable decl may refer to it,
1083 and if so this causes the debugging info to mention the variable. */
1085 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1087 rtx addr = 0;
1089 if (reg_equiv_mem (i))
1090 addr = XEXP (reg_equiv_mem (i), 0);
1092 if (reg_equiv_address (i))
1093 addr = reg_equiv_address (i);
1095 if (addr)
1097 if (reg_renumber[i] < 0)
1099 rtx reg = regno_reg_rtx[i];
1101 REG_USERVAR_P (reg) = 0;
1102 PUT_CODE (reg, MEM);
1103 XEXP (reg, 0) = addr;
1104 if (reg_equiv_memory_loc (i))
1105 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1106 else
1107 MEM_ATTRS (reg) = 0;
1108 MEM_NOTRAP_P (reg) = 1;
1110 else if (reg_equiv_mem (i))
1111 XEXP (reg_equiv_mem (i), 0) = addr;
1114 /* We don't want complex addressing modes in debug insns
1115 if simpler ones will do, so delegitimize equivalences
1116 in debug insns. */
1117 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1119 rtx reg = regno_reg_rtx[i];
1120 rtx equiv = 0;
1121 df_ref use, next;
1123 if (reg_equiv_constant (i))
1124 equiv = reg_equiv_constant (i);
1125 else if (reg_equiv_invariant (i))
1126 equiv = reg_equiv_invariant (i);
1127 else if (reg && MEM_P (reg))
1128 equiv = targetm.delegitimize_address (reg);
1129 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1130 equiv = reg;
1132 if (equiv == reg)
1133 continue;
1135 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1137 insn = DF_REF_INSN (use);
1139 /* Make sure the next ref is for a different instruction,
1140 so that we're not affected by the rescan. */
1141 next = DF_REF_NEXT_REG (use);
1142 while (next && DF_REF_INSN (next) == insn)
1143 next = DF_REF_NEXT_REG (next);
1145 if (DEBUG_INSN_P (insn))
1147 if (!equiv)
1149 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1150 df_insn_rescan_debug_internal (insn);
1152 else
1153 INSN_VAR_LOCATION_LOC (insn)
1154 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1155 reg, equiv);
1161 /* We must set reload_completed now since the cleanup_subreg_operands call
1162 below will re-recognize each insn and reload may have generated insns
1163 which are only valid during and after reload. */
1164 reload_completed = 1;
1166 /* Make a pass over all the insns and delete all USEs which we inserted
1167 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1168 notes. Delete all CLOBBER insns, except those that refer to the return
1169 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1170 from misarranging variable-array code, and simplify (subreg (reg))
1171 operands. Strip and regenerate REG_INC notes that may have been moved
1172 around. */
1174 for (insn = first; insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn))
1177 rtx *pnote;
1179 if (CALL_P (insn))
1180 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1181 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1183 if ((GET_CODE (PATTERN (insn)) == USE
1184 /* We mark with QImode USEs introduced by reload itself. */
1185 && (GET_MODE (insn) == QImode
1186 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (!MEM_P (XEXP (PATTERN (insn), 0))
1189 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1190 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1191 && XEXP (XEXP (PATTERN (insn), 0), 0)
1192 != stack_pointer_rtx))
1193 && (!REG_P (XEXP (PATTERN (insn), 0))
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1196 delete_insn (insn);
1197 continue;
1200 /* Some CLOBBERs may survive until here and still reference unassigned
1201 pseudos with const equivalent, which may in turn cause ICE in later
1202 passes if the reference remains in place. */
1203 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1204 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1205 VOIDmode, PATTERN (insn));
1207 /* Discard obvious no-ops, even without -O. This optimization
1208 is fast and doesn't interfere with debugging. */
1209 if (NONJUMP_INSN_P (insn)
1210 && GET_CODE (PATTERN (insn)) == SET
1211 && REG_P (SET_SRC (PATTERN (insn)))
1212 && REG_P (SET_DEST (PATTERN (insn)))
1213 && (REGNO (SET_SRC (PATTERN (insn)))
1214 == REGNO (SET_DEST (PATTERN (insn)))))
1216 delete_insn (insn);
1217 continue;
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1231 if (AUTO_INC_DEC)
1232 add_auto_inc_notes (insn, PATTERN (insn));
1234 /* Simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1237 /* Clean up invalid ASMs so that they don't confuse later passes.
1238 See PR 21299. */
1239 if (asm_noperands (PATTERN (insn)) >= 0)
1241 extract_insn (insn);
1242 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1244 error_for_asm (insn,
1245 "%<asm%> operand has impossible constraints");
1246 delete_insn (insn);
1247 continue;
1252 free (temp_pseudo_reg_arr);
1254 /* Indicate that we no longer have known memory locations or constants. */
1255 free_reg_equiv ();
1257 free (reg_max_ref_width);
1258 free (reg_old_renumber);
1259 free (pseudo_previous_regs);
1260 free (pseudo_forbidden_regs);
1262 CLEAR_HARD_REG_SET (used_spill_regs);
1263 for (i = 0; i < n_spills; i++)
1264 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1266 /* Free all the insn_chain structures at once. */
1267 obstack_free (&reload_obstack, reload_startobj);
1268 unused_insn_chains = 0;
1270 inserted = fixup_abnormal_edges ();
1272 /* We've possibly turned single trapping insn into multiple ones. */
1273 if (cfun->can_throw_non_call_exceptions)
1275 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1276 bitmap_ones (blocks);
1277 find_many_sub_basic_blocks (blocks);
1280 if (inserted)
1281 commit_edge_insertions ();
1283 /* Replacing pseudos with their memory equivalents might have
1284 created shared rtx. Subsequent passes would get confused
1285 by this, so unshare everything here. */
1286 unshare_all_rtl_again (first);
1288 #ifdef STACK_BOUNDARY
1289 /* init_emit has set the alignment of the hard frame pointer
1290 to STACK_BOUNDARY. It is very likely no longer valid if
1291 the hard frame pointer was used for register allocation. */
1292 if (!frame_pointer_needed)
1293 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1294 #endif
1296 substitute_stack.release ();
1298 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1300 reload_completed = !failure;
1302 return need_dce;
1305 /* Yet another special case. Unfortunately, reg-stack forces people to
1306 write incorrect clobbers in asm statements. These clobbers must not
1307 cause the register to appear in bad_spill_regs, otherwise we'll call
1308 fatal_insn later. We clear the corresponding regnos in the live
1309 register sets to avoid this.
1310 The whole thing is rather sick, I'm afraid. */
1312 static void
1313 maybe_fix_stack_asms (void)
1315 #ifdef STACK_REGS
1316 const char *constraints[MAX_RECOG_OPERANDS];
1317 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1318 struct insn_chain *chain;
1320 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1322 int i, noperands;
1323 HARD_REG_SET clobbered, allowed;
1324 rtx pat;
1326 if (! INSN_P (chain->insn)
1327 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1328 continue;
1329 pat = PATTERN (chain->insn);
1330 if (GET_CODE (pat) != PARALLEL)
1331 continue;
1333 CLEAR_HARD_REG_SET (clobbered);
1334 CLEAR_HARD_REG_SET (allowed);
1336 /* First, make a mask of all stack regs that are clobbered. */
1337 for (i = 0; i < XVECLEN (pat, 0); i++)
1339 rtx t = XVECEXP (pat, 0, i);
1340 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1341 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1344 /* Get the operand values and constraints out of the insn. */
1345 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1346 constraints, operand_mode, NULL);
1348 /* For every operand, see what registers are allowed. */
1349 for (i = 0; i < noperands; i++)
1351 const char *p = constraints[i];
1352 /* For every alternative, we compute the class of registers allowed
1353 for reloading in CLS, and merge its contents into the reg set
1354 ALLOWED. */
1355 int cls = (int) NO_REGS;
1357 for (;;)
1359 char c = *p;
1361 if (c == '\0' || c == ',' || c == '#')
1363 /* End of one alternative - mark the regs in the current
1364 class, and reset the class. */
1365 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1366 cls = NO_REGS;
1367 p++;
1368 if (c == '#')
1369 do {
1370 c = *p++;
1371 } while (c != '\0' && c != ',');
1372 if (c == '\0')
1373 break;
1374 continue;
1377 switch (c)
1379 case 'g':
1380 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1381 break;
1383 default:
1384 enum constraint_num cn = lookup_constraint (p);
1385 if (insn_extra_address_constraint (cn))
1386 cls = (int) reg_class_subunion[cls]
1387 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1388 ADDRESS, SCRATCH)];
1389 else
1390 cls = (int) reg_class_subunion[cls]
1391 [reg_class_for_constraint (cn)];
1392 break;
1394 p += CONSTRAINT_LEN (c, p);
1397 /* Those of the registers which are clobbered, but allowed by the
1398 constraints, must be usable as reload registers. So clear them
1399 out of the life information. */
1400 AND_HARD_REG_SET (allowed, clobbered);
1401 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1402 if (TEST_HARD_REG_BIT (allowed, i))
1404 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1405 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1409 #endif
1412 /* Copy the global variables n_reloads and rld into the corresponding elts
1413 of CHAIN. */
1414 static void
1415 copy_reloads (struct insn_chain *chain)
1417 chain->n_reloads = n_reloads;
1418 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1419 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1420 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1423 /* Walk the chain of insns, and determine for each whether it needs reloads
1424 and/or eliminations. Build the corresponding insns_need_reload list, and
1425 set something_needs_elimination as appropriate. */
1426 static void
1427 calculate_needs_all_insns (int global)
1429 struct insn_chain **pprev_reload = &insns_need_reload;
1430 struct insn_chain *chain, *next = 0;
1432 something_needs_elimination = 0;
1434 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1435 for (chain = reload_insn_chain; chain != 0; chain = next)
1437 rtx_insn *insn = chain->insn;
1439 next = chain->next;
1441 /* Clear out the shortcuts. */
1442 chain->n_reloads = 0;
1443 chain->need_elim = 0;
1444 chain->need_reload = 0;
1445 chain->need_operand_change = 0;
1447 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1448 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1449 what effects this has on the known offsets at labels. */
1451 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1452 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1453 set_label_offsets (insn, insn, 0);
1455 if (INSN_P (insn))
1457 rtx old_body = PATTERN (insn);
1458 int old_code = INSN_CODE (insn);
1459 rtx old_notes = REG_NOTES (insn);
1460 int did_elimination = 0;
1461 int operands_changed = 0;
1463 /* Skip insns that only set an equivalence. */
1464 if (will_delete_init_insn_p (insn))
1465 continue;
1467 /* If needed, eliminate any eliminable registers. */
1468 if (num_eliminable || num_eliminable_invariants)
1469 did_elimination = eliminate_regs_in_insn (insn, 0);
1471 /* Analyze the instruction. */
1472 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1473 global, spill_reg_order);
1475 /* If a no-op set needs more than one reload, this is likely
1476 to be something that needs input address reloads. We
1477 can't get rid of this cleanly later, and it is of no use
1478 anyway, so discard it now.
1479 We only do this when expensive_optimizations is enabled,
1480 since this complements reload inheritance / output
1481 reload deletion, and it can make debugging harder. */
1482 if (flag_expensive_optimizations && n_reloads > 1)
1484 rtx set = single_set (insn);
1485 if (set
1487 ((SET_SRC (set) == SET_DEST (set)
1488 && REG_P (SET_SRC (set))
1489 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1490 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1491 && reg_renumber[REGNO (SET_SRC (set))] < 0
1492 && reg_renumber[REGNO (SET_DEST (set))] < 0
1493 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1494 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1495 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1496 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1498 if (ira_conflicts_p)
1499 /* Inform IRA about the insn deletion. */
1500 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1501 REGNO (SET_SRC (set)));
1502 delete_insn (insn);
1503 /* Delete it from the reload chain. */
1504 if (chain->prev)
1505 chain->prev->next = next;
1506 else
1507 reload_insn_chain = next;
1508 if (next)
1509 next->prev = chain->prev;
1510 chain->next = unused_insn_chains;
1511 unused_insn_chains = chain;
1512 continue;
1515 if (num_eliminable)
1516 update_eliminable_offsets ();
1518 /* Remember for later shortcuts which insns had any reloads or
1519 register eliminations. */
1520 chain->need_elim = did_elimination;
1521 chain->need_reload = n_reloads > 0;
1522 chain->need_operand_change = operands_changed;
1524 /* Discard any register replacements done. */
1525 if (did_elimination)
1527 obstack_free (&reload_obstack, reload_insn_firstobj);
1528 PATTERN (insn) = old_body;
1529 INSN_CODE (insn) = old_code;
1530 REG_NOTES (insn) = old_notes;
1531 something_needs_elimination = 1;
1534 something_needs_operands_changed |= operands_changed;
1536 if (n_reloads != 0)
1538 copy_reloads (chain);
1539 *pprev_reload = chain;
1540 pprev_reload = &chain->next_need_reload;
1544 *pprev_reload = 0;
1547 /* This function is called from the register allocator to set up estimates
1548 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1549 an invariant. The structure is similar to calculate_needs_all_insns. */
1551 void
1552 calculate_elim_costs_all_insns (void)
1554 int *reg_equiv_init_cost;
1555 basic_block bb;
1556 int i;
1558 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1559 init_elim_table ();
1560 init_eliminable_invariants (get_insns (), false);
1562 set_initial_elim_offsets ();
1563 set_initial_label_offsets ();
1565 FOR_EACH_BB_FN (bb, cfun)
1567 rtx_insn *insn;
1568 elim_bb = bb;
1570 FOR_BB_INSNS (bb, insn)
1572 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1573 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1574 what effects this has on the known offsets at labels. */
1576 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1577 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1578 set_label_offsets (insn, insn, 0);
1580 if (INSN_P (insn))
1582 rtx set = single_set (insn);
1584 /* Skip insns that only set an equivalence. */
1585 if (set && REG_P (SET_DEST (set))
1586 && reg_renumber[REGNO (SET_DEST (set))] < 0
1587 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1588 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1590 unsigned regno = REGNO (SET_DEST (set));
1591 rtx_insn_list *init = reg_equiv_init (regno);
1592 if (init)
1594 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1595 false, true);
1596 machine_mode mode = GET_MODE (SET_DEST (set));
1597 int cost = set_src_cost (t, mode,
1598 optimize_bb_for_speed_p (bb));
1599 int freq = REG_FREQ_FROM_BB (bb);
1601 reg_equiv_init_cost[regno] = cost * freq;
1602 continue;
1605 /* If needed, eliminate any eliminable registers. */
1606 if (num_eliminable || num_eliminable_invariants)
1607 elimination_costs_in_insn (insn);
1609 if (num_eliminable)
1610 update_eliminable_offsets ();
1614 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1616 if (reg_equiv_invariant (i))
1618 if (reg_equiv_init (i))
1620 int cost = reg_equiv_init_cost[i];
1621 if (dump_file)
1622 fprintf (dump_file,
1623 "Reg %d has equivalence, initial gains %d\n", i, cost);
1624 if (cost != 0)
1625 ira_adjust_equiv_reg_cost (i, cost);
1627 else
1629 if (dump_file)
1630 fprintf (dump_file,
1631 "Reg %d had equivalence, but can't be eliminated\n",
1633 ira_adjust_equiv_reg_cost (i, 0);
1638 free (reg_equiv_init_cost);
1639 free (offsets_known_at);
1640 free (offsets_at);
1641 offsets_at = NULL;
1642 offsets_known_at = NULL;
1645 /* Comparison function for qsort to decide which of two reloads
1646 should be handled first. *P1 and *P2 are the reload numbers. */
1648 static int
1649 reload_reg_class_lower (const void *r1p, const void *r2p)
1651 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1652 int t;
1654 /* Consider required reloads before optional ones. */
1655 t = rld[r1].optional - rld[r2].optional;
1656 if (t != 0)
1657 return t;
1659 /* Count all solitary classes before non-solitary ones. */
1660 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1661 - (reg_class_size[(int) rld[r1].rclass] == 1));
1662 if (t != 0)
1663 return t;
1665 /* Aside from solitaires, consider all multi-reg groups first. */
1666 t = rld[r2].nregs - rld[r1].nregs;
1667 if (t != 0)
1668 return t;
1670 /* Consider reloads in order of increasing reg-class number. */
1671 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1672 if (t != 0)
1673 return t;
1675 /* If reloads are equally urgent, sort by reload number,
1676 so that the results of qsort leave nothing to chance. */
1677 return r1 - r2;
1680 /* The cost of spilling each hard reg. */
1681 static int spill_cost[FIRST_PSEUDO_REGISTER];
1683 /* When spilling multiple hard registers, we use SPILL_COST for the first
1684 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1685 only the first hard reg for a multi-reg pseudo. */
1686 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1688 /* Map of hard regno to pseudo regno currently occupying the hard
1689 reg. */
1690 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1692 /* Update the spill cost arrays, considering that pseudo REG is live. */
1694 static void
1695 count_pseudo (int reg)
1697 int freq = REG_FREQ (reg);
1698 int r = reg_renumber[reg];
1699 int nregs;
1701 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1702 if (ira_conflicts_p && r < 0)
1703 return;
1705 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1706 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1707 return;
1709 SET_REGNO_REG_SET (&pseudos_counted, reg);
1711 gcc_assert (r >= 0);
1713 spill_add_cost[r] += freq;
1714 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1715 while (nregs-- > 0)
1717 hard_regno_to_pseudo_regno[r + nregs] = reg;
1718 spill_cost[r + nregs] += freq;
1722 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1723 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1725 static void
1726 order_regs_for_reload (struct insn_chain *chain)
1728 unsigned i;
1729 HARD_REG_SET used_by_pseudos;
1730 HARD_REG_SET used_by_pseudos2;
1731 reg_set_iterator rsi;
1733 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1735 memset (spill_cost, 0, sizeof spill_cost);
1736 memset (spill_add_cost, 0, sizeof spill_add_cost);
1737 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1738 hard_regno_to_pseudo_regno[i] = -1;
1740 /* Count number of uses of each hard reg by pseudo regs allocated to it
1741 and then order them by decreasing use. First exclude hard registers
1742 that are live in or across this insn. */
1744 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1745 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1746 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1747 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1749 /* Now find out which pseudos are allocated to it, and update
1750 hard_reg_n_uses. */
1751 CLEAR_REG_SET (&pseudos_counted);
1753 EXECUTE_IF_SET_IN_REG_SET
1754 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1756 count_pseudo (i);
1758 EXECUTE_IF_SET_IN_REG_SET
1759 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1761 count_pseudo (i);
1763 CLEAR_REG_SET (&pseudos_counted);
1766 /* Vector of reload-numbers showing the order in which the reloads should
1767 be processed. */
1768 static short reload_order[MAX_RELOADS];
1770 /* This is used to keep track of the spill regs used in one insn. */
1771 static HARD_REG_SET used_spill_regs_local;
1773 /* We decided to spill hard register SPILLED, which has a size of
1774 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1775 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1776 update SPILL_COST/SPILL_ADD_COST. */
1778 static void
1779 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1781 int freq = REG_FREQ (reg);
1782 int r = reg_renumber[reg];
1783 int nregs;
1785 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1786 if (ira_conflicts_p && r < 0)
1787 return;
1789 gcc_assert (r >= 0);
1791 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1793 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1794 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1795 return;
1797 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1799 spill_add_cost[r] -= freq;
1800 while (nregs-- > 0)
1802 hard_regno_to_pseudo_regno[r + nregs] = -1;
1803 spill_cost[r + nregs] -= freq;
1807 /* Find reload register to use for reload number ORDER. */
1809 static int
1810 find_reg (struct insn_chain *chain, int order)
1812 int rnum = reload_order[order];
1813 struct reload *rl = rld + rnum;
1814 int best_cost = INT_MAX;
1815 int best_reg = -1;
1816 unsigned int i, j, n;
1817 int k;
1818 HARD_REG_SET not_usable;
1819 HARD_REG_SET used_by_other_reload;
1820 reg_set_iterator rsi;
1821 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1822 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1824 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1825 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1826 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1828 CLEAR_HARD_REG_SET (used_by_other_reload);
1829 for (k = 0; k < order; k++)
1831 int other = reload_order[k];
1833 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1834 for (j = 0; j < rld[other].nregs; j++)
1835 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1838 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1840 #ifdef REG_ALLOC_ORDER
1841 unsigned int regno = reg_alloc_order[i];
1842 #else
1843 unsigned int regno = i;
1844 #endif
1846 if (! TEST_HARD_REG_BIT (not_usable, regno)
1847 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1848 && HARD_REGNO_MODE_OK (regno, rl->mode))
1850 int this_cost = spill_cost[regno];
1851 int ok = 1;
1852 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1854 for (j = 1; j < this_nregs; j++)
1856 this_cost += spill_add_cost[regno + j];
1857 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1858 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1859 ok = 0;
1861 if (! ok)
1862 continue;
1864 if (ira_conflicts_p)
1866 /* Ask IRA to find a better pseudo-register for
1867 spilling. */
1868 for (n = j = 0; j < this_nregs; j++)
1870 int r = hard_regno_to_pseudo_regno[regno + j];
1872 if (r < 0)
1873 continue;
1874 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1875 regno_pseudo_regs[n++] = r;
1877 regno_pseudo_regs[n++] = -1;
1878 if (best_reg < 0
1879 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1880 best_regno_pseudo_regs,
1881 rl->in, rl->out,
1882 chain->insn))
1884 best_reg = regno;
1885 for (j = 0;; j++)
1887 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1888 if (regno_pseudo_regs[j] < 0)
1889 break;
1892 continue;
1895 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1896 this_cost--;
1897 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1898 this_cost--;
1899 if (this_cost < best_cost
1900 /* Among registers with equal cost, prefer caller-saved ones, or
1901 use REG_ALLOC_ORDER if it is defined. */
1902 || (this_cost == best_cost
1903 #ifdef REG_ALLOC_ORDER
1904 && (inv_reg_alloc_order[regno]
1905 < inv_reg_alloc_order[best_reg])
1906 #else
1907 && call_used_regs[regno]
1908 && ! call_used_regs[best_reg]
1909 #endif
1912 best_reg = regno;
1913 best_cost = this_cost;
1917 if (best_reg == -1)
1918 return 0;
1920 if (dump_file)
1921 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1923 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1924 rl->regno = best_reg;
1926 EXECUTE_IF_SET_IN_REG_SET
1927 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1929 count_spilled_pseudo (best_reg, rl->nregs, j);
1932 EXECUTE_IF_SET_IN_REG_SET
1933 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1935 count_spilled_pseudo (best_reg, rl->nregs, j);
1938 for (i = 0; i < rl->nregs; i++)
1940 gcc_assert (spill_cost[best_reg + i] == 0);
1941 gcc_assert (spill_add_cost[best_reg + i] == 0);
1942 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1943 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1945 return 1;
1948 /* Find more reload regs to satisfy the remaining need of an insn, which
1949 is given by CHAIN.
1950 Do it by ascending class number, since otherwise a reg
1951 might be spilled for a big class and might fail to count
1952 for a smaller class even though it belongs to that class. */
1954 static void
1955 find_reload_regs (struct insn_chain *chain)
1957 int i;
1959 /* In order to be certain of getting the registers we need,
1960 we must sort the reloads into order of increasing register class.
1961 Then our grabbing of reload registers will parallel the process
1962 that provided the reload registers. */
1963 for (i = 0; i < chain->n_reloads; i++)
1965 /* Show whether this reload already has a hard reg. */
1966 if (chain->rld[i].reg_rtx)
1968 int regno = REGNO (chain->rld[i].reg_rtx);
1969 chain->rld[i].regno = regno;
1970 chain->rld[i].nregs
1971 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1973 else
1974 chain->rld[i].regno = -1;
1975 reload_order[i] = i;
1978 n_reloads = chain->n_reloads;
1979 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1981 CLEAR_HARD_REG_SET (used_spill_regs_local);
1983 if (dump_file)
1984 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1986 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1988 /* Compute the order of preference for hard registers to spill. */
1990 order_regs_for_reload (chain);
1992 for (i = 0; i < n_reloads; i++)
1994 int r = reload_order[i];
1996 /* Ignore reloads that got marked inoperative. */
1997 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1998 && ! rld[r].optional
1999 && rld[r].regno == -1)
2000 if (! find_reg (chain, i))
2002 if (dump_file)
2003 fprintf (dump_file, "reload failure for reload %d\n", r);
2004 spill_failure (chain->insn, rld[r].rclass);
2005 failure = 1;
2006 return;
2010 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2011 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2013 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2016 static void
2017 select_reload_regs (void)
2019 struct insn_chain *chain;
2021 /* Try to satisfy the needs for each insn. */
2022 for (chain = insns_need_reload; chain != 0;
2023 chain = chain->next_need_reload)
2024 find_reload_regs (chain);
2027 /* Delete all insns that were inserted by emit_caller_save_insns during
2028 this iteration. */
2029 static void
2030 delete_caller_save_insns (void)
2032 struct insn_chain *c = reload_insn_chain;
2034 while (c != 0)
2036 while (c != 0 && c->is_caller_save_insn)
2038 struct insn_chain *next = c->next;
2039 rtx_insn *insn = c->insn;
2041 if (c == reload_insn_chain)
2042 reload_insn_chain = next;
2043 delete_insn (insn);
2045 if (next)
2046 next->prev = c->prev;
2047 if (c->prev)
2048 c->prev->next = next;
2049 c->next = unused_insn_chains;
2050 unused_insn_chains = c;
2051 c = next;
2053 if (c != 0)
2054 c = c->next;
2058 /* Handle the failure to find a register to spill.
2059 INSN should be one of the insns which needed this particular spill reg. */
2061 static void
2062 spill_failure (rtx_insn *insn, enum reg_class rclass)
2064 if (asm_noperands (PATTERN (insn)) >= 0)
2065 error_for_asm (insn, "can%'t find a register in class %qs while "
2066 "reloading %<asm%>",
2067 reg_class_names[rclass]);
2068 else
2070 error ("unable to find a register to spill in class %qs",
2071 reg_class_names[rclass]);
2073 if (dump_file)
2075 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2076 debug_reload_to_stream (dump_file);
2078 fatal_insn ("this is the insn:", insn);
2082 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2083 data that is dead in INSN. */
2085 static void
2086 delete_dead_insn (rtx_insn *insn)
2088 rtx_insn *prev = prev_active_insn (insn);
2089 rtx prev_dest;
2091 /* If the previous insn sets a register that dies in our insn make
2092 a note that we want to run DCE immediately after reload.
2094 We used to delete the previous insn & recurse, but that's wrong for
2095 block local equivalences. Instead of trying to figure out the exact
2096 circumstances where we can delete the potentially dead insns, just
2097 let DCE do the job. */
2098 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2099 && GET_CODE (PATTERN (prev)) == SET
2100 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2101 && reg_mentioned_p (prev_dest, PATTERN (insn))
2102 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2103 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2104 need_dce = 1;
2106 SET_INSN_DELETED (insn);
2109 /* Modify the home of pseudo-reg I.
2110 The new home is present in reg_renumber[I].
2112 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2113 or it may be -1, meaning there is none or it is not relevant.
2114 This is used so that all pseudos spilled from a given hard reg
2115 can share one stack slot. */
2117 static void
2118 alter_reg (int i, int from_reg, bool dont_share_p)
2120 /* When outputting an inline function, this can happen
2121 for a reg that isn't actually used. */
2122 if (regno_reg_rtx[i] == 0)
2123 return;
2125 /* If the reg got changed to a MEM at rtl-generation time,
2126 ignore it. */
2127 if (!REG_P (regno_reg_rtx[i]))
2128 return;
2130 /* Modify the reg-rtx to contain the new hard reg
2131 number or else to contain its pseudo reg number. */
2132 SET_REGNO (regno_reg_rtx[i],
2133 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2135 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2136 allocate a stack slot for it. */
2138 if (reg_renumber[i] < 0
2139 && REG_N_REFS (i) > 0
2140 && reg_equiv_constant (i) == 0
2141 && (reg_equiv_invariant (i) == 0
2142 || reg_equiv_init (i) == 0)
2143 && reg_equiv_memory_loc (i) == 0)
2145 rtx x = NULL_RTX;
2146 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2147 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2148 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2149 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2150 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2151 int adjust = 0;
2153 something_was_spilled = true;
2155 if (ira_conflicts_p)
2157 /* Mark the spill for IRA. */
2158 SET_REGNO_REG_SET (&spilled_pseudos, i);
2159 if (!dont_share_p)
2160 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2163 if (x)
2166 /* Each pseudo reg has an inherent size which comes from its own mode,
2167 and a total size which provides room for paradoxical subregs
2168 which refer to the pseudo reg in wider modes.
2170 We can use a slot already allocated if it provides both
2171 enough inherent space and enough total space.
2172 Otherwise, we allocate a new slot, making sure that it has no less
2173 inherent space, and no less total space, then the previous slot. */
2174 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2176 rtx stack_slot;
2178 /* No known place to spill from => no slot to reuse. */
2179 x = assign_stack_local (mode, total_size,
2180 min_align > inherent_align
2181 || total_size > inherent_size ? -1 : 0);
2183 stack_slot = x;
2185 /* Cancel the big-endian correction done in assign_stack_local.
2186 Get the address of the beginning of the slot. This is so we
2187 can do a big-endian correction unconditionally below. */
2188 if (BYTES_BIG_ENDIAN)
2190 adjust = inherent_size - total_size;
2191 if (adjust)
2192 stack_slot
2193 = adjust_address_nv (x, mode_for_size (total_size
2194 * BITS_PER_UNIT,
2195 MODE_INT, 1),
2196 adjust);
2199 if (! dont_share_p && ira_conflicts_p)
2200 /* Inform IRA about allocation a new stack slot. */
2201 ira_mark_new_stack_slot (stack_slot, i, total_size);
2204 /* Reuse a stack slot if possible. */
2205 else if (spill_stack_slot[from_reg] != 0
2206 && spill_stack_slot_width[from_reg] >= total_size
2207 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2208 >= inherent_size)
2209 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2210 x = spill_stack_slot[from_reg];
2212 /* Allocate a bigger slot. */
2213 else
2215 /* Compute maximum size needed, both for inherent size
2216 and for total size. */
2217 rtx stack_slot;
2219 if (spill_stack_slot[from_reg])
2221 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2222 > inherent_size)
2223 mode = GET_MODE (spill_stack_slot[from_reg]);
2224 if (spill_stack_slot_width[from_reg] > total_size)
2225 total_size = spill_stack_slot_width[from_reg];
2226 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2227 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2230 /* Make a slot with that size. */
2231 x = assign_stack_local (mode, total_size,
2232 min_align > inherent_align
2233 || total_size > inherent_size ? -1 : 0);
2234 stack_slot = x;
2236 /* Cancel the big-endian correction done in assign_stack_local.
2237 Get the address of the beginning of the slot. This is so we
2238 can do a big-endian correction unconditionally below. */
2239 if (BYTES_BIG_ENDIAN)
2241 adjust = GET_MODE_SIZE (mode) - total_size;
2242 if (adjust)
2243 stack_slot
2244 = adjust_address_nv (x, mode_for_size (total_size
2245 * BITS_PER_UNIT,
2246 MODE_INT, 1),
2247 adjust);
2250 spill_stack_slot[from_reg] = stack_slot;
2251 spill_stack_slot_width[from_reg] = total_size;
2254 /* On a big endian machine, the "address" of the slot
2255 is the address of the low part that fits its inherent mode. */
2256 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2257 adjust += (total_size - inherent_size);
2259 /* If we have any adjustment to make, or if the stack slot is the
2260 wrong mode, make a new stack slot. */
2261 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2263 /* Set all of the memory attributes as appropriate for a spill. */
2264 set_mem_attrs_for_spill (x);
2266 /* Save the stack slot for later. */
2267 reg_equiv_memory_loc (i) = x;
2271 /* Mark the slots in regs_ever_live for the hard regs used by
2272 pseudo-reg number REGNO, accessed in MODE. */
2274 static void
2275 mark_home_live_1 (int regno, machine_mode mode)
2277 int i, lim;
2279 i = reg_renumber[regno];
2280 if (i < 0)
2281 return;
2282 lim = end_hard_regno (mode, i);
2283 while (i < lim)
2284 df_set_regs_ever_live (i++, true);
2287 /* Mark the slots in regs_ever_live for the hard regs
2288 used by pseudo-reg number REGNO. */
2290 void
2291 mark_home_live (int regno)
2293 if (reg_renumber[regno] >= 0)
2294 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2297 /* This function handles the tracking of elimination offsets around branches.
2299 X is a piece of RTL being scanned.
2301 INSN is the insn that it came from, if any.
2303 INITIAL_P is nonzero if we are to set the offset to be the initial
2304 offset and zero if we are setting the offset of the label to be the
2305 current offset. */
2307 static void
2308 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2310 enum rtx_code code = GET_CODE (x);
2311 rtx tem;
2312 unsigned int i;
2313 struct elim_table *p;
2315 switch (code)
2317 case LABEL_REF:
2318 if (LABEL_REF_NONLOCAL_P (x))
2319 return;
2321 x = label_ref_label (x);
2323 /* fall through */
2325 case CODE_LABEL:
2326 /* If we know nothing about this label, set the desired offsets. Note
2327 that this sets the offset at a label to be the offset before a label
2328 if we don't know anything about the label. This is not correct for
2329 the label after a BARRIER, but is the best guess we can make. If
2330 we guessed wrong, we will suppress an elimination that might have
2331 been possible had we been able to guess correctly. */
2333 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2335 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2336 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2337 = (initial_p ? reg_eliminate[i].initial_offset
2338 : reg_eliminate[i].offset);
2339 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2342 /* Otherwise, if this is the definition of a label and it is
2343 preceded by a BARRIER, set our offsets to the known offset of
2344 that label. */
2346 else if (x == insn
2347 && (tem = prev_nonnote_insn (insn)) != 0
2348 && BARRIER_P (tem))
2349 set_offsets_for_label (insn);
2350 else
2351 /* If neither of the above cases is true, compare each offset
2352 with those previously recorded and suppress any eliminations
2353 where the offsets disagree. */
2355 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2356 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2357 != (initial_p ? reg_eliminate[i].initial_offset
2358 : reg_eliminate[i].offset))
2359 reg_eliminate[i].can_eliminate = 0;
2361 return;
2363 case JUMP_TABLE_DATA:
2364 set_label_offsets (PATTERN (insn), insn, initial_p);
2365 return;
2367 case JUMP_INSN:
2368 set_label_offsets (PATTERN (insn), insn, initial_p);
2370 /* fall through */
2372 case INSN:
2373 case CALL_INSN:
2374 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2375 to indirectly and hence must have all eliminations at their
2376 initial offsets. */
2377 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2378 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2379 set_label_offsets (XEXP (tem, 0), insn, 1);
2380 return;
2382 case PARALLEL:
2383 case ADDR_VEC:
2384 case ADDR_DIFF_VEC:
2385 /* Each of the labels in the parallel or address vector must be
2386 at their initial offsets. We want the first field for PARALLEL
2387 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2389 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2390 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2391 insn, initial_p);
2392 return;
2394 case SET:
2395 /* We only care about setting PC. If the source is not RETURN,
2396 IF_THEN_ELSE, or a label, disable any eliminations not at
2397 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2398 isn't one of those possibilities. For branches to a label,
2399 call ourselves recursively.
2401 Note that this can disable elimination unnecessarily when we have
2402 a non-local goto since it will look like a non-constant jump to
2403 someplace in the current function. This isn't a significant
2404 problem since such jumps will normally be when all elimination
2405 pairs are back to their initial offsets. */
2407 if (SET_DEST (x) != pc_rtx)
2408 return;
2410 switch (GET_CODE (SET_SRC (x)))
2412 case PC:
2413 case RETURN:
2414 return;
2416 case LABEL_REF:
2417 set_label_offsets (SET_SRC (x), insn, initial_p);
2418 return;
2420 case IF_THEN_ELSE:
2421 tem = XEXP (SET_SRC (x), 1);
2422 if (GET_CODE (tem) == LABEL_REF)
2423 set_label_offsets (label_ref_label (tem), insn, initial_p);
2424 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2425 break;
2427 tem = XEXP (SET_SRC (x), 2);
2428 if (GET_CODE (tem) == LABEL_REF)
2429 set_label_offsets (label_ref_label (tem), insn, initial_p);
2430 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2431 break;
2432 return;
2434 default:
2435 break;
2438 /* If we reach here, all eliminations must be at their initial
2439 offset because we are doing a jump to a variable address. */
2440 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2441 if (p->offset != p->initial_offset)
2442 p->can_eliminate = 0;
2443 break;
2445 default:
2446 break;
2450 /* This function examines every reg that occurs in X and adjusts the
2451 costs for its elimination which are gathered by IRA. INSN is the
2452 insn in which X occurs. We do not recurse into MEM expressions. */
2454 static void
2455 note_reg_elim_costly (const_rtx x, rtx insn)
2457 subrtx_iterator::array_type array;
2458 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2460 const_rtx x = *iter;
2461 if (MEM_P (x))
2462 iter.skip_subrtxes ();
2463 else if (REG_P (x)
2464 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2465 && reg_equiv_init (REGNO (x))
2466 && reg_equiv_invariant (REGNO (x)))
2468 rtx t = reg_equiv_invariant (REGNO (x));
2469 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2470 int cost = set_src_cost (new_rtx, Pmode,
2471 optimize_bb_for_speed_p (elim_bb));
2472 int freq = REG_FREQ_FROM_BB (elim_bb);
2474 if (cost != 0)
2475 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2480 /* Scan X and replace any eliminable registers (such as fp) with a
2481 replacement (such as sp), plus an offset.
2483 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2484 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2485 MEM, we are allowed to replace a sum of a register and the constant zero
2486 with the register, which we cannot do outside a MEM. In addition, we need
2487 to record the fact that a register is referenced outside a MEM.
2489 If INSN is an insn, it is the insn containing X. If we replace a REG
2490 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2491 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2492 the REG is being modified.
2494 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2495 That's used when we eliminate in expressions stored in notes.
2496 This means, do not set ref_outside_mem even if the reference
2497 is outside of MEMs.
2499 If FOR_COSTS is true, we are being called before reload in order to
2500 estimate the costs of keeping registers with an equivalence unallocated.
2502 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2503 replacements done assuming all offsets are at their initial values. If
2504 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2505 encounter, return the actual location so that find_reloads will do
2506 the proper thing. */
2508 static rtx
2509 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2510 bool may_use_invariant, bool for_costs)
2512 enum rtx_code code = GET_CODE (x);
2513 struct elim_table *ep;
2514 int regno;
2515 rtx new_rtx;
2516 int i, j;
2517 const char *fmt;
2518 int copied = 0;
2520 if (! current_function_decl)
2521 return x;
2523 switch (code)
2525 CASE_CONST_ANY:
2526 case CONST:
2527 case SYMBOL_REF:
2528 case CODE_LABEL:
2529 case PC:
2530 case CC0:
2531 case ASM_INPUT:
2532 case ADDR_VEC:
2533 case ADDR_DIFF_VEC:
2534 case RETURN:
2535 return x;
2537 case REG:
2538 regno = REGNO (x);
2540 /* First handle the case where we encounter a bare register that
2541 is eliminable. Replace it with a PLUS. */
2542 if (regno < FIRST_PSEUDO_REGISTER)
2544 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2545 ep++)
2546 if (ep->from_rtx == x && ep->can_eliminate)
2547 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2550 else if (reg_renumber && reg_renumber[regno] < 0
2551 && reg_equivs
2552 && reg_equiv_invariant (regno))
2554 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2555 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2556 mem_mode, insn, true, for_costs);
2557 /* There exists at least one use of REGNO that cannot be
2558 eliminated. Prevent the defining insn from being deleted. */
2559 reg_equiv_init (regno) = NULL;
2560 if (!for_costs)
2561 alter_reg (regno, -1, true);
2563 return x;
2565 /* You might think handling MINUS in a manner similar to PLUS is a
2566 good idea. It is not. It has been tried multiple times and every
2567 time the change has had to have been reverted.
2569 Other parts of reload know a PLUS is special (gen_reload for example)
2570 and require special code to handle code a reloaded PLUS operand.
2572 Also consider backends where the flags register is clobbered by a
2573 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2574 lea instruction comes to mind). If we try to reload a MINUS, we
2575 may kill the flags register that was holding a useful value.
2577 So, please before trying to handle MINUS, consider reload as a
2578 whole instead of this little section as well as the backend issues. */
2579 case PLUS:
2580 /* If this is the sum of an eliminable register and a constant, rework
2581 the sum. */
2582 if (REG_P (XEXP (x, 0))
2583 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2584 && CONSTANT_P (XEXP (x, 1)))
2586 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2587 ep++)
2588 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2590 /* The only time we want to replace a PLUS with a REG (this
2591 occurs when the constant operand of the PLUS is the negative
2592 of the offset) is when we are inside a MEM. We won't want
2593 to do so at other times because that would change the
2594 structure of the insn in a way that reload can't handle.
2595 We special-case the commonest situation in
2596 eliminate_regs_in_insn, so just replace a PLUS with a
2597 PLUS here, unless inside a MEM. */
2598 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2599 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2600 return ep->to_rtx;
2601 else
2602 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2603 plus_constant (Pmode, XEXP (x, 1),
2604 ep->previous_offset));
2607 /* If the register is not eliminable, we are done since the other
2608 operand is a constant. */
2609 return x;
2612 /* If this is part of an address, we want to bring any constant to the
2613 outermost PLUS. We will do this by doing register replacement in
2614 our operands and seeing if a constant shows up in one of them.
2616 Note that there is no risk of modifying the structure of the insn,
2617 since we only get called for its operands, thus we are either
2618 modifying the address inside a MEM, or something like an address
2619 operand of a load-address insn. */
2622 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2623 for_costs);
2624 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2625 for_costs);
2627 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2629 /* If one side is a PLUS and the other side is a pseudo that
2630 didn't get a hard register but has a reg_equiv_constant,
2631 we must replace the constant here since it may no longer
2632 be in the position of any operand. */
2633 if (GET_CODE (new0) == PLUS && REG_P (new1)
2634 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2635 && reg_renumber[REGNO (new1)] < 0
2636 && reg_equivs
2637 && reg_equiv_constant (REGNO (new1)) != 0)
2638 new1 = reg_equiv_constant (REGNO (new1));
2639 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2640 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2641 && reg_renumber[REGNO (new0)] < 0
2642 && reg_equiv_constant (REGNO (new0)) != 0)
2643 new0 = reg_equiv_constant (REGNO (new0));
2645 new_rtx = form_sum (GET_MODE (x), new0, new1);
2647 /* As above, if we are not inside a MEM we do not want to
2648 turn a PLUS into something else. We might try to do so here
2649 for an addition of 0 if we aren't optimizing. */
2650 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2651 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2652 else
2653 return new_rtx;
2656 return x;
2658 case MULT:
2659 /* If this is the product of an eliminable register and a
2660 constant, apply the distribute law and move the constant out
2661 so that we have (plus (mult ..) ..). This is needed in order
2662 to keep load-address insns valid. This case is pathological.
2663 We ignore the possibility of overflow here. */
2664 if (REG_P (XEXP (x, 0))
2665 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2666 && CONST_INT_P (XEXP (x, 1)))
2667 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2668 ep++)
2669 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2671 if (! mem_mode
2672 /* Refs inside notes or in DEBUG_INSNs don't count for
2673 this purpose. */
2674 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2675 || GET_CODE (insn) == INSN_LIST
2676 || DEBUG_INSN_P (insn))))
2677 ep->ref_outside_mem = 1;
2679 return
2680 plus_constant (Pmode,
2681 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2682 ep->previous_offset * INTVAL (XEXP (x, 1)));
2685 /* fall through */
2687 case CALL:
2688 case COMPARE:
2689 /* See comments before PLUS about handling MINUS. */
2690 case MINUS:
2691 case DIV: case UDIV:
2692 case MOD: case UMOD:
2693 case AND: case IOR: case XOR:
2694 case ROTATERT: case ROTATE:
2695 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2696 case NE: case EQ:
2697 case GE: case GT: case GEU: case GTU:
2698 case LE: case LT: case LEU: case LTU:
2700 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2701 for_costs);
2702 rtx new1 = XEXP (x, 1)
2703 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2704 for_costs) : 0;
2706 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2707 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2709 return x;
2711 case EXPR_LIST:
2712 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2713 if (XEXP (x, 0))
2715 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2716 for_costs);
2717 if (new_rtx != XEXP (x, 0))
2719 /* If this is a REG_DEAD note, it is not valid anymore.
2720 Using the eliminated version could result in creating a
2721 REG_DEAD note for the stack or frame pointer. */
2722 if (REG_NOTE_KIND (x) == REG_DEAD)
2723 return (XEXP (x, 1)
2724 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2725 for_costs)
2726 : NULL_RTX);
2728 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2732 /* fall through */
2734 case INSN_LIST:
2735 case INT_LIST:
2736 /* Now do eliminations in the rest of the chain. If this was
2737 an EXPR_LIST, this might result in allocating more memory than is
2738 strictly needed, but it simplifies the code. */
2739 if (XEXP (x, 1))
2741 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2742 for_costs);
2743 if (new_rtx != XEXP (x, 1))
2744 return
2745 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2747 return x;
2749 case PRE_INC:
2750 case POST_INC:
2751 case PRE_DEC:
2752 case POST_DEC:
2753 /* We do not support elimination of a register that is modified.
2754 elimination_effects has already make sure that this does not
2755 happen. */
2756 return x;
2758 case PRE_MODIFY:
2759 case POST_MODIFY:
2760 /* We do not support elimination of a register that is modified.
2761 elimination_effects has already make sure that this does not
2762 happen. The only remaining case we need to consider here is
2763 that the increment value may be an eliminable register. */
2764 if (GET_CODE (XEXP (x, 1)) == PLUS
2765 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2767 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2768 insn, true, for_costs);
2770 if (new_rtx != XEXP (XEXP (x, 1), 1))
2771 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2772 gen_rtx_PLUS (GET_MODE (x),
2773 XEXP (x, 0), new_rtx));
2775 return x;
2777 case STRICT_LOW_PART:
2778 case NEG: case NOT:
2779 case SIGN_EXTEND: case ZERO_EXTEND:
2780 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2781 case FLOAT: case FIX:
2782 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2783 case ABS:
2784 case SQRT:
2785 case FFS:
2786 case CLZ:
2787 case CTZ:
2788 case POPCOUNT:
2789 case PARITY:
2790 case BSWAP:
2791 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2792 for_costs);
2793 if (new_rtx != XEXP (x, 0))
2794 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2795 return x;
2797 case SUBREG:
2798 /* Similar to above processing, but preserve SUBREG_BYTE.
2799 Convert (subreg (mem)) to (mem) if not paradoxical.
2800 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2801 pseudo didn't get a hard reg, we must replace this with the
2802 eliminated version of the memory location because push_reload
2803 may do the replacement in certain circumstances. */
2804 if (REG_P (SUBREG_REG (x))
2805 && !paradoxical_subreg_p (x)
2806 && reg_equivs
2807 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2809 new_rtx = SUBREG_REG (x);
2811 else
2812 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2814 if (new_rtx != SUBREG_REG (x))
2816 int x_size = GET_MODE_SIZE (GET_MODE (x));
2817 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2819 if (MEM_P (new_rtx)
2820 && ((x_size < new_size
2821 /* On RISC machines, combine can create rtl of the form
2822 (set (subreg:m1 (reg:m2 R) 0) ...)
2823 where m1 < m2, and expects something interesting to
2824 happen to the entire word. Moreover, it will use the
2825 (reg:m2 R) later, expecting all bits to be preserved.
2826 So if the number of words is the same, preserve the
2827 subreg so that push_reload can see it. */
2828 && !(WORD_REGISTER_OPERATIONS
2829 && (x_size - 1) / UNITS_PER_WORD
2830 == (new_size -1 ) / UNITS_PER_WORD))
2831 || x_size == new_size)
2833 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2834 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2835 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2836 else
2837 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2840 return x;
2842 case MEM:
2843 /* Our only special processing is to pass the mode of the MEM to our
2844 recursive call and copy the flags. While we are here, handle this
2845 case more efficiently. */
2847 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2848 for_costs);
2849 if (for_costs
2850 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2851 && !memory_address_p (GET_MODE (x), new_rtx))
2852 note_reg_elim_costly (XEXP (x, 0), insn);
2854 return replace_equiv_address_nv (x, new_rtx);
2856 case USE:
2857 /* Handle insn_list USE that a call to a pure function may generate. */
2858 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2859 for_costs);
2860 if (new_rtx != XEXP (x, 0))
2861 return gen_rtx_USE (GET_MODE (x), new_rtx);
2862 return x;
2864 case CLOBBER:
2865 case ASM_OPERANDS:
2866 gcc_assert (insn && DEBUG_INSN_P (insn));
2867 break;
2869 case SET:
2870 gcc_unreachable ();
2872 default:
2873 break;
2876 /* Process each of our operands recursively. If any have changed, make a
2877 copy of the rtx. */
2878 fmt = GET_RTX_FORMAT (code);
2879 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2881 if (*fmt == 'e')
2883 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2884 for_costs);
2885 if (new_rtx != XEXP (x, i) && ! copied)
2887 x = shallow_copy_rtx (x);
2888 copied = 1;
2890 XEXP (x, i) = new_rtx;
2892 else if (*fmt == 'E')
2894 int copied_vec = 0;
2895 for (j = 0; j < XVECLEN (x, i); j++)
2897 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2898 for_costs);
2899 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2901 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2902 XVEC (x, i)->elem);
2903 if (! copied)
2905 x = shallow_copy_rtx (x);
2906 copied = 1;
2908 XVEC (x, i) = new_v;
2909 copied_vec = 1;
2911 XVECEXP (x, i, j) = new_rtx;
2916 return x;
2920 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2922 if (reg_eliminate == NULL)
2924 gcc_assert (targetm.no_register_allocation);
2925 return x;
2927 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2930 /* Scan rtx X for modifications of elimination target registers. Update
2931 the table of eliminables to reflect the changed state. MEM_MODE is
2932 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2934 static void
2935 elimination_effects (rtx x, machine_mode mem_mode)
2937 enum rtx_code code = GET_CODE (x);
2938 struct elim_table *ep;
2939 int regno;
2940 int i, j;
2941 const char *fmt;
2943 switch (code)
2945 CASE_CONST_ANY:
2946 case CONST:
2947 case SYMBOL_REF:
2948 case CODE_LABEL:
2949 case PC:
2950 case CC0:
2951 case ASM_INPUT:
2952 case ADDR_VEC:
2953 case ADDR_DIFF_VEC:
2954 case RETURN:
2955 return;
2957 case REG:
2958 regno = REGNO (x);
2960 /* First handle the case where we encounter a bare register that
2961 is eliminable. Replace it with a PLUS. */
2962 if (regno < FIRST_PSEUDO_REGISTER)
2964 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2965 ep++)
2966 if (ep->from_rtx == x && ep->can_eliminate)
2968 if (! mem_mode)
2969 ep->ref_outside_mem = 1;
2970 return;
2974 else if (reg_renumber[regno] < 0
2975 && reg_equivs
2976 && reg_equiv_constant (regno)
2977 && ! function_invariant_p (reg_equiv_constant (regno)))
2978 elimination_effects (reg_equiv_constant (regno), mem_mode);
2979 return;
2981 case PRE_INC:
2982 case POST_INC:
2983 case PRE_DEC:
2984 case POST_DEC:
2985 case POST_MODIFY:
2986 case PRE_MODIFY:
2987 /* If we modify the source of an elimination rule, disable it. */
2988 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2989 if (ep->from_rtx == XEXP (x, 0))
2990 ep->can_eliminate = 0;
2992 /* If we modify the target of an elimination rule by adding a constant,
2993 update its offset. If we modify the target in any other way, we'll
2994 have to disable the rule as well. */
2995 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2996 if (ep->to_rtx == XEXP (x, 0))
2998 int size = GET_MODE_SIZE (mem_mode);
3000 /* If more bytes than MEM_MODE are pushed, account for them. */
3001 #ifdef PUSH_ROUNDING
3002 if (ep->to_rtx == stack_pointer_rtx)
3003 size = PUSH_ROUNDING (size);
3004 #endif
3005 if (code == PRE_DEC || code == POST_DEC)
3006 ep->offset += size;
3007 else if (code == PRE_INC || code == POST_INC)
3008 ep->offset -= size;
3009 else if (code == PRE_MODIFY || code == POST_MODIFY)
3011 if (GET_CODE (XEXP (x, 1)) == PLUS
3012 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3013 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3014 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3015 else
3016 ep->can_eliminate = 0;
3020 /* These two aren't unary operators. */
3021 if (code == POST_MODIFY || code == PRE_MODIFY)
3022 break;
3024 /* Fall through to generic unary operation case. */
3025 gcc_fallthrough ();
3026 case STRICT_LOW_PART:
3027 case NEG: case NOT:
3028 case SIGN_EXTEND: case ZERO_EXTEND:
3029 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3030 case FLOAT: case FIX:
3031 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3032 case ABS:
3033 case SQRT:
3034 case FFS:
3035 case CLZ:
3036 case CTZ:
3037 case POPCOUNT:
3038 case PARITY:
3039 case BSWAP:
3040 elimination_effects (XEXP (x, 0), mem_mode);
3041 return;
3043 case SUBREG:
3044 if (REG_P (SUBREG_REG (x))
3045 && (GET_MODE_SIZE (GET_MODE (x))
3046 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3047 && reg_equivs
3048 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3049 return;
3051 elimination_effects (SUBREG_REG (x), mem_mode);
3052 return;
3054 case USE:
3055 /* If using a register that is the source of an eliminate we still
3056 think can be performed, note it cannot be performed since we don't
3057 know how this register is used. */
3058 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3059 if (ep->from_rtx == XEXP (x, 0))
3060 ep->can_eliminate = 0;
3062 elimination_effects (XEXP (x, 0), mem_mode);
3063 return;
3065 case CLOBBER:
3066 /* If clobbering a register that is the replacement register for an
3067 elimination we still think can be performed, note that it cannot
3068 be performed. Otherwise, we need not be concerned about it. */
3069 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3070 if (ep->to_rtx == XEXP (x, 0))
3071 ep->can_eliminate = 0;
3073 elimination_effects (XEXP (x, 0), mem_mode);
3074 return;
3076 case SET:
3077 /* Check for setting a register that we know about. */
3078 if (REG_P (SET_DEST (x)))
3080 /* See if this is setting the replacement register for an
3081 elimination.
3083 If DEST is the hard frame pointer, we do nothing because we
3084 assume that all assignments to the frame pointer are for
3085 non-local gotos and are being done at a time when they are valid
3086 and do not disturb anything else. Some machines want to
3087 eliminate a fake argument pointer (or even a fake frame pointer)
3088 with either the real frame or the stack pointer. Assignments to
3089 the hard frame pointer must not prevent this elimination. */
3091 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3092 ep++)
3093 if (ep->to_rtx == SET_DEST (x)
3094 && SET_DEST (x) != hard_frame_pointer_rtx)
3096 /* If it is being incremented, adjust the offset. Otherwise,
3097 this elimination can't be done. */
3098 rtx src = SET_SRC (x);
3100 if (GET_CODE (src) == PLUS
3101 && XEXP (src, 0) == SET_DEST (x)
3102 && CONST_INT_P (XEXP (src, 1)))
3103 ep->offset -= INTVAL (XEXP (src, 1));
3104 else
3105 ep->can_eliminate = 0;
3109 elimination_effects (SET_DEST (x), VOIDmode);
3110 elimination_effects (SET_SRC (x), VOIDmode);
3111 return;
3113 case MEM:
3114 /* Our only special processing is to pass the mode of the MEM to our
3115 recursive call. */
3116 elimination_effects (XEXP (x, 0), GET_MODE (x));
3117 return;
3119 default:
3120 break;
3123 fmt = GET_RTX_FORMAT (code);
3124 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3126 if (*fmt == 'e')
3127 elimination_effects (XEXP (x, i), mem_mode);
3128 else if (*fmt == 'E')
3129 for (j = 0; j < XVECLEN (x, i); j++)
3130 elimination_effects (XVECEXP (x, i, j), mem_mode);
3134 /* Descend through rtx X and verify that no references to eliminable registers
3135 remain. If any do remain, mark the involved register as not
3136 eliminable. */
3138 static void
3139 check_eliminable_occurrences (rtx x)
3141 const char *fmt;
3142 int i;
3143 enum rtx_code code;
3145 if (x == 0)
3146 return;
3148 code = GET_CODE (x);
3150 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3152 struct elim_table *ep;
3154 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3155 if (ep->from_rtx == x)
3156 ep->can_eliminate = 0;
3157 return;
3160 fmt = GET_RTX_FORMAT (code);
3161 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3163 if (*fmt == 'e')
3164 check_eliminable_occurrences (XEXP (x, i));
3165 else if (*fmt == 'E')
3167 int j;
3168 for (j = 0; j < XVECLEN (x, i); j++)
3169 check_eliminable_occurrences (XVECEXP (x, i, j));
3174 /* Scan INSN and eliminate all eliminable registers in it.
3176 If REPLACE is nonzero, do the replacement destructively. Also
3177 delete the insn as dead it if it is setting an eliminable register.
3179 If REPLACE is zero, do all our allocations in reload_obstack.
3181 If no eliminations were done and this insn doesn't require any elimination
3182 processing (these are not identical conditions: it might be updating sp,
3183 but not referencing fp; this needs to be seen during reload_as_needed so
3184 that the offset between fp and sp can be taken into consideration), zero
3185 is returned. Otherwise, 1 is returned. */
3187 static int
3188 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3190 int icode = recog_memoized (insn);
3191 rtx old_body = PATTERN (insn);
3192 int insn_is_asm = asm_noperands (old_body) >= 0;
3193 rtx old_set = single_set (insn);
3194 rtx new_body;
3195 int val = 0;
3196 int i;
3197 rtx substed_operand[MAX_RECOG_OPERANDS];
3198 rtx orig_operand[MAX_RECOG_OPERANDS];
3199 struct elim_table *ep;
3200 rtx plus_src, plus_cst_src;
3202 if (! insn_is_asm && icode < 0)
3204 gcc_assert (DEBUG_INSN_P (insn)
3205 || GET_CODE (PATTERN (insn)) == USE
3206 || GET_CODE (PATTERN (insn)) == CLOBBER
3207 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3208 if (DEBUG_INSN_P (insn))
3209 INSN_VAR_LOCATION_LOC (insn)
3210 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3211 return 0;
3214 if (old_set != 0 && REG_P (SET_DEST (old_set))
3215 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3217 /* Check for setting an eliminable register. */
3218 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3219 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3221 /* If this is setting the frame pointer register to the
3222 hardware frame pointer register and this is an elimination
3223 that will be done (tested above), this insn is really
3224 adjusting the frame pointer downward to compensate for
3225 the adjustment done before a nonlocal goto. */
3226 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3227 && ep->from == FRAME_POINTER_REGNUM
3228 && ep->to == HARD_FRAME_POINTER_REGNUM)
3230 rtx base = SET_SRC (old_set);
3231 rtx_insn *base_insn = insn;
3232 HOST_WIDE_INT offset = 0;
3234 while (base != ep->to_rtx)
3236 rtx_insn *prev_insn;
3237 rtx prev_set;
3239 if (GET_CODE (base) == PLUS
3240 && CONST_INT_P (XEXP (base, 1)))
3242 offset += INTVAL (XEXP (base, 1));
3243 base = XEXP (base, 0);
3245 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3246 && (prev_set = single_set (prev_insn)) != 0
3247 && rtx_equal_p (SET_DEST (prev_set), base))
3249 base = SET_SRC (prev_set);
3250 base_insn = prev_insn;
3252 else
3253 break;
3256 if (base == ep->to_rtx)
3258 rtx src = plus_constant (Pmode, ep->to_rtx,
3259 offset - ep->offset);
3261 new_body = old_body;
3262 if (! replace)
3264 new_body = copy_insn (old_body);
3265 if (REG_NOTES (insn))
3266 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3268 PATTERN (insn) = new_body;
3269 old_set = single_set (insn);
3271 /* First see if this insn remains valid when we
3272 make the change. If not, keep the INSN_CODE
3273 the same and let reload fit it up. */
3274 validate_change (insn, &SET_SRC (old_set), src, 1);
3275 validate_change (insn, &SET_DEST (old_set),
3276 ep->to_rtx, 1);
3277 if (! apply_change_group ())
3279 SET_SRC (old_set) = src;
3280 SET_DEST (old_set) = ep->to_rtx;
3283 val = 1;
3284 goto done;
3288 /* In this case this insn isn't serving a useful purpose. We
3289 will delete it in reload_as_needed once we know that this
3290 elimination is, in fact, being done.
3292 If REPLACE isn't set, we can't delete this insn, but needn't
3293 process it since it won't be used unless something changes. */
3294 if (replace)
3296 delete_dead_insn (insn);
3297 return 1;
3299 val = 1;
3300 goto done;
3304 /* We allow one special case which happens to work on all machines we
3305 currently support: a single set with the source or a REG_EQUAL
3306 note being a PLUS of an eliminable register and a constant. */
3307 plus_src = plus_cst_src = 0;
3308 if (old_set && REG_P (SET_DEST (old_set)))
3310 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3311 plus_src = SET_SRC (old_set);
3312 /* First see if the source is of the form (plus (...) CST). */
3313 if (plus_src
3314 && CONST_INT_P (XEXP (plus_src, 1)))
3315 plus_cst_src = plus_src;
3316 else if (REG_P (SET_SRC (old_set))
3317 || plus_src)
3319 /* Otherwise, see if we have a REG_EQUAL note of the form
3320 (plus (...) CST). */
3321 rtx links;
3322 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3324 if ((REG_NOTE_KIND (links) == REG_EQUAL
3325 || REG_NOTE_KIND (links) == REG_EQUIV)
3326 && GET_CODE (XEXP (links, 0)) == PLUS
3327 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3329 plus_cst_src = XEXP (links, 0);
3330 break;
3335 /* Check that the first operand of the PLUS is a hard reg or
3336 the lowpart subreg of one. */
3337 if (plus_cst_src)
3339 rtx reg = XEXP (plus_cst_src, 0);
3340 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3341 reg = SUBREG_REG (reg);
3343 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3344 plus_cst_src = 0;
3347 if (plus_cst_src)
3349 rtx reg = XEXP (plus_cst_src, 0);
3350 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3352 if (GET_CODE (reg) == SUBREG)
3353 reg = SUBREG_REG (reg);
3355 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3356 if (ep->from_rtx == reg && ep->can_eliminate)
3358 rtx to_rtx = ep->to_rtx;
3359 offset += ep->offset;
3360 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3362 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3363 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3364 to_rtx);
3365 /* If we have a nonzero offset, and the source is already
3366 a simple REG, the following transformation would
3367 increase the cost of the insn by replacing a simple REG
3368 with (plus (reg sp) CST). So try only when we already
3369 had a PLUS before. */
3370 if (offset == 0 || plus_src)
3372 rtx new_src = plus_constant (GET_MODE (to_rtx),
3373 to_rtx, offset);
3375 new_body = old_body;
3376 if (! replace)
3378 new_body = copy_insn (old_body);
3379 if (REG_NOTES (insn))
3380 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3382 PATTERN (insn) = new_body;
3383 old_set = single_set (insn);
3385 /* First see if this insn remains valid when we make the
3386 change. If not, try to replace the whole pattern with
3387 a simple set (this may help if the original insn was a
3388 PARALLEL that was only recognized as single_set due to
3389 REG_UNUSED notes). If this isn't valid either, keep
3390 the INSN_CODE the same and let reload fix it up. */
3391 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3393 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3395 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3396 SET_SRC (old_set) = new_src;
3399 else
3400 break;
3402 val = 1;
3403 /* This can't have an effect on elimination offsets, so skip right
3404 to the end. */
3405 goto done;
3409 /* Determine the effects of this insn on elimination offsets. */
3410 elimination_effects (old_body, VOIDmode);
3412 /* Eliminate all eliminable registers occurring in operands that
3413 can be handled by reload. */
3414 extract_insn (insn);
3415 for (i = 0; i < recog_data.n_operands; i++)
3417 orig_operand[i] = recog_data.operand[i];
3418 substed_operand[i] = recog_data.operand[i];
3420 /* For an asm statement, every operand is eliminable. */
3421 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3423 bool is_set_src, in_plus;
3425 /* Check for setting a register that we know about. */
3426 if (recog_data.operand_type[i] != OP_IN
3427 && REG_P (orig_operand[i]))
3429 /* If we are assigning to a register that can be eliminated, it
3430 must be as part of a PARALLEL, since the code above handles
3431 single SETs. We must indicate that we can no longer
3432 eliminate this reg. */
3433 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3434 ep++)
3435 if (ep->from_rtx == orig_operand[i])
3436 ep->can_eliminate = 0;
3439 /* Companion to the above plus substitution, we can allow
3440 invariants as the source of a plain move. */
3441 is_set_src = false;
3442 if (old_set
3443 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3444 is_set_src = true;
3445 in_plus = false;
3446 if (plus_src
3447 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3448 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3449 in_plus = true;
3451 substed_operand[i]
3452 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3453 replace ? insn : NULL_RTX,
3454 is_set_src || in_plus, false);
3455 if (substed_operand[i] != orig_operand[i])
3456 val = 1;
3457 /* Terminate the search in check_eliminable_occurrences at
3458 this point. */
3459 *recog_data.operand_loc[i] = 0;
3461 /* If an output operand changed from a REG to a MEM and INSN is an
3462 insn, write a CLOBBER insn. */
3463 if (recog_data.operand_type[i] != OP_IN
3464 && REG_P (orig_operand[i])
3465 && MEM_P (substed_operand[i])
3466 && replace)
3467 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3471 for (i = 0; i < recog_data.n_dups; i++)
3472 *recog_data.dup_loc[i]
3473 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3475 /* If any eliminable remain, they aren't eliminable anymore. */
3476 check_eliminable_occurrences (old_body);
3478 /* Substitute the operands; the new values are in the substed_operand
3479 array. */
3480 for (i = 0; i < recog_data.n_operands; i++)
3481 *recog_data.operand_loc[i] = substed_operand[i];
3482 for (i = 0; i < recog_data.n_dups; i++)
3483 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3485 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3486 re-recognize the insn. We do this in case we had a simple addition
3487 but now can do this as a load-address. This saves an insn in this
3488 common case.
3489 If re-recognition fails, the old insn code number will still be used,
3490 and some register operands may have changed into PLUS expressions.
3491 These will be handled by find_reloads by loading them into a register
3492 again. */
3494 if (val)
3496 /* If we aren't replacing things permanently and we changed something,
3497 make another copy to ensure that all the RTL is new. Otherwise
3498 things can go wrong if find_reload swaps commutative operands
3499 and one is inside RTL that has been copied while the other is not. */
3500 new_body = old_body;
3501 if (! replace)
3503 new_body = copy_insn (old_body);
3504 if (REG_NOTES (insn))
3505 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3507 PATTERN (insn) = new_body;
3509 /* If we had a move insn but now we don't, rerecognize it. This will
3510 cause spurious re-recognition if the old move had a PARALLEL since
3511 the new one still will, but we can't call single_set without
3512 having put NEW_BODY into the insn and the re-recognition won't
3513 hurt in this rare case. */
3514 /* ??? Why this huge if statement - why don't we just rerecognize the
3515 thing always? */
3516 if (! insn_is_asm
3517 && old_set != 0
3518 && ((REG_P (SET_SRC (old_set))
3519 && (GET_CODE (new_body) != SET
3520 || !REG_P (SET_SRC (new_body))))
3521 /* If this was a load from or store to memory, compare
3522 the MEM in recog_data.operand to the one in the insn.
3523 If they are not equal, then rerecognize the insn. */
3524 || (old_set != 0
3525 && ((MEM_P (SET_SRC (old_set))
3526 && SET_SRC (old_set) != recog_data.operand[1])
3527 || (MEM_P (SET_DEST (old_set))
3528 && SET_DEST (old_set) != recog_data.operand[0])))
3529 /* If this was an add insn before, rerecognize. */
3530 || GET_CODE (SET_SRC (old_set)) == PLUS))
3532 int new_icode = recog (PATTERN (insn), insn, 0);
3533 if (new_icode >= 0)
3534 INSN_CODE (insn) = new_icode;
3538 /* Restore the old body. If there were any changes to it, we made a copy
3539 of it while the changes were still in place, so we'll correctly return
3540 a modified insn below. */
3541 if (! replace)
3543 /* Restore the old body. */
3544 for (i = 0; i < recog_data.n_operands; i++)
3545 /* Restoring a top-level match_parallel would clobber the new_body
3546 we installed in the insn. */
3547 if (recog_data.operand_loc[i] != &PATTERN (insn))
3548 *recog_data.operand_loc[i] = orig_operand[i];
3549 for (i = 0; i < recog_data.n_dups; i++)
3550 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3553 /* Update all elimination pairs to reflect the status after the current
3554 insn. The changes we make were determined by the earlier call to
3555 elimination_effects.
3557 We also detect cases where register elimination cannot be done,
3558 namely, if a register would be both changed and referenced outside a MEM
3559 in the resulting insn since such an insn is often undefined and, even if
3560 not, we cannot know what meaning will be given to it. Note that it is
3561 valid to have a register used in an address in an insn that changes it
3562 (presumably with a pre- or post-increment or decrement).
3564 If anything changes, return nonzero. */
3566 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3568 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3569 ep->can_eliminate = 0;
3571 ep->ref_outside_mem = 0;
3573 if (ep->previous_offset != ep->offset)
3574 val = 1;
3577 done:
3578 /* If we changed something, perform elimination in REG_NOTES. This is
3579 needed even when REPLACE is zero because a REG_DEAD note might refer
3580 to a register that we eliminate and could cause a different number
3581 of spill registers to be needed in the final reload pass than in
3582 the pre-passes. */
3583 if (val && REG_NOTES (insn) != 0)
3584 REG_NOTES (insn)
3585 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3586 false);
3588 return val;
3591 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3592 register allocator. INSN is the instruction we need to examine, we perform
3593 eliminations in its operands and record cases where eliminating a reg with
3594 an invariant equivalence would add extra cost. */
3596 #pragma GCC diagnostic push
3597 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3598 static void
3599 elimination_costs_in_insn (rtx_insn *insn)
3601 int icode = recog_memoized (insn);
3602 rtx old_body = PATTERN (insn);
3603 int insn_is_asm = asm_noperands (old_body) >= 0;
3604 rtx old_set = single_set (insn);
3605 int i;
3606 rtx orig_operand[MAX_RECOG_OPERANDS];
3607 rtx orig_dup[MAX_RECOG_OPERANDS];
3608 struct elim_table *ep;
3609 rtx plus_src, plus_cst_src;
3610 bool sets_reg_p;
3612 if (! insn_is_asm && icode < 0)
3614 gcc_assert (DEBUG_INSN_P (insn)
3615 || GET_CODE (PATTERN (insn)) == USE
3616 || GET_CODE (PATTERN (insn)) == CLOBBER
3617 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3618 return;
3621 if (old_set != 0 && REG_P (SET_DEST (old_set))
3622 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3624 /* Check for setting an eliminable register. */
3625 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3626 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3627 return;
3630 /* We allow one special case which happens to work on all machines we
3631 currently support: a single set with the source or a REG_EQUAL
3632 note being a PLUS of an eliminable register and a constant. */
3633 plus_src = plus_cst_src = 0;
3634 sets_reg_p = false;
3635 if (old_set && REG_P (SET_DEST (old_set)))
3637 sets_reg_p = true;
3638 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3639 plus_src = SET_SRC (old_set);
3640 /* First see if the source is of the form (plus (...) CST). */
3641 if (plus_src
3642 && CONST_INT_P (XEXP (plus_src, 1)))
3643 plus_cst_src = plus_src;
3644 else if (REG_P (SET_SRC (old_set))
3645 || plus_src)
3647 /* Otherwise, see if we have a REG_EQUAL note of the form
3648 (plus (...) CST). */
3649 rtx links;
3650 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3652 if ((REG_NOTE_KIND (links) == REG_EQUAL
3653 || REG_NOTE_KIND (links) == REG_EQUIV)
3654 && GET_CODE (XEXP (links, 0)) == PLUS
3655 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3657 plus_cst_src = XEXP (links, 0);
3658 break;
3664 /* Determine the effects of this insn on elimination offsets. */
3665 elimination_effects (old_body, VOIDmode);
3667 /* Eliminate all eliminable registers occurring in operands that
3668 can be handled by reload. */
3669 extract_insn (insn);
3670 int n_dups = recog_data.n_dups;
3671 for (i = 0; i < n_dups; i++)
3672 orig_dup[i] = *recog_data.dup_loc[i];
3674 int n_operands = recog_data.n_operands;
3675 for (i = 0; i < n_operands; i++)
3677 orig_operand[i] = recog_data.operand[i];
3679 /* For an asm statement, every operand is eliminable. */
3680 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3682 bool is_set_src, in_plus;
3684 /* Check for setting a register that we know about. */
3685 if (recog_data.operand_type[i] != OP_IN
3686 && REG_P (orig_operand[i]))
3688 /* If we are assigning to a register that can be eliminated, it
3689 must be as part of a PARALLEL, since the code above handles
3690 single SETs. We must indicate that we can no longer
3691 eliminate this reg. */
3692 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3693 ep++)
3694 if (ep->from_rtx == orig_operand[i])
3695 ep->can_eliminate = 0;
3698 /* Companion to the above plus substitution, we can allow
3699 invariants as the source of a plain move. */
3700 is_set_src = false;
3701 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3702 is_set_src = true;
3703 if (is_set_src && !sets_reg_p)
3704 note_reg_elim_costly (SET_SRC (old_set), insn);
3705 in_plus = false;
3706 if (plus_src && sets_reg_p
3707 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3708 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3709 in_plus = true;
3711 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3712 NULL_RTX,
3713 is_set_src || in_plus, true);
3714 /* Terminate the search in check_eliminable_occurrences at
3715 this point. */
3716 *recog_data.operand_loc[i] = 0;
3720 for (i = 0; i < n_dups; i++)
3721 *recog_data.dup_loc[i]
3722 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3724 /* If any eliminable remain, they aren't eliminable anymore. */
3725 check_eliminable_occurrences (old_body);
3727 /* Restore the old body. */
3728 for (i = 0; i < n_operands; i++)
3729 *recog_data.operand_loc[i] = orig_operand[i];
3730 for (i = 0; i < n_dups; i++)
3731 *recog_data.dup_loc[i] = orig_dup[i];
3733 /* Update all elimination pairs to reflect the status after the current
3734 insn. The changes we make were determined by the earlier call to
3735 elimination_effects. */
3737 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3739 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3740 ep->can_eliminate = 0;
3742 ep->ref_outside_mem = 0;
3745 return;
3747 #pragma GCC diagnostic pop
3749 /* Loop through all elimination pairs.
3750 Recalculate the number not at initial offset.
3752 Compute the maximum offset (minimum offset if the stack does not
3753 grow downward) for each elimination pair. */
3755 static void
3756 update_eliminable_offsets (void)
3758 struct elim_table *ep;
3760 num_not_at_initial_offset = 0;
3761 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3763 ep->previous_offset = ep->offset;
3764 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3765 num_not_at_initial_offset++;
3769 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3770 replacement we currently believe is valid, mark it as not eliminable if X
3771 modifies DEST in any way other than by adding a constant integer to it.
3773 If DEST is the frame pointer, we do nothing because we assume that
3774 all assignments to the hard frame pointer are nonlocal gotos and are being
3775 done at a time when they are valid and do not disturb anything else.
3776 Some machines want to eliminate a fake argument pointer with either the
3777 frame or stack pointer. Assignments to the hard frame pointer must not
3778 prevent this elimination.
3780 Called via note_stores from reload before starting its passes to scan
3781 the insns of the function. */
3783 static void
3784 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3786 unsigned int i;
3788 /* A SUBREG of a hard register here is just changing its mode. We should
3789 not see a SUBREG of an eliminable hard register, but check just in
3790 case. */
3791 if (GET_CODE (dest) == SUBREG)
3792 dest = SUBREG_REG (dest);
3794 if (dest == hard_frame_pointer_rtx)
3795 return;
3797 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3798 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3799 && (GET_CODE (x) != SET
3800 || GET_CODE (SET_SRC (x)) != PLUS
3801 || XEXP (SET_SRC (x), 0) != dest
3802 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3804 reg_eliminate[i].can_eliminate_previous
3805 = reg_eliminate[i].can_eliminate = 0;
3806 num_eliminable--;
3810 /* Verify that the initial elimination offsets did not change since the
3811 last call to set_initial_elim_offsets. This is used to catch cases
3812 where something illegal happened during reload_as_needed that could
3813 cause incorrect code to be generated if we did not check for it. */
3815 static bool
3816 verify_initial_elim_offsets (void)
3818 HOST_WIDE_INT t;
3819 struct elim_table *ep;
3821 if (!num_eliminable)
3822 return true;
3824 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3826 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3827 if (t != ep->initial_offset)
3828 return false;
3831 return true;
3834 /* Reset all offsets on eliminable registers to their initial values. */
3836 static void
3837 set_initial_elim_offsets (void)
3839 struct elim_table *ep = reg_eliminate;
3841 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3843 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3844 ep->previous_offset = ep->offset = ep->initial_offset;
3847 num_not_at_initial_offset = 0;
3850 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3852 static void
3853 set_initial_eh_label_offset (rtx label)
3855 set_label_offsets (label, NULL, 1);
3858 /* Initialize the known label offsets.
3859 Set a known offset for each forced label to be at the initial offset
3860 of each elimination. We do this because we assume that all
3861 computed jumps occur from a location where each elimination is
3862 at its initial offset.
3863 For all other labels, show that we don't know the offsets. */
3865 static void
3866 set_initial_label_offsets (void)
3868 memset (offsets_known_at, 0, num_labels);
3870 unsigned int i;
3871 rtx_insn *insn;
3872 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3873 set_label_offsets (insn, NULL, 1);
3875 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3876 if (x->insn ())
3877 set_label_offsets (x->insn (), NULL, 1);
3879 for_each_eh_label (set_initial_eh_label_offset);
3882 /* Set all elimination offsets to the known values for the code label given
3883 by INSN. */
3885 static void
3886 set_offsets_for_label (rtx_insn *insn)
3888 unsigned int i;
3889 int label_nr = CODE_LABEL_NUMBER (insn);
3890 struct elim_table *ep;
3892 num_not_at_initial_offset = 0;
3893 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3895 ep->offset = ep->previous_offset
3896 = offsets_at[label_nr - first_label_num][i];
3897 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3898 num_not_at_initial_offset++;
3902 /* See if anything that happened changes which eliminations are valid.
3903 For example, on the SPARC, whether or not the frame pointer can
3904 be eliminated can depend on what registers have been used. We need
3905 not check some conditions again (such as flag_omit_frame_pointer)
3906 since they can't have changed. */
3908 static void
3909 update_eliminables (HARD_REG_SET *pset)
3911 int previous_frame_pointer_needed = frame_pointer_needed;
3912 struct elim_table *ep;
3914 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3915 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3916 && targetm.frame_pointer_required ())
3917 || ! targetm.can_eliminate (ep->from, ep->to)
3919 ep->can_eliminate = 0;
3921 /* Look for the case where we have discovered that we can't replace
3922 register A with register B and that means that we will now be
3923 trying to replace register A with register C. This means we can
3924 no longer replace register C with register B and we need to disable
3925 such an elimination, if it exists. This occurs often with A == ap,
3926 B == sp, and C == fp. */
3928 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3930 struct elim_table *op;
3931 int new_to = -1;
3933 if (! ep->can_eliminate && ep->can_eliminate_previous)
3935 /* Find the current elimination for ep->from, if there is a
3936 new one. */
3937 for (op = reg_eliminate;
3938 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3939 if (op->from == ep->from && op->can_eliminate)
3941 new_to = op->to;
3942 break;
3945 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3946 disable it. */
3947 for (op = reg_eliminate;
3948 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3949 if (op->from == new_to && op->to == ep->to)
3950 op->can_eliminate = 0;
3954 /* See if any registers that we thought we could eliminate the previous
3955 time are no longer eliminable. If so, something has changed and we
3956 must spill the register. Also, recompute the number of eliminable
3957 registers and see if the frame pointer is needed; it is if there is
3958 no elimination of the frame pointer that we can perform. */
3960 frame_pointer_needed = 1;
3961 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3963 if (ep->can_eliminate
3964 && ep->from == FRAME_POINTER_REGNUM
3965 && ep->to != HARD_FRAME_POINTER_REGNUM
3966 && (! SUPPORTS_STACK_ALIGNMENT
3967 || ! crtl->stack_realign_needed))
3968 frame_pointer_needed = 0;
3970 if (! ep->can_eliminate && ep->can_eliminate_previous)
3972 ep->can_eliminate_previous = 0;
3973 SET_HARD_REG_BIT (*pset, ep->from);
3974 num_eliminable--;
3978 /* If we didn't need a frame pointer last time, but we do now, spill
3979 the hard frame pointer. */
3980 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3981 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3984 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3985 Return true iff a register was spilled. */
3987 static bool
3988 update_eliminables_and_spill (void)
3990 int i;
3991 bool did_spill = false;
3992 HARD_REG_SET to_spill;
3993 CLEAR_HARD_REG_SET (to_spill);
3994 update_eliminables (&to_spill);
3995 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
3997 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3998 if (TEST_HARD_REG_BIT (to_spill, i))
4000 spill_hard_reg (i, 1);
4001 did_spill = true;
4003 /* Regardless of the state of spills, if we previously had
4004 a register that we thought we could eliminate, but now can
4005 not eliminate, we must run another pass.
4007 Consider pseudos which have an entry in reg_equiv_* which
4008 reference an eliminable register. We must make another pass
4009 to update reg_equiv_* so that we do not substitute in the
4010 old value from when we thought the elimination could be
4011 performed. */
4013 return did_spill;
4016 /* Return true if X is used as the target register of an elimination. */
4018 bool
4019 elimination_target_reg_p (rtx x)
4021 struct elim_table *ep;
4023 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4024 if (ep->to_rtx == x && ep->can_eliminate)
4025 return true;
4027 return false;
4030 /* Initialize the table of registers to eliminate.
4031 Pre-condition: global flag frame_pointer_needed has been set before
4032 calling this function. */
4034 static void
4035 init_elim_table (void)
4037 struct elim_table *ep;
4038 const struct elim_table_1 *ep1;
4040 if (!reg_eliminate)
4041 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4043 num_eliminable = 0;
4045 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4046 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4048 ep->from = ep1->from;
4049 ep->to = ep1->to;
4050 ep->can_eliminate = ep->can_eliminate_previous
4051 = (targetm.can_eliminate (ep->from, ep->to)
4052 && ! (ep->to == STACK_POINTER_REGNUM
4053 && frame_pointer_needed
4054 && (! SUPPORTS_STACK_ALIGNMENT
4055 || ! stack_realign_fp)));
4058 /* Count the number of eliminable registers and build the FROM and TO
4059 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4060 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4061 We depend on this. */
4062 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4064 num_eliminable += ep->can_eliminate;
4065 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4066 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4070 /* Find all the pseudo registers that didn't get hard regs
4071 but do have known equivalent constants or memory slots.
4072 These include parameters (known equivalent to parameter slots)
4073 and cse'd or loop-moved constant memory addresses.
4075 Record constant equivalents in reg_equiv_constant
4076 so they will be substituted by find_reloads.
4077 Record memory equivalents in reg_mem_equiv so they can
4078 be substituted eventually by altering the REG-rtx's. */
4080 static void
4081 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4083 int i;
4084 rtx_insn *insn;
4086 grow_reg_equivs ();
4087 if (do_subregs)
4088 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4089 else
4090 reg_max_ref_width = NULL;
4092 num_eliminable_invariants = 0;
4094 first_label_num = get_first_label_num ();
4095 num_labels = max_label_num () - first_label_num;
4097 /* Allocate the tables used to store offset information at labels. */
4098 offsets_known_at = XNEWVEC (char, num_labels);
4099 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4101 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4102 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4103 find largest such for each pseudo. FIRST is the head of the insn
4104 list. */
4106 for (insn = first; insn; insn = NEXT_INSN (insn))
4108 rtx set = single_set (insn);
4110 /* We may introduce USEs that we want to remove at the end, so
4111 we'll mark them with QImode. Make sure there are no
4112 previously-marked insns left by say regmove. */
4113 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4114 && GET_MODE (insn) != VOIDmode)
4115 PUT_MODE (insn, VOIDmode);
4117 if (do_subregs && NONDEBUG_INSN_P (insn))
4118 scan_paradoxical_subregs (PATTERN (insn));
4120 if (set != 0 && REG_P (SET_DEST (set)))
4122 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4123 rtx x;
4125 if (! note)
4126 continue;
4128 i = REGNO (SET_DEST (set));
4129 x = XEXP (note, 0);
4131 if (i <= LAST_VIRTUAL_REGISTER)
4132 continue;
4134 /* If flag_pic and we have constant, verify it's legitimate. */
4135 if (!CONSTANT_P (x)
4136 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4138 /* It can happen that a REG_EQUIV note contains a MEM
4139 that is not a legitimate memory operand. As later
4140 stages of reload assume that all addresses found
4141 in the reg_equiv_* arrays were originally legitimate,
4142 we ignore such REG_EQUIV notes. */
4143 if (memory_operand (x, VOIDmode))
4145 /* Always unshare the equivalence, so we can
4146 substitute into this insn without touching the
4147 equivalence. */
4148 reg_equiv_memory_loc (i) = copy_rtx (x);
4150 else if (function_invariant_p (x))
4152 machine_mode mode;
4154 mode = GET_MODE (SET_DEST (set));
4155 if (GET_CODE (x) == PLUS)
4157 /* This is PLUS of frame pointer and a constant,
4158 and might be shared. Unshare it. */
4159 reg_equiv_invariant (i) = copy_rtx (x);
4160 num_eliminable_invariants++;
4162 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4164 reg_equiv_invariant (i) = x;
4165 num_eliminable_invariants++;
4167 else if (targetm.legitimate_constant_p (mode, x))
4168 reg_equiv_constant (i) = x;
4169 else
4171 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4172 if (! reg_equiv_memory_loc (i))
4173 reg_equiv_init (i) = NULL;
4176 else
4178 reg_equiv_init (i) = NULL;
4179 continue;
4182 else
4183 reg_equiv_init (i) = NULL;
4187 if (dump_file)
4188 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4189 if (reg_equiv_init (i))
4191 fprintf (dump_file, "init_insns for %u: ", i);
4192 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4193 fprintf (dump_file, "\n");
4197 /* Indicate that we no longer have known memory locations or constants.
4198 Free all data involved in tracking these. */
4200 static void
4201 free_reg_equiv (void)
4203 int i;
4205 free (offsets_known_at);
4206 free (offsets_at);
4207 offsets_at = 0;
4208 offsets_known_at = 0;
4210 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4211 if (reg_equiv_alt_mem_list (i))
4212 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4213 vec_free (reg_equivs);
4216 /* Kick all pseudos out of hard register REGNO.
4218 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4219 because we found we can't eliminate some register. In the case, no pseudos
4220 are allowed to be in the register, even if they are only in a block that
4221 doesn't require spill registers, unlike the case when we are spilling this
4222 hard reg to produce another spill register.
4224 Return nonzero if any pseudos needed to be kicked out. */
4226 static void
4227 spill_hard_reg (unsigned int regno, int cant_eliminate)
4229 int i;
4231 if (cant_eliminate)
4233 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4234 df_set_regs_ever_live (regno, true);
4237 /* Spill every pseudo reg that was allocated to this reg
4238 or to something that overlaps this reg. */
4240 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4241 if (reg_renumber[i] >= 0
4242 && (unsigned int) reg_renumber[i] <= regno
4243 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4244 SET_REGNO_REG_SET (&spilled_pseudos, i);
4247 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4248 insns that need reloads, this function is used to actually spill pseudo
4249 registers and try to reallocate them. It also sets up the spill_regs
4250 array for use by choose_reload_regs.
4252 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4253 that we displace from hard registers. */
4255 static int
4256 finish_spills (int global)
4258 struct insn_chain *chain;
4259 int something_changed = 0;
4260 unsigned i;
4261 reg_set_iterator rsi;
4263 /* Build the spill_regs array for the function. */
4264 /* If there are some registers still to eliminate and one of the spill regs
4265 wasn't ever used before, additional stack space may have to be
4266 allocated to store this register. Thus, we may have changed the offset
4267 between the stack and frame pointers, so mark that something has changed.
4269 One might think that we need only set VAL to 1 if this is a call-used
4270 register. However, the set of registers that must be saved by the
4271 prologue is not identical to the call-used set. For example, the
4272 register used by the call insn for the return PC is a call-used register,
4273 but must be saved by the prologue. */
4275 n_spills = 0;
4276 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4277 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4279 spill_reg_order[i] = n_spills;
4280 spill_regs[n_spills++] = i;
4281 if (num_eliminable && ! df_regs_ever_live_p (i))
4282 something_changed = 1;
4283 df_set_regs_ever_live (i, true);
4285 else
4286 spill_reg_order[i] = -1;
4288 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4289 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4291 /* Record the current hard register the pseudo is allocated to
4292 in pseudo_previous_regs so we avoid reallocating it to the
4293 same hard reg in a later pass. */
4294 gcc_assert (reg_renumber[i] >= 0);
4296 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4297 /* Mark it as no longer having a hard register home. */
4298 reg_renumber[i] = -1;
4299 if (ira_conflicts_p)
4300 /* Inform IRA about the change. */
4301 ira_mark_allocation_change (i);
4302 /* We will need to scan everything again. */
4303 something_changed = 1;
4306 /* Retry global register allocation if possible. */
4307 if (global && ira_conflicts_p)
4309 unsigned int n;
4311 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4312 /* For every insn that needs reloads, set the registers used as spill
4313 regs in pseudo_forbidden_regs for every pseudo live across the
4314 insn. */
4315 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4317 EXECUTE_IF_SET_IN_REG_SET
4318 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4320 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4321 chain->used_spill_regs);
4323 EXECUTE_IF_SET_IN_REG_SET
4324 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4326 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4327 chain->used_spill_regs);
4331 /* Retry allocating the pseudos spilled in IRA and the
4332 reload. For each reg, merge the various reg sets that
4333 indicate which hard regs can't be used, and call
4334 ira_reassign_pseudos. */
4335 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4336 if (reg_old_renumber[i] != reg_renumber[i])
4338 if (reg_renumber[i] < 0)
4339 temp_pseudo_reg_arr[n++] = i;
4340 else
4341 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4343 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4344 bad_spill_regs_global,
4345 pseudo_forbidden_regs, pseudo_previous_regs,
4346 &spilled_pseudos))
4347 something_changed = 1;
4349 /* Fix up the register information in the insn chain.
4350 This involves deleting those of the spilled pseudos which did not get
4351 a new hard register home from the live_{before,after} sets. */
4352 for (chain = reload_insn_chain; chain; chain = chain->next)
4354 HARD_REG_SET used_by_pseudos;
4355 HARD_REG_SET used_by_pseudos2;
4357 if (! ira_conflicts_p)
4359 /* Don't do it for IRA because IRA and the reload still can
4360 assign hard registers to the spilled pseudos on next
4361 reload iterations. */
4362 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4363 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4365 /* Mark any unallocated hard regs as available for spills. That
4366 makes inheritance work somewhat better. */
4367 if (chain->need_reload)
4369 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4370 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4371 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4373 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4374 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4375 /* Value of chain->used_spill_regs from previous iteration
4376 may be not included in the value calculated here because
4377 of possible removing caller-saves insns (see function
4378 delete_caller_save_insns. */
4379 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4380 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4384 CLEAR_REG_SET (&changed_allocation_pseudos);
4385 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4386 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4388 int regno = reg_renumber[i];
4389 if (reg_old_renumber[i] == regno)
4390 continue;
4392 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4394 alter_reg (i, reg_old_renumber[i], false);
4395 reg_old_renumber[i] = regno;
4396 if (dump_file)
4398 if (regno == -1)
4399 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4400 else
4401 fprintf (dump_file, " Register %d now in %d.\n\n",
4402 i, reg_renumber[i]);
4406 return something_changed;
4409 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4411 static void
4412 scan_paradoxical_subregs (rtx x)
4414 int i;
4415 const char *fmt;
4416 enum rtx_code code = GET_CODE (x);
4418 switch (code)
4420 case REG:
4421 case CONST:
4422 case SYMBOL_REF:
4423 case LABEL_REF:
4424 CASE_CONST_ANY:
4425 case CC0:
4426 case PC:
4427 case USE:
4428 case CLOBBER:
4429 return;
4431 case SUBREG:
4432 if (REG_P (SUBREG_REG (x))
4433 && (GET_MODE_SIZE (GET_MODE (x))
4434 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4436 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4437 = GET_MODE_SIZE (GET_MODE (x));
4438 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4440 return;
4442 default:
4443 break;
4446 fmt = GET_RTX_FORMAT (code);
4447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4449 if (fmt[i] == 'e')
4450 scan_paradoxical_subregs (XEXP (x, i));
4451 else if (fmt[i] == 'E')
4453 int j;
4454 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4455 scan_paradoxical_subregs (XVECEXP (x, i, j));
4460 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4461 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4462 and apply the corresponding narrowing subreg to *OTHER_PTR.
4463 Return true if the operands were changed, false otherwise. */
4465 static bool
4466 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4468 rtx op, inner, other, tem;
4470 op = *op_ptr;
4471 if (!paradoxical_subreg_p (op))
4472 return false;
4473 inner = SUBREG_REG (op);
4475 other = *other_ptr;
4476 tem = gen_lowpart_common (GET_MODE (inner), other);
4477 if (!tem)
4478 return false;
4480 /* If the lowpart operation turned a hard register into a subreg,
4481 rather than simplifying it to another hard register, then the
4482 mode change cannot be properly represented. For example, OTHER
4483 might be valid in its current mode, but not in the new one. */
4484 if (GET_CODE (tem) == SUBREG
4485 && REG_P (other)
4486 && HARD_REGISTER_P (other))
4487 return false;
4489 *op_ptr = inner;
4490 *other_ptr = tem;
4491 return true;
4494 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4495 examine all of the reload insns between PREV and NEXT exclusive, and
4496 annotate all that may trap. */
4498 static void
4499 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4501 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4502 if (note == NULL)
4503 return;
4504 if (!insn_could_throw_p (insn))
4505 remove_note (insn, note);
4506 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4509 /* Reload pseudo-registers into hard regs around each insn as needed.
4510 Additional register load insns are output before the insn that needs it
4511 and perhaps store insns after insns that modify the reloaded pseudo reg.
4513 reg_last_reload_reg and reg_reloaded_contents keep track of
4514 which registers are already available in reload registers.
4515 We update these for the reloads that we perform,
4516 as the insns are scanned. */
4518 static void
4519 reload_as_needed (int live_known)
4521 struct insn_chain *chain;
4522 #if AUTO_INC_DEC
4523 int i;
4524 #endif
4525 rtx_note *marker;
4527 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4528 memset (spill_reg_store, 0, sizeof spill_reg_store);
4529 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4530 INIT_REG_SET (&reg_has_output_reload);
4531 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4532 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4534 set_initial_elim_offsets ();
4536 /* Generate a marker insn that we will move around. */
4537 marker = emit_note (NOTE_INSN_DELETED);
4538 unlink_insn_chain (marker, marker);
4540 for (chain = reload_insn_chain; chain; chain = chain->next)
4542 rtx_insn *prev = 0;
4543 rtx_insn *insn = chain->insn;
4544 rtx_insn *old_next = NEXT_INSN (insn);
4545 #if AUTO_INC_DEC
4546 rtx_insn *old_prev = PREV_INSN (insn);
4547 #endif
4549 if (will_delete_init_insn_p (insn))
4550 continue;
4552 /* If we pass a label, copy the offsets from the label information
4553 into the current offsets of each elimination. */
4554 if (LABEL_P (insn))
4555 set_offsets_for_label (insn);
4557 else if (INSN_P (insn))
4559 regset_head regs_to_forget;
4560 INIT_REG_SET (&regs_to_forget);
4561 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4563 /* If this is a USE and CLOBBER of a MEM, ensure that any
4564 references to eliminable registers have been removed. */
4566 if ((GET_CODE (PATTERN (insn)) == USE
4567 || GET_CODE (PATTERN (insn)) == CLOBBER)
4568 && MEM_P (XEXP (PATTERN (insn), 0)))
4569 XEXP (XEXP (PATTERN (insn), 0), 0)
4570 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4571 GET_MODE (XEXP (PATTERN (insn), 0)),
4572 NULL_RTX);
4574 /* If we need to do register elimination processing, do so.
4575 This might delete the insn, in which case we are done. */
4576 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4578 eliminate_regs_in_insn (insn, 1);
4579 if (NOTE_P (insn))
4581 update_eliminable_offsets ();
4582 CLEAR_REG_SET (&regs_to_forget);
4583 continue;
4587 /* If need_elim is nonzero but need_reload is zero, one might think
4588 that we could simply set n_reloads to 0. However, find_reloads
4589 could have done some manipulation of the insn (such as swapping
4590 commutative operands), and these manipulations are lost during
4591 the first pass for every insn that needs register elimination.
4592 So the actions of find_reloads must be redone here. */
4594 if (! chain->need_elim && ! chain->need_reload
4595 && ! chain->need_operand_change)
4596 n_reloads = 0;
4597 /* First find the pseudo regs that must be reloaded for this insn.
4598 This info is returned in the tables reload_... (see reload.h).
4599 Also modify the body of INSN by substituting RELOAD
4600 rtx's for those pseudo regs. */
4601 else
4603 CLEAR_REG_SET (&reg_has_output_reload);
4604 CLEAR_HARD_REG_SET (reg_is_output_reload);
4606 find_reloads (insn, 1, spill_indirect_levels, live_known,
4607 spill_reg_order);
4610 if (n_reloads > 0)
4612 rtx_insn *next = NEXT_INSN (insn);
4614 /* ??? PREV can get deleted by reload inheritance.
4615 Work around this by emitting a marker note. */
4616 prev = PREV_INSN (insn);
4617 reorder_insns_nobb (marker, marker, prev);
4619 /* Now compute which reload regs to reload them into. Perhaps
4620 reusing reload regs from previous insns, or else output
4621 load insns to reload them. Maybe output store insns too.
4622 Record the choices of reload reg in reload_reg_rtx. */
4623 choose_reload_regs (chain);
4625 /* Generate the insns to reload operands into or out of
4626 their reload regs. */
4627 emit_reload_insns (chain);
4629 /* Substitute the chosen reload regs from reload_reg_rtx
4630 into the insn's body (or perhaps into the bodies of other
4631 load and store insn that we just made for reloading
4632 and that we moved the structure into). */
4633 subst_reloads (insn);
4635 prev = PREV_INSN (marker);
4636 unlink_insn_chain (marker, marker);
4638 /* Adjust the exception region notes for loads and stores. */
4639 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4640 fixup_eh_region_note (insn, prev, next);
4642 /* Adjust the location of REG_ARGS_SIZE. */
4643 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4644 if (p)
4646 remove_note (insn, p);
4647 fixup_args_size_notes (prev, PREV_INSN (next),
4648 INTVAL (XEXP (p, 0)));
4651 /* If this was an ASM, make sure that all the reload insns
4652 we have generated are valid. If not, give an error
4653 and delete them. */
4654 if (asm_noperands (PATTERN (insn)) >= 0)
4655 for (rtx_insn *p = NEXT_INSN (prev);
4656 p != next;
4657 p = NEXT_INSN (p))
4658 if (p != insn && INSN_P (p)
4659 && GET_CODE (PATTERN (p)) != USE
4660 && (recog_memoized (p) < 0
4661 || (extract_insn (p),
4662 !(constrain_operands (1,
4663 get_enabled_alternatives (p))))))
4665 error_for_asm (insn,
4666 "%<asm%> operand requires "
4667 "impossible reload");
4668 delete_insn (p);
4672 if (num_eliminable && chain->need_elim)
4673 update_eliminable_offsets ();
4675 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4676 is no longer validly lying around to save a future reload.
4677 Note that this does not detect pseudos that were reloaded
4678 for this insn in order to be stored in
4679 (obeying register constraints). That is correct; such reload
4680 registers ARE still valid. */
4681 forget_marked_reloads (&regs_to_forget);
4682 CLEAR_REG_SET (&regs_to_forget);
4684 /* There may have been CLOBBER insns placed after INSN. So scan
4685 between INSN and NEXT and use them to forget old reloads. */
4686 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4687 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4688 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4690 #if AUTO_INC_DEC
4691 /* Likewise for regs altered by auto-increment in this insn.
4692 REG_INC notes have been changed by reloading:
4693 find_reloads_address_1 records substitutions for them,
4694 which have been performed by subst_reloads above. */
4695 for (i = n_reloads - 1; i >= 0; i--)
4697 rtx in_reg = rld[i].in_reg;
4698 if (in_reg)
4700 enum rtx_code code = GET_CODE (in_reg);
4701 /* PRE_INC / PRE_DEC will have the reload register ending up
4702 with the same value as the stack slot, but that doesn't
4703 hold true for POST_INC / POST_DEC. Either we have to
4704 convert the memory access to a true POST_INC / POST_DEC,
4705 or we can't use the reload register for inheritance. */
4706 if ((code == POST_INC || code == POST_DEC)
4707 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4708 REGNO (rld[i].reg_rtx))
4709 /* Make sure it is the inc/dec pseudo, and not
4710 some other (e.g. output operand) pseudo. */
4711 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4712 == REGNO (XEXP (in_reg, 0))))
4715 rtx reload_reg = rld[i].reg_rtx;
4716 machine_mode mode = GET_MODE (reload_reg);
4717 int n = 0;
4718 rtx_insn *p;
4720 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4722 /* We really want to ignore REG_INC notes here, so
4723 use PATTERN (p) as argument to reg_set_p . */
4724 if (reg_set_p (reload_reg, PATTERN (p)))
4725 break;
4726 n = count_occurrences (PATTERN (p), reload_reg, 0);
4727 if (! n)
4728 continue;
4729 if (n == 1)
4731 rtx replace_reg
4732 = gen_rtx_fmt_e (code, mode, reload_reg);
4734 validate_replace_rtx_group (reload_reg,
4735 replace_reg, p);
4736 n = verify_changes (0);
4738 /* We must also verify that the constraints
4739 are met after the replacement. Make sure
4740 extract_insn is only called for an insn
4741 where the replacements were found to be
4742 valid so far. */
4743 if (n)
4745 extract_insn (p);
4746 n = constrain_operands (1,
4747 get_enabled_alternatives (p));
4750 /* If the constraints were not met, then
4751 undo the replacement, else confirm it. */
4752 if (!n)
4753 cancel_changes (0);
4754 else
4755 confirm_change_group ();
4757 break;
4759 if (n == 1)
4761 add_reg_note (p, REG_INC, reload_reg);
4762 /* Mark this as having an output reload so that the
4763 REG_INC processing code below won't invalidate
4764 the reload for inheritance. */
4765 SET_HARD_REG_BIT (reg_is_output_reload,
4766 REGNO (reload_reg));
4767 SET_REGNO_REG_SET (&reg_has_output_reload,
4768 REGNO (XEXP (in_reg, 0)));
4770 else
4771 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4772 NULL);
4774 else if ((code == PRE_INC || code == PRE_DEC)
4775 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4776 REGNO (rld[i].reg_rtx))
4777 /* Make sure it is the inc/dec pseudo, and not
4778 some other (e.g. output operand) pseudo. */
4779 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4780 == REGNO (XEXP (in_reg, 0))))
4782 SET_HARD_REG_BIT (reg_is_output_reload,
4783 REGNO (rld[i].reg_rtx));
4784 SET_REGNO_REG_SET (&reg_has_output_reload,
4785 REGNO (XEXP (in_reg, 0)));
4787 else if (code == PRE_INC || code == PRE_DEC
4788 || code == POST_INC || code == POST_DEC)
4790 int in_regno = REGNO (XEXP (in_reg, 0));
4792 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4794 int in_hard_regno;
4795 bool forget_p = true;
4797 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4798 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4799 in_hard_regno))
4801 for (rtx_insn *x = (old_prev ?
4802 NEXT_INSN (old_prev) : insn);
4803 x != old_next;
4804 x = NEXT_INSN (x))
4805 if (x == reg_reloaded_insn[in_hard_regno])
4807 forget_p = false;
4808 break;
4811 /* If for some reasons, we didn't set up
4812 reg_last_reload_reg in this insn,
4813 invalidate inheritance from previous
4814 insns for the incremented/decremented
4815 register. Such registers will be not in
4816 reg_has_output_reload. Invalidate it
4817 also if the corresponding element in
4818 reg_reloaded_insn is also
4819 invalidated. */
4820 if (forget_p)
4821 forget_old_reloads_1 (XEXP (in_reg, 0),
4822 NULL_RTX, NULL);
4827 /* If a pseudo that got a hard register is auto-incremented,
4828 we must purge records of copying it into pseudos without
4829 hard registers. */
4830 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4831 if (REG_NOTE_KIND (x) == REG_INC)
4833 /* See if this pseudo reg was reloaded in this insn.
4834 If so, its last-reload info is still valid
4835 because it is based on this insn's reload. */
4836 for (i = 0; i < n_reloads; i++)
4837 if (rld[i].out == XEXP (x, 0))
4838 break;
4840 if (i == n_reloads)
4841 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4843 #endif
4845 /* A reload reg's contents are unknown after a label. */
4846 if (LABEL_P (insn))
4847 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4849 /* Don't assume a reload reg is still good after a call insn
4850 if it is a call-used reg, or if it contains a value that will
4851 be partially clobbered by the call. */
4852 else if (CALL_P (insn))
4854 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4855 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4857 /* If this is a call to a setjmp-type function, we must not
4858 reuse any reload reg contents across the call; that will
4859 just be clobbered by other uses of the register in later
4860 code, before the longjmp. */
4861 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4862 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4866 /* Clean up. */
4867 free (reg_last_reload_reg);
4868 CLEAR_REG_SET (&reg_has_output_reload);
4871 /* Discard all record of any value reloaded from X,
4872 or reloaded in X from someplace else;
4873 unless X is an output reload reg of the current insn.
4875 X may be a hard reg (the reload reg)
4876 or it may be a pseudo reg that was reloaded from.
4878 When DATA is non-NULL just mark the registers in regset
4879 to be forgotten later. */
4881 static void
4882 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4883 void *data)
4885 unsigned int regno;
4886 unsigned int nr;
4887 regset regs = (regset) data;
4889 /* note_stores does give us subregs of hard regs,
4890 subreg_regno_offset requires a hard reg. */
4891 while (GET_CODE (x) == SUBREG)
4893 /* We ignore the subreg offset when calculating the regno,
4894 because we are using the entire underlying hard register
4895 below. */
4896 x = SUBREG_REG (x);
4899 if (!REG_P (x))
4900 return;
4902 regno = REGNO (x);
4904 if (regno >= FIRST_PSEUDO_REGISTER)
4905 nr = 1;
4906 else
4908 unsigned int i;
4910 nr = hard_regno_nregs[regno][GET_MODE (x)];
4911 /* Storing into a spilled-reg invalidates its contents.
4912 This can happen if a block-local pseudo is allocated to that reg
4913 and it wasn't spilled because this block's total need is 0.
4914 Then some insn might have an optional reload and use this reg. */
4915 if (!regs)
4916 for (i = 0; i < nr; i++)
4917 /* But don't do this if the reg actually serves as an output
4918 reload reg in the current instruction. */
4919 if (n_reloads == 0
4920 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4922 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4923 spill_reg_store[regno + i] = 0;
4927 if (regs)
4928 while (nr-- > 0)
4929 SET_REGNO_REG_SET (regs, regno + nr);
4930 else
4932 /* Since value of X has changed,
4933 forget any value previously copied from it. */
4935 while (nr-- > 0)
4936 /* But don't forget a copy if this is the output reload
4937 that establishes the copy's validity. */
4938 if (n_reloads == 0
4939 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4940 reg_last_reload_reg[regno + nr] = 0;
4944 /* Forget the reloads marked in regset by previous function. */
4945 static void
4946 forget_marked_reloads (regset regs)
4948 unsigned int reg;
4949 reg_set_iterator rsi;
4950 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4952 if (reg < FIRST_PSEUDO_REGISTER
4953 /* But don't do this if the reg actually serves as an output
4954 reload reg in the current instruction. */
4955 && (n_reloads == 0
4956 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4958 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4959 spill_reg_store[reg] = 0;
4961 if (n_reloads == 0
4962 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4963 reg_last_reload_reg[reg] = 0;
4967 /* The following HARD_REG_SETs indicate when each hard register is
4968 used for a reload of various parts of the current insn. */
4970 /* If reg is unavailable for all reloads. */
4971 static HARD_REG_SET reload_reg_unavailable;
4972 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4973 static HARD_REG_SET reload_reg_used;
4974 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4975 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4976 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4977 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4978 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4979 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4980 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4981 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4982 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4983 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4984 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4985 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4986 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4987 static HARD_REG_SET reload_reg_used_in_op_addr;
4988 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4989 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4990 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4991 static HARD_REG_SET reload_reg_used_in_insn;
4992 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4993 static HARD_REG_SET reload_reg_used_in_other_addr;
4995 /* If reg is in use as a reload reg for any sort of reload. */
4996 static HARD_REG_SET reload_reg_used_at_all;
4998 /* If reg is use as an inherited reload. We just mark the first register
4999 in the group. */
5000 static HARD_REG_SET reload_reg_used_for_inherit;
5002 /* Records which hard regs are used in any way, either as explicit use or
5003 by being allocated to a pseudo during any point of the current insn. */
5004 static HARD_REG_SET reg_used_in_insn;
5006 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5007 TYPE. MODE is used to indicate how many consecutive regs are
5008 actually used. */
5010 static void
5011 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5012 machine_mode mode)
5014 switch (type)
5016 case RELOAD_OTHER:
5017 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5018 break;
5020 case RELOAD_FOR_INPUT_ADDRESS:
5021 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5022 break;
5024 case RELOAD_FOR_INPADDR_ADDRESS:
5025 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5026 break;
5028 case RELOAD_FOR_OUTPUT_ADDRESS:
5029 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5030 break;
5032 case RELOAD_FOR_OUTADDR_ADDRESS:
5033 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5034 break;
5036 case RELOAD_FOR_OPERAND_ADDRESS:
5037 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5038 break;
5040 case RELOAD_FOR_OPADDR_ADDR:
5041 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5042 break;
5044 case RELOAD_FOR_OTHER_ADDRESS:
5045 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5046 break;
5048 case RELOAD_FOR_INPUT:
5049 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5050 break;
5052 case RELOAD_FOR_OUTPUT:
5053 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5054 break;
5056 case RELOAD_FOR_INSN:
5057 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5058 break;
5061 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5064 /* Similarly, but show REGNO is no longer in use for a reload. */
5066 static void
5067 clear_reload_reg_in_use (unsigned int regno, int opnum,
5068 enum reload_type type, machine_mode mode)
5070 unsigned int nregs = hard_regno_nregs[regno][mode];
5071 unsigned int start_regno, end_regno, r;
5072 int i;
5073 /* A complication is that for some reload types, inheritance might
5074 allow multiple reloads of the same types to share a reload register.
5075 We set check_opnum if we have to check only reloads with the same
5076 operand number, and check_any if we have to check all reloads. */
5077 int check_opnum = 0;
5078 int check_any = 0;
5079 HARD_REG_SET *used_in_set;
5081 switch (type)
5083 case RELOAD_OTHER:
5084 used_in_set = &reload_reg_used;
5085 break;
5087 case RELOAD_FOR_INPUT_ADDRESS:
5088 used_in_set = &reload_reg_used_in_input_addr[opnum];
5089 break;
5091 case RELOAD_FOR_INPADDR_ADDRESS:
5092 check_opnum = 1;
5093 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5094 break;
5096 case RELOAD_FOR_OUTPUT_ADDRESS:
5097 used_in_set = &reload_reg_used_in_output_addr[opnum];
5098 break;
5100 case RELOAD_FOR_OUTADDR_ADDRESS:
5101 check_opnum = 1;
5102 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5103 break;
5105 case RELOAD_FOR_OPERAND_ADDRESS:
5106 used_in_set = &reload_reg_used_in_op_addr;
5107 break;
5109 case RELOAD_FOR_OPADDR_ADDR:
5110 check_any = 1;
5111 used_in_set = &reload_reg_used_in_op_addr_reload;
5112 break;
5114 case RELOAD_FOR_OTHER_ADDRESS:
5115 used_in_set = &reload_reg_used_in_other_addr;
5116 check_any = 1;
5117 break;
5119 case RELOAD_FOR_INPUT:
5120 used_in_set = &reload_reg_used_in_input[opnum];
5121 break;
5123 case RELOAD_FOR_OUTPUT:
5124 used_in_set = &reload_reg_used_in_output[opnum];
5125 break;
5127 case RELOAD_FOR_INSN:
5128 used_in_set = &reload_reg_used_in_insn;
5129 break;
5130 default:
5131 gcc_unreachable ();
5133 /* We resolve conflicts with remaining reloads of the same type by
5134 excluding the intervals of reload registers by them from the
5135 interval of freed reload registers. Since we only keep track of
5136 one set of interval bounds, we might have to exclude somewhat
5137 more than what would be necessary if we used a HARD_REG_SET here.
5138 But this should only happen very infrequently, so there should
5139 be no reason to worry about it. */
5141 start_regno = regno;
5142 end_regno = regno + nregs;
5143 if (check_opnum || check_any)
5145 for (i = n_reloads - 1; i >= 0; i--)
5147 if (rld[i].when_needed == type
5148 && (check_any || rld[i].opnum == opnum)
5149 && rld[i].reg_rtx)
5151 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5152 unsigned int conflict_end
5153 = end_hard_regno (rld[i].mode, conflict_start);
5155 /* If there is an overlap with the first to-be-freed register,
5156 adjust the interval start. */
5157 if (conflict_start <= start_regno && conflict_end > start_regno)
5158 start_regno = conflict_end;
5159 /* Otherwise, if there is a conflict with one of the other
5160 to-be-freed registers, adjust the interval end. */
5161 if (conflict_start > start_regno && conflict_start < end_regno)
5162 end_regno = conflict_start;
5167 for (r = start_regno; r < end_regno; r++)
5168 CLEAR_HARD_REG_BIT (*used_in_set, r);
5171 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5172 specified by OPNUM and TYPE. */
5174 static int
5175 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5177 int i;
5179 /* In use for a RELOAD_OTHER means it's not available for anything. */
5180 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5181 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5182 return 0;
5184 switch (type)
5186 case RELOAD_OTHER:
5187 /* In use for anything means we can't use it for RELOAD_OTHER. */
5188 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5189 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5190 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5191 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5192 return 0;
5194 for (i = 0; i < reload_n_operands; i++)
5195 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5196 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5197 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5198 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5199 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5200 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5201 return 0;
5203 return 1;
5205 case RELOAD_FOR_INPUT:
5206 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5207 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5208 return 0;
5210 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5211 return 0;
5213 /* If it is used for some other input, can't use it. */
5214 for (i = 0; i < reload_n_operands; i++)
5215 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5216 return 0;
5218 /* If it is used in a later operand's address, can't use it. */
5219 for (i = opnum + 1; i < reload_n_operands; i++)
5220 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5221 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5222 return 0;
5224 return 1;
5226 case RELOAD_FOR_INPUT_ADDRESS:
5227 /* Can't use a register if it is used for an input address for this
5228 operand or used as an input in an earlier one. */
5229 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5230 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5231 return 0;
5233 for (i = 0; i < opnum; i++)
5234 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5235 return 0;
5237 return 1;
5239 case RELOAD_FOR_INPADDR_ADDRESS:
5240 /* Can't use a register if it is used for an input address
5241 for this operand or used as an input in an earlier
5242 one. */
5243 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5244 return 0;
5246 for (i = 0; i < opnum; i++)
5247 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5248 return 0;
5250 return 1;
5252 case RELOAD_FOR_OUTPUT_ADDRESS:
5253 /* Can't use a register if it is used for an output address for this
5254 operand or used as an output in this or a later operand. Note
5255 that multiple output operands are emitted in reverse order, so
5256 the conflicting ones are those with lower indices. */
5257 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5258 return 0;
5260 for (i = 0; i <= opnum; i++)
5261 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5262 return 0;
5264 return 1;
5266 case RELOAD_FOR_OUTADDR_ADDRESS:
5267 /* Can't use a register if it is used for an output address
5268 for this operand or used as an output in this or a
5269 later operand. Note that multiple output operands are
5270 emitted in reverse order, so the conflicting ones are
5271 those with lower indices. */
5272 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5273 return 0;
5275 for (i = 0; i <= opnum; i++)
5276 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5277 return 0;
5279 return 1;
5281 case RELOAD_FOR_OPERAND_ADDRESS:
5282 for (i = 0; i < reload_n_operands; i++)
5283 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5284 return 0;
5286 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5287 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5289 case RELOAD_FOR_OPADDR_ADDR:
5290 for (i = 0; i < reload_n_operands; i++)
5291 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5292 return 0;
5294 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5296 case RELOAD_FOR_OUTPUT:
5297 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5298 outputs, or an operand address for this or an earlier output.
5299 Note that multiple output operands are emitted in reverse order,
5300 so the conflicting ones are those with higher indices. */
5301 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5302 return 0;
5304 for (i = 0; i < reload_n_operands; i++)
5305 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5306 return 0;
5308 for (i = opnum; i < reload_n_operands; i++)
5309 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5310 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5311 return 0;
5313 return 1;
5315 case RELOAD_FOR_INSN:
5316 for (i = 0; i < reload_n_operands; i++)
5317 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5318 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5319 return 0;
5321 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5322 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5324 case RELOAD_FOR_OTHER_ADDRESS:
5325 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5327 default:
5328 gcc_unreachable ();
5332 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5333 the number RELOADNUM, is still available in REGNO at the end of the insn.
5335 We can assume that the reload reg was already tested for availability
5336 at the time it is needed, and we should not check this again,
5337 in case the reg has already been marked in use. */
5339 static int
5340 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5342 int opnum = rld[reloadnum].opnum;
5343 enum reload_type type = rld[reloadnum].when_needed;
5344 int i;
5346 /* See if there is a reload with the same type for this operand, using
5347 the same register. This case is not handled by the code below. */
5348 for (i = reloadnum + 1; i < n_reloads; i++)
5350 rtx reg;
5351 int nregs;
5353 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5354 continue;
5355 reg = rld[i].reg_rtx;
5356 if (reg == NULL_RTX)
5357 continue;
5358 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5359 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5360 return 0;
5363 switch (type)
5365 case RELOAD_OTHER:
5366 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5367 its value must reach the end. */
5368 return 1;
5370 /* If this use is for part of the insn,
5371 its value reaches if no subsequent part uses the same register.
5372 Just like the above function, don't try to do this with lots
5373 of fallthroughs. */
5375 case RELOAD_FOR_OTHER_ADDRESS:
5376 /* Here we check for everything else, since these don't conflict
5377 with anything else and everything comes later. */
5379 for (i = 0; i < reload_n_operands; i++)
5380 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5381 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5382 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5383 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5384 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5385 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5386 return 0;
5388 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5389 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5390 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5391 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5393 case RELOAD_FOR_INPUT_ADDRESS:
5394 case RELOAD_FOR_INPADDR_ADDRESS:
5395 /* Similar, except that we check only for this and subsequent inputs
5396 and the address of only subsequent inputs and we do not need
5397 to check for RELOAD_OTHER objects since they are known not to
5398 conflict. */
5400 for (i = opnum; i < reload_n_operands; i++)
5401 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5402 return 0;
5404 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5405 could be killed if the register is also used by reload with type
5406 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5407 if (type == RELOAD_FOR_INPADDR_ADDRESS
5408 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5409 return 0;
5411 for (i = opnum + 1; i < reload_n_operands; i++)
5412 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5413 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5414 return 0;
5416 for (i = 0; i < reload_n_operands; i++)
5417 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5418 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5419 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5420 return 0;
5422 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5423 return 0;
5425 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5426 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5427 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5429 case RELOAD_FOR_INPUT:
5430 /* Similar to input address, except we start at the next operand for
5431 both input and input address and we do not check for
5432 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5433 would conflict. */
5435 for (i = opnum + 1; i < reload_n_operands; i++)
5436 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5437 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5438 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5439 return 0;
5441 /* ... fall through ... */
5443 case RELOAD_FOR_OPERAND_ADDRESS:
5444 /* Check outputs and their addresses. */
5446 for (i = 0; i < reload_n_operands; i++)
5447 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5448 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5449 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5450 return 0;
5452 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5454 case RELOAD_FOR_OPADDR_ADDR:
5455 for (i = 0; i < reload_n_operands; i++)
5456 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5457 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5458 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5459 return 0;
5461 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5462 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5463 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5465 case RELOAD_FOR_INSN:
5466 /* These conflict with other outputs with RELOAD_OTHER. So
5467 we need only check for output addresses. */
5469 opnum = reload_n_operands;
5471 /* fall through */
5473 case RELOAD_FOR_OUTPUT:
5474 case RELOAD_FOR_OUTPUT_ADDRESS:
5475 case RELOAD_FOR_OUTADDR_ADDRESS:
5476 /* We already know these can't conflict with a later output. So the
5477 only thing to check are later output addresses.
5478 Note that multiple output operands are emitted in reverse order,
5479 so the conflicting ones are those with lower indices. */
5480 for (i = 0; i < opnum; i++)
5481 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5482 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5483 return 0;
5485 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5486 could be killed if the register is also used by reload with type
5487 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5488 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5489 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5490 return 0;
5492 return 1;
5494 default:
5495 gcc_unreachable ();
5499 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5500 every register in REG. */
5502 static bool
5503 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5505 unsigned int i;
5507 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5508 if (!reload_reg_reaches_end_p (i, reloadnum))
5509 return false;
5510 return true;
5514 /* Returns whether R1 and R2 are uniquely chained: the value of one
5515 is used by the other, and that value is not used by any other
5516 reload for this insn. This is used to partially undo the decision
5517 made in find_reloads when in the case of multiple
5518 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5519 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5520 reloads. This code tries to avoid the conflict created by that
5521 change. It might be cleaner to explicitly keep track of which
5522 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5523 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5524 this after the fact. */
5525 static bool
5526 reloads_unique_chain_p (int r1, int r2)
5528 int i;
5530 /* We only check input reloads. */
5531 if (! rld[r1].in || ! rld[r2].in)
5532 return false;
5534 /* Avoid anything with output reloads. */
5535 if (rld[r1].out || rld[r2].out)
5536 return false;
5538 /* "chained" means one reload is a component of the other reload,
5539 not the same as the other reload. */
5540 if (rld[r1].opnum != rld[r2].opnum
5541 || rtx_equal_p (rld[r1].in, rld[r2].in)
5542 || rld[r1].optional || rld[r2].optional
5543 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5544 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5545 return false;
5547 /* The following loop assumes that r1 is the reload that feeds r2. */
5548 if (r1 > r2)
5549 std::swap (r1, r2);
5551 for (i = 0; i < n_reloads; i ++)
5552 /* Look for input reloads that aren't our two */
5553 if (i != r1 && i != r2 && rld[i].in)
5555 /* If our reload is mentioned at all, it isn't a simple chain. */
5556 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5557 return false;
5559 return true;
5562 /* The recursive function change all occurrences of WHAT in *WHERE
5563 to REPL. */
5564 static void
5565 substitute (rtx *where, const_rtx what, rtx repl)
5567 const char *fmt;
5568 int i;
5569 enum rtx_code code;
5571 if (*where == 0)
5572 return;
5574 if (*where == what || rtx_equal_p (*where, what))
5576 /* Record the location of the changed rtx. */
5577 substitute_stack.safe_push (where);
5578 *where = repl;
5579 return;
5582 code = GET_CODE (*where);
5583 fmt = GET_RTX_FORMAT (code);
5584 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5586 if (fmt[i] == 'E')
5588 int j;
5590 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5591 substitute (&XVECEXP (*where, i, j), what, repl);
5593 else if (fmt[i] == 'e')
5594 substitute (&XEXP (*where, i), what, repl);
5598 /* The function returns TRUE if chain of reload R1 and R2 (in any
5599 order) can be evaluated without usage of intermediate register for
5600 the reload containing another reload. It is important to see
5601 gen_reload to understand what the function is trying to do. As an
5602 example, let us have reload chain
5604 r2: const
5605 r1: <something> + const
5607 and reload R2 got reload reg HR. The function returns true if
5608 there is a correct insn HR = HR + <something>. Otherwise,
5609 gen_reload will use intermediate register (and this is the reload
5610 reg for R1) to reload <something>.
5612 We need this function to find a conflict for chain reloads. In our
5613 example, if HR = HR + <something> is incorrect insn, then we cannot
5614 use HR as a reload register for R2. If we do use it then we get a
5615 wrong code:
5617 HR = const
5618 HR = <something>
5619 HR = HR + HR
5622 static bool
5623 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5625 /* Assume other cases in gen_reload are not possible for
5626 chain reloads or do need an intermediate hard registers. */
5627 bool result = true;
5628 int regno, code;
5629 rtx out, in;
5630 rtx_insn *insn;
5631 rtx_insn *last = get_last_insn ();
5633 /* Make r2 a component of r1. */
5634 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5635 std::swap (r1, r2);
5637 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5638 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5639 gcc_assert (regno >= 0);
5640 out = gen_rtx_REG (rld[r1].mode, regno);
5641 in = rld[r1].in;
5642 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5644 /* If IN is a paradoxical SUBREG, remove it and try to put the
5645 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5646 strip_paradoxical_subreg (&in, &out);
5648 if (GET_CODE (in) == PLUS
5649 && (REG_P (XEXP (in, 0))
5650 || GET_CODE (XEXP (in, 0)) == SUBREG
5651 || MEM_P (XEXP (in, 0)))
5652 && (REG_P (XEXP (in, 1))
5653 || GET_CODE (XEXP (in, 1)) == SUBREG
5654 || CONSTANT_P (XEXP (in, 1))
5655 || MEM_P (XEXP (in, 1))))
5657 insn = emit_insn (gen_rtx_SET (out, in));
5658 code = recog_memoized (insn);
5659 result = false;
5661 if (code >= 0)
5663 extract_insn (insn);
5664 /* We want constrain operands to treat this insn strictly in
5665 its validity determination, i.e., the way it would after
5666 reload has completed. */
5667 result = constrain_operands (1, get_enabled_alternatives (insn));
5670 delete_insns_since (last);
5673 /* Restore the original value at each changed address within R1. */
5674 while (!substitute_stack.is_empty ())
5676 rtx *where = substitute_stack.pop ();
5677 *where = rld[r2].in;
5680 return result;
5683 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5684 Return 0 otherwise.
5686 This function uses the same algorithm as reload_reg_free_p above. */
5688 static int
5689 reloads_conflict (int r1, int r2)
5691 enum reload_type r1_type = rld[r1].when_needed;
5692 enum reload_type r2_type = rld[r2].when_needed;
5693 int r1_opnum = rld[r1].opnum;
5694 int r2_opnum = rld[r2].opnum;
5696 /* RELOAD_OTHER conflicts with everything. */
5697 if (r2_type == RELOAD_OTHER)
5698 return 1;
5700 /* Otherwise, check conflicts differently for each type. */
5702 switch (r1_type)
5704 case RELOAD_FOR_INPUT:
5705 return (r2_type == RELOAD_FOR_INSN
5706 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5707 || r2_type == RELOAD_FOR_OPADDR_ADDR
5708 || r2_type == RELOAD_FOR_INPUT
5709 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5710 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5711 && r2_opnum > r1_opnum));
5713 case RELOAD_FOR_INPUT_ADDRESS:
5714 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5715 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5717 case RELOAD_FOR_INPADDR_ADDRESS:
5718 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5719 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5721 case RELOAD_FOR_OUTPUT_ADDRESS:
5722 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5723 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5725 case RELOAD_FOR_OUTADDR_ADDRESS:
5726 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5727 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5729 case RELOAD_FOR_OPERAND_ADDRESS:
5730 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5731 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5732 && (!reloads_unique_chain_p (r1, r2)
5733 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5735 case RELOAD_FOR_OPADDR_ADDR:
5736 return (r2_type == RELOAD_FOR_INPUT
5737 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5739 case RELOAD_FOR_OUTPUT:
5740 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5741 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5742 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5743 && r2_opnum >= r1_opnum));
5745 case RELOAD_FOR_INSN:
5746 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5747 || r2_type == RELOAD_FOR_INSN
5748 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5750 case RELOAD_FOR_OTHER_ADDRESS:
5751 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5753 case RELOAD_OTHER:
5754 return 1;
5756 default:
5757 gcc_unreachable ();
5761 /* Indexed by reload number, 1 if incoming value
5762 inherited from previous insns. */
5763 static char reload_inherited[MAX_RELOADS];
5765 /* For an inherited reload, this is the insn the reload was inherited from,
5766 if we know it. Otherwise, this is 0. */
5767 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5769 /* If nonzero, this is a place to get the value of the reload,
5770 rather than using reload_in. */
5771 static rtx reload_override_in[MAX_RELOADS];
5773 /* For each reload, the hard register number of the register used,
5774 or -1 if we did not need a register for this reload. */
5775 static int reload_spill_index[MAX_RELOADS];
5777 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5778 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5780 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5781 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5783 /* Subroutine of free_for_value_p, used to check a single register.
5784 START_REGNO is the starting regno of the full reload register
5785 (possibly comprising multiple hard registers) that we are considering. */
5787 static int
5788 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5789 enum reload_type type, rtx value, rtx out,
5790 int reloadnum, int ignore_address_reloads)
5792 int time1;
5793 /* Set if we see an input reload that must not share its reload register
5794 with any new earlyclobber, but might otherwise share the reload
5795 register with an output or input-output reload. */
5796 int check_earlyclobber = 0;
5797 int i;
5798 int copy = 0;
5800 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5801 return 0;
5803 if (out == const0_rtx)
5805 copy = 1;
5806 out = NULL_RTX;
5809 /* We use some pseudo 'time' value to check if the lifetimes of the
5810 new register use would overlap with the one of a previous reload
5811 that is not read-only or uses a different value.
5812 The 'time' used doesn't have to be linear in any shape or form, just
5813 monotonic.
5814 Some reload types use different 'buckets' for each operand.
5815 So there are MAX_RECOG_OPERANDS different time values for each
5816 such reload type.
5817 We compute TIME1 as the time when the register for the prospective
5818 new reload ceases to be live, and TIME2 for each existing
5819 reload as the time when that the reload register of that reload
5820 becomes live.
5821 Where there is little to be gained by exact lifetime calculations,
5822 we just make conservative assumptions, i.e. a longer lifetime;
5823 this is done in the 'default:' cases. */
5824 switch (type)
5826 case RELOAD_FOR_OTHER_ADDRESS:
5827 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5828 time1 = copy ? 0 : 1;
5829 break;
5830 case RELOAD_OTHER:
5831 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5832 break;
5833 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5834 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5835 respectively, to the time values for these, we get distinct time
5836 values. To get distinct time values for each operand, we have to
5837 multiply opnum by at least three. We round that up to four because
5838 multiply by four is often cheaper. */
5839 case RELOAD_FOR_INPADDR_ADDRESS:
5840 time1 = opnum * 4 + 2;
5841 break;
5842 case RELOAD_FOR_INPUT_ADDRESS:
5843 time1 = opnum * 4 + 3;
5844 break;
5845 case RELOAD_FOR_INPUT:
5846 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5847 executes (inclusive). */
5848 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5849 break;
5850 case RELOAD_FOR_OPADDR_ADDR:
5851 /* opnum * 4 + 4
5852 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5853 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5854 break;
5855 case RELOAD_FOR_OPERAND_ADDRESS:
5856 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5857 is executed. */
5858 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5859 break;
5860 case RELOAD_FOR_OUTADDR_ADDRESS:
5861 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5862 break;
5863 case RELOAD_FOR_OUTPUT_ADDRESS:
5864 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5865 break;
5866 default:
5867 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5870 for (i = 0; i < n_reloads; i++)
5872 rtx reg = rld[i].reg_rtx;
5873 if (reg && REG_P (reg)
5874 && ((unsigned) regno - true_regnum (reg)
5875 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5876 && i != reloadnum)
5878 rtx other_input = rld[i].in;
5880 /* If the other reload loads the same input value, that
5881 will not cause a conflict only if it's loading it into
5882 the same register. */
5883 if (true_regnum (reg) != start_regno)
5884 other_input = NULL_RTX;
5885 if (! other_input || ! rtx_equal_p (other_input, value)
5886 || rld[i].out || out)
5888 int time2;
5889 switch (rld[i].when_needed)
5891 case RELOAD_FOR_OTHER_ADDRESS:
5892 time2 = 0;
5893 break;
5894 case RELOAD_FOR_INPADDR_ADDRESS:
5895 /* find_reloads makes sure that a
5896 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5897 by at most one - the first -
5898 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5899 address reload is inherited, the address address reload
5900 goes away, so we can ignore this conflict. */
5901 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5902 && ignore_address_reloads
5903 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5904 Then the address address is still needed to store
5905 back the new address. */
5906 && ! rld[reloadnum].out)
5907 continue;
5908 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5909 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5910 reloads go away. */
5911 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5912 && ignore_address_reloads
5913 /* Unless we are reloading an auto_inc expression. */
5914 && ! rld[reloadnum].out)
5915 continue;
5916 time2 = rld[i].opnum * 4 + 2;
5917 break;
5918 case RELOAD_FOR_INPUT_ADDRESS:
5919 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5920 && ignore_address_reloads
5921 && ! rld[reloadnum].out)
5922 continue;
5923 time2 = rld[i].opnum * 4 + 3;
5924 break;
5925 case RELOAD_FOR_INPUT:
5926 time2 = rld[i].opnum * 4 + 4;
5927 check_earlyclobber = 1;
5928 break;
5929 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5930 == MAX_RECOG_OPERAND * 4 */
5931 case RELOAD_FOR_OPADDR_ADDR:
5932 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5933 && ignore_address_reloads
5934 && ! rld[reloadnum].out)
5935 continue;
5936 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5937 break;
5938 case RELOAD_FOR_OPERAND_ADDRESS:
5939 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5940 check_earlyclobber = 1;
5941 break;
5942 case RELOAD_FOR_INSN:
5943 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5944 break;
5945 case RELOAD_FOR_OUTPUT:
5946 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5947 instruction is executed. */
5948 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5949 break;
5950 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5951 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5952 value. */
5953 case RELOAD_FOR_OUTADDR_ADDRESS:
5954 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5955 && ignore_address_reloads
5956 && ! rld[reloadnum].out)
5957 continue;
5958 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5959 break;
5960 case RELOAD_FOR_OUTPUT_ADDRESS:
5961 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5962 break;
5963 case RELOAD_OTHER:
5964 /* If there is no conflict in the input part, handle this
5965 like an output reload. */
5966 if (! rld[i].in || rtx_equal_p (other_input, value))
5968 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5969 /* Earlyclobbered outputs must conflict with inputs. */
5970 if (earlyclobber_operand_p (rld[i].out))
5971 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5973 break;
5975 time2 = 1;
5976 /* RELOAD_OTHER might be live beyond instruction execution,
5977 but this is not obvious when we set time2 = 1. So check
5978 here if there might be a problem with the new reload
5979 clobbering the register used by the RELOAD_OTHER. */
5980 if (out)
5981 return 0;
5982 break;
5983 default:
5984 return 0;
5986 if ((time1 >= time2
5987 && (! rld[i].in || rld[i].out
5988 || ! rtx_equal_p (other_input, value)))
5989 || (out && rld[reloadnum].out_reg
5990 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5991 return 0;
5996 /* Earlyclobbered outputs must conflict with inputs. */
5997 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5998 return 0;
6000 return 1;
6003 /* Return 1 if the value in reload reg REGNO, as used by a reload
6004 needed for the part of the insn specified by OPNUM and TYPE,
6005 may be used to load VALUE into it.
6007 MODE is the mode in which the register is used, this is needed to
6008 determine how many hard regs to test.
6010 Other read-only reloads with the same value do not conflict
6011 unless OUT is nonzero and these other reloads have to live while
6012 output reloads live.
6013 If OUT is CONST0_RTX, this is a special case: it means that the
6014 test should not be for using register REGNO as reload register, but
6015 for copying from register REGNO into the reload register.
6017 RELOADNUM is the number of the reload we want to load this value for;
6018 a reload does not conflict with itself.
6020 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6021 reloads that load an address for the very reload we are considering.
6023 The caller has to make sure that there is no conflict with the return
6024 register. */
6026 static int
6027 free_for_value_p (int regno, machine_mode mode, int opnum,
6028 enum reload_type type, rtx value, rtx out, int reloadnum,
6029 int ignore_address_reloads)
6031 int nregs = hard_regno_nregs[regno][mode];
6032 while (nregs-- > 0)
6033 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6034 value, out, reloadnum,
6035 ignore_address_reloads))
6036 return 0;
6037 return 1;
6040 /* Return nonzero if the rtx X is invariant over the current function. */
6041 /* ??? Actually, the places where we use this expect exactly what is
6042 tested here, and not everything that is function invariant. In
6043 particular, the frame pointer and arg pointer are special cased;
6044 pic_offset_table_rtx is not, and we must not spill these things to
6045 memory. */
6048 function_invariant_p (const_rtx x)
6050 if (CONSTANT_P (x))
6051 return 1;
6052 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6053 return 1;
6054 if (GET_CODE (x) == PLUS
6055 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6056 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6057 return 1;
6058 return 0;
6061 /* Determine whether the reload reg X overlaps any rtx'es used for
6062 overriding inheritance. Return nonzero if so. */
6064 static int
6065 conflicts_with_override (rtx x)
6067 int i;
6068 for (i = 0; i < n_reloads; i++)
6069 if (reload_override_in[i]
6070 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6071 return 1;
6072 return 0;
6075 /* Give an error message saying we failed to find a reload for INSN,
6076 and clear out reload R. */
6077 static void
6078 failed_reload (rtx_insn *insn, int r)
6080 if (asm_noperands (PATTERN (insn)) < 0)
6081 /* It's the compiler's fault. */
6082 fatal_insn ("could not find a spill register", insn);
6084 /* It's the user's fault; the operand's mode and constraint
6085 don't match. Disable this reload so we don't crash in final. */
6086 error_for_asm (insn,
6087 "%<asm%> operand constraint incompatible with operand size");
6088 rld[r].in = 0;
6089 rld[r].out = 0;
6090 rld[r].reg_rtx = 0;
6091 rld[r].optional = 1;
6092 rld[r].secondary_p = 1;
6095 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6096 for reload R. If it's valid, get an rtx for it. Return nonzero if
6097 successful. */
6098 static int
6099 set_reload_reg (int i, int r)
6101 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6102 parameter. */
6103 int regno ATTRIBUTE_UNUSED;
6104 rtx reg = spill_reg_rtx[i];
6106 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6107 spill_reg_rtx[i] = reg
6108 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6110 regno = true_regnum (reg);
6112 /* Detect when the reload reg can't hold the reload mode.
6113 This used to be one `if', but Sequent compiler can't handle that. */
6114 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6116 machine_mode test_mode = VOIDmode;
6117 if (rld[r].in)
6118 test_mode = GET_MODE (rld[r].in);
6119 /* If rld[r].in has VOIDmode, it means we will load it
6120 in whatever mode the reload reg has: to wit, rld[r].mode.
6121 We have already tested that for validity. */
6122 /* Aside from that, we need to test that the expressions
6123 to reload from or into have modes which are valid for this
6124 reload register. Otherwise the reload insns would be invalid. */
6125 if (! (rld[r].in != 0 && test_mode != VOIDmode
6126 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6127 if (! (rld[r].out != 0
6128 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6130 /* The reg is OK. */
6131 last_spill_reg = i;
6133 /* Mark as in use for this insn the reload regs we use
6134 for this. */
6135 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6136 rld[r].when_needed, rld[r].mode);
6138 rld[r].reg_rtx = reg;
6139 reload_spill_index[r] = spill_regs[i];
6140 return 1;
6143 return 0;
6146 /* Find a spill register to use as a reload register for reload R.
6147 LAST_RELOAD is nonzero if this is the last reload for the insn being
6148 processed.
6150 Set rld[R].reg_rtx to the register allocated.
6152 We return 1 if successful, or 0 if we couldn't find a spill reg and
6153 we didn't change anything. */
6155 static int
6156 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6157 int last_reload)
6159 int i, pass, count;
6161 /* If we put this reload ahead, thinking it is a group,
6162 then insist on finding a group. Otherwise we can grab a
6163 reg that some other reload needs.
6164 (That can happen when we have a 68000 DATA_OR_FP_REG
6165 which is a group of data regs or one fp reg.)
6166 We need not be so restrictive if there are no more reloads
6167 for this insn.
6169 ??? Really it would be nicer to have smarter handling
6170 for that kind of reg class, where a problem like this is normal.
6171 Perhaps those classes should be avoided for reloading
6172 by use of more alternatives. */
6174 int force_group = rld[r].nregs > 1 && ! last_reload;
6176 /* If we want a single register and haven't yet found one,
6177 take any reg in the right class and not in use.
6178 If we want a consecutive group, here is where we look for it.
6180 We use three passes so we can first look for reload regs to
6181 reuse, which are already in use for other reloads in this insn,
6182 and only then use additional registers which are not "bad", then
6183 finally any register.
6185 I think that maximizing reuse is needed to make sure we don't
6186 run out of reload regs. Suppose we have three reloads, and
6187 reloads A and B can share regs. These need two regs.
6188 Suppose A and B are given different regs.
6189 That leaves none for C. */
6190 for (pass = 0; pass < 3; pass++)
6192 /* I is the index in spill_regs.
6193 We advance it round-robin between insns to use all spill regs
6194 equally, so that inherited reloads have a chance
6195 of leapfrogging each other. */
6197 i = last_spill_reg;
6199 for (count = 0; count < n_spills; count++)
6201 int rclass = (int) rld[r].rclass;
6202 int regnum;
6204 i++;
6205 if (i >= n_spills)
6206 i -= n_spills;
6207 regnum = spill_regs[i];
6209 if ((reload_reg_free_p (regnum, rld[r].opnum,
6210 rld[r].when_needed)
6211 || (rld[r].in
6212 /* We check reload_reg_used to make sure we
6213 don't clobber the return register. */
6214 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6215 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6216 rld[r].when_needed, rld[r].in,
6217 rld[r].out, r, 1)))
6218 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6219 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6220 /* Look first for regs to share, then for unshared. But
6221 don't share regs used for inherited reloads; they are
6222 the ones we want to preserve. */
6223 && (pass
6224 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6225 regnum)
6226 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6227 regnum))))
6229 int nr = hard_regno_nregs[regnum][rld[r].mode];
6231 /* During the second pass we want to avoid reload registers
6232 which are "bad" for this reload. */
6233 if (pass == 1
6234 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6235 continue;
6237 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6238 (on 68000) got us two FP regs. If NR is 1,
6239 we would reject both of them. */
6240 if (force_group)
6241 nr = rld[r].nregs;
6242 /* If we need only one reg, we have already won. */
6243 if (nr == 1)
6245 /* But reject a single reg if we demand a group. */
6246 if (force_group)
6247 continue;
6248 break;
6250 /* Otherwise check that as many consecutive regs as we need
6251 are available here. */
6252 while (nr > 1)
6254 int regno = regnum + nr - 1;
6255 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6256 && spill_reg_order[regno] >= 0
6257 && reload_reg_free_p (regno, rld[r].opnum,
6258 rld[r].when_needed)))
6259 break;
6260 nr--;
6262 if (nr == 1)
6263 break;
6267 /* If we found something on the current pass, omit later passes. */
6268 if (count < n_spills)
6269 break;
6272 /* We should have found a spill register by now. */
6273 if (count >= n_spills)
6274 return 0;
6276 /* I is the index in SPILL_REG_RTX of the reload register we are to
6277 allocate. Get an rtx for it and find its register number. */
6279 return set_reload_reg (i, r);
6282 /* Initialize all the tables needed to allocate reload registers.
6283 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6284 is the array we use to restore the reg_rtx field for every reload. */
6286 static void
6287 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6289 int i;
6291 for (i = 0; i < n_reloads; i++)
6292 rld[i].reg_rtx = save_reload_reg_rtx[i];
6294 memset (reload_inherited, 0, MAX_RELOADS);
6295 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6296 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6298 CLEAR_HARD_REG_SET (reload_reg_used);
6299 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6300 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6301 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6302 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6303 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6305 CLEAR_HARD_REG_SET (reg_used_in_insn);
6307 HARD_REG_SET tmp;
6308 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6309 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6310 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6311 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6312 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6313 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6316 for (i = 0; i < reload_n_operands; i++)
6318 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6319 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6320 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6321 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6322 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6323 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6326 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6328 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6330 for (i = 0; i < n_reloads; i++)
6331 /* If we have already decided to use a certain register,
6332 don't use it in another way. */
6333 if (rld[i].reg_rtx)
6334 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6335 rld[i].when_needed, rld[i].mode);
6338 #ifdef SECONDARY_MEMORY_NEEDED
6339 /* If X is not a subreg, return it unmodified. If it is a subreg,
6340 look up whether we made a replacement for the SUBREG_REG. Return
6341 either the replacement or the SUBREG_REG. */
6343 static rtx
6344 replaced_subreg (rtx x)
6346 if (GET_CODE (x) == SUBREG)
6347 return find_replacement (&SUBREG_REG (x));
6348 return x;
6350 #endif
6352 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6353 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6354 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6355 otherwise it is NULL. */
6357 static int
6358 compute_reload_subreg_offset (machine_mode outermode,
6359 rtx subreg,
6360 machine_mode innermode)
6362 int outer_offset;
6363 machine_mode middlemode;
6365 if (!subreg)
6366 return subreg_lowpart_offset (outermode, innermode);
6368 outer_offset = SUBREG_BYTE (subreg);
6369 middlemode = GET_MODE (SUBREG_REG (subreg));
6371 /* If SUBREG is paradoxical then return the normal lowpart offset
6372 for OUTERMODE and INNERMODE. Our caller has already checked
6373 that OUTERMODE fits in INNERMODE. */
6374 if (outer_offset == 0
6375 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6376 return subreg_lowpart_offset (outermode, innermode);
6378 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6379 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6380 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6383 /* Assign hard reg targets for the pseudo-registers we must reload
6384 into hard regs for this insn.
6385 Also output the instructions to copy them in and out of the hard regs.
6387 For machines with register classes, we are responsible for
6388 finding a reload reg in the proper class. */
6390 static void
6391 choose_reload_regs (struct insn_chain *chain)
6393 rtx_insn *insn = chain->insn;
6394 int i, j;
6395 unsigned int max_group_size = 1;
6396 enum reg_class group_class = NO_REGS;
6397 int pass, win, inheritance;
6399 rtx save_reload_reg_rtx[MAX_RELOADS];
6401 /* In order to be certain of getting the registers we need,
6402 we must sort the reloads into order of increasing register class.
6403 Then our grabbing of reload registers will parallel the process
6404 that provided the reload registers.
6406 Also note whether any of the reloads wants a consecutive group of regs.
6407 If so, record the maximum size of the group desired and what
6408 register class contains all the groups needed by this insn. */
6410 for (j = 0; j < n_reloads; j++)
6412 reload_order[j] = j;
6413 if (rld[j].reg_rtx != NULL_RTX)
6415 gcc_assert (REG_P (rld[j].reg_rtx)
6416 && HARD_REGISTER_P (rld[j].reg_rtx));
6417 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6419 else
6420 reload_spill_index[j] = -1;
6422 if (rld[j].nregs > 1)
6424 max_group_size = MAX (rld[j].nregs, max_group_size);
6425 group_class
6426 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6429 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6432 if (n_reloads > 1)
6433 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6435 /* If -O, try first with inheritance, then turning it off.
6436 If not -O, don't do inheritance.
6437 Using inheritance when not optimizing leads to paradoxes
6438 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6439 because one side of the comparison might be inherited. */
6440 win = 0;
6441 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6443 choose_reload_regs_init (chain, save_reload_reg_rtx);
6445 /* Process the reloads in order of preference just found.
6446 Beyond this point, subregs can be found in reload_reg_rtx.
6448 This used to look for an existing reloaded home for all of the
6449 reloads, and only then perform any new reloads. But that could lose
6450 if the reloads were done out of reg-class order because a later
6451 reload with a looser constraint might have an old home in a register
6452 needed by an earlier reload with a tighter constraint.
6454 To solve this, we make two passes over the reloads, in the order
6455 described above. In the first pass we try to inherit a reload
6456 from a previous insn. If there is a later reload that needs a
6457 class that is a proper subset of the class being processed, we must
6458 also allocate a spill register during the first pass.
6460 Then make a second pass over the reloads to allocate any reloads
6461 that haven't been given registers yet. */
6463 for (j = 0; j < n_reloads; j++)
6465 int r = reload_order[j];
6466 rtx search_equiv = NULL_RTX;
6468 /* Ignore reloads that got marked inoperative. */
6469 if (rld[r].out == 0 && rld[r].in == 0
6470 && ! rld[r].secondary_p)
6471 continue;
6473 /* If find_reloads chose to use reload_in or reload_out as a reload
6474 register, we don't need to chose one. Otherwise, try even if it
6475 found one since we might save an insn if we find the value lying
6476 around.
6477 Try also when reload_in is a pseudo without a hard reg. */
6478 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6479 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6480 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6481 && !MEM_P (rld[r].in)
6482 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6483 continue;
6485 #if 0 /* No longer needed for correct operation.
6486 It might give better code, or might not; worth an experiment? */
6487 /* If this is an optional reload, we can't inherit from earlier insns
6488 until we are sure that any non-optional reloads have been allocated.
6489 The following code takes advantage of the fact that optional reloads
6490 are at the end of reload_order. */
6491 if (rld[r].optional != 0)
6492 for (i = 0; i < j; i++)
6493 if ((rld[reload_order[i]].out != 0
6494 || rld[reload_order[i]].in != 0
6495 || rld[reload_order[i]].secondary_p)
6496 && ! rld[reload_order[i]].optional
6497 && rld[reload_order[i]].reg_rtx == 0)
6498 allocate_reload_reg (chain, reload_order[i], 0);
6499 #endif
6501 /* First see if this pseudo is already available as reloaded
6502 for a previous insn. We cannot try to inherit for reloads
6503 that are smaller than the maximum number of registers needed
6504 for groups unless the register we would allocate cannot be used
6505 for the groups.
6507 We could check here to see if this is a secondary reload for
6508 an object that is already in a register of the desired class.
6509 This would avoid the need for the secondary reload register.
6510 But this is complex because we can't easily determine what
6511 objects might want to be loaded via this reload. So let a
6512 register be allocated here. In `emit_reload_insns' we suppress
6513 one of the loads in the case described above. */
6515 if (inheritance)
6517 int byte = 0;
6518 int regno = -1;
6519 machine_mode mode = VOIDmode;
6520 rtx subreg = NULL_RTX;
6522 if (rld[r].in == 0)
6524 else if (REG_P (rld[r].in))
6526 regno = REGNO (rld[r].in);
6527 mode = GET_MODE (rld[r].in);
6529 else if (REG_P (rld[r].in_reg))
6531 regno = REGNO (rld[r].in_reg);
6532 mode = GET_MODE (rld[r].in_reg);
6534 else if (GET_CODE (rld[r].in_reg) == SUBREG
6535 && REG_P (SUBREG_REG (rld[r].in_reg)))
6537 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6538 if (regno < FIRST_PSEUDO_REGISTER)
6539 regno = subreg_regno (rld[r].in_reg);
6540 else
6542 subreg = rld[r].in_reg;
6543 byte = SUBREG_BYTE (subreg);
6545 mode = GET_MODE (rld[r].in_reg);
6547 #if AUTO_INC_DEC
6548 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6549 && REG_P (XEXP (rld[r].in_reg, 0)))
6551 regno = REGNO (XEXP (rld[r].in_reg, 0));
6552 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6553 rld[r].out = rld[r].in;
6555 #endif
6556 #if 0
6557 /* This won't work, since REGNO can be a pseudo reg number.
6558 Also, it takes much more hair to keep track of all the things
6559 that can invalidate an inherited reload of part of a pseudoreg. */
6560 else if (GET_CODE (rld[r].in) == SUBREG
6561 && REG_P (SUBREG_REG (rld[r].in)))
6562 regno = subreg_regno (rld[r].in);
6563 #endif
6565 if (regno >= 0
6566 && reg_last_reload_reg[regno] != 0
6567 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6568 >= GET_MODE_SIZE (mode) + byte)
6569 #ifdef CANNOT_CHANGE_MODE_CLASS
6570 /* Verify that the register it's in can be used in
6571 mode MODE. */
6572 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6573 GET_MODE (reg_last_reload_reg[regno]),
6574 mode)
6575 #endif
6578 enum reg_class rclass = rld[r].rclass, last_class;
6579 rtx last_reg = reg_last_reload_reg[regno];
6581 i = REGNO (last_reg);
6582 byte = compute_reload_subreg_offset (mode,
6583 subreg,
6584 GET_MODE (last_reg));
6585 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6586 last_class = REGNO_REG_CLASS (i);
6588 if (reg_reloaded_contents[i] == regno
6589 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6590 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6591 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6592 /* Even if we can't use this register as a reload
6593 register, we might use it for reload_override_in,
6594 if copying it to the desired class is cheap
6595 enough. */
6596 || ((register_move_cost (mode, last_class, rclass)
6597 < memory_move_cost (mode, rclass, true))
6598 && (secondary_reload_class (1, rclass, mode,
6599 last_reg)
6600 == NO_REGS)
6601 #ifdef SECONDARY_MEMORY_NEEDED
6602 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6603 mode)
6604 #endif
6607 && (rld[r].nregs == max_group_size
6608 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6610 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6611 rld[r].when_needed, rld[r].in,
6612 const0_rtx, r, 1))
6614 /* If a group is needed, verify that all the subsequent
6615 registers still have their values intact. */
6616 int nr = hard_regno_nregs[i][rld[r].mode];
6617 int k;
6619 for (k = 1; k < nr; k++)
6620 if (reg_reloaded_contents[i + k] != regno
6621 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6622 break;
6624 if (k == nr)
6626 int i1;
6627 int bad_for_class;
6629 last_reg = (GET_MODE (last_reg) == mode
6630 ? last_reg : gen_rtx_REG (mode, i));
6632 bad_for_class = 0;
6633 for (k = 0; k < nr; k++)
6634 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6635 i+k);
6637 /* We found a register that contains the
6638 value we need. If this register is the
6639 same as an `earlyclobber' operand of the
6640 current insn, just mark it as a place to
6641 reload from since we can't use it as the
6642 reload register itself. */
6644 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6645 if (reg_overlap_mentioned_for_reload_p
6646 (reg_last_reload_reg[regno],
6647 reload_earlyclobbers[i1]))
6648 break;
6650 if (i1 != n_earlyclobbers
6651 || ! (free_for_value_p (i, rld[r].mode,
6652 rld[r].opnum,
6653 rld[r].when_needed, rld[r].in,
6654 rld[r].out, r, 1))
6655 /* Don't use it if we'd clobber a pseudo reg. */
6656 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6657 && rld[r].out
6658 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6659 /* Don't clobber the frame pointer. */
6660 || (i == HARD_FRAME_POINTER_REGNUM
6661 && frame_pointer_needed
6662 && rld[r].out)
6663 /* Don't really use the inherited spill reg
6664 if we need it wider than we've got it. */
6665 || (GET_MODE_SIZE (rld[r].mode)
6666 > GET_MODE_SIZE (mode))
6667 || bad_for_class
6669 /* If find_reloads chose reload_out as reload
6670 register, stay with it - that leaves the
6671 inherited register for subsequent reloads. */
6672 || (rld[r].out && rld[r].reg_rtx
6673 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6675 if (! rld[r].optional)
6677 reload_override_in[r] = last_reg;
6678 reload_inheritance_insn[r]
6679 = reg_reloaded_insn[i];
6682 else
6684 int k;
6685 /* We can use this as a reload reg. */
6686 /* Mark the register as in use for this part of
6687 the insn. */
6688 mark_reload_reg_in_use (i,
6689 rld[r].opnum,
6690 rld[r].when_needed,
6691 rld[r].mode);
6692 rld[r].reg_rtx = last_reg;
6693 reload_inherited[r] = 1;
6694 reload_inheritance_insn[r]
6695 = reg_reloaded_insn[i];
6696 reload_spill_index[r] = i;
6697 for (k = 0; k < nr; k++)
6698 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6699 i + k);
6706 /* Here's another way to see if the value is already lying around. */
6707 if (inheritance
6708 && rld[r].in != 0
6709 && ! reload_inherited[r]
6710 && rld[r].out == 0
6711 && (CONSTANT_P (rld[r].in)
6712 || GET_CODE (rld[r].in) == PLUS
6713 || REG_P (rld[r].in)
6714 || MEM_P (rld[r].in))
6715 && (rld[r].nregs == max_group_size
6716 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6717 search_equiv = rld[r].in;
6719 if (search_equiv)
6721 rtx equiv
6722 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6723 -1, NULL, 0, rld[r].mode);
6724 int regno = 0;
6726 if (equiv != 0)
6728 if (REG_P (equiv))
6729 regno = REGNO (equiv);
6730 else
6732 /* This must be a SUBREG of a hard register.
6733 Make a new REG since this might be used in an
6734 address and not all machines support SUBREGs
6735 there. */
6736 gcc_assert (GET_CODE (equiv) == SUBREG);
6737 regno = subreg_regno (equiv);
6738 equiv = gen_rtx_REG (rld[r].mode, regno);
6739 /* If we choose EQUIV as the reload register, but the
6740 loop below decides to cancel the inheritance, we'll
6741 end up reloading EQUIV in rld[r].mode, not the mode
6742 it had originally. That isn't safe when EQUIV isn't
6743 available as a spill register since its value might
6744 still be live at this point. */
6745 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6746 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6747 equiv = 0;
6751 /* If we found a spill reg, reject it unless it is free
6752 and of the desired class. */
6753 if (equiv != 0)
6755 int regs_used = 0;
6756 int bad_for_class = 0;
6757 int max_regno = regno + rld[r].nregs;
6759 for (i = regno; i < max_regno; i++)
6761 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6763 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6767 if ((regs_used
6768 && ! free_for_value_p (regno, rld[r].mode,
6769 rld[r].opnum, rld[r].when_needed,
6770 rld[r].in, rld[r].out, r, 1))
6771 || bad_for_class)
6772 equiv = 0;
6775 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6776 equiv = 0;
6778 /* We found a register that contains the value we need.
6779 If this register is the same as an `earlyclobber' operand
6780 of the current insn, just mark it as a place to reload from
6781 since we can't use it as the reload register itself. */
6783 if (equiv != 0)
6784 for (i = 0; i < n_earlyclobbers; i++)
6785 if (reg_overlap_mentioned_for_reload_p (equiv,
6786 reload_earlyclobbers[i]))
6788 if (! rld[r].optional)
6789 reload_override_in[r] = equiv;
6790 equiv = 0;
6791 break;
6794 /* If the equiv register we have found is explicitly clobbered
6795 in the current insn, it depends on the reload type if we
6796 can use it, use it for reload_override_in, or not at all.
6797 In particular, we then can't use EQUIV for a
6798 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6800 if (equiv != 0)
6802 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6803 switch (rld[r].when_needed)
6805 case RELOAD_FOR_OTHER_ADDRESS:
6806 case RELOAD_FOR_INPADDR_ADDRESS:
6807 case RELOAD_FOR_INPUT_ADDRESS:
6808 case RELOAD_FOR_OPADDR_ADDR:
6809 break;
6810 case RELOAD_OTHER:
6811 case RELOAD_FOR_INPUT:
6812 case RELOAD_FOR_OPERAND_ADDRESS:
6813 if (! rld[r].optional)
6814 reload_override_in[r] = equiv;
6815 /* Fall through. */
6816 default:
6817 equiv = 0;
6818 break;
6820 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6821 switch (rld[r].when_needed)
6823 case RELOAD_FOR_OTHER_ADDRESS:
6824 case RELOAD_FOR_INPADDR_ADDRESS:
6825 case RELOAD_FOR_INPUT_ADDRESS:
6826 case RELOAD_FOR_OPADDR_ADDR:
6827 case RELOAD_FOR_OPERAND_ADDRESS:
6828 case RELOAD_FOR_INPUT:
6829 break;
6830 case RELOAD_OTHER:
6831 if (! rld[r].optional)
6832 reload_override_in[r] = equiv;
6833 /* Fall through. */
6834 default:
6835 equiv = 0;
6836 break;
6840 /* If we found an equivalent reg, say no code need be generated
6841 to load it, and use it as our reload reg. */
6842 if (equiv != 0
6843 && (regno != HARD_FRAME_POINTER_REGNUM
6844 || !frame_pointer_needed))
6846 int nr = hard_regno_nregs[regno][rld[r].mode];
6847 int k;
6848 rld[r].reg_rtx = equiv;
6849 reload_spill_index[r] = regno;
6850 reload_inherited[r] = 1;
6852 /* If reg_reloaded_valid is not set for this register,
6853 there might be a stale spill_reg_store lying around.
6854 We must clear it, since otherwise emit_reload_insns
6855 might delete the store. */
6856 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6857 spill_reg_store[regno] = NULL;
6858 /* If any of the hard registers in EQUIV are spill
6859 registers, mark them as in use for this insn. */
6860 for (k = 0; k < nr; k++)
6862 i = spill_reg_order[regno + k];
6863 if (i >= 0)
6865 mark_reload_reg_in_use (regno, rld[r].opnum,
6866 rld[r].when_needed,
6867 rld[r].mode);
6868 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6869 regno + k);
6875 /* If we found a register to use already, or if this is an optional
6876 reload, we are done. */
6877 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6878 continue;
6880 #if 0
6881 /* No longer needed for correct operation. Might or might
6882 not give better code on the average. Want to experiment? */
6884 /* See if there is a later reload that has a class different from our
6885 class that intersects our class or that requires less register
6886 than our reload. If so, we must allocate a register to this
6887 reload now, since that reload might inherit a previous reload
6888 and take the only available register in our class. Don't do this
6889 for optional reloads since they will force all previous reloads
6890 to be allocated. Also don't do this for reloads that have been
6891 turned off. */
6893 for (i = j + 1; i < n_reloads; i++)
6895 int s = reload_order[i];
6897 if ((rld[s].in == 0 && rld[s].out == 0
6898 && ! rld[s].secondary_p)
6899 || rld[s].optional)
6900 continue;
6902 if ((rld[s].rclass != rld[r].rclass
6903 && reg_classes_intersect_p (rld[r].rclass,
6904 rld[s].rclass))
6905 || rld[s].nregs < rld[r].nregs)
6906 break;
6909 if (i == n_reloads)
6910 continue;
6912 allocate_reload_reg (chain, r, j == n_reloads - 1);
6913 #endif
6916 /* Now allocate reload registers for anything non-optional that
6917 didn't get one yet. */
6918 for (j = 0; j < n_reloads; j++)
6920 int r = reload_order[j];
6922 /* Ignore reloads that got marked inoperative. */
6923 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6924 continue;
6926 /* Skip reloads that already have a register allocated or are
6927 optional. */
6928 if (rld[r].reg_rtx != 0 || rld[r].optional)
6929 continue;
6931 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6932 break;
6935 /* If that loop got all the way, we have won. */
6936 if (j == n_reloads)
6938 win = 1;
6939 break;
6942 /* Loop around and try without any inheritance. */
6945 if (! win)
6947 /* First undo everything done by the failed attempt
6948 to allocate with inheritance. */
6949 choose_reload_regs_init (chain, save_reload_reg_rtx);
6951 /* Some sanity tests to verify that the reloads found in the first
6952 pass are identical to the ones we have now. */
6953 gcc_assert (chain->n_reloads == n_reloads);
6955 for (i = 0; i < n_reloads; i++)
6957 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6958 continue;
6959 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6960 for (j = 0; j < n_spills; j++)
6961 if (spill_regs[j] == chain->rld[i].regno)
6962 if (! set_reload_reg (j, i))
6963 failed_reload (chain->insn, i);
6967 /* If we thought we could inherit a reload, because it seemed that
6968 nothing else wanted the same reload register earlier in the insn,
6969 verify that assumption, now that all reloads have been assigned.
6970 Likewise for reloads where reload_override_in has been set. */
6972 /* If doing expensive optimizations, do one preliminary pass that doesn't
6973 cancel any inheritance, but removes reloads that have been needed only
6974 for reloads that we know can be inherited. */
6975 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6977 for (j = 0; j < n_reloads; j++)
6979 int r = reload_order[j];
6980 rtx check_reg;
6981 #ifdef SECONDARY_MEMORY_NEEDED
6982 rtx tem;
6983 #endif
6984 if (reload_inherited[r] && rld[r].reg_rtx)
6985 check_reg = rld[r].reg_rtx;
6986 else if (reload_override_in[r]
6987 && (REG_P (reload_override_in[r])
6988 || GET_CODE (reload_override_in[r]) == SUBREG))
6989 check_reg = reload_override_in[r];
6990 else
6991 continue;
6992 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6993 rld[r].opnum, rld[r].when_needed, rld[r].in,
6994 (reload_inherited[r]
6995 ? rld[r].out : const0_rtx),
6996 r, 1))
6998 if (pass)
6999 continue;
7000 reload_inherited[r] = 0;
7001 reload_override_in[r] = 0;
7003 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7004 reload_override_in, then we do not need its related
7005 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7006 likewise for other reload types.
7007 We handle this by removing a reload when its only replacement
7008 is mentioned in reload_in of the reload we are going to inherit.
7009 A special case are auto_inc expressions; even if the input is
7010 inherited, we still need the address for the output. We can
7011 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7012 If we succeeded removing some reload and we are doing a preliminary
7013 pass just to remove such reloads, make another pass, since the
7014 removal of one reload might allow us to inherit another one. */
7015 else if (rld[r].in
7016 && rld[r].out != rld[r].in
7017 && remove_address_replacements (rld[r].in))
7019 if (pass)
7020 pass = 2;
7022 #ifdef SECONDARY_MEMORY_NEEDED
7023 /* If we needed a memory location for the reload, we also have to
7024 remove its related reloads. */
7025 else if (rld[r].in
7026 && rld[r].out != rld[r].in
7027 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7028 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7029 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7030 rld[r].rclass, rld[r].inmode)
7031 && remove_address_replacements
7032 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7033 rld[r].when_needed)))
7035 if (pass)
7036 pass = 2;
7038 #endif
7042 /* Now that reload_override_in is known valid,
7043 actually override reload_in. */
7044 for (j = 0; j < n_reloads; j++)
7045 if (reload_override_in[j])
7046 rld[j].in = reload_override_in[j];
7048 /* If this reload won't be done because it has been canceled or is
7049 optional and not inherited, clear reload_reg_rtx so other
7050 routines (such as subst_reloads) don't get confused. */
7051 for (j = 0; j < n_reloads; j++)
7052 if (rld[j].reg_rtx != 0
7053 && ((rld[j].optional && ! reload_inherited[j])
7054 || (rld[j].in == 0 && rld[j].out == 0
7055 && ! rld[j].secondary_p)))
7057 int regno = true_regnum (rld[j].reg_rtx);
7059 if (spill_reg_order[regno] >= 0)
7060 clear_reload_reg_in_use (regno, rld[j].opnum,
7061 rld[j].when_needed, rld[j].mode);
7062 rld[j].reg_rtx = 0;
7063 reload_spill_index[j] = -1;
7066 /* Record which pseudos and which spill regs have output reloads. */
7067 for (j = 0; j < n_reloads; j++)
7069 int r = reload_order[j];
7071 i = reload_spill_index[r];
7073 /* I is nonneg if this reload uses a register.
7074 If rld[r].reg_rtx is 0, this is an optional reload
7075 that we opted to ignore. */
7076 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7077 && rld[r].reg_rtx != 0)
7079 int nregno = REGNO (rld[r].out_reg);
7080 int nr = 1;
7082 if (nregno < FIRST_PSEUDO_REGISTER)
7083 nr = hard_regno_nregs[nregno][rld[r].mode];
7085 while (--nr >= 0)
7086 SET_REGNO_REG_SET (&reg_has_output_reload,
7087 nregno + nr);
7089 if (i >= 0)
7090 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7092 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7093 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7094 || rld[r].when_needed == RELOAD_FOR_INSN);
7099 /* Deallocate the reload register for reload R. This is called from
7100 remove_address_replacements. */
7102 void
7103 deallocate_reload_reg (int r)
7105 int regno;
7107 if (! rld[r].reg_rtx)
7108 return;
7109 regno = true_regnum (rld[r].reg_rtx);
7110 rld[r].reg_rtx = 0;
7111 if (spill_reg_order[regno] >= 0)
7112 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7113 rld[r].mode);
7114 reload_spill_index[r] = -1;
7117 /* These arrays are filled by emit_reload_insns and its subroutines. */
7118 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7119 static rtx_insn *other_input_address_reload_insns = 0;
7120 static rtx_insn *other_input_reload_insns = 0;
7121 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7122 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7123 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7124 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7125 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7126 static rtx_insn *operand_reload_insns = 0;
7127 static rtx_insn *other_operand_reload_insns = 0;
7128 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7130 /* Values to be put in spill_reg_store are put here first. Instructions
7131 must only be placed here if the associated reload register reaches
7132 the end of the instruction's reload sequence. */
7133 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7134 static HARD_REG_SET reg_reloaded_died;
7136 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7137 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7138 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7139 adjusted register, and return true. Otherwise, return false. */
7140 static bool
7141 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7142 enum reg_class new_class,
7143 machine_mode new_mode)
7146 rtx reg;
7148 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7150 unsigned regno = REGNO (reg);
7152 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7153 continue;
7154 if (GET_MODE (reg) != new_mode)
7156 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7157 continue;
7158 if (hard_regno_nregs[regno][new_mode]
7159 > hard_regno_nregs[regno][GET_MODE (reg)])
7160 continue;
7161 reg = reload_adjust_reg_for_mode (reg, new_mode);
7163 *reload_reg = reg;
7164 return true;
7166 return false;
7169 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7170 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7171 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7172 adjusted register, and return true. Otherwise, return false. */
7173 static bool
7174 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7175 enum insn_code icode)
7178 enum reg_class new_class = scratch_reload_class (icode);
7179 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7181 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7182 new_class, new_mode);
7185 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7186 has the number J. OLD contains the value to be used as input. */
7188 static void
7189 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7190 rtx old, int j)
7192 rtx_insn *insn = chain->insn;
7193 rtx reloadreg;
7194 rtx oldequiv_reg = 0;
7195 rtx oldequiv = 0;
7196 int special = 0;
7197 machine_mode mode;
7198 rtx_insn **where;
7200 /* delete_output_reload is only invoked properly if old contains
7201 the original pseudo register. Since this is replaced with a
7202 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7203 find the pseudo in RELOAD_IN_REG. This is also used to
7204 determine whether a secondary reload is needed. */
7205 if (reload_override_in[j]
7206 && (REG_P (rl->in_reg)
7207 || (GET_CODE (rl->in_reg) == SUBREG
7208 && REG_P (SUBREG_REG (rl->in_reg)))))
7210 oldequiv = old;
7211 old = rl->in_reg;
7213 if (oldequiv == 0)
7214 oldequiv = old;
7215 else if (REG_P (oldequiv))
7216 oldequiv_reg = oldequiv;
7217 else if (GET_CODE (oldequiv) == SUBREG)
7218 oldequiv_reg = SUBREG_REG (oldequiv);
7220 reloadreg = reload_reg_rtx_for_input[j];
7221 mode = GET_MODE (reloadreg);
7223 /* If we are reloading from a register that was recently stored in
7224 with an output-reload, see if we can prove there was
7225 actually no need to store the old value in it. */
7227 if (optimize && REG_P (oldequiv)
7228 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7229 && spill_reg_store[REGNO (oldequiv)]
7230 && REG_P (old)
7231 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7232 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7233 rl->out_reg)))
7234 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7236 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7237 OLDEQUIV. */
7239 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7240 oldequiv = SUBREG_REG (oldequiv);
7241 if (GET_MODE (oldequiv) != VOIDmode
7242 && mode != GET_MODE (oldequiv))
7243 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7245 /* Switch to the right place to emit the reload insns. */
7246 switch (rl->when_needed)
7248 case RELOAD_OTHER:
7249 where = &other_input_reload_insns;
7250 break;
7251 case RELOAD_FOR_INPUT:
7252 where = &input_reload_insns[rl->opnum];
7253 break;
7254 case RELOAD_FOR_INPUT_ADDRESS:
7255 where = &input_address_reload_insns[rl->opnum];
7256 break;
7257 case RELOAD_FOR_INPADDR_ADDRESS:
7258 where = &inpaddr_address_reload_insns[rl->opnum];
7259 break;
7260 case RELOAD_FOR_OUTPUT_ADDRESS:
7261 where = &output_address_reload_insns[rl->opnum];
7262 break;
7263 case RELOAD_FOR_OUTADDR_ADDRESS:
7264 where = &outaddr_address_reload_insns[rl->opnum];
7265 break;
7266 case RELOAD_FOR_OPERAND_ADDRESS:
7267 where = &operand_reload_insns;
7268 break;
7269 case RELOAD_FOR_OPADDR_ADDR:
7270 where = &other_operand_reload_insns;
7271 break;
7272 case RELOAD_FOR_OTHER_ADDRESS:
7273 where = &other_input_address_reload_insns;
7274 break;
7275 default:
7276 gcc_unreachable ();
7279 push_to_sequence (*where);
7281 /* Auto-increment addresses must be reloaded in a special way. */
7282 if (rl->out && ! rl->out_reg)
7284 /* We are not going to bother supporting the case where a
7285 incremented register can't be copied directly from
7286 OLDEQUIV since this seems highly unlikely. */
7287 gcc_assert (rl->secondary_in_reload < 0);
7289 if (reload_inherited[j])
7290 oldequiv = reloadreg;
7292 old = XEXP (rl->in_reg, 0);
7294 /* Prevent normal processing of this reload. */
7295 special = 1;
7296 /* Output a special code sequence for this case. */
7297 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7300 /* If we are reloading a pseudo-register that was set by the previous
7301 insn, see if we can get rid of that pseudo-register entirely
7302 by redirecting the previous insn into our reload register. */
7304 else if (optimize && REG_P (old)
7305 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7306 && dead_or_set_p (insn, old)
7307 /* This is unsafe if some other reload
7308 uses the same reg first. */
7309 && ! conflicts_with_override (reloadreg)
7310 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7311 rl->when_needed, old, rl->out, j, 0))
7313 rtx_insn *temp = PREV_INSN (insn);
7314 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7315 temp = PREV_INSN (temp);
7316 if (temp
7317 && NONJUMP_INSN_P (temp)
7318 && GET_CODE (PATTERN (temp)) == SET
7319 && SET_DEST (PATTERN (temp)) == old
7320 /* Make sure we can access insn_operand_constraint. */
7321 && asm_noperands (PATTERN (temp)) < 0
7322 /* This is unsafe if operand occurs more than once in current
7323 insn. Perhaps some occurrences aren't reloaded. */
7324 && count_occurrences (PATTERN (insn), old, 0) == 1)
7326 rtx old = SET_DEST (PATTERN (temp));
7327 /* Store into the reload register instead of the pseudo. */
7328 SET_DEST (PATTERN (temp)) = reloadreg;
7330 /* Verify that resulting insn is valid.
7332 Note that we have replaced the destination of TEMP with
7333 RELOADREG. If TEMP references RELOADREG within an
7334 autoincrement addressing mode, then the resulting insn
7335 is ill-formed and we must reject this optimization. */
7336 extract_insn (temp);
7337 if (constrain_operands (1, get_enabled_alternatives (temp))
7338 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7340 /* If the previous insn is an output reload, the source is
7341 a reload register, and its spill_reg_store entry will
7342 contain the previous destination. This is now
7343 invalid. */
7344 if (REG_P (SET_SRC (PATTERN (temp)))
7345 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7347 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7348 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7351 /* If these are the only uses of the pseudo reg,
7352 pretend for GDB it lives in the reload reg we used. */
7353 if (REG_N_DEATHS (REGNO (old)) == 1
7354 && REG_N_SETS (REGNO (old)) == 1)
7356 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7357 if (ira_conflicts_p)
7358 /* Inform IRA about the change. */
7359 ira_mark_allocation_change (REGNO (old));
7360 alter_reg (REGNO (old), -1, false);
7362 special = 1;
7364 /* Adjust any debug insns between temp and insn. */
7365 while ((temp = NEXT_INSN (temp)) != insn)
7366 if (DEBUG_INSN_P (temp))
7367 INSN_VAR_LOCATION_LOC (temp)
7368 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7369 old, reloadreg);
7370 else
7371 gcc_assert (NOTE_P (temp));
7373 else
7375 SET_DEST (PATTERN (temp)) = old;
7380 /* We can't do that, so output an insn to load RELOADREG. */
7382 /* If we have a secondary reload, pick up the secondary register
7383 and icode, if any. If OLDEQUIV and OLD are different or
7384 if this is an in-out reload, recompute whether or not we
7385 still need a secondary register and what the icode should
7386 be. If we still need a secondary register and the class or
7387 icode is different, go back to reloading from OLD if using
7388 OLDEQUIV means that we got the wrong type of register. We
7389 cannot have different class or icode due to an in-out reload
7390 because we don't make such reloads when both the input and
7391 output need secondary reload registers. */
7393 if (! special && rl->secondary_in_reload >= 0)
7395 rtx second_reload_reg = 0;
7396 rtx third_reload_reg = 0;
7397 int secondary_reload = rl->secondary_in_reload;
7398 rtx real_oldequiv = oldequiv;
7399 rtx real_old = old;
7400 rtx tmp;
7401 enum insn_code icode;
7402 enum insn_code tertiary_icode = CODE_FOR_nothing;
7404 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7405 and similarly for OLD.
7406 See comments in get_secondary_reload in reload.c. */
7407 /* If it is a pseudo that cannot be replaced with its
7408 equivalent MEM, we must fall back to reload_in, which
7409 will have all the necessary substitutions registered.
7410 Likewise for a pseudo that can't be replaced with its
7411 equivalent constant.
7413 Take extra care for subregs of such pseudos. Note that
7414 we cannot use reg_equiv_mem in this case because it is
7415 not in the right mode. */
7417 tmp = oldequiv;
7418 if (GET_CODE (tmp) == SUBREG)
7419 tmp = SUBREG_REG (tmp);
7420 if (REG_P (tmp)
7421 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7422 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7423 || reg_equiv_constant (REGNO (tmp)) != 0))
7425 if (! reg_equiv_mem (REGNO (tmp))
7426 || num_not_at_initial_offset
7427 || GET_CODE (oldequiv) == SUBREG)
7428 real_oldequiv = rl->in;
7429 else
7430 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7433 tmp = old;
7434 if (GET_CODE (tmp) == SUBREG)
7435 tmp = SUBREG_REG (tmp);
7436 if (REG_P (tmp)
7437 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7438 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7439 || reg_equiv_constant (REGNO (tmp)) != 0))
7441 if (! reg_equiv_mem (REGNO (tmp))
7442 || num_not_at_initial_offset
7443 || GET_CODE (old) == SUBREG)
7444 real_old = rl->in;
7445 else
7446 real_old = reg_equiv_mem (REGNO (tmp));
7449 second_reload_reg = rld[secondary_reload].reg_rtx;
7450 if (rld[secondary_reload].secondary_in_reload >= 0)
7452 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7454 third_reload_reg = rld[tertiary_reload].reg_rtx;
7455 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7456 /* We'd have to add more code for quartary reloads. */
7457 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7459 icode = rl->secondary_in_icode;
7461 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7462 || (rl->in != 0 && rl->out != 0))
7464 secondary_reload_info sri, sri2;
7465 enum reg_class new_class, new_t_class;
7467 sri.icode = CODE_FOR_nothing;
7468 sri.prev_sri = NULL;
7469 new_class
7470 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7471 rl->rclass, mode,
7472 &sri);
7474 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7475 second_reload_reg = 0;
7476 else if (new_class == NO_REGS)
7478 if (reload_adjust_reg_for_icode (&second_reload_reg,
7479 third_reload_reg,
7480 (enum insn_code) sri.icode))
7482 icode = (enum insn_code) sri.icode;
7483 third_reload_reg = 0;
7485 else
7487 oldequiv = old;
7488 real_oldequiv = real_old;
7491 else if (sri.icode != CODE_FOR_nothing)
7492 /* We currently lack a way to express this in reloads. */
7493 gcc_unreachable ();
7494 else
7496 sri2.icode = CODE_FOR_nothing;
7497 sri2.prev_sri = &sri;
7498 new_t_class
7499 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7500 new_class, mode,
7501 &sri);
7502 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7504 if (reload_adjust_reg_for_temp (&second_reload_reg,
7505 third_reload_reg,
7506 new_class, mode))
7508 third_reload_reg = 0;
7509 tertiary_icode = (enum insn_code) sri2.icode;
7511 else
7513 oldequiv = old;
7514 real_oldequiv = real_old;
7517 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7519 rtx intermediate = second_reload_reg;
7521 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7522 new_class, mode)
7523 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7524 ((enum insn_code)
7525 sri2.icode)))
7527 second_reload_reg = intermediate;
7528 tertiary_icode = (enum insn_code) sri2.icode;
7530 else
7532 oldequiv = old;
7533 real_oldequiv = real_old;
7536 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7538 rtx intermediate = second_reload_reg;
7540 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7541 new_class, mode)
7542 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7543 new_t_class, mode))
7545 second_reload_reg = intermediate;
7546 tertiary_icode = (enum insn_code) sri2.icode;
7548 else
7550 oldequiv = old;
7551 real_oldequiv = real_old;
7554 else
7556 /* This could be handled more intelligently too. */
7557 oldequiv = old;
7558 real_oldequiv = real_old;
7563 /* If we still need a secondary reload register, check
7564 to see if it is being used as a scratch or intermediate
7565 register and generate code appropriately. If we need
7566 a scratch register, use REAL_OLDEQUIV since the form of
7567 the insn may depend on the actual address if it is
7568 a MEM. */
7570 if (second_reload_reg)
7572 if (icode != CODE_FOR_nothing)
7574 /* We'd have to add extra code to handle this case. */
7575 gcc_assert (!third_reload_reg);
7577 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7578 second_reload_reg));
7579 special = 1;
7581 else
7583 /* See if we need a scratch register to load the
7584 intermediate register (a tertiary reload). */
7585 if (tertiary_icode != CODE_FOR_nothing)
7587 emit_insn ((GEN_FCN (tertiary_icode)
7588 (second_reload_reg, real_oldequiv,
7589 third_reload_reg)));
7591 else if (third_reload_reg)
7593 gen_reload (third_reload_reg, real_oldequiv,
7594 rl->opnum,
7595 rl->when_needed);
7596 gen_reload (second_reload_reg, third_reload_reg,
7597 rl->opnum,
7598 rl->when_needed);
7600 else
7601 gen_reload (second_reload_reg, real_oldequiv,
7602 rl->opnum,
7603 rl->when_needed);
7605 oldequiv = second_reload_reg;
7610 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7612 rtx real_oldequiv = oldequiv;
7614 if ((REG_P (oldequiv)
7615 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7616 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7617 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7618 || (GET_CODE (oldequiv) == SUBREG
7619 && REG_P (SUBREG_REG (oldequiv))
7620 && (REGNO (SUBREG_REG (oldequiv))
7621 >= FIRST_PSEUDO_REGISTER)
7622 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7623 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7624 || (CONSTANT_P (oldequiv)
7625 && (targetm.preferred_reload_class (oldequiv,
7626 REGNO_REG_CLASS (REGNO (reloadreg)))
7627 == NO_REGS)))
7628 real_oldequiv = rl->in;
7629 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7630 rl->when_needed);
7633 if (cfun->can_throw_non_call_exceptions)
7634 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7636 /* End this sequence. */
7637 *where = get_insns ();
7638 end_sequence ();
7640 /* Update reload_override_in so that delete_address_reloads_1
7641 can see the actual register usage. */
7642 if (oldequiv_reg)
7643 reload_override_in[j] = oldequiv;
7646 /* Generate insns to for the output reload RL, which is for the insn described
7647 by CHAIN and has the number J. */
7648 static void
7649 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7650 int j)
7652 rtx reloadreg;
7653 rtx_insn *insn = chain->insn;
7654 int special = 0;
7655 rtx old = rl->out;
7656 machine_mode mode;
7657 rtx_insn *p;
7658 rtx rl_reg_rtx;
7660 if (rl->when_needed == RELOAD_OTHER)
7661 start_sequence ();
7662 else
7663 push_to_sequence (output_reload_insns[rl->opnum]);
7665 rl_reg_rtx = reload_reg_rtx_for_output[j];
7666 mode = GET_MODE (rl_reg_rtx);
7668 reloadreg = rl_reg_rtx;
7670 /* If we need two reload regs, set RELOADREG to the intermediate
7671 one, since it will be stored into OLD. We might need a secondary
7672 register only for an input reload, so check again here. */
7674 if (rl->secondary_out_reload >= 0)
7676 rtx real_old = old;
7677 int secondary_reload = rl->secondary_out_reload;
7678 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7680 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7681 && reg_equiv_mem (REGNO (old)) != 0)
7682 real_old = reg_equiv_mem (REGNO (old));
7684 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7686 rtx second_reloadreg = reloadreg;
7687 reloadreg = rld[secondary_reload].reg_rtx;
7689 /* See if RELOADREG is to be used as a scratch register
7690 or as an intermediate register. */
7691 if (rl->secondary_out_icode != CODE_FOR_nothing)
7693 /* We'd have to add extra code to handle this case. */
7694 gcc_assert (tertiary_reload < 0);
7696 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7697 (real_old, second_reloadreg, reloadreg)));
7698 special = 1;
7700 else
7702 /* See if we need both a scratch and intermediate reload
7703 register. */
7705 enum insn_code tertiary_icode
7706 = rld[secondary_reload].secondary_out_icode;
7708 /* We'd have to add more code for quartary reloads. */
7709 gcc_assert (tertiary_reload < 0
7710 || rld[tertiary_reload].secondary_out_reload < 0);
7712 if (GET_MODE (reloadreg) != mode)
7713 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7715 if (tertiary_icode != CODE_FOR_nothing)
7717 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7719 /* Copy primary reload reg to secondary reload reg.
7720 (Note that these have been swapped above, then
7721 secondary reload reg to OLD using our insn.) */
7723 /* If REAL_OLD is a paradoxical SUBREG, remove it
7724 and try to put the opposite SUBREG on
7725 RELOADREG. */
7726 strip_paradoxical_subreg (&real_old, &reloadreg);
7728 gen_reload (reloadreg, second_reloadreg,
7729 rl->opnum, rl->when_needed);
7730 emit_insn ((GEN_FCN (tertiary_icode)
7731 (real_old, reloadreg, third_reloadreg)));
7732 special = 1;
7735 else
7737 /* Copy between the reload regs here and then to
7738 OUT later. */
7740 gen_reload (reloadreg, second_reloadreg,
7741 rl->opnum, rl->when_needed);
7742 if (tertiary_reload >= 0)
7744 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7746 gen_reload (third_reloadreg, reloadreg,
7747 rl->opnum, rl->when_needed);
7748 reloadreg = third_reloadreg;
7755 /* Output the last reload insn. */
7756 if (! special)
7758 rtx set;
7760 /* Don't output the last reload if OLD is not the dest of
7761 INSN and is in the src and is clobbered by INSN. */
7762 if (! flag_expensive_optimizations
7763 || !REG_P (old)
7764 || !(set = single_set (insn))
7765 || rtx_equal_p (old, SET_DEST (set))
7766 || !reg_mentioned_p (old, SET_SRC (set))
7767 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7768 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7769 gen_reload (old, reloadreg, rl->opnum,
7770 rl->when_needed);
7773 /* Look at all insns we emitted, just to be safe. */
7774 for (p = get_insns (); p; p = NEXT_INSN (p))
7775 if (INSN_P (p))
7777 rtx pat = PATTERN (p);
7779 /* If this output reload doesn't come from a spill reg,
7780 clear any memory of reloaded copies of the pseudo reg.
7781 If this output reload comes from a spill reg,
7782 reg_has_output_reload will make this do nothing. */
7783 note_stores (pat, forget_old_reloads_1, NULL);
7785 if (reg_mentioned_p (rl_reg_rtx, pat))
7787 rtx set = single_set (insn);
7788 if (reload_spill_index[j] < 0
7789 && set
7790 && SET_SRC (set) == rl_reg_rtx)
7792 int src = REGNO (SET_SRC (set));
7794 reload_spill_index[j] = src;
7795 SET_HARD_REG_BIT (reg_is_output_reload, src);
7796 if (find_regno_note (insn, REG_DEAD, src))
7797 SET_HARD_REG_BIT (reg_reloaded_died, src);
7799 if (HARD_REGISTER_P (rl_reg_rtx))
7801 int s = rl->secondary_out_reload;
7802 set = single_set (p);
7803 /* If this reload copies only to the secondary reload
7804 register, the secondary reload does the actual
7805 store. */
7806 if (s >= 0 && set == NULL_RTX)
7807 /* We can't tell what function the secondary reload
7808 has and where the actual store to the pseudo is
7809 made; leave new_spill_reg_store alone. */
7811 else if (s >= 0
7812 && SET_SRC (set) == rl_reg_rtx
7813 && SET_DEST (set) == rld[s].reg_rtx)
7815 /* Usually the next instruction will be the
7816 secondary reload insn; if we can confirm
7817 that it is, setting new_spill_reg_store to
7818 that insn will allow an extra optimization. */
7819 rtx s_reg = rld[s].reg_rtx;
7820 rtx_insn *next = NEXT_INSN (p);
7821 rld[s].out = rl->out;
7822 rld[s].out_reg = rl->out_reg;
7823 set = single_set (next);
7824 if (set && SET_SRC (set) == s_reg
7825 && reload_reg_rtx_reaches_end_p (s_reg, s))
7827 SET_HARD_REG_BIT (reg_is_output_reload,
7828 REGNO (s_reg));
7829 new_spill_reg_store[REGNO (s_reg)] = next;
7832 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7833 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7838 if (rl->when_needed == RELOAD_OTHER)
7840 emit_insn (other_output_reload_insns[rl->opnum]);
7841 other_output_reload_insns[rl->opnum] = get_insns ();
7843 else
7844 output_reload_insns[rl->opnum] = get_insns ();
7846 if (cfun->can_throw_non_call_exceptions)
7847 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7849 end_sequence ();
7852 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7853 and has the number J. */
7854 static void
7855 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7857 rtx_insn *insn = chain->insn;
7858 rtx old = (rl->in && MEM_P (rl->in)
7859 ? rl->in_reg : rl->in);
7860 rtx reg_rtx = rl->reg_rtx;
7862 if (old && reg_rtx)
7864 machine_mode mode;
7866 /* Determine the mode to reload in.
7867 This is very tricky because we have three to choose from.
7868 There is the mode the insn operand wants (rl->inmode).
7869 There is the mode of the reload register RELOADREG.
7870 There is the intrinsic mode of the operand, which we could find
7871 by stripping some SUBREGs.
7872 It turns out that RELOADREG's mode is irrelevant:
7873 we can change that arbitrarily.
7875 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7876 then the reload reg may not support QImode moves, so use SImode.
7877 If foo is in memory due to spilling a pseudo reg, this is safe,
7878 because the QImode value is in the least significant part of a
7879 slot big enough for a SImode. If foo is some other sort of
7880 memory reference, then it is impossible to reload this case,
7881 so previous passes had better make sure this never happens.
7883 Then consider a one-word union which has SImode and one of its
7884 members is a float, being fetched as (SUBREG:SF union:SI).
7885 We must fetch that as SFmode because we could be loading into
7886 a float-only register. In this case OLD's mode is correct.
7888 Consider an immediate integer: it has VOIDmode. Here we need
7889 to get a mode from something else.
7891 In some cases, there is a fourth mode, the operand's
7892 containing mode. If the insn specifies a containing mode for
7893 this operand, it overrides all others.
7895 I am not sure whether the algorithm here is always right,
7896 but it does the right things in those cases. */
7898 mode = GET_MODE (old);
7899 if (mode == VOIDmode)
7900 mode = rl->inmode;
7902 /* We cannot use gen_lowpart_common since it can do the wrong thing
7903 when REG_RTX has a multi-word mode. Note that REG_RTX must
7904 always be a REG here. */
7905 if (GET_MODE (reg_rtx) != mode)
7906 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7908 reload_reg_rtx_for_input[j] = reg_rtx;
7910 if (old != 0
7911 /* AUTO_INC reloads need to be handled even if inherited. We got an
7912 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7913 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7914 && ! rtx_equal_p (reg_rtx, old)
7915 && reg_rtx != 0)
7916 emit_input_reload_insns (chain, rld + j, old, j);
7918 /* When inheriting a wider reload, we have a MEM in rl->in,
7919 e.g. inheriting a SImode output reload for
7920 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7921 if (optimize && reload_inherited[j] && rl->in
7922 && MEM_P (rl->in)
7923 && MEM_P (rl->in_reg)
7924 && reload_spill_index[j] >= 0
7925 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7926 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7928 /* If we are reloading a register that was recently stored in with an
7929 output-reload, see if we can prove there was
7930 actually no need to store the old value in it. */
7932 if (optimize
7933 && (reload_inherited[j] || reload_override_in[j])
7934 && reg_rtx
7935 && REG_P (reg_rtx)
7936 && spill_reg_store[REGNO (reg_rtx)] != 0
7937 #if 0
7938 /* There doesn't seem to be any reason to restrict this to pseudos
7939 and doing so loses in the case where we are copying from a
7940 register of the wrong class. */
7941 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7942 #endif
7943 /* The insn might have already some references to stackslots
7944 replaced by MEMs, while reload_out_reg still names the
7945 original pseudo. */
7946 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7947 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7948 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7951 /* Do output reloading for reload RL, which is for the insn described by
7952 CHAIN and has the number J.
7953 ??? At some point we need to support handling output reloads of
7954 JUMP_INSNs or insns that set cc0. */
7955 static void
7956 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7958 rtx note, old;
7959 rtx_insn *insn = chain->insn;
7960 /* If this is an output reload that stores something that is
7961 not loaded in this same reload, see if we can eliminate a previous
7962 store. */
7963 rtx pseudo = rl->out_reg;
7964 rtx reg_rtx = rl->reg_rtx;
7966 if (rl->out && reg_rtx)
7968 machine_mode mode;
7970 /* Determine the mode to reload in.
7971 See comments above (for input reloading). */
7972 mode = GET_MODE (rl->out);
7973 if (mode == VOIDmode)
7975 /* VOIDmode should never happen for an output. */
7976 if (asm_noperands (PATTERN (insn)) < 0)
7977 /* It's the compiler's fault. */
7978 fatal_insn ("VOIDmode on an output", insn);
7979 error_for_asm (insn, "output operand is constant in %<asm%>");
7980 /* Prevent crash--use something we know is valid. */
7981 mode = word_mode;
7982 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7984 if (GET_MODE (reg_rtx) != mode)
7985 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7987 reload_reg_rtx_for_output[j] = reg_rtx;
7989 if (pseudo
7990 && optimize
7991 && REG_P (pseudo)
7992 && ! rtx_equal_p (rl->in_reg, pseudo)
7993 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7994 && reg_last_reload_reg[REGNO (pseudo)])
7996 int pseudo_no = REGNO (pseudo);
7997 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7999 /* We don't need to test full validity of last_regno for
8000 inherit here; we only want to know if the store actually
8001 matches the pseudo. */
8002 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8003 && reg_reloaded_contents[last_regno] == pseudo_no
8004 && spill_reg_store[last_regno]
8005 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8006 delete_output_reload (insn, j, last_regno, reg_rtx);
8009 old = rl->out_reg;
8010 if (old == 0
8011 || reg_rtx == 0
8012 || rtx_equal_p (old, reg_rtx))
8013 return;
8015 /* An output operand that dies right away does need a reload,
8016 but need not be copied from it. Show the new location in the
8017 REG_UNUSED note. */
8018 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8019 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8021 XEXP (note, 0) = reg_rtx;
8022 return;
8024 /* Likewise for a SUBREG of an operand that dies. */
8025 else if (GET_CODE (old) == SUBREG
8026 && REG_P (SUBREG_REG (old))
8027 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8028 SUBREG_REG (old))))
8030 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8031 return;
8033 else if (GET_CODE (old) == SCRATCH)
8034 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8035 but we don't want to make an output reload. */
8036 return;
8038 /* If is a JUMP_INSN, we can't support output reloads yet. */
8039 gcc_assert (NONJUMP_INSN_P (insn));
8041 emit_output_reload_insns (chain, rld + j, j);
8044 /* A reload copies values of MODE from register SRC to register DEST.
8045 Return true if it can be treated for inheritance purposes like a
8046 group of reloads, each one reloading a single hard register. The
8047 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8048 occupy the same number of hard registers. */
8050 static bool
8051 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8052 int src ATTRIBUTE_UNUSED,
8053 machine_mode mode ATTRIBUTE_UNUSED)
8055 #ifdef CANNOT_CHANGE_MODE_CLASS
8056 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8057 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8058 #else
8059 return true;
8060 #endif
8063 /* Output insns to reload values in and out of the chosen reload regs. */
8065 static void
8066 emit_reload_insns (struct insn_chain *chain)
8068 rtx_insn *insn = chain->insn;
8070 int j;
8072 CLEAR_HARD_REG_SET (reg_reloaded_died);
8074 for (j = 0; j < reload_n_operands; j++)
8075 input_reload_insns[j] = input_address_reload_insns[j]
8076 = inpaddr_address_reload_insns[j]
8077 = output_reload_insns[j] = output_address_reload_insns[j]
8078 = outaddr_address_reload_insns[j]
8079 = other_output_reload_insns[j] = 0;
8080 other_input_address_reload_insns = 0;
8081 other_input_reload_insns = 0;
8082 operand_reload_insns = 0;
8083 other_operand_reload_insns = 0;
8085 /* Dump reloads into the dump file. */
8086 if (dump_file)
8088 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8089 debug_reload_to_stream (dump_file);
8092 for (j = 0; j < n_reloads; j++)
8093 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8095 unsigned int i;
8097 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8098 new_spill_reg_store[i] = 0;
8101 /* Now output the instructions to copy the data into and out of the
8102 reload registers. Do these in the order that the reloads were reported,
8103 since reloads of base and index registers precede reloads of operands
8104 and the operands may need the base and index registers reloaded. */
8106 for (j = 0; j < n_reloads; j++)
8108 do_input_reload (chain, rld + j, j);
8109 do_output_reload (chain, rld + j, j);
8112 /* Now write all the insns we made for reloads in the order expected by
8113 the allocation functions. Prior to the insn being reloaded, we write
8114 the following reloads:
8116 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8118 RELOAD_OTHER reloads.
8120 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8121 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8122 RELOAD_FOR_INPUT reload for the operand.
8124 RELOAD_FOR_OPADDR_ADDRS reloads.
8126 RELOAD_FOR_OPERAND_ADDRESS reloads.
8128 After the insn being reloaded, we write the following:
8130 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8131 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8132 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8133 reloads for the operand. The RELOAD_OTHER output reloads are
8134 output in descending order by reload number. */
8136 emit_insn_before (other_input_address_reload_insns, insn);
8137 emit_insn_before (other_input_reload_insns, insn);
8139 for (j = 0; j < reload_n_operands; j++)
8141 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8142 emit_insn_before (input_address_reload_insns[j], insn);
8143 emit_insn_before (input_reload_insns[j], insn);
8146 emit_insn_before (other_operand_reload_insns, insn);
8147 emit_insn_before (operand_reload_insns, insn);
8149 for (j = 0; j < reload_n_operands; j++)
8151 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8152 x = emit_insn_after (output_address_reload_insns[j], x);
8153 x = emit_insn_after (output_reload_insns[j], x);
8154 emit_insn_after (other_output_reload_insns[j], x);
8157 /* For all the spill regs newly reloaded in this instruction,
8158 record what they were reloaded from, so subsequent instructions
8159 can inherit the reloads.
8161 Update spill_reg_store for the reloads of this insn.
8162 Copy the elements that were updated in the loop above. */
8164 for (j = 0; j < n_reloads; j++)
8166 int r = reload_order[j];
8167 int i = reload_spill_index[r];
8169 /* If this is a non-inherited input reload from a pseudo, we must
8170 clear any memory of a previous store to the same pseudo. Only do
8171 something if there will not be an output reload for the pseudo
8172 being reloaded. */
8173 if (rld[r].in_reg != 0
8174 && ! (reload_inherited[r] || reload_override_in[r]))
8176 rtx reg = rld[r].in_reg;
8178 if (GET_CODE (reg) == SUBREG)
8179 reg = SUBREG_REG (reg);
8181 if (REG_P (reg)
8182 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8183 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8185 int nregno = REGNO (reg);
8187 if (reg_last_reload_reg[nregno])
8189 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8191 if (reg_reloaded_contents[last_regno] == nregno)
8192 spill_reg_store[last_regno] = 0;
8197 /* I is nonneg if this reload used a register.
8198 If rld[r].reg_rtx is 0, this is an optional reload
8199 that we opted to ignore. */
8201 if (i >= 0 && rld[r].reg_rtx != 0)
8203 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8204 int k;
8206 /* For a multi register reload, we need to check if all or part
8207 of the value lives to the end. */
8208 for (k = 0; k < nr; k++)
8209 if (reload_reg_reaches_end_p (i + k, r))
8210 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8212 /* Maybe the spill reg contains a copy of reload_out. */
8213 if (rld[r].out != 0
8214 && (REG_P (rld[r].out)
8215 || (rld[r].out_reg
8216 ? REG_P (rld[r].out_reg)
8217 /* The reload value is an auto-modification of
8218 some kind. For PRE_INC, POST_INC, PRE_DEC
8219 and POST_DEC, we record an equivalence
8220 between the reload register and the operand
8221 on the optimistic assumption that we can make
8222 the equivalence hold. reload_as_needed must
8223 then either make it hold or invalidate the
8224 equivalence.
8226 PRE_MODIFY and POST_MODIFY addresses are reloaded
8227 somewhat differently, and allowing them here leads
8228 to problems. */
8229 : (GET_CODE (rld[r].out) != POST_MODIFY
8230 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8232 rtx reg;
8234 reg = reload_reg_rtx_for_output[r];
8235 if (reload_reg_rtx_reaches_end_p (reg, r))
8237 machine_mode mode = GET_MODE (reg);
8238 int regno = REGNO (reg);
8239 int nregs = hard_regno_nregs[regno][mode];
8240 rtx out = (REG_P (rld[r].out)
8241 ? rld[r].out
8242 : rld[r].out_reg
8243 ? rld[r].out_reg
8244 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8245 int out_regno = REGNO (out);
8246 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8247 : hard_regno_nregs[out_regno][mode]);
8248 bool piecemeal;
8250 spill_reg_store[regno] = new_spill_reg_store[regno];
8251 spill_reg_stored_to[regno] = out;
8252 reg_last_reload_reg[out_regno] = reg;
8254 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8255 && nregs == out_nregs
8256 && inherit_piecemeal_p (out_regno, regno, mode));
8258 /* If OUT_REGNO is a hard register, it may occupy more than
8259 one register. If it does, say what is in the
8260 rest of the registers assuming that both registers
8261 agree on how many words the object takes. If not,
8262 invalidate the subsequent registers. */
8264 if (HARD_REGISTER_NUM_P (out_regno))
8265 for (k = 1; k < out_nregs; k++)
8266 reg_last_reload_reg[out_regno + k]
8267 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8269 /* Now do the inverse operation. */
8270 for (k = 0; k < nregs; k++)
8272 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8273 reg_reloaded_contents[regno + k]
8274 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8275 ? out_regno
8276 : out_regno + k);
8277 reg_reloaded_insn[regno + k] = insn;
8278 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8279 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8280 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8281 regno + k);
8282 else
8283 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8284 regno + k);
8288 /* Maybe the spill reg contains a copy of reload_in. Only do
8289 something if there will not be an output reload for
8290 the register being reloaded. */
8291 else if (rld[r].out_reg == 0
8292 && rld[r].in != 0
8293 && ((REG_P (rld[r].in)
8294 && !HARD_REGISTER_P (rld[r].in)
8295 && !REGNO_REG_SET_P (&reg_has_output_reload,
8296 REGNO (rld[r].in)))
8297 || (REG_P (rld[r].in_reg)
8298 && !REGNO_REG_SET_P (&reg_has_output_reload,
8299 REGNO (rld[r].in_reg))))
8300 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8302 rtx reg;
8304 reg = reload_reg_rtx_for_input[r];
8305 if (reload_reg_rtx_reaches_end_p (reg, r))
8307 machine_mode mode;
8308 int regno;
8309 int nregs;
8310 int in_regno;
8311 int in_nregs;
8312 rtx in;
8313 bool piecemeal;
8315 mode = GET_MODE (reg);
8316 regno = REGNO (reg);
8317 nregs = hard_regno_nregs[regno][mode];
8318 if (REG_P (rld[r].in)
8319 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8320 in = rld[r].in;
8321 else if (REG_P (rld[r].in_reg))
8322 in = rld[r].in_reg;
8323 else
8324 in = XEXP (rld[r].in_reg, 0);
8325 in_regno = REGNO (in);
8327 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8328 : hard_regno_nregs[in_regno][mode]);
8330 reg_last_reload_reg[in_regno] = reg;
8332 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8333 && nregs == in_nregs
8334 && inherit_piecemeal_p (regno, in_regno, mode));
8336 if (HARD_REGISTER_NUM_P (in_regno))
8337 for (k = 1; k < in_nregs; k++)
8338 reg_last_reload_reg[in_regno + k]
8339 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8341 /* Unless we inherited this reload, show we haven't
8342 recently done a store.
8343 Previous stores of inherited auto_inc expressions
8344 also have to be discarded. */
8345 if (! reload_inherited[r]
8346 || (rld[r].out && ! rld[r].out_reg))
8347 spill_reg_store[regno] = 0;
8349 for (k = 0; k < nregs; k++)
8351 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8352 reg_reloaded_contents[regno + k]
8353 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8354 ? in_regno
8355 : in_regno + k);
8356 reg_reloaded_insn[regno + k] = insn;
8357 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8358 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8359 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8360 regno + k);
8361 else
8362 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8363 regno + k);
8369 /* The following if-statement was #if 0'd in 1.34 (or before...).
8370 It's reenabled in 1.35 because supposedly nothing else
8371 deals with this problem. */
8373 /* If a register gets output-reloaded from a non-spill register,
8374 that invalidates any previous reloaded copy of it.
8375 But forget_old_reloads_1 won't get to see it, because
8376 it thinks only about the original insn. So invalidate it here.
8377 Also do the same thing for RELOAD_OTHER constraints where the
8378 output is discarded. */
8379 if (i < 0
8380 && ((rld[r].out != 0
8381 && (REG_P (rld[r].out)
8382 || (MEM_P (rld[r].out)
8383 && REG_P (rld[r].out_reg))))
8384 || (rld[r].out == 0 && rld[r].out_reg
8385 && REG_P (rld[r].out_reg))))
8387 rtx out = ((rld[r].out && REG_P (rld[r].out))
8388 ? rld[r].out : rld[r].out_reg);
8389 int out_regno = REGNO (out);
8390 machine_mode mode = GET_MODE (out);
8392 /* REG_RTX is now set or clobbered by the main instruction.
8393 As the comment above explains, forget_old_reloads_1 only
8394 sees the original instruction, and there is no guarantee
8395 that the original instruction also clobbered REG_RTX.
8396 For example, if find_reloads sees that the input side of
8397 a matched operand pair dies in this instruction, it may
8398 use the input register as the reload register.
8400 Calling forget_old_reloads_1 is a waste of effort if
8401 REG_RTX is also the output register.
8403 If we know that REG_RTX holds the value of a pseudo
8404 register, the code after the call will record that fact. */
8405 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8406 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8408 if (!HARD_REGISTER_NUM_P (out_regno))
8410 rtx src_reg;
8411 rtx_insn *store_insn = NULL;
8413 reg_last_reload_reg[out_regno] = 0;
8415 /* If we can find a hard register that is stored, record
8416 the storing insn so that we may delete this insn with
8417 delete_output_reload. */
8418 src_reg = reload_reg_rtx_for_output[r];
8420 if (src_reg)
8422 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8423 store_insn = new_spill_reg_store[REGNO (src_reg)];
8424 else
8425 src_reg = NULL_RTX;
8427 else
8429 /* If this is an optional reload, try to find the
8430 source reg from an input reload. */
8431 rtx set = single_set (insn);
8432 if (set && SET_DEST (set) == rld[r].out)
8434 int k;
8436 src_reg = SET_SRC (set);
8437 store_insn = insn;
8438 for (k = 0; k < n_reloads; k++)
8440 if (rld[k].in == src_reg)
8442 src_reg = reload_reg_rtx_for_input[k];
8443 break;
8448 if (src_reg && REG_P (src_reg)
8449 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8451 int src_regno, src_nregs, k;
8452 rtx note;
8454 gcc_assert (GET_MODE (src_reg) == mode);
8455 src_regno = REGNO (src_reg);
8456 src_nregs = hard_regno_nregs[src_regno][mode];
8457 /* The place where to find a death note varies with
8458 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8459 necessarily checked exactly in the code that moves
8460 notes, so just check both locations. */
8461 note = find_regno_note (insn, REG_DEAD, src_regno);
8462 if (! note && store_insn)
8463 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8464 for (k = 0; k < src_nregs; k++)
8466 spill_reg_store[src_regno + k] = store_insn;
8467 spill_reg_stored_to[src_regno + k] = out;
8468 reg_reloaded_contents[src_regno + k] = out_regno;
8469 reg_reloaded_insn[src_regno + k] = store_insn;
8470 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8471 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8472 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8473 mode))
8474 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8475 src_regno + k);
8476 else
8477 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8478 src_regno + k);
8479 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8480 if (note)
8481 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8482 else
8483 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8485 reg_last_reload_reg[out_regno] = src_reg;
8486 /* We have to set reg_has_output_reload here, or else
8487 forget_old_reloads_1 will clear reg_last_reload_reg
8488 right away. */
8489 SET_REGNO_REG_SET (&reg_has_output_reload,
8490 out_regno);
8493 else
8495 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8497 for (k = 0; k < out_nregs; k++)
8498 reg_last_reload_reg[out_regno + k] = 0;
8502 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8505 /* Go through the motions to emit INSN and test if it is strictly valid.
8506 Return the emitted insn if valid, else return NULL. */
8508 static rtx_insn *
8509 emit_insn_if_valid_for_reload (rtx pat)
8511 rtx_insn *last = get_last_insn ();
8512 int code;
8514 rtx_insn *insn = emit_insn (pat);
8515 code = recog_memoized (insn);
8517 if (code >= 0)
8519 extract_insn (insn);
8520 /* We want constrain operands to treat this insn strictly in its
8521 validity determination, i.e., the way it would after reload has
8522 completed. */
8523 if (constrain_operands (1, get_enabled_alternatives (insn)))
8524 return insn;
8527 delete_insns_since (last);
8528 return NULL;
8531 /* Emit code to perform a reload from IN (which may be a reload register) to
8532 OUT (which may also be a reload register). IN or OUT is from operand
8533 OPNUM with reload type TYPE.
8535 Returns first insn emitted. */
8537 static rtx_insn *
8538 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8540 rtx_insn *last = get_last_insn ();
8541 rtx_insn *tem;
8542 #ifdef SECONDARY_MEMORY_NEEDED
8543 rtx tem1, tem2;
8544 #endif
8546 /* If IN is a paradoxical SUBREG, remove it and try to put the
8547 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8548 if (!strip_paradoxical_subreg (&in, &out))
8549 strip_paradoxical_subreg (&out, &in);
8551 /* How to do this reload can get quite tricky. Normally, we are being
8552 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8553 register that didn't get a hard register. In that case we can just
8554 call emit_move_insn.
8556 We can also be asked to reload a PLUS that adds a register or a MEM to
8557 another register, constant or MEM. This can occur during frame pointer
8558 elimination and while reloading addresses. This case is handled by
8559 trying to emit a single insn to perform the add. If it is not valid,
8560 we use a two insn sequence.
8562 Or we can be asked to reload an unary operand that was a fragment of
8563 an addressing mode, into a register. If it isn't recognized as-is,
8564 we try making the unop operand and the reload-register the same:
8565 (set reg:X (unop:X expr:Y))
8566 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8568 Finally, we could be called to handle an 'o' constraint by putting
8569 an address into a register. In that case, we first try to do this
8570 with a named pattern of "reload_load_address". If no such pattern
8571 exists, we just emit a SET insn and hope for the best (it will normally
8572 be valid on machines that use 'o').
8574 This entire process is made complex because reload will never
8575 process the insns we generate here and so we must ensure that
8576 they will fit their constraints and also by the fact that parts of
8577 IN might be being reloaded separately and replaced with spill registers.
8578 Because of this, we are, in some sense, just guessing the right approach
8579 here. The one listed above seems to work.
8581 ??? At some point, this whole thing needs to be rethought. */
8583 if (GET_CODE (in) == PLUS
8584 && (REG_P (XEXP (in, 0))
8585 || GET_CODE (XEXP (in, 0)) == SUBREG
8586 || MEM_P (XEXP (in, 0)))
8587 && (REG_P (XEXP (in, 1))
8588 || GET_CODE (XEXP (in, 1)) == SUBREG
8589 || CONSTANT_P (XEXP (in, 1))
8590 || MEM_P (XEXP (in, 1))))
8592 /* We need to compute the sum of a register or a MEM and another
8593 register, constant, or MEM, and put it into the reload
8594 register. The best possible way of doing this is if the machine
8595 has a three-operand ADD insn that accepts the required operands.
8597 The simplest approach is to try to generate such an insn and see if it
8598 is recognized and matches its constraints. If so, it can be used.
8600 It might be better not to actually emit the insn unless it is valid,
8601 but we need to pass the insn as an operand to `recog' and
8602 `extract_insn' and it is simpler to emit and then delete the insn if
8603 not valid than to dummy things up. */
8605 rtx op0, op1, tem;
8606 rtx_insn *insn;
8607 enum insn_code code;
8609 op0 = find_replacement (&XEXP (in, 0));
8610 op1 = find_replacement (&XEXP (in, 1));
8612 /* Since constraint checking is strict, commutativity won't be
8613 checked, so we need to do that here to avoid spurious failure
8614 if the add instruction is two-address and the second operand
8615 of the add is the same as the reload reg, which is frequently
8616 the case. If the insn would be A = B + A, rearrange it so
8617 it will be A = A + B as constrain_operands expects. */
8619 if (REG_P (XEXP (in, 1))
8620 && REGNO (out) == REGNO (XEXP (in, 1)))
8621 tem = op0, op0 = op1, op1 = tem;
8623 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8624 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8626 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8627 if (insn)
8628 return insn;
8630 /* If that failed, we must use a conservative two-insn sequence.
8632 Use a move to copy one operand into the reload register. Prefer
8633 to reload a constant, MEM or pseudo since the move patterns can
8634 handle an arbitrary operand. If OP1 is not a constant, MEM or
8635 pseudo and OP1 is not a valid operand for an add instruction, then
8636 reload OP1.
8638 After reloading one of the operands into the reload register, add
8639 the reload register to the output register.
8641 If there is another way to do this for a specific machine, a
8642 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8643 we emit below. */
8645 code = optab_handler (add_optab, GET_MODE (out));
8647 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8648 || (REG_P (op1)
8649 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8650 || (code != CODE_FOR_nothing
8651 && !insn_operand_matches (code, 2, op1)))
8652 tem = op0, op0 = op1, op1 = tem;
8654 gen_reload (out, op0, opnum, type);
8656 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8657 This fixes a problem on the 32K where the stack pointer cannot
8658 be used as an operand of an add insn. */
8660 if (rtx_equal_p (op0, op1))
8661 op1 = out;
8663 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8664 if (insn)
8666 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8667 set_dst_reg_note (insn, REG_EQUIV, in, out);
8668 return insn;
8671 /* If that failed, copy the address register to the reload register.
8672 Then add the constant to the reload register. */
8674 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8675 gen_reload (out, op1, opnum, type);
8676 insn = emit_insn (gen_add2_insn (out, op0));
8677 set_dst_reg_note (insn, REG_EQUIV, in, out);
8680 #ifdef SECONDARY_MEMORY_NEEDED
8681 /* If we need a memory location to do the move, do it that way. */
8682 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8683 (REG_P (tem1) && REG_P (tem2)))
8684 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8685 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8686 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8687 REGNO_REG_CLASS (REGNO (tem2)),
8688 GET_MODE (out)))
8690 /* Get the memory to use and rewrite both registers to its mode. */
8691 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8693 if (GET_MODE (loc) != GET_MODE (out))
8694 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8696 if (GET_MODE (loc) != GET_MODE (in))
8697 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8699 gen_reload (loc, in, opnum, type);
8700 gen_reload (out, loc, opnum, type);
8702 #endif
8703 else if (REG_P (out) && UNARY_P (in))
8705 rtx op1;
8706 rtx out_moded;
8707 rtx_insn *set;
8709 op1 = find_replacement (&XEXP (in, 0));
8710 if (op1 != XEXP (in, 0))
8711 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8713 /* First, try a plain SET. */
8714 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8715 if (set)
8716 return set;
8718 /* If that failed, move the inner operand to the reload
8719 register, and try the same unop with the inner expression
8720 replaced with the reload register. */
8722 if (GET_MODE (op1) != GET_MODE (out))
8723 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8724 else
8725 out_moded = out;
8727 gen_reload (out_moded, op1, opnum, type);
8729 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8730 out_moded));
8731 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8732 if (insn)
8734 set_unique_reg_note (insn, REG_EQUIV, in);
8735 return insn;
8738 fatal_insn ("failure trying to reload:", set);
8740 /* If IN is a simple operand, use gen_move_insn. */
8741 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8743 tem = emit_insn (gen_move_insn (out, in));
8744 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8745 mark_jump_label (in, tem, 0);
8748 else if (targetm.have_reload_load_address ())
8749 emit_insn (targetm.gen_reload_load_address (out, in));
8751 /* Otherwise, just write (set OUT IN) and hope for the best. */
8752 else
8753 emit_insn (gen_rtx_SET (out, in));
8755 /* Return the first insn emitted.
8756 We can not just return get_last_insn, because there may have
8757 been multiple instructions emitted. Also note that gen_move_insn may
8758 emit more than one insn itself, so we can not assume that there is one
8759 insn emitted per emit_insn_before call. */
8761 return last ? NEXT_INSN (last) : get_insns ();
8764 /* Delete a previously made output-reload whose result we now believe
8765 is not needed. First we double-check.
8767 INSN is the insn now being processed.
8768 LAST_RELOAD_REG is the hard register number for which we want to delete
8769 the last output reload.
8770 J is the reload-number that originally used REG. The caller has made
8771 certain that reload J doesn't use REG any longer for input.
8772 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8774 static void
8775 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8776 rtx new_reload_reg)
8778 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8779 rtx reg = spill_reg_stored_to[last_reload_reg];
8780 int k;
8781 int n_occurrences;
8782 int n_inherited = 0;
8783 rtx substed;
8784 unsigned regno;
8785 int nregs;
8787 /* It is possible that this reload has been only used to set another reload
8788 we eliminated earlier and thus deleted this instruction too. */
8789 if (output_reload_insn->deleted ())
8790 return;
8792 /* Get the raw pseudo-register referred to. */
8794 while (GET_CODE (reg) == SUBREG)
8795 reg = SUBREG_REG (reg);
8796 substed = reg_equiv_memory_loc (REGNO (reg));
8798 /* This is unsafe if the operand occurs more often in the current
8799 insn than it is inherited. */
8800 for (k = n_reloads - 1; k >= 0; k--)
8802 rtx reg2 = rld[k].in;
8803 if (! reg2)
8804 continue;
8805 if (MEM_P (reg2) || reload_override_in[k])
8806 reg2 = rld[k].in_reg;
8808 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8809 reg2 = XEXP (rld[k].in_reg, 0);
8811 while (GET_CODE (reg2) == SUBREG)
8812 reg2 = SUBREG_REG (reg2);
8813 if (rtx_equal_p (reg2, reg))
8815 if (reload_inherited[k] || reload_override_in[k] || k == j)
8816 n_inherited++;
8817 else
8818 return;
8821 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8822 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8823 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8824 reg, 0);
8825 if (substed)
8826 n_occurrences += count_occurrences (PATTERN (insn),
8827 eliminate_regs (substed, VOIDmode,
8828 NULL_RTX), 0);
8829 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8831 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8832 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8834 if (n_occurrences > n_inherited)
8835 return;
8837 regno = REGNO (reg);
8838 if (regno >= FIRST_PSEUDO_REGISTER)
8839 nregs = 1;
8840 else
8841 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8843 /* If the pseudo-reg we are reloading is no longer referenced
8844 anywhere between the store into it and here,
8845 and we're within the same basic block, then the value can only
8846 pass through the reload reg and end up here.
8847 Otherwise, give up--return. */
8848 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8849 i1 != insn; i1 = NEXT_INSN (i1))
8851 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8852 return;
8853 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8854 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8856 /* If this is USE in front of INSN, we only have to check that
8857 there are no more references than accounted for by inheritance. */
8858 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8860 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8861 i1 = NEXT_INSN (i1);
8863 if (n_occurrences <= n_inherited && i1 == insn)
8864 break;
8865 return;
8869 /* We will be deleting the insn. Remove the spill reg information. */
8870 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8872 spill_reg_store[last_reload_reg + k] = 0;
8873 spill_reg_stored_to[last_reload_reg + k] = 0;
8876 /* The caller has already checked that REG dies or is set in INSN.
8877 It has also checked that we are optimizing, and thus some
8878 inaccuracies in the debugging information are acceptable.
8879 So we could just delete output_reload_insn. But in some cases
8880 we can improve the debugging information without sacrificing
8881 optimization - maybe even improving the code: See if the pseudo
8882 reg has been completely replaced with reload regs. If so, delete
8883 the store insn and forget we had a stack slot for the pseudo. */
8884 if (rld[j].out != rld[j].in
8885 && REG_N_DEATHS (REGNO (reg)) == 1
8886 && REG_N_SETS (REGNO (reg)) == 1
8887 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8888 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8890 rtx_insn *i2;
8892 /* We know that it was used only between here and the beginning of
8893 the current basic block. (We also know that the last use before
8894 INSN was the output reload we are thinking of deleting, but never
8895 mind that.) Search that range; see if any ref remains. */
8896 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8898 rtx set = single_set (i2);
8900 /* Uses which just store in the pseudo don't count,
8901 since if they are the only uses, they are dead. */
8902 if (set != 0 && SET_DEST (set) == reg)
8903 continue;
8904 if (LABEL_P (i2) || JUMP_P (i2))
8905 break;
8906 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8907 && reg_mentioned_p (reg, PATTERN (i2)))
8909 /* Some other ref remains; just delete the output reload we
8910 know to be dead. */
8911 delete_address_reloads (output_reload_insn, insn);
8912 delete_insn (output_reload_insn);
8913 return;
8917 /* Delete the now-dead stores into this pseudo. Note that this
8918 loop also takes care of deleting output_reload_insn. */
8919 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8921 rtx set = single_set (i2);
8923 if (set != 0 && SET_DEST (set) == reg)
8925 delete_address_reloads (i2, insn);
8926 delete_insn (i2);
8928 if (LABEL_P (i2) || JUMP_P (i2))
8929 break;
8932 /* For the debugging info, say the pseudo lives in this reload reg. */
8933 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8934 if (ira_conflicts_p)
8935 /* Inform IRA about the change. */
8936 ira_mark_allocation_change (REGNO (reg));
8937 alter_reg (REGNO (reg), -1, false);
8939 else
8941 delete_address_reloads (output_reload_insn, insn);
8942 delete_insn (output_reload_insn);
8946 /* We are going to delete DEAD_INSN. Recursively delete loads of
8947 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8948 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8949 static void
8950 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8952 rtx set = single_set (dead_insn);
8953 rtx set2, dst;
8954 rtx_insn *prev, *next;
8955 if (set)
8957 rtx dst = SET_DEST (set);
8958 if (MEM_P (dst))
8959 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8961 /* If we deleted the store from a reloaded post_{in,de}c expression,
8962 we can delete the matching adds. */
8963 prev = PREV_INSN (dead_insn);
8964 next = NEXT_INSN (dead_insn);
8965 if (! prev || ! next)
8966 return;
8967 set = single_set (next);
8968 set2 = single_set (prev);
8969 if (! set || ! set2
8970 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8971 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8972 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8973 return;
8974 dst = SET_DEST (set);
8975 if (! rtx_equal_p (dst, SET_DEST (set2))
8976 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8977 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8978 || (INTVAL (XEXP (SET_SRC (set), 1))
8979 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8980 return;
8981 delete_related_insns (prev);
8982 delete_related_insns (next);
8985 /* Subfunction of delete_address_reloads: process registers found in X. */
8986 static void
8987 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8989 rtx_insn *prev, *i2;
8990 rtx set, dst;
8991 int i, j;
8992 enum rtx_code code = GET_CODE (x);
8994 if (code != REG)
8996 const char *fmt = GET_RTX_FORMAT (code);
8997 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8999 if (fmt[i] == 'e')
9000 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9001 else if (fmt[i] == 'E')
9003 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9004 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9005 current_insn);
9008 return;
9011 if (spill_reg_order[REGNO (x)] < 0)
9012 return;
9014 /* Scan backwards for the insn that sets x. This might be a way back due
9015 to inheritance. */
9016 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9018 code = GET_CODE (prev);
9019 if (code == CODE_LABEL || code == JUMP_INSN)
9020 return;
9021 if (!INSN_P (prev))
9022 continue;
9023 if (reg_set_p (x, PATTERN (prev)))
9024 break;
9025 if (reg_referenced_p (x, PATTERN (prev)))
9026 return;
9028 if (! prev || INSN_UID (prev) < reload_first_uid)
9029 return;
9030 /* Check that PREV only sets the reload register. */
9031 set = single_set (prev);
9032 if (! set)
9033 return;
9034 dst = SET_DEST (set);
9035 if (!REG_P (dst)
9036 || ! rtx_equal_p (dst, x))
9037 return;
9038 if (! reg_set_p (dst, PATTERN (dead_insn)))
9040 /* Check if DST was used in a later insn -
9041 it might have been inherited. */
9042 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9044 if (LABEL_P (i2))
9045 break;
9046 if (! INSN_P (i2))
9047 continue;
9048 if (reg_referenced_p (dst, PATTERN (i2)))
9050 /* If there is a reference to the register in the current insn,
9051 it might be loaded in a non-inherited reload. If no other
9052 reload uses it, that means the register is set before
9053 referenced. */
9054 if (i2 == current_insn)
9056 for (j = n_reloads - 1; j >= 0; j--)
9057 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9058 || reload_override_in[j] == dst)
9059 return;
9060 for (j = n_reloads - 1; j >= 0; j--)
9061 if (rld[j].in && rld[j].reg_rtx == dst)
9062 break;
9063 if (j >= 0)
9064 break;
9066 return;
9068 if (JUMP_P (i2))
9069 break;
9070 /* If DST is still live at CURRENT_INSN, check if it is used for
9071 any reload. Note that even if CURRENT_INSN sets DST, we still
9072 have to check the reloads. */
9073 if (i2 == current_insn)
9075 for (j = n_reloads - 1; j >= 0; j--)
9076 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9077 || reload_override_in[j] == dst)
9078 return;
9079 /* ??? We can't finish the loop here, because dst might be
9080 allocated to a pseudo in this block if no reload in this
9081 block needs any of the classes containing DST - see
9082 spill_hard_reg. There is no easy way to tell this, so we
9083 have to scan till the end of the basic block. */
9085 if (reg_set_p (dst, PATTERN (i2)))
9086 break;
9089 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9090 reg_reloaded_contents[REGNO (dst)] = -1;
9091 delete_insn (prev);
9094 /* Output reload-insns to reload VALUE into RELOADREG.
9095 VALUE is an autoincrement or autodecrement RTX whose operand
9096 is a register or memory location;
9097 so reloading involves incrementing that location.
9098 IN is either identical to VALUE, or some cheaper place to reload from.
9100 INC_AMOUNT is the number to increment or decrement by (always positive).
9101 This cannot be deduced from VALUE. */
9103 static void
9104 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9106 /* REG or MEM to be copied and incremented. */
9107 rtx incloc = find_replacement (&XEXP (value, 0));
9108 /* Nonzero if increment after copying. */
9109 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9110 || GET_CODE (value) == POST_MODIFY);
9111 rtx_insn *last;
9112 rtx inc;
9113 rtx_insn *add_insn;
9114 int code;
9115 rtx real_in = in == value ? incloc : in;
9117 /* No hard register is equivalent to this register after
9118 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9119 we could inc/dec that register as well (maybe even using it for
9120 the source), but I'm not sure it's worth worrying about. */
9121 if (REG_P (incloc))
9122 reg_last_reload_reg[REGNO (incloc)] = 0;
9124 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9126 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9127 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9129 else
9131 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9132 inc_amount = -inc_amount;
9134 inc = GEN_INT (inc_amount);
9137 /* If this is post-increment, first copy the location to the reload reg. */
9138 if (post && real_in != reloadreg)
9139 emit_insn (gen_move_insn (reloadreg, real_in));
9141 if (in == value)
9143 /* See if we can directly increment INCLOC. Use a method similar to
9144 that in gen_reload. */
9146 last = get_last_insn ();
9147 add_insn = emit_insn (gen_rtx_SET (incloc,
9148 gen_rtx_PLUS (GET_MODE (incloc),
9149 incloc, inc)));
9151 code = recog_memoized (add_insn);
9152 if (code >= 0)
9154 extract_insn (add_insn);
9155 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9157 /* If this is a pre-increment and we have incremented the value
9158 where it lives, copy the incremented value to RELOADREG to
9159 be used as an address. */
9161 if (! post)
9162 emit_insn (gen_move_insn (reloadreg, incloc));
9163 return;
9166 delete_insns_since (last);
9169 /* If couldn't do the increment directly, must increment in RELOADREG.
9170 The way we do this depends on whether this is pre- or post-increment.
9171 For pre-increment, copy INCLOC to the reload register, increment it
9172 there, then save back. */
9174 if (! post)
9176 if (in != reloadreg)
9177 emit_insn (gen_move_insn (reloadreg, real_in));
9178 emit_insn (gen_add2_insn (reloadreg, inc));
9179 emit_insn (gen_move_insn (incloc, reloadreg));
9181 else
9183 /* Postincrement.
9184 Because this might be a jump insn or a compare, and because RELOADREG
9185 may not be available after the insn in an input reload, we must do
9186 the incrementation before the insn being reloaded for.
9188 We have already copied IN to RELOADREG. Increment the copy in
9189 RELOADREG, save that back, then decrement RELOADREG so it has
9190 the original value. */
9192 emit_insn (gen_add2_insn (reloadreg, inc));
9193 emit_insn (gen_move_insn (incloc, reloadreg));
9194 if (CONST_INT_P (inc))
9195 emit_insn (gen_add2_insn (reloadreg,
9196 gen_int_mode (-INTVAL (inc),
9197 GET_MODE (reloadreg))));
9198 else
9199 emit_insn (gen_sub2_insn (reloadreg, inc));
9203 static void
9204 add_auto_inc_notes (rtx_insn *insn, rtx x)
9206 enum rtx_code code = GET_CODE (x);
9207 const char *fmt;
9208 int i, j;
9210 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9212 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9213 return;
9216 /* Scan all the operand sub-expressions. */
9217 fmt = GET_RTX_FORMAT (code);
9218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9220 if (fmt[i] == 'e')
9221 add_auto_inc_notes (insn, XEXP (x, i));
9222 else if (fmt[i] == 'E')
9223 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9224 add_auto_inc_notes (insn, XVECEXP (x, i, j));