PR tree-optimization/78496
[official-gcc.git] / gcc / genrecog.c
blob6a9e610e7a09141a994ffd2441710fd0d5498300
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This program is used to produce insn-recog.c, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.c).
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
44 rtl as an INSN list.
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence.
52 At a high level, the algorithm used in this file is as follows:
54 1. Build up a decision tree for each routine, using the following
55 approach to matching an rtx:
57 - First determine the "shape" of the rtx, based on GET_CODE,
58 XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
59 since SET_SRCs tend to be more distinctive. It examines other
60 operands in numerical order, since the canonicalization rules
61 prefer putting complex operands of commutative operators first.
63 - Next check modes and predicates. This phase examines all
64 operands in numerical order, even for SETs, since the mode of a
65 SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 for constant integers.
68 - Next check match_dups.
70 - Finally check the C condition and (where appropriate) pnum_clobbers.
72 2. Try to optimize the tree by removing redundant tests, CSEing tests,
73 folding tests together, etc.
75 3. Look for common subtrees and split them out into "pattern" routines.
76 These common subtrees can be identical or they can differ in mode,
77 code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78 In the latter case the users of the pattern routine pass the
79 appropriate mode, etc., as argument. For example, if two patterns
80 contain:
82 (plus:SI (match_operand:SI 1 "register_operand")
83 (match_operand:SI 2 "register_operand"))
85 we can split the associated matching code out into a subroutine.
86 If a pattern contains:
88 (minus:DI (match_operand:DI 1 "register_operand")
89 (match_operand:DI 2 "register_operand"))
91 then we can consider using the same matching routine for both
92 the plus and minus expressions, passing PLUS and SImode in the
93 former case and MINUS and DImode in the latter case.
95 The main aim of this phase is to reduce the compile time of the
96 insn-recog.c code and to reduce the amount of object code in
97 insn-recog.o.
99 4. Split the matching trees into functions, trying to limit the
100 size of each function to a sensible amount.
102 Again, the main aim of this phase is to reduce the compile time
103 of insn-recog.c. (It doesn't help with the size of insn-recog.o.)
105 5. Write out C++ code for each function. */
107 #include "bconfig.h"
108 #define INCLUDE_ALGORITHM
109 #include "system.h"
110 #include "coretypes.h"
111 #include "tm.h"
112 #include "rtl.h"
113 #include "errors.h"
114 #include "read-md.h"
115 #include "gensupport.h"
117 #undef GENERATOR_FILE
118 enum true_rtx_doe {
119 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
120 #include "rtl.def"
121 #undef DEF_RTL_EXPR
122 FIRST_GENERATOR_RTX_CODE
124 #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125 #define GENERATOR_FILE 1
127 /* Debugging variables to control which optimizations are performed.
128 Note that disabling merge_states_p leads to very large output. */
129 static const bool merge_states_p = true;
130 static const bool collapse_optional_decisions_p = true;
131 static const bool cse_tests_p = true;
132 static const bool simplify_tests_p = true;
133 static const bool use_operand_variables_p = true;
134 static const bool use_subroutines_p = true;
135 static const bool use_pattern_routines_p = true;
137 /* Whether to add comments for optional tests that we decided to keep.
138 Can be useful when debugging the generator itself but is noise when
139 debugging the generated code. */
140 static const bool mark_optional_transitions_p = false;
142 /* Whether pattern routines should calculate positions relative to their
143 rtx parameter rather than use absolute positions. This e.g. allows
144 a pattern routine to be shared between a plain SET and a PARALLEL
145 that includes a SET.
147 In principle it sounds like this should be useful, especially for
148 recog_for_combine, where the plain SET form is generated automatically
149 from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
150 seem to help much and leads to slightly bigger object files. */
151 static const bool relative_patterns_p = false;
153 /* Whether pattern routines should be allowed to test whether pnum_clobbers
154 is null. This requires passing pnum_clobbers around as a parameter. */
155 static const bool pattern_have_num_clobbers_p = true;
157 /* Whether pattern routines should be allowed to test .md file C conditions.
158 This requires passing insn around as a parameter, in case the C
159 condition refers to it. In practice this tends to lead to bigger
160 object files. */
161 static const bool pattern_c_test_p = false;
163 /* Whether to require each parameter passed to a pattern routine to be
164 unique. Disabling this check for example allows unary operators with
165 matching modes (like NEG) and unary operators with mismatched modes
166 (like ZERO_EXTEND) to be matched by a single pattern. However, we then
167 often have cases where the same value is passed too many times. */
168 static const bool force_unique_params_p = true;
170 /* The maximum (approximate) depth of block nesting that an individual
171 routine or subroutine should have. This limit is about keeping the
172 output readable rather than reducing compile time. */
173 static const unsigned int MAX_DEPTH = 6;
175 /* The minimum number of pseudo-statements that a state must have before
176 we split it out into a subroutine. */
177 static const unsigned int MIN_NUM_STATEMENTS = 5;
179 /* The number of pseudo-statements a state can have before we consider
180 splitting out substates into subroutines. This limit is about avoiding
181 compile-time problems with very big functions (and also about keeping
182 functions within --param optimization limits, etc.). */
183 static const unsigned int MAX_NUM_STATEMENTS = 200;
185 /* The minimum number of pseudo-statements that can be used in a pattern
186 routine. */
187 static const unsigned int MIN_COMBINE_COST = 4;
189 /* The maximum number of arguments that a pattern routine can have.
190 The idea is to prevent one pattern getting a ridiculous number of
191 arguments when it would be more beneficial to have a separate pattern
192 routine instead. */
193 static const unsigned int MAX_PATTERN_PARAMS = 5;
195 /* The maximum operand number plus one. */
196 int num_operands;
198 /* Ways of obtaining an rtx to be tested. */
199 enum position_type {
200 /* PATTERN (peep2_next_insn (ARG)). */
201 POS_PEEP2_INSN,
203 /* XEXP (BASE, ARG). */
204 POS_XEXP,
206 /* XVECEXP (BASE, 0, ARG). */
207 POS_XVECEXP0
210 /* The position of an rtx relative to X0. Each useful position is
211 represented by exactly one instance of this structure. */
212 struct position
214 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
215 struct position *base;
217 /* A position with the same BASE and TYPE, but with the next value
218 of ARG. */
219 struct position *next;
221 /* A list of all POS_XEXP positions that use this one as their base,
222 chained by NEXT fields. The first entry represents XEXP (this, 0),
223 the second represents XEXP (this, 1), and so on. */
224 struct position *xexps;
226 /* A list of POS_XVECEXP0 positions that use this one as their base,
227 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
228 the second represents XVECEXP (this, 0, 1), and so on. */
229 struct position *xvecexp0s;
231 /* The type of position. */
232 enum position_type type;
234 /* The argument to TYPE (shown as ARG in the position_type comments). */
235 int arg;
237 /* The instruction to which the position belongs. */
238 unsigned int insn_id;
240 /* The depth of this position relative to the instruction pattern.
241 E.g. if the instruction pattern is a SET, the SET itself has a
242 depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
243 unsigned int depth;
245 /* A unique identifier for this position. */
246 unsigned int id;
249 enum routine_type {
250 SUBPATTERN, RECOG, SPLIT, PEEPHOLE2
253 /* The root position (x0). */
254 static struct position root_pos;
256 /* The number of positions created. Also one higher than the maximum
257 position id. */
258 static unsigned int num_positions = 1;
260 /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
261 since we are given that instruction's pattern as x0. */
262 static struct position *peep2_insn_pos_list = &root_pos;
264 /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
265 points to where the unique object that represents the position
266 should be stored. Create the object if it doesn't already exist,
267 otherwise reuse the object that is already there. */
269 static struct position *
270 next_position (struct position **next_ptr, struct position *base,
271 enum position_type type, int arg)
273 struct position *pos;
275 pos = *next_ptr;
276 if (!pos)
278 pos = XCNEW (struct position);
279 pos->type = type;
280 pos->arg = arg;
281 if (type == POS_PEEP2_INSN)
283 pos->base = 0;
284 pos->insn_id = arg;
285 pos->depth = base->depth;
287 else
289 pos->base = base;
290 pos->insn_id = base->insn_id;
291 pos->depth = base->depth + 1;
293 pos->id = num_positions++;
294 *next_ptr = pos;
296 return pos;
299 /* Compare positions POS1 and POS2 lexicographically. */
301 static int
302 compare_positions (struct position *pos1, struct position *pos2)
304 int diff;
306 diff = pos1->depth - pos2->depth;
307 if (diff < 0)
309 pos2 = pos2->base;
310 while (pos1->depth != pos2->depth);
311 else if (diff > 0)
313 pos1 = pos1->base;
314 while (pos1->depth != pos2->depth);
315 while (pos1 != pos2)
317 diff = (int) pos1->type - (int) pos2->type;
318 if (diff == 0)
319 diff = pos1->arg - pos2->arg;
320 pos1 = pos1->base;
321 pos2 = pos2->base;
323 return diff;
326 /* Return the most deeply-nested position that is common to both
327 POS1 and POS2. If the positions are from different instructions,
328 return the one with the lowest insn_id. */
330 static struct position *
331 common_position (struct position *pos1, struct position *pos2)
333 if (pos1->insn_id != pos2->insn_id)
334 return pos1->insn_id < pos2->insn_id ? pos1 : pos2;
335 if (pos1->depth > pos2->depth)
336 std::swap (pos1, pos2);
337 while (pos1->depth != pos2->depth)
338 pos2 = pos2->base;
339 while (pos1 != pos2)
341 pos1 = pos1->base;
342 pos2 = pos2->base;
344 return pos1;
347 /* Search for and return operand N, stop when reaching node STOP. */
349 static rtx
350 find_operand (rtx pattern, int n, rtx stop)
352 const char *fmt;
353 RTX_CODE code;
354 int i, j, len;
355 rtx r;
357 if (pattern == stop)
358 return stop;
360 code = GET_CODE (pattern);
361 if ((code == MATCH_SCRATCH
362 || code == MATCH_OPERAND
363 || code == MATCH_OPERATOR
364 || code == MATCH_PARALLEL)
365 && XINT (pattern, 0) == n)
366 return pattern;
368 fmt = GET_RTX_FORMAT (code);
369 len = GET_RTX_LENGTH (code);
370 for (i = 0; i < len; i++)
372 switch (fmt[i])
374 case 'e': case 'u':
375 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
376 return r;
377 break;
379 case 'V':
380 if (! XVEC (pattern, i))
381 break;
382 /* Fall through. */
384 case 'E':
385 for (j = 0; j < XVECLEN (pattern, i); j++)
386 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
387 != NULL_RTX)
388 return r;
389 break;
391 case 'i': case 'r': case 'w': case '0': case 's':
392 break;
394 default:
395 gcc_unreachable ();
399 return NULL;
402 /* Search for and return operand M, such that it has a matching
403 constraint for operand N. */
405 static rtx
406 find_matching_operand (rtx pattern, int n)
408 const char *fmt;
409 RTX_CODE code;
410 int i, j, len;
411 rtx r;
413 code = GET_CODE (pattern);
414 if (code == MATCH_OPERAND
415 && (XSTR (pattern, 2)[0] == '0' + n
416 || (XSTR (pattern, 2)[0] == '%'
417 && XSTR (pattern, 2)[1] == '0' + n)))
418 return pattern;
420 fmt = GET_RTX_FORMAT (code);
421 len = GET_RTX_LENGTH (code);
422 for (i = 0; i < len; i++)
424 switch (fmt[i])
426 case 'e': case 'u':
427 if ((r = find_matching_operand (XEXP (pattern, i), n)))
428 return r;
429 break;
431 case 'V':
432 if (! XVEC (pattern, i))
433 break;
434 /* Fall through. */
436 case 'E':
437 for (j = 0; j < XVECLEN (pattern, i); j++)
438 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
439 return r;
440 break;
442 case 'i': case 'r': case 'w': case '0': case 's':
443 break;
445 default:
446 gcc_unreachable ();
450 return NULL;
453 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454 don't use the MATCH_OPERAND constraint, only the predicate.
455 This is confusing to folks doing new ports, so help them
456 not make the mistake. */
458 static bool
459 constraints_supported_in_insn_p (rtx insn)
461 return !(GET_CODE (insn) == DEFINE_EXPAND
462 || GET_CODE (insn) == DEFINE_SPLIT
463 || GET_CODE (insn) == DEFINE_PEEPHOLE2);
466 /* Return the name of the predicate matched by MATCH_RTX. */
468 static const char *
469 predicate_name (rtx match_rtx)
471 if (GET_CODE (match_rtx) == MATCH_SCRATCH)
472 return "scratch_operand";
473 else
474 return XSTR (match_rtx, 1);
477 /* Return true if OPERAND is a MATCH_OPERAND using a special predicate
478 function. */
480 static bool
481 special_predicate_operand_p (rtx operand)
483 if (GET_CODE (operand) == MATCH_OPERAND)
485 const char *pred_name = predicate_name (operand);
486 if (pred_name[0] != 0)
488 const struct pred_data *pred;
490 pred = lookup_predicate (pred_name);
491 return pred != NULL && pred->special;
495 return false;
498 /* Check for various errors in PATTERN, which is part of INFO.
499 SET is nonnull for a destination, and is the complete set pattern.
500 SET_CODE is '=' for normal sets, and '+' within a context that
501 requires in-out constraints. */
503 static void
504 validate_pattern (rtx pattern, md_rtx_info *info, rtx set, int set_code)
506 const char *fmt;
507 RTX_CODE code;
508 size_t i, len;
509 int j;
511 code = GET_CODE (pattern);
512 switch (code)
514 case MATCH_SCRATCH:
516 const char constraints0 = XSTR (pattern, 1)[0];
518 if (!constraints_supported_in_insn_p (info->def))
520 if (constraints0)
522 error_at (info->loc, "constraints not supported in %s",
523 GET_RTX_NAME (GET_CODE (info->def)));
525 return;
528 /* If a MATCH_SCRATCH is used in a context requiring an write-only
529 or read/write register, validate that. */
530 if (set_code == '='
531 && constraints0
532 && constraints0 != '='
533 && constraints0 != '+')
535 error_at (info->loc, "operand %d missing output reload",
536 XINT (pattern, 0));
538 return;
540 case MATCH_DUP:
541 case MATCH_OP_DUP:
542 case MATCH_PAR_DUP:
543 if (find_operand (info->def, XINT (pattern, 0), pattern) == pattern)
544 error_at (info->loc, "operand %i duplicated before defined",
545 XINT (pattern, 0));
546 break;
547 case MATCH_OPERAND:
548 case MATCH_OPERATOR:
550 const char *pred_name = XSTR (pattern, 1);
551 const struct pred_data *pred;
552 const char *c_test;
554 c_test = get_c_test (info->def);
556 if (pred_name[0] != 0)
558 pred = lookup_predicate (pred_name);
559 if (!pred)
560 error_at (info->loc, "unknown predicate '%s'", pred_name);
562 else
563 pred = 0;
565 if (code == MATCH_OPERAND)
567 const char *constraints = XSTR (pattern, 2);
568 const char constraints0 = constraints[0];
570 if (!constraints_supported_in_insn_p (info->def))
572 if (constraints0)
574 error_at (info->loc, "constraints not supported in %s",
575 GET_RTX_NAME (GET_CODE (info->def)));
579 /* A MATCH_OPERAND that is a SET should have an output reload. */
580 else if (set && constraints0)
582 if (set_code == '+')
584 if (constraints0 == '+')
586 /* If we've only got an output reload for this operand,
587 we'd better have a matching input operand. */
588 else if (constraints0 == '='
589 && find_matching_operand (info->def,
590 XINT (pattern, 0)))
592 else
593 error_at (info->loc, "operand %d missing in-out reload",
594 XINT (pattern, 0));
596 else if (constraints0 != '=' && constraints0 != '+')
597 error_at (info->loc, "operand %d missing output reload",
598 XINT (pattern, 0));
601 /* For matching constraint in MATCH_OPERAND, the digit must be a
602 smaller number than the number of the operand that uses it in the
603 constraint. */
604 while (1)
606 while (constraints[0]
607 && (constraints[0] == ' ' || constraints[0] == ','))
608 constraints++;
609 if (!constraints[0])
610 break;
612 if (constraints[0] >= '0' && constraints[0] <= '9')
614 int val;
616 sscanf (constraints, "%d", &val);
617 if (val >= XINT (pattern, 0))
618 error_at (info->loc, "constraint digit %d is not"
619 " smaller than operand %d",
620 val, XINT (pattern, 0));
623 while (constraints[0] && constraints[0] != ',')
624 constraints++;
628 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
629 while not likely to occur at runtime, results in less efficient
630 code from insn-recog.c. */
631 if (set && pred && pred->allows_non_lvalue)
632 error_at (info->loc, "destination operand %d allows non-lvalue",
633 XINT (pattern, 0));
635 /* A modeless MATCH_OPERAND can be handy when we can check for
636 multiple modes in the c_test. In most other cases, it is a
637 mistake. Only DEFINE_INSN is eligible, since SPLIT and
638 PEEP2 can FAIL within the output pattern. Exclude special
639 predicates, which check the mode themselves. Also exclude
640 predicates that allow only constants. Exclude the SET_DEST
641 of a call instruction, as that is a common idiom. */
643 if (GET_MODE (pattern) == VOIDmode
644 && code == MATCH_OPERAND
645 && GET_CODE (info->def) == DEFINE_INSN
646 && pred
647 && !pred->special
648 && pred->allows_non_const
649 && strstr (c_test, "operands") == NULL
650 && ! (set
651 && GET_CODE (set) == SET
652 && GET_CODE (SET_SRC (set)) == CALL))
653 message_at (info->loc, "warning: operand %d missing mode?",
654 XINT (pattern, 0));
655 return;
658 case SET:
660 machine_mode dmode, smode;
661 rtx dest, src;
663 dest = SET_DEST (pattern);
664 src = SET_SRC (pattern);
666 /* STRICT_LOW_PART is a wrapper. Its argument is the real
667 destination, and it's mode should match the source. */
668 if (GET_CODE (dest) == STRICT_LOW_PART)
669 dest = XEXP (dest, 0);
671 /* Find the referent for a DUP. */
673 if (GET_CODE (dest) == MATCH_DUP
674 || GET_CODE (dest) == MATCH_OP_DUP
675 || GET_CODE (dest) == MATCH_PAR_DUP)
676 dest = find_operand (info->def, XINT (dest, 0), NULL);
678 if (GET_CODE (src) == MATCH_DUP
679 || GET_CODE (src) == MATCH_OP_DUP
680 || GET_CODE (src) == MATCH_PAR_DUP)
681 src = find_operand (info->def, XINT (src, 0), NULL);
683 dmode = GET_MODE (dest);
684 smode = GET_MODE (src);
686 /* Mode checking is not performed for special predicates. */
687 if (special_predicate_operand_p (src)
688 || special_predicate_operand_p (dest))
691 /* The operands of a SET must have the same mode unless one
692 is VOIDmode. */
693 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
694 error_at (info->loc, "mode mismatch in set: %smode vs %smode",
695 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
697 /* If only one of the operands is VOIDmode, and PC or CC0 is
698 not involved, it's probably a mistake. */
699 else if (dmode != smode
700 && GET_CODE (dest) != PC
701 && GET_CODE (dest) != CC0
702 && GET_CODE (src) != PC
703 && GET_CODE (src) != CC0
704 && !CONST_INT_P (src)
705 && !CONST_WIDE_INT_P (src)
706 && GET_CODE (src) != CALL)
708 const char *which;
709 which = (dmode == VOIDmode ? "destination" : "source");
710 message_at (info->loc, "warning: %s missing a mode?", which);
713 if (dest != SET_DEST (pattern))
714 validate_pattern (dest, info, pattern, '=');
715 validate_pattern (SET_DEST (pattern), info, pattern, '=');
716 validate_pattern (SET_SRC (pattern), info, NULL_RTX, 0);
717 return;
720 case CLOBBER:
721 validate_pattern (SET_DEST (pattern), info, pattern, '=');
722 return;
724 case ZERO_EXTRACT:
725 validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0);
726 validate_pattern (XEXP (pattern, 1), info, NULL_RTX, 0);
727 validate_pattern (XEXP (pattern, 2), info, NULL_RTX, 0);
728 return;
730 case STRICT_LOW_PART:
731 validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0);
732 return;
734 case LABEL_REF:
735 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
736 error_at (info->loc, "operand to label_ref %smode not VOIDmode",
737 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
738 break;
740 case VEC_SELECT:
741 if (GET_MODE (pattern) != VOIDmode)
743 enum machine_mode mode = GET_MODE (pattern);
744 enum machine_mode imode = GET_MODE (XEXP (pattern, 0));
745 enum machine_mode emode
746 = VECTOR_MODE_P (mode) ? GET_MODE_INNER (mode) : mode;
747 if (GET_CODE (XEXP (pattern, 1)) == PARALLEL)
749 int expected = VECTOR_MODE_P (mode) ? GET_MODE_NUNITS (mode) : 1;
750 if (XVECLEN (XEXP (pattern, 1), 0) != expected)
751 error_at (info->loc,
752 "vec_select parallel with %d elements, expected %d",
753 XVECLEN (XEXP (pattern, 1), 0), expected);
755 if (imode != VOIDmode && !VECTOR_MODE_P (imode))
756 error_at (info->loc, "%smode of first vec_select operand is not a "
757 "vector mode", GET_MODE_NAME (imode));
758 else if (imode != VOIDmode && GET_MODE_INNER (imode) != emode)
759 error_at (info->loc, "element mode mismatch between vec_select "
760 "%smode and its operand %smode",
761 GET_MODE_NAME (emode),
762 GET_MODE_NAME (GET_MODE_INNER (imode)));
764 break;
766 default:
767 break;
770 fmt = GET_RTX_FORMAT (code);
771 len = GET_RTX_LENGTH (code);
772 for (i = 0; i < len; i++)
774 switch (fmt[i])
776 case 'e': case 'u':
777 validate_pattern (XEXP (pattern, i), info, NULL_RTX, 0);
778 break;
780 case 'E':
781 for (j = 0; j < XVECLEN (pattern, i); j++)
782 validate_pattern (XVECEXP (pattern, i, j), info, NULL_RTX, 0);
783 break;
785 case 'i': case 'r': case 'w': case '0': case 's':
786 break;
788 default:
789 gcc_unreachable ();
794 /* Simple list structure for items of type T, for use when being part
795 of a list is an inherent property of T. T must have members equivalent
796 to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
797 to set the parent list. */
798 template <typename T>
799 struct list_head
801 /* A range of linked items. */
802 struct range
804 range (T *);
805 range (T *, T *);
807 T *start, *end;
808 void set_parent (list_head *);
811 list_head ();
812 range release ();
813 void push_back (range);
814 range remove (range);
815 void replace (range, range);
816 T *singleton () const;
818 T *first, *last;
821 /* Create a range [START_IN, START_IN]. */
823 template <typename T>
824 list_head <T>::range::range (T *start_in) : start (start_in), end (start_in) {}
826 /* Create a range [START_IN, END_IN], linked by next and prev fields. */
828 template <typename T>
829 list_head <T>::range::range (T *start_in, T *end_in)
830 : start (start_in), end (end_in) {}
832 template <typename T>
833 void
834 list_head <T>::range::set_parent (list_head <T> *owner)
836 for (T *item = start; item != end; item = item->next)
837 item->set_parent (owner);
838 end->set_parent (owner);
841 template <typename T>
842 list_head <T>::list_head () : first (0), last (0) {}
844 /* Add R to the end of the list. */
846 template <typename T>
847 void
848 list_head <T>::push_back (range r)
850 if (last)
851 last->next = r.start;
852 else
853 first = r.start;
854 r.start->prev = last;
855 last = r.end;
856 r.set_parent (this);
859 /* Remove R from the list. R remains valid and can be inserted into
860 other lists. */
862 template <typename T>
863 typename list_head <T>::range
864 list_head <T>::remove (range r)
866 if (r.start->prev)
867 r.start->prev->next = r.end->next;
868 else
869 first = r.end->next;
870 if (r.end->next)
871 r.end->next->prev = r.start->prev;
872 else
873 last = r.start->prev;
874 r.start->prev = 0;
875 r.end->next = 0;
876 r.set_parent (0);
877 return r;
880 /* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
881 other lists. */
883 template <typename T>
884 void
885 list_head <T>::replace (range oldr, range newr)
887 newr.start->prev = oldr.start->prev;
888 newr.end->next = oldr.end->next;
890 oldr.start->prev = 0;
891 oldr.end->next = 0;
892 oldr.set_parent (0);
894 if (newr.start->prev)
895 newr.start->prev->next = newr.start;
896 else
897 first = newr.start;
898 if (newr.end->next)
899 newr.end->next->prev = newr.end;
900 else
901 last = newr.end;
902 newr.set_parent (this);
905 /* Empty the list and return the previous contents as a range that can
906 be inserted into other lists. */
908 template <typename T>
909 typename list_head <T>::range
910 list_head <T>::release ()
912 range r (first, last);
913 first = 0;
914 last = 0;
915 r.set_parent (0);
916 return r;
919 /* If the list contains a single item, return that item, otherwise return
920 null. */
922 template <typename T>
924 list_head <T>::singleton () const
926 return first == last ? first : 0;
929 struct state;
931 /* Describes a possible successful return from a routine. */
932 struct acceptance_type
934 /* The type of routine we're returning from. */
935 routine_type type : 16;
937 /* True if this structure only really represents a partial match,
938 and if we must call a subroutine of type TYPE to complete the match.
939 In this case we'll call the subroutine and, if it succeeds, return
940 whatever the subroutine returned.
942 False if this structure presents a full match. */
943 unsigned int partial_p : 1;
945 union
947 /* If PARTIAL_P, this is the number of the subroutine to call. */
948 int subroutine_id;
950 /* Valid if !PARTIAL_P. */
951 struct
953 /* The identifier of the matching pattern. For SUBPATTERNs this
954 value belongs to an ad-hoc routine-specific enum. For the
955 others it's the number of an .md file pattern. */
956 int code;
957 union
959 /* For RECOG, the number of clobbers that must be added to the
960 pattern in order for it to match CODE. */
961 int num_clobbers;
963 /* For PEEPHOLE2, the number of additional instructions that were
964 included in the optimization. */
965 int match_len;
966 } u;
967 } full;
968 } u;
971 bool
972 operator == (const acceptance_type &a, const acceptance_type &b)
974 if (a.partial_p != b.partial_p)
975 return false;
976 if (a.partial_p)
977 return a.u.subroutine_id == b.u.subroutine_id;
978 else
979 return a.u.full.code == b.u.full.code;
982 bool
983 operator != (const acceptance_type &a, const acceptance_type &b)
985 return !operator == (a, b);
988 /* Represents a parameter to a pattern routine. */
989 struct parameter
991 /* The C type of parameter. */
992 enum type_enum {
993 /* Represents an invalid parameter. */
994 UNSET,
996 /* A machine_mode parameter. */
997 MODE,
999 /* An rtx_code parameter. */
1000 CODE,
1002 /* An int parameter. */
1003 INT,
1005 /* An unsigned int parameter. */
1006 UINT,
1008 /* A HOST_WIDE_INT parameter. */
1009 WIDE_INT
1012 parameter ();
1013 parameter (type_enum, bool, uint64_t);
1015 /* The type of the parameter. */
1016 type_enum type;
1018 /* True if the value passed is variable, false if it is constant. */
1019 bool is_param;
1021 /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
1022 format string. If !IS_PARAM, this is the constant value passed. */
1023 uint64_t value;
1026 parameter::parameter ()
1027 : type (UNSET), is_param (false), value (0) {}
1029 parameter::parameter (type_enum type_in, bool is_param_in, uint64_t value_in)
1030 : type (type_in), is_param (is_param_in), value (value_in) {}
1032 bool
1033 operator == (const parameter &param1, const parameter &param2)
1035 return (param1.type == param2.type
1036 && param1.is_param == param2.is_param
1037 && param1.value == param2.value);
1040 bool
1041 operator != (const parameter &param1, const parameter &param2)
1043 return !operator == (param1, param2);
1046 /* Represents a routine that matches a partial rtx pattern, returning
1047 an ad-hoc enum value on success and -1 on failure. The routine can
1048 be used by any subroutine type. The match can be parameterized by
1049 things like mode, code and UNSPEC number. */
1050 struct pattern_routine
1052 /* The state that implements the pattern. */
1053 state *s;
1055 /* The deepest root position from which S can access all the rtxes it needs.
1056 This is NULL if the pattern doesn't need an rtx input, usually because
1057 all matching is done on operands[] instead. */
1058 position *pos;
1060 /* A unique identifier for the routine. */
1061 unsigned int pattern_id;
1063 /* True if the routine takes pnum_clobbers as argument. */
1064 bool pnum_clobbers_p;
1066 /* True if the routine takes the enclosing instruction as argument. */
1067 bool insn_p;
1069 /* The types of the other parameters to the routine, if any. */
1070 auto_vec <parameter::type_enum, MAX_PATTERN_PARAMS> param_types;
1073 /* All defined patterns. */
1074 static vec <pattern_routine *> patterns;
1076 /* Represents one use of a pattern routine. */
1077 struct pattern_use
1079 /* The pattern routine to use. */
1080 pattern_routine *routine;
1082 /* The values to pass as parameters. This vector has the same length
1083 as ROUTINE->PARAM_TYPES. */
1084 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
1087 /* Represents a test performed by a decision. */
1088 struct rtx_test
1090 rtx_test ();
1092 /* The types of test that can be performed. Most of them take as input
1093 an rtx X. Some also take as input a transition label LABEL; the others
1094 are booleans for which the transition label is always "true".
1096 The order of the enum isn't important. */
1097 enum kind_enum {
1098 /* Check GET_CODE (X) == LABEL. */
1099 CODE,
1101 /* Check GET_MODE (X) == LABEL. */
1102 MODE,
1104 /* Check REGNO (X) == LABEL. */
1105 REGNO_FIELD,
1107 /* Check XINT (X, u.opno) == LABEL. */
1108 INT_FIELD,
1110 /* Check XWINT (X, u.opno) == LABEL. */
1111 WIDE_INT_FIELD,
1113 /* Check XVECLEN (X, 0) == LABEL. */
1114 VECLEN,
1116 /* Check peep2_current_count >= u.min_len. */
1117 PEEP2_COUNT,
1119 /* Check XVECLEN (X, 0) >= u.min_len. */
1120 VECLEN_GE,
1122 /* Check whether X is a cached const_int with value u.integer. */
1123 SAVED_CONST_INT,
1125 /* Check u.predicate.data (X, u.predicate.mode). */
1126 PREDICATE,
1128 /* Check rtx_equal_p (X, operands[u.opno]). */
1129 DUPLICATE,
1131 /* Check whether X matches pattern u.pattern. */
1132 PATTERN,
1134 /* Check whether pnum_clobbers is nonnull (RECOG only). */
1135 HAVE_NUM_CLOBBERS,
1137 /* Check whether general C test u.string holds. In general the condition
1138 needs access to "insn" and the full operand list. */
1139 C_TEST,
1141 /* Execute operands[u.opno] = X. (Always succeeds.) */
1142 SET_OP,
1144 /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
1145 May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
1146 ACCEPT
1149 /* The position of rtx X in the above description, relative to the
1150 incoming instruction "insn". The position is null if the test
1151 doesn't take an X as input. */
1152 position *pos;
1154 /* Which element of operands[] already contains POS, or -1 if no element
1155 is known to hold POS. */
1156 int pos_operand;
1158 /* The type of test and its parameters, as described above. */
1159 kind_enum kind;
1160 union
1162 int opno;
1163 int min_len;
1164 struct
1166 bool is_param;
1167 int value;
1168 } integer;
1169 struct
1171 const struct pred_data *data;
1172 /* True if the mode is taken from a machine_mode parameter
1173 to the routine rather than a constant machine_mode. If true,
1174 MODE is the number of the parameter (for an "i%d" format string),
1175 otherwise it is the mode itself. */
1176 bool mode_is_param;
1177 unsigned int mode;
1178 } predicate;
1179 pattern_use *pattern;
1180 const char *string;
1181 acceptance_type acceptance;
1182 } u;
1184 static rtx_test code (position *);
1185 static rtx_test mode (position *);
1186 static rtx_test regno_field (position *);
1187 static rtx_test int_field (position *, int);
1188 static rtx_test wide_int_field (position *, int);
1189 static rtx_test veclen (position *);
1190 static rtx_test peep2_count (int);
1191 static rtx_test veclen_ge (position *, int);
1192 static rtx_test predicate (position *, const pred_data *, machine_mode);
1193 static rtx_test duplicate (position *, int);
1194 static rtx_test pattern (position *, pattern_use *);
1195 static rtx_test have_num_clobbers ();
1196 static rtx_test c_test (const char *);
1197 static rtx_test set_op (position *, int);
1198 static rtx_test accept (const acceptance_type &);
1200 bool terminal_p () const;
1201 bool single_outcome_p () const;
1203 private:
1204 rtx_test (position *, kind_enum);
1207 rtx_test::rtx_test () {}
1209 rtx_test::rtx_test (position *pos_in, kind_enum kind_in)
1210 : pos (pos_in), pos_operand (-1), kind (kind_in) {}
1212 rtx_test
1213 rtx_test::code (position *pos)
1215 return rtx_test (pos, rtx_test::CODE);
1218 rtx_test
1219 rtx_test::mode (position *pos)
1221 return rtx_test (pos, rtx_test::MODE);
1224 rtx_test
1225 rtx_test::regno_field (position *pos)
1227 rtx_test res (pos, rtx_test::REGNO_FIELD);
1228 return res;
1231 rtx_test
1232 rtx_test::int_field (position *pos, int opno)
1234 rtx_test res (pos, rtx_test::INT_FIELD);
1235 res.u.opno = opno;
1236 return res;
1239 rtx_test
1240 rtx_test::wide_int_field (position *pos, int opno)
1242 rtx_test res (pos, rtx_test::WIDE_INT_FIELD);
1243 res.u.opno = opno;
1244 return res;
1247 rtx_test
1248 rtx_test::veclen (position *pos)
1250 return rtx_test (pos, rtx_test::VECLEN);
1253 rtx_test
1254 rtx_test::peep2_count (int min_len)
1256 rtx_test res (0, rtx_test::PEEP2_COUNT);
1257 res.u.min_len = min_len;
1258 return res;
1261 rtx_test
1262 rtx_test::veclen_ge (position *pos, int min_len)
1264 rtx_test res (pos, rtx_test::VECLEN_GE);
1265 res.u.min_len = min_len;
1266 return res;
1269 rtx_test
1270 rtx_test::predicate (position *pos, const struct pred_data *data,
1271 machine_mode mode)
1273 rtx_test res (pos, rtx_test::PREDICATE);
1274 res.u.predicate.data = data;
1275 res.u.predicate.mode_is_param = false;
1276 res.u.predicate.mode = mode;
1277 return res;
1280 rtx_test
1281 rtx_test::duplicate (position *pos, int opno)
1283 rtx_test res (pos, rtx_test::DUPLICATE);
1284 res.u.opno = opno;
1285 return res;
1288 rtx_test
1289 rtx_test::pattern (position *pos, pattern_use *pattern)
1291 rtx_test res (pos, rtx_test::PATTERN);
1292 res.u.pattern = pattern;
1293 return res;
1296 rtx_test
1297 rtx_test::have_num_clobbers ()
1299 return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS);
1302 rtx_test
1303 rtx_test::c_test (const char *string)
1305 rtx_test res (0, rtx_test::C_TEST);
1306 res.u.string = string;
1307 return res;
1310 rtx_test
1311 rtx_test::set_op (position *pos, int opno)
1313 rtx_test res (pos, rtx_test::SET_OP);
1314 res.u.opno = opno;
1315 return res;
1318 rtx_test
1319 rtx_test::accept (const acceptance_type &acceptance)
1321 rtx_test res (0, rtx_test::ACCEPT);
1322 res.u.acceptance = acceptance;
1323 return res;
1326 /* Return true if the test represents an unconditionally successful match. */
1328 bool
1329 rtx_test::terminal_p () const
1331 return kind == rtx_test::ACCEPT && u.acceptance.type != PEEPHOLE2;
1334 /* Return true if the test is a boolean that is always true. */
1336 bool
1337 rtx_test::single_outcome_p () const
1339 return terminal_p () || kind == rtx_test::SET_OP;
1342 bool
1343 operator == (const rtx_test &a, const rtx_test &b)
1345 if (a.pos != b.pos || a.kind != b.kind)
1346 return false;
1347 switch (a.kind)
1349 case rtx_test::CODE:
1350 case rtx_test::MODE:
1351 case rtx_test::REGNO_FIELD:
1352 case rtx_test::VECLEN:
1353 case rtx_test::HAVE_NUM_CLOBBERS:
1354 return true;
1356 case rtx_test::PEEP2_COUNT:
1357 case rtx_test::VECLEN_GE:
1358 return a.u.min_len == b.u.min_len;
1360 case rtx_test::INT_FIELD:
1361 case rtx_test::WIDE_INT_FIELD:
1362 case rtx_test::DUPLICATE:
1363 case rtx_test::SET_OP:
1364 return a.u.opno == b.u.opno;
1366 case rtx_test::SAVED_CONST_INT:
1367 return (a.u.integer.is_param == b.u.integer.is_param
1368 && a.u.integer.value == b.u.integer.value);
1370 case rtx_test::PREDICATE:
1371 return (a.u.predicate.data == b.u.predicate.data
1372 && a.u.predicate.mode_is_param == b.u.predicate.mode_is_param
1373 && a.u.predicate.mode == b.u.predicate.mode);
1375 case rtx_test::PATTERN:
1376 return (a.u.pattern->routine == b.u.pattern->routine
1377 && a.u.pattern->params == b.u.pattern->params);
1379 case rtx_test::C_TEST:
1380 return strcmp (a.u.string, b.u.string) == 0;
1382 case rtx_test::ACCEPT:
1383 return a.u.acceptance == b.u.acceptance;
1385 gcc_unreachable ();
1388 bool
1389 operator != (const rtx_test &a, const rtx_test &b)
1391 return !operator == (a, b);
1394 /* A simple set of transition labels. Most transitions have a singleton
1395 label, so try to make that case as efficient as possible. */
1396 struct int_set : public auto_vec <uint64_t, 1>
1398 typedef uint64_t *iterator;
1400 int_set ();
1401 int_set (uint64_t);
1402 int_set (const int_set &);
1404 int_set &operator = (const int_set &);
1406 iterator begin ();
1407 iterator end ();
1410 int_set::int_set () {}
1412 int_set::int_set (uint64_t label)
1414 safe_push (label);
1417 int_set::int_set (const int_set &other)
1419 safe_splice (other);
1422 int_set &
1423 int_set::operator = (const int_set &other)
1425 truncate (0);
1426 safe_splice (other);
1427 return *this;
1430 int_set::iterator
1431 int_set::begin ()
1433 return address ();
1436 int_set::iterator
1437 int_set::end ()
1439 return address () + length ();
1442 bool
1443 operator == (const int_set &a, const int_set &b)
1445 if (a.length () != b.length ())
1446 return false;
1447 for (unsigned int i = 0; i < a.length (); ++i)
1448 if (a[i] != b[i])
1449 return false;
1450 return true;
1453 bool
1454 operator != (const int_set &a, const int_set &b)
1456 return !operator == (a, b);
1459 struct decision;
1461 /* Represents a transition between states, dependent on the result of
1462 a test T. */
1463 struct transition
1465 transition (const int_set &, state *, bool);
1467 void set_parent (list_head <transition> *);
1469 /* Links to other transitions for T. Always null for boolean tests. */
1470 transition *prev, *next;
1472 /* The transition should be taken when T has one of these values.
1473 E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1474 rtx_test::PREDICATE it is always a singleton "true". The labels are
1475 sorted in ascending order. */
1476 int_set labels;
1478 /* The source decision. */
1479 decision *from;
1481 /* The target state. */
1482 state *to;
1484 /* True if TO would function correctly even if TEST wasn't performed.
1485 E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1486 before calling register_operand (x1, SImode), since register_operand
1487 performs its own mode check. However, checking GET_MODE can be a cheap
1488 way of disambiguating SImode and DImode register operands. */
1489 bool optional;
1491 /* True if LABELS contains parameter numbers rather than constants.
1492 E.g. if this is true for a rtx_test::CODE, the label is the number
1493 of an rtx_code parameter rather than an rtx_code itself.
1494 LABELS is always a singleton when this variable is true. */
1495 bool is_param;
1498 /* Represents a test and the action that should be taken on the result.
1499 If a transition exists for the test outcome, the machine switches
1500 to the transition's target state. If no suitable transition exists,
1501 the machine either falls through to the next decision or, if there are no
1502 more decisions to try, fails the match. */
1503 struct decision : list_head <transition>
1505 decision (const rtx_test &);
1507 void set_parent (list_head <decision> *s);
1508 bool if_statement_p (uint64_t * = 0) const;
1510 /* The state to which this decision belongs. */
1511 state *s;
1513 /* Links to other decisions in the same state. */
1514 decision *prev, *next;
1516 /* The test to perform. */
1517 rtx_test test;
1520 /* Represents one machine state. For each state the machine tries a list
1521 of decisions, in order, and acts on the first match. It fails without
1522 further backtracking if no decisions match. */
1523 struct state : list_head <decision>
1525 void set_parent (list_head <state> *) {}
1528 transition::transition (const int_set &labels_in, state *to_in,
1529 bool optional_in)
1530 : prev (0), next (0), labels (labels_in), from (0), to (to_in),
1531 optional (optional_in), is_param (false) {}
1533 /* Set the source decision of the transition. */
1535 void
1536 transition::set_parent (list_head <transition> *from_in)
1538 from = static_cast <decision *> (from_in);
1541 decision::decision (const rtx_test &test_in)
1542 : prev (0), next (0), test (test_in) {}
1544 /* Set the state to which this decision belongs. */
1546 void
1547 decision::set_parent (list_head <decision> *s_in)
1549 s = static_cast <state *> (s_in);
1552 /* Return true if the decision has a single transition with a single label.
1553 If so, return the label in *LABEL if nonnull. */
1555 inline bool
1556 decision::if_statement_p (uint64_t *label) const
1558 if (singleton () && first->labels.length () == 1)
1560 if (label)
1561 *label = first->labels[0];
1562 return true;
1564 return false;
1567 /* Add to FROM a decision that performs TEST and has a single transition
1568 TRANS. */
1570 static void
1571 add_decision (state *from, const rtx_test &test, transition *trans)
1573 decision *d = new decision (test);
1574 from->push_back (d);
1575 d->push_back (trans);
1578 /* Add a transition from FROM to a new, empty state that is taken
1579 when TEST == LABELS. OPTIONAL says whether the new transition
1580 should be optional. Return the new state. */
1582 static state *
1583 add_decision (state *from, const rtx_test &test, int_set labels, bool optional)
1585 state *to = new state;
1586 add_decision (from, test, new transition (labels, to, optional));
1587 return to;
1590 /* Insert a decision before decisions R to make them dependent on
1591 TEST == LABELS. OPTIONAL says whether the new transition should be
1592 optional. */
1594 static decision *
1595 insert_decision_before (state::range r, const rtx_test &test,
1596 const int_set &labels, bool optional)
1598 decision *newd = new decision (test);
1599 state *news = new state;
1600 newd->push_back (new transition (labels, news, optional));
1601 r.start->s->replace (r, newd);
1602 news->push_back (r);
1603 return newd;
1606 /* Remove any optional transitions from S that turned out not to be useful. */
1608 static void
1609 collapse_optional_decisions (state *s)
1611 decision *d = s->first;
1612 while (d)
1614 decision *next = d->next;
1615 for (transition *trans = d->first; trans; trans = trans->next)
1616 collapse_optional_decisions (trans->to);
1617 /* A decision with a single optional transition doesn't help
1618 partition the potential matches and so is unlikely to be
1619 worthwhile. In particular, if the decision that performs the
1620 test is the last in the state, the best it could do is reject
1621 an invalid pattern slightly earlier. If instead the decision
1622 is not the last in the state, the condition it tests could hold
1623 even for the later decisions in the state. The best it can do
1624 is save work in some cases where only the later decisions can
1625 succeed.
1627 In both cases the optional transition would add extra work to
1628 successful matches when the tested condition holds. */
1629 if (transition *trans = d->singleton ())
1630 if (trans->optional)
1631 s->replace (d, trans->to->release ());
1632 d = next;
1636 /* Try to squash several separate tests into simpler ones. */
1638 static void
1639 simplify_tests (state *s)
1641 for (decision *d = s->first; d; d = d->next)
1643 uint64_t label;
1644 /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1645 into checks for const_int_rtx[N'], if N is suitably small. */
1646 if (d->test.kind == rtx_test::CODE
1647 && d->if_statement_p (&label)
1648 && label == CONST_INT)
1649 if (decision *second = d->first->to->singleton ())
1650 if (d->test.pos == second->test.pos
1651 && second->test.kind == rtx_test::WIDE_INT_FIELD
1652 && second->test.u.opno == 0
1653 && second->if_statement_p (&label)
1654 && IN_RANGE (int64_t (label),
1655 -MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT))
1657 d->test.kind = rtx_test::SAVED_CONST_INT;
1658 d->test.u.integer.is_param = false;
1659 d->test.u.integer.value = label;
1660 d->replace (d->first, second->release ());
1661 d->first->labels[0] = true;
1663 /* If we have a CODE test followed by a PREDICATE test, rely on
1664 the predicate to test the code.
1666 This case exists for match_operators. We initially treat the
1667 CODE test for a match_operator as non-optional so that we can
1668 safely move down to its operands. It may turn out that all
1669 paths that reach that code test require the same predicate
1670 to be true. cse_tests will then put the predicate test in
1671 series with the code test. */
1672 if (d->test.kind == rtx_test::CODE)
1673 if (transition *trans = d->singleton ())
1675 state *s = trans->to;
1676 while (decision *d2 = s->singleton ())
1678 if (d->test.pos != d2->test.pos)
1679 break;
1680 transition *trans2 = d2->singleton ();
1681 if (!trans2)
1682 break;
1683 if (d2->test.kind == rtx_test::PREDICATE)
1685 d->test = d2->test;
1686 trans->labels = int_set (true);
1687 s->replace (d2, trans2->to->release ());
1688 break;
1690 s = trans2->to;
1693 for (transition *trans = d->first; trans; trans = trans->next)
1694 simplify_tests (trans->to);
1698 /* Return true if all successful returns passing through D require the
1699 condition tested by COMMON to be true.
1701 When returning true, add all transitions like COMMON in D to WHERE.
1702 WHERE may contain a partial result on failure. */
1704 static bool
1705 common_test_p (decision *d, transition *common, vec <transition *> *where)
1707 if (d->test.kind == rtx_test::ACCEPT)
1708 /* We found a successful return that didn't require COMMON. */
1709 return false;
1710 if (d->test == common->from->test)
1712 transition *trans = d->singleton ();
1713 if (!trans
1714 || trans->optional != common->optional
1715 || trans->labels != common->labels)
1716 return false;
1717 where->safe_push (trans);
1718 return true;
1720 for (transition *trans = d->first; trans; trans = trans->next)
1721 for (decision *subd = trans->to->first; subd; subd = subd->next)
1722 if (!common_test_p (subd, common, where))
1723 return false;
1724 return true;
1727 /* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
1728 const unsigned char TESTED_CODE = 1;
1730 /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
1731 const unsigned char TESTED_VECLEN = 2;
1733 /* Represents a set of conditions that are known to hold. */
1734 struct known_conditions
1736 /* A mask of TESTED_ values for each position, indexed by the position's
1737 id field. */
1738 auto_vec <unsigned char> position_tests;
1740 /* Index N says whether operands[N] has been set. */
1741 auto_vec <bool> set_operands;
1743 /* A guranteed lower bound on the value of peep2_current_count. */
1744 int peep2_count;
1747 /* Return true if TEST can safely be performed at D, where
1748 the conditions in KC hold. TEST is known to occur along the
1749 first path from D (i.e. always following the first transition
1750 of the first decision). Any intervening tests can be used as
1751 negative proof that hoisting isn't safe, but only KC can be used
1752 as positive proof. */
1754 static bool
1755 safe_to_hoist_p (decision *d, const rtx_test &test, known_conditions *kc)
1757 switch (test.kind)
1759 case rtx_test::C_TEST:
1760 /* In general, C tests require everything else to have been
1761 verified and all operands to have been set up. */
1762 return false;
1764 case rtx_test::ACCEPT:
1765 /* Don't accept something before all conditions have been tested. */
1766 return false;
1768 case rtx_test::PREDICATE:
1769 /* Don't move a predicate over a test for VECLEN_GE, since the
1770 predicate used in a match_parallel can legitimately expect the
1771 length to be checked first. */
1772 for (decision *subd = d;
1773 subd->test != test;
1774 subd = subd->first->to->first)
1775 if (subd->test.pos == test.pos
1776 && subd->test.kind == rtx_test::VECLEN_GE)
1777 return false;
1778 goto any_rtx;
1780 case rtx_test::DUPLICATE:
1781 /* Don't test for a match_dup until the associated operand has
1782 been set. */
1783 if (!kc->set_operands[test.u.opno])
1784 return false;
1785 goto any_rtx;
1787 case rtx_test::CODE:
1788 case rtx_test::MODE:
1789 case rtx_test::SAVED_CONST_INT:
1790 case rtx_test::SET_OP:
1791 any_rtx:
1792 /* Check whether it is safe to access the rtx under test. */
1793 switch (test.pos->type)
1795 case POS_PEEP2_INSN:
1796 return test.pos->arg < kc->peep2_count;
1798 case POS_XEXP:
1799 return kc->position_tests[test.pos->base->id] & TESTED_CODE;
1801 case POS_XVECEXP0:
1802 return kc->position_tests[test.pos->base->id] & TESTED_VECLEN;
1804 gcc_unreachable ();
1806 case rtx_test::REGNO_FIELD:
1807 case rtx_test::INT_FIELD:
1808 case rtx_test::WIDE_INT_FIELD:
1809 case rtx_test::VECLEN:
1810 case rtx_test::VECLEN_GE:
1811 /* These tests access a specific part of an rtx, so are only safe
1812 once we know what the rtx is. */
1813 return kc->position_tests[test.pos->id] & TESTED_CODE;
1815 case rtx_test::PEEP2_COUNT:
1816 case rtx_test::HAVE_NUM_CLOBBERS:
1817 /* These tests can be performed anywhere. */
1818 return true;
1820 case rtx_test::PATTERN:
1821 gcc_unreachable ();
1823 gcc_unreachable ();
1826 /* Look for a transition that is taken by all successful returns from a range
1827 of decisions starting at OUTER and that would be better performed by
1828 OUTER's state instead. On success, store all instances of that transition
1829 in WHERE and return the last decision in the range. The range could
1830 just be OUTER, or it could include later decisions as well.
1832 WITH_POSITION_P is true if only tests with position POS should be tried,
1833 false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
1834 result is useful even when the range contains just a single decision
1835 with a single transition. KC are the conditions that are known to
1836 hold at OUTER. */
1838 static decision *
1839 find_common_test (decision *outer, bool with_position_p,
1840 position *pos, bool worthwhile_single_p,
1841 known_conditions *kc, vec <transition *> *where)
1843 /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1844 just a single decision is useful, regardless of the number of
1845 transitions it has. */
1846 if (!outer->singleton ())
1847 worthwhile_single_p = true;
1848 /* Quick exit if we don't have enough decisions to form a worthwhile
1849 range. */
1850 if (!worthwhile_single_p && !outer->next)
1851 return 0;
1852 /* Follow the first chain down, as one example of a path that needs
1853 to contain the common test. */
1854 for (decision *d = outer; d; d = d->first->to->first)
1856 transition *trans = d->singleton ();
1857 if (trans
1858 && (!with_position_p || d->test.pos == pos)
1859 && safe_to_hoist_p (outer, d->test, kc))
1861 if (common_test_p (outer, trans, where))
1863 if (!outer->next)
1864 /* We checked above whether the move is worthwhile. */
1865 return outer;
1866 /* See how many decisions in OUTER's chain could reuse
1867 the same test. */
1868 decision *outer_end = outer;
1871 unsigned int length = where->length ();
1872 if (!common_test_p (outer_end->next, trans, where))
1874 where->truncate (length);
1875 break;
1877 outer_end = outer_end->next;
1879 while (outer_end->next);
1880 /* It is worth moving TRANS if it can be shared by more than
1881 one decision. */
1882 if (outer_end != outer || worthwhile_single_p)
1883 return outer_end;
1885 where->truncate (0);
1888 return 0;
1891 /* Try to promote common subtests in S to a single, shared decision.
1892 Also try to bunch tests for the same position together. POS is the
1893 position of the rtx tested before reaching S. KC are the conditions
1894 that are known to hold on entry to S. */
1896 static void
1897 cse_tests (position *pos, state *s, known_conditions *kc)
1899 for (decision *d = s->first; d; d = d->next)
1901 auto_vec <transition *, 16> where;
1902 if (d->test.pos)
1904 /* Try to find conditions that don't depend on a particular rtx,
1905 such as pnum_clobbers != NULL or peep2_current_count >= X.
1906 It's usually better to check these conditions as soon as
1907 possible, so the change is worthwhile even if there is
1908 only one copy of the test. */
1909 decision *endd = find_common_test (d, true, 0, true, kc, &where);
1910 if (!endd && d->test.pos != pos)
1911 /* Try to find other conditions related to position POS
1912 before moving to the new position. Again, this is
1913 worthwhile even if there is only one copy of the test,
1914 since it means that fewer position variables are live
1915 at a given time. */
1916 endd = find_common_test (d, true, pos, true, kc, &where);
1917 if (!endd)
1918 /* Try to find any condition that is used more than once. */
1919 endd = find_common_test (d, false, 0, false, kc, &where);
1920 if (endd)
1922 transition *common = where[0];
1923 /* Replace [D, ENDD] with a test like COMMON. We'll recurse
1924 on the common test and see the original D again next time. */
1925 d = insert_decision_before (state::range (d, endd),
1926 common->from->test,
1927 common->labels,
1928 common->optional);
1929 /* Remove the old tests. */
1930 while (!where.is_empty ())
1932 transition *trans = where.pop ();
1933 trans->from->s->replace (trans->from, trans->to->release ());
1938 /* Make sure that safe_to_hoist_p isn't being overly conservative.
1939 It should realize that D's test is safe in the current
1940 environment. */
1941 gcc_assert (d->test.kind == rtx_test::C_TEST
1942 || d->test.kind == rtx_test::ACCEPT
1943 || safe_to_hoist_p (d, d->test, kc));
1945 /* D won't be changed any further by the current optimization.
1946 Recurse with the state temporarily updated to include D. */
1947 int prev = 0;
1948 switch (d->test.kind)
1950 case rtx_test::CODE:
1951 prev = kc->position_tests[d->test.pos->id];
1952 kc->position_tests[d->test.pos->id] |= TESTED_CODE;
1953 break;
1955 case rtx_test::VECLEN:
1956 case rtx_test::VECLEN_GE:
1957 prev = kc->position_tests[d->test.pos->id];
1958 kc->position_tests[d->test.pos->id] |= TESTED_VECLEN;
1959 break;
1961 case rtx_test::SET_OP:
1962 prev = kc->set_operands[d->test.u.opno];
1963 gcc_assert (!prev);
1964 kc->set_operands[d->test.u.opno] = true;
1965 break;
1967 case rtx_test::PEEP2_COUNT:
1968 prev = kc->peep2_count;
1969 kc->peep2_count = MAX (prev, d->test.u.min_len);
1970 break;
1972 default:
1973 break;
1975 for (transition *trans = d->first; trans; trans = trans->next)
1976 cse_tests (d->test.pos ? d->test.pos : pos, trans->to, kc);
1977 switch (d->test.kind)
1979 case rtx_test::CODE:
1980 case rtx_test::VECLEN:
1981 case rtx_test::VECLEN_GE:
1982 kc->position_tests[d->test.pos->id] = prev;
1983 break;
1985 case rtx_test::SET_OP:
1986 kc->set_operands[d->test.u.opno] = prev;
1987 break;
1989 case rtx_test::PEEP2_COUNT:
1990 kc->peep2_count = prev;
1991 break;
1993 default:
1994 break;
1999 /* Return the type of value that can be used to parameterize test KIND,
2000 or parameter::UNSET if none. */
2002 parameter::type_enum
2003 transition_parameter_type (rtx_test::kind_enum kind)
2005 switch (kind)
2007 case rtx_test::CODE:
2008 return parameter::CODE;
2010 case rtx_test::MODE:
2011 return parameter::MODE;
2013 case rtx_test::REGNO_FIELD:
2014 return parameter::UINT;
2016 case rtx_test::INT_FIELD:
2017 case rtx_test::VECLEN:
2018 case rtx_test::PATTERN:
2019 return parameter::INT;
2021 case rtx_test::WIDE_INT_FIELD:
2022 return parameter::WIDE_INT;
2024 case rtx_test::PEEP2_COUNT:
2025 case rtx_test::VECLEN_GE:
2026 case rtx_test::SAVED_CONST_INT:
2027 case rtx_test::PREDICATE:
2028 case rtx_test::DUPLICATE:
2029 case rtx_test::HAVE_NUM_CLOBBERS:
2030 case rtx_test::C_TEST:
2031 case rtx_test::SET_OP:
2032 case rtx_test::ACCEPT:
2033 return parameter::UNSET;
2035 gcc_unreachable ();
2038 /* Initialize the pos_operand fields of each state reachable from S.
2039 If OPERAND_POS[ID] >= 0, the position with id ID is stored in
2040 operands[OPERAND_POS[ID]] on entry to S. */
2042 static void
2043 find_operand_positions (state *s, vec <int> &operand_pos)
2045 for (decision *d = s->first; d; d = d->next)
2047 int this_operand = (d->test.pos ? operand_pos[d->test.pos->id] : -1);
2048 if (this_operand >= 0)
2049 d->test.pos_operand = this_operand;
2050 if (d->test.kind == rtx_test::SET_OP)
2051 operand_pos[d->test.pos->id] = d->test.u.opno;
2052 for (transition *trans = d->first; trans; trans = trans->next)
2053 find_operand_positions (trans->to, operand_pos);
2054 if (d->test.kind == rtx_test::SET_OP)
2055 operand_pos[d->test.pos->id] = this_operand;
2059 /* Statistics about a matching routine. */
2060 struct stats
2062 stats ();
2064 /* The total number of decisions in the routine, excluding trivial
2065 ones that never fail. */
2066 unsigned int num_decisions;
2068 /* The number of non-trivial decisions on the longest path through
2069 the routine, and the return value that contributes most to that
2070 long path. */
2071 unsigned int longest_path;
2072 int longest_path_code;
2074 /* The maximum number of times that a single call to the routine
2075 can backtrack, and the value returned at the end of that path.
2076 "Backtracking" here means failing one decision in state and
2077 going onto to the next. */
2078 unsigned int longest_backtrack;
2079 int longest_backtrack_code;
2082 stats::stats ()
2083 : num_decisions (0), longest_path (0), longest_path_code (-1),
2084 longest_backtrack (0), longest_backtrack_code (-1) {}
2086 /* Return statistics about S. */
2088 static stats
2089 get_stats (state *s)
2091 stats for_s;
2092 unsigned int longest_path = 0;
2093 for (decision *d = s->first; d; d = d->next)
2095 /* Work out the statistics for D. */
2096 stats for_d;
2097 for (transition *trans = d->first; trans; trans = trans->next)
2099 stats for_trans = get_stats (trans->to);
2100 for_d.num_decisions += for_trans.num_decisions;
2101 /* Each transition is mutually-exclusive, so just pick the
2102 longest of the individual paths. */
2103 if (for_d.longest_path <= for_trans.longest_path)
2105 for_d.longest_path = for_trans.longest_path;
2106 for_d.longest_path_code = for_trans.longest_path_code;
2108 /* Likewise for backtracking. */
2109 if (for_d.longest_backtrack <= for_trans.longest_backtrack)
2111 for_d.longest_backtrack = for_trans.longest_backtrack;
2112 for_d.longest_backtrack_code = for_trans.longest_backtrack_code;
2116 /* Account for D's test in its statistics. */
2117 if (!d->test.single_outcome_p ())
2119 for_d.num_decisions += 1;
2120 for_d.longest_path += 1;
2122 if (d->test.kind == rtx_test::ACCEPT)
2124 for_d.longest_path_code = d->test.u.acceptance.u.full.code;
2125 for_d.longest_backtrack_code = d->test.u.acceptance.u.full.code;
2128 /* Keep a running count of the number of backtracks. */
2129 if (d->prev)
2130 for_s.longest_backtrack += 1;
2132 /* Accumulate D's statistics into S's. */
2133 for_s.num_decisions += for_d.num_decisions;
2134 for_s.longest_path += for_d.longest_path;
2135 for_s.longest_backtrack += for_d.longest_backtrack;
2137 /* Use the code from the decision with the longest individual path,
2138 since that's more likely to be useful if trying to make the
2139 path shorter. In the event of a tie, pick the later decision,
2140 since that's closer to the end of the path. */
2141 if (longest_path <= for_d.longest_path)
2143 longest_path = for_d.longest_path;
2144 for_s.longest_path_code = for_d.longest_path_code;
2147 /* Later decisions in a state are necessarily in a longer backtrack
2148 than earlier decisions. */
2149 for_s.longest_backtrack_code = for_d.longest_backtrack_code;
2151 return for_s;
2154 /* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
2156 static void
2157 optimize_subroutine_group (const char *type, state *root)
2159 /* Remove optional transitions that turned out not to be worthwhile. */
2160 if (collapse_optional_decisions_p)
2161 collapse_optional_decisions (root);
2163 /* Try to remove duplicated tests and to rearrange tests into a more
2164 logical order. */
2165 if (cse_tests_p)
2167 known_conditions kc;
2168 kc.position_tests.safe_grow_cleared (num_positions);
2169 kc.set_operands.safe_grow_cleared (num_operands);
2170 kc.peep2_count = 1;
2171 cse_tests (&root_pos, root, &kc);
2174 /* Try to simplify two or more tests into one. */
2175 if (simplify_tests_p)
2176 simplify_tests (root);
2178 /* Try to use operands[] instead of xN variables. */
2179 if (use_operand_variables_p)
2181 auto_vec <int> operand_pos (num_positions);
2182 for (unsigned int i = 0; i < num_positions; ++i)
2183 operand_pos.quick_push (-1);
2184 find_operand_positions (root, operand_pos);
2187 /* Print a summary of the new state. */
2188 stats st = get_stats (root);
2189 fprintf (stderr, "Statistics for %s:\n", type);
2190 fprintf (stderr, " Number of decisions: %6d\n", st.num_decisions);
2191 fprintf (stderr, " longest path: %6d (code: %6d)\n",
2192 st.longest_path, st.longest_path_code);
2193 fprintf (stderr, " longest backtrack: %6d (code: %6d)\n",
2194 st.longest_backtrack, st.longest_backtrack_code);
2197 struct merge_pattern_info;
2199 /* Represents a transition from one pattern to another. */
2200 struct merge_pattern_transition
2202 merge_pattern_transition (merge_pattern_info *);
2204 /* The target pattern. */
2205 merge_pattern_info *to;
2207 /* The parameters that the source pattern passes to the target pattern.
2208 "parameter (TYPE, true, I)" represents parameter I of the source
2209 pattern. */
2210 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2213 merge_pattern_transition::merge_pattern_transition (merge_pattern_info *to_in)
2214 : to (to_in)
2218 /* Represents a pattern that can might match several states. The pattern
2219 may replace parts of the test with a parameter value. It may also
2220 replace transition labels with parameters. */
2221 struct merge_pattern_info
2223 merge_pattern_info (unsigned int);
2225 /* If PARAM_TEST_P, the state's singleton test should be generalized
2226 to use the runtime value of PARAMS[PARAM_TEST]. */
2227 unsigned int param_test : 8;
2229 /* If PARAM_TRANSITION_P, the state's single transition label should
2230 be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
2231 unsigned int param_transition : 8;
2233 /* True if we have decided to generalize the root decision's test,
2234 as per PARAM_TEST. */
2235 unsigned int param_test_p : 1;
2237 /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
2238 unsigned int param_transition_p : 1;
2240 /* True if the contents of the structure are completely filled in. */
2241 unsigned int complete_p : 1;
2243 /* The number of pseudo-statements in the pattern. Used to decide
2244 whether it's big enough to break out into a subroutine. */
2245 unsigned int num_statements;
2247 /* The number of states that use this pattern. */
2248 unsigned int num_users;
2250 /* The number of distinct success values that the pattern returns. */
2251 unsigned int num_results;
2253 /* This array has one element for each runtime parameter to the pattern.
2254 PARAMS[I] gives the default value of parameter I, which is always
2255 constant.
2257 These default parameters are used in cases where we match the
2258 pattern against some state S1, then add more parameters while
2259 matching against some state S2. S1 is then left passing fewer
2260 parameters than S2. The array gives us enough informatino to
2261 construct a full parameter list for S1 (see update_parameters).
2263 If we decide to create a subroutine for this pattern,
2264 PARAMS[I].type determines the C type of parameter I. */
2265 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2267 /* All states that match this pattern must have the same number of
2268 transitions. TRANSITIONS[I] describes the subpattern for transition
2269 number I; it is null if transition I represents a successful return
2270 from the pattern. */
2271 auto_vec <merge_pattern_transition *, 1> transitions;
2273 /* The routine associated with the pattern, or null if we haven't generated
2274 one yet. */
2275 pattern_routine *routine;
2278 merge_pattern_info::merge_pattern_info (unsigned int num_transitions)
2279 : param_test (0),
2280 param_transition (0),
2281 param_test_p (false),
2282 param_transition_p (false),
2283 complete_p (false),
2284 num_statements (0),
2285 num_users (0),
2286 num_results (0),
2287 routine (0)
2289 transitions.safe_grow_cleared (num_transitions);
2292 /* Describes one way of matching a particular state to a particular
2293 pattern. */
2294 struct merge_state_result
2296 merge_state_result (merge_pattern_info *, position *, merge_state_result *);
2298 /* A pattern that matches the state. */
2299 merge_pattern_info *pattern;
2301 /* If we decide to use this match and create a subroutine for PATTERN,
2302 the state should pass the rtx at position ROOT to the pattern's
2303 rtx parameter. A null root means that the pattern doesn't need
2304 an rtx parameter; all the rtxes it matches come from elsewhere. */
2305 position *root;
2307 /* The parameters that should be passed to PATTERN for this state.
2308 If the array is shorter than PATTERN->params, the missing entries
2309 should be taken from the corresponding element of PATTERN->params. */
2310 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2312 /* An earlier match for the same state, or null if none. Patterns
2313 matched by earlier entries are smaller than PATTERN. */
2314 merge_state_result *prev;
2317 merge_state_result::merge_state_result (merge_pattern_info *pattern_in,
2318 position *root_in,
2319 merge_state_result *prev_in)
2320 : pattern (pattern_in), root (root_in), prev (prev_in)
2323 /* Information about a state, used while trying to match it against
2324 a pattern. */
2325 struct merge_state_info
2327 merge_state_info (state *);
2329 /* The state itself. */
2330 state *s;
2332 /* Index I gives information about the target of transition I. */
2333 merge_state_info *to_states;
2335 /* The number of transitions in S. */
2336 unsigned int num_transitions;
2338 /* True if the state has been deleted in favor of a call to a
2339 pattern routine. */
2340 bool merged_p;
2342 /* The previous state that might be a merge candidate for S, or null
2343 if no previous states could be merged with S. */
2344 merge_state_info *prev_same_test;
2346 /* A list of pattern matches for this state. */
2347 merge_state_result *res;
2350 merge_state_info::merge_state_info (state *s_in)
2351 : s (s_in),
2352 to_states (0),
2353 num_transitions (0),
2354 merged_p (false),
2355 prev_same_test (0),
2356 res (0) {}
2358 /* True if PAT would be useful as a subroutine. */
2360 static bool
2361 useful_pattern_p (merge_pattern_info *pat)
2363 return pat->num_statements >= MIN_COMBINE_COST;
2366 /* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
2367 into PAT1's C routine. */
2369 static bool
2370 same_pattern_p (merge_pattern_info *pat1, merge_pattern_info *pat2)
2372 return pat1->num_users == pat2->num_users || !useful_pattern_p (pat2);
2375 /* PAT was previously matched against SINFO based on tentative matches
2376 for the target states of SINFO's state. Return true if the match
2377 still holds; that is, if the target states of SINFO's state still
2378 match the corresponding transitions of PAT. */
2380 static bool
2381 valid_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2383 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2384 if (merge_pattern_transition *ptrans = pat->transitions[j])
2386 merge_state_result *to_res = sinfo->to_states[j].res;
2387 if (!to_res || to_res->pattern != ptrans->to)
2388 return false;
2390 return true;
2393 /* Remove any matches that are no longer valid from the head of SINFO's
2394 list of matches. */
2396 static void
2397 prune_invalid_results (merge_state_info *sinfo)
2399 while (sinfo->res && !valid_result_p (sinfo->res->pattern, sinfo))
2401 sinfo->res = sinfo->res->prev;
2402 gcc_assert (sinfo->res);
2406 /* Return true if PAT represents the biggest posssible match for SINFO;
2407 that is, if the next action of SINFO's state on return from PAT will
2408 be something that cannot be merged with any other state. */
2410 static bool
2411 complete_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2413 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2414 if (sinfo->to_states[j].res && !pat->transitions[j])
2415 return false;
2416 return true;
2419 /* Update TO for any parameters that have been added to FROM since TO
2420 was last set. The extra parameters in FROM will be constants or
2421 instructions to duplicate earlier parameters. */
2423 static void
2424 update_parameters (vec <parameter> &to, const vec <parameter> &from)
2426 for (unsigned int i = to.length (); i < from.length (); ++i)
2427 to.quick_push (from[i]);
2430 /* Return true if A and B can be tested by a single test. If the test
2431 can be parameterised, store the parameter value for A in *PARAMA and
2432 the parameter value for B in *PARAMB, otherwise leave PARAMA and
2433 PARAMB alone. */
2435 static bool
2436 compatible_tests_p (const rtx_test &a, const rtx_test &b,
2437 parameter *parama, parameter *paramb)
2439 if (a.kind != b.kind)
2440 return false;
2441 switch (a.kind)
2443 case rtx_test::PREDICATE:
2444 if (a.u.predicate.data != b.u.predicate.data)
2445 return false;
2446 *parama = parameter (parameter::MODE, false, a.u.predicate.mode);
2447 *paramb = parameter (parameter::MODE, false, b.u.predicate.mode);
2448 return true;
2450 case rtx_test::SAVED_CONST_INT:
2451 *parama = parameter (parameter::INT, false, a.u.integer.value);
2452 *paramb = parameter (parameter::INT, false, b.u.integer.value);
2453 return true;
2455 default:
2456 return a == b;
2460 /* PARAMS is an array of the parameters that a state is going to pass
2461 to a pattern routine. It is still incomplete; index I has a kind of
2462 parameter::UNSET if we don't yet know what the state will pass
2463 as parameter I. Try to make parameter ID equal VALUE, returning
2464 true on success. */
2466 static bool
2467 set_parameter (vec <parameter> &params, unsigned int id,
2468 const parameter &value)
2470 if (params[id].type == parameter::UNSET)
2472 if (force_unique_params_p)
2473 for (unsigned int i = 0; i < params.length (); ++i)
2474 if (params[i] == value)
2475 return false;
2476 params[id] = value;
2477 return true;
2479 return params[id] == value;
2482 /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2483 set of parameters that a particular state is going to pass to
2484 that pattern.
2486 Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2487 that is equal to PARAM1 for the state and has a default value of
2488 PARAM2. Parameters beginning at START were added as part of the
2489 same match and so may be reused. */
2491 static bool
2492 add_parameter (vec <parameter> &params1, vec <parameter> &params2,
2493 const parameter &param1, const parameter &param2,
2494 unsigned int start, unsigned int *res)
2496 gcc_assert (params1.length () == params2.length ());
2497 gcc_assert (!param1.is_param && !param2.is_param);
2499 for (unsigned int i = start; i < params2.length (); ++i)
2500 if (params1[i] == param1 && params2[i] == param2)
2502 *res = i;
2503 return true;
2506 if (force_unique_params_p)
2507 for (unsigned int i = 0; i < params2.length (); ++i)
2508 if (params1[i] == param1 || params2[i] == param2)
2509 return false;
2511 if (params2.length () >= MAX_PATTERN_PARAMS)
2512 return false;
2514 *res = params2.length ();
2515 params1.quick_push (param1);
2516 params2.quick_push (param2);
2517 return true;
2520 /* If *ROOTA is nonnull, return true if the same sequence of steps are
2521 required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
2522 is null, update it if necessary in order to make the condition hold. */
2524 static bool
2525 merge_relative_positions (position **roota, position *a,
2526 position *rootb, position *b)
2528 if (!relative_patterns_p)
2530 if (a != b)
2531 return false;
2532 if (!*roota)
2534 *roota = rootb;
2535 return true;
2537 return *roota == rootb;
2539 /* If B does not belong to the same instruction as ROOTB, we don't
2540 start with ROOTB but instead start with a call to peep2_next_insn.
2541 In that case the sequences for B and A are identical iff B and A
2542 are themselves identical. */
2543 if (rootb->insn_id != b->insn_id)
2544 return a == b;
2545 while (rootb != b)
2547 if (!a || b->type != a->type || b->arg != a->arg)
2548 return false;
2549 b = b->base;
2550 a = a->base;
2552 if (!*roota)
2553 *roota = a;
2554 return *roota == a;
2557 /* A hasher of states that treats two states as "equal" if they might be
2558 merged (but trying to be more discriminating than "return true"). */
2559 struct test_pattern_hasher : nofree_ptr_hash <merge_state_info>
2561 static inline hashval_t hash (const value_type &);
2562 static inline bool equal (const value_type &, const compare_type &);
2565 hashval_t
2566 test_pattern_hasher::hash (merge_state_info *const &sinfo)
2568 inchash::hash h;
2569 decision *d = sinfo->s->singleton ();
2570 h.add_int (d->test.pos_operand + 1);
2571 if (!relative_patterns_p)
2572 h.add_int (d->test.pos ? d->test.pos->id + 1 : 0);
2573 h.add_int (d->test.kind);
2574 h.add_int (sinfo->num_transitions);
2575 return h.end ();
2578 bool
2579 test_pattern_hasher::equal (merge_state_info *const &sinfo1,
2580 merge_state_info *const &sinfo2)
2582 decision *d1 = sinfo1->s->singleton ();
2583 decision *d2 = sinfo2->s->singleton ();
2584 gcc_assert (d1 && d2);
2586 parameter new_param1, new_param2;
2587 return (d1->test.pos_operand == d2->test.pos_operand
2588 && (relative_patterns_p || d1->test.pos == d2->test.pos)
2589 && compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2)
2590 && sinfo1->num_transitions == sinfo2->num_transitions);
2593 /* Try to make the state described by SINFO1 use the same pattern as the
2594 state described by SINFO2. Return true on success.
2596 SINFO1 and SINFO2 are known to have the same hash value. */
2598 static bool
2599 merge_patterns (merge_state_info *sinfo1, merge_state_info *sinfo2)
2601 merge_state_result *res2 = sinfo2->res;
2602 merge_pattern_info *pat = res2->pattern;
2604 /* Write to temporary arrays while matching, in case we have to abort
2605 half way through. */
2606 auto_vec <parameter, MAX_PATTERN_PARAMS> params1;
2607 auto_vec <parameter, MAX_PATTERN_PARAMS> params2;
2608 params1.quick_grow_cleared (pat->params.length ());
2609 params2.splice (pat->params);
2610 unsigned int start_param = params2.length ();
2612 /* An array for recording changes to PAT->transitions[?].params.
2613 All changes involve replacing a constant parameter with some
2614 PAT->params[N], where N is the second element of the pending_param. */
2615 typedef std::pair <parameter *, unsigned int> pending_param;
2616 auto_vec <pending_param, 32> pending_params;
2618 decision *d1 = sinfo1->s->singleton ();
2619 decision *d2 = sinfo2->s->singleton ();
2620 gcc_assert (d1 && d2);
2622 /* If D2 tests a position, SINFO1's root relative to D1 is the same
2623 as SINFO2's root relative to D2. */
2624 position *root1 = 0;
2625 position *root2 = res2->root;
2626 if (d2->test.pos_operand < 0
2627 && d1->test.pos
2628 && !merge_relative_positions (&root1, d1->test.pos,
2629 root2, d2->test.pos))
2630 return false;
2632 /* Check whether the patterns have the same shape. */
2633 unsigned int num_transitions = sinfo1->num_transitions;
2634 gcc_assert (num_transitions == sinfo2->num_transitions);
2635 for (unsigned int i = 0; i < num_transitions; ++i)
2636 if (merge_pattern_transition *ptrans = pat->transitions[i])
2638 merge_state_result *to1_res = sinfo1->to_states[i].res;
2639 merge_state_result *to2_res = sinfo2->to_states[i].res;
2640 merge_pattern_info *to_pat = ptrans->to;
2641 gcc_assert (to2_res && to2_res->pattern == to_pat);
2642 if (!to1_res || to1_res->pattern != to_pat)
2643 return false;
2644 if (to2_res->root
2645 && !merge_relative_positions (&root1, to1_res->root,
2646 root2, to2_res->root))
2647 return false;
2648 /* Match the parameters that TO1_RES passes to TO_PAT with the
2649 parameters that PAT passes to TO_PAT. */
2650 update_parameters (to1_res->params, to_pat->params);
2651 for (unsigned int j = 0; j < to1_res->params.length (); ++j)
2653 const parameter &param1 = to1_res->params[j];
2654 const parameter &param2 = ptrans->params[j];
2655 gcc_assert (!param1.is_param);
2656 if (param2.is_param)
2658 if (!set_parameter (params1, param2.value, param1))
2659 return false;
2661 else if (param1 != param2)
2663 unsigned int id;
2664 if (!add_parameter (params1, params2,
2665 param1, param2, start_param, &id))
2666 return false;
2667 /* Record that PAT should now pass parameter ID to TO_PAT,
2668 instead of the current contents of *PARAM2. We only
2669 make the change if the rest of the match succeeds. */
2670 pending_params.safe_push
2671 (pending_param (&ptrans->params[j], id));
2676 unsigned int param_test = pat->param_test;
2677 unsigned int param_transition = pat->param_transition;
2678 bool param_test_p = pat->param_test_p;
2679 bool param_transition_p = pat->param_transition_p;
2681 /* If the tests don't match exactly, try to parameterize them. */
2682 parameter new_param1, new_param2;
2683 if (!compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2))
2684 gcc_unreachable ();
2685 if (new_param1.type != parameter::UNSET)
2687 /* If the test has not already been parameterized, all existing
2688 matches use constant NEW_PARAM2. */
2689 if (param_test_p)
2691 if (!set_parameter (params1, param_test, new_param1))
2692 return false;
2694 else if (new_param1 != new_param2)
2696 if (!add_parameter (params1, params2, new_param1, new_param2,
2697 start_param, &param_test))
2698 return false;
2699 param_test_p = true;
2703 /* Match the transitions. */
2704 transition *trans1 = d1->first;
2705 transition *trans2 = d2->first;
2706 for (unsigned int i = 0; i < num_transitions; ++i)
2708 if (param_transition_p || trans1->labels != trans2->labels)
2710 /* We can only generalize a single transition with a single
2711 label. */
2712 if (num_transitions != 1
2713 || trans1->labels.length () != 1
2714 || trans2->labels.length () != 1)
2715 return false;
2717 /* Although we can match wide-int fields, in practice it leads
2718 to some odd results for const_vectors. We end up
2719 parameterizing the first N const_ints of the vector
2720 and then (once we reach the maximum number of parameters)
2721 we go on to match the other elements exactly. */
2722 if (d1->test.kind == rtx_test::WIDE_INT_FIELD)
2723 return false;
2725 /* See whether the label has a generalizable type. */
2726 parameter::type_enum param_type
2727 = transition_parameter_type (d1->test.kind);
2728 if (param_type == parameter::UNSET)
2729 return false;
2731 /* Match the labels using parameters. */
2732 new_param1 = parameter (param_type, false, trans1->labels[0]);
2733 if (param_transition_p)
2735 if (!set_parameter (params1, param_transition, new_param1))
2736 return false;
2738 else
2740 new_param2 = parameter (param_type, false, trans2->labels[0]);
2741 if (!add_parameter (params1, params2, new_param1, new_param2,
2742 start_param, &param_transition))
2743 return false;
2744 param_transition_p = true;
2747 trans1 = trans1->next;
2748 trans2 = trans2->next;
2751 /* Set any unset parameters to their default values. This occurs if some
2752 other state needed something to be parameterized in order to match SINFO2,
2753 but SINFO1 on its own does not. */
2754 for (unsigned int i = 0; i < params1.length (); ++i)
2755 if (params1[i].type == parameter::UNSET)
2756 params1[i] = params2[i];
2758 /* The match was successful. Commit all pending changes to PAT. */
2759 update_parameters (pat->params, params2);
2761 pending_param *pp;
2762 unsigned int i;
2763 FOR_EACH_VEC_ELT (pending_params, i, pp)
2764 *pp->first = parameter (pp->first->type, true, pp->second);
2766 pat->param_test = param_test;
2767 pat->param_transition = param_transition;
2768 pat->param_test_p = param_test_p;
2769 pat->param_transition_p = param_transition_p;
2771 /* Record the match of SINFO1. */
2772 merge_state_result *new_res1 = new merge_state_result (pat, root1,
2773 sinfo1->res);
2774 new_res1->params.splice (params1);
2775 sinfo1->res = new_res1;
2776 return true;
2779 /* The number of states that were removed by calling pattern routines. */
2780 static unsigned int pattern_use_states;
2782 /* The number of states used while defining pattern routines. */
2783 static unsigned int pattern_def_states;
2785 /* Information used while constructing a use or definition of a pattern
2786 routine. */
2787 struct create_pattern_info
2789 /* The routine itself. */
2790 pattern_routine *routine;
2792 /* The first unclaimed return value for this particular use or definition.
2793 We walk the substates of uses and definitions in the same order
2794 so each return value always refers to the same position within
2795 the pattern. */
2796 unsigned int next_result;
2799 static void populate_pattern_routine (create_pattern_info *,
2800 merge_state_info *, state *,
2801 const vec <parameter> &);
2803 /* SINFO matches a pattern for which we've decided to create a C routine.
2804 Return a decision that performs a call to the pattern routine,
2805 but leave the caller to add the transitions to it. Initialize CPI
2806 for this purpose. Also create a definition for the pattern routine,
2807 if it doesn't already have one.
2809 PARAMS are the parameters that SINFO passes to its pattern. */
2811 static decision *
2812 init_pattern_use (create_pattern_info *cpi, merge_state_info *sinfo,
2813 const vec <parameter> &params)
2815 state *s = sinfo->s;
2816 merge_state_result *res = sinfo->res;
2817 merge_pattern_info *pat = res->pattern;
2818 cpi->routine = pat->routine;
2819 if (!cpi->routine)
2821 /* We haven't defined the pattern routine yet, so create
2822 a definition now. */
2823 pattern_routine *routine = new pattern_routine;
2824 pat->routine = routine;
2825 cpi->routine = routine;
2826 routine->s = new state;
2827 routine->insn_p = false;
2828 routine->pnum_clobbers_p = false;
2830 /* Create an "idempotent" mapping of parameter I to parameter I.
2831 Also record the C type of each parameter to the routine. */
2832 auto_vec <parameter, MAX_PATTERN_PARAMS> def_params;
2833 for (unsigned int i = 0; i < pat->params.length (); ++i)
2835 def_params.quick_push (parameter (pat->params[i].type, true, i));
2836 routine->param_types.quick_push (pat->params[i].type);
2839 /* Any of the states that match the pattern could be used to
2840 create the routine definition. We might as well use SINFO
2841 since it's already to hand. This means that all positions
2842 in the definition will be relative to RES->root. */
2843 routine->pos = res->root;
2844 cpi->next_result = 0;
2845 populate_pattern_routine (cpi, sinfo, routine->s, def_params);
2846 gcc_assert (cpi->next_result == pat->num_results);
2848 /* Add the routine to the global list, after the subroutines
2849 that it calls. */
2850 routine->pattern_id = patterns.length ();
2851 patterns.safe_push (routine);
2854 /* Create a decision to call the routine, passing PARAMS to it. */
2855 pattern_use *use = new pattern_use;
2856 use->routine = pat->routine;
2857 use->params.splice (params);
2858 decision *d = new decision (rtx_test::pattern (res->root, use));
2860 /* If the original decision could use an element of operands[] instead
2861 of an rtx variable, try to transfer it to the new decision. */
2862 if (s->first->test.pos && res->root == s->first->test.pos)
2863 d->test.pos_operand = s->first->test.pos_operand;
2865 cpi->next_result = 0;
2866 return d;
2869 /* Make S return the next unclaimed pattern routine result for CPI. */
2871 static void
2872 add_pattern_acceptance (create_pattern_info *cpi, state *s)
2874 acceptance_type acceptance;
2875 acceptance.type = SUBPATTERN;
2876 acceptance.partial_p = false;
2877 acceptance.u.full.code = cpi->next_result;
2878 add_decision (s, rtx_test::accept (acceptance), true, false);
2879 cpi->next_result += 1;
2882 /* Initialize new empty state NEWS so that it implements SINFO's pattern
2883 (here referred to as "P"). P may be the top level of a pattern routine
2884 or a subpattern that should be inlined into its parent pattern's routine
2885 (as per same_pattern_p). The choice of SINFO for a top-level pattern is
2886 arbitrary; it could be any of the states that use P. The choice for
2887 subpatterns follows the choice for the parent pattern.
2889 PARAMS gives the value of each parameter to P in terms of the parameters
2890 to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
2891 is always "parameter (TYPE, true, I)". */
2893 static void
2894 populate_pattern_routine (create_pattern_info *cpi, merge_state_info *sinfo,
2895 state *news, const vec <parameter> &params)
2897 pattern_def_states += 1;
2899 decision *d = sinfo->s->singleton ();
2900 merge_pattern_info *pat = sinfo->res->pattern;
2901 pattern_routine *routine = cpi->routine;
2903 /* Create a copy of D's test for the pattern routine and generalize it
2904 as appropriate. */
2905 decision *newd = new decision (d->test);
2906 gcc_assert (newd->test.pos_operand >= 0
2907 || !newd->test.pos
2908 || common_position (newd->test.pos,
2909 routine->pos) == routine->pos);
2910 if (pat->param_test_p)
2912 const parameter &param = params[pat->param_test];
2913 switch (newd->test.kind)
2915 case rtx_test::PREDICATE:
2916 newd->test.u.predicate.mode_is_param = param.is_param;
2917 newd->test.u.predicate.mode = param.value;
2918 break;
2920 case rtx_test::SAVED_CONST_INT:
2921 newd->test.u.integer.is_param = param.is_param;
2922 newd->test.u.integer.value = param.value;
2923 break;
2925 default:
2926 gcc_unreachable ();
2927 break;
2930 if (d->test.kind == rtx_test::C_TEST)
2931 routine->insn_p = true;
2932 else if (d->test.kind == rtx_test::HAVE_NUM_CLOBBERS)
2933 routine->pnum_clobbers_p = true;
2934 news->push_back (newd);
2936 /* Fill in the transitions of NEWD. */
2937 unsigned int i = 0;
2938 for (transition *trans = d->first; trans; trans = trans->next)
2940 /* Create a new state to act as the target of the new transition. */
2941 state *to_news = new state;
2942 if (merge_pattern_transition *ptrans = pat->transitions[i])
2944 /* The pattern hasn't finished matching yet. Get the target
2945 pattern and the corresponding target state of SINFO. */
2946 merge_pattern_info *to_pat = ptrans->to;
2947 merge_state_info *to = sinfo->to_states + i;
2948 gcc_assert (to->res->pattern == to_pat);
2949 gcc_assert (ptrans->params.length () == to_pat->params.length ());
2951 /* Express the parameters to TO_PAT in terms of the parameters
2952 to the top-level pattern. */
2953 auto_vec <parameter, MAX_PATTERN_PARAMS> to_params;
2954 for (unsigned int j = 0; j < ptrans->params.length (); ++j)
2956 const parameter &param = ptrans->params[j];
2957 to_params.quick_push (param.is_param
2958 ? params[param.value]
2959 : param);
2962 if (same_pattern_p (pat, to_pat))
2963 /* TO_PAT is part of the current routine, so just recurse. */
2964 populate_pattern_routine (cpi, to, to_news, to_params);
2965 else
2967 /* TO_PAT should be matched by calling a separate routine. */
2968 create_pattern_info sub_cpi;
2969 decision *subd = init_pattern_use (&sub_cpi, to, to_params);
2970 routine->insn_p |= sub_cpi.routine->insn_p;
2971 routine->pnum_clobbers_p |= sub_cpi.routine->pnum_clobbers_p;
2973 /* Add the pattern routine call to the new target state. */
2974 to_news->push_back (subd);
2976 /* Add a transition for each successful call result. */
2977 for (unsigned int j = 0; j < to_pat->num_results; ++j)
2979 state *res = new state;
2980 add_pattern_acceptance (cpi, res);
2981 subd->push_back (new transition (j, res, false));
2985 else
2986 /* This transition corresponds to a successful match. */
2987 add_pattern_acceptance (cpi, to_news);
2989 /* Create the transition itself, generalizing as necessary. */
2990 transition *new_trans = new transition (trans->labels, to_news,
2991 trans->optional);
2992 if (pat->param_transition_p)
2994 const parameter &param = params[pat->param_transition];
2995 new_trans->is_param = param.is_param;
2996 new_trans->labels[0] = param.value;
2998 newd->push_back (new_trans);
2999 i += 1;
3003 /* USE is a decision that calls a pattern routine and SINFO is part of the
3004 original state tree that the call is supposed to replace. Add the
3005 transitions for SINFO and its substates to USE. */
3007 static void
3008 populate_pattern_use (create_pattern_info *cpi, decision *use,
3009 merge_state_info *sinfo)
3011 pattern_use_states += 1;
3012 gcc_assert (!sinfo->merged_p);
3013 sinfo->merged_p = true;
3014 merge_state_result *res = sinfo->res;
3015 merge_pattern_info *pat = res->pattern;
3016 decision *d = sinfo->s->singleton ();
3017 unsigned int i = 0;
3018 for (transition *trans = d->first; trans; trans = trans->next)
3020 if (pat->transitions[i])
3021 /* The target state is also part of the pattern. */
3022 populate_pattern_use (cpi, use, sinfo->to_states + i);
3023 else
3025 /* The transition corresponds to a successful return from the
3026 pattern routine. */
3027 use->push_back (new transition (cpi->next_result, trans->to, false));
3028 cpi->next_result += 1;
3030 i += 1;
3034 /* We have decided to replace SINFO's state with a call to a pattern
3035 routine. Make the change, creating a definition of the pattern routine
3036 if it doesn't have one already. */
3038 static void
3039 use_pattern (merge_state_info *sinfo)
3041 merge_state_result *res = sinfo->res;
3042 merge_pattern_info *pat = res->pattern;
3043 state *s = sinfo->s;
3045 /* The pattern may have acquired new parameters after it was matched
3046 against SINFO. Update the parameters that SINFO passes accordingly. */
3047 update_parameters (res->params, pat->params);
3049 create_pattern_info cpi;
3050 decision *d = init_pattern_use (&cpi, sinfo, res->params);
3051 populate_pattern_use (&cpi, d, sinfo);
3052 s->release ();
3053 s->push_back (d);
3056 /* Look through the state trees in STATES for common patterns and
3057 split them into subroutines. */
3059 static void
3060 split_out_patterns (vec <merge_state_info> &states)
3062 unsigned int first_transition = states.length ();
3063 hash_table <test_pattern_hasher> hashtab (128);
3064 /* Stage 1: Create an order in which parent states come before their child
3065 states and in which sibling states are at consecutive locations.
3066 Having consecutive sibling states allows merge_state_info to have
3067 a single to_states pointer. */
3068 for (unsigned int i = 0; i < states.length (); ++i)
3069 for (decision *d = states[i].s->first; d; d = d->next)
3070 for (transition *trans = d->first; trans; trans = trans->next)
3072 states.safe_push (trans->to);
3073 states[i].num_transitions += 1;
3075 /* Stage 2: Now that the addresses are stable, set up the to_states
3076 pointers. Look for states that might be merged and enter them
3077 into the hash table. */
3078 for (unsigned int i = 0; i < states.length (); ++i)
3080 merge_state_info *sinfo = &states[i];
3081 if (sinfo->num_transitions)
3083 sinfo->to_states = &states[first_transition];
3084 first_transition += sinfo->num_transitions;
3086 /* For simplicity, we only try to merge states that have a single
3087 decision. This is in any case the best we can do for peephole2,
3088 since whether a peephole2 ACCEPT succeeds or not depends on the
3089 specific peephole2 pattern (which is unique to each ACCEPT
3090 and so couldn't be shared between states). */
3091 if (decision *d = sinfo->s->singleton ())
3092 /* ACCEPT states are unique, so don't even try to merge them. */
3093 if (d->test.kind != rtx_test::ACCEPT
3094 && (pattern_have_num_clobbers_p
3095 || d->test.kind != rtx_test::HAVE_NUM_CLOBBERS)
3096 && (pattern_c_test_p
3097 || d->test.kind != rtx_test::C_TEST))
3099 merge_state_info **slot = hashtab.find_slot (sinfo, INSERT);
3100 sinfo->prev_same_test = *slot;
3101 *slot = sinfo;
3104 /* Stage 3: Walk backwards through the list of states and try to merge
3105 them. This is a greedy, bottom-up match; parent nodes can only start
3106 a new leaf pattern if they fail to match when combined with all child
3107 nodes that have matching patterns.
3109 For each state we keep a list of potential matches, with each
3110 potential match being larger (and deeper) than the next match in
3111 the list. The final element in the list is a leaf pattern that
3112 matches just a single state.
3114 Each candidate pattern created in this loop is unique -- it won't
3115 have been seen by an earlier iteration. We try to match each pattern
3116 with every state that appears earlier in STATES.
3118 Because the patterns created in the loop are unique, any state
3119 that already has a match must have a final potential match that
3120 is different from any new leaf pattern. Therefore, when matching
3121 leaf patterns, we need only consider states whose list of matches
3122 is empty.
3124 The non-leaf patterns that we try are as deep as possible
3125 and are an extension of the state's previous best candidate match (PB).
3126 We need only consider states whose current potential match is also PB;
3127 any states that don't match as much as PB cannnot match the new pattern,
3128 while any states that already match more than PB must be different from
3129 the new pattern. */
3130 for (unsigned int i2 = states.length (); i2-- > 0; )
3132 merge_state_info *sinfo2 = &states[i2];
3134 /* Enforce the bottom-upness of the match: remove matches with later
3135 states if SINFO2's child states ended up finding a better match. */
3136 prune_invalid_results (sinfo2);
3138 /* Do nothing if the state doesn't match a later one and if there are
3139 no earlier states it could match. */
3140 if (!sinfo2->res && !sinfo2->prev_same_test)
3141 continue;
3143 merge_state_result *res2 = sinfo2->res;
3144 decision *d2 = sinfo2->s->singleton ();
3145 position *root2 = (d2->test.pos_operand < 0 ? d2->test.pos : 0);
3146 unsigned int num_transitions = sinfo2->num_transitions;
3148 /* If RES2 is null then SINFO2's test in isolation has not been seen
3149 before. First try matching that on its own. */
3150 if (!res2)
3152 merge_pattern_info *new_pat
3153 = new merge_pattern_info (num_transitions);
3154 merge_state_result *new_res2
3155 = new merge_state_result (new_pat, root2, res2);
3156 sinfo2->res = new_res2;
3158 new_pat->num_statements = !d2->test.single_outcome_p ();
3159 new_pat->num_results = num_transitions;
3160 bool matched_p = false;
3161 /* Look for states that don't currently match anything but
3162 can be made to match SINFO2 on its own. */
3163 for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3164 sinfo1 = sinfo1->prev_same_test)
3165 if (!sinfo1->res && merge_patterns (sinfo1, sinfo2))
3166 matched_p = true;
3167 if (!matched_p)
3169 /* No other states match. */
3170 sinfo2->res = res2;
3171 delete new_pat;
3172 delete new_res2;
3173 continue;
3175 else
3176 res2 = new_res2;
3179 /* Keep the existing pattern if it's as good as anything we'd
3180 create for SINFO2. */
3181 if (complete_result_p (res2->pattern, sinfo2))
3183 res2->pattern->num_users += 1;
3184 continue;
3187 /* Create a new pattern for SINFO2. */
3188 merge_pattern_info *new_pat = new merge_pattern_info (num_transitions);
3189 merge_state_result *new_res2
3190 = new merge_state_result (new_pat, root2, res2);
3191 sinfo2->res = new_res2;
3193 /* Fill in details about the pattern. */
3194 new_pat->num_statements = !d2->test.single_outcome_p ();
3195 new_pat->num_results = 0;
3196 for (unsigned int j = 0; j < num_transitions; ++j)
3197 if (merge_state_result *to_res = sinfo2->to_states[j].res)
3199 /* Count the target state as part of this pattern.
3200 First update the root position so that it can reach
3201 the target state's root. */
3202 if (to_res->root)
3204 if (new_res2->root)
3205 new_res2->root = common_position (new_res2->root,
3206 to_res->root);
3207 else
3208 new_res2->root = to_res->root;
3210 merge_pattern_info *to_pat = to_res->pattern;
3211 merge_pattern_transition *ptrans
3212 = new merge_pattern_transition (to_pat);
3214 /* TO_PAT may have acquired more parameters when matching
3215 states earlier in STATES than TO_RES's, but the list is
3216 now final. Make sure that TO_RES is up to date. */
3217 update_parameters (to_res->params, to_pat->params);
3219 /* Start out by assuming that every user of NEW_PAT will
3220 want to pass the same (constant) parameters as TO_RES. */
3221 update_parameters (ptrans->params, to_res->params);
3223 new_pat->transitions[j] = ptrans;
3224 new_pat->num_statements += to_pat->num_statements;
3225 new_pat->num_results += to_pat->num_results;
3227 else
3228 /* The target state doesn't match anything and so is not part
3229 of the pattern. */
3230 new_pat->num_results += 1;
3232 /* See if any earlier states that match RES2's pattern also match
3233 NEW_PAT. */
3234 bool matched_p = false;
3235 for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3236 sinfo1 = sinfo1->prev_same_test)
3238 prune_invalid_results (sinfo1);
3239 if (sinfo1->res
3240 && sinfo1->res->pattern == res2->pattern
3241 && merge_patterns (sinfo1, sinfo2))
3242 matched_p = true;
3244 if (!matched_p)
3246 /* Nothing else matches NEW_PAT, so go back to the previous
3247 pattern (possibly just a single-state one). */
3248 sinfo2->res = res2;
3249 delete new_pat;
3250 delete new_res2;
3252 /* Assume that SINFO2 will use RES. At this point we don't know
3253 whether earlier states that match the same pattern will use
3254 that match or a different one. */
3255 sinfo2->res->pattern->num_users += 1;
3257 /* Step 4: Finalize the choice of pattern for each state, ignoring
3258 patterns that were only used once. Update each pattern's size
3259 so that it doesn't include subpatterns that are going to be split
3260 out into subroutines. */
3261 for (unsigned int i = 0; i < states.length (); ++i)
3263 merge_state_info *sinfo = &states[i];
3264 merge_state_result *res = sinfo->res;
3265 /* Wind past patterns that are only used by SINFO. */
3266 while (res && res->pattern->num_users == 1)
3268 res = res->prev;
3269 sinfo->res = res;
3270 if (res)
3271 res->pattern->num_users += 1;
3273 if (!res)
3274 continue;
3276 /* We have a shared pattern and are now committed to the match. */
3277 merge_pattern_info *pat = res->pattern;
3278 gcc_assert (valid_result_p (pat, sinfo));
3280 if (!pat->complete_p)
3282 /* Look for subpatterns that are going to be split out and remove
3283 them from the number of statements. */
3284 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
3285 if (merge_pattern_transition *ptrans = pat->transitions[j])
3287 merge_pattern_info *to_pat = ptrans->to;
3288 if (!same_pattern_p (pat, to_pat))
3289 pat->num_statements -= to_pat->num_statements;
3291 pat->complete_p = true;
3294 /* Step 5: Split out the patterns. */
3295 for (unsigned int i = 0; i < states.length (); ++i)
3297 merge_state_info *sinfo = &states[i];
3298 merge_state_result *res = sinfo->res;
3299 if (!sinfo->merged_p && res && useful_pattern_p (res->pattern))
3300 use_pattern (sinfo);
3302 fprintf (stderr, "Shared %d out of %d states by creating %d new states,"
3303 " saving %d\n",
3304 pattern_use_states, states.length (), pattern_def_states,
3305 pattern_use_states - pattern_def_states);
3308 /* Information about a state tree that we're considering splitting into a
3309 subroutine. */
3310 struct state_size
3312 /* The number of pseudo-statements in the state tree. */
3313 unsigned int num_statements;
3315 /* The approximate number of nested "if" and "switch" statements that
3316 would be required if control could fall through to a later state. */
3317 unsigned int depth;
3320 /* Pairs a transition with information about its target state. */
3321 typedef std::pair <transition *, state_size> subroutine_candidate;
3323 /* Sort two subroutine_candidates so that the one with the largest
3324 number of statements comes last. */
3326 static int
3327 subroutine_candidate_cmp (const void *a, const void *b)
3329 return int (((const subroutine_candidate *) a)->second.num_statements
3330 - ((const subroutine_candidate *) b)->second.num_statements);
3333 /* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
3334 state that performs a subroutine call to S. */
3336 static state *
3337 create_subroutine (routine_type type, state *s, vec <state *> &procs)
3339 procs.safe_push (s);
3340 acceptance_type acceptance;
3341 acceptance.type = type;
3342 acceptance.partial_p = true;
3343 acceptance.u.subroutine_id = procs.length ();
3344 state *news = new state;
3345 add_decision (news, rtx_test::accept (acceptance), true, false);
3346 return news;
3349 /* Walk state tree S, of type TYPE, and look for subtrees that would be
3350 better split into subroutines. Accumulate all such subroutines in PROCS.
3351 Return the size of the new state tree (excluding subroutines). */
3353 static state_size
3354 find_subroutines (routine_type type, state *s, vec <state *> &procs)
3356 auto_vec <subroutine_candidate, 16> candidates;
3357 state_size size;
3358 size.num_statements = 0;
3359 size.depth = 0;
3360 for (decision *d = s->first; d; d = d->next)
3362 if (!d->test.single_outcome_p ())
3363 size.num_statements += 1;
3364 for (transition *trans = d->first; trans; trans = trans->next)
3366 /* Keep chains of simple decisions together if we know that no
3367 change of position is required. We'll output this chain as a
3368 single "if" statement, so it counts as a single nesting level. */
3369 if (d->test.pos && d->if_statement_p ())
3370 for (;;)
3372 decision *newd = trans->to->singleton ();
3373 if (!newd
3374 || (newd->test.pos
3375 && newd->test.pos_operand < 0
3376 && newd->test.pos != d->test.pos)
3377 || !newd->if_statement_p ())
3378 break;
3379 if (!newd->test.single_outcome_p ())
3380 size.num_statements += 1;
3381 trans = newd->singleton ();
3382 if (newd->test.kind == rtx_test::SET_OP
3383 || newd->test.kind == rtx_test::ACCEPT)
3384 break;
3386 /* The target of TRANS is a subroutine candidate. First recurse
3387 on it to see how big it is after subroutines have been
3388 split out. */
3389 state_size to_size = find_subroutines (type, trans->to, procs);
3390 if (d->next && to_size.depth > MAX_DEPTH)
3391 /* Keeping the target state in the same routine would lead
3392 to an excessive nesting of "if" and "switch" statements.
3393 Split it out into a subroutine so that it can use
3394 inverted tests that return early on failure. */
3395 trans->to = create_subroutine (type, trans->to, procs);
3396 else
3398 size.num_statements += to_size.num_statements;
3399 if (to_size.num_statements < MIN_NUM_STATEMENTS)
3400 /* The target state is too small to be worth splitting.
3401 Keep it in the same routine as S. */
3402 size.depth = MAX (size.depth, to_size.depth);
3403 else
3404 /* Assume for now that we'll keep the target state in the
3405 same routine as S, but record it as a subroutine candidate
3406 if S grows too big. */
3407 candidates.safe_push (subroutine_candidate (trans, to_size));
3411 if (size.num_statements > MAX_NUM_STATEMENTS)
3413 /* S is too big. Sort the subroutine candidates so that bigger ones
3414 are nearer the end. */
3415 candidates.qsort (subroutine_candidate_cmp);
3416 while (!candidates.is_empty ()
3417 && size.num_statements > MAX_NUM_STATEMENTS)
3419 /* Peel off a candidate and force it into a subroutine. */
3420 subroutine_candidate cand = candidates.pop ();
3421 size.num_statements -= cand.second.num_statements;
3422 cand.first->to = create_subroutine (type, cand.first->to, procs);
3425 /* Update the depth for subroutine candidates that we decided not to
3426 split out. */
3427 for (unsigned int i = 0; i < candidates.length (); ++i)
3428 size.depth = MAX (size.depth, candidates[i].second.depth);
3429 size.depth += 1;
3430 return size;
3433 /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
3435 static bool
3436 safe_predicate_mode (const struct pred_data *pred, machine_mode mode)
3438 /* Scalar integer constants have VOIDmode. */
3439 if (GET_MODE_CLASS (mode) == MODE_INT
3440 && (pred->codes[CONST_INT]
3441 || pred->codes[CONST_DOUBLE]
3442 || pred->codes[CONST_WIDE_INT]
3443 || pred->codes[LABEL_REF]))
3444 return false;
3446 return !pred->special && mode != VOIDmode;
3449 /* Fill CODES with the set of codes that could be matched by PRED. */
3451 static void
3452 get_predicate_codes (const struct pred_data *pred, int_set *codes)
3454 for (int i = 0; i < NUM_TRUE_RTX_CODE; ++i)
3455 if (!pred || pred->codes[i])
3456 codes->safe_push (i);
3459 /* Return true if the first path through D1 tests the same thing as D2. */
3461 static bool
3462 has_same_test_p (decision *d1, decision *d2)
3466 if (d1->test == d2->test)
3467 return true;
3468 d1 = d1->first->to->first;
3470 while (d1);
3471 return false;
3474 /* Return true if D1 and D2 cannot match the same rtx. All states reachable
3475 from D2 have single decisions and all those decisions have single
3476 transitions. */
3478 static bool
3479 mutually_exclusive_p (decision *d1, decision *d2)
3481 /* If one path through D1 fails to test the same thing as D2, assume
3482 that D2's test could be true for D1 and look for a later, more useful,
3483 test. This isn't as expensive as it looks in practice. */
3484 while (!has_same_test_p (d1, d2))
3486 d2 = d2->singleton ()->to->singleton ();
3487 if (!d2)
3488 return false;
3490 if (d1->test == d2->test)
3492 /* Look for any transitions from D1 that have the same labels as
3493 the transition from D2. */
3494 transition *trans2 = d2->singleton ();
3495 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3497 int_set::iterator i1 = trans1->labels.begin ();
3498 int_set::iterator end1 = trans1->labels.end ();
3499 int_set::iterator i2 = trans2->labels.begin ();
3500 int_set::iterator end2 = trans2->labels.end ();
3501 while (i1 != end1 && i2 != end2)
3502 if (*i1 < *i2)
3503 ++i1;
3504 else if (*i2 < *i1)
3505 ++i2;
3506 else
3508 /* TRANS1 has some labels in common with TRANS2. Assume
3509 that D1 and D2 could match the same rtx if the target
3510 of TRANS1 could match the same rtx as D2. */
3511 for (decision *subd1 = trans1->to->first;
3512 subd1; subd1 = subd1->next)
3513 if (!mutually_exclusive_p (subd1, d2))
3514 return false;
3515 break;
3518 return true;
3520 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3521 for (decision *subd1 = trans1->to->first; subd1; subd1 = subd1->next)
3522 if (!mutually_exclusive_p (subd1, d2))
3523 return false;
3524 return true;
3527 /* Try to merge S2's decision into D1, given that they have the same test.
3528 Fail only if EXCLUDE is nonnull and the new transition would have the
3529 same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
3530 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3531 if the merge is complete. */
3533 static bool
3534 merge_into_decision (decision *d1, state *s2, const int_set *exclude,
3535 state **next_s1, state **next_s2,
3536 const int_set **next_exclude)
3538 decision *d2 = s2->singleton ();
3539 transition *trans2 = d2->singleton ();
3541 /* Get a list of the transitions that intersect TRANS2. */
3542 auto_vec <transition *, 32> intersecting;
3543 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3545 int_set::iterator i1 = trans1->labels.begin ();
3546 int_set::iterator end1 = trans1->labels.end ();
3547 int_set::iterator i2 = trans2->labels.begin ();
3548 int_set::iterator end2 = trans2->labels.end ();
3549 bool trans1_is_subset = true;
3550 bool trans2_is_subset = true;
3551 bool intersect_p = false;
3552 while (i1 != end1 && i2 != end2)
3553 if (*i1 < *i2)
3555 trans1_is_subset = false;
3556 ++i1;
3558 else if (*i2 < *i1)
3560 trans2_is_subset = false;
3561 ++i2;
3563 else
3565 intersect_p = true;
3566 ++i1;
3567 ++i2;
3569 if (i1 != end1)
3570 trans1_is_subset = false;
3571 if (i2 != end2)
3572 trans2_is_subset = false;
3573 if (trans1_is_subset && trans2_is_subset)
3575 /* There's already a transition that matches exactly.
3576 Merge the target states. */
3577 trans1->optional &= trans2->optional;
3578 *next_s1 = trans1->to;
3579 *next_s2 = trans2->to;
3580 *next_exclude = 0;
3581 return true;
3583 if (trans2_is_subset)
3585 /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
3586 the target of TRANS1, but (to avoid infinite recursion)
3587 make sure that we don't end up creating another transition
3588 like TRANS1. */
3589 *next_s1 = trans1->to;
3590 *next_s2 = s2;
3591 *next_exclude = &trans1->labels;
3592 return true;
3594 if (intersect_p)
3595 intersecting.safe_push (trans1);
3598 if (intersecting.is_empty ())
3600 /* No existing labels intersect the new ones. We can just add
3601 TRANS2 itself. */
3602 d1->push_back (d2->release ());
3603 *next_s1 = 0;
3604 *next_s2 = 0;
3605 *next_exclude = 0;
3606 return true;
3609 /* Take the union of the labels in INTERSECTING and TRANS2. Store the
3610 result in COMBINED and use NEXT as a temporary. */
3611 int_set tmp1 = trans2->labels, tmp2;
3612 int_set *combined = &tmp1, *next = &tmp2;
3613 for (unsigned int i = 0; i < intersecting.length (); ++i)
3615 transition *trans1 = intersecting[i];
3616 next->truncate (0);
3617 next->safe_grow (trans1->labels.length () + combined->length ());
3618 int_set::iterator end
3619 = std::set_union (trans1->labels.begin (), trans1->labels.end (),
3620 combined->begin (), combined->end (),
3621 next->begin ());
3622 next->truncate (end - next->begin ());
3623 std::swap (next, combined);
3626 /* Stop now if we've been told not to create a transition with these
3627 labels. */
3628 if (exclude && *combined == *exclude)
3629 return false;
3631 /* Get the transition that should carry the new labels. */
3632 transition *new_trans = intersecting[0];
3633 if (intersecting.length () == 1)
3635 /* We're merging with one existing transition whose labels are a
3636 subset of those required. If both transitions are optional,
3637 we can just expand the set of labels so that it's suitable
3638 for both transitions. It isn't worth preserving the original
3639 transitions since we know that they can't be merged; we would
3640 need to backtrack to S2 if TRANS1->to fails. In contrast,
3641 we might be able to merge the targets of the transitions
3642 without any backtracking.
3644 If instead the existing transition is not optional, ensure that
3645 all target decisions are suitably protected. Some decisions
3646 might already have a more specific requirement than NEW_TRANS,
3647 in which case there's no point testing NEW_TRANS as well. E.g. this
3648 would have happened if a test for an (eq ...) rtx had been
3649 added to a decision that tested whether the code is suitable
3650 for comparison_operator. The original comparison_operator
3651 transition would have been non-optional and the (eq ...) test
3652 would be performed by a second decision in the target of that
3653 transition.
3655 The remaining case -- keeping the original optional transition
3656 when adding a non-optional TRANS2 -- is a wash. Preserving
3657 the optional transition only helps if we later merge another
3658 state S3 that is mutually exclusive with S2 and whose labels
3659 belong to *COMBINED - TRANS1->labels. We can then test the
3660 original NEW_TRANS and S3 in the same decision. We keep the
3661 optional transition around for that case, but it occurs very
3662 rarely. */
3663 gcc_assert (new_trans->labels != *combined);
3664 if (!new_trans->optional || !trans2->optional)
3666 decision *start = 0;
3667 for (decision *end = new_trans->to->first; end; end = end->next)
3669 if (!start && end->test != d1->test)
3670 /* END belongs to a range of decisions that need to be
3671 protected by NEW_TRANS. */
3672 start = end;
3673 if (start && (!end->next || end->next->test == d1->test))
3675 /* Protect [START, END] with NEW_TRANS. The decisions
3676 move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
3677 state *new_s = new state;
3678 decision *new_d = new decision (d1->test);
3679 new_d->push_back (new transition (new_trans->labels, new_s,
3680 new_trans->optional));
3681 state::range r (start, end);
3682 new_trans->to->replace (r, new_d);
3683 new_s->push_back (r);
3685 /* Continue with an empty range. */
3686 start = 0;
3688 /* Continue from the decision after NEW_D. */
3689 end = new_d;
3693 new_trans->optional = true;
3694 new_trans->labels = *combined;
3696 else
3698 /* We're merging more than one existing transition together.
3699 Those transitions are successfully dividing the matching space
3700 and so we want to preserve them, even if they're optional.
3702 Create a new transition with the union set of labels and make
3703 it go to a state that has the original transitions. */
3704 decision *new_d = new decision (d1->test);
3705 for (unsigned int i = 0; i < intersecting.length (); ++i)
3706 new_d->push_back (d1->remove (intersecting[i]));
3708 state *new_s = new state;
3709 new_s->push_back (new_d);
3711 new_trans = new transition (*combined, new_s, true);
3712 d1->push_back (new_trans);
3715 /* We now have an optional transition with labels *COMBINED. Decide
3716 whether we can use it as TRANS2 or whether we need to merge S2
3717 into the target of NEW_TRANS. */
3718 gcc_assert (new_trans->optional);
3719 if (new_trans->labels == trans2->labels)
3721 /* NEW_TRANS matches TRANS2. Just merge the target states. */
3722 new_trans->optional = trans2->optional;
3723 *next_s1 = new_trans->to;
3724 *next_s2 = trans2->to;
3725 *next_exclude = 0;
3727 else
3729 /* Try to merge TRANS2 into the target of the overlapping transition,
3730 but (to prevent infinite recursion or excessive redundancy) without
3731 creating another transition of the same type. */
3732 *next_s1 = new_trans->to;
3733 *next_s2 = s2;
3734 *next_exclude = &new_trans->labels;
3736 return true;
3739 /* Make progress in merging S2 into S1, given that each state in S2
3740 has a single decision. If EXCLUDE is nonnull, avoid creating a new
3741 transition with the same test as S2's decision and with the labels
3742 in *EXCLUDE.
3744 Return true if there is still work to do. When returning true,
3745 set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3746 S1, S2 and EXCLUDE should have next time round.
3748 If S1 and S2 both match a particular rtx, give priority to S1. */
3750 static bool
3751 merge_into_state_1 (state *s1, state *s2, const int_set *exclude,
3752 state **next_s1, state **next_s2,
3753 const int_set **next_exclude)
3755 decision *d2 = s2->singleton ();
3756 if (decision *d1 = s1->last)
3758 if (d1->test.terminal_p ())
3759 /* D1 is an unconditional return, so S2 can never match. This can
3760 sometimes be a bug in the .md description, but might also happen
3761 if genconditions forces some conditions to true for certain
3762 configurations. */
3763 return false;
3765 /* Go backwards through the decisions in S1, stopping once we find one
3766 that could match the same thing as S2. */
3767 while (d1->prev && mutually_exclusive_p (d1, d2))
3768 d1 = d1->prev;
3770 /* Search forwards from that point, merging D2 into the first
3771 decision we can. */
3772 for (; d1; d1 = d1->next)
3774 /* If S2 performs some optional tests before testing the same thing
3775 as D1, those tests do not help to distinguish D1 and S2, so it's
3776 better to drop them. Search through such optional decisions
3777 until we find something that tests the same thing as D1. */
3778 state *sub_s2 = s2;
3779 for (;;)
3781 decision *sub_d2 = sub_s2->singleton ();
3782 if (d1->test == sub_d2->test)
3784 /* Only apply EXCLUDE if we're testing the same thing
3785 as D2. */
3786 const int_set *sub_exclude = (d2 == sub_d2 ? exclude : 0);
3788 /* Try to merge SUB_S2 into D1. This can only fail if
3789 it would involve creating a new transition with
3790 labels SUB_EXCLUDE. */
3791 if (merge_into_decision (d1, sub_s2, sub_exclude,
3792 next_s1, next_s2, next_exclude))
3793 return *next_s2 != 0;
3795 /* Can't merge with D1; try a later decision. */
3796 break;
3798 transition *sub_trans2 = sub_d2->singleton ();
3799 if (!sub_trans2->optional)
3800 /* Can't merge with D1; try a later decision. */
3801 break;
3802 sub_s2 = sub_trans2->to;
3807 /* We can't merge D2 with any existing decision. Just add it to the end. */
3808 s1->push_back (s2->release ());
3809 return false;
3812 /* Merge S2 into S1. If they both match a particular rtx, give
3813 priority to S1. Each state in S2 has a single decision. */
3815 static void
3816 merge_into_state (state *s1, state *s2)
3818 const int_set *exclude = 0;
3819 while (s2 && merge_into_state_1 (s1, s2, exclude, &s1, &s2, &exclude))
3820 continue;
3823 /* Pairs a pattern that needs to be matched with the rtx position at
3824 which the pattern should occur. */
3825 struct pattern_pos {
3826 pattern_pos () {}
3827 pattern_pos (rtx, position *);
3829 rtx pattern;
3830 position *pos;
3833 pattern_pos::pattern_pos (rtx pattern_in, position *pos_in)
3834 : pattern (pattern_in), pos (pos_in)
3837 /* Compare entries according to their depth-first order. There shouldn't
3838 be two entries at the same position. */
3840 bool
3841 operator < (const pattern_pos &e1, const pattern_pos &e2)
3843 int diff = compare_positions (e1.pos, e2.pos);
3844 gcc_assert (diff != 0 || e1.pattern == e2.pattern);
3845 return diff < 0;
3848 /* Add new decisions to S that check whether the rtx at position POS
3849 matches PATTERN. Return the state that is reached in that case.
3850 TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
3852 static state *
3853 match_pattern_2 (state *s, md_rtx_info *info, position *pos, rtx pattern)
3855 auto_vec <pattern_pos, 32> worklist;
3856 auto_vec <pattern_pos, 32> pred_and_mode_tests;
3857 auto_vec <pattern_pos, 32> dup_tests;
3859 worklist.safe_push (pattern_pos (pattern, pos));
3860 while (!worklist.is_empty ())
3862 pattern_pos next = worklist.pop ();
3863 pattern = next.pattern;
3864 pos = next.pos;
3865 unsigned int reverse_s = worklist.length ();
3867 enum rtx_code code = GET_CODE (pattern);
3868 switch (code)
3870 case MATCH_OP_DUP:
3871 case MATCH_DUP:
3872 case MATCH_PAR_DUP:
3873 /* Add a test that the rtx matches the earlier one, but only
3874 after the structure and predicates have been checked. */
3875 dup_tests.safe_push (pattern_pos (pattern, pos));
3877 /* Use the same code check as the original operand. */
3878 pattern = find_operand (info->def, XINT (pattern, 0), NULL_RTX);
3879 /* Fall through. */
3881 case MATCH_PARALLEL:
3882 case MATCH_OPERAND:
3883 case MATCH_SCRATCH:
3884 case MATCH_OPERATOR:
3886 const char *pred_name = predicate_name (pattern);
3887 const struct pred_data *pred = 0;
3888 if (pred_name[0] != 0)
3890 pred = lookup_predicate (pred_name);
3891 /* Only report errors once per rtx. */
3892 if (code == GET_CODE (pattern))
3894 if (!pred)
3895 error_at (info->loc, "unknown predicate '%s' used in %s",
3896 pred_name, GET_RTX_NAME (code));
3897 else if (code == MATCH_PARALLEL
3898 && pred->singleton != PARALLEL)
3899 error_at (info->loc, "predicate '%s' used in"
3900 " match_parallel does not allow only PARALLEL",
3901 pred->name);
3905 if (code == MATCH_PARALLEL || code == MATCH_PAR_DUP)
3907 /* Check that we have a parallel with enough elements. */
3908 s = add_decision (s, rtx_test::code (pos), PARALLEL, false);
3909 int min_len = XVECLEN (pattern, 2);
3910 s = add_decision (s, rtx_test::veclen_ge (pos, min_len),
3911 true, false);
3913 else
3915 /* Check that the rtx has one of codes accepted by the
3916 predicate. This is necessary when matching suboperands
3917 of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3918 call XEXP (X, N) without checking that X has at least
3919 N+1 operands. */
3920 int_set codes;
3921 get_predicate_codes (pred, &codes);
3922 bool need_codes = (pred
3923 && (code == MATCH_OPERATOR
3924 || code == MATCH_OP_DUP));
3925 s = add_decision (s, rtx_test::code (pos), codes, !need_codes);
3928 /* Postpone the predicate check until we've checked the rest
3929 of the rtx structure. */
3930 if (code == GET_CODE (pattern))
3931 pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
3933 /* If we need to match suboperands, add them to the worklist. */
3934 if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
3936 position **subpos_ptr;
3937 enum position_type pos_type;
3938 int i;
3939 if (code == MATCH_OPERATOR || code == MATCH_OP_DUP)
3941 pos_type = POS_XEXP;
3942 subpos_ptr = &pos->xexps;
3943 i = (code == MATCH_OPERATOR ? 2 : 1);
3945 else
3947 pos_type = POS_XVECEXP0;
3948 subpos_ptr = &pos->xvecexp0s;
3949 i = 2;
3951 for (int j = 0; j < XVECLEN (pattern, i); ++j)
3953 position *subpos = next_position (subpos_ptr, pos,
3954 pos_type, j);
3955 worklist.safe_push (pattern_pos (XVECEXP (pattern, i, j),
3956 subpos));
3957 subpos_ptr = &subpos->next;
3960 break;
3963 default:
3965 /* Check that the rtx has the right code. */
3966 s = add_decision (s, rtx_test::code (pos), code, false);
3968 /* Queue a test for the mode if one is specified. */
3969 if (GET_MODE (pattern) != VOIDmode)
3970 pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
3972 /* Push subrtxes onto the worklist. Match nonrtx operands now. */
3973 const char *fmt = GET_RTX_FORMAT (code);
3974 position **subpos_ptr = &pos->xexps;
3975 for (size_t i = 0; fmt[i]; ++i)
3977 position *subpos = next_position (subpos_ptr, pos,
3978 POS_XEXP, i);
3979 switch (fmt[i])
3981 case 'e': case 'u':
3982 worklist.safe_push (pattern_pos (XEXP (pattern, i),
3983 subpos));
3984 break;
3986 case 'E':
3988 /* Make sure the vector has the right number of
3989 elements. */
3990 int length = XVECLEN (pattern, i);
3991 s = add_decision (s, rtx_test::veclen (pos),
3992 length, false);
3994 position **subpos2_ptr = &pos->xvecexp0s;
3995 for (int j = 0; j < length; j++)
3997 position *subpos2 = next_position (subpos2_ptr, pos,
3998 POS_XVECEXP0, j);
3999 rtx x = XVECEXP (pattern, i, j);
4000 worklist.safe_push (pattern_pos (x, subpos2));
4001 subpos2_ptr = &subpos2->next;
4003 break;
4006 case 'i':
4007 /* Make sure that XINT (X, I) has the right value. */
4008 s = add_decision (s, rtx_test::int_field (pos, i),
4009 XINT (pattern, i), false);
4010 break;
4012 case 'r':
4013 /* Make sure that REGNO (X) has the right value. */
4014 gcc_assert (i == 0);
4015 s = add_decision (s, rtx_test::regno_field (pos),
4016 REGNO (pattern), false);
4017 break;
4019 case 'w':
4020 /* Make sure that XWINT (X, I) has the right value. */
4021 s = add_decision (s, rtx_test::wide_int_field (pos, i),
4022 XWINT (pattern, 0), false);
4023 break;
4025 case '0':
4026 break;
4028 default:
4029 gcc_unreachable ();
4031 subpos_ptr = &subpos->next;
4034 break;
4036 /* Operands are pushed onto the worklist so that later indices are
4037 nearer the top. That's what we want for SETs, since a SET_SRC
4038 is a better discriminator than a SET_DEST. In other cases it's
4039 usually better to match earlier indices first. This is especially
4040 true of PARALLELs, where the first element tends to be the most
4041 individual. It's also true for commutative operators, where the
4042 canonicalization rules say that the more complex operand should
4043 come first. */
4044 if (code != SET && worklist.length () > reverse_s)
4045 std::reverse (&worklist[0] + reverse_s,
4046 &worklist[0] + worklist.length ());
4049 /* Sort the predicate and mode tests so that they're in depth-first order.
4050 The main goal of this is to put SET_SRC match_operands after SET_DEST
4051 match_operands and after mode checks for the enclosing SET_SRC operators
4052 (such as the mode of a PLUS in an addition instruction). The latter
4053 two types of test can determine the mode exactly, whereas a SET_SRC
4054 match_operand often has to cope with the possibility of the operand
4055 being a modeless constant integer. E.g. something that matches
4056 register_operand (x, SImode) never matches register_operand (x, DImode),
4057 but a const_int that matches immediate_operand (x, SImode) also matches
4058 immediate_operand (x, DImode). The register_operand cases can therefore
4059 be distinguished by a switch on the mode, but the immediate_operand
4060 cases can't. */
4061 if (pred_and_mode_tests.length () > 1)
4062 std::sort (&pred_and_mode_tests[0],
4063 &pred_and_mode_tests[0] + pred_and_mode_tests.length ());
4065 /* Add the mode and predicate tests. */
4066 pattern_pos *e;
4067 unsigned int i;
4068 FOR_EACH_VEC_ELT (pred_and_mode_tests, i, e)
4070 switch (GET_CODE (e->pattern))
4072 case MATCH_PARALLEL:
4073 case MATCH_OPERAND:
4074 case MATCH_SCRATCH:
4075 case MATCH_OPERATOR:
4077 int opno = XINT (e->pattern, 0);
4078 num_operands = MAX (num_operands, opno + 1);
4079 const char *pred_name = predicate_name (e->pattern);
4080 if (pred_name[0])
4082 const struct pred_data *pred = lookup_predicate (pred_name);
4083 /* Check the mode first, to distinguish things like SImode
4084 and DImode register_operands, as described above. */
4085 machine_mode mode = GET_MODE (e->pattern);
4086 if (pred && safe_predicate_mode (pred, mode))
4087 s = add_decision (s, rtx_test::mode (e->pos), mode, true);
4089 /* Assign to operands[] first, so that the rtx usually doesn't
4090 need to be live across the call to the predicate.
4092 This shouldn't cause a problem with dirtying the page,
4093 since we fully expect to assign to operands[] at some point,
4094 and since the caller usually writes to other parts of
4095 recog_data anyway. */
4096 s = add_decision (s, rtx_test::set_op (e->pos, opno),
4097 true, false);
4098 s = add_decision (s, rtx_test::predicate (e->pos, pred, mode),
4099 true, false);
4101 else
4102 /* Historically we've ignored the mode when there's no
4103 predicate. Just set up operands[] unconditionally. */
4104 s = add_decision (s, rtx_test::set_op (e->pos, opno),
4105 true, false);
4106 break;
4109 default:
4110 s = add_decision (s, rtx_test::mode (e->pos),
4111 GET_MODE (e->pattern), false);
4112 break;
4116 /* Finally add rtx_equal_p checks for duplicated operands. */
4117 FOR_EACH_VEC_ELT (dup_tests, i, e)
4118 s = add_decision (s, rtx_test::duplicate (e->pos, XINT (e->pattern, 0)),
4119 true, false);
4120 return s;
4123 /* Add new decisions to S that make it return ACCEPTANCE if:
4125 (1) the rtx doesn't match anything already matched by S
4126 (2) the rtx matches TOP_PATTERN and
4127 (3) the C test required by INFO->def is true
4129 For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4130 to match, otherwise it is a single instruction pattern. */
4132 static void
4133 match_pattern_1 (state *s, md_rtx_info *info, rtx pattern,
4134 acceptance_type acceptance)
4136 if (acceptance.type == PEEPHOLE2)
4138 /* Match each individual instruction. */
4139 position **subpos_ptr = &peep2_insn_pos_list;
4140 int count = 0;
4141 for (int i = 0; i < XVECLEN (pattern, 0); ++i)
4143 rtx x = XVECEXP (pattern, 0, i);
4144 position *subpos = next_position (subpos_ptr, &root_pos,
4145 POS_PEEP2_INSN, count);
4146 if (count > 0)
4147 s = add_decision (s, rtx_test::peep2_count (count + 1),
4148 true, false);
4149 s = match_pattern_2 (s, info, subpos, x);
4150 subpos_ptr = &subpos->next;
4151 count += 1;
4153 acceptance.u.full.u.match_len = count - 1;
4155 else
4157 /* Make the rtx itself. */
4158 s = match_pattern_2 (s, info, &root_pos, pattern);
4160 /* If the match is only valid when extra clobbers are added,
4161 make sure we're able to pass that information to the caller. */
4162 if (acceptance.type == RECOG && acceptance.u.full.u.num_clobbers)
4163 s = add_decision (s, rtx_test::have_num_clobbers (), true, false);
4166 /* Make sure that the C test is true. */
4167 const char *c_test = get_c_test (info->def);
4168 if (maybe_eval_c_test (c_test) != 1)
4169 s = add_decision (s, rtx_test::c_test (c_test), true, false);
4171 /* Accept the pattern. */
4172 add_decision (s, rtx_test::accept (acceptance), true, false);
4175 /* Like match_pattern_1, but (if merge_states_p) try to merge the
4176 decisions with what's already in S, to reduce the amount of
4177 backtracking. */
4179 static void
4180 match_pattern (state *s, md_rtx_info *info, rtx pattern,
4181 acceptance_type acceptance)
4183 if (merge_states_p)
4185 state root;
4186 /* Add the decisions to a fresh state and then merge the full tree
4187 into the existing one. */
4188 match_pattern_1 (&root, info, pattern, acceptance);
4189 merge_into_state (s, &root);
4191 else
4192 match_pattern_1 (s, info, pattern, acceptance);
4195 /* Begin the output file. */
4197 static void
4198 write_header (void)
4200 puts ("\
4201 /* Generated automatically by the program `genrecog' from the target\n\
4202 machine description file. */\n\
4204 #include \"config.h\"\n\
4205 #include \"system.h\"\n\
4206 #include \"coretypes.h\"\n\
4207 #include \"backend.h\"\n\
4208 #include \"predict.h\"\n\
4209 #include \"rtl.h\"\n\
4210 #include \"memmodel.h\"\n\
4211 #include \"tm_p.h\"\n\
4212 #include \"emit-rtl.h\"\n\
4213 #include \"insn-config.h\"\n\
4214 #include \"recog.h\"\n\
4215 #include \"output.h\"\n\
4216 #include \"flags.h\"\n\
4217 #include \"df.h\"\n\
4218 #include \"resource.h\"\n\
4219 #include \"diagnostic-core.h\"\n\
4220 #include \"reload.h\"\n\
4221 #include \"regs.h\"\n\
4222 #include \"tm-constrs.h\"\n\
4223 \n");
4225 puts ("\n\
4226 /* `recog' contains a decision tree that recognizes whether the rtx\n\
4227 X0 is a valid instruction.\n\
4229 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
4230 returns a nonnegative number which is the insn code number for the\n\
4231 pattern that matched. This is the same as the order in the machine\n\
4232 description of the entry that matched. This number can be used as an\n\
4233 index into `insn_data' and other tables.\n");
4234 puts ("\
4235 The third parameter to recog is an optional pointer to an int. If\n\
4236 present, recog will accept a pattern if it matches except for missing\n\
4237 CLOBBER expressions at the end. In that case, the value pointed to by\n\
4238 the optional pointer will be set to the number of CLOBBERs that need\n\
4239 to be added (it should be initialized to zero by the caller). If it");
4240 puts ("\
4241 is set nonzero, the caller should allocate a PARALLEL of the\n\
4242 appropriate size, copy the initial entries, and call add_clobbers\n\
4243 (found in insn-emit.c) to fill in the CLOBBERs.\n\
4246 puts ("\n\
4247 The function split_insns returns 0 if the rtl could not\n\
4248 be split or the split rtl as an INSN list if it can be.\n\
4250 The function peephole2_insns returns 0 if the rtl could not\n\
4251 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4252 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4253 */\n\n");
4256 /* Return the C type of a parameter with type TYPE. */
4258 static const char *
4259 parameter_type_string (parameter::type_enum type)
4261 switch (type)
4263 case parameter::UNSET:
4264 break;
4266 case parameter::CODE:
4267 return "rtx_code";
4269 case parameter::MODE:
4270 return "machine_mode";
4272 case parameter::INT:
4273 return "int";
4275 case parameter::UINT:
4276 return "unsigned int";
4278 case parameter::WIDE_INT:
4279 return "HOST_WIDE_INT";
4281 gcc_unreachable ();
4284 /* Return true if ACCEPTANCE requires only a single C statement even in
4285 a backtracking context. */
4287 static bool
4288 single_statement_p (const acceptance_type &acceptance)
4290 if (acceptance.partial_p)
4291 /* We need to handle failures of the subroutine. */
4292 return false;
4293 switch (acceptance.type)
4295 case SUBPATTERN:
4296 case SPLIT:
4297 return true;
4299 case RECOG:
4300 /* False if we need to assign to pnum_clobbers. */
4301 return acceptance.u.full.u.num_clobbers == 0;
4303 case PEEPHOLE2:
4304 /* We need to assign to pmatch_len_ and handle null returns from the
4305 peephole2 routine. */
4306 return false;
4308 gcc_unreachable ();
4311 /* Return the C failure value for a routine of type TYPE. */
4313 static const char *
4314 get_failure_return (routine_type type)
4316 switch (type)
4318 case SUBPATTERN:
4319 case RECOG:
4320 return "-1";
4322 case SPLIT:
4323 case PEEPHOLE2:
4324 return "NULL";
4326 gcc_unreachable ();
4329 /* Indicates whether a block of code always returns or whether it can fall
4330 through. */
4332 enum exit_state {
4333 ES_RETURNED,
4334 ES_FALLTHROUGH
4337 /* Information used while writing out code. */
4339 struct output_state
4341 /* The type of routine that we're generating. */
4342 routine_type type;
4344 /* Maps position ids to xN variable numbers. The entry is only valid if
4345 it is less than the length of VAR_TO_ID, but this holds for every position
4346 tested by a state when writing out that state. */
4347 auto_vec <unsigned int> id_to_var;
4349 /* Maps xN variable numbers to position ids. */
4350 auto_vec <unsigned int> var_to_id;
4352 /* Index N is true if variable xN has already been set. */
4353 auto_vec <bool> seen_vars;
4356 /* Return true if D is a call to a pattern routine and if there is some X
4357 such that the transition for pattern result N goes to a successful return
4358 with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
4359 to the number of return values. (We know that every PATTERN decision has
4360 a transition for every successful return.) */
4362 static bool
4363 terminal_pattern_p (decision *d, unsigned int *base_out,
4364 unsigned int *count_out)
4366 if (d->test.kind != rtx_test::PATTERN)
4367 return false;
4368 unsigned int base = 0;
4369 unsigned int count = 0;
4370 for (transition *trans = d->first; trans; trans = trans->next)
4372 if (trans->is_param || trans->labels.length () != 1)
4373 return false;
4374 decision *subd = trans->to->singleton ();
4375 if (!subd || subd->test.kind != rtx_test::ACCEPT)
4376 return false;
4377 unsigned int this_base = (subd->test.u.acceptance.u.full.code
4378 - trans->labels[0]);
4379 if (trans == d->first)
4380 base = this_base;
4381 else if (base != this_base)
4382 return false;
4383 count += 1;
4385 *base_out = base;
4386 *count_out = count;
4387 return true;
4390 /* Return true if TEST doesn't test an rtx or if the rtx it tests is
4391 already available in state OS. */
4393 static bool
4394 test_position_available_p (output_state *os, const rtx_test &test)
4396 return (!test.pos
4397 || test.pos_operand >= 0
4398 || os->seen_vars[os->id_to_var[test.pos->id]]);
4401 /* Like printf, but print INDENT spaces at the beginning. */
4403 static void ATTRIBUTE_PRINTF_2
4404 printf_indent (unsigned int indent, const char *format, ...)
4406 va_list ap;
4407 va_start (ap, format);
4408 printf ("%*s", indent, "");
4409 vprintf (format, ap);
4410 va_end (ap);
4413 /* Emit code to initialize the variable associated with POS, if it isn't
4414 already valid in state OS. Indent each line by INDENT spaces. Update
4415 OS with the new state. */
4417 static void
4418 change_state (output_state *os, position *pos, unsigned int indent)
4420 unsigned int var = os->id_to_var[pos->id];
4421 gcc_assert (var < os->var_to_id.length () && os->var_to_id[var] == pos->id);
4422 if (os->seen_vars[var])
4423 return;
4424 switch (pos->type)
4426 case POS_PEEP2_INSN:
4427 printf_indent (indent, "x%d = PATTERN (peep2_next_insn (%d));\n",
4428 var, pos->arg);
4429 break;
4431 case POS_XEXP:
4432 change_state (os, pos->base, indent);
4433 printf_indent (indent, "x%d = XEXP (x%d, %d);\n",
4434 var, os->id_to_var[pos->base->id], pos->arg);
4435 break;
4437 case POS_XVECEXP0:
4438 change_state (os, pos->base, indent);
4439 printf_indent (indent, "x%d = XVECEXP (x%d, 0, %d);\n",
4440 var, os->id_to_var[pos->base->id], pos->arg);
4441 break;
4443 os->seen_vars[var] = true;
4446 /* Print the enumerator constant for CODE -- the upcase version of
4447 the name. */
4449 static void
4450 print_code (enum rtx_code code)
4452 const char *p;
4453 for (p = GET_RTX_NAME (code); *p; p++)
4454 putchar (TOUPPER (*p));
4457 /* Emit a uint64_t as an integer constant expression. We need to take
4458 special care to avoid "decimal constant is so large that it is unsigned"
4459 warnings in the resulting code. */
4461 static void
4462 print_host_wide_int (uint64_t val)
4464 uint64_t min = uint64_t (1) << (HOST_BITS_PER_WIDE_INT - 1);
4465 if (val == min)
4466 printf ("(" HOST_WIDE_INT_PRINT_DEC_C " - 1)", val + 1);
4467 else
4468 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
4471 /* Print the C expression for actual parameter PARAM. */
4473 static void
4474 print_parameter_value (const parameter &param)
4476 if (param.is_param)
4477 printf ("i%d", (int) param.value + 1);
4478 else
4479 switch (param.type)
4481 case parameter::UNSET:
4482 gcc_unreachable ();
4483 break;
4485 case parameter::CODE:
4486 print_code ((enum rtx_code) param.value);
4487 break;
4489 case parameter::MODE:
4490 printf ("%smode", GET_MODE_NAME ((machine_mode) param.value));
4491 break;
4493 case parameter::INT:
4494 printf ("%d", (int) param.value);
4495 break;
4497 case parameter::UINT:
4498 printf ("%u", (unsigned int) param.value);
4499 break;
4501 case parameter::WIDE_INT:
4502 print_host_wide_int (param.value);
4503 break;
4507 /* Print the C expression for the rtx tested by TEST. */
4509 static void
4510 print_test_rtx (output_state *os, const rtx_test &test)
4512 if (test.pos_operand >= 0)
4513 printf ("operands[%d]", test.pos_operand);
4514 else
4515 printf ("x%d", os->id_to_var[test.pos->id]);
4518 /* Print the C expression for non-boolean test TEST. */
4520 static void
4521 print_nonbool_test (output_state *os, const rtx_test &test)
4523 switch (test.kind)
4525 case rtx_test::CODE:
4526 printf ("GET_CODE (");
4527 print_test_rtx (os, test);
4528 printf (")");
4529 break;
4531 case rtx_test::MODE:
4532 printf ("GET_MODE (");
4533 print_test_rtx (os, test);
4534 printf (")");
4535 break;
4537 case rtx_test::VECLEN:
4538 printf ("XVECLEN (");
4539 print_test_rtx (os, test);
4540 printf (", 0)");
4541 break;
4543 case rtx_test::INT_FIELD:
4544 printf ("XINT (");
4545 print_test_rtx (os, test);
4546 printf (", %d)", test.u.opno);
4547 break;
4549 case rtx_test::REGNO_FIELD:
4550 printf ("REGNO (");
4551 print_test_rtx (os, test);
4552 printf (")");
4553 break;
4555 case rtx_test::WIDE_INT_FIELD:
4556 printf ("XWINT (");
4557 print_test_rtx (os, test);
4558 printf (", %d)", test.u.opno);
4559 break;
4561 case rtx_test::PATTERN:
4563 pattern_routine *routine = test.u.pattern->routine;
4564 printf ("pattern%d (", routine->pattern_id);
4565 const char *sep = "";
4566 if (test.pos)
4568 print_test_rtx (os, test);
4569 sep = ", ";
4571 if (routine->insn_p)
4573 printf ("%sinsn", sep);
4574 sep = ", ";
4576 if (routine->pnum_clobbers_p)
4578 printf ("%spnum_clobbers", sep);
4579 sep = ", ";
4581 for (unsigned int i = 0; i < test.u.pattern->params.length (); ++i)
4583 fputs (sep, stdout);
4584 print_parameter_value (test.u.pattern->params[i]);
4585 sep = ", ";
4587 printf (")");
4588 break;
4591 case rtx_test::PEEP2_COUNT:
4592 case rtx_test::VECLEN_GE:
4593 case rtx_test::SAVED_CONST_INT:
4594 case rtx_test::DUPLICATE:
4595 case rtx_test::PREDICATE:
4596 case rtx_test::SET_OP:
4597 case rtx_test::HAVE_NUM_CLOBBERS:
4598 case rtx_test::C_TEST:
4599 case rtx_test::ACCEPT:
4600 gcc_unreachable ();
4604 /* IS_PARAM and LABEL are taken from a transition whose source
4605 decision performs TEST. Print the C code for the label. */
4607 static void
4608 print_label_value (const rtx_test &test, bool is_param, uint64_t value)
4610 print_parameter_value (parameter (transition_parameter_type (test.kind),
4611 is_param, value));
4614 /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4615 If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4616 Test for inequality if INVERT_P, otherwise test for equality. */
4618 static void
4619 print_test (output_state *os, const rtx_test &test, bool is_param,
4620 uint64_t value, bool invert_p)
4622 switch (test.kind)
4624 /* Handle the non-boolean TESTs. */
4625 case rtx_test::CODE:
4626 case rtx_test::MODE:
4627 case rtx_test::VECLEN:
4628 case rtx_test::REGNO_FIELD:
4629 case rtx_test::INT_FIELD:
4630 case rtx_test::WIDE_INT_FIELD:
4631 case rtx_test::PATTERN:
4632 print_nonbool_test (os, test);
4633 printf (" %s ", invert_p ? "!=" : "==");
4634 print_label_value (test, is_param, value);
4635 break;
4637 case rtx_test::SAVED_CONST_INT:
4638 gcc_assert (!is_param && value == 1);
4639 print_test_rtx (os, test);
4640 printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4641 invert_p ? "!=" : "==");
4642 print_parameter_value (parameter (parameter::INT,
4643 test.u.integer.is_param,
4644 test.u.integer.value));
4645 printf ("]");
4646 break;
4648 case rtx_test::PEEP2_COUNT:
4649 gcc_assert (!is_param && value == 1);
4650 printf ("peep2_current_count %s %d", invert_p ? "<" : ">=",
4651 test.u.min_len);
4652 break;
4654 case rtx_test::VECLEN_GE:
4655 gcc_assert (!is_param && value == 1);
4656 printf ("XVECLEN (");
4657 print_test_rtx (os, test);
4658 printf (", 0) %s %d", invert_p ? "<" : ">=", test.u.min_len);
4659 break;
4661 case rtx_test::PREDICATE:
4662 gcc_assert (!is_param && value == 1);
4663 printf ("%s%s (", invert_p ? "!" : "", test.u.predicate.data->name);
4664 print_test_rtx (os, test);
4665 printf (", ");
4666 print_parameter_value (parameter (parameter::MODE,
4667 test.u.predicate.mode_is_param,
4668 test.u.predicate.mode));
4669 printf (")");
4670 break;
4672 case rtx_test::DUPLICATE:
4673 gcc_assert (!is_param && value == 1);
4674 printf ("%srtx_equal_p (", invert_p ? "!" : "");
4675 print_test_rtx (os, test);
4676 printf (", operands[%d])", test.u.opno);
4677 break;
4679 case rtx_test::HAVE_NUM_CLOBBERS:
4680 gcc_assert (!is_param && value == 1);
4681 printf ("pnum_clobbers %s NULL", invert_p ? "==" : "!=");
4682 break;
4684 case rtx_test::C_TEST:
4685 gcc_assert (!is_param && value == 1);
4686 if (invert_p)
4687 printf ("!");
4688 rtx_reader_ptr->print_c_condition (test.u.string);
4689 break;
4691 case rtx_test::ACCEPT:
4692 case rtx_test::SET_OP:
4693 gcc_unreachable ();
4697 static exit_state print_decision (output_state *, decision *,
4698 unsigned int, bool);
4700 /* Print code to perform S, indent each line by INDENT spaces.
4701 IS_FINAL is true if there are no fallback decisions to test on failure;
4702 if the state fails then the entire routine fails. */
4704 static exit_state
4705 print_state (output_state *os, state *s, unsigned int indent, bool is_final)
4707 exit_state es = ES_FALLTHROUGH;
4708 for (decision *d = s->first; d; d = d->next)
4709 es = print_decision (os, d, indent, is_final && !d->next);
4710 if (es != ES_RETURNED && is_final)
4712 printf_indent (indent, "return %s;\n", get_failure_return (os->type));
4713 es = ES_RETURNED;
4715 return es;
4718 /* Print the code for subroutine call ACCEPTANCE (for which partial_p
4719 is known to be true). Return the C condition that indicates a successful
4720 match. */
4722 static const char *
4723 print_subroutine_call (const acceptance_type &acceptance)
4725 switch (acceptance.type)
4727 case SUBPATTERN:
4728 gcc_unreachable ();
4730 case RECOG:
4731 printf ("recog_%d (x1, insn, pnum_clobbers)",
4732 acceptance.u.subroutine_id);
4733 return ">= 0";
4735 case SPLIT:
4736 printf ("split_%d (x1, insn)", acceptance.u.subroutine_id);
4737 return "!= NULL_RTX";
4739 case PEEPHOLE2:
4740 printf ("peephole2_%d (x1, insn, pmatch_len_)",
4741 acceptance.u.subroutine_id);
4742 return "!= NULL_RTX";
4744 gcc_unreachable ();
4747 /* Print code for the successful match described by ACCEPTANCE.
4748 INDENT and IS_FINAL are as for print_state. */
4750 static exit_state
4751 print_acceptance (const acceptance_type &acceptance, unsigned int indent,
4752 bool is_final)
4754 if (acceptance.partial_p)
4756 /* Defer the rest of the match to a subroutine. */
4757 if (is_final)
4759 printf_indent (indent, "return ");
4760 print_subroutine_call (acceptance);
4761 printf (";\n");
4762 return ES_RETURNED;
4764 else
4766 printf_indent (indent, "res = ");
4767 const char *res_test = print_subroutine_call (acceptance);
4768 printf (";\n");
4769 printf_indent (indent, "if (res %s)\n", res_test);
4770 printf_indent (indent + 2, "return res;\n");
4771 return ES_FALLTHROUGH;
4774 switch (acceptance.type)
4776 case SUBPATTERN:
4777 printf_indent (indent, "return %d;\n", acceptance.u.full.code);
4778 return ES_RETURNED;
4780 case RECOG:
4781 if (acceptance.u.full.u.num_clobbers != 0)
4782 printf_indent (indent, "*pnum_clobbers = %d;\n",
4783 acceptance.u.full.u.num_clobbers);
4784 printf_indent (indent, "return %d; /* %s */\n", acceptance.u.full.code,
4785 get_insn_name (acceptance.u.full.code));
4786 return ES_RETURNED;
4788 case SPLIT:
4789 printf_indent (indent, "return gen_split_%d (insn, operands);\n",
4790 acceptance.u.full.code);
4791 return ES_RETURNED;
4793 case PEEPHOLE2:
4794 printf_indent (indent, "*pmatch_len_ = %d;\n",
4795 acceptance.u.full.u.match_len);
4796 if (is_final)
4798 printf_indent (indent, "return gen_peephole2_%d (insn, operands);\n",
4799 acceptance.u.full.code);
4800 return ES_RETURNED;
4802 else
4804 printf_indent (indent, "res = gen_peephole2_%d (insn, operands);\n",
4805 acceptance.u.full.code);
4806 printf_indent (indent, "if (res != NULL_RTX)\n");
4807 printf_indent (indent + 2, "return res;\n");
4808 return ES_FALLTHROUGH;
4811 gcc_unreachable ();
4814 /* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
4816 static exit_state
4817 print_decision (output_state *os, decision *d, unsigned int indent,
4818 bool is_final)
4820 uint64_t label;
4821 unsigned int base, count;
4823 /* Make sure the rtx under test is available either in operands[] or
4824 in an xN variable. */
4825 if (d->test.pos && d->test.pos_operand < 0)
4826 change_state (os, d->test.pos, indent);
4828 /* Look for cases where a pattern routine P1 calls another pattern routine
4829 P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
4830 is true and BASE is zero we can simply use:
4832 return patternN (...);
4834 Otherwise we can use:
4836 res = patternN (...);
4837 if (res >= 0)
4838 return res + BASE;
4840 However, if BASE is nonzero and patternN only returns 0 or -1,
4841 the usual "return BASE;" is better than "return res + BASE;".
4842 If BASE is zero, "return res;" should be better than "return 0;",
4843 since no assignment to the return register is required. */
4844 if (os->type == SUBPATTERN
4845 && terminal_pattern_p (d, &base, &count)
4846 && (base == 0 || count > 1))
4848 if (is_final && base == 0)
4850 printf_indent (indent, "return ");
4851 print_nonbool_test (os, d->test);
4852 printf ("; /* [-1, %d] */\n", count - 1);
4853 return ES_RETURNED;
4855 else
4857 printf_indent (indent, "res = ");
4858 print_nonbool_test (os, d->test);
4859 printf (";\n");
4860 printf_indent (indent, "if (res >= 0)\n");
4861 printf_indent (indent + 2, "return res");
4862 if (base != 0)
4863 printf (" + %d", base);
4864 printf ("; /* [%d, %d] */\n", base, base + count - 1);
4865 return ES_FALLTHROUGH;
4868 else if (d->test.kind == rtx_test::ACCEPT)
4869 return print_acceptance (d->test.u.acceptance, indent, is_final);
4870 else if (d->test.kind == rtx_test::SET_OP)
4872 printf_indent (indent, "operands[%d] = ", d->test.u.opno);
4873 print_test_rtx (os, d->test);
4874 printf (";\n");
4875 return print_state (os, d->singleton ()->to, indent, is_final);
4877 /* Handle decisions with a single transition and a single transition
4878 label. */
4879 else if (d->if_statement_p (&label))
4881 transition *trans = d->singleton ();
4882 if (mark_optional_transitions_p && trans->optional)
4883 printf_indent (indent, "/* OPTIONAL IF */\n");
4885 /* Print the condition associated with TRANS. Invert it if IS_FINAL,
4886 so that we return immediately on failure and fall through on
4887 success. */
4888 printf_indent (indent, "if (");
4889 print_test (os, d->test, trans->is_param, label, is_final);
4891 /* Look for following states that would be handled by this code
4892 on recursion. If they don't need any preparatory statements,
4893 include them in the current "if" statement rather than creating
4894 a new one. */
4895 for (;;)
4897 d = trans->to->singleton ();
4898 if (!d
4899 || d->test.kind == rtx_test::ACCEPT
4900 || d->test.kind == rtx_test::SET_OP
4901 || !d->if_statement_p (&label)
4902 || !test_position_available_p (os, d->test))
4903 break;
4904 trans = d->first;
4905 printf ("\n");
4906 if (mark_optional_transitions_p && trans->optional)
4907 printf_indent (indent + 4, "/* OPTIONAL IF */\n");
4908 printf_indent (indent + 4, "%s ", is_final ? "||" : "&&");
4909 print_test (os, d->test, trans->is_param, label, is_final);
4911 printf (")\n");
4913 /* Print the conditional code with INDENT + 2 and the fallthrough
4914 code with indent INDENT. */
4915 state *to = trans->to;
4916 if (is_final)
4918 /* We inverted the condition above, so return failure in the
4919 "if" body and fall through to the target of the transition. */
4920 printf_indent (indent + 2, "return %s;\n",
4921 get_failure_return (os->type));
4922 return print_state (os, to, indent, is_final);
4924 else if (to->singleton ()
4925 && to->first->test.kind == rtx_test::ACCEPT
4926 && single_statement_p (to->first->test.u.acceptance))
4928 /* The target of the transition is a simple "return" statement.
4929 It doesn't need any braces and doesn't fall through. */
4930 if (print_acceptance (to->first->test.u.acceptance,
4931 indent + 2, true) != ES_RETURNED)
4932 gcc_unreachable ();
4933 return ES_FALLTHROUGH;
4935 else
4937 /* The general case. Output code for the target of the transition
4938 in braces. This will not invalidate any of the xN variables
4939 that are already valid, but we mustn't rely on any that are
4940 set by the "if" body. */
4941 auto_vec <bool, 32> old_seen;
4942 old_seen.safe_splice (os->seen_vars);
4944 printf_indent (indent + 2, "{\n");
4945 print_state (os, trans->to, indent + 4, is_final);
4946 printf_indent (indent + 2, "}\n");
4948 os->seen_vars.truncate (0);
4949 os->seen_vars.splice (old_seen);
4950 return ES_FALLTHROUGH;
4953 else
4955 /* Output the decision as a switch statement. */
4956 printf_indent (indent, "switch (");
4957 print_nonbool_test (os, d->test);
4958 printf (")\n");
4960 /* Each case statement starts with the same set of valid variables.
4961 These are also the only variables will be valid on fallthrough. */
4962 auto_vec <bool, 32> old_seen;
4963 old_seen.safe_splice (os->seen_vars);
4965 printf_indent (indent + 2, "{\n");
4966 for (transition *trans = d->first; trans; trans = trans->next)
4968 gcc_assert (!trans->is_param);
4969 if (mark_optional_transitions_p && trans->optional)
4970 printf_indent (indent + 2, "/* OPTIONAL CASE */\n");
4971 for (int_set::iterator j = trans->labels.begin ();
4972 j != trans->labels.end (); ++j)
4974 printf_indent (indent + 2, "case ");
4975 print_label_value (d->test, trans->is_param, *j);
4976 printf (":\n");
4978 if (print_state (os, trans->to, indent + 4, is_final))
4980 /* The state can fall through. Add an explicit break. */
4981 gcc_assert (!is_final);
4982 printf_indent (indent + 4, "break;\n");
4984 printf ("\n");
4986 /* Restore the original set of valid variables. */
4987 os->seen_vars.truncate (0);
4988 os->seen_vars.splice (old_seen);
4990 /* Add a default case. */
4991 printf_indent (indent + 2, "default:\n");
4992 if (is_final)
4993 printf_indent (indent + 4, "return %s;\n",
4994 get_failure_return (os->type));
4995 else
4996 printf_indent (indent + 4, "break;\n");
4997 printf_indent (indent + 2, "}\n");
4998 return is_final ? ES_RETURNED : ES_FALLTHROUGH;
5002 /* Make sure that OS has a position variable for POS. ROOT_P is true if
5003 POS is the root position for the routine. */
5005 static void
5006 assign_position_var (output_state *os, position *pos, bool root_p)
5008 unsigned int idx = os->id_to_var[pos->id];
5009 if (idx < os->var_to_id.length () && os->var_to_id[idx] == pos->id)
5010 return;
5011 if (!root_p && pos->type != POS_PEEP2_INSN)
5012 assign_position_var (os, pos->base, false);
5013 os->id_to_var[pos->id] = os->var_to_id.length ();
5014 os->var_to_id.safe_push (pos->id);
5017 /* Make sure that OS has the position variables required by S. */
5019 static void
5020 assign_position_vars (output_state *os, state *s)
5022 for (decision *d = s->first; d; d = d->next)
5024 /* Positions associated with operands can be read from the
5025 operands[] array. */
5026 if (d->test.pos && d->test.pos_operand < 0)
5027 assign_position_var (os, d->test.pos, false);
5028 for (transition *trans = d->first; trans; trans = trans->next)
5029 assign_position_vars (os, trans->to);
5033 /* Print the open brace and variable definitions for a routine that
5034 implements S. ROOT is the deepest rtx from which S can access all
5035 relevant parts of the first instruction it matches. Initialize OS
5036 so that every relevant position has an rtx variable xN and so that
5037 only ROOT's variable has a valid value. */
5039 static void
5040 print_subroutine_start (output_state *os, state *s, position *root)
5042 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
5043 " = &recog_data.operand[0];\n");
5044 os->var_to_id.truncate (0);
5045 os->seen_vars.truncate (0);
5046 if (root)
5048 /* Create a fake entry for position 0 so that an id_to_var of 0
5049 is always invalid. This also makes the xN variables naturally
5050 1-based rather than 0-based. */
5051 os->var_to_id.safe_push (num_positions);
5053 /* Associate ROOT with x1. */
5054 assign_position_var (os, root, true);
5056 /* Assign xN variables to all other relevant positions. */
5057 assign_position_vars (os, s);
5059 /* Output the variable declarations (except for ROOT's, which is
5060 passed in as a parameter). */
5061 unsigned int num_vars = os->var_to_id.length ();
5062 if (num_vars > 2)
5064 for (unsigned int i = 2; i < num_vars; ++i)
5065 /* Print 8 rtx variables to a line. */
5066 printf ("%s x%d",
5067 i == 2 ? " rtx" : (i - 2) % 8 == 0 ? ";\n rtx" : ",", i);
5068 printf (";\n");
5071 /* Say that x1 is valid and the rest aren't. */
5072 os->seen_vars.safe_grow_cleared (num_vars);
5073 os->seen_vars[1] = true;
5075 if (os->type == SUBPATTERN || os->type == RECOG)
5076 printf (" int res ATTRIBUTE_UNUSED;\n");
5077 else
5078 printf (" rtx_insn *res ATTRIBUTE_UNUSED;\n");
5081 /* Output the definition of pattern routine ROUTINE. */
5083 static void
5084 print_pattern (output_state *os, pattern_routine *routine)
5086 printf ("\nstatic int\npattern%d (", routine->pattern_id);
5087 const char *sep = "";
5088 /* Add the top-level rtx parameter, if any. */
5089 if (routine->pos)
5091 printf ("%srtx x1", sep);
5092 sep = ", ";
5094 /* Add the optional parameters. */
5095 if (routine->insn_p)
5097 /* We can't easily tell whether a C condition actually reads INSN,
5098 so add an ATTRIBUTE_UNUSED just in case. */
5099 printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep);
5100 sep = ", ";
5102 if (routine->pnum_clobbers_p)
5104 printf ("%sint *pnum_clobbers", sep);
5105 sep = ", ";
5107 /* Add the "i" parameters. */
5108 for (unsigned int i = 0; i < routine->param_types.length (); ++i)
5110 printf ("%s%s i%d", sep,
5111 parameter_type_string (routine->param_types[i]), i + 1);
5112 sep = ", ";
5114 printf (")\n");
5115 os->type = SUBPATTERN;
5116 print_subroutine_start (os, routine->s, routine->pos);
5117 print_state (os, routine->s, 2, true);
5118 printf ("}\n");
5121 /* Output a routine of type TYPE that implements S. PROC_ID is the
5122 number of the subroutine associated with S, or 0 if S is the main
5123 routine. */
5125 static void
5126 print_subroutine (output_state *os, state *s, int proc_id)
5128 printf ("\n");
5129 switch (os->type)
5131 case SUBPATTERN:
5132 gcc_unreachable ();
5134 case RECOG:
5135 if (proc_id)
5136 printf ("static int\nrecog_%d", proc_id);
5137 else
5138 printf ("int\nrecog");
5139 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5140 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5141 "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n");
5142 break;
5144 case SPLIT:
5145 if (proc_id)
5146 printf ("static rtx_insn *\nsplit_%d", proc_id);
5147 else
5148 printf ("rtx_insn *\nsplit_insns");
5149 printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
5150 break;
5152 case PEEPHOLE2:
5153 if (proc_id)
5154 printf ("static rtx_insn *\npeephole2_%d", proc_id);
5155 else
5156 printf ("rtx_insn *\npeephole2_insns");
5157 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5158 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5159 "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
5160 break;
5162 print_subroutine_start (os, s, &root_pos);
5163 if (proc_id == 0)
5165 printf (" recog_data.insn = NULL;\n");
5167 print_state (os, s, 2, true);
5168 printf ("}\n");
5171 /* Print out a routine of type TYPE that performs ROOT. */
5173 static void
5174 print_subroutine_group (output_state *os, routine_type type, state *root)
5176 os->type = type;
5177 if (use_subroutines_p)
5179 /* Split ROOT up into smaller pieces, both for readability and to
5180 help the compiler. */
5181 auto_vec <state *> subroutines;
5182 find_subroutines (type, root, subroutines);
5184 /* Output the subroutines (but not ROOT itself). */
5185 unsigned int i;
5186 state *s;
5187 FOR_EACH_VEC_ELT (subroutines, i, s)
5188 print_subroutine (os, s, i + 1);
5190 /* Output the main routine. */
5191 print_subroutine (os, root, 0);
5194 /* Return the rtx pattern for the list of rtxes in a define_peephole2. */
5196 static rtx
5197 get_peephole2_pattern (md_rtx_info *info)
5199 int i, j;
5200 rtvec vec = XVEC (info->def, 0);
5201 rtx pattern = rtx_alloc (SEQUENCE);
5202 XVEC (pattern, 0) = rtvec_alloc (GET_NUM_ELEM (vec));
5203 for (i = j = 0; i < GET_NUM_ELEM (vec); i++)
5205 rtx x = RTVEC_ELT (vec, i);
5206 /* Ignore scratch register requirements. */
5207 if (GET_CODE (x) != MATCH_SCRATCH && GET_CODE (x) != MATCH_DUP)
5209 XVECEXP (pattern, 0, j) = x;
5210 j++;
5213 XVECLEN (pattern, 0) = j;
5214 if (j == 0)
5215 error_at (info->loc, "empty define_peephole2");
5216 return pattern;
5219 /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5220 rtx can be added automatically by add_clobbers. If so, update
5221 *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5222 of such trailing rtxes and update *PATTERN_PTR so that it contains
5223 the pattern without those rtxes. */
5225 static bool
5226 remove_clobbers (acceptance_type *acceptance_ptr, rtx *pattern_ptr)
5228 int i;
5229 rtx new_pattern;
5231 /* Find the last non-clobber in the parallel. */
5232 rtx pattern = *pattern_ptr;
5233 for (i = XVECLEN (pattern, 0); i > 0; i--)
5235 rtx x = XVECEXP (pattern, 0, i - 1);
5236 if (GET_CODE (x) != CLOBBER
5237 || (!REG_P (XEXP (x, 0))
5238 && GET_CODE (XEXP (x, 0)) != MATCH_SCRATCH))
5239 break;
5242 if (i == XVECLEN (pattern, 0))
5243 return false;
5245 /* Build a similar insn without the clobbers. */
5246 if (i == 1)
5247 new_pattern = XVECEXP (pattern, 0, 0);
5248 else
5250 new_pattern = rtx_alloc (PARALLEL);
5251 XVEC (new_pattern, 0) = rtvec_alloc (i);
5252 for (int j = 0; j < i; ++j)
5253 XVECEXP (new_pattern, 0, j) = XVECEXP (pattern, 0, j);
5256 /* Recognize it. */
5257 acceptance_ptr->u.full.u.num_clobbers = XVECLEN (pattern, 0) - i;
5258 *pattern_ptr = new_pattern;
5259 return true;
5263 main (int argc, const char **argv)
5265 state insn_root, split_root, peephole2_root;
5267 progname = "genrecog";
5269 if (!init_rtx_reader_args (argc, argv))
5270 return (FATAL_EXIT_CODE);
5272 write_header ();
5274 /* Read the machine description. */
5276 md_rtx_info info;
5277 while (read_md_rtx (&info))
5279 rtx def = info.def;
5281 acceptance_type acceptance;
5282 acceptance.partial_p = false;
5283 acceptance.u.full.code = info.index;
5285 rtx pattern;
5286 switch (GET_CODE (def))
5288 case DEFINE_INSN:
5290 /* Match the instruction in the original .md form. */
5291 acceptance.type = RECOG;
5292 acceptance.u.full.u.num_clobbers = 0;
5293 pattern = add_implicit_parallel (XVEC (def, 1));
5294 validate_pattern (pattern, &info, NULL_RTX, 0);
5295 match_pattern (&insn_root, &info, pattern, acceptance);
5297 /* If the pattern is a PARALLEL with trailing CLOBBERs,
5298 allow recog_for_combine to match without the clobbers. */
5299 if (GET_CODE (pattern) == PARALLEL
5300 && remove_clobbers (&acceptance, &pattern))
5301 match_pattern (&insn_root, &info, pattern, acceptance);
5302 break;
5305 case DEFINE_SPLIT:
5306 acceptance.type = SPLIT;
5307 pattern = add_implicit_parallel (XVEC (def, 0));
5308 validate_pattern (pattern, &info, NULL_RTX, 0);
5309 match_pattern (&split_root, &info, pattern, acceptance);
5311 /* Declare the gen_split routine that we'll call if the
5312 pattern matches. The definition comes from insn-emit.c. */
5313 printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
5314 info.index);
5315 break;
5317 case DEFINE_PEEPHOLE2:
5318 acceptance.type = PEEPHOLE2;
5319 pattern = get_peephole2_pattern (&info);
5320 validate_pattern (pattern, &info, NULL_RTX, 0);
5321 match_pattern (&peephole2_root, &info, pattern, acceptance);
5323 /* Declare the gen_peephole2 routine that we'll call if the
5324 pattern matches. The definition comes from insn-emit.c. */
5325 printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
5326 info.index);
5327 break;
5329 default:
5330 /* do nothing */;
5334 if (have_error)
5335 return FATAL_EXIT_CODE;
5337 puts ("\n\n");
5339 /* Optimize each routine in turn. */
5340 optimize_subroutine_group ("recog", &insn_root);
5341 optimize_subroutine_group ("split_insns", &split_root);
5342 optimize_subroutine_group ("peephole2_insns", &peephole2_root);
5344 output_state os;
5345 os.id_to_var.safe_grow_cleared (num_positions);
5347 if (use_pattern_routines_p)
5349 /* Look for common patterns and split them out into subroutines. */
5350 auto_vec <merge_state_info> states;
5351 states.safe_push (&insn_root);
5352 states.safe_push (&split_root);
5353 states.safe_push (&peephole2_root);
5354 split_out_patterns (states);
5356 /* Print out the routines that we just created. */
5357 unsigned int i;
5358 pattern_routine *routine;
5359 FOR_EACH_VEC_ELT (patterns, i, routine)
5360 print_pattern (&os, routine);
5363 /* Print out the matching routines. */
5364 print_subroutine_group (&os, RECOG, &insn_root);
5365 print_subroutine_group (&os, SPLIT, &split_root);
5366 print_subroutine_group (&os, PEEPHOLE2, &peephole2_root);
5368 fflush (stdout);
5369 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);