PR tree-optimization/78496
[official-gcc.git] / gcc / fold-const.c
blobf6d5af43b33a8141fbb93bcae537eebed6959a6c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "params.h"
75 #include "tree-into-ssa.h"
76 #include "md5.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
79 #include "tree-vrp.h"
80 #include "tree-ssanames.h"
81 #include "selftest.h"
83 /* Nonzero if we are folding constants inside an initializer; zero
84 otherwise. */
85 int folding_initializer = 0;
87 /* The following constants represent a bit based encoding of GCC's
88 comparison operators. This encoding simplifies transformations
89 on relational comparison operators, such as AND and OR. */
90 enum comparison_code {
91 COMPCODE_FALSE = 0,
92 COMPCODE_LT = 1,
93 COMPCODE_EQ = 2,
94 COMPCODE_LE = 3,
95 COMPCODE_GT = 4,
96 COMPCODE_LTGT = 5,
97 COMPCODE_GE = 6,
98 COMPCODE_ORD = 7,
99 COMPCODE_UNORD = 8,
100 COMPCODE_UNLT = 9,
101 COMPCODE_UNEQ = 10,
102 COMPCODE_UNLE = 11,
103 COMPCODE_UNGT = 12,
104 COMPCODE_NE = 13,
105 COMPCODE_UNGE = 14,
106 COMPCODE_TRUE = 15
109 static bool negate_expr_p (tree);
110 static tree negate_expr (tree);
111 static tree split_tree (location_t, tree, tree, enum tree_code,
112 tree *, tree *, tree *, int);
113 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
114 static enum comparison_code comparison_to_compcode (enum tree_code);
115 static enum tree_code compcode_to_comparison (enum comparison_code);
116 static int operand_equal_for_comparison_p (tree, tree, tree);
117 static int twoval_comparison_p (tree, tree *, tree *, int *);
118 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
119 static tree optimize_bit_field_compare (location_t, enum tree_code,
120 tree, tree, tree);
121 static int simple_operand_p (const_tree);
122 static bool simple_operand_p_2 (tree);
123 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
124 static tree range_predecessor (tree);
125 static tree range_successor (tree);
126 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
127 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
128 static tree unextend (tree, int, int, tree);
129 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
130 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
131 static tree fold_binary_op_with_conditional_arg (location_t,
132 enum tree_code, tree,
133 tree, tree,
134 tree, tree, int);
135 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
136 static tree fold_negate_const (tree, tree);
137 static tree fold_not_const (const_tree, tree);
138 static tree fold_relational_const (enum tree_code, tree, tree, tree);
139 static tree fold_convert_const (enum tree_code, tree, tree);
140 static tree fold_view_convert_expr (tree, tree);
141 static bool vec_cst_ctor_to_array (tree, tree *);
142 static tree fold_negate_expr (location_t, tree);
145 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
146 Otherwise, return LOC. */
148 static location_t
149 expr_location_or (tree t, location_t loc)
151 location_t tloc = EXPR_LOCATION (t);
152 return tloc == UNKNOWN_LOCATION ? loc : tloc;
155 /* Similar to protected_set_expr_location, but never modify x in place,
156 if location can and needs to be set, unshare it. */
158 static inline tree
159 protected_set_expr_location_unshare (tree x, location_t loc)
161 if (CAN_HAVE_LOCATION_P (x)
162 && EXPR_LOCATION (x) != loc
163 && !(TREE_CODE (x) == SAVE_EXPR
164 || TREE_CODE (x) == TARGET_EXPR
165 || TREE_CODE (x) == BIND_EXPR))
167 x = copy_node (x);
168 SET_EXPR_LOCATION (x, loc);
170 return x;
173 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
174 division and returns the quotient. Otherwise returns
175 NULL_TREE. */
177 tree
178 div_if_zero_remainder (const_tree arg1, const_tree arg2)
180 widest_int quo;
182 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
183 SIGNED, &quo))
184 return wide_int_to_tree (TREE_TYPE (arg1), quo);
186 return NULL_TREE;
189 /* This is nonzero if we should defer warnings about undefined
190 overflow. This facility exists because these warnings are a
191 special case. The code to estimate loop iterations does not want
192 to issue any warnings, since it works with expressions which do not
193 occur in user code. Various bits of cleanup code call fold(), but
194 only use the result if it has certain characteristics (e.g., is a
195 constant); that code only wants to issue a warning if the result is
196 used. */
198 static int fold_deferring_overflow_warnings;
200 /* If a warning about undefined overflow is deferred, this is the
201 warning. Note that this may cause us to turn two warnings into
202 one, but that is fine since it is sufficient to only give one
203 warning per expression. */
205 static const char* fold_deferred_overflow_warning;
207 /* If a warning about undefined overflow is deferred, this is the
208 level at which the warning should be emitted. */
210 static enum warn_strict_overflow_code fold_deferred_overflow_code;
212 /* Start deferring overflow warnings. We could use a stack here to
213 permit nested calls, but at present it is not necessary. */
215 void
216 fold_defer_overflow_warnings (void)
218 ++fold_deferring_overflow_warnings;
221 /* Stop deferring overflow warnings. If there is a pending warning,
222 and ISSUE is true, then issue the warning if appropriate. STMT is
223 the statement with which the warning should be associated (used for
224 location information); STMT may be NULL. CODE is the level of the
225 warning--a warn_strict_overflow_code value. This function will use
226 the smaller of CODE and the deferred code when deciding whether to
227 issue the warning. CODE may be zero to mean to always use the
228 deferred code. */
230 void
231 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
233 const char *warnmsg;
234 location_t locus;
236 gcc_assert (fold_deferring_overflow_warnings > 0);
237 --fold_deferring_overflow_warnings;
238 if (fold_deferring_overflow_warnings > 0)
240 if (fold_deferred_overflow_warning != NULL
241 && code != 0
242 && code < (int) fold_deferred_overflow_code)
243 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
244 return;
247 warnmsg = fold_deferred_overflow_warning;
248 fold_deferred_overflow_warning = NULL;
250 if (!issue || warnmsg == NULL)
251 return;
253 if (gimple_no_warning_p (stmt))
254 return;
256 /* Use the smallest code level when deciding to issue the
257 warning. */
258 if (code == 0 || code > (int) fold_deferred_overflow_code)
259 code = fold_deferred_overflow_code;
261 if (!issue_strict_overflow_warning (code))
262 return;
264 if (stmt == NULL)
265 locus = input_location;
266 else
267 locus = gimple_location (stmt);
268 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
271 /* Stop deferring overflow warnings, ignoring any deferred
272 warnings. */
274 void
275 fold_undefer_and_ignore_overflow_warnings (void)
277 fold_undefer_overflow_warnings (false, NULL, 0);
280 /* Whether we are deferring overflow warnings. */
282 bool
283 fold_deferring_overflow_warnings_p (void)
285 return fold_deferring_overflow_warnings > 0;
288 /* This is called when we fold something based on the fact that signed
289 overflow is undefined. */
291 void
292 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
294 if (fold_deferring_overflow_warnings > 0)
296 if (fold_deferred_overflow_warning == NULL
297 || wc < fold_deferred_overflow_code)
299 fold_deferred_overflow_warning = gmsgid;
300 fold_deferred_overflow_code = wc;
303 else if (issue_strict_overflow_warning (wc))
304 warning (OPT_Wstrict_overflow, gmsgid);
307 /* Return true if the built-in mathematical function specified by CODE
308 is odd, i.e. -f(x) == f(-x). */
310 bool
311 negate_mathfn_p (combined_fn fn)
313 switch (fn)
315 CASE_CFN_ASIN:
316 CASE_CFN_ASINH:
317 CASE_CFN_ATAN:
318 CASE_CFN_ATANH:
319 CASE_CFN_CASIN:
320 CASE_CFN_CASINH:
321 CASE_CFN_CATAN:
322 CASE_CFN_CATANH:
323 CASE_CFN_CBRT:
324 CASE_CFN_CPROJ:
325 CASE_CFN_CSIN:
326 CASE_CFN_CSINH:
327 CASE_CFN_CTAN:
328 CASE_CFN_CTANH:
329 CASE_CFN_ERF:
330 CASE_CFN_LLROUND:
331 CASE_CFN_LROUND:
332 CASE_CFN_ROUND:
333 CASE_CFN_SIN:
334 CASE_CFN_SINH:
335 CASE_CFN_TAN:
336 CASE_CFN_TANH:
337 CASE_CFN_TRUNC:
338 return true;
340 CASE_CFN_LLRINT:
341 CASE_CFN_LRINT:
342 CASE_CFN_NEARBYINT:
343 CASE_CFN_RINT:
344 return !flag_rounding_math;
346 default:
347 break;
349 return false;
352 /* Check whether we may negate an integer constant T without causing
353 overflow. */
355 bool
356 may_negate_without_overflow_p (const_tree t)
358 tree type;
360 gcc_assert (TREE_CODE (t) == INTEGER_CST);
362 type = TREE_TYPE (t);
363 if (TYPE_UNSIGNED (type))
364 return false;
366 return !wi::only_sign_bit_p (t);
369 /* Determine whether an expression T can be cheaply negated using
370 the function negate_expr without introducing undefined overflow. */
372 static bool
373 negate_expr_p (tree t)
375 tree type;
377 if (t == 0)
378 return false;
380 type = TREE_TYPE (t);
382 STRIP_SIGN_NOPS (t);
383 switch (TREE_CODE (t))
385 case INTEGER_CST:
386 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
387 return true;
389 /* Check that -CST will not overflow type. */
390 return may_negate_without_overflow_p (t);
391 case BIT_NOT_EXPR:
392 return (INTEGRAL_TYPE_P (type)
393 && TYPE_OVERFLOW_WRAPS (type));
395 case FIXED_CST:
396 return true;
398 case NEGATE_EXPR:
399 return !TYPE_OVERFLOW_SANITIZED (type);
401 case REAL_CST:
402 /* We want to canonicalize to positive real constants. Pretend
403 that only negative ones can be easily negated. */
404 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
406 case COMPLEX_CST:
407 return negate_expr_p (TREE_REALPART (t))
408 && negate_expr_p (TREE_IMAGPART (t));
410 case VECTOR_CST:
412 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
413 return true;
415 int count = TYPE_VECTOR_SUBPARTS (type), i;
417 for (i = 0; i < count; i++)
418 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
419 return false;
421 return true;
424 case COMPLEX_EXPR:
425 return negate_expr_p (TREE_OPERAND (t, 0))
426 && negate_expr_p (TREE_OPERAND (t, 1));
428 case CONJ_EXPR:
429 return negate_expr_p (TREE_OPERAND (t, 0));
431 case PLUS_EXPR:
432 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
433 || HONOR_SIGNED_ZEROS (element_mode (type))
434 || (INTEGRAL_TYPE_P (type)
435 && ! TYPE_OVERFLOW_WRAPS (type)))
436 return false;
437 /* -(A + B) -> (-B) - A. */
438 if (negate_expr_p (TREE_OPERAND (t, 1)))
439 return true;
440 /* -(A + B) -> (-A) - B. */
441 return negate_expr_p (TREE_OPERAND (t, 0));
443 case MINUS_EXPR:
444 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
445 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
446 && !HONOR_SIGNED_ZEROS (element_mode (type))
447 && (! INTEGRAL_TYPE_P (type)
448 || TYPE_OVERFLOW_WRAPS (type));
450 case MULT_EXPR:
451 if (TYPE_UNSIGNED (type))
452 break;
453 /* INT_MIN/n * n doesn't overflow while negating one operand it does
454 if n is a (negative) power of two. */
455 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
456 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
457 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
458 && wi::popcount (wi::abs (TREE_OPERAND (t, 0))) != 1)
459 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
460 && wi::popcount (wi::abs (TREE_OPERAND (t, 1))) != 1)))
461 break;
463 /* Fall through. */
465 case RDIV_EXPR:
466 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
467 return negate_expr_p (TREE_OPERAND (t, 1))
468 || negate_expr_p (TREE_OPERAND (t, 0));
469 break;
471 case TRUNC_DIV_EXPR:
472 case ROUND_DIV_EXPR:
473 case EXACT_DIV_EXPR:
474 if (TYPE_UNSIGNED (type))
475 break;
476 if (negate_expr_p (TREE_OPERAND (t, 0)))
477 return true;
478 /* In general we can't negate B in A / B, because if A is INT_MIN and
479 B is 1, we may turn this into INT_MIN / -1 which is undefined
480 and actually traps on some architectures. */
481 if (! INTEGRAL_TYPE_P (TREE_TYPE (t))
482 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
483 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
484 && ! integer_onep (TREE_OPERAND (t, 1))))
485 return negate_expr_p (TREE_OPERAND (t, 1));
486 break;
488 case NOP_EXPR:
489 /* Negate -((double)float) as (double)(-float). */
490 if (TREE_CODE (type) == REAL_TYPE)
492 tree tem = strip_float_extensions (t);
493 if (tem != t)
494 return negate_expr_p (tem);
496 break;
498 case CALL_EXPR:
499 /* Negate -f(x) as f(-x). */
500 if (negate_mathfn_p (get_call_combined_fn (t)))
501 return negate_expr_p (CALL_EXPR_ARG (t, 0));
502 break;
504 case RSHIFT_EXPR:
505 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
506 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
508 tree op1 = TREE_OPERAND (t, 1);
509 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
510 return true;
512 break;
514 default:
515 break;
517 return false;
520 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
521 simplification is possible.
522 If negate_expr_p would return true for T, NULL_TREE will never be
523 returned. */
525 static tree
526 fold_negate_expr_1 (location_t loc, tree t)
528 tree type = TREE_TYPE (t);
529 tree tem;
531 switch (TREE_CODE (t))
533 /* Convert - (~A) to A + 1. */
534 case BIT_NOT_EXPR:
535 if (INTEGRAL_TYPE_P (type))
536 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
537 build_one_cst (type));
538 break;
540 case INTEGER_CST:
541 tem = fold_negate_const (t, type);
542 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
543 || (ANY_INTEGRAL_TYPE_P (type)
544 && !TYPE_OVERFLOW_TRAPS (type)
545 && TYPE_OVERFLOW_WRAPS (type))
546 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
547 return tem;
548 break;
550 case REAL_CST:
551 tem = fold_negate_const (t, type);
552 return tem;
554 case FIXED_CST:
555 tem = fold_negate_const (t, type);
556 return tem;
558 case COMPLEX_CST:
560 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
561 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
562 if (rpart && ipart)
563 return build_complex (type, rpart, ipart);
565 break;
567 case VECTOR_CST:
569 int count = TYPE_VECTOR_SUBPARTS (type), i;
570 tree *elts = XALLOCAVEC (tree, count);
572 for (i = 0; i < count; i++)
574 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
575 if (elts[i] == NULL_TREE)
576 return NULL_TREE;
579 return build_vector (type, elts);
582 case COMPLEX_EXPR:
583 if (negate_expr_p (t))
584 return fold_build2_loc (loc, COMPLEX_EXPR, type,
585 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
586 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
587 break;
589 case CONJ_EXPR:
590 if (negate_expr_p (t))
591 return fold_build1_loc (loc, CONJ_EXPR, type,
592 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
593 break;
595 case NEGATE_EXPR:
596 if (!TYPE_OVERFLOW_SANITIZED (type))
597 return TREE_OPERAND (t, 0);
598 break;
600 case PLUS_EXPR:
601 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
602 && !HONOR_SIGNED_ZEROS (element_mode (type)))
604 /* -(A + B) -> (-B) - A. */
605 if (negate_expr_p (TREE_OPERAND (t, 1)))
607 tem = negate_expr (TREE_OPERAND (t, 1));
608 return fold_build2_loc (loc, MINUS_EXPR, type,
609 tem, TREE_OPERAND (t, 0));
612 /* -(A + B) -> (-A) - B. */
613 if (negate_expr_p (TREE_OPERAND (t, 0)))
615 tem = negate_expr (TREE_OPERAND (t, 0));
616 return fold_build2_loc (loc, MINUS_EXPR, type,
617 tem, TREE_OPERAND (t, 1));
620 break;
622 case MINUS_EXPR:
623 /* - (A - B) -> B - A */
624 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
625 && !HONOR_SIGNED_ZEROS (element_mode (type)))
626 return fold_build2_loc (loc, MINUS_EXPR, type,
627 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
628 break;
630 case MULT_EXPR:
631 if (TYPE_UNSIGNED (type))
632 break;
634 /* Fall through. */
636 case RDIV_EXPR:
637 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
639 tem = TREE_OPERAND (t, 1);
640 if (negate_expr_p (tem))
641 return fold_build2_loc (loc, TREE_CODE (t), type,
642 TREE_OPERAND (t, 0), negate_expr (tem));
643 tem = TREE_OPERAND (t, 0);
644 if (negate_expr_p (tem))
645 return fold_build2_loc (loc, TREE_CODE (t), type,
646 negate_expr (tem), TREE_OPERAND (t, 1));
648 break;
650 case TRUNC_DIV_EXPR:
651 case ROUND_DIV_EXPR:
652 case EXACT_DIV_EXPR:
653 if (TYPE_UNSIGNED (type))
654 break;
655 if (negate_expr_p (TREE_OPERAND (t, 0)))
656 return fold_build2_loc (loc, TREE_CODE (t), type,
657 negate_expr (TREE_OPERAND (t, 0)),
658 TREE_OPERAND (t, 1));
659 /* In general we can't negate B in A / B, because if A is INT_MIN and
660 B is 1, we may turn this into INT_MIN / -1 which is undefined
661 and actually traps on some architectures. */
662 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t))
663 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
664 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
665 && ! integer_onep (TREE_OPERAND (t, 1))))
666 && negate_expr_p (TREE_OPERAND (t, 1)))
667 return fold_build2_loc (loc, TREE_CODE (t), type,
668 TREE_OPERAND (t, 0),
669 negate_expr (TREE_OPERAND (t, 1)));
670 break;
672 case NOP_EXPR:
673 /* Convert -((double)float) into (double)(-float). */
674 if (TREE_CODE (type) == REAL_TYPE)
676 tem = strip_float_extensions (t);
677 if (tem != t && negate_expr_p (tem))
678 return fold_convert_loc (loc, type, negate_expr (tem));
680 break;
682 case CALL_EXPR:
683 /* Negate -f(x) as f(-x). */
684 if (negate_mathfn_p (get_call_combined_fn (t))
685 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
687 tree fndecl, arg;
689 fndecl = get_callee_fndecl (t);
690 arg = negate_expr (CALL_EXPR_ARG (t, 0));
691 return build_call_expr_loc (loc, fndecl, 1, arg);
693 break;
695 case RSHIFT_EXPR:
696 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
697 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
699 tree op1 = TREE_OPERAND (t, 1);
700 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
702 tree ntype = TYPE_UNSIGNED (type)
703 ? signed_type_for (type)
704 : unsigned_type_for (type);
705 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
706 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
707 return fold_convert_loc (loc, type, temp);
710 break;
712 default:
713 break;
716 return NULL_TREE;
719 /* A wrapper for fold_negate_expr_1. */
721 static tree
722 fold_negate_expr (location_t loc, tree t)
724 tree type = TREE_TYPE (t);
725 STRIP_SIGN_NOPS (t);
726 tree tem = fold_negate_expr_1 (loc, t);
727 if (tem == NULL_TREE)
728 return NULL_TREE;
729 return fold_convert_loc (loc, type, tem);
732 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
733 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
734 return NULL_TREE. */
736 static tree
737 negate_expr (tree t)
739 tree type, tem;
740 location_t loc;
742 if (t == NULL_TREE)
743 return NULL_TREE;
745 loc = EXPR_LOCATION (t);
746 type = TREE_TYPE (t);
747 STRIP_SIGN_NOPS (t);
749 tem = fold_negate_expr (loc, t);
750 if (!tem)
751 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
752 return fold_convert_loc (loc, type, tem);
755 /* Split a tree IN into a constant, literal and variable parts that could be
756 combined with CODE to make IN. "constant" means an expression with
757 TREE_CONSTANT but that isn't an actual constant. CODE must be a
758 commutative arithmetic operation. Store the constant part into *CONP,
759 the literal in *LITP and return the variable part. If a part isn't
760 present, set it to null. If the tree does not decompose in this way,
761 return the entire tree as the variable part and the other parts as null.
763 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
764 case, we negate an operand that was subtracted. Except if it is a
765 literal for which we use *MINUS_LITP instead.
767 If NEGATE_P is true, we are negating all of IN, again except a literal
768 for which we use *MINUS_LITP instead. If a variable part is of pointer
769 type, it is negated after converting to TYPE. This prevents us from
770 generating illegal MINUS pointer expression. LOC is the location of
771 the converted variable part.
773 If IN is itself a literal or constant, return it as appropriate.
775 Note that we do not guarantee that any of the three values will be the
776 same type as IN, but they will have the same signedness and mode. */
778 static tree
779 split_tree (location_t loc, tree in, tree type, enum tree_code code,
780 tree *conp, tree *litp, tree *minus_litp, int negate_p)
782 tree var = 0;
784 *conp = 0;
785 *litp = 0;
786 *minus_litp = 0;
788 /* Strip any conversions that don't change the machine mode or signedness. */
789 STRIP_SIGN_NOPS (in);
791 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
792 || TREE_CODE (in) == FIXED_CST)
793 *litp = in;
794 else if (TREE_CODE (in) == code
795 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
796 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
797 /* We can associate addition and subtraction together (even
798 though the C standard doesn't say so) for integers because
799 the value is not affected. For reals, the value might be
800 affected, so we can't. */
801 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
802 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
803 || (code == MINUS_EXPR
804 && (TREE_CODE (in) == PLUS_EXPR
805 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
807 tree op0 = TREE_OPERAND (in, 0);
808 tree op1 = TREE_OPERAND (in, 1);
809 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
810 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
812 /* First see if either of the operands is a literal, then a constant. */
813 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
814 || TREE_CODE (op0) == FIXED_CST)
815 *litp = op0, op0 = 0;
816 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
817 || TREE_CODE (op1) == FIXED_CST)
818 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
820 if (op0 != 0 && TREE_CONSTANT (op0))
821 *conp = op0, op0 = 0;
822 else if (op1 != 0 && TREE_CONSTANT (op1))
823 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
825 /* If we haven't dealt with either operand, this is not a case we can
826 decompose. Otherwise, VAR is either of the ones remaining, if any. */
827 if (op0 != 0 && op1 != 0)
828 var = in;
829 else if (op0 != 0)
830 var = op0;
831 else
832 var = op1, neg_var_p = neg1_p;
834 /* Now do any needed negations. */
835 if (neg_litp_p)
836 *minus_litp = *litp, *litp = 0;
837 if (neg_conp_p && *conp)
839 /* Convert to TYPE before negating. */
840 *conp = fold_convert_loc (loc, type, *conp);
841 *conp = negate_expr (*conp);
843 if (neg_var_p && var)
845 /* Convert to TYPE before negating. */
846 var = fold_convert_loc (loc, type, var);
847 var = negate_expr (var);
850 else if (TREE_CONSTANT (in))
851 *conp = in;
852 else if (TREE_CODE (in) == BIT_NOT_EXPR
853 && code == PLUS_EXPR)
855 /* -X - 1 is folded to ~X, undo that here. Do _not_ do this
856 when IN is constant. */
857 *minus_litp = build_one_cst (TREE_TYPE (in));
858 var = negate_expr (TREE_OPERAND (in, 0));
860 else
861 var = in;
863 if (negate_p)
865 if (*litp)
866 *minus_litp = *litp, *litp = 0;
867 else if (*minus_litp)
868 *litp = *minus_litp, *minus_litp = 0;
869 if (*conp)
871 /* Convert to TYPE before negating. */
872 *conp = fold_convert_loc (loc, type, *conp);
873 *conp = negate_expr (*conp);
875 if (var)
877 /* Convert to TYPE before negating. */
878 var = fold_convert_loc (loc, type, var);
879 var = negate_expr (var);
883 return var;
886 /* Re-associate trees split by the above function. T1 and T2 are
887 either expressions to associate or null. Return the new
888 expression, if any. LOC is the location of the new expression. If
889 we build an operation, do it in TYPE and with CODE. */
891 static tree
892 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
894 if (t1 == 0)
895 return t2;
896 else if (t2 == 0)
897 return t1;
899 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
900 try to fold this since we will have infinite recursion. But do
901 deal with any NEGATE_EXPRs. */
902 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
903 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
905 if (code == PLUS_EXPR)
907 if (TREE_CODE (t1) == NEGATE_EXPR)
908 return build2_loc (loc, MINUS_EXPR, type,
909 fold_convert_loc (loc, type, t2),
910 fold_convert_loc (loc, type,
911 TREE_OPERAND (t1, 0)));
912 else if (TREE_CODE (t2) == NEGATE_EXPR)
913 return build2_loc (loc, MINUS_EXPR, type,
914 fold_convert_loc (loc, type, t1),
915 fold_convert_loc (loc, type,
916 TREE_OPERAND (t2, 0)));
917 else if (integer_zerop (t2))
918 return fold_convert_loc (loc, type, t1);
920 else if (code == MINUS_EXPR)
922 if (integer_zerop (t2))
923 return fold_convert_loc (loc, type, t1);
926 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
927 fold_convert_loc (loc, type, t2));
930 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
931 fold_convert_loc (loc, type, t2));
934 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
935 for use in int_const_binop, size_binop and size_diffop. */
937 static bool
938 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
940 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
941 return false;
942 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
943 return false;
945 switch (code)
947 case LSHIFT_EXPR:
948 case RSHIFT_EXPR:
949 case LROTATE_EXPR:
950 case RROTATE_EXPR:
951 return true;
953 default:
954 break;
957 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
958 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
959 && TYPE_MODE (type1) == TYPE_MODE (type2);
963 /* Combine two integer constants ARG1 and ARG2 under operation CODE
964 to produce a new constant. Return NULL_TREE if we don't know how
965 to evaluate CODE at compile-time. */
967 static tree
968 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
969 int overflowable)
971 wide_int res;
972 tree t;
973 tree type = TREE_TYPE (arg1);
974 signop sign = TYPE_SIGN (type);
975 bool overflow = false;
977 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type));
979 switch (code)
981 case BIT_IOR_EXPR:
982 res = wi::bit_or (arg1, arg2);
983 break;
985 case BIT_XOR_EXPR:
986 res = wi::bit_xor (arg1, arg2);
987 break;
989 case BIT_AND_EXPR:
990 res = wi::bit_and (arg1, arg2);
991 break;
993 case RSHIFT_EXPR:
994 case LSHIFT_EXPR:
995 if (wi::neg_p (arg2))
997 arg2 = -arg2;
998 if (code == RSHIFT_EXPR)
999 code = LSHIFT_EXPR;
1000 else
1001 code = RSHIFT_EXPR;
1004 if (code == RSHIFT_EXPR)
1005 /* It's unclear from the C standard whether shifts can overflow.
1006 The following code ignores overflow; perhaps a C standard
1007 interpretation ruling is needed. */
1008 res = wi::rshift (arg1, arg2, sign);
1009 else
1010 res = wi::lshift (arg1, arg2);
1011 break;
1013 case RROTATE_EXPR:
1014 case LROTATE_EXPR:
1015 if (wi::neg_p (arg2))
1017 arg2 = -arg2;
1018 if (code == RROTATE_EXPR)
1019 code = LROTATE_EXPR;
1020 else
1021 code = RROTATE_EXPR;
1024 if (code == RROTATE_EXPR)
1025 res = wi::rrotate (arg1, arg2);
1026 else
1027 res = wi::lrotate (arg1, arg2);
1028 break;
1030 case PLUS_EXPR:
1031 res = wi::add (arg1, arg2, sign, &overflow);
1032 break;
1034 case MINUS_EXPR:
1035 res = wi::sub (arg1, arg2, sign, &overflow);
1036 break;
1038 case MULT_EXPR:
1039 res = wi::mul (arg1, arg2, sign, &overflow);
1040 break;
1042 case MULT_HIGHPART_EXPR:
1043 res = wi::mul_high (arg1, arg2, sign);
1044 break;
1046 case TRUNC_DIV_EXPR:
1047 case EXACT_DIV_EXPR:
1048 if (arg2 == 0)
1049 return NULL_TREE;
1050 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1051 break;
1053 case FLOOR_DIV_EXPR:
1054 if (arg2 == 0)
1055 return NULL_TREE;
1056 res = wi::div_floor (arg1, arg2, sign, &overflow);
1057 break;
1059 case CEIL_DIV_EXPR:
1060 if (arg2 == 0)
1061 return NULL_TREE;
1062 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1063 break;
1065 case ROUND_DIV_EXPR:
1066 if (arg2 == 0)
1067 return NULL_TREE;
1068 res = wi::div_round (arg1, arg2, sign, &overflow);
1069 break;
1071 case TRUNC_MOD_EXPR:
1072 if (arg2 == 0)
1073 return NULL_TREE;
1074 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1075 break;
1077 case FLOOR_MOD_EXPR:
1078 if (arg2 == 0)
1079 return NULL_TREE;
1080 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1081 break;
1083 case CEIL_MOD_EXPR:
1084 if (arg2 == 0)
1085 return NULL_TREE;
1086 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1087 break;
1089 case ROUND_MOD_EXPR:
1090 if (arg2 == 0)
1091 return NULL_TREE;
1092 res = wi::mod_round (arg1, arg2, sign, &overflow);
1093 break;
1095 case MIN_EXPR:
1096 res = wi::min (arg1, arg2, sign);
1097 break;
1099 case MAX_EXPR:
1100 res = wi::max (arg1, arg2, sign);
1101 break;
1103 default:
1104 return NULL_TREE;
1107 t = force_fit_type (type, res, overflowable,
1108 (((sign == SIGNED || overflowable == -1)
1109 && overflow)
1110 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1112 return t;
1115 tree
1116 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1118 return int_const_binop_1 (code, arg1, arg2, 1);
1121 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1122 constant. We assume ARG1 and ARG2 have the same data type, or at least
1123 are the same kind of constant and the same machine mode. Return zero if
1124 combining the constants is not allowed in the current operating mode. */
1126 static tree
1127 const_binop (enum tree_code code, tree arg1, tree arg2)
1129 /* Sanity check for the recursive cases. */
1130 if (!arg1 || !arg2)
1131 return NULL_TREE;
1133 STRIP_NOPS (arg1);
1134 STRIP_NOPS (arg2);
1136 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1138 if (code == POINTER_PLUS_EXPR)
1139 return int_const_binop (PLUS_EXPR,
1140 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1142 return int_const_binop (code, arg1, arg2);
1145 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1147 machine_mode mode;
1148 REAL_VALUE_TYPE d1;
1149 REAL_VALUE_TYPE d2;
1150 REAL_VALUE_TYPE value;
1151 REAL_VALUE_TYPE result;
1152 bool inexact;
1153 tree t, type;
1155 /* The following codes are handled by real_arithmetic. */
1156 switch (code)
1158 case PLUS_EXPR:
1159 case MINUS_EXPR:
1160 case MULT_EXPR:
1161 case RDIV_EXPR:
1162 case MIN_EXPR:
1163 case MAX_EXPR:
1164 break;
1166 default:
1167 return NULL_TREE;
1170 d1 = TREE_REAL_CST (arg1);
1171 d2 = TREE_REAL_CST (arg2);
1173 type = TREE_TYPE (arg1);
1174 mode = TYPE_MODE (type);
1176 /* Don't perform operation if we honor signaling NaNs and
1177 either operand is a signaling NaN. */
1178 if (HONOR_SNANS (mode)
1179 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1180 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1181 return NULL_TREE;
1183 /* Don't perform operation if it would raise a division
1184 by zero exception. */
1185 if (code == RDIV_EXPR
1186 && real_equal (&d2, &dconst0)
1187 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1188 return NULL_TREE;
1190 /* If either operand is a NaN, just return it. Otherwise, set up
1191 for floating-point trap; we return an overflow. */
1192 if (REAL_VALUE_ISNAN (d1))
1194 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1195 is off. */
1196 d1.signalling = 0;
1197 t = build_real (type, d1);
1198 return t;
1200 else if (REAL_VALUE_ISNAN (d2))
1202 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1203 is off. */
1204 d2.signalling = 0;
1205 t = build_real (type, d2);
1206 return t;
1209 inexact = real_arithmetic (&value, code, &d1, &d2);
1210 real_convert (&result, mode, &value);
1212 /* Don't constant fold this floating point operation if
1213 the result has overflowed and flag_trapping_math. */
1214 if (flag_trapping_math
1215 && MODE_HAS_INFINITIES (mode)
1216 && REAL_VALUE_ISINF (result)
1217 && !REAL_VALUE_ISINF (d1)
1218 && !REAL_VALUE_ISINF (d2))
1219 return NULL_TREE;
1221 /* Don't constant fold this floating point operation if the
1222 result may dependent upon the run-time rounding mode and
1223 flag_rounding_math is set, or if GCC's software emulation
1224 is unable to accurately represent the result. */
1225 if ((flag_rounding_math
1226 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1227 && (inexact || !real_identical (&result, &value)))
1228 return NULL_TREE;
1230 t = build_real (type, result);
1232 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1233 return t;
1236 if (TREE_CODE (arg1) == FIXED_CST)
1238 FIXED_VALUE_TYPE f1;
1239 FIXED_VALUE_TYPE f2;
1240 FIXED_VALUE_TYPE result;
1241 tree t, type;
1242 int sat_p;
1243 bool overflow_p;
1245 /* The following codes are handled by fixed_arithmetic. */
1246 switch (code)
1248 case PLUS_EXPR:
1249 case MINUS_EXPR:
1250 case MULT_EXPR:
1251 case TRUNC_DIV_EXPR:
1252 if (TREE_CODE (arg2) != FIXED_CST)
1253 return NULL_TREE;
1254 f2 = TREE_FIXED_CST (arg2);
1255 break;
1257 case LSHIFT_EXPR:
1258 case RSHIFT_EXPR:
1260 if (TREE_CODE (arg2) != INTEGER_CST)
1261 return NULL_TREE;
1262 wide_int w2 = arg2;
1263 f2.data.high = w2.elt (1);
1264 f2.data.low = w2.ulow ();
1265 f2.mode = SImode;
1267 break;
1269 default:
1270 return NULL_TREE;
1273 f1 = TREE_FIXED_CST (arg1);
1274 type = TREE_TYPE (arg1);
1275 sat_p = TYPE_SATURATING (type);
1276 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1277 t = build_fixed (type, result);
1278 /* Propagate overflow flags. */
1279 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1280 TREE_OVERFLOW (t) = 1;
1281 return t;
1284 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1286 tree type = TREE_TYPE (arg1);
1287 tree r1 = TREE_REALPART (arg1);
1288 tree i1 = TREE_IMAGPART (arg1);
1289 tree r2 = TREE_REALPART (arg2);
1290 tree i2 = TREE_IMAGPART (arg2);
1291 tree real, imag;
1293 switch (code)
1295 case PLUS_EXPR:
1296 case MINUS_EXPR:
1297 real = const_binop (code, r1, r2);
1298 imag = const_binop (code, i1, i2);
1299 break;
1301 case MULT_EXPR:
1302 if (COMPLEX_FLOAT_TYPE_P (type))
1303 return do_mpc_arg2 (arg1, arg2, type,
1304 /* do_nonfinite= */ folding_initializer,
1305 mpc_mul);
1307 real = const_binop (MINUS_EXPR,
1308 const_binop (MULT_EXPR, r1, r2),
1309 const_binop (MULT_EXPR, i1, i2));
1310 imag = const_binop (PLUS_EXPR,
1311 const_binop (MULT_EXPR, r1, i2),
1312 const_binop (MULT_EXPR, i1, r2));
1313 break;
1315 case RDIV_EXPR:
1316 if (COMPLEX_FLOAT_TYPE_P (type))
1317 return do_mpc_arg2 (arg1, arg2, type,
1318 /* do_nonfinite= */ folding_initializer,
1319 mpc_div);
1320 /* Fallthru. */
1321 case TRUNC_DIV_EXPR:
1322 case CEIL_DIV_EXPR:
1323 case FLOOR_DIV_EXPR:
1324 case ROUND_DIV_EXPR:
1325 if (flag_complex_method == 0)
1327 /* Keep this algorithm in sync with
1328 tree-complex.c:expand_complex_div_straight().
1330 Expand complex division to scalars, straightforward algorithm.
1331 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1332 t = br*br + bi*bi
1334 tree magsquared
1335 = const_binop (PLUS_EXPR,
1336 const_binop (MULT_EXPR, r2, r2),
1337 const_binop (MULT_EXPR, i2, i2));
1338 tree t1
1339 = const_binop (PLUS_EXPR,
1340 const_binop (MULT_EXPR, r1, r2),
1341 const_binop (MULT_EXPR, i1, i2));
1342 tree t2
1343 = const_binop (MINUS_EXPR,
1344 const_binop (MULT_EXPR, i1, r2),
1345 const_binop (MULT_EXPR, r1, i2));
1347 real = const_binop (code, t1, magsquared);
1348 imag = const_binop (code, t2, magsquared);
1350 else
1352 /* Keep this algorithm in sync with
1353 tree-complex.c:expand_complex_div_wide().
1355 Expand complex division to scalars, modified algorithm to minimize
1356 overflow with wide input ranges. */
1357 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1358 fold_abs_const (r2, TREE_TYPE (type)),
1359 fold_abs_const (i2, TREE_TYPE (type)));
1361 if (integer_nonzerop (compare))
1363 /* In the TRUE branch, we compute
1364 ratio = br/bi;
1365 div = (br * ratio) + bi;
1366 tr = (ar * ratio) + ai;
1367 ti = (ai * ratio) - ar;
1368 tr = tr / div;
1369 ti = ti / div; */
1370 tree ratio = const_binop (code, r2, i2);
1371 tree div = const_binop (PLUS_EXPR, i2,
1372 const_binop (MULT_EXPR, r2, ratio));
1373 real = const_binop (MULT_EXPR, r1, ratio);
1374 real = const_binop (PLUS_EXPR, real, i1);
1375 real = const_binop (code, real, div);
1377 imag = const_binop (MULT_EXPR, i1, ratio);
1378 imag = const_binop (MINUS_EXPR, imag, r1);
1379 imag = const_binop (code, imag, div);
1381 else
1383 /* In the FALSE branch, we compute
1384 ratio = d/c;
1385 divisor = (d * ratio) + c;
1386 tr = (b * ratio) + a;
1387 ti = b - (a * ratio);
1388 tr = tr / div;
1389 ti = ti / div; */
1390 tree ratio = const_binop (code, i2, r2);
1391 tree div = const_binop (PLUS_EXPR, r2,
1392 const_binop (MULT_EXPR, i2, ratio));
1394 real = const_binop (MULT_EXPR, i1, ratio);
1395 real = const_binop (PLUS_EXPR, real, r1);
1396 real = const_binop (code, real, div);
1398 imag = const_binop (MULT_EXPR, r1, ratio);
1399 imag = const_binop (MINUS_EXPR, i1, imag);
1400 imag = const_binop (code, imag, div);
1403 break;
1405 default:
1406 return NULL_TREE;
1409 if (real && imag)
1410 return build_complex (type, real, imag);
1413 if (TREE_CODE (arg1) == VECTOR_CST
1414 && TREE_CODE (arg2) == VECTOR_CST)
1416 tree type = TREE_TYPE (arg1);
1417 int count = TYPE_VECTOR_SUBPARTS (type), i;
1418 tree *elts = XALLOCAVEC (tree, count);
1420 for (i = 0; i < count; i++)
1422 tree elem1 = VECTOR_CST_ELT (arg1, i);
1423 tree elem2 = VECTOR_CST_ELT (arg2, i);
1425 elts[i] = const_binop (code, elem1, elem2);
1427 /* It is possible that const_binop cannot handle the given
1428 code and return NULL_TREE */
1429 if (elts[i] == NULL_TREE)
1430 return NULL_TREE;
1433 return build_vector (type, elts);
1436 /* Shifts allow a scalar offset for a vector. */
1437 if (TREE_CODE (arg1) == VECTOR_CST
1438 && TREE_CODE (arg2) == INTEGER_CST)
1440 tree type = TREE_TYPE (arg1);
1441 int count = TYPE_VECTOR_SUBPARTS (type), i;
1442 tree *elts = XALLOCAVEC (tree, count);
1444 for (i = 0; i < count; i++)
1446 tree elem1 = VECTOR_CST_ELT (arg1, i);
1448 elts[i] = const_binop (code, elem1, arg2);
1450 /* It is possible that const_binop cannot handle the given
1451 code and return NULL_TREE. */
1452 if (elts[i] == NULL_TREE)
1453 return NULL_TREE;
1456 return build_vector (type, elts);
1458 return NULL_TREE;
1461 /* Overload that adds a TYPE parameter to be able to dispatch
1462 to fold_relational_const. */
1464 tree
1465 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1467 if (TREE_CODE_CLASS (code) == tcc_comparison)
1468 return fold_relational_const (code, type, arg1, arg2);
1470 /* ??? Until we make the const_binop worker take the type of the
1471 result as argument put those cases that need it here. */
1472 switch (code)
1474 case COMPLEX_EXPR:
1475 if ((TREE_CODE (arg1) == REAL_CST
1476 && TREE_CODE (arg2) == REAL_CST)
1477 || (TREE_CODE (arg1) == INTEGER_CST
1478 && TREE_CODE (arg2) == INTEGER_CST))
1479 return build_complex (type, arg1, arg2);
1480 return NULL_TREE;
1482 case VEC_PACK_TRUNC_EXPR:
1483 case VEC_PACK_FIX_TRUNC_EXPR:
1485 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1486 tree *elts;
1488 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1489 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1490 if (TREE_CODE (arg1) != VECTOR_CST
1491 || TREE_CODE (arg2) != VECTOR_CST)
1492 return NULL_TREE;
1494 elts = XALLOCAVEC (tree, nelts);
1495 if (!vec_cst_ctor_to_array (arg1, elts)
1496 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1497 return NULL_TREE;
1499 for (i = 0; i < nelts; i++)
1501 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1502 ? NOP_EXPR : FIX_TRUNC_EXPR,
1503 TREE_TYPE (type), elts[i]);
1504 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1505 return NULL_TREE;
1508 return build_vector (type, elts);
1511 case VEC_WIDEN_MULT_LO_EXPR:
1512 case VEC_WIDEN_MULT_HI_EXPR:
1513 case VEC_WIDEN_MULT_EVEN_EXPR:
1514 case VEC_WIDEN_MULT_ODD_EXPR:
1516 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1517 unsigned int out, ofs, scale;
1518 tree *elts;
1520 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1521 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1522 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1523 return NULL_TREE;
1525 elts = XALLOCAVEC (tree, nelts * 4);
1526 if (!vec_cst_ctor_to_array (arg1, elts)
1527 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1528 return NULL_TREE;
1530 if (code == VEC_WIDEN_MULT_LO_EXPR)
1531 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1532 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1533 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1534 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1535 scale = 1, ofs = 0;
1536 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1537 scale = 1, ofs = 1;
1539 for (out = 0; out < nelts; out++)
1541 unsigned int in1 = (out << scale) + ofs;
1542 unsigned int in2 = in1 + nelts * 2;
1543 tree t1, t2;
1545 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1546 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1548 if (t1 == NULL_TREE || t2 == NULL_TREE)
1549 return NULL_TREE;
1550 elts[out] = const_binop (MULT_EXPR, t1, t2);
1551 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1552 return NULL_TREE;
1555 return build_vector (type, elts);
1558 default:;
1561 if (TREE_CODE_CLASS (code) != tcc_binary)
1562 return NULL_TREE;
1564 /* Make sure type and arg0 have the same saturating flag. */
1565 gcc_checking_assert (TYPE_SATURATING (type)
1566 == TYPE_SATURATING (TREE_TYPE (arg1)));
1568 return const_binop (code, arg1, arg2);
1571 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1572 Return zero if computing the constants is not possible. */
1574 tree
1575 const_unop (enum tree_code code, tree type, tree arg0)
1577 /* Don't perform the operation, other than NEGATE and ABS, if
1578 flag_signaling_nans is on and the operand is a signaling NaN. */
1579 if (TREE_CODE (arg0) == REAL_CST
1580 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1581 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1582 && code != NEGATE_EXPR
1583 && code != ABS_EXPR)
1584 return NULL_TREE;
1586 switch (code)
1588 CASE_CONVERT:
1589 case FLOAT_EXPR:
1590 case FIX_TRUNC_EXPR:
1591 case FIXED_CONVERT_EXPR:
1592 return fold_convert_const (code, type, arg0);
1594 case ADDR_SPACE_CONVERT_EXPR:
1595 /* If the source address is 0, and the source address space
1596 cannot have a valid object at 0, fold to dest type null. */
1597 if (integer_zerop (arg0)
1598 && !(targetm.addr_space.zero_address_valid
1599 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1600 return fold_convert_const (code, type, arg0);
1601 break;
1603 case VIEW_CONVERT_EXPR:
1604 return fold_view_convert_expr (type, arg0);
1606 case NEGATE_EXPR:
1608 /* Can't call fold_negate_const directly here as that doesn't
1609 handle all cases and we might not be able to negate some
1610 constants. */
1611 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1612 if (tem && CONSTANT_CLASS_P (tem))
1613 return tem;
1614 break;
1617 case ABS_EXPR:
1618 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1619 return fold_abs_const (arg0, type);
1620 break;
1622 case CONJ_EXPR:
1623 if (TREE_CODE (arg0) == COMPLEX_CST)
1625 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1626 TREE_TYPE (type));
1627 return build_complex (type, TREE_REALPART (arg0), ipart);
1629 break;
1631 case BIT_NOT_EXPR:
1632 if (TREE_CODE (arg0) == INTEGER_CST)
1633 return fold_not_const (arg0, type);
1634 /* Perform BIT_NOT_EXPR on each element individually. */
1635 else if (TREE_CODE (arg0) == VECTOR_CST)
1637 tree *elements;
1638 tree elem;
1639 unsigned count = VECTOR_CST_NELTS (arg0), i;
1641 elements = XALLOCAVEC (tree, count);
1642 for (i = 0; i < count; i++)
1644 elem = VECTOR_CST_ELT (arg0, i);
1645 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1646 if (elem == NULL_TREE)
1647 break;
1648 elements[i] = elem;
1650 if (i == count)
1651 return build_vector (type, elements);
1653 break;
1655 case TRUTH_NOT_EXPR:
1656 if (TREE_CODE (arg0) == INTEGER_CST)
1657 return constant_boolean_node (integer_zerop (arg0), type);
1658 break;
1660 case REALPART_EXPR:
1661 if (TREE_CODE (arg0) == COMPLEX_CST)
1662 return fold_convert (type, TREE_REALPART (arg0));
1663 break;
1665 case IMAGPART_EXPR:
1666 if (TREE_CODE (arg0) == COMPLEX_CST)
1667 return fold_convert (type, TREE_IMAGPART (arg0));
1668 break;
1670 case VEC_UNPACK_LO_EXPR:
1671 case VEC_UNPACK_HI_EXPR:
1672 case VEC_UNPACK_FLOAT_LO_EXPR:
1673 case VEC_UNPACK_FLOAT_HI_EXPR:
1675 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1676 tree *elts;
1677 enum tree_code subcode;
1679 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1680 if (TREE_CODE (arg0) != VECTOR_CST)
1681 return NULL_TREE;
1683 elts = XALLOCAVEC (tree, nelts * 2);
1684 if (!vec_cst_ctor_to_array (arg0, elts))
1685 return NULL_TREE;
1687 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1688 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1689 elts += nelts;
1691 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1692 subcode = NOP_EXPR;
1693 else
1694 subcode = FLOAT_EXPR;
1696 for (i = 0; i < nelts; i++)
1698 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1699 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1700 return NULL_TREE;
1703 return build_vector (type, elts);
1706 case REDUC_MIN_EXPR:
1707 case REDUC_MAX_EXPR:
1708 case REDUC_PLUS_EXPR:
1710 unsigned int nelts, i;
1711 tree *elts;
1712 enum tree_code subcode;
1714 if (TREE_CODE (arg0) != VECTOR_CST)
1715 return NULL_TREE;
1716 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1718 elts = XALLOCAVEC (tree, nelts);
1719 if (!vec_cst_ctor_to_array (arg0, elts))
1720 return NULL_TREE;
1722 switch (code)
1724 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1725 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1726 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1727 default: gcc_unreachable ();
1730 for (i = 1; i < nelts; i++)
1732 elts[0] = const_binop (subcode, elts[0], elts[i]);
1733 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1734 return NULL_TREE;
1737 return elts[0];
1740 default:
1741 break;
1744 return NULL_TREE;
1747 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1748 indicates which particular sizetype to create. */
1750 tree
1751 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1753 return build_int_cst (sizetype_tab[(int) kind], number);
1756 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1757 is a tree code. The type of the result is taken from the operands.
1758 Both must be equivalent integer types, ala int_binop_types_match_p.
1759 If the operands are constant, so is the result. */
1761 tree
1762 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1764 tree type = TREE_TYPE (arg0);
1766 if (arg0 == error_mark_node || arg1 == error_mark_node)
1767 return error_mark_node;
1769 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1770 TREE_TYPE (arg1)));
1772 /* Handle the special case of two integer constants faster. */
1773 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1775 /* And some specific cases even faster than that. */
1776 if (code == PLUS_EXPR)
1778 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1779 return arg1;
1780 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1781 return arg0;
1783 else if (code == MINUS_EXPR)
1785 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1786 return arg0;
1788 else if (code == MULT_EXPR)
1790 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1791 return arg1;
1794 /* Handle general case of two integer constants. For sizetype
1795 constant calculations we always want to know about overflow,
1796 even in the unsigned case. */
1797 return int_const_binop_1 (code, arg0, arg1, -1);
1800 return fold_build2_loc (loc, code, type, arg0, arg1);
1803 /* Given two values, either both of sizetype or both of bitsizetype,
1804 compute the difference between the two values. Return the value
1805 in signed type corresponding to the type of the operands. */
1807 tree
1808 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1810 tree type = TREE_TYPE (arg0);
1811 tree ctype;
1813 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1814 TREE_TYPE (arg1)));
1816 /* If the type is already signed, just do the simple thing. */
1817 if (!TYPE_UNSIGNED (type))
1818 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1820 if (type == sizetype)
1821 ctype = ssizetype;
1822 else if (type == bitsizetype)
1823 ctype = sbitsizetype;
1824 else
1825 ctype = signed_type_for (type);
1827 /* If either operand is not a constant, do the conversions to the signed
1828 type and subtract. The hardware will do the right thing with any
1829 overflow in the subtraction. */
1830 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1831 return size_binop_loc (loc, MINUS_EXPR,
1832 fold_convert_loc (loc, ctype, arg0),
1833 fold_convert_loc (loc, ctype, arg1));
1835 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1836 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1837 overflow) and negate (which can't either). Special-case a result
1838 of zero while we're here. */
1839 if (tree_int_cst_equal (arg0, arg1))
1840 return build_int_cst (ctype, 0);
1841 else if (tree_int_cst_lt (arg1, arg0))
1842 return fold_convert_loc (loc, ctype,
1843 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1844 else
1845 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1846 fold_convert_loc (loc, ctype,
1847 size_binop_loc (loc,
1848 MINUS_EXPR,
1849 arg1, arg0)));
1852 /* A subroutine of fold_convert_const handling conversions of an
1853 INTEGER_CST to another integer type. */
1855 static tree
1856 fold_convert_const_int_from_int (tree type, const_tree arg1)
1858 /* Given an integer constant, make new constant with new type,
1859 appropriately sign-extended or truncated. Use widest_int
1860 so that any extension is done according ARG1's type. */
1861 return force_fit_type (type, wi::to_widest (arg1),
1862 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1863 TREE_OVERFLOW (arg1));
1866 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1867 to an integer type. */
1869 static tree
1870 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1872 bool overflow = false;
1873 tree t;
1875 /* The following code implements the floating point to integer
1876 conversion rules required by the Java Language Specification,
1877 that IEEE NaNs are mapped to zero and values that overflow
1878 the target precision saturate, i.e. values greater than
1879 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1880 are mapped to INT_MIN. These semantics are allowed by the
1881 C and C++ standards that simply state that the behavior of
1882 FP-to-integer conversion is unspecified upon overflow. */
1884 wide_int val;
1885 REAL_VALUE_TYPE r;
1886 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1888 switch (code)
1890 case FIX_TRUNC_EXPR:
1891 real_trunc (&r, VOIDmode, &x);
1892 break;
1894 default:
1895 gcc_unreachable ();
1898 /* If R is NaN, return zero and show we have an overflow. */
1899 if (REAL_VALUE_ISNAN (r))
1901 overflow = true;
1902 val = wi::zero (TYPE_PRECISION (type));
1905 /* See if R is less than the lower bound or greater than the
1906 upper bound. */
1908 if (! overflow)
1910 tree lt = TYPE_MIN_VALUE (type);
1911 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1912 if (real_less (&r, &l))
1914 overflow = true;
1915 val = lt;
1919 if (! overflow)
1921 tree ut = TYPE_MAX_VALUE (type);
1922 if (ut)
1924 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1925 if (real_less (&u, &r))
1927 overflow = true;
1928 val = ut;
1933 if (! overflow)
1934 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1936 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1937 return t;
1940 /* A subroutine of fold_convert_const handling conversions of a
1941 FIXED_CST to an integer type. */
1943 static tree
1944 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1946 tree t;
1947 double_int temp, temp_trunc;
1948 unsigned int mode;
1950 /* Right shift FIXED_CST to temp by fbit. */
1951 temp = TREE_FIXED_CST (arg1).data;
1952 mode = TREE_FIXED_CST (arg1).mode;
1953 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1955 temp = temp.rshift (GET_MODE_FBIT (mode),
1956 HOST_BITS_PER_DOUBLE_INT,
1957 SIGNED_FIXED_POINT_MODE_P (mode));
1959 /* Left shift temp to temp_trunc by fbit. */
1960 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1961 HOST_BITS_PER_DOUBLE_INT,
1962 SIGNED_FIXED_POINT_MODE_P (mode));
1964 else
1966 temp = double_int_zero;
1967 temp_trunc = double_int_zero;
1970 /* If FIXED_CST is negative, we need to round the value toward 0.
1971 By checking if the fractional bits are not zero to add 1 to temp. */
1972 if (SIGNED_FIXED_POINT_MODE_P (mode)
1973 && temp_trunc.is_negative ()
1974 && TREE_FIXED_CST (arg1).data != temp_trunc)
1975 temp += double_int_one;
1977 /* Given a fixed-point constant, make new constant with new type,
1978 appropriately sign-extended or truncated. */
1979 t = force_fit_type (type, temp, -1,
1980 (temp.is_negative ()
1981 && (TYPE_UNSIGNED (type)
1982 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1983 | TREE_OVERFLOW (arg1));
1985 return t;
1988 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1989 to another floating point type. */
1991 static tree
1992 fold_convert_const_real_from_real (tree type, const_tree arg1)
1994 REAL_VALUE_TYPE value;
1995 tree t;
1997 /* Don't perform the operation if flag_signaling_nans is on
1998 and the operand is a signaling NaN. */
1999 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
2000 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
2001 return NULL_TREE;
2003 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2004 t = build_real (type, value);
2006 /* If converting an infinity or NAN to a representation that doesn't
2007 have one, set the overflow bit so that we can produce some kind of
2008 error message at the appropriate point if necessary. It's not the
2009 most user-friendly message, but it's better than nothing. */
2010 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
2011 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
2012 TREE_OVERFLOW (t) = 1;
2013 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
2014 && !MODE_HAS_NANS (TYPE_MODE (type)))
2015 TREE_OVERFLOW (t) = 1;
2016 /* Regular overflow, conversion produced an infinity in a mode that
2017 can't represent them. */
2018 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2019 && REAL_VALUE_ISINF (value)
2020 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2021 TREE_OVERFLOW (t) = 1;
2022 else
2023 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2024 return t;
2027 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2028 to a floating point type. */
2030 static tree
2031 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2033 REAL_VALUE_TYPE value;
2034 tree t;
2036 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2037 t = build_real (type, value);
2039 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2040 return t;
2043 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2044 to another fixed-point type. */
2046 static tree
2047 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2049 FIXED_VALUE_TYPE value;
2050 tree t;
2051 bool overflow_p;
2053 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2054 TYPE_SATURATING (type));
2055 t = build_fixed (type, value);
2057 /* Propagate overflow flags. */
2058 if (overflow_p | TREE_OVERFLOW (arg1))
2059 TREE_OVERFLOW (t) = 1;
2060 return t;
2063 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2064 to a fixed-point type. */
2066 static tree
2067 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2069 FIXED_VALUE_TYPE value;
2070 tree t;
2071 bool overflow_p;
2072 double_int di;
2074 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2076 di.low = TREE_INT_CST_ELT (arg1, 0);
2077 if (TREE_INT_CST_NUNITS (arg1) == 1)
2078 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2079 else
2080 di.high = TREE_INT_CST_ELT (arg1, 1);
2082 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2083 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2084 TYPE_SATURATING (type));
2085 t = build_fixed (type, value);
2087 /* Propagate overflow flags. */
2088 if (overflow_p | TREE_OVERFLOW (arg1))
2089 TREE_OVERFLOW (t) = 1;
2090 return t;
2093 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2094 to a fixed-point type. */
2096 static tree
2097 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2099 FIXED_VALUE_TYPE value;
2100 tree t;
2101 bool overflow_p;
2103 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2104 &TREE_REAL_CST (arg1),
2105 TYPE_SATURATING (type));
2106 t = build_fixed (type, value);
2108 /* Propagate overflow flags. */
2109 if (overflow_p | TREE_OVERFLOW (arg1))
2110 TREE_OVERFLOW (t) = 1;
2111 return t;
2114 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2115 type TYPE. If no simplification can be done return NULL_TREE. */
2117 static tree
2118 fold_convert_const (enum tree_code code, tree type, tree arg1)
2120 if (TREE_TYPE (arg1) == type)
2121 return arg1;
2123 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2124 || TREE_CODE (type) == OFFSET_TYPE)
2126 if (TREE_CODE (arg1) == INTEGER_CST)
2127 return fold_convert_const_int_from_int (type, arg1);
2128 else if (TREE_CODE (arg1) == REAL_CST)
2129 return fold_convert_const_int_from_real (code, type, arg1);
2130 else if (TREE_CODE (arg1) == FIXED_CST)
2131 return fold_convert_const_int_from_fixed (type, arg1);
2133 else if (TREE_CODE (type) == REAL_TYPE)
2135 if (TREE_CODE (arg1) == INTEGER_CST)
2136 return build_real_from_int_cst (type, arg1);
2137 else if (TREE_CODE (arg1) == REAL_CST)
2138 return fold_convert_const_real_from_real (type, arg1);
2139 else if (TREE_CODE (arg1) == FIXED_CST)
2140 return fold_convert_const_real_from_fixed (type, arg1);
2142 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2144 if (TREE_CODE (arg1) == FIXED_CST)
2145 return fold_convert_const_fixed_from_fixed (type, arg1);
2146 else if (TREE_CODE (arg1) == INTEGER_CST)
2147 return fold_convert_const_fixed_from_int (type, arg1);
2148 else if (TREE_CODE (arg1) == REAL_CST)
2149 return fold_convert_const_fixed_from_real (type, arg1);
2151 else if (TREE_CODE (type) == VECTOR_TYPE)
2153 if (TREE_CODE (arg1) == VECTOR_CST
2154 && TYPE_VECTOR_SUBPARTS (type) == VECTOR_CST_NELTS (arg1))
2156 int len = TYPE_VECTOR_SUBPARTS (type);
2157 tree elttype = TREE_TYPE (type);
2158 tree *v = XALLOCAVEC (tree, len);
2159 for (int i = 0; i < len; ++i)
2161 tree elt = VECTOR_CST_ELT (arg1, i);
2162 tree cvt = fold_convert_const (code, elttype, elt);
2163 if (cvt == NULL_TREE)
2164 return NULL_TREE;
2165 v[i] = cvt;
2167 return build_vector (type, v);
2170 return NULL_TREE;
2173 /* Construct a vector of zero elements of vector type TYPE. */
2175 static tree
2176 build_zero_vector (tree type)
2178 tree t;
2180 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2181 return build_vector_from_val (type, t);
2184 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2186 bool
2187 fold_convertible_p (const_tree type, const_tree arg)
2189 tree orig = TREE_TYPE (arg);
2191 if (type == orig)
2192 return true;
2194 if (TREE_CODE (arg) == ERROR_MARK
2195 || TREE_CODE (type) == ERROR_MARK
2196 || TREE_CODE (orig) == ERROR_MARK)
2197 return false;
2199 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2200 return true;
2202 switch (TREE_CODE (type))
2204 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2205 case POINTER_TYPE: case REFERENCE_TYPE:
2206 case OFFSET_TYPE:
2207 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2208 || TREE_CODE (orig) == OFFSET_TYPE);
2210 case REAL_TYPE:
2211 case FIXED_POINT_TYPE:
2212 case VECTOR_TYPE:
2213 case VOID_TYPE:
2214 return TREE_CODE (type) == TREE_CODE (orig);
2216 default:
2217 return false;
2221 /* Convert expression ARG to type TYPE. Used by the middle-end for
2222 simple conversions in preference to calling the front-end's convert. */
2224 tree
2225 fold_convert_loc (location_t loc, tree type, tree arg)
2227 tree orig = TREE_TYPE (arg);
2228 tree tem;
2230 if (type == orig)
2231 return arg;
2233 if (TREE_CODE (arg) == ERROR_MARK
2234 || TREE_CODE (type) == ERROR_MARK
2235 || TREE_CODE (orig) == ERROR_MARK)
2236 return error_mark_node;
2238 switch (TREE_CODE (type))
2240 case POINTER_TYPE:
2241 case REFERENCE_TYPE:
2242 /* Handle conversions between pointers to different address spaces. */
2243 if (POINTER_TYPE_P (orig)
2244 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2245 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2246 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2247 /* fall through */
2249 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2250 case OFFSET_TYPE:
2251 if (TREE_CODE (arg) == INTEGER_CST)
2253 tem = fold_convert_const (NOP_EXPR, type, arg);
2254 if (tem != NULL_TREE)
2255 return tem;
2257 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2258 || TREE_CODE (orig) == OFFSET_TYPE)
2259 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2260 if (TREE_CODE (orig) == COMPLEX_TYPE)
2261 return fold_convert_loc (loc, type,
2262 fold_build1_loc (loc, REALPART_EXPR,
2263 TREE_TYPE (orig), arg));
2264 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2265 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2266 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2268 case REAL_TYPE:
2269 if (TREE_CODE (arg) == INTEGER_CST)
2271 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2272 if (tem != NULL_TREE)
2273 return tem;
2275 else if (TREE_CODE (arg) == REAL_CST)
2277 tem = fold_convert_const (NOP_EXPR, type, arg);
2278 if (tem != NULL_TREE)
2279 return tem;
2281 else if (TREE_CODE (arg) == FIXED_CST)
2283 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2284 if (tem != NULL_TREE)
2285 return tem;
2288 switch (TREE_CODE (orig))
2290 case INTEGER_TYPE:
2291 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2292 case POINTER_TYPE: case REFERENCE_TYPE:
2293 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2295 case REAL_TYPE:
2296 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2298 case FIXED_POINT_TYPE:
2299 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2301 case COMPLEX_TYPE:
2302 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2303 return fold_convert_loc (loc, type, tem);
2305 default:
2306 gcc_unreachable ();
2309 case FIXED_POINT_TYPE:
2310 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2311 || TREE_CODE (arg) == REAL_CST)
2313 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2314 if (tem != NULL_TREE)
2315 goto fold_convert_exit;
2318 switch (TREE_CODE (orig))
2320 case FIXED_POINT_TYPE:
2321 case INTEGER_TYPE:
2322 case ENUMERAL_TYPE:
2323 case BOOLEAN_TYPE:
2324 case REAL_TYPE:
2325 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2327 case COMPLEX_TYPE:
2328 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2329 return fold_convert_loc (loc, type, tem);
2331 default:
2332 gcc_unreachable ();
2335 case COMPLEX_TYPE:
2336 switch (TREE_CODE (orig))
2338 case INTEGER_TYPE:
2339 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2340 case POINTER_TYPE: case REFERENCE_TYPE:
2341 case REAL_TYPE:
2342 case FIXED_POINT_TYPE:
2343 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2344 fold_convert_loc (loc, TREE_TYPE (type), arg),
2345 fold_convert_loc (loc, TREE_TYPE (type),
2346 integer_zero_node));
2347 case COMPLEX_TYPE:
2349 tree rpart, ipart;
2351 if (TREE_CODE (arg) == COMPLEX_EXPR)
2353 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2354 TREE_OPERAND (arg, 0));
2355 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2356 TREE_OPERAND (arg, 1));
2357 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2360 arg = save_expr (arg);
2361 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2362 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2363 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2364 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2365 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2368 default:
2369 gcc_unreachable ();
2372 case VECTOR_TYPE:
2373 if (integer_zerop (arg))
2374 return build_zero_vector (type);
2375 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2376 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2377 || TREE_CODE (orig) == VECTOR_TYPE);
2378 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2380 case VOID_TYPE:
2381 tem = fold_ignored_result (arg);
2382 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2384 default:
2385 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2386 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2387 gcc_unreachable ();
2389 fold_convert_exit:
2390 protected_set_expr_location_unshare (tem, loc);
2391 return tem;
2394 /* Return false if expr can be assumed not to be an lvalue, true
2395 otherwise. */
2397 static bool
2398 maybe_lvalue_p (const_tree x)
2400 /* We only need to wrap lvalue tree codes. */
2401 switch (TREE_CODE (x))
2403 case VAR_DECL:
2404 case PARM_DECL:
2405 case RESULT_DECL:
2406 case LABEL_DECL:
2407 case FUNCTION_DECL:
2408 case SSA_NAME:
2410 case COMPONENT_REF:
2411 case MEM_REF:
2412 case INDIRECT_REF:
2413 case ARRAY_REF:
2414 case ARRAY_RANGE_REF:
2415 case BIT_FIELD_REF:
2416 case OBJ_TYPE_REF:
2418 case REALPART_EXPR:
2419 case IMAGPART_EXPR:
2420 case PREINCREMENT_EXPR:
2421 case PREDECREMENT_EXPR:
2422 case SAVE_EXPR:
2423 case TRY_CATCH_EXPR:
2424 case WITH_CLEANUP_EXPR:
2425 case COMPOUND_EXPR:
2426 case MODIFY_EXPR:
2427 case TARGET_EXPR:
2428 case COND_EXPR:
2429 case BIND_EXPR:
2430 break;
2432 default:
2433 /* Assume the worst for front-end tree codes. */
2434 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2435 break;
2436 return false;
2439 return true;
2442 /* Return an expr equal to X but certainly not valid as an lvalue. */
2444 tree
2445 non_lvalue_loc (location_t loc, tree x)
2447 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2448 us. */
2449 if (in_gimple_form)
2450 return x;
2452 if (! maybe_lvalue_p (x))
2453 return x;
2454 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2457 /* When pedantic, return an expr equal to X but certainly not valid as a
2458 pedantic lvalue. Otherwise, return X. */
2460 static tree
2461 pedantic_non_lvalue_loc (location_t loc, tree x)
2463 return protected_set_expr_location_unshare (x, loc);
2466 /* Given a tree comparison code, return the code that is the logical inverse.
2467 It is generally not safe to do this for floating-point comparisons, except
2468 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2469 ERROR_MARK in this case. */
2471 enum tree_code
2472 invert_tree_comparison (enum tree_code code, bool honor_nans)
2474 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2475 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2476 return ERROR_MARK;
2478 switch (code)
2480 case EQ_EXPR:
2481 return NE_EXPR;
2482 case NE_EXPR:
2483 return EQ_EXPR;
2484 case GT_EXPR:
2485 return honor_nans ? UNLE_EXPR : LE_EXPR;
2486 case GE_EXPR:
2487 return honor_nans ? UNLT_EXPR : LT_EXPR;
2488 case LT_EXPR:
2489 return honor_nans ? UNGE_EXPR : GE_EXPR;
2490 case LE_EXPR:
2491 return honor_nans ? UNGT_EXPR : GT_EXPR;
2492 case LTGT_EXPR:
2493 return UNEQ_EXPR;
2494 case UNEQ_EXPR:
2495 return LTGT_EXPR;
2496 case UNGT_EXPR:
2497 return LE_EXPR;
2498 case UNGE_EXPR:
2499 return LT_EXPR;
2500 case UNLT_EXPR:
2501 return GE_EXPR;
2502 case UNLE_EXPR:
2503 return GT_EXPR;
2504 case ORDERED_EXPR:
2505 return UNORDERED_EXPR;
2506 case UNORDERED_EXPR:
2507 return ORDERED_EXPR;
2508 default:
2509 gcc_unreachable ();
2513 /* Similar, but return the comparison that results if the operands are
2514 swapped. This is safe for floating-point. */
2516 enum tree_code
2517 swap_tree_comparison (enum tree_code code)
2519 switch (code)
2521 case EQ_EXPR:
2522 case NE_EXPR:
2523 case ORDERED_EXPR:
2524 case UNORDERED_EXPR:
2525 case LTGT_EXPR:
2526 case UNEQ_EXPR:
2527 return code;
2528 case GT_EXPR:
2529 return LT_EXPR;
2530 case GE_EXPR:
2531 return LE_EXPR;
2532 case LT_EXPR:
2533 return GT_EXPR;
2534 case LE_EXPR:
2535 return GE_EXPR;
2536 case UNGT_EXPR:
2537 return UNLT_EXPR;
2538 case UNGE_EXPR:
2539 return UNLE_EXPR;
2540 case UNLT_EXPR:
2541 return UNGT_EXPR;
2542 case UNLE_EXPR:
2543 return UNGE_EXPR;
2544 default:
2545 gcc_unreachable ();
2550 /* Convert a comparison tree code from an enum tree_code representation
2551 into a compcode bit-based encoding. This function is the inverse of
2552 compcode_to_comparison. */
2554 static enum comparison_code
2555 comparison_to_compcode (enum tree_code code)
2557 switch (code)
2559 case LT_EXPR:
2560 return COMPCODE_LT;
2561 case EQ_EXPR:
2562 return COMPCODE_EQ;
2563 case LE_EXPR:
2564 return COMPCODE_LE;
2565 case GT_EXPR:
2566 return COMPCODE_GT;
2567 case NE_EXPR:
2568 return COMPCODE_NE;
2569 case GE_EXPR:
2570 return COMPCODE_GE;
2571 case ORDERED_EXPR:
2572 return COMPCODE_ORD;
2573 case UNORDERED_EXPR:
2574 return COMPCODE_UNORD;
2575 case UNLT_EXPR:
2576 return COMPCODE_UNLT;
2577 case UNEQ_EXPR:
2578 return COMPCODE_UNEQ;
2579 case UNLE_EXPR:
2580 return COMPCODE_UNLE;
2581 case UNGT_EXPR:
2582 return COMPCODE_UNGT;
2583 case LTGT_EXPR:
2584 return COMPCODE_LTGT;
2585 case UNGE_EXPR:
2586 return COMPCODE_UNGE;
2587 default:
2588 gcc_unreachable ();
2592 /* Convert a compcode bit-based encoding of a comparison operator back
2593 to GCC's enum tree_code representation. This function is the
2594 inverse of comparison_to_compcode. */
2596 static enum tree_code
2597 compcode_to_comparison (enum comparison_code code)
2599 switch (code)
2601 case COMPCODE_LT:
2602 return LT_EXPR;
2603 case COMPCODE_EQ:
2604 return EQ_EXPR;
2605 case COMPCODE_LE:
2606 return LE_EXPR;
2607 case COMPCODE_GT:
2608 return GT_EXPR;
2609 case COMPCODE_NE:
2610 return NE_EXPR;
2611 case COMPCODE_GE:
2612 return GE_EXPR;
2613 case COMPCODE_ORD:
2614 return ORDERED_EXPR;
2615 case COMPCODE_UNORD:
2616 return UNORDERED_EXPR;
2617 case COMPCODE_UNLT:
2618 return UNLT_EXPR;
2619 case COMPCODE_UNEQ:
2620 return UNEQ_EXPR;
2621 case COMPCODE_UNLE:
2622 return UNLE_EXPR;
2623 case COMPCODE_UNGT:
2624 return UNGT_EXPR;
2625 case COMPCODE_LTGT:
2626 return LTGT_EXPR;
2627 case COMPCODE_UNGE:
2628 return UNGE_EXPR;
2629 default:
2630 gcc_unreachable ();
2634 /* Return a tree for the comparison which is the combination of
2635 doing the AND or OR (depending on CODE) of the two operations LCODE
2636 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2637 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2638 if this makes the transformation invalid. */
2640 tree
2641 combine_comparisons (location_t loc,
2642 enum tree_code code, enum tree_code lcode,
2643 enum tree_code rcode, tree truth_type,
2644 tree ll_arg, tree lr_arg)
2646 bool honor_nans = HONOR_NANS (ll_arg);
2647 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2648 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2649 int compcode;
2651 switch (code)
2653 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2654 compcode = lcompcode & rcompcode;
2655 break;
2657 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2658 compcode = lcompcode | rcompcode;
2659 break;
2661 default:
2662 return NULL_TREE;
2665 if (!honor_nans)
2667 /* Eliminate unordered comparisons, as well as LTGT and ORD
2668 which are not used unless the mode has NaNs. */
2669 compcode &= ~COMPCODE_UNORD;
2670 if (compcode == COMPCODE_LTGT)
2671 compcode = COMPCODE_NE;
2672 else if (compcode == COMPCODE_ORD)
2673 compcode = COMPCODE_TRUE;
2675 else if (flag_trapping_math)
2677 /* Check that the original operation and the optimized ones will trap
2678 under the same condition. */
2679 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2680 && (lcompcode != COMPCODE_EQ)
2681 && (lcompcode != COMPCODE_ORD);
2682 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2683 && (rcompcode != COMPCODE_EQ)
2684 && (rcompcode != COMPCODE_ORD);
2685 bool trap = (compcode & COMPCODE_UNORD) == 0
2686 && (compcode != COMPCODE_EQ)
2687 && (compcode != COMPCODE_ORD);
2689 /* In a short-circuited boolean expression the LHS might be
2690 such that the RHS, if evaluated, will never trap. For
2691 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2692 if neither x nor y is NaN. (This is a mixed blessing: for
2693 example, the expression above will never trap, hence
2694 optimizing it to x < y would be invalid). */
2695 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2696 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2697 rtrap = false;
2699 /* If the comparison was short-circuited, and only the RHS
2700 trapped, we may now generate a spurious trap. */
2701 if (rtrap && !ltrap
2702 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2703 return NULL_TREE;
2705 /* If we changed the conditions that cause a trap, we lose. */
2706 if ((ltrap || rtrap) != trap)
2707 return NULL_TREE;
2710 if (compcode == COMPCODE_TRUE)
2711 return constant_boolean_node (true, truth_type);
2712 else if (compcode == COMPCODE_FALSE)
2713 return constant_boolean_node (false, truth_type);
2714 else
2716 enum tree_code tcode;
2718 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2719 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2723 /* Return nonzero if two operands (typically of the same tree node)
2724 are necessarily equal. FLAGS modifies behavior as follows:
2726 If OEP_ONLY_CONST is set, only return nonzero for constants.
2727 This function tests whether the operands are indistinguishable;
2728 it does not test whether they are equal using C's == operation.
2729 The distinction is important for IEEE floating point, because
2730 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2731 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2733 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2734 even though it may hold multiple values during a function.
2735 This is because a GCC tree node guarantees that nothing else is
2736 executed between the evaluation of its "operands" (which may often
2737 be evaluated in arbitrary order). Hence if the operands themselves
2738 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2739 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2740 unset means assuming isochronic (or instantaneous) tree equivalence.
2741 Unless comparing arbitrary expression trees, such as from different
2742 statements, this flag can usually be left unset.
2744 If OEP_PURE_SAME is set, then pure functions with identical arguments
2745 are considered the same. It is used when the caller has other ways
2746 to ensure that global memory is unchanged in between.
2748 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2749 not values of expressions.
2751 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2752 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2754 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2755 any operand with side effect. This is unnecesarily conservative in the
2756 case we know that arg0 and arg1 are in disjoint code paths (such as in
2757 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2758 addresses with TREE_CONSTANT flag set so we know that &var == &var
2759 even if var is volatile. */
2762 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2764 /* When checking, verify at the outermost operand_equal_p call that
2765 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2766 hash value. */
2767 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2769 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2771 if (arg0 != arg1)
2773 inchash::hash hstate0 (0), hstate1 (0);
2774 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2775 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2776 hashval_t h0 = hstate0.end ();
2777 hashval_t h1 = hstate1.end ();
2778 gcc_assert (h0 == h1);
2780 return 1;
2782 else
2783 return 0;
2786 /* If either is ERROR_MARK, they aren't equal. */
2787 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2788 || TREE_TYPE (arg0) == error_mark_node
2789 || TREE_TYPE (arg1) == error_mark_node)
2790 return 0;
2792 /* Similar, if either does not have a type (like a released SSA name),
2793 they aren't equal. */
2794 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2795 return 0;
2797 /* We cannot consider pointers to different address space equal. */
2798 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2799 && POINTER_TYPE_P (TREE_TYPE (arg1))
2800 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2801 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2802 return 0;
2804 /* Check equality of integer constants before bailing out due to
2805 precision differences. */
2806 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2808 /* Address of INTEGER_CST is not defined; check that we did not forget
2809 to drop the OEP_ADDRESS_OF flags. */
2810 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2811 return tree_int_cst_equal (arg0, arg1);
2814 if (!(flags & OEP_ADDRESS_OF))
2816 /* If both types don't have the same signedness, then we can't consider
2817 them equal. We must check this before the STRIP_NOPS calls
2818 because they may change the signedness of the arguments. As pointers
2819 strictly don't have a signedness, require either two pointers or
2820 two non-pointers as well. */
2821 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2822 || POINTER_TYPE_P (TREE_TYPE (arg0))
2823 != POINTER_TYPE_P (TREE_TYPE (arg1)))
2824 return 0;
2826 /* If both types don't have the same precision, then it is not safe
2827 to strip NOPs. */
2828 if (element_precision (TREE_TYPE (arg0))
2829 != element_precision (TREE_TYPE (arg1)))
2830 return 0;
2832 STRIP_NOPS (arg0);
2833 STRIP_NOPS (arg1);
2835 #if 0
2836 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2837 sanity check once the issue is solved. */
2838 else
2839 /* Addresses of conversions and SSA_NAMEs (and many other things)
2840 are not defined. Check that we did not forget to drop the
2841 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2842 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
2843 && TREE_CODE (arg0) != SSA_NAME);
2844 #endif
2846 /* In case both args are comparisons but with different comparison
2847 code, try to swap the comparison operands of one arg to produce
2848 a match and compare that variant. */
2849 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2850 && COMPARISON_CLASS_P (arg0)
2851 && COMPARISON_CLASS_P (arg1))
2853 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2855 if (TREE_CODE (arg0) == swap_code)
2856 return operand_equal_p (TREE_OPERAND (arg0, 0),
2857 TREE_OPERAND (arg1, 1), flags)
2858 && operand_equal_p (TREE_OPERAND (arg0, 1),
2859 TREE_OPERAND (arg1, 0), flags);
2862 if (TREE_CODE (arg0) != TREE_CODE (arg1))
2864 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2865 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
2867 else if (flags & OEP_ADDRESS_OF)
2869 /* If we are interested in comparing addresses ignore
2870 MEM_REF wrappings of the base that can appear just for
2871 TBAA reasons. */
2872 if (TREE_CODE (arg0) == MEM_REF
2873 && DECL_P (arg1)
2874 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
2875 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
2876 && integer_zerop (TREE_OPERAND (arg0, 1)))
2877 return 1;
2878 else if (TREE_CODE (arg1) == MEM_REF
2879 && DECL_P (arg0)
2880 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
2881 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
2882 && integer_zerop (TREE_OPERAND (arg1, 1)))
2883 return 1;
2884 return 0;
2886 else
2887 return 0;
2890 /* When not checking adddresses, this is needed for conversions and for
2891 COMPONENT_REF. Might as well play it safe and always test this. */
2892 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2893 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2894 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
2895 && !(flags & OEP_ADDRESS_OF)))
2896 return 0;
2898 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2899 We don't care about side effects in that case because the SAVE_EXPR
2900 takes care of that for us. In all other cases, two expressions are
2901 equal if they have no side effects. If we have two identical
2902 expressions with side effects that should be treated the same due
2903 to the only side effects being identical SAVE_EXPR's, that will
2904 be detected in the recursive calls below.
2905 If we are taking an invariant address of two identical objects
2906 they are necessarily equal as well. */
2907 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2908 && (TREE_CODE (arg0) == SAVE_EXPR
2909 || (flags & OEP_MATCH_SIDE_EFFECTS)
2910 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2911 return 1;
2913 /* Next handle constant cases, those for which we can return 1 even
2914 if ONLY_CONST is set. */
2915 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2916 switch (TREE_CODE (arg0))
2918 case INTEGER_CST:
2919 return tree_int_cst_equal (arg0, arg1);
2921 case FIXED_CST:
2922 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2923 TREE_FIXED_CST (arg1));
2925 case REAL_CST:
2926 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
2927 return 1;
2930 if (!HONOR_SIGNED_ZEROS (arg0))
2932 /* If we do not distinguish between signed and unsigned zero,
2933 consider them equal. */
2934 if (real_zerop (arg0) && real_zerop (arg1))
2935 return 1;
2937 return 0;
2939 case VECTOR_CST:
2941 unsigned i;
2943 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2944 return 0;
2946 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2948 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2949 VECTOR_CST_ELT (arg1, i), flags))
2950 return 0;
2952 return 1;
2955 case COMPLEX_CST:
2956 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2957 flags)
2958 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2959 flags));
2961 case STRING_CST:
2962 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2963 && ! memcmp (TREE_STRING_POINTER (arg0),
2964 TREE_STRING_POINTER (arg1),
2965 TREE_STRING_LENGTH (arg0)));
2967 case ADDR_EXPR:
2968 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2969 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2970 flags | OEP_ADDRESS_OF
2971 | OEP_MATCH_SIDE_EFFECTS);
2972 case CONSTRUCTOR:
2973 /* In GIMPLE empty constructors are allowed in initializers of
2974 aggregates. */
2975 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
2976 default:
2977 break;
2980 if (flags & OEP_ONLY_CONST)
2981 return 0;
2983 /* Define macros to test an operand from arg0 and arg1 for equality and a
2984 variant that allows null and views null as being different from any
2985 non-null value. In the latter case, if either is null, the both
2986 must be; otherwise, do the normal comparison. */
2987 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2988 TREE_OPERAND (arg1, N), flags)
2990 #define OP_SAME_WITH_NULL(N) \
2991 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2992 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2994 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2996 case tcc_unary:
2997 /* Two conversions are equal only if signedness and modes match. */
2998 switch (TREE_CODE (arg0))
3000 CASE_CONVERT:
3001 case FIX_TRUNC_EXPR:
3002 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3003 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3004 return 0;
3005 break;
3006 default:
3007 break;
3010 return OP_SAME (0);
3013 case tcc_comparison:
3014 case tcc_binary:
3015 if (OP_SAME (0) && OP_SAME (1))
3016 return 1;
3018 /* For commutative ops, allow the other order. */
3019 return (commutative_tree_code (TREE_CODE (arg0))
3020 && operand_equal_p (TREE_OPERAND (arg0, 0),
3021 TREE_OPERAND (arg1, 1), flags)
3022 && operand_equal_p (TREE_OPERAND (arg0, 1),
3023 TREE_OPERAND (arg1, 0), flags));
3025 case tcc_reference:
3026 /* If either of the pointer (or reference) expressions we are
3027 dereferencing contain a side effect, these cannot be equal,
3028 but their addresses can be. */
3029 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3030 && (TREE_SIDE_EFFECTS (arg0)
3031 || TREE_SIDE_EFFECTS (arg1)))
3032 return 0;
3034 switch (TREE_CODE (arg0))
3036 case INDIRECT_REF:
3037 if (!(flags & OEP_ADDRESS_OF)
3038 && (TYPE_ALIGN (TREE_TYPE (arg0))
3039 != TYPE_ALIGN (TREE_TYPE (arg1))))
3040 return 0;
3041 flags &= ~OEP_ADDRESS_OF;
3042 return OP_SAME (0);
3044 case IMAGPART_EXPR:
3045 /* Require the same offset. */
3046 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3047 TYPE_SIZE (TREE_TYPE (arg1)),
3048 flags & ~OEP_ADDRESS_OF))
3049 return 0;
3051 /* Fallthru. */
3052 case REALPART_EXPR:
3053 case VIEW_CONVERT_EXPR:
3054 return OP_SAME (0);
3056 case TARGET_MEM_REF:
3057 case MEM_REF:
3058 if (!(flags & OEP_ADDRESS_OF))
3060 /* Require equal access sizes */
3061 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3062 && (!TYPE_SIZE (TREE_TYPE (arg0))
3063 || !TYPE_SIZE (TREE_TYPE (arg1))
3064 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3065 TYPE_SIZE (TREE_TYPE (arg1)),
3066 flags)))
3067 return 0;
3068 /* Verify that access happens in similar types. */
3069 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3070 return 0;
3071 /* Verify that accesses are TBAA compatible. */
3072 if (!alias_ptr_types_compatible_p
3073 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3074 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3075 || (MR_DEPENDENCE_CLIQUE (arg0)
3076 != MR_DEPENDENCE_CLIQUE (arg1))
3077 || (MR_DEPENDENCE_BASE (arg0)
3078 != MR_DEPENDENCE_BASE (arg1)))
3079 return 0;
3080 /* Verify that alignment is compatible. */
3081 if (TYPE_ALIGN (TREE_TYPE (arg0))
3082 != TYPE_ALIGN (TREE_TYPE (arg1)))
3083 return 0;
3085 flags &= ~OEP_ADDRESS_OF;
3086 return (OP_SAME (0) && OP_SAME (1)
3087 /* TARGET_MEM_REF require equal extra operands. */
3088 && (TREE_CODE (arg0) != TARGET_MEM_REF
3089 || (OP_SAME_WITH_NULL (2)
3090 && OP_SAME_WITH_NULL (3)
3091 && OP_SAME_WITH_NULL (4))));
3093 case ARRAY_REF:
3094 case ARRAY_RANGE_REF:
3095 if (!OP_SAME (0))
3096 return 0;
3097 flags &= ~OEP_ADDRESS_OF;
3098 /* Compare the array index by value if it is constant first as we
3099 may have different types but same value here. */
3100 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3101 TREE_OPERAND (arg1, 1))
3102 || OP_SAME (1))
3103 && OP_SAME_WITH_NULL (2)
3104 && OP_SAME_WITH_NULL (3)
3105 /* Compare low bound and element size as with OEP_ADDRESS_OF
3106 we have to account for the offset of the ref. */
3107 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3108 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3109 || (operand_equal_p (array_ref_low_bound
3110 (CONST_CAST_TREE (arg0)),
3111 array_ref_low_bound
3112 (CONST_CAST_TREE (arg1)), flags)
3113 && operand_equal_p (array_ref_element_size
3114 (CONST_CAST_TREE (arg0)),
3115 array_ref_element_size
3116 (CONST_CAST_TREE (arg1)),
3117 flags))));
3119 case COMPONENT_REF:
3120 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3121 may be NULL when we're called to compare MEM_EXPRs. */
3122 if (!OP_SAME_WITH_NULL (0)
3123 || !OP_SAME (1))
3124 return 0;
3125 flags &= ~OEP_ADDRESS_OF;
3126 return OP_SAME_WITH_NULL (2);
3128 case BIT_FIELD_REF:
3129 if (!OP_SAME (0))
3130 return 0;
3131 flags &= ~OEP_ADDRESS_OF;
3132 return OP_SAME (1) && OP_SAME (2);
3134 default:
3135 return 0;
3138 case tcc_expression:
3139 switch (TREE_CODE (arg0))
3141 case ADDR_EXPR:
3142 /* Be sure we pass right ADDRESS_OF flag. */
3143 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3144 return operand_equal_p (TREE_OPERAND (arg0, 0),
3145 TREE_OPERAND (arg1, 0),
3146 flags | OEP_ADDRESS_OF);
3148 case TRUTH_NOT_EXPR:
3149 return OP_SAME (0);
3151 case TRUTH_ANDIF_EXPR:
3152 case TRUTH_ORIF_EXPR:
3153 return OP_SAME (0) && OP_SAME (1);
3155 case FMA_EXPR:
3156 case WIDEN_MULT_PLUS_EXPR:
3157 case WIDEN_MULT_MINUS_EXPR:
3158 if (!OP_SAME (2))
3159 return 0;
3160 /* The multiplcation operands are commutative. */
3161 /* FALLTHRU */
3163 case TRUTH_AND_EXPR:
3164 case TRUTH_OR_EXPR:
3165 case TRUTH_XOR_EXPR:
3166 if (OP_SAME (0) && OP_SAME (1))
3167 return 1;
3169 /* Otherwise take into account this is a commutative operation. */
3170 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3171 TREE_OPERAND (arg1, 1), flags)
3172 && operand_equal_p (TREE_OPERAND (arg0, 1),
3173 TREE_OPERAND (arg1, 0), flags));
3175 case COND_EXPR:
3176 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3177 return 0;
3178 flags &= ~OEP_ADDRESS_OF;
3179 return OP_SAME (0);
3181 case VEC_COND_EXPR:
3182 case DOT_PROD_EXPR:
3183 case BIT_INSERT_EXPR:
3184 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3186 case MODIFY_EXPR:
3187 case INIT_EXPR:
3188 case COMPOUND_EXPR:
3189 case PREDECREMENT_EXPR:
3190 case PREINCREMENT_EXPR:
3191 case POSTDECREMENT_EXPR:
3192 case POSTINCREMENT_EXPR:
3193 if (flags & OEP_LEXICOGRAPHIC)
3194 return OP_SAME (0) && OP_SAME (1);
3195 return 0;
3197 case CLEANUP_POINT_EXPR:
3198 case EXPR_STMT:
3199 if (flags & OEP_LEXICOGRAPHIC)
3200 return OP_SAME (0);
3201 return 0;
3203 default:
3204 return 0;
3207 case tcc_vl_exp:
3208 switch (TREE_CODE (arg0))
3210 case CALL_EXPR:
3211 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3212 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3213 /* If not both CALL_EXPRs are either internal or normal function
3214 functions, then they are not equal. */
3215 return 0;
3216 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3218 /* If the CALL_EXPRs call different internal functions, then they
3219 are not equal. */
3220 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3221 return 0;
3223 else
3225 /* If the CALL_EXPRs call different functions, then they are not
3226 equal. */
3227 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3228 flags))
3229 return 0;
3232 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3234 unsigned int cef = call_expr_flags (arg0);
3235 if (flags & OEP_PURE_SAME)
3236 cef &= ECF_CONST | ECF_PURE;
3237 else
3238 cef &= ECF_CONST;
3239 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3240 return 0;
3243 /* Now see if all the arguments are the same. */
3245 const_call_expr_arg_iterator iter0, iter1;
3246 const_tree a0, a1;
3247 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3248 a1 = first_const_call_expr_arg (arg1, &iter1);
3249 a0 && a1;
3250 a0 = next_const_call_expr_arg (&iter0),
3251 a1 = next_const_call_expr_arg (&iter1))
3252 if (! operand_equal_p (a0, a1, flags))
3253 return 0;
3255 /* If we get here and both argument lists are exhausted
3256 then the CALL_EXPRs are equal. */
3257 return ! (a0 || a1);
3259 default:
3260 return 0;
3263 case tcc_declaration:
3264 /* Consider __builtin_sqrt equal to sqrt. */
3265 return (TREE_CODE (arg0) == FUNCTION_DECL
3266 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3267 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3268 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3270 case tcc_exceptional:
3271 if (TREE_CODE (arg0) == CONSTRUCTOR)
3273 /* In GIMPLE constructors are used only to build vectors from
3274 elements. Individual elements in the constructor must be
3275 indexed in increasing order and form an initial sequence.
3277 We make no effort to compare constructors in generic.
3278 (see sem_variable::equals in ipa-icf which can do so for
3279 constants). */
3280 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3281 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3282 return 0;
3284 /* Be sure that vectors constructed have the same representation.
3285 We only tested element precision and modes to match.
3286 Vectors may be BLKmode and thus also check that the number of
3287 parts match. */
3288 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))
3289 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))
3290 return 0;
3292 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3293 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3294 unsigned int len = vec_safe_length (v0);
3296 if (len != vec_safe_length (v1))
3297 return 0;
3299 for (unsigned int i = 0; i < len; i++)
3301 constructor_elt *c0 = &(*v0)[i];
3302 constructor_elt *c1 = &(*v1)[i];
3304 if (!operand_equal_p (c0->value, c1->value, flags)
3305 /* In GIMPLE the indexes can be either NULL or matching i.
3306 Double check this so we won't get false
3307 positives for GENERIC. */
3308 || (c0->index
3309 && (TREE_CODE (c0->index) != INTEGER_CST
3310 || !compare_tree_int (c0->index, i)))
3311 || (c1->index
3312 && (TREE_CODE (c1->index) != INTEGER_CST
3313 || !compare_tree_int (c1->index, i))))
3314 return 0;
3316 return 1;
3318 else if (TREE_CODE (arg0) == STATEMENT_LIST
3319 && (flags & OEP_LEXICOGRAPHIC))
3321 /* Compare the STATEMENT_LISTs. */
3322 tree_stmt_iterator tsi1, tsi2;
3323 tree body1 = CONST_CAST_TREE (arg0);
3324 tree body2 = CONST_CAST_TREE (arg1);
3325 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ;
3326 tsi_next (&tsi1), tsi_next (&tsi2))
3328 /* The lists don't have the same number of statements. */
3329 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2))
3330 return 0;
3331 if (tsi_end_p (tsi1) && tsi_end_p (tsi2))
3332 return 1;
3333 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2),
3334 OEP_LEXICOGRAPHIC))
3335 return 0;
3338 return 0;
3340 case tcc_statement:
3341 switch (TREE_CODE (arg0))
3343 case RETURN_EXPR:
3344 if (flags & OEP_LEXICOGRAPHIC)
3345 return OP_SAME_WITH_NULL (0);
3346 return 0;
3347 default:
3348 return 0;
3351 default:
3352 return 0;
3355 #undef OP_SAME
3356 #undef OP_SAME_WITH_NULL
3359 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3360 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3362 When in doubt, return 0. */
3364 static int
3365 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3367 int unsignedp1, unsignedpo;
3368 tree primarg0, primarg1, primother;
3369 unsigned int correct_width;
3371 if (operand_equal_p (arg0, arg1, 0))
3372 return 1;
3374 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3375 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3376 return 0;
3378 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3379 and see if the inner values are the same. This removes any
3380 signedness comparison, which doesn't matter here. */
3381 primarg0 = arg0, primarg1 = arg1;
3382 STRIP_NOPS (primarg0);
3383 STRIP_NOPS (primarg1);
3384 if (operand_equal_p (primarg0, primarg1, 0))
3385 return 1;
3387 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3388 actual comparison operand, ARG0.
3390 First throw away any conversions to wider types
3391 already present in the operands. */
3393 primarg1 = get_narrower (arg1, &unsignedp1);
3394 primother = get_narrower (other, &unsignedpo);
3396 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3397 if (unsignedp1 == unsignedpo
3398 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3399 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3401 tree type = TREE_TYPE (arg0);
3403 /* Make sure shorter operand is extended the right way
3404 to match the longer operand. */
3405 primarg1 = fold_convert (signed_or_unsigned_type_for
3406 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3408 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3409 return 1;
3412 return 0;
3415 /* See if ARG is an expression that is either a comparison or is performing
3416 arithmetic on comparisons. The comparisons must only be comparing
3417 two different values, which will be stored in *CVAL1 and *CVAL2; if
3418 they are nonzero it means that some operands have already been found.
3419 No variables may be used anywhere else in the expression except in the
3420 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3421 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3423 If this is true, return 1. Otherwise, return zero. */
3425 static int
3426 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3428 enum tree_code code = TREE_CODE (arg);
3429 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3431 /* We can handle some of the tcc_expression cases here. */
3432 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3433 tclass = tcc_unary;
3434 else if (tclass == tcc_expression
3435 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3436 || code == COMPOUND_EXPR))
3437 tclass = tcc_binary;
3439 else if (tclass == tcc_expression && code == SAVE_EXPR
3440 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3442 /* If we've already found a CVAL1 or CVAL2, this expression is
3443 two complex to handle. */
3444 if (*cval1 || *cval2)
3445 return 0;
3447 tclass = tcc_unary;
3448 *save_p = 1;
3451 switch (tclass)
3453 case tcc_unary:
3454 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3456 case tcc_binary:
3457 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3458 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3459 cval1, cval2, save_p));
3461 case tcc_constant:
3462 return 1;
3464 case tcc_expression:
3465 if (code == COND_EXPR)
3466 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3467 cval1, cval2, save_p)
3468 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3469 cval1, cval2, save_p)
3470 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3471 cval1, cval2, save_p));
3472 return 0;
3474 case tcc_comparison:
3475 /* First see if we can handle the first operand, then the second. For
3476 the second operand, we know *CVAL1 can't be zero. It must be that
3477 one side of the comparison is each of the values; test for the
3478 case where this isn't true by failing if the two operands
3479 are the same. */
3481 if (operand_equal_p (TREE_OPERAND (arg, 0),
3482 TREE_OPERAND (arg, 1), 0))
3483 return 0;
3485 if (*cval1 == 0)
3486 *cval1 = TREE_OPERAND (arg, 0);
3487 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3489 else if (*cval2 == 0)
3490 *cval2 = TREE_OPERAND (arg, 0);
3491 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3493 else
3494 return 0;
3496 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3498 else if (*cval2 == 0)
3499 *cval2 = TREE_OPERAND (arg, 1);
3500 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3502 else
3503 return 0;
3505 return 1;
3507 default:
3508 return 0;
3512 /* ARG is a tree that is known to contain just arithmetic operations and
3513 comparisons. Evaluate the operations in the tree substituting NEW0 for
3514 any occurrence of OLD0 as an operand of a comparison and likewise for
3515 NEW1 and OLD1. */
3517 static tree
3518 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3519 tree old1, tree new1)
3521 tree type = TREE_TYPE (arg);
3522 enum tree_code code = TREE_CODE (arg);
3523 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3525 /* We can handle some of the tcc_expression cases here. */
3526 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3527 tclass = tcc_unary;
3528 else if (tclass == tcc_expression
3529 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3530 tclass = tcc_binary;
3532 switch (tclass)
3534 case tcc_unary:
3535 return fold_build1_loc (loc, code, type,
3536 eval_subst (loc, TREE_OPERAND (arg, 0),
3537 old0, new0, old1, new1));
3539 case tcc_binary:
3540 return fold_build2_loc (loc, code, type,
3541 eval_subst (loc, TREE_OPERAND (arg, 0),
3542 old0, new0, old1, new1),
3543 eval_subst (loc, TREE_OPERAND (arg, 1),
3544 old0, new0, old1, new1));
3546 case tcc_expression:
3547 switch (code)
3549 case SAVE_EXPR:
3550 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3551 old1, new1);
3553 case COMPOUND_EXPR:
3554 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3555 old1, new1);
3557 case COND_EXPR:
3558 return fold_build3_loc (loc, code, type,
3559 eval_subst (loc, TREE_OPERAND (arg, 0),
3560 old0, new0, old1, new1),
3561 eval_subst (loc, TREE_OPERAND (arg, 1),
3562 old0, new0, old1, new1),
3563 eval_subst (loc, TREE_OPERAND (arg, 2),
3564 old0, new0, old1, new1));
3565 default:
3566 break;
3568 /* Fall through - ??? */
3570 case tcc_comparison:
3572 tree arg0 = TREE_OPERAND (arg, 0);
3573 tree arg1 = TREE_OPERAND (arg, 1);
3575 /* We need to check both for exact equality and tree equality. The
3576 former will be true if the operand has a side-effect. In that
3577 case, we know the operand occurred exactly once. */
3579 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3580 arg0 = new0;
3581 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3582 arg0 = new1;
3584 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3585 arg1 = new0;
3586 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3587 arg1 = new1;
3589 return fold_build2_loc (loc, code, type, arg0, arg1);
3592 default:
3593 return arg;
3597 /* Return a tree for the case when the result of an expression is RESULT
3598 converted to TYPE and OMITTED was previously an operand of the expression
3599 but is now not needed (e.g., we folded OMITTED * 0).
3601 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3602 the conversion of RESULT to TYPE. */
3604 tree
3605 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3607 tree t = fold_convert_loc (loc, type, result);
3609 /* If the resulting operand is an empty statement, just return the omitted
3610 statement casted to void. */
3611 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3612 return build1_loc (loc, NOP_EXPR, void_type_node,
3613 fold_ignored_result (omitted));
3615 if (TREE_SIDE_EFFECTS (omitted))
3616 return build2_loc (loc, COMPOUND_EXPR, type,
3617 fold_ignored_result (omitted), t);
3619 return non_lvalue_loc (loc, t);
3622 /* Return a tree for the case when the result of an expression is RESULT
3623 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3624 of the expression but are now not needed.
3626 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3627 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3628 evaluated before OMITTED2. Otherwise, if neither has side effects,
3629 just do the conversion of RESULT to TYPE. */
3631 tree
3632 omit_two_operands_loc (location_t loc, tree type, tree result,
3633 tree omitted1, tree omitted2)
3635 tree t = fold_convert_loc (loc, type, result);
3637 if (TREE_SIDE_EFFECTS (omitted2))
3638 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3639 if (TREE_SIDE_EFFECTS (omitted1))
3640 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3642 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3646 /* Return a simplified tree node for the truth-negation of ARG. This
3647 never alters ARG itself. We assume that ARG is an operation that
3648 returns a truth value (0 or 1).
3650 FIXME: one would think we would fold the result, but it causes
3651 problems with the dominator optimizer. */
3653 static tree
3654 fold_truth_not_expr (location_t loc, tree arg)
3656 tree type = TREE_TYPE (arg);
3657 enum tree_code code = TREE_CODE (arg);
3658 location_t loc1, loc2;
3660 /* If this is a comparison, we can simply invert it, except for
3661 floating-point non-equality comparisons, in which case we just
3662 enclose a TRUTH_NOT_EXPR around what we have. */
3664 if (TREE_CODE_CLASS (code) == tcc_comparison)
3666 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3667 if (FLOAT_TYPE_P (op_type)
3668 && flag_trapping_math
3669 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3670 && code != NE_EXPR && code != EQ_EXPR)
3671 return NULL_TREE;
3673 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3674 if (code == ERROR_MARK)
3675 return NULL_TREE;
3677 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3678 TREE_OPERAND (arg, 1));
3679 if (TREE_NO_WARNING (arg))
3680 TREE_NO_WARNING (ret) = 1;
3681 return ret;
3684 switch (code)
3686 case INTEGER_CST:
3687 return constant_boolean_node (integer_zerop (arg), type);
3689 case TRUTH_AND_EXPR:
3690 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3691 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3692 return build2_loc (loc, TRUTH_OR_EXPR, type,
3693 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3694 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3696 case TRUTH_OR_EXPR:
3697 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3698 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3699 return build2_loc (loc, TRUTH_AND_EXPR, type,
3700 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3701 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3703 case TRUTH_XOR_EXPR:
3704 /* Here we can invert either operand. We invert the first operand
3705 unless the second operand is a TRUTH_NOT_EXPR in which case our
3706 result is the XOR of the first operand with the inside of the
3707 negation of the second operand. */
3709 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3710 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3711 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3712 else
3713 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3714 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3715 TREE_OPERAND (arg, 1));
3717 case TRUTH_ANDIF_EXPR:
3718 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3719 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3720 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3721 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3722 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3724 case TRUTH_ORIF_EXPR:
3725 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3726 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3727 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3728 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3729 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3731 case TRUTH_NOT_EXPR:
3732 return TREE_OPERAND (arg, 0);
3734 case COND_EXPR:
3736 tree arg1 = TREE_OPERAND (arg, 1);
3737 tree arg2 = TREE_OPERAND (arg, 2);
3739 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3740 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3742 /* A COND_EXPR may have a throw as one operand, which
3743 then has void type. Just leave void operands
3744 as they are. */
3745 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3746 VOID_TYPE_P (TREE_TYPE (arg1))
3747 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3748 VOID_TYPE_P (TREE_TYPE (arg2))
3749 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3752 case COMPOUND_EXPR:
3753 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3754 return build2_loc (loc, COMPOUND_EXPR, type,
3755 TREE_OPERAND (arg, 0),
3756 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3758 case NON_LVALUE_EXPR:
3759 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3760 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3762 CASE_CONVERT:
3763 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3764 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3766 /* fall through */
3768 case FLOAT_EXPR:
3769 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3770 return build1_loc (loc, TREE_CODE (arg), type,
3771 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3773 case BIT_AND_EXPR:
3774 if (!integer_onep (TREE_OPERAND (arg, 1)))
3775 return NULL_TREE;
3776 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3778 case SAVE_EXPR:
3779 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3781 case CLEANUP_POINT_EXPR:
3782 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3783 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3784 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3786 default:
3787 return NULL_TREE;
3791 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3792 assume that ARG is an operation that returns a truth value (0 or 1
3793 for scalars, 0 or -1 for vectors). Return the folded expression if
3794 folding is successful. Otherwise, return NULL_TREE. */
3796 static tree
3797 fold_invert_truthvalue (location_t loc, tree arg)
3799 tree type = TREE_TYPE (arg);
3800 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3801 ? BIT_NOT_EXPR
3802 : TRUTH_NOT_EXPR,
3803 type, arg);
3806 /* Return a simplified tree node for the truth-negation of ARG. This
3807 never alters ARG itself. We assume that ARG is an operation that
3808 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3810 tree
3811 invert_truthvalue_loc (location_t loc, tree arg)
3813 if (TREE_CODE (arg) == ERROR_MARK)
3814 return arg;
3816 tree type = TREE_TYPE (arg);
3817 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3818 ? BIT_NOT_EXPR
3819 : TRUTH_NOT_EXPR,
3820 type, arg);
3823 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3824 with code CODE. This optimization is unsafe. */
3825 static tree
3826 distribute_real_division (location_t loc, enum tree_code code, tree type,
3827 tree arg0, tree arg1)
3829 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3830 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3832 /* (A / C) +- (B / C) -> (A +- B) / C. */
3833 if (mul0 == mul1
3834 && operand_equal_p (TREE_OPERAND (arg0, 1),
3835 TREE_OPERAND (arg1, 1), 0))
3836 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3837 fold_build2_loc (loc, code, type,
3838 TREE_OPERAND (arg0, 0),
3839 TREE_OPERAND (arg1, 0)),
3840 TREE_OPERAND (arg0, 1));
3842 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3843 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3844 TREE_OPERAND (arg1, 0), 0)
3845 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3846 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3848 REAL_VALUE_TYPE r0, r1;
3849 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3850 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3851 if (!mul0)
3852 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3853 if (!mul1)
3854 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3855 real_arithmetic (&r0, code, &r0, &r1);
3856 return fold_build2_loc (loc, MULT_EXPR, type,
3857 TREE_OPERAND (arg0, 0),
3858 build_real (type, r0));
3861 return NULL_TREE;
3864 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3865 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3866 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3867 is the original memory reference used to preserve the alias set of
3868 the access. */
3870 static tree
3871 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
3872 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3873 int unsignedp, int reversep)
3875 tree result, bftype;
3877 /* Attempt not to lose the access path if possible. */
3878 if (TREE_CODE (orig_inner) == COMPONENT_REF)
3880 tree ninner = TREE_OPERAND (orig_inner, 0);
3881 machine_mode nmode;
3882 HOST_WIDE_INT nbitsize, nbitpos;
3883 tree noffset;
3884 int nunsignedp, nreversep, nvolatilep = 0;
3885 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
3886 &noffset, &nmode, &nunsignedp,
3887 &nreversep, &nvolatilep);
3888 if (base == inner
3889 && noffset == NULL_TREE
3890 && nbitsize >= bitsize
3891 && nbitpos <= bitpos
3892 && bitpos + bitsize <= nbitpos + nbitsize
3893 && !reversep
3894 && !nreversep
3895 && !nvolatilep)
3897 inner = ninner;
3898 bitpos -= nbitpos;
3902 alias_set_type iset = get_alias_set (orig_inner);
3903 if (iset == 0 && get_alias_set (inner) != iset)
3904 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
3905 build_fold_addr_expr (inner),
3906 build_int_cst (ptr_type_node, 0));
3908 if (bitpos == 0 && !reversep)
3910 tree size = TYPE_SIZE (TREE_TYPE (inner));
3911 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3912 || POINTER_TYPE_P (TREE_TYPE (inner)))
3913 && tree_fits_shwi_p (size)
3914 && tree_to_shwi (size) == bitsize)
3915 return fold_convert_loc (loc, type, inner);
3918 bftype = type;
3919 if (TYPE_PRECISION (bftype) != bitsize
3920 || TYPE_UNSIGNED (bftype) == !unsignedp)
3921 bftype = build_nonstandard_integer_type (bitsize, 0);
3923 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3924 size_int (bitsize), bitsize_int (bitpos));
3925 REF_REVERSE_STORAGE_ORDER (result) = reversep;
3927 if (bftype != type)
3928 result = fold_convert_loc (loc, type, result);
3930 return result;
3933 /* Optimize a bit-field compare.
3935 There are two cases: First is a compare against a constant and the
3936 second is a comparison of two items where the fields are at the same
3937 bit position relative to the start of a chunk (byte, halfword, word)
3938 large enough to contain it. In these cases we can avoid the shift
3939 implicit in bitfield extractions.
3941 For constants, we emit a compare of the shifted constant with the
3942 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3943 compared. For two fields at the same position, we do the ANDs with the
3944 similar mask and compare the result of the ANDs.
3946 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3947 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3948 are the left and right operands of the comparison, respectively.
3950 If the optimization described above can be done, we return the resulting
3951 tree. Otherwise we return zero. */
3953 static tree
3954 optimize_bit_field_compare (location_t loc, enum tree_code code,
3955 tree compare_type, tree lhs, tree rhs)
3957 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3958 tree type = TREE_TYPE (lhs);
3959 tree unsigned_type;
3960 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3961 machine_mode lmode, rmode, nmode;
3962 int lunsignedp, runsignedp;
3963 int lreversep, rreversep;
3964 int lvolatilep = 0, rvolatilep = 0;
3965 tree linner, rinner = NULL_TREE;
3966 tree mask;
3967 tree offset;
3969 /* Get all the information about the extractions being done. If the bit size
3970 if the same as the size of the underlying object, we aren't doing an
3971 extraction at all and so can do nothing. We also don't want to
3972 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3973 then will no longer be able to replace it. */
3974 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3975 &lunsignedp, &lreversep, &lvolatilep);
3976 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3977 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3978 return 0;
3980 if (const_p)
3981 rreversep = lreversep;
3982 else
3984 /* If this is not a constant, we can only do something if bit positions,
3985 sizes, signedness and storage order are the same. */
3986 rinner
3987 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3988 &runsignedp, &rreversep, &rvolatilep);
3990 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3991 || lunsignedp != runsignedp || lreversep != rreversep || offset != 0
3992 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3993 return 0;
3996 /* Honor the C++ memory model and mimic what RTL expansion does. */
3997 unsigned HOST_WIDE_INT bitstart = 0;
3998 unsigned HOST_WIDE_INT bitend = 0;
3999 if (TREE_CODE (lhs) == COMPONENT_REF)
4001 get_bit_range (&bitstart, &bitend, lhs, &lbitpos, &offset);
4002 if (offset != NULL_TREE)
4003 return 0;
4006 /* See if we can find a mode to refer to this field. We should be able to,
4007 but fail if we can't. */
4008 nmode = get_best_mode (lbitsize, lbitpos, bitstart, bitend,
4009 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
4010 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
4011 TYPE_ALIGN (TREE_TYPE (rinner))),
4012 word_mode, false);
4013 if (nmode == VOIDmode)
4014 return 0;
4016 /* Set signed and unsigned types of the precision of this mode for the
4017 shifts below. */
4018 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
4020 /* Compute the bit position and size for the new reference and our offset
4021 within it. If the new reference is the same size as the original, we
4022 won't optimize anything, so return zero. */
4023 nbitsize = GET_MODE_BITSIZE (nmode);
4024 nbitpos = lbitpos & ~ (nbitsize - 1);
4025 lbitpos -= nbitpos;
4026 if (nbitsize == lbitsize)
4027 return 0;
4029 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4030 lbitpos = nbitsize - lbitsize - lbitpos;
4032 /* Make the mask to be used against the extracted field. */
4033 mask = build_int_cst_type (unsigned_type, -1);
4034 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
4035 mask = const_binop (RSHIFT_EXPR, mask,
4036 size_int (nbitsize - lbitsize - lbitpos));
4038 if (! const_p)
4039 /* If not comparing with constant, just rework the comparison
4040 and return. */
4041 return fold_build2_loc (loc, code, compare_type,
4042 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4043 make_bit_field_ref (loc, linner, lhs,
4044 unsigned_type,
4045 nbitsize, nbitpos,
4046 1, lreversep),
4047 mask),
4048 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4049 make_bit_field_ref (loc, rinner, rhs,
4050 unsigned_type,
4051 nbitsize, nbitpos,
4052 1, rreversep),
4053 mask));
4055 /* Otherwise, we are handling the constant case. See if the constant is too
4056 big for the field. Warn and return a tree for 0 (false) if so. We do
4057 this not only for its own sake, but to avoid having to test for this
4058 error case below. If we didn't, we might generate wrong code.
4060 For unsigned fields, the constant shifted right by the field length should
4061 be all zero. For signed fields, the high-order bits should agree with
4062 the sign bit. */
4064 if (lunsignedp)
4066 if (wi::lrshift (rhs, lbitsize) != 0)
4068 warning (0, "comparison is always %d due to width of bit-field",
4069 code == NE_EXPR);
4070 return constant_boolean_node (code == NE_EXPR, compare_type);
4073 else
4075 wide_int tem = wi::arshift (rhs, lbitsize - 1);
4076 if (tem != 0 && tem != -1)
4078 warning (0, "comparison is always %d due to width of bit-field",
4079 code == NE_EXPR);
4080 return constant_boolean_node (code == NE_EXPR, compare_type);
4084 /* Single-bit compares should always be against zero. */
4085 if (lbitsize == 1 && ! integer_zerop (rhs))
4087 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4088 rhs = build_int_cst (type, 0);
4091 /* Make a new bitfield reference, shift the constant over the
4092 appropriate number of bits and mask it with the computed mask
4093 (in case this was a signed field). If we changed it, make a new one. */
4094 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4095 nbitsize, nbitpos, 1, lreversep);
4097 rhs = const_binop (BIT_AND_EXPR,
4098 const_binop (LSHIFT_EXPR,
4099 fold_convert_loc (loc, unsigned_type, rhs),
4100 size_int (lbitpos)),
4101 mask);
4103 lhs = build2_loc (loc, code, compare_type,
4104 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4105 return lhs;
4108 /* Subroutine for fold_truth_andor_1: decode a field reference.
4110 If EXP is a comparison reference, we return the innermost reference.
4112 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4113 set to the starting bit number.
4115 If the innermost field can be completely contained in a mode-sized
4116 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4118 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4119 otherwise it is not changed.
4121 *PUNSIGNEDP is set to the signedness of the field.
4123 *PREVERSEP is set to the storage order of the field.
4125 *PMASK is set to the mask used. This is either contained in a
4126 BIT_AND_EXPR or derived from the width of the field.
4128 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4130 Return 0 if this is not a component reference or is one that we can't
4131 do anything with. */
4133 static tree
4134 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4135 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4136 int *punsignedp, int *preversep, int *pvolatilep,
4137 tree *pmask, tree *pand_mask)
4139 tree exp = *exp_;
4140 tree outer_type = 0;
4141 tree and_mask = 0;
4142 tree mask, inner, offset;
4143 tree unsigned_type;
4144 unsigned int precision;
4146 /* All the optimizations using this function assume integer fields.
4147 There are problems with FP fields since the type_for_size call
4148 below can fail for, e.g., XFmode. */
4149 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4150 return 0;
4152 /* We are interested in the bare arrangement of bits, so strip everything
4153 that doesn't affect the machine mode. However, record the type of the
4154 outermost expression if it may matter below. */
4155 if (CONVERT_EXPR_P (exp)
4156 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4157 outer_type = TREE_TYPE (exp);
4158 STRIP_NOPS (exp);
4160 if (TREE_CODE (exp) == BIT_AND_EXPR)
4162 and_mask = TREE_OPERAND (exp, 1);
4163 exp = TREE_OPERAND (exp, 0);
4164 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4165 if (TREE_CODE (and_mask) != INTEGER_CST)
4166 return 0;
4169 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4170 punsignedp, preversep, pvolatilep);
4171 if ((inner == exp && and_mask == 0)
4172 || *pbitsize < 0 || offset != 0
4173 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4174 /* Reject out-of-bound accesses (PR79731). */
4175 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4176 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4177 *pbitpos + *pbitsize) < 0))
4178 return 0;
4180 *exp_ = exp;
4182 /* If the number of bits in the reference is the same as the bitsize of
4183 the outer type, then the outer type gives the signedness. Otherwise
4184 (in case of a small bitfield) the signedness is unchanged. */
4185 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4186 *punsignedp = TYPE_UNSIGNED (outer_type);
4188 /* Compute the mask to access the bitfield. */
4189 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4190 precision = TYPE_PRECISION (unsigned_type);
4192 mask = build_int_cst_type (unsigned_type, -1);
4194 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4195 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4197 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4198 if (and_mask != 0)
4199 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4200 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4202 *pmask = mask;
4203 *pand_mask = and_mask;
4204 return inner;
4207 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4208 bit positions and MASK is SIGNED. */
4210 static int
4211 all_ones_mask_p (const_tree mask, unsigned int size)
4213 tree type = TREE_TYPE (mask);
4214 unsigned int precision = TYPE_PRECISION (type);
4216 /* If this function returns true when the type of the mask is
4217 UNSIGNED, then there will be errors. In particular see
4218 gcc.c-torture/execute/990326-1.c. There does not appear to be
4219 any documentation paper trail as to why this is so. But the pre
4220 wide-int worked with that restriction and it has been preserved
4221 here. */
4222 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4223 return false;
4225 return wi::mask (size, false, precision) == mask;
4228 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4229 represents the sign bit of EXP's type. If EXP represents a sign
4230 or zero extension, also test VAL against the unextended type.
4231 The return value is the (sub)expression whose sign bit is VAL,
4232 or NULL_TREE otherwise. */
4234 tree
4235 sign_bit_p (tree exp, const_tree val)
4237 int width;
4238 tree t;
4240 /* Tree EXP must have an integral type. */
4241 t = TREE_TYPE (exp);
4242 if (! INTEGRAL_TYPE_P (t))
4243 return NULL_TREE;
4245 /* Tree VAL must be an integer constant. */
4246 if (TREE_CODE (val) != INTEGER_CST
4247 || TREE_OVERFLOW (val))
4248 return NULL_TREE;
4250 width = TYPE_PRECISION (t);
4251 if (wi::only_sign_bit_p (val, width))
4252 return exp;
4254 /* Handle extension from a narrower type. */
4255 if (TREE_CODE (exp) == NOP_EXPR
4256 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4257 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4259 return NULL_TREE;
4262 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4263 to be evaluated unconditionally. */
4265 static int
4266 simple_operand_p (const_tree exp)
4268 /* Strip any conversions that don't change the machine mode. */
4269 STRIP_NOPS (exp);
4271 return (CONSTANT_CLASS_P (exp)
4272 || TREE_CODE (exp) == SSA_NAME
4273 || (DECL_P (exp)
4274 && ! TREE_ADDRESSABLE (exp)
4275 && ! TREE_THIS_VOLATILE (exp)
4276 && ! DECL_NONLOCAL (exp)
4277 /* Don't regard global variables as simple. They may be
4278 allocated in ways unknown to the compiler (shared memory,
4279 #pragma weak, etc). */
4280 && ! TREE_PUBLIC (exp)
4281 && ! DECL_EXTERNAL (exp)
4282 /* Weakrefs are not safe to be read, since they can be NULL.
4283 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4284 have DECL_WEAK flag set. */
4285 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4286 /* Loading a static variable is unduly expensive, but global
4287 registers aren't expensive. */
4288 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4291 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4292 to be evaluated unconditionally.
4293 I addition to simple_operand_p, we assume that comparisons, conversions,
4294 and logic-not operations are simple, if their operands are simple, too. */
4296 static bool
4297 simple_operand_p_2 (tree exp)
4299 enum tree_code code;
4301 if (TREE_SIDE_EFFECTS (exp)
4302 || tree_could_trap_p (exp))
4303 return false;
4305 while (CONVERT_EXPR_P (exp))
4306 exp = TREE_OPERAND (exp, 0);
4308 code = TREE_CODE (exp);
4310 if (TREE_CODE_CLASS (code) == tcc_comparison)
4311 return (simple_operand_p (TREE_OPERAND (exp, 0))
4312 && simple_operand_p (TREE_OPERAND (exp, 1)));
4314 if (code == TRUTH_NOT_EXPR)
4315 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4317 return simple_operand_p (exp);
4321 /* The following functions are subroutines to fold_range_test and allow it to
4322 try to change a logical combination of comparisons into a range test.
4324 For example, both
4325 X == 2 || X == 3 || X == 4 || X == 5
4327 X >= 2 && X <= 5
4328 are converted to
4329 (unsigned) (X - 2) <= 3
4331 We describe each set of comparisons as being either inside or outside
4332 a range, using a variable named like IN_P, and then describe the
4333 range with a lower and upper bound. If one of the bounds is omitted,
4334 it represents either the highest or lowest value of the type.
4336 In the comments below, we represent a range by two numbers in brackets
4337 preceded by a "+" to designate being inside that range, or a "-" to
4338 designate being outside that range, so the condition can be inverted by
4339 flipping the prefix. An omitted bound is represented by a "-". For
4340 example, "- [-, 10]" means being outside the range starting at the lowest
4341 possible value and ending at 10, in other words, being greater than 10.
4342 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4343 always false.
4345 We set up things so that the missing bounds are handled in a consistent
4346 manner so neither a missing bound nor "true" and "false" need to be
4347 handled using a special case. */
4349 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4350 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4351 and UPPER1_P are nonzero if the respective argument is an upper bound
4352 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4353 must be specified for a comparison. ARG1 will be converted to ARG0's
4354 type if both are specified. */
4356 static tree
4357 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4358 tree arg1, int upper1_p)
4360 tree tem;
4361 int result;
4362 int sgn0, sgn1;
4364 /* If neither arg represents infinity, do the normal operation.
4365 Else, if not a comparison, return infinity. Else handle the special
4366 comparison rules. Note that most of the cases below won't occur, but
4367 are handled for consistency. */
4369 if (arg0 != 0 && arg1 != 0)
4371 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4372 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4373 STRIP_NOPS (tem);
4374 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4377 if (TREE_CODE_CLASS (code) != tcc_comparison)
4378 return 0;
4380 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4381 for neither. In real maths, we cannot assume open ended ranges are
4382 the same. But, this is computer arithmetic, where numbers are finite.
4383 We can therefore make the transformation of any unbounded range with
4384 the value Z, Z being greater than any representable number. This permits
4385 us to treat unbounded ranges as equal. */
4386 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4387 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4388 switch (code)
4390 case EQ_EXPR:
4391 result = sgn0 == sgn1;
4392 break;
4393 case NE_EXPR:
4394 result = sgn0 != sgn1;
4395 break;
4396 case LT_EXPR:
4397 result = sgn0 < sgn1;
4398 break;
4399 case LE_EXPR:
4400 result = sgn0 <= sgn1;
4401 break;
4402 case GT_EXPR:
4403 result = sgn0 > sgn1;
4404 break;
4405 case GE_EXPR:
4406 result = sgn0 >= sgn1;
4407 break;
4408 default:
4409 gcc_unreachable ();
4412 return constant_boolean_node (result, type);
4415 /* Helper routine for make_range. Perform one step for it, return
4416 new expression if the loop should continue or NULL_TREE if it should
4417 stop. */
4419 tree
4420 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4421 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4422 bool *strict_overflow_p)
4424 tree arg0_type = TREE_TYPE (arg0);
4425 tree n_low, n_high, low = *p_low, high = *p_high;
4426 int in_p = *p_in_p, n_in_p;
4428 switch (code)
4430 case TRUTH_NOT_EXPR:
4431 /* We can only do something if the range is testing for zero. */
4432 if (low == NULL_TREE || high == NULL_TREE
4433 || ! integer_zerop (low) || ! integer_zerop (high))
4434 return NULL_TREE;
4435 *p_in_p = ! in_p;
4436 return arg0;
4438 case EQ_EXPR: case NE_EXPR:
4439 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4440 /* We can only do something if the range is testing for zero
4441 and if the second operand is an integer constant. Note that
4442 saying something is "in" the range we make is done by
4443 complementing IN_P since it will set in the initial case of
4444 being not equal to zero; "out" is leaving it alone. */
4445 if (low == NULL_TREE || high == NULL_TREE
4446 || ! integer_zerop (low) || ! integer_zerop (high)
4447 || TREE_CODE (arg1) != INTEGER_CST)
4448 return NULL_TREE;
4450 switch (code)
4452 case NE_EXPR: /* - [c, c] */
4453 low = high = arg1;
4454 break;
4455 case EQ_EXPR: /* + [c, c] */
4456 in_p = ! in_p, low = high = arg1;
4457 break;
4458 case GT_EXPR: /* - [-, c] */
4459 low = 0, high = arg1;
4460 break;
4461 case GE_EXPR: /* + [c, -] */
4462 in_p = ! in_p, low = arg1, high = 0;
4463 break;
4464 case LT_EXPR: /* - [c, -] */
4465 low = arg1, high = 0;
4466 break;
4467 case LE_EXPR: /* + [-, c] */
4468 in_p = ! in_p, low = 0, high = arg1;
4469 break;
4470 default:
4471 gcc_unreachable ();
4474 /* If this is an unsigned comparison, we also know that EXP is
4475 greater than or equal to zero. We base the range tests we make
4476 on that fact, so we record it here so we can parse existing
4477 range tests. We test arg0_type since often the return type
4478 of, e.g. EQ_EXPR, is boolean. */
4479 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4481 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4482 in_p, low, high, 1,
4483 build_int_cst (arg0_type, 0),
4484 NULL_TREE))
4485 return NULL_TREE;
4487 in_p = n_in_p, low = n_low, high = n_high;
4489 /* If the high bound is missing, but we have a nonzero low
4490 bound, reverse the range so it goes from zero to the low bound
4491 minus 1. */
4492 if (high == 0 && low && ! integer_zerop (low))
4494 in_p = ! in_p;
4495 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4496 build_int_cst (TREE_TYPE (low), 1), 0);
4497 low = build_int_cst (arg0_type, 0);
4501 *p_low = low;
4502 *p_high = high;
4503 *p_in_p = in_p;
4504 return arg0;
4506 case NEGATE_EXPR:
4507 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4508 low and high are non-NULL, then normalize will DTRT. */
4509 if (!TYPE_UNSIGNED (arg0_type)
4510 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4512 if (low == NULL_TREE)
4513 low = TYPE_MIN_VALUE (arg0_type);
4514 if (high == NULL_TREE)
4515 high = TYPE_MAX_VALUE (arg0_type);
4518 /* (-x) IN [a,b] -> x in [-b, -a] */
4519 n_low = range_binop (MINUS_EXPR, exp_type,
4520 build_int_cst (exp_type, 0),
4521 0, high, 1);
4522 n_high = range_binop (MINUS_EXPR, exp_type,
4523 build_int_cst (exp_type, 0),
4524 0, low, 0);
4525 if (n_high != 0 && TREE_OVERFLOW (n_high))
4526 return NULL_TREE;
4527 goto normalize;
4529 case BIT_NOT_EXPR:
4530 /* ~ X -> -X - 1 */
4531 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4532 build_int_cst (exp_type, 1));
4534 case PLUS_EXPR:
4535 case MINUS_EXPR:
4536 if (TREE_CODE (arg1) != INTEGER_CST)
4537 return NULL_TREE;
4539 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4540 move a constant to the other side. */
4541 if (!TYPE_UNSIGNED (arg0_type)
4542 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4543 return NULL_TREE;
4545 /* If EXP is signed, any overflow in the computation is undefined,
4546 so we don't worry about it so long as our computations on
4547 the bounds don't overflow. For unsigned, overflow is defined
4548 and this is exactly the right thing. */
4549 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4550 arg0_type, low, 0, arg1, 0);
4551 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4552 arg0_type, high, 1, arg1, 0);
4553 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4554 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4555 return NULL_TREE;
4557 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4558 *strict_overflow_p = true;
4560 normalize:
4561 /* Check for an unsigned range which has wrapped around the maximum
4562 value thus making n_high < n_low, and normalize it. */
4563 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4565 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4566 build_int_cst (TREE_TYPE (n_high), 1), 0);
4567 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4568 build_int_cst (TREE_TYPE (n_low), 1), 0);
4570 /* If the range is of the form +/- [ x+1, x ], we won't
4571 be able to normalize it. But then, it represents the
4572 whole range or the empty set, so make it
4573 +/- [ -, - ]. */
4574 if (tree_int_cst_equal (n_low, low)
4575 && tree_int_cst_equal (n_high, high))
4576 low = high = 0;
4577 else
4578 in_p = ! in_p;
4580 else
4581 low = n_low, high = n_high;
4583 *p_low = low;
4584 *p_high = high;
4585 *p_in_p = in_p;
4586 return arg0;
4588 CASE_CONVERT:
4589 case NON_LVALUE_EXPR:
4590 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4591 return NULL_TREE;
4593 if (! INTEGRAL_TYPE_P (arg0_type)
4594 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4595 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4596 return NULL_TREE;
4598 n_low = low, n_high = high;
4600 if (n_low != 0)
4601 n_low = fold_convert_loc (loc, arg0_type, n_low);
4603 if (n_high != 0)
4604 n_high = fold_convert_loc (loc, arg0_type, n_high);
4606 /* If we're converting arg0 from an unsigned type, to exp,
4607 a signed type, we will be doing the comparison as unsigned.
4608 The tests above have already verified that LOW and HIGH
4609 are both positive.
4611 So we have to ensure that we will handle large unsigned
4612 values the same way that the current signed bounds treat
4613 negative values. */
4615 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4617 tree high_positive;
4618 tree equiv_type;
4619 /* For fixed-point modes, we need to pass the saturating flag
4620 as the 2nd parameter. */
4621 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4622 equiv_type
4623 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4624 TYPE_SATURATING (arg0_type));
4625 else
4626 equiv_type
4627 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4629 /* A range without an upper bound is, naturally, unbounded.
4630 Since convert would have cropped a very large value, use
4631 the max value for the destination type. */
4632 high_positive
4633 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4634 : TYPE_MAX_VALUE (arg0_type);
4636 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4637 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4638 fold_convert_loc (loc, arg0_type,
4639 high_positive),
4640 build_int_cst (arg0_type, 1));
4642 /* If the low bound is specified, "and" the range with the
4643 range for which the original unsigned value will be
4644 positive. */
4645 if (low != 0)
4647 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4648 1, fold_convert_loc (loc, arg0_type,
4649 integer_zero_node),
4650 high_positive))
4651 return NULL_TREE;
4653 in_p = (n_in_p == in_p);
4655 else
4657 /* Otherwise, "or" the range with the range of the input
4658 that will be interpreted as negative. */
4659 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4660 1, fold_convert_loc (loc, arg0_type,
4661 integer_zero_node),
4662 high_positive))
4663 return NULL_TREE;
4665 in_p = (in_p != n_in_p);
4669 *p_low = n_low;
4670 *p_high = n_high;
4671 *p_in_p = in_p;
4672 return arg0;
4674 default:
4675 return NULL_TREE;
4679 /* Given EXP, a logical expression, set the range it is testing into
4680 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4681 actually being tested. *PLOW and *PHIGH will be made of the same
4682 type as the returned expression. If EXP is not a comparison, we
4683 will most likely not be returning a useful value and range. Set
4684 *STRICT_OVERFLOW_P to true if the return value is only valid
4685 because signed overflow is undefined; otherwise, do not change
4686 *STRICT_OVERFLOW_P. */
4688 tree
4689 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4690 bool *strict_overflow_p)
4692 enum tree_code code;
4693 tree arg0, arg1 = NULL_TREE;
4694 tree exp_type, nexp;
4695 int in_p;
4696 tree low, high;
4697 location_t loc = EXPR_LOCATION (exp);
4699 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4700 and see if we can refine the range. Some of the cases below may not
4701 happen, but it doesn't seem worth worrying about this. We "continue"
4702 the outer loop when we've changed something; otherwise we "break"
4703 the switch, which will "break" the while. */
4705 in_p = 0;
4706 low = high = build_int_cst (TREE_TYPE (exp), 0);
4708 while (1)
4710 code = TREE_CODE (exp);
4711 exp_type = TREE_TYPE (exp);
4712 arg0 = NULL_TREE;
4714 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4716 if (TREE_OPERAND_LENGTH (exp) > 0)
4717 arg0 = TREE_OPERAND (exp, 0);
4718 if (TREE_CODE_CLASS (code) == tcc_binary
4719 || TREE_CODE_CLASS (code) == tcc_comparison
4720 || (TREE_CODE_CLASS (code) == tcc_expression
4721 && TREE_OPERAND_LENGTH (exp) > 1))
4722 arg1 = TREE_OPERAND (exp, 1);
4724 if (arg0 == NULL_TREE)
4725 break;
4727 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4728 &high, &in_p, strict_overflow_p);
4729 if (nexp == NULL_TREE)
4730 break;
4731 exp = nexp;
4734 /* If EXP is a constant, we can evaluate whether this is true or false. */
4735 if (TREE_CODE (exp) == INTEGER_CST)
4737 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4738 exp, 0, low, 0))
4739 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4740 exp, 1, high, 1)));
4741 low = high = 0;
4742 exp = 0;
4745 *pin_p = in_p, *plow = low, *phigh = high;
4746 return exp;
4749 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4750 type, TYPE, return an expression to test if EXP is in (or out of, depending
4751 on IN_P) the range. Return 0 if the test couldn't be created. */
4753 tree
4754 build_range_check (location_t loc, tree type, tree exp, int in_p,
4755 tree low, tree high)
4757 tree etype = TREE_TYPE (exp), value;
4759 /* Disable this optimization for function pointer expressions
4760 on targets that require function pointer canonicalization. */
4761 if (targetm.have_canonicalize_funcptr_for_compare ()
4762 && TREE_CODE (etype) == POINTER_TYPE
4763 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4764 return NULL_TREE;
4766 if (! in_p)
4768 value = build_range_check (loc, type, exp, 1, low, high);
4769 if (value != 0)
4770 return invert_truthvalue_loc (loc, value);
4772 return 0;
4775 if (low == 0 && high == 0)
4776 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4778 if (low == 0)
4779 return fold_build2_loc (loc, LE_EXPR, type, exp,
4780 fold_convert_loc (loc, etype, high));
4782 if (high == 0)
4783 return fold_build2_loc (loc, GE_EXPR, type, exp,
4784 fold_convert_loc (loc, etype, low));
4786 if (operand_equal_p (low, high, 0))
4787 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4788 fold_convert_loc (loc, etype, low));
4790 if (integer_zerop (low))
4792 if (! TYPE_UNSIGNED (etype))
4794 etype = unsigned_type_for (etype);
4795 high = fold_convert_loc (loc, etype, high);
4796 exp = fold_convert_loc (loc, etype, exp);
4798 return build_range_check (loc, type, exp, 1, 0, high);
4801 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4802 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4804 int prec = TYPE_PRECISION (etype);
4806 if (wi::mask (prec - 1, false, prec) == high)
4808 if (TYPE_UNSIGNED (etype))
4810 tree signed_etype = signed_type_for (etype);
4811 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4812 etype
4813 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4814 else
4815 etype = signed_etype;
4816 exp = fold_convert_loc (loc, etype, exp);
4818 return fold_build2_loc (loc, GT_EXPR, type, exp,
4819 build_int_cst (etype, 0));
4823 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4824 This requires wrap-around arithmetics for the type of the expression.
4825 First make sure that arithmetics in this type is valid, then make sure
4826 that it wraps around. */
4827 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4828 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4829 TYPE_UNSIGNED (etype));
4831 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4833 tree utype, minv, maxv;
4835 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4836 for the type in question, as we rely on this here. */
4837 utype = unsigned_type_for (etype);
4838 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4839 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4840 build_int_cst (TREE_TYPE (maxv), 1), 1);
4841 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4843 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4844 minv, 1, maxv, 1)))
4845 etype = utype;
4846 else
4847 return 0;
4850 high = fold_convert_loc (loc, etype, high);
4851 low = fold_convert_loc (loc, etype, low);
4852 exp = fold_convert_loc (loc, etype, exp);
4854 value = const_binop (MINUS_EXPR, high, low);
4857 if (POINTER_TYPE_P (etype))
4859 if (value != 0 && !TREE_OVERFLOW (value))
4861 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4862 return build_range_check (loc, type,
4863 fold_build_pointer_plus_loc (loc, exp, low),
4864 1, build_int_cst (etype, 0), value);
4866 return 0;
4869 if (value != 0 && !TREE_OVERFLOW (value))
4870 return build_range_check (loc, type,
4871 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4872 1, build_int_cst (etype, 0), value);
4874 return 0;
4877 /* Return the predecessor of VAL in its type, handling the infinite case. */
4879 static tree
4880 range_predecessor (tree val)
4882 tree type = TREE_TYPE (val);
4884 if (INTEGRAL_TYPE_P (type)
4885 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4886 return 0;
4887 else
4888 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4889 build_int_cst (TREE_TYPE (val), 1), 0);
4892 /* Return the successor of VAL in its type, handling the infinite case. */
4894 static tree
4895 range_successor (tree val)
4897 tree type = TREE_TYPE (val);
4899 if (INTEGRAL_TYPE_P (type)
4900 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4901 return 0;
4902 else
4903 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4904 build_int_cst (TREE_TYPE (val), 1), 0);
4907 /* Given two ranges, see if we can merge them into one. Return 1 if we
4908 can, 0 if we can't. Set the output range into the specified parameters. */
4910 bool
4911 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4912 tree high0, int in1_p, tree low1, tree high1)
4914 int no_overlap;
4915 int subset;
4916 int temp;
4917 tree tem;
4918 int in_p;
4919 tree low, high;
4920 int lowequal = ((low0 == 0 && low1 == 0)
4921 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4922 low0, 0, low1, 0)));
4923 int highequal = ((high0 == 0 && high1 == 0)
4924 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4925 high0, 1, high1, 1)));
4927 /* Make range 0 be the range that starts first, or ends last if they
4928 start at the same value. Swap them if it isn't. */
4929 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4930 low0, 0, low1, 0))
4931 || (lowequal
4932 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4933 high1, 1, high0, 1))))
4935 temp = in0_p, in0_p = in1_p, in1_p = temp;
4936 tem = low0, low0 = low1, low1 = tem;
4937 tem = high0, high0 = high1, high1 = tem;
4940 /* Now flag two cases, whether the ranges are disjoint or whether the
4941 second range is totally subsumed in the first. Note that the tests
4942 below are simplified by the ones above. */
4943 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4944 high0, 1, low1, 0));
4945 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4946 high1, 1, high0, 1));
4948 /* We now have four cases, depending on whether we are including or
4949 excluding the two ranges. */
4950 if (in0_p && in1_p)
4952 /* If they don't overlap, the result is false. If the second range
4953 is a subset it is the result. Otherwise, the range is from the start
4954 of the second to the end of the first. */
4955 if (no_overlap)
4956 in_p = 0, low = high = 0;
4957 else if (subset)
4958 in_p = 1, low = low1, high = high1;
4959 else
4960 in_p = 1, low = low1, high = high0;
4963 else if (in0_p && ! in1_p)
4965 /* If they don't overlap, the result is the first range. If they are
4966 equal, the result is false. If the second range is a subset of the
4967 first, and the ranges begin at the same place, we go from just after
4968 the end of the second range to the end of the first. If the second
4969 range is not a subset of the first, or if it is a subset and both
4970 ranges end at the same place, the range starts at the start of the
4971 first range and ends just before the second range.
4972 Otherwise, we can't describe this as a single range. */
4973 if (no_overlap)
4974 in_p = 1, low = low0, high = high0;
4975 else if (lowequal && highequal)
4976 in_p = 0, low = high = 0;
4977 else if (subset && lowequal)
4979 low = range_successor (high1);
4980 high = high0;
4981 in_p = 1;
4982 if (low == 0)
4984 /* We are in the weird situation where high0 > high1 but
4985 high1 has no successor. Punt. */
4986 return 0;
4989 else if (! subset || highequal)
4991 low = low0;
4992 high = range_predecessor (low1);
4993 in_p = 1;
4994 if (high == 0)
4996 /* low0 < low1 but low1 has no predecessor. Punt. */
4997 return 0;
5000 else
5001 return 0;
5004 else if (! in0_p && in1_p)
5006 /* If they don't overlap, the result is the second range. If the second
5007 is a subset of the first, the result is false. Otherwise,
5008 the range starts just after the first range and ends at the
5009 end of the second. */
5010 if (no_overlap)
5011 in_p = 1, low = low1, high = high1;
5012 else if (subset || highequal)
5013 in_p = 0, low = high = 0;
5014 else
5016 low = range_successor (high0);
5017 high = high1;
5018 in_p = 1;
5019 if (low == 0)
5021 /* high1 > high0 but high0 has no successor. Punt. */
5022 return 0;
5027 else
5029 /* The case where we are excluding both ranges. Here the complex case
5030 is if they don't overlap. In that case, the only time we have a
5031 range is if they are adjacent. If the second is a subset of the
5032 first, the result is the first. Otherwise, the range to exclude
5033 starts at the beginning of the first range and ends at the end of the
5034 second. */
5035 if (no_overlap)
5037 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5038 range_successor (high0),
5039 1, low1, 0)))
5040 in_p = 0, low = low0, high = high1;
5041 else
5043 /* Canonicalize - [min, x] into - [-, x]. */
5044 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5045 switch (TREE_CODE (TREE_TYPE (low0)))
5047 case ENUMERAL_TYPE:
5048 if (TYPE_PRECISION (TREE_TYPE (low0))
5049 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
5050 break;
5051 /* FALLTHROUGH */
5052 case INTEGER_TYPE:
5053 if (tree_int_cst_equal (low0,
5054 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5055 low0 = 0;
5056 break;
5057 case POINTER_TYPE:
5058 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5059 && integer_zerop (low0))
5060 low0 = 0;
5061 break;
5062 default:
5063 break;
5066 /* Canonicalize - [x, max] into - [x, -]. */
5067 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5068 switch (TREE_CODE (TREE_TYPE (high1)))
5070 case ENUMERAL_TYPE:
5071 if (TYPE_PRECISION (TREE_TYPE (high1))
5072 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
5073 break;
5074 /* FALLTHROUGH */
5075 case INTEGER_TYPE:
5076 if (tree_int_cst_equal (high1,
5077 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5078 high1 = 0;
5079 break;
5080 case POINTER_TYPE:
5081 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5082 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5083 high1, 1,
5084 build_int_cst (TREE_TYPE (high1), 1),
5085 1)))
5086 high1 = 0;
5087 break;
5088 default:
5089 break;
5092 /* The ranges might be also adjacent between the maximum and
5093 minimum values of the given type. For
5094 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5095 return + [x + 1, y - 1]. */
5096 if (low0 == 0 && high1 == 0)
5098 low = range_successor (high0);
5099 high = range_predecessor (low1);
5100 if (low == 0 || high == 0)
5101 return 0;
5103 in_p = 1;
5105 else
5106 return 0;
5109 else if (subset)
5110 in_p = 0, low = low0, high = high0;
5111 else
5112 in_p = 0, low = low0, high = high1;
5115 *pin_p = in_p, *plow = low, *phigh = high;
5116 return 1;
5120 /* Subroutine of fold, looking inside expressions of the form
5121 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5122 of the COND_EXPR. This function is being used also to optimize
5123 A op B ? C : A, by reversing the comparison first.
5125 Return a folded expression whose code is not a COND_EXPR
5126 anymore, or NULL_TREE if no folding opportunity is found. */
5128 static tree
5129 fold_cond_expr_with_comparison (location_t loc, tree type,
5130 tree arg0, tree arg1, tree arg2)
5132 enum tree_code comp_code = TREE_CODE (arg0);
5133 tree arg00 = TREE_OPERAND (arg0, 0);
5134 tree arg01 = TREE_OPERAND (arg0, 1);
5135 tree arg1_type = TREE_TYPE (arg1);
5136 tree tem;
5138 STRIP_NOPS (arg1);
5139 STRIP_NOPS (arg2);
5141 /* If we have A op 0 ? A : -A, consider applying the following
5142 transformations:
5144 A == 0? A : -A same as -A
5145 A != 0? A : -A same as A
5146 A >= 0? A : -A same as abs (A)
5147 A > 0? A : -A same as abs (A)
5148 A <= 0? A : -A same as -abs (A)
5149 A < 0? A : -A same as -abs (A)
5151 None of these transformations work for modes with signed
5152 zeros. If A is +/-0, the first two transformations will
5153 change the sign of the result (from +0 to -0, or vice
5154 versa). The last four will fix the sign of the result,
5155 even though the original expressions could be positive or
5156 negative, depending on the sign of A.
5158 Note that all these transformations are correct if A is
5159 NaN, since the two alternatives (A and -A) are also NaNs. */
5160 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5161 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5162 ? real_zerop (arg01)
5163 : integer_zerop (arg01))
5164 && ((TREE_CODE (arg2) == NEGATE_EXPR
5165 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5166 /* In the case that A is of the form X-Y, '-A' (arg2) may
5167 have already been folded to Y-X, check for that. */
5168 || (TREE_CODE (arg1) == MINUS_EXPR
5169 && TREE_CODE (arg2) == MINUS_EXPR
5170 && operand_equal_p (TREE_OPERAND (arg1, 0),
5171 TREE_OPERAND (arg2, 1), 0)
5172 && operand_equal_p (TREE_OPERAND (arg1, 1),
5173 TREE_OPERAND (arg2, 0), 0))))
5174 switch (comp_code)
5176 case EQ_EXPR:
5177 case UNEQ_EXPR:
5178 tem = fold_convert_loc (loc, arg1_type, arg1);
5179 return fold_convert_loc (loc, type, negate_expr (tem));
5180 case NE_EXPR:
5181 case LTGT_EXPR:
5182 return fold_convert_loc (loc, type, arg1);
5183 case UNGE_EXPR:
5184 case UNGT_EXPR:
5185 if (flag_trapping_math)
5186 break;
5187 /* Fall through. */
5188 case GE_EXPR:
5189 case GT_EXPR:
5190 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5191 break;
5192 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5193 return fold_convert_loc (loc, type, tem);
5194 case UNLE_EXPR:
5195 case UNLT_EXPR:
5196 if (flag_trapping_math)
5197 break;
5198 /* FALLTHRU */
5199 case LE_EXPR:
5200 case LT_EXPR:
5201 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5202 break;
5203 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5204 return negate_expr (fold_convert_loc (loc, type, tem));
5205 default:
5206 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5207 break;
5210 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5211 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5212 both transformations are correct when A is NaN: A != 0
5213 is then true, and A == 0 is false. */
5215 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5216 && integer_zerop (arg01) && integer_zerop (arg2))
5218 if (comp_code == NE_EXPR)
5219 return fold_convert_loc (loc, type, arg1);
5220 else if (comp_code == EQ_EXPR)
5221 return build_zero_cst (type);
5224 /* Try some transformations of A op B ? A : B.
5226 A == B? A : B same as B
5227 A != B? A : B same as A
5228 A >= B? A : B same as max (A, B)
5229 A > B? A : B same as max (B, A)
5230 A <= B? A : B same as min (A, B)
5231 A < B? A : B same as min (B, A)
5233 As above, these transformations don't work in the presence
5234 of signed zeros. For example, if A and B are zeros of
5235 opposite sign, the first two transformations will change
5236 the sign of the result. In the last four, the original
5237 expressions give different results for (A=+0, B=-0) and
5238 (A=-0, B=+0), but the transformed expressions do not.
5240 The first two transformations are correct if either A or B
5241 is a NaN. In the first transformation, the condition will
5242 be false, and B will indeed be chosen. In the case of the
5243 second transformation, the condition A != B will be true,
5244 and A will be chosen.
5246 The conversions to max() and min() are not correct if B is
5247 a number and A is not. The conditions in the original
5248 expressions will be false, so all four give B. The min()
5249 and max() versions would give a NaN instead. */
5250 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5251 && operand_equal_for_comparison_p (arg01, arg2, arg00)
5252 /* Avoid these transformations if the COND_EXPR may be used
5253 as an lvalue in the C++ front-end. PR c++/19199. */
5254 && (in_gimple_form
5255 || VECTOR_TYPE_P (type)
5256 || (! lang_GNU_CXX ()
5257 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5258 || ! maybe_lvalue_p (arg1)
5259 || ! maybe_lvalue_p (arg2)))
5261 tree comp_op0 = arg00;
5262 tree comp_op1 = arg01;
5263 tree comp_type = TREE_TYPE (comp_op0);
5265 switch (comp_code)
5267 case EQ_EXPR:
5268 return fold_convert_loc (loc, type, arg2);
5269 case NE_EXPR:
5270 return fold_convert_loc (loc, type, arg1);
5271 case LE_EXPR:
5272 case LT_EXPR:
5273 case UNLE_EXPR:
5274 case UNLT_EXPR:
5275 /* In C++ a ?: expression can be an lvalue, so put the
5276 operand which will be used if they are equal first
5277 so that we can convert this back to the
5278 corresponding COND_EXPR. */
5279 if (!HONOR_NANS (arg1))
5281 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5282 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5283 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5284 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5285 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5286 comp_op1, comp_op0);
5287 return fold_convert_loc (loc, type, tem);
5289 break;
5290 case GE_EXPR:
5291 case GT_EXPR:
5292 case UNGE_EXPR:
5293 case UNGT_EXPR:
5294 if (!HONOR_NANS (arg1))
5296 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5297 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5298 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5299 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5300 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5301 comp_op1, comp_op0);
5302 return fold_convert_loc (loc, type, tem);
5304 break;
5305 case UNEQ_EXPR:
5306 if (!HONOR_NANS (arg1))
5307 return fold_convert_loc (loc, type, arg2);
5308 break;
5309 case LTGT_EXPR:
5310 if (!HONOR_NANS (arg1))
5311 return fold_convert_loc (loc, type, arg1);
5312 break;
5313 default:
5314 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5315 break;
5319 return NULL_TREE;
5324 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5325 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5326 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5327 false) >= 2)
5328 #endif
5330 /* EXP is some logical combination of boolean tests. See if we can
5331 merge it into some range test. Return the new tree if so. */
5333 static tree
5334 fold_range_test (location_t loc, enum tree_code code, tree type,
5335 tree op0, tree op1)
5337 int or_op = (code == TRUTH_ORIF_EXPR
5338 || code == TRUTH_OR_EXPR);
5339 int in0_p, in1_p, in_p;
5340 tree low0, low1, low, high0, high1, high;
5341 bool strict_overflow_p = false;
5342 tree tem, lhs, rhs;
5343 const char * const warnmsg = G_("assuming signed overflow does not occur "
5344 "when simplifying range test");
5346 if (!INTEGRAL_TYPE_P (type))
5347 return 0;
5349 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5350 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5352 /* If this is an OR operation, invert both sides; we will invert
5353 again at the end. */
5354 if (or_op)
5355 in0_p = ! in0_p, in1_p = ! in1_p;
5357 /* If both expressions are the same, if we can merge the ranges, and we
5358 can build the range test, return it or it inverted. If one of the
5359 ranges is always true or always false, consider it to be the same
5360 expression as the other. */
5361 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5362 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5363 in1_p, low1, high1)
5364 && 0 != (tem = (build_range_check (loc, type,
5365 lhs != 0 ? lhs
5366 : rhs != 0 ? rhs : integer_zero_node,
5367 in_p, low, high))))
5369 if (strict_overflow_p)
5370 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5371 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5374 /* On machines where the branch cost is expensive, if this is a
5375 short-circuited branch and the underlying object on both sides
5376 is the same, make a non-short-circuit operation. */
5377 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5378 && lhs != 0 && rhs != 0
5379 && (code == TRUTH_ANDIF_EXPR
5380 || code == TRUTH_ORIF_EXPR)
5381 && operand_equal_p (lhs, rhs, 0))
5383 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5384 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5385 which cases we can't do this. */
5386 if (simple_operand_p (lhs))
5387 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5388 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5389 type, op0, op1);
5391 else if (!lang_hooks.decls.global_bindings_p ()
5392 && !CONTAINS_PLACEHOLDER_P (lhs))
5394 tree common = save_expr (lhs);
5396 if (0 != (lhs = build_range_check (loc, type, common,
5397 or_op ? ! in0_p : in0_p,
5398 low0, high0))
5399 && (0 != (rhs = build_range_check (loc, type, common,
5400 or_op ? ! in1_p : in1_p,
5401 low1, high1))))
5403 if (strict_overflow_p)
5404 fold_overflow_warning (warnmsg,
5405 WARN_STRICT_OVERFLOW_COMPARISON);
5406 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5407 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5408 type, lhs, rhs);
5413 return 0;
5416 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5417 bit value. Arrange things so the extra bits will be set to zero if and
5418 only if C is signed-extended to its full width. If MASK is nonzero,
5419 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5421 static tree
5422 unextend (tree c, int p, int unsignedp, tree mask)
5424 tree type = TREE_TYPE (c);
5425 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5426 tree temp;
5428 if (p == modesize || unsignedp)
5429 return c;
5431 /* We work by getting just the sign bit into the low-order bit, then
5432 into the high-order bit, then sign-extend. We then XOR that value
5433 with C. */
5434 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5436 /* We must use a signed type in order to get an arithmetic right shift.
5437 However, we must also avoid introducing accidental overflows, so that
5438 a subsequent call to integer_zerop will work. Hence we must
5439 do the type conversion here. At this point, the constant is either
5440 zero or one, and the conversion to a signed type can never overflow.
5441 We could get an overflow if this conversion is done anywhere else. */
5442 if (TYPE_UNSIGNED (type))
5443 temp = fold_convert (signed_type_for (type), temp);
5445 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5446 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5447 if (mask != 0)
5448 temp = const_binop (BIT_AND_EXPR, temp,
5449 fold_convert (TREE_TYPE (c), mask));
5450 /* If necessary, convert the type back to match the type of C. */
5451 if (TYPE_UNSIGNED (type))
5452 temp = fold_convert (type, temp);
5454 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5457 /* For an expression that has the form
5458 (A && B) || ~B
5460 (A || B) && ~B,
5461 we can drop one of the inner expressions and simplify to
5462 A || ~B
5464 A && ~B
5465 LOC is the location of the resulting expression. OP is the inner
5466 logical operation; the left-hand side in the examples above, while CMPOP
5467 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5468 removing a condition that guards another, as in
5469 (A != NULL && A->...) || A == NULL
5470 which we must not transform. If RHS_ONLY is true, only eliminate the
5471 right-most operand of the inner logical operation. */
5473 static tree
5474 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5475 bool rhs_only)
5477 tree type = TREE_TYPE (cmpop);
5478 enum tree_code code = TREE_CODE (cmpop);
5479 enum tree_code truthop_code = TREE_CODE (op);
5480 tree lhs = TREE_OPERAND (op, 0);
5481 tree rhs = TREE_OPERAND (op, 1);
5482 tree orig_lhs = lhs, orig_rhs = rhs;
5483 enum tree_code rhs_code = TREE_CODE (rhs);
5484 enum tree_code lhs_code = TREE_CODE (lhs);
5485 enum tree_code inv_code;
5487 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5488 return NULL_TREE;
5490 if (TREE_CODE_CLASS (code) != tcc_comparison)
5491 return NULL_TREE;
5493 if (rhs_code == truthop_code)
5495 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5496 if (newrhs != NULL_TREE)
5498 rhs = newrhs;
5499 rhs_code = TREE_CODE (rhs);
5502 if (lhs_code == truthop_code && !rhs_only)
5504 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5505 if (newlhs != NULL_TREE)
5507 lhs = newlhs;
5508 lhs_code = TREE_CODE (lhs);
5512 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5513 if (inv_code == rhs_code
5514 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5515 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5516 return lhs;
5517 if (!rhs_only && inv_code == lhs_code
5518 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5519 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5520 return rhs;
5521 if (rhs != orig_rhs || lhs != orig_lhs)
5522 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5523 lhs, rhs);
5524 return NULL_TREE;
5527 /* Find ways of folding logical expressions of LHS and RHS:
5528 Try to merge two comparisons to the same innermost item.
5529 Look for range tests like "ch >= '0' && ch <= '9'".
5530 Look for combinations of simple terms on machines with expensive branches
5531 and evaluate the RHS unconditionally.
5533 For example, if we have p->a == 2 && p->b == 4 and we can make an
5534 object large enough to span both A and B, we can do this with a comparison
5535 against the object ANDed with the a mask.
5537 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5538 operations to do this with one comparison.
5540 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5541 function and the one above.
5543 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5544 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5546 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5547 two operands.
5549 We return the simplified tree or 0 if no optimization is possible. */
5551 static tree
5552 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5553 tree lhs, tree rhs)
5555 /* If this is the "or" of two comparisons, we can do something if
5556 the comparisons are NE_EXPR. If this is the "and", we can do something
5557 if the comparisons are EQ_EXPR. I.e.,
5558 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5560 WANTED_CODE is this operation code. For single bit fields, we can
5561 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5562 comparison for one-bit fields. */
5564 enum tree_code wanted_code;
5565 enum tree_code lcode, rcode;
5566 tree ll_arg, lr_arg, rl_arg, rr_arg;
5567 tree ll_inner, lr_inner, rl_inner, rr_inner;
5568 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5569 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5570 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5571 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5572 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5573 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5574 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5575 machine_mode lnmode, rnmode;
5576 tree ll_mask, lr_mask, rl_mask, rr_mask;
5577 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5578 tree l_const, r_const;
5579 tree lntype, rntype, result;
5580 HOST_WIDE_INT first_bit, end_bit;
5581 int volatilep;
5583 /* Start by getting the comparison codes. Fail if anything is volatile.
5584 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5585 it were surrounded with a NE_EXPR. */
5587 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5588 return 0;
5590 lcode = TREE_CODE (lhs);
5591 rcode = TREE_CODE (rhs);
5593 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5595 lhs = build2 (NE_EXPR, truth_type, lhs,
5596 build_int_cst (TREE_TYPE (lhs), 0));
5597 lcode = NE_EXPR;
5600 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5602 rhs = build2 (NE_EXPR, truth_type, rhs,
5603 build_int_cst (TREE_TYPE (rhs), 0));
5604 rcode = NE_EXPR;
5607 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5608 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5609 return 0;
5611 ll_arg = TREE_OPERAND (lhs, 0);
5612 lr_arg = TREE_OPERAND (lhs, 1);
5613 rl_arg = TREE_OPERAND (rhs, 0);
5614 rr_arg = TREE_OPERAND (rhs, 1);
5616 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5617 if (simple_operand_p (ll_arg)
5618 && simple_operand_p (lr_arg))
5620 if (operand_equal_p (ll_arg, rl_arg, 0)
5621 && operand_equal_p (lr_arg, rr_arg, 0))
5623 result = combine_comparisons (loc, code, lcode, rcode,
5624 truth_type, ll_arg, lr_arg);
5625 if (result)
5626 return result;
5628 else if (operand_equal_p (ll_arg, rr_arg, 0)
5629 && operand_equal_p (lr_arg, rl_arg, 0))
5631 result = combine_comparisons (loc, code, lcode,
5632 swap_tree_comparison (rcode),
5633 truth_type, ll_arg, lr_arg);
5634 if (result)
5635 return result;
5639 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5640 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5642 /* If the RHS can be evaluated unconditionally and its operands are
5643 simple, it wins to evaluate the RHS unconditionally on machines
5644 with expensive branches. In this case, this isn't a comparison
5645 that can be merged. */
5647 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5648 false) >= 2
5649 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5650 && simple_operand_p (rl_arg)
5651 && simple_operand_p (rr_arg))
5653 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5654 if (code == TRUTH_OR_EXPR
5655 && lcode == NE_EXPR && integer_zerop (lr_arg)
5656 && rcode == NE_EXPR && integer_zerop (rr_arg)
5657 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5658 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5659 return build2_loc (loc, NE_EXPR, truth_type,
5660 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5661 ll_arg, rl_arg),
5662 build_int_cst (TREE_TYPE (ll_arg), 0));
5664 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5665 if (code == TRUTH_AND_EXPR
5666 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5667 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5668 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5669 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5670 return build2_loc (loc, EQ_EXPR, truth_type,
5671 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5672 ll_arg, rl_arg),
5673 build_int_cst (TREE_TYPE (ll_arg), 0));
5676 /* See if the comparisons can be merged. Then get all the parameters for
5677 each side. */
5679 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5680 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5681 return 0;
5683 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5684 volatilep = 0;
5685 ll_inner = decode_field_reference (loc, &ll_arg,
5686 &ll_bitsize, &ll_bitpos, &ll_mode,
5687 &ll_unsignedp, &ll_reversep, &volatilep,
5688 &ll_mask, &ll_and_mask);
5689 lr_inner = decode_field_reference (loc, &lr_arg,
5690 &lr_bitsize, &lr_bitpos, &lr_mode,
5691 &lr_unsignedp, &lr_reversep, &volatilep,
5692 &lr_mask, &lr_and_mask);
5693 rl_inner = decode_field_reference (loc, &rl_arg,
5694 &rl_bitsize, &rl_bitpos, &rl_mode,
5695 &rl_unsignedp, &rl_reversep, &volatilep,
5696 &rl_mask, &rl_and_mask);
5697 rr_inner = decode_field_reference (loc, &rr_arg,
5698 &rr_bitsize, &rr_bitpos, &rr_mode,
5699 &rr_unsignedp, &rr_reversep, &volatilep,
5700 &rr_mask, &rr_and_mask);
5702 /* It must be true that the inner operation on the lhs of each
5703 comparison must be the same if we are to be able to do anything.
5704 Then see if we have constants. If not, the same must be true for
5705 the rhs's. */
5706 if (volatilep
5707 || ll_reversep != rl_reversep
5708 || ll_inner == 0 || rl_inner == 0
5709 || ! operand_equal_p (ll_inner, rl_inner, 0))
5710 return 0;
5712 if (TREE_CODE (lr_arg) == INTEGER_CST
5713 && TREE_CODE (rr_arg) == INTEGER_CST)
5715 l_const = lr_arg, r_const = rr_arg;
5716 lr_reversep = ll_reversep;
5718 else if (lr_reversep != rr_reversep
5719 || lr_inner == 0 || rr_inner == 0
5720 || ! operand_equal_p (lr_inner, rr_inner, 0))
5721 return 0;
5722 else
5723 l_const = r_const = 0;
5725 /* If either comparison code is not correct for our logical operation,
5726 fail. However, we can convert a one-bit comparison against zero into
5727 the opposite comparison against that bit being set in the field. */
5729 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5730 if (lcode != wanted_code)
5732 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5734 /* Make the left operand unsigned, since we are only interested
5735 in the value of one bit. Otherwise we are doing the wrong
5736 thing below. */
5737 ll_unsignedp = 1;
5738 l_const = ll_mask;
5740 else
5741 return 0;
5744 /* This is analogous to the code for l_const above. */
5745 if (rcode != wanted_code)
5747 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5749 rl_unsignedp = 1;
5750 r_const = rl_mask;
5752 else
5753 return 0;
5756 /* See if we can find a mode that contains both fields being compared on
5757 the left. If we can't, fail. Otherwise, update all constants and masks
5758 to be relative to a field of that size. */
5759 first_bit = MIN (ll_bitpos, rl_bitpos);
5760 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5761 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5762 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5763 volatilep);
5764 if (lnmode == VOIDmode)
5765 return 0;
5767 lnbitsize = GET_MODE_BITSIZE (lnmode);
5768 lnbitpos = first_bit & ~ (lnbitsize - 1);
5769 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5770 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5772 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5774 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5775 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5778 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5779 size_int (xll_bitpos));
5780 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5781 size_int (xrl_bitpos));
5783 if (l_const)
5785 l_const = fold_convert_loc (loc, lntype, l_const);
5786 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5787 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5788 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5789 fold_build1_loc (loc, BIT_NOT_EXPR,
5790 lntype, ll_mask))))
5792 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5794 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5797 if (r_const)
5799 r_const = fold_convert_loc (loc, lntype, r_const);
5800 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5801 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5802 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5803 fold_build1_loc (loc, BIT_NOT_EXPR,
5804 lntype, rl_mask))))
5806 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5808 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5812 /* If the right sides are not constant, do the same for it. Also,
5813 disallow this optimization if a size or signedness mismatch occurs
5814 between the left and right sides. */
5815 if (l_const == 0)
5817 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5818 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5819 /* Make sure the two fields on the right
5820 correspond to the left without being swapped. */
5821 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5822 return 0;
5824 first_bit = MIN (lr_bitpos, rr_bitpos);
5825 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5826 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5827 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5828 volatilep);
5829 if (rnmode == VOIDmode)
5830 return 0;
5832 rnbitsize = GET_MODE_BITSIZE (rnmode);
5833 rnbitpos = first_bit & ~ (rnbitsize - 1);
5834 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5835 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5837 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5839 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5840 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5843 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5844 rntype, lr_mask),
5845 size_int (xlr_bitpos));
5846 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5847 rntype, rr_mask),
5848 size_int (xrr_bitpos));
5850 /* Make a mask that corresponds to both fields being compared.
5851 Do this for both items being compared. If the operands are the
5852 same size and the bits being compared are in the same position
5853 then we can do this by masking both and comparing the masked
5854 results. */
5855 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5856 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5857 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5859 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
5860 lntype, lnbitsize, lnbitpos,
5861 ll_unsignedp || rl_unsignedp, ll_reversep);
5862 if (! all_ones_mask_p (ll_mask, lnbitsize))
5863 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5865 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
5866 rntype, rnbitsize, rnbitpos,
5867 lr_unsignedp || rr_unsignedp, lr_reversep);
5868 if (! all_ones_mask_p (lr_mask, rnbitsize))
5869 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5871 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5874 /* There is still another way we can do something: If both pairs of
5875 fields being compared are adjacent, we may be able to make a wider
5876 field containing them both.
5878 Note that we still must mask the lhs/rhs expressions. Furthermore,
5879 the mask must be shifted to account for the shift done by
5880 make_bit_field_ref. */
5881 if ((ll_bitsize + ll_bitpos == rl_bitpos
5882 && lr_bitsize + lr_bitpos == rr_bitpos)
5883 || (ll_bitpos == rl_bitpos + rl_bitsize
5884 && lr_bitpos == rr_bitpos + rr_bitsize))
5886 tree type;
5888 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
5889 ll_bitsize + rl_bitsize,
5890 MIN (ll_bitpos, rl_bitpos),
5891 ll_unsignedp, ll_reversep);
5892 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
5893 lr_bitsize + rr_bitsize,
5894 MIN (lr_bitpos, rr_bitpos),
5895 lr_unsignedp, lr_reversep);
5897 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5898 size_int (MIN (xll_bitpos, xrl_bitpos)));
5899 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5900 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5902 /* Convert to the smaller type before masking out unwanted bits. */
5903 type = lntype;
5904 if (lntype != rntype)
5906 if (lnbitsize > rnbitsize)
5908 lhs = fold_convert_loc (loc, rntype, lhs);
5909 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5910 type = rntype;
5912 else if (lnbitsize < rnbitsize)
5914 rhs = fold_convert_loc (loc, lntype, rhs);
5915 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5916 type = lntype;
5920 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5921 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5923 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5924 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5926 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5929 return 0;
5932 /* Handle the case of comparisons with constants. If there is something in
5933 common between the masks, those bits of the constants must be the same.
5934 If not, the condition is always false. Test for this to avoid generating
5935 incorrect code below. */
5936 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5937 if (! integer_zerop (result)
5938 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5939 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5941 if (wanted_code == NE_EXPR)
5943 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5944 return constant_boolean_node (true, truth_type);
5946 else
5948 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5949 return constant_boolean_node (false, truth_type);
5953 /* Construct the expression we will return. First get the component
5954 reference we will make. Unless the mask is all ones the width of
5955 that field, perform the mask operation. Then compare with the
5956 merged constant. */
5957 result = make_bit_field_ref (loc, ll_inner, ll_arg,
5958 lntype, lnbitsize, lnbitpos,
5959 ll_unsignedp || rl_unsignedp, ll_reversep);
5961 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5962 if (! all_ones_mask_p (ll_mask, lnbitsize))
5963 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5965 return build2_loc (loc, wanted_code, truth_type, result,
5966 const_binop (BIT_IOR_EXPR, l_const, r_const));
5969 /* T is an integer expression that is being multiplied, divided, or taken a
5970 modulus (CODE says which and what kind of divide or modulus) by a
5971 constant C. See if we can eliminate that operation by folding it with
5972 other operations already in T. WIDE_TYPE, if non-null, is a type that
5973 should be used for the computation if wider than our type.
5975 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5976 (X * 2) + (Y * 4). We must, however, be assured that either the original
5977 expression would not overflow or that overflow is undefined for the type
5978 in the language in question.
5980 If we return a non-null expression, it is an equivalent form of the
5981 original computation, but need not be in the original type.
5983 We set *STRICT_OVERFLOW_P to true if the return values depends on
5984 signed overflow being undefined. Otherwise we do not change
5985 *STRICT_OVERFLOW_P. */
5987 static tree
5988 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5989 bool *strict_overflow_p)
5991 /* To avoid exponential search depth, refuse to allow recursion past
5992 three levels. Beyond that (1) it's highly unlikely that we'll find
5993 something interesting and (2) we've probably processed it before
5994 when we built the inner expression. */
5996 static int depth;
5997 tree ret;
5999 if (depth > 3)
6000 return NULL;
6002 depth++;
6003 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6004 depth--;
6006 return ret;
6009 static tree
6010 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6011 bool *strict_overflow_p)
6013 tree type = TREE_TYPE (t);
6014 enum tree_code tcode = TREE_CODE (t);
6015 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
6016 > GET_MODE_SIZE (TYPE_MODE (type)))
6017 ? wide_type : type);
6018 tree t1, t2;
6019 int same_p = tcode == code;
6020 tree op0 = NULL_TREE, op1 = NULL_TREE;
6021 bool sub_strict_overflow_p;
6023 /* Don't deal with constants of zero here; they confuse the code below. */
6024 if (integer_zerop (c))
6025 return NULL_TREE;
6027 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6028 op0 = TREE_OPERAND (t, 0);
6030 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6031 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6033 /* Note that we need not handle conditional operations here since fold
6034 already handles those cases. So just do arithmetic here. */
6035 switch (tcode)
6037 case INTEGER_CST:
6038 /* For a constant, we can always simplify if we are a multiply
6039 or (for divide and modulus) if it is a multiple of our constant. */
6040 if (code == MULT_EXPR
6041 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
6043 tree tem = const_binop (code, fold_convert (ctype, t),
6044 fold_convert (ctype, c));
6045 /* If the multiplication overflowed, we lost information on it.
6046 See PR68142 and PR69845. */
6047 if (TREE_OVERFLOW (tem))
6048 return NULL_TREE;
6049 return tem;
6051 break;
6053 CASE_CONVERT: case NON_LVALUE_EXPR:
6054 /* If op0 is an expression ... */
6055 if ((COMPARISON_CLASS_P (op0)
6056 || UNARY_CLASS_P (op0)
6057 || BINARY_CLASS_P (op0)
6058 || VL_EXP_CLASS_P (op0)
6059 || EXPRESSION_CLASS_P (op0))
6060 /* ... and has wrapping overflow, and its type is smaller
6061 than ctype, then we cannot pass through as widening. */
6062 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6063 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6064 && (TYPE_PRECISION (ctype)
6065 > TYPE_PRECISION (TREE_TYPE (op0))))
6066 /* ... or this is a truncation (t is narrower than op0),
6067 then we cannot pass through this narrowing. */
6068 || (TYPE_PRECISION (type)
6069 < TYPE_PRECISION (TREE_TYPE (op0)))
6070 /* ... or signedness changes for division or modulus,
6071 then we cannot pass through this conversion. */
6072 || (code != MULT_EXPR
6073 && (TYPE_UNSIGNED (ctype)
6074 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6075 /* ... or has undefined overflow while the converted to
6076 type has not, we cannot do the operation in the inner type
6077 as that would introduce undefined overflow. */
6078 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6079 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6080 && !TYPE_OVERFLOW_UNDEFINED (type))))
6081 break;
6083 /* Pass the constant down and see if we can make a simplification. If
6084 we can, replace this expression with the inner simplification for
6085 possible later conversion to our or some other type. */
6086 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6087 && TREE_CODE (t2) == INTEGER_CST
6088 && !TREE_OVERFLOW (t2)
6089 && (0 != (t1 = extract_muldiv (op0, t2, code,
6090 code == MULT_EXPR
6091 ? ctype : NULL_TREE,
6092 strict_overflow_p))))
6093 return t1;
6094 break;
6096 case ABS_EXPR:
6097 /* If widening the type changes it from signed to unsigned, then we
6098 must avoid building ABS_EXPR itself as unsigned. */
6099 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6101 tree cstype = (*signed_type_for) (ctype);
6102 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6103 != 0)
6105 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6106 return fold_convert (ctype, t1);
6108 break;
6110 /* If the constant is negative, we cannot simplify this. */
6111 if (tree_int_cst_sgn (c) == -1)
6112 break;
6113 /* FALLTHROUGH */
6114 case NEGATE_EXPR:
6115 /* For division and modulus, type can't be unsigned, as e.g.
6116 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6117 For signed types, even with wrapping overflow, this is fine. */
6118 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6119 break;
6120 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6121 != 0)
6122 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6123 break;
6125 case MIN_EXPR: case MAX_EXPR:
6126 /* If widening the type changes the signedness, then we can't perform
6127 this optimization as that changes the result. */
6128 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6129 break;
6131 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6132 sub_strict_overflow_p = false;
6133 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6134 &sub_strict_overflow_p)) != 0
6135 && (t2 = extract_muldiv (op1, c, code, wide_type,
6136 &sub_strict_overflow_p)) != 0)
6138 if (tree_int_cst_sgn (c) < 0)
6139 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6140 if (sub_strict_overflow_p)
6141 *strict_overflow_p = true;
6142 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6143 fold_convert (ctype, t2));
6145 break;
6147 case LSHIFT_EXPR: case RSHIFT_EXPR:
6148 /* If the second operand is constant, this is a multiplication
6149 or floor division, by a power of two, so we can treat it that
6150 way unless the multiplier or divisor overflows. Signed
6151 left-shift overflow is implementation-defined rather than
6152 undefined in C90, so do not convert signed left shift into
6153 multiplication. */
6154 if (TREE_CODE (op1) == INTEGER_CST
6155 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6156 /* const_binop may not detect overflow correctly,
6157 so check for it explicitly here. */
6158 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6159 && 0 != (t1 = fold_convert (ctype,
6160 const_binop (LSHIFT_EXPR,
6161 size_one_node,
6162 op1)))
6163 && !TREE_OVERFLOW (t1))
6164 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6165 ? MULT_EXPR : FLOOR_DIV_EXPR,
6166 ctype,
6167 fold_convert (ctype, op0),
6168 t1),
6169 c, code, wide_type, strict_overflow_p);
6170 break;
6172 case PLUS_EXPR: case MINUS_EXPR:
6173 /* See if we can eliminate the operation on both sides. If we can, we
6174 can return a new PLUS or MINUS. If we can't, the only remaining
6175 cases where we can do anything are if the second operand is a
6176 constant. */
6177 sub_strict_overflow_p = false;
6178 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6179 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6180 if (t1 != 0 && t2 != 0
6181 && (code == MULT_EXPR
6182 /* If not multiplication, we can only do this if both operands
6183 are divisible by c. */
6184 || (multiple_of_p (ctype, op0, c)
6185 && multiple_of_p (ctype, op1, c))))
6187 if (sub_strict_overflow_p)
6188 *strict_overflow_p = true;
6189 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6190 fold_convert (ctype, t2));
6193 /* If this was a subtraction, negate OP1 and set it to be an addition.
6194 This simplifies the logic below. */
6195 if (tcode == MINUS_EXPR)
6197 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6198 /* If OP1 was not easily negatable, the constant may be OP0. */
6199 if (TREE_CODE (op0) == INTEGER_CST)
6201 std::swap (op0, op1);
6202 std::swap (t1, t2);
6206 if (TREE_CODE (op1) != INTEGER_CST)
6207 break;
6209 /* If either OP1 or C are negative, this optimization is not safe for
6210 some of the division and remainder types while for others we need
6211 to change the code. */
6212 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6214 if (code == CEIL_DIV_EXPR)
6215 code = FLOOR_DIV_EXPR;
6216 else if (code == FLOOR_DIV_EXPR)
6217 code = CEIL_DIV_EXPR;
6218 else if (code != MULT_EXPR
6219 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6220 break;
6223 /* If it's a multiply or a division/modulus operation of a multiple
6224 of our constant, do the operation and verify it doesn't overflow. */
6225 if (code == MULT_EXPR
6226 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6228 op1 = const_binop (code, fold_convert (ctype, op1),
6229 fold_convert (ctype, c));
6230 /* We allow the constant to overflow with wrapping semantics. */
6231 if (op1 == 0
6232 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6233 break;
6235 else
6236 break;
6238 /* If we have an unsigned type, we cannot widen the operation since it
6239 will change the result if the original computation overflowed. */
6240 if (TYPE_UNSIGNED (ctype) && ctype != type)
6241 break;
6243 /* If we were able to eliminate our operation from the first side,
6244 apply our operation to the second side and reform the PLUS. */
6245 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6246 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6248 /* The last case is if we are a multiply. In that case, we can
6249 apply the distributive law to commute the multiply and addition
6250 if the multiplication of the constants doesn't overflow
6251 and overflow is defined. With undefined overflow
6252 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6253 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6254 return fold_build2 (tcode, ctype,
6255 fold_build2 (code, ctype,
6256 fold_convert (ctype, op0),
6257 fold_convert (ctype, c)),
6258 op1);
6260 break;
6262 case MULT_EXPR:
6263 /* We have a special case here if we are doing something like
6264 (C * 8) % 4 since we know that's zero. */
6265 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6266 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6267 /* If the multiplication can overflow we cannot optimize this. */
6268 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6269 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6270 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6272 *strict_overflow_p = true;
6273 return omit_one_operand (type, integer_zero_node, op0);
6276 /* ... fall through ... */
6278 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6279 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6280 /* If we can extract our operation from the LHS, do so and return a
6281 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6282 do something only if the second operand is a constant. */
6283 if (same_p
6284 && (t1 = extract_muldiv (op0, c, code, wide_type,
6285 strict_overflow_p)) != 0)
6286 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6287 fold_convert (ctype, op1));
6288 else if (tcode == MULT_EXPR && code == MULT_EXPR
6289 && (t1 = extract_muldiv (op1, c, code, wide_type,
6290 strict_overflow_p)) != 0)
6291 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6292 fold_convert (ctype, t1));
6293 else if (TREE_CODE (op1) != INTEGER_CST)
6294 return 0;
6296 /* If these are the same operation types, we can associate them
6297 assuming no overflow. */
6298 if (tcode == code)
6300 bool overflow_p = false;
6301 bool overflow_mul_p;
6302 signop sign = TYPE_SIGN (ctype);
6303 unsigned prec = TYPE_PRECISION (ctype);
6304 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6305 wi::to_wide (c, prec),
6306 sign, &overflow_mul_p);
6307 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6308 if (overflow_mul_p
6309 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6310 overflow_p = true;
6311 if (!overflow_p)
6312 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6313 wide_int_to_tree (ctype, mul));
6316 /* If these operations "cancel" each other, we have the main
6317 optimizations of this pass, which occur when either constant is a
6318 multiple of the other, in which case we replace this with either an
6319 operation or CODE or TCODE.
6321 If we have an unsigned type, we cannot do this since it will change
6322 the result if the original computation overflowed. */
6323 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6324 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6325 || (tcode == MULT_EXPR
6326 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6327 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6328 && code != MULT_EXPR)))
6330 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6332 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6333 *strict_overflow_p = true;
6334 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6335 fold_convert (ctype,
6336 const_binop (TRUNC_DIV_EXPR,
6337 op1, c)));
6339 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6341 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6342 *strict_overflow_p = true;
6343 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6344 fold_convert (ctype,
6345 const_binop (TRUNC_DIV_EXPR,
6346 c, op1)));
6349 break;
6351 default:
6352 break;
6355 return 0;
6358 /* Return a node which has the indicated constant VALUE (either 0 or
6359 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6360 and is of the indicated TYPE. */
6362 tree
6363 constant_boolean_node (bool value, tree type)
6365 if (type == integer_type_node)
6366 return value ? integer_one_node : integer_zero_node;
6367 else if (type == boolean_type_node)
6368 return value ? boolean_true_node : boolean_false_node;
6369 else if (TREE_CODE (type) == VECTOR_TYPE)
6370 return build_vector_from_val (type,
6371 build_int_cst (TREE_TYPE (type),
6372 value ? -1 : 0));
6373 else
6374 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6378 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6379 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6380 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6381 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6382 COND is the first argument to CODE; otherwise (as in the example
6383 given here), it is the second argument. TYPE is the type of the
6384 original expression. Return NULL_TREE if no simplification is
6385 possible. */
6387 static tree
6388 fold_binary_op_with_conditional_arg (location_t loc,
6389 enum tree_code code,
6390 tree type, tree op0, tree op1,
6391 tree cond, tree arg, int cond_first_p)
6393 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6394 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6395 tree test, true_value, false_value;
6396 tree lhs = NULL_TREE;
6397 tree rhs = NULL_TREE;
6398 enum tree_code cond_code = COND_EXPR;
6400 if (TREE_CODE (cond) == COND_EXPR
6401 || TREE_CODE (cond) == VEC_COND_EXPR)
6403 test = TREE_OPERAND (cond, 0);
6404 true_value = TREE_OPERAND (cond, 1);
6405 false_value = TREE_OPERAND (cond, 2);
6406 /* If this operand throws an expression, then it does not make
6407 sense to try to perform a logical or arithmetic operation
6408 involving it. */
6409 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6410 lhs = true_value;
6411 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6412 rhs = false_value;
6414 else if (!(TREE_CODE (type) != VECTOR_TYPE
6415 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6417 tree testtype = TREE_TYPE (cond);
6418 test = cond;
6419 true_value = constant_boolean_node (true, testtype);
6420 false_value = constant_boolean_node (false, testtype);
6422 else
6423 /* Detect the case of mixing vector and scalar types - bail out. */
6424 return NULL_TREE;
6426 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6427 cond_code = VEC_COND_EXPR;
6429 /* This transformation is only worthwhile if we don't have to wrap ARG
6430 in a SAVE_EXPR and the operation can be simplified without recursing
6431 on at least one of the branches once its pushed inside the COND_EXPR. */
6432 if (!TREE_CONSTANT (arg)
6433 && (TREE_SIDE_EFFECTS (arg)
6434 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6435 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6436 return NULL_TREE;
6438 arg = fold_convert_loc (loc, arg_type, arg);
6439 if (lhs == 0)
6441 true_value = fold_convert_loc (loc, cond_type, true_value);
6442 if (cond_first_p)
6443 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6444 else
6445 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6447 if (rhs == 0)
6449 false_value = fold_convert_loc (loc, cond_type, false_value);
6450 if (cond_first_p)
6451 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6452 else
6453 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6456 /* Check that we have simplified at least one of the branches. */
6457 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6458 return NULL_TREE;
6460 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6464 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6466 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6467 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6468 ADDEND is the same as X.
6470 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6471 and finite. The problematic cases are when X is zero, and its mode
6472 has signed zeros. In the case of rounding towards -infinity,
6473 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6474 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6476 bool
6477 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6479 if (!real_zerop (addend))
6480 return false;
6482 /* Don't allow the fold with -fsignaling-nans. */
6483 if (HONOR_SNANS (element_mode (type)))
6484 return false;
6486 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6487 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6488 return true;
6490 /* In a vector or complex, we would need to check the sign of all zeros. */
6491 if (TREE_CODE (addend) != REAL_CST)
6492 return false;
6494 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6495 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6496 negate = !negate;
6498 /* The mode has signed zeros, and we have to honor their sign.
6499 In this situation, there is only one case we can return true for.
6500 X - 0 is the same as X unless rounding towards -infinity is
6501 supported. */
6502 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6505 /* Subroutine of fold() that optimizes comparisons of a division by
6506 a nonzero integer constant against an integer constant, i.e.
6507 X/C1 op C2.
6509 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6510 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6511 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6513 The function returns the constant folded tree if a simplification
6514 can be made, and NULL_TREE otherwise. */
6516 static tree
6517 fold_div_compare (location_t loc,
6518 enum tree_code code, tree type, tree arg0, tree arg1)
6520 tree prod, tmp, hi, lo;
6521 tree arg00 = TREE_OPERAND (arg0, 0);
6522 tree arg01 = TREE_OPERAND (arg0, 1);
6523 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6524 bool neg_overflow = false;
6525 bool overflow;
6527 /* We have to do this the hard way to detect unsigned overflow.
6528 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6529 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6530 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6531 neg_overflow = false;
6533 if (sign == UNSIGNED)
6535 tmp = int_const_binop (MINUS_EXPR, arg01,
6536 build_int_cst (TREE_TYPE (arg01), 1));
6537 lo = prod;
6539 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6540 val = wi::add (prod, tmp, sign, &overflow);
6541 hi = force_fit_type (TREE_TYPE (arg00), val,
6542 -1, overflow | TREE_OVERFLOW (prod));
6544 else if (tree_int_cst_sgn (arg01) >= 0)
6546 tmp = int_const_binop (MINUS_EXPR, arg01,
6547 build_int_cst (TREE_TYPE (arg01), 1));
6548 switch (tree_int_cst_sgn (arg1))
6550 case -1:
6551 neg_overflow = true;
6552 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6553 hi = prod;
6554 break;
6556 case 0:
6557 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6558 hi = tmp;
6559 break;
6561 case 1:
6562 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6563 lo = prod;
6564 break;
6566 default:
6567 gcc_unreachable ();
6570 else
6572 /* A negative divisor reverses the relational operators. */
6573 code = swap_tree_comparison (code);
6575 tmp = int_const_binop (PLUS_EXPR, arg01,
6576 build_int_cst (TREE_TYPE (arg01), 1));
6577 switch (tree_int_cst_sgn (arg1))
6579 case -1:
6580 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6581 lo = prod;
6582 break;
6584 case 0:
6585 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6586 lo = tmp;
6587 break;
6589 case 1:
6590 neg_overflow = true;
6591 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6592 hi = prod;
6593 break;
6595 default:
6596 gcc_unreachable ();
6600 switch (code)
6602 case EQ_EXPR:
6603 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6604 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6605 if (TREE_OVERFLOW (hi))
6606 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6607 if (TREE_OVERFLOW (lo))
6608 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6609 return build_range_check (loc, type, arg00, 1, lo, hi);
6611 case NE_EXPR:
6612 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6613 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6614 if (TREE_OVERFLOW (hi))
6615 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6616 if (TREE_OVERFLOW (lo))
6617 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6618 return build_range_check (loc, type, arg00, 0, lo, hi);
6620 case LT_EXPR:
6621 if (TREE_OVERFLOW (lo))
6623 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6624 return omit_one_operand_loc (loc, type, tmp, arg00);
6626 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6628 case LE_EXPR:
6629 if (TREE_OVERFLOW (hi))
6631 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6632 return omit_one_operand_loc (loc, type, tmp, arg00);
6634 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6636 case GT_EXPR:
6637 if (TREE_OVERFLOW (hi))
6639 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6640 return omit_one_operand_loc (loc, type, tmp, arg00);
6642 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6644 case GE_EXPR:
6645 if (TREE_OVERFLOW (lo))
6647 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6648 return omit_one_operand_loc (loc, type, tmp, arg00);
6650 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6652 default:
6653 break;
6656 return NULL_TREE;
6660 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6661 equality/inequality test, then return a simplified form of the test
6662 using a sign testing. Otherwise return NULL. TYPE is the desired
6663 result type. */
6665 static tree
6666 fold_single_bit_test_into_sign_test (location_t loc,
6667 enum tree_code code, tree arg0, tree arg1,
6668 tree result_type)
6670 /* If this is testing a single bit, we can optimize the test. */
6671 if ((code == NE_EXPR || code == EQ_EXPR)
6672 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6673 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6675 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6676 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6677 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6679 if (arg00 != NULL_TREE
6680 /* This is only a win if casting to a signed type is cheap,
6681 i.e. when arg00's type is not a partial mode. */
6682 && TYPE_PRECISION (TREE_TYPE (arg00))
6683 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6685 tree stype = signed_type_for (TREE_TYPE (arg00));
6686 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6687 result_type,
6688 fold_convert_loc (loc, stype, arg00),
6689 build_int_cst (stype, 0));
6693 return NULL_TREE;
6696 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6697 equality/inequality test, then return a simplified form of
6698 the test using shifts and logical operations. Otherwise return
6699 NULL. TYPE is the desired result type. */
6701 tree
6702 fold_single_bit_test (location_t loc, enum tree_code code,
6703 tree arg0, tree arg1, tree result_type)
6705 /* If this is testing a single bit, we can optimize the test. */
6706 if ((code == NE_EXPR || code == EQ_EXPR)
6707 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6708 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6710 tree inner = TREE_OPERAND (arg0, 0);
6711 tree type = TREE_TYPE (arg0);
6712 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6713 machine_mode operand_mode = TYPE_MODE (type);
6714 int ops_unsigned;
6715 tree signed_type, unsigned_type, intermediate_type;
6716 tree tem, one;
6718 /* First, see if we can fold the single bit test into a sign-bit
6719 test. */
6720 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6721 result_type);
6722 if (tem)
6723 return tem;
6725 /* Otherwise we have (A & C) != 0 where C is a single bit,
6726 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6727 Similarly for (A & C) == 0. */
6729 /* If INNER is a right shift of a constant and it plus BITNUM does
6730 not overflow, adjust BITNUM and INNER. */
6731 if (TREE_CODE (inner) == RSHIFT_EXPR
6732 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6733 && bitnum < TYPE_PRECISION (type)
6734 && wi::ltu_p (TREE_OPERAND (inner, 1),
6735 TYPE_PRECISION (type) - bitnum))
6737 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6738 inner = TREE_OPERAND (inner, 0);
6741 /* If we are going to be able to omit the AND below, we must do our
6742 operations as unsigned. If we must use the AND, we have a choice.
6743 Normally unsigned is faster, but for some machines signed is. */
6744 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
6745 && !flag_syntax_only) ? 0 : 1;
6747 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6748 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6749 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6750 inner = fold_convert_loc (loc, intermediate_type, inner);
6752 if (bitnum != 0)
6753 inner = build2 (RSHIFT_EXPR, intermediate_type,
6754 inner, size_int (bitnum));
6756 one = build_int_cst (intermediate_type, 1);
6758 if (code == EQ_EXPR)
6759 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6761 /* Put the AND last so it can combine with more things. */
6762 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6764 /* Make sure to return the proper type. */
6765 inner = fold_convert_loc (loc, result_type, inner);
6767 return inner;
6769 return NULL_TREE;
6772 /* Test whether it is preferable two swap two operands, ARG0 and
6773 ARG1, for example because ARG0 is an integer constant and ARG1
6774 isn't. */
6776 bool
6777 tree_swap_operands_p (const_tree arg0, const_tree arg1)
6779 if (CONSTANT_CLASS_P (arg1))
6780 return 0;
6781 if (CONSTANT_CLASS_P (arg0))
6782 return 1;
6784 STRIP_NOPS (arg0);
6785 STRIP_NOPS (arg1);
6787 if (TREE_CONSTANT (arg1))
6788 return 0;
6789 if (TREE_CONSTANT (arg0))
6790 return 1;
6792 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6793 for commutative and comparison operators. Ensuring a canonical
6794 form allows the optimizers to find additional redundancies without
6795 having to explicitly check for both orderings. */
6796 if (TREE_CODE (arg0) == SSA_NAME
6797 && TREE_CODE (arg1) == SSA_NAME
6798 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6799 return 1;
6801 /* Put SSA_NAMEs last. */
6802 if (TREE_CODE (arg1) == SSA_NAME)
6803 return 0;
6804 if (TREE_CODE (arg0) == SSA_NAME)
6805 return 1;
6807 /* Put variables last. */
6808 if (DECL_P (arg1))
6809 return 0;
6810 if (DECL_P (arg0))
6811 return 1;
6813 return 0;
6817 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6818 means A >= Y && A != MAX, but in this case we know that
6819 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6821 static tree
6822 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6824 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6826 if (TREE_CODE (bound) == LT_EXPR)
6827 a = TREE_OPERAND (bound, 0);
6828 else if (TREE_CODE (bound) == GT_EXPR)
6829 a = TREE_OPERAND (bound, 1);
6830 else
6831 return NULL_TREE;
6833 typea = TREE_TYPE (a);
6834 if (!INTEGRAL_TYPE_P (typea)
6835 && !POINTER_TYPE_P (typea))
6836 return NULL_TREE;
6838 if (TREE_CODE (ineq) == LT_EXPR)
6840 a1 = TREE_OPERAND (ineq, 1);
6841 y = TREE_OPERAND (ineq, 0);
6843 else if (TREE_CODE (ineq) == GT_EXPR)
6845 a1 = TREE_OPERAND (ineq, 0);
6846 y = TREE_OPERAND (ineq, 1);
6848 else
6849 return NULL_TREE;
6851 if (TREE_TYPE (a1) != typea)
6852 return NULL_TREE;
6854 if (POINTER_TYPE_P (typea))
6856 /* Convert the pointer types into integer before taking the difference. */
6857 tree ta = fold_convert_loc (loc, ssizetype, a);
6858 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6859 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6861 else
6862 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6864 if (!diff || !integer_onep (diff))
6865 return NULL_TREE;
6867 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6870 /* Fold a sum or difference of at least one multiplication.
6871 Returns the folded tree or NULL if no simplification could be made. */
6873 static tree
6874 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6875 tree arg0, tree arg1)
6877 tree arg00, arg01, arg10, arg11;
6878 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6880 /* (A * C) +- (B * C) -> (A+-B) * C.
6881 (A * C) +- A -> A * (C+-1).
6882 We are most concerned about the case where C is a constant,
6883 but other combinations show up during loop reduction. Since
6884 it is not difficult, try all four possibilities. */
6886 if (TREE_CODE (arg0) == MULT_EXPR)
6888 arg00 = TREE_OPERAND (arg0, 0);
6889 arg01 = TREE_OPERAND (arg0, 1);
6891 else if (TREE_CODE (arg0) == INTEGER_CST)
6893 arg00 = build_one_cst (type);
6894 arg01 = arg0;
6896 else
6898 /* We cannot generate constant 1 for fract. */
6899 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6900 return NULL_TREE;
6901 arg00 = arg0;
6902 arg01 = build_one_cst (type);
6904 if (TREE_CODE (arg1) == MULT_EXPR)
6906 arg10 = TREE_OPERAND (arg1, 0);
6907 arg11 = TREE_OPERAND (arg1, 1);
6909 else if (TREE_CODE (arg1) == INTEGER_CST)
6911 arg10 = build_one_cst (type);
6912 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6913 the purpose of this canonicalization. */
6914 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6915 && negate_expr_p (arg1)
6916 && code == PLUS_EXPR)
6918 arg11 = negate_expr (arg1);
6919 code = MINUS_EXPR;
6921 else
6922 arg11 = arg1;
6924 else
6926 /* We cannot generate constant 1 for fract. */
6927 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6928 return NULL_TREE;
6929 arg10 = arg1;
6930 arg11 = build_one_cst (type);
6932 same = NULL_TREE;
6934 if (operand_equal_p (arg01, arg11, 0))
6935 same = arg01, alt0 = arg00, alt1 = arg10;
6936 else if (operand_equal_p (arg00, arg10, 0))
6937 same = arg00, alt0 = arg01, alt1 = arg11;
6938 else if (operand_equal_p (arg00, arg11, 0))
6939 same = arg00, alt0 = arg01, alt1 = arg10;
6940 else if (operand_equal_p (arg01, arg10, 0))
6941 same = arg01, alt0 = arg00, alt1 = arg11;
6943 /* No identical multiplicands; see if we can find a common
6944 power-of-two factor in non-power-of-two multiplies. This
6945 can help in multi-dimensional array access. */
6946 else if (tree_fits_shwi_p (arg01)
6947 && tree_fits_shwi_p (arg11))
6949 HOST_WIDE_INT int01, int11, tmp;
6950 bool swap = false;
6951 tree maybe_same;
6952 int01 = tree_to_shwi (arg01);
6953 int11 = tree_to_shwi (arg11);
6955 /* Move min of absolute values to int11. */
6956 if (absu_hwi (int01) < absu_hwi (int11))
6958 tmp = int01, int01 = int11, int11 = tmp;
6959 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6960 maybe_same = arg01;
6961 swap = true;
6963 else
6964 maybe_same = arg11;
6966 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6967 /* The remainder should not be a constant, otherwise we
6968 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6969 increased the number of multiplications necessary. */
6970 && TREE_CODE (arg10) != INTEGER_CST)
6972 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6973 build_int_cst (TREE_TYPE (arg00),
6974 int01 / int11));
6975 alt1 = arg10;
6976 same = maybe_same;
6977 if (swap)
6978 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6982 if (same)
6983 return fold_build2_loc (loc, MULT_EXPR, type,
6984 fold_build2_loc (loc, code, type,
6985 fold_convert_loc (loc, type, alt0),
6986 fold_convert_loc (loc, type, alt1)),
6987 fold_convert_loc (loc, type, same));
6989 return NULL_TREE;
6992 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6993 specified by EXPR into the buffer PTR of length LEN bytes.
6994 Return the number of bytes placed in the buffer, or zero
6995 upon failure. */
6997 static int
6998 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7000 tree type = TREE_TYPE (expr);
7001 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7002 int byte, offset, word, words;
7003 unsigned char value;
7005 if ((off == -1 && total_bytes > len)
7006 || off >= total_bytes)
7007 return 0;
7008 if (off == -1)
7009 off = 0;
7010 words = total_bytes / UNITS_PER_WORD;
7012 for (byte = 0; byte < total_bytes; byte++)
7014 int bitpos = byte * BITS_PER_UNIT;
7015 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7016 number of bytes. */
7017 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7019 if (total_bytes > UNITS_PER_WORD)
7021 word = byte / UNITS_PER_WORD;
7022 if (WORDS_BIG_ENDIAN)
7023 word = (words - 1) - word;
7024 offset = word * UNITS_PER_WORD;
7025 if (BYTES_BIG_ENDIAN)
7026 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7027 else
7028 offset += byte % UNITS_PER_WORD;
7030 else
7031 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7032 if (offset >= off
7033 && offset - off < len)
7034 ptr[offset - off] = value;
7036 return MIN (len, total_bytes - off);
7040 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7041 specified by EXPR into the buffer PTR of length LEN bytes.
7042 Return the number of bytes placed in the buffer, or zero
7043 upon failure. */
7045 static int
7046 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7048 tree type = TREE_TYPE (expr);
7049 machine_mode mode = TYPE_MODE (type);
7050 int total_bytes = GET_MODE_SIZE (mode);
7051 FIXED_VALUE_TYPE value;
7052 tree i_value, i_type;
7054 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7055 return 0;
7057 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7059 if (NULL_TREE == i_type
7060 || TYPE_PRECISION (i_type) != total_bytes)
7061 return 0;
7063 value = TREE_FIXED_CST (expr);
7064 i_value = double_int_to_tree (i_type, value.data);
7066 return native_encode_int (i_value, ptr, len, off);
7070 /* Subroutine of native_encode_expr. Encode the REAL_CST
7071 specified by EXPR into the buffer PTR of length LEN bytes.
7072 Return the number of bytes placed in the buffer, or zero
7073 upon failure. */
7075 static int
7076 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7078 tree type = TREE_TYPE (expr);
7079 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7080 int byte, offset, word, words, bitpos;
7081 unsigned char value;
7083 /* There are always 32 bits in each long, no matter the size of
7084 the hosts long. We handle floating point representations with
7085 up to 192 bits. */
7086 long tmp[6];
7088 if ((off == -1 && total_bytes > len)
7089 || off >= total_bytes)
7090 return 0;
7091 if (off == -1)
7092 off = 0;
7093 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7095 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7097 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7098 bitpos += BITS_PER_UNIT)
7100 byte = (bitpos / BITS_PER_UNIT) & 3;
7101 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7103 if (UNITS_PER_WORD < 4)
7105 word = byte / UNITS_PER_WORD;
7106 if (WORDS_BIG_ENDIAN)
7107 word = (words - 1) - word;
7108 offset = word * UNITS_PER_WORD;
7109 if (BYTES_BIG_ENDIAN)
7110 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7111 else
7112 offset += byte % UNITS_PER_WORD;
7114 else
7116 offset = byte;
7117 if (BYTES_BIG_ENDIAN)
7119 /* Reverse bytes within each long, or within the entire float
7120 if it's smaller than a long (for HFmode). */
7121 offset = MIN (3, total_bytes - 1) - offset;
7122 gcc_assert (offset >= 0);
7125 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7126 if (offset >= off
7127 && offset - off < len)
7128 ptr[offset - off] = value;
7130 return MIN (len, total_bytes - off);
7133 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7134 specified by EXPR into the buffer PTR of length LEN bytes.
7135 Return the number of bytes placed in the buffer, or zero
7136 upon failure. */
7138 static int
7139 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7141 int rsize, isize;
7142 tree part;
7144 part = TREE_REALPART (expr);
7145 rsize = native_encode_expr (part, ptr, len, off);
7146 if (off == -1
7147 && rsize == 0)
7148 return 0;
7149 part = TREE_IMAGPART (expr);
7150 if (off != -1)
7151 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7152 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7153 if (off == -1
7154 && isize != rsize)
7155 return 0;
7156 return rsize + isize;
7160 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7161 specified by EXPR into the buffer PTR of length LEN bytes.
7162 Return the number of bytes placed in the buffer, or zero
7163 upon failure. */
7165 static int
7166 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7168 unsigned i, count;
7169 int size, offset;
7170 tree itype, elem;
7172 offset = 0;
7173 count = VECTOR_CST_NELTS (expr);
7174 itype = TREE_TYPE (TREE_TYPE (expr));
7175 size = GET_MODE_SIZE (TYPE_MODE (itype));
7176 for (i = 0; i < count; i++)
7178 if (off >= size)
7180 off -= size;
7181 continue;
7183 elem = VECTOR_CST_ELT (expr, i);
7184 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7185 if ((off == -1 && res != size)
7186 || res == 0)
7187 return 0;
7188 offset += res;
7189 if (offset >= len)
7190 return offset;
7191 if (off != -1)
7192 off = 0;
7194 return offset;
7198 /* Subroutine of native_encode_expr. Encode the STRING_CST
7199 specified by EXPR into the buffer PTR of length LEN bytes.
7200 Return the number of bytes placed in the buffer, or zero
7201 upon failure. */
7203 static int
7204 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7206 tree type = TREE_TYPE (expr);
7207 HOST_WIDE_INT total_bytes;
7209 if (TREE_CODE (type) != ARRAY_TYPE
7210 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7211 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7212 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7213 return 0;
7214 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7215 if ((off == -1 && total_bytes > len)
7216 || off >= total_bytes)
7217 return 0;
7218 if (off == -1)
7219 off = 0;
7220 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7222 int written = 0;
7223 if (off < TREE_STRING_LENGTH (expr))
7225 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7226 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7228 memset (ptr + written, 0,
7229 MIN (total_bytes - written, len - written));
7231 else
7232 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7233 return MIN (total_bytes - off, len);
7237 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7238 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7239 buffer PTR of length LEN bytes. If OFF is not -1 then start
7240 the encoding at byte offset OFF and encode at most LEN bytes.
7241 Return the number of bytes placed in the buffer, or zero upon failure. */
7244 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7246 /* We don't support starting at negative offset and -1 is special. */
7247 if (off < -1)
7248 return 0;
7250 switch (TREE_CODE (expr))
7252 case INTEGER_CST:
7253 return native_encode_int (expr, ptr, len, off);
7255 case REAL_CST:
7256 return native_encode_real (expr, ptr, len, off);
7258 case FIXED_CST:
7259 return native_encode_fixed (expr, ptr, len, off);
7261 case COMPLEX_CST:
7262 return native_encode_complex (expr, ptr, len, off);
7264 case VECTOR_CST:
7265 return native_encode_vector (expr, ptr, len, off);
7267 case STRING_CST:
7268 return native_encode_string (expr, ptr, len, off);
7270 default:
7271 return 0;
7276 /* Subroutine of native_interpret_expr. Interpret the contents of
7277 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7278 If the buffer cannot be interpreted, return NULL_TREE. */
7280 static tree
7281 native_interpret_int (tree type, const unsigned char *ptr, int len)
7283 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7285 if (total_bytes > len
7286 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7287 return NULL_TREE;
7289 wide_int result = wi::from_buffer (ptr, total_bytes);
7291 return wide_int_to_tree (type, result);
7295 /* Subroutine of native_interpret_expr. Interpret the contents of
7296 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7297 If the buffer cannot be interpreted, return NULL_TREE. */
7299 static tree
7300 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7302 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7303 double_int result;
7304 FIXED_VALUE_TYPE fixed_value;
7306 if (total_bytes > len
7307 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7308 return NULL_TREE;
7310 result = double_int::from_buffer (ptr, total_bytes);
7311 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7313 return build_fixed (type, fixed_value);
7317 /* Subroutine of native_interpret_expr. Interpret the contents of
7318 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7319 If the buffer cannot be interpreted, return NULL_TREE. */
7321 static tree
7322 native_interpret_real (tree type, const unsigned char *ptr, int len)
7324 machine_mode mode = TYPE_MODE (type);
7325 int total_bytes = GET_MODE_SIZE (mode);
7326 unsigned char value;
7327 /* There are always 32 bits in each long, no matter the size of
7328 the hosts long. We handle floating point representations with
7329 up to 192 bits. */
7330 REAL_VALUE_TYPE r;
7331 long tmp[6];
7333 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7334 if (total_bytes > len || total_bytes > 24)
7335 return NULL_TREE;
7336 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7338 memset (tmp, 0, sizeof (tmp));
7339 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7340 bitpos += BITS_PER_UNIT)
7342 /* Both OFFSET and BYTE index within a long;
7343 bitpos indexes the whole float. */
7344 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7345 if (UNITS_PER_WORD < 4)
7347 int word = byte / UNITS_PER_WORD;
7348 if (WORDS_BIG_ENDIAN)
7349 word = (words - 1) - word;
7350 offset = word * UNITS_PER_WORD;
7351 if (BYTES_BIG_ENDIAN)
7352 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7353 else
7354 offset += byte % UNITS_PER_WORD;
7356 else
7358 offset = byte;
7359 if (BYTES_BIG_ENDIAN)
7361 /* Reverse bytes within each long, or within the entire float
7362 if it's smaller than a long (for HFmode). */
7363 offset = MIN (3, total_bytes - 1) - offset;
7364 gcc_assert (offset >= 0);
7367 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7369 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7372 real_from_target (&r, tmp, mode);
7373 return build_real (type, r);
7377 /* Subroutine of native_interpret_expr. Interpret the contents of
7378 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7379 If the buffer cannot be interpreted, return NULL_TREE. */
7381 static tree
7382 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7384 tree etype, rpart, ipart;
7385 int size;
7387 etype = TREE_TYPE (type);
7388 size = GET_MODE_SIZE (TYPE_MODE (etype));
7389 if (size * 2 > len)
7390 return NULL_TREE;
7391 rpart = native_interpret_expr (etype, ptr, size);
7392 if (!rpart)
7393 return NULL_TREE;
7394 ipart = native_interpret_expr (etype, ptr+size, size);
7395 if (!ipart)
7396 return NULL_TREE;
7397 return build_complex (type, rpart, ipart);
7401 /* Subroutine of native_interpret_expr. Interpret the contents of
7402 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7403 If the buffer cannot be interpreted, return NULL_TREE. */
7405 static tree
7406 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7408 tree etype, elem;
7409 int i, size, count;
7410 tree *elements;
7412 etype = TREE_TYPE (type);
7413 size = GET_MODE_SIZE (TYPE_MODE (etype));
7414 count = TYPE_VECTOR_SUBPARTS (type);
7415 if (size * count > len)
7416 return NULL_TREE;
7418 elements = XALLOCAVEC (tree, count);
7419 for (i = count - 1; i >= 0; i--)
7421 elem = native_interpret_expr (etype, ptr+(i*size), size);
7422 if (!elem)
7423 return NULL_TREE;
7424 elements[i] = elem;
7426 return build_vector (type, elements);
7430 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7431 the buffer PTR of length LEN as a constant of type TYPE. For
7432 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7433 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7434 return NULL_TREE. */
7436 tree
7437 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7439 switch (TREE_CODE (type))
7441 case INTEGER_TYPE:
7442 case ENUMERAL_TYPE:
7443 case BOOLEAN_TYPE:
7444 case POINTER_TYPE:
7445 case REFERENCE_TYPE:
7446 return native_interpret_int (type, ptr, len);
7448 case REAL_TYPE:
7449 return native_interpret_real (type, ptr, len);
7451 case FIXED_POINT_TYPE:
7452 return native_interpret_fixed (type, ptr, len);
7454 case COMPLEX_TYPE:
7455 return native_interpret_complex (type, ptr, len);
7457 case VECTOR_TYPE:
7458 return native_interpret_vector (type, ptr, len);
7460 default:
7461 return NULL_TREE;
7465 /* Returns true if we can interpret the contents of a native encoding
7466 as TYPE. */
7468 static bool
7469 can_native_interpret_type_p (tree type)
7471 switch (TREE_CODE (type))
7473 case INTEGER_TYPE:
7474 case ENUMERAL_TYPE:
7475 case BOOLEAN_TYPE:
7476 case POINTER_TYPE:
7477 case REFERENCE_TYPE:
7478 case FIXED_POINT_TYPE:
7479 case REAL_TYPE:
7480 case COMPLEX_TYPE:
7481 case VECTOR_TYPE:
7482 return true;
7483 default:
7484 return false;
7488 /* Return true iff a constant of type TYPE is accepted by
7489 native_encode_expr. */
7491 bool
7492 can_native_encode_type_p (tree type)
7494 switch (TREE_CODE (type))
7496 case INTEGER_TYPE:
7497 case REAL_TYPE:
7498 case FIXED_POINT_TYPE:
7499 case COMPLEX_TYPE:
7500 case VECTOR_TYPE:
7501 case POINTER_TYPE:
7502 return true;
7503 default:
7504 return false;
7508 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7509 TYPE at compile-time. If we're unable to perform the conversion
7510 return NULL_TREE. */
7512 static tree
7513 fold_view_convert_expr (tree type, tree expr)
7515 /* We support up to 512-bit values (for V8DFmode). */
7516 unsigned char buffer[64];
7517 int len;
7519 /* Check that the host and target are sane. */
7520 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7521 return NULL_TREE;
7523 len = native_encode_expr (expr, buffer, sizeof (buffer));
7524 if (len == 0)
7525 return NULL_TREE;
7527 return native_interpret_expr (type, buffer, len);
7530 /* Build an expression for the address of T. Folds away INDIRECT_REF
7531 to avoid confusing the gimplify process. */
7533 tree
7534 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7536 /* The size of the object is not relevant when talking about its address. */
7537 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7538 t = TREE_OPERAND (t, 0);
7540 if (TREE_CODE (t) == INDIRECT_REF)
7542 t = TREE_OPERAND (t, 0);
7544 if (TREE_TYPE (t) != ptrtype)
7545 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7547 else if (TREE_CODE (t) == MEM_REF
7548 && integer_zerop (TREE_OPERAND (t, 1)))
7549 return TREE_OPERAND (t, 0);
7550 else if (TREE_CODE (t) == MEM_REF
7551 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7552 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7553 TREE_OPERAND (t, 0),
7554 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7555 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7557 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7559 if (TREE_TYPE (t) != ptrtype)
7560 t = fold_convert_loc (loc, ptrtype, t);
7562 else
7563 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7565 return t;
7568 /* Build an expression for the address of T. */
7570 tree
7571 build_fold_addr_expr_loc (location_t loc, tree t)
7573 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7575 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7578 /* Fold a unary expression of code CODE and type TYPE with operand
7579 OP0. Return the folded expression if folding is successful.
7580 Otherwise, return NULL_TREE. */
7582 tree
7583 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7585 tree tem;
7586 tree arg0;
7587 enum tree_code_class kind = TREE_CODE_CLASS (code);
7589 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7590 && TREE_CODE_LENGTH (code) == 1);
7592 arg0 = op0;
7593 if (arg0)
7595 if (CONVERT_EXPR_CODE_P (code)
7596 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7598 /* Don't use STRIP_NOPS, because signedness of argument type
7599 matters. */
7600 STRIP_SIGN_NOPS (arg0);
7602 else
7604 /* Strip any conversions that don't change the mode. This
7605 is safe for every expression, except for a comparison
7606 expression because its signedness is derived from its
7607 operands.
7609 Note that this is done as an internal manipulation within
7610 the constant folder, in order to find the simplest
7611 representation of the arguments so that their form can be
7612 studied. In any cases, the appropriate type conversions
7613 should be put back in the tree that will get out of the
7614 constant folder. */
7615 STRIP_NOPS (arg0);
7618 if (CONSTANT_CLASS_P (arg0))
7620 tree tem = const_unop (code, type, arg0);
7621 if (tem)
7623 if (TREE_TYPE (tem) != type)
7624 tem = fold_convert_loc (loc, type, tem);
7625 return tem;
7630 tem = generic_simplify (loc, code, type, op0);
7631 if (tem)
7632 return tem;
7634 if (TREE_CODE_CLASS (code) == tcc_unary)
7636 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7637 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7638 fold_build1_loc (loc, code, type,
7639 fold_convert_loc (loc, TREE_TYPE (op0),
7640 TREE_OPERAND (arg0, 1))));
7641 else if (TREE_CODE (arg0) == COND_EXPR)
7643 tree arg01 = TREE_OPERAND (arg0, 1);
7644 tree arg02 = TREE_OPERAND (arg0, 2);
7645 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7646 arg01 = fold_build1_loc (loc, code, type,
7647 fold_convert_loc (loc,
7648 TREE_TYPE (op0), arg01));
7649 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7650 arg02 = fold_build1_loc (loc, code, type,
7651 fold_convert_loc (loc,
7652 TREE_TYPE (op0), arg02));
7653 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7654 arg01, arg02);
7656 /* If this was a conversion, and all we did was to move into
7657 inside the COND_EXPR, bring it back out. But leave it if
7658 it is a conversion from integer to integer and the
7659 result precision is no wider than a word since such a
7660 conversion is cheap and may be optimized away by combine,
7661 while it couldn't if it were outside the COND_EXPR. Then return
7662 so we don't get into an infinite recursion loop taking the
7663 conversion out and then back in. */
7665 if ((CONVERT_EXPR_CODE_P (code)
7666 || code == NON_LVALUE_EXPR)
7667 && TREE_CODE (tem) == COND_EXPR
7668 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7669 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7670 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7671 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7672 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7673 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7674 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7675 && (INTEGRAL_TYPE_P
7676 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7677 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7678 || flag_syntax_only))
7679 tem = build1_loc (loc, code, type,
7680 build3 (COND_EXPR,
7681 TREE_TYPE (TREE_OPERAND
7682 (TREE_OPERAND (tem, 1), 0)),
7683 TREE_OPERAND (tem, 0),
7684 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7685 TREE_OPERAND (TREE_OPERAND (tem, 2),
7686 0)));
7687 return tem;
7691 switch (code)
7693 case NON_LVALUE_EXPR:
7694 if (!maybe_lvalue_p (op0))
7695 return fold_convert_loc (loc, type, op0);
7696 return NULL_TREE;
7698 CASE_CONVERT:
7699 case FLOAT_EXPR:
7700 case FIX_TRUNC_EXPR:
7701 if (COMPARISON_CLASS_P (op0))
7703 /* If we have (type) (a CMP b) and type is an integral type, return
7704 new expression involving the new type. Canonicalize
7705 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7706 non-integral type.
7707 Do not fold the result as that would not simplify further, also
7708 folding again results in recursions. */
7709 if (TREE_CODE (type) == BOOLEAN_TYPE)
7710 return build2_loc (loc, TREE_CODE (op0), type,
7711 TREE_OPERAND (op0, 0),
7712 TREE_OPERAND (op0, 1));
7713 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7714 && TREE_CODE (type) != VECTOR_TYPE)
7715 return build3_loc (loc, COND_EXPR, type, op0,
7716 constant_boolean_node (true, type),
7717 constant_boolean_node (false, type));
7720 /* Handle (T *)&A.B.C for A being of type T and B and C
7721 living at offset zero. This occurs frequently in
7722 C++ upcasting and then accessing the base. */
7723 if (TREE_CODE (op0) == ADDR_EXPR
7724 && POINTER_TYPE_P (type)
7725 && handled_component_p (TREE_OPERAND (op0, 0)))
7727 HOST_WIDE_INT bitsize, bitpos;
7728 tree offset;
7729 machine_mode mode;
7730 int unsignedp, reversep, volatilep;
7731 tree base
7732 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7733 &offset, &mode, &unsignedp, &reversep,
7734 &volatilep);
7735 /* If the reference was to a (constant) zero offset, we can use
7736 the address of the base if it has the same base type
7737 as the result type and the pointer type is unqualified. */
7738 if (! offset && bitpos == 0
7739 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7740 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7741 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7742 return fold_convert_loc (loc, type,
7743 build_fold_addr_expr_loc (loc, base));
7746 if (TREE_CODE (op0) == MODIFY_EXPR
7747 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7748 /* Detect assigning a bitfield. */
7749 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7750 && DECL_BIT_FIELD
7751 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7753 /* Don't leave an assignment inside a conversion
7754 unless assigning a bitfield. */
7755 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7756 /* First do the assignment, then return converted constant. */
7757 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7758 TREE_NO_WARNING (tem) = 1;
7759 TREE_USED (tem) = 1;
7760 return tem;
7763 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7764 constants (if x has signed type, the sign bit cannot be set
7765 in c). This folds extension into the BIT_AND_EXPR.
7766 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7767 very likely don't have maximal range for their precision and this
7768 transformation effectively doesn't preserve non-maximal ranges. */
7769 if (TREE_CODE (type) == INTEGER_TYPE
7770 && TREE_CODE (op0) == BIT_AND_EXPR
7771 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7773 tree and_expr = op0;
7774 tree and0 = TREE_OPERAND (and_expr, 0);
7775 tree and1 = TREE_OPERAND (and_expr, 1);
7776 int change = 0;
7778 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7779 || (TYPE_PRECISION (type)
7780 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7781 change = 1;
7782 else if (TYPE_PRECISION (TREE_TYPE (and1))
7783 <= HOST_BITS_PER_WIDE_INT
7784 && tree_fits_uhwi_p (and1))
7786 unsigned HOST_WIDE_INT cst;
7788 cst = tree_to_uhwi (and1);
7789 cst &= HOST_WIDE_INT_M1U
7790 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7791 change = (cst == 0);
7792 if (change
7793 && !flag_syntax_only
7794 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
7795 == ZERO_EXTEND))
7797 tree uns = unsigned_type_for (TREE_TYPE (and0));
7798 and0 = fold_convert_loc (loc, uns, and0);
7799 and1 = fold_convert_loc (loc, uns, and1);
7802 if (change)
7804 tem = force_fit_type (type, wi::to_widest (and1), 0,
7805 TREE_OVERFLOW (and1));
7806 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7807 fold_convert_loc (loc, type, and0), tem);
7811 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7812 cast (T1)X will fold away. We assume that this happens when X itself
7813 is a cast. */
7814 if (POINTER_TYPE_P (type)
7815 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7816 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
7818 tree arg00 = TREE_OPERAND (arg0, 0);
7819 tree arg01 = TREE_OPERAND (arg0, 1);
7821 return fold_build_pointer_plus_loc
7822 (loc, fold_convert_loc (loc, type, arg00), arg01);
7825 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7826 of the same precision, and X is an integer type not narrower than
7827 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7828 if (INTEGRAL_TYPE_P (type)
7829 && TREE_CODE (op0) == BIT_NOT_EXPR
7830 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7831 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7832 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7834 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7835 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7836 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7837 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7838 fold_convert_loc (loc, type, tem));
7841 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7842 type of X and Y (integer types only). */
7843 if (INTEGRAL_TYPE_P (type)
7844 && TREE_CODE (op0) == MULT_EXPR
7845 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7846 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7848 /* Be careful not to introduce new overflows. */
7849 tree mult_type;
7850 if (TYPE_OVERFLOW_WRAPS (type))
7851 mult_type = type;
7852 else
7853 mult_type = unsigned_type_for (type);
7855 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7857 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7858 fold_convert_loc (loc, mult_type,
7859 TREE_OPERAND (op0, 0)),
7860 fold_convert_loc (loc, mult_type,
7861 TREE_OPERAND (op0, 1)));
7862 return fold_convert_loc (loc, type, tem);
7866 return NULL_TREE;
7868 case VIEW_CONVERT_EXPR:
7869 if (TREE_CODE (op0) == MEM_REF)
7871 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
7872 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
7873 tem = fold_build2_loc (loc, MEM_REF, type,
7874 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7875 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
7876 return tem;
7879 return NULL_TREE;
7881 case NEGATE_EXPR:
7882 tem = fold_negate_expr (loc, arg0);
7883 if (tem)
7884 return fold_convert_loc (loc, type, tem);
7885 return NULL_TREE;
7887 case ABS_EXPR:
7888 /* Convert fabs((double)float) into (double)fabsf(float). */
7889 if (TREE_CODE (arg0) == NOP_EXPR
7890 && TREE_CODE (type) == REAL_TYPE)
7892 tree targ0 = strip_float_extensions (arg0);
7893 if (targ0 != arg0)
7894 return fold_convert_loc (loc, type,
7895 fold_build1_loc (loc, ABS_EXPR,
7896 TREE_TYPE (targ0),
7897 targ0));
7899 return NULL_TREE;
7901 case BIT_NOT_EXPR:
7902 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7903 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7904 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7905 fold_convert_loc (loc, type,
7906 TREE_OPERAND (arg0, 0)))))
7907 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7908 fold_convert_loc (loc, type,
7909 TREE_OPERAND (arg0, 1)));
7910 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7911 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7912 fold_convert_loc (loc, type,
7913 TREE_OPERAND (arg0, 1)))))
7914 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7915 fold_convert_loc (loc, type,
7916 TREE_OPERAND (arg0, 0)), tem);
7918 return NULL_TREE;
7920 case TRUTH_NOT_EXPR:
7921 /* Note that the operand of this must be an int
7922 and its values must be 0 or 1.
7923 ("true" is a fixed value perhaps depending on the language,
7924 but we don't handle values other than 1 correctly yet.) */
7925 tem = fold_truth_not_expr (loc, arg0);
7926 if (!tem)
7927 return NULL_TREE;
7928 return fold_convert_loc (loc, type, tem);
7930 case INDIRECT_REF:
7931 /* Fold *&X to X if X is an lvalue. */
7932 if (TREE_CODE (op0) == ADDR_EXPR)
7934 tree op00 = TREE_OPERAND (op0, 0);
7935 if ((VAR_P (op00)
7936 || TREE_CODE (op00) == PARM_DECL
7937 || TREE_CODE (op00) == RESULT_DECL)
7938 && !TREE_READONLY (op00))
7939 return op00;
7941 return NULL_TREE;
7943 default:
7944 return NULL_TREE;
7945 } /* switch (code) */
7949 /* If the operation was a conversion do _not_ mark a resulting constant
7950 with TREE_OVERFLOW if the original constant was not. These conversions
7951 have implementation defined behavior and retaining the TREE_OVERFLOW
7952 flag here would confuse later passes such as VRP. */
7953 tree
7954 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7955 tree type, tree op0)
7957 tree res = fold_unary_loc (loc, code, type, op0);
7958 if (res
7959 && TREE_CODE (res) == INTEGER_CST
7960 && TREE_CODE (op0) == INTEGER_CST
7961 && CONVERT_EXPR_CODE_P (code))
7962 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7964 return res;
7967 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7968 operands OP0 and OP1. LOC is the location of the resulting expression.
7969 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7970 Return the folded expression if folding is successful. Otherwise,
7971 return NULL_TREE. */
7972 static tree
7973 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7974 tree arg0, tree arg1, tree op0, tree op1)
7976 tree tem;
7978 /* We only do these simplifications if we are optimizing. */
7979 if (!optimize)
7980 return NULL_TREE;
7982 /* Check for things like (A || B) && (A || C). We can convert this
7983 to A || (B && C). Note that either operator can be any of the four
7984 truth and/or operations and the transformation will still be
7985 valid. Also note that we only care about order for the
7986 ANDIF and ORIF operators. If B contains side effects, this
7987 might change the truth-value of A. */
7988 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7989 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7990 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7991 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7992 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7993 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7995 tree a00 = TREE_OPERAND (arg0, 0);
7996 tree a01 = TREE_OPERAND (arg0, 1);
7997 tree a10 = TREE_OPERAND (arg1, 0);
7998 tree a11 = TREE_OPERAND (arg1, 1);
7999 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8000 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8001 && (code == TRUTH_AND_EXPR
8002 || code == TRUTH_OR_EXPR));
8004 if (operand_equal_p (a00, a10, 0))
8005 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8006 fold_build2_loc (loc, code, type, a01, a11));
8007 else if (commutative && operand_equal_p (a00, a11, 0))
8008 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8009 fold_build2_loc (loc, code, type, a01, a10));
8010 else if (commutative && operand_equal_p (a01, a10, 0))
8011 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8012 fold_build2_loc (loc, code, type, a00, a11));
8014 /* This case if tricky because we must either have commutative
8015 operators or else A10 must not have side-effects. */
8017 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8018 && operand_equal_p (a01, a11, 0))
8019 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8020 fold_build2_loc (loc, code, type, a00, a10),
8021 a01);
8024 /* See if we can build a range comparison. */
8025 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8026 return tem;
8028 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8029 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8031 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8032 if (tem)
8033 return fold_build2_loc (loc, code, type, tem, arg1);
8036 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8037 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8039 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8040 if (tem)
8041 return fold_build2_loc (loc, code, type, arg0, tem);
8044 /* Check for the possibility of merging component references. If our
8045 lhs is another similar operation, try to merge its rhs with our
8046 rhs. Then try to merge our lhs and rhs. */
8047 if (TREE_CODE (arg0) == code
8048 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8049 TREE_OPERAND (arg0, 1), arg1)))
8050 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8052 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8053 return tem;
8055 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8056 && (code == TRUTH_AND_EXPR
8057 || code == TRUTH_ANDIF_EXPR
8058 || code == TRUTH_OR_EXPR
8059 || code == TRUTH_ORIF_EXPR))
8061 enum tree_code ncode, icode;
8063 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8064 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8065 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8067 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8068 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8069 We don't want to pack more than two leafs to a non-IF AND/OR
8070 expression.
8071 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8072 equal to IF-CODE, then we don't want to add right-hand operand.
8073 If the inner right-hand side of left-hand operand has
8074 side-effects, or isn't simple, then we can't add to it,
8075 as otherwise we might destroy if-sequence. */
8076 if (TREE_CODE (arg0) == icode
8077 && simple_operand_p_2 (arg1)
8078 /* Needed for sequence points to handle trappings, and
8079 side-effects. */
8080 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8082 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8083 arg1);
8084 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8085 tem);
8087 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8088 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8089 else if (TREE_CODE (arg1) == icode
8090 && simple_operand_p_2 (arg0)
8091 /* Needed for sequence points to handle trappings, and
8092 side-effects. */
8093 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8095 tem = fold_build2_loc (loc, ncode, type,
8096 arg0, TREE_OPERAND (arg1, 0));
8097 return fold_build2_loc (loc, icode, type, tem,
8098 TREE_OPERAND (arg1, 1));
8100 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8101 into (A OR B).
8102 For sequence point consistancy, we need to check for trapping,
8103 and side-effects. */
8104 else if (code == icode && simple_operand_p_2 (arg0)
8105 && simple_operand_p_2 (arg1))
8106 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8109 return NULL_TREE;
8112 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8113 by changing CODE to reduce the magnitude of constants involved in
8114 ARG0 of the comparison.
8115 Returns a canonicalized comparison tree if a simplification was
8116 possible, otherwise returns NULL_TREE.
8117 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8118 valid if signed overflow is undefined. */
8120 static tree
8121 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8122 tree arg0, tree arg1,
8123 bool *strict_overflow_p)
8125 enum tree_code code0 = TREE_CODE (arg0);
8126 tree t, cst0 = NULL_TREE;
8127 int sgn0;
8129 /* Match A +- CST code arg1. We can change this only if overflow
8130 is undefined. */
8131 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8132 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8133 /* In principle pointers also have undefined overflow behavior,
8134 but that causes problems elsewhere. */
8135 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8136 && (code0 == MINUS_EXPR
8137 || code0 == PLUS_EXPR)
8138 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8139 return NULL_TREE;
8141 /* Identify the constant in arg0 and its sign. */
8142 cst0 = TREE_OPERAND (arg0, 1);
8143 sgn0 = tree_int_cst_sgn (cst0);
8145 /* Overflowed constants and zero will cause problems. */
8146 if (integer_zerop (cst0)
8147 || TREE_OVERFLOW (cst0))
8148 return NULL_TREE;
8150 /* See if we can reduce the magnitude of the constant in
8151 arg0 by changing the comparison code. */
8152 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8153 if (code == LT_EXPR
8154 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8155 code = LE_EXPR;
8156 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8157 else if (code == GT_EXPR
8158 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8159 code = GE_EXPR;
8160 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8161 else if (code == LE_EXPR
8162 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8163 code = LT_EXPR;
8164 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8165 else if (code == GE_EXPR
8166 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8167 code = GT_EXPR;
8168 else
8169 return NULL_TREE;
8170 *strict_overflow_p = true;
8172 /* Now build the constant reduced in magnitude. But not if that
8173 would produce one outside of its types range. */
8174 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8175 && ((sgn0 == 1
8176 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8177 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8178 || (sgn0 == -1
8179 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8180 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8181 return NULL_TREE;
8183 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8184 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8185 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8186 t = fold_convert (TREE_TYPE (arg1), t);
8188 return fold_build2_loc (loc, code, type, t, arg1);
8191 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8192 overflow further. Try to decrease the magnitude of constants involved
8193 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8194 and put sole constants at the second argument position.
8195 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8197 static tree
8198 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8199 tree arg0, tree arg1)
8201 tree t;
8202 bool strict_overflow_p;
8203 const char * const warnmsg = G_("assuming signed overflow does not occur "
8204 "when reducing constant in comparison");
8206 /* Try canonicalization by simplifying arg0. */
8207 strict_overflow_p = false;
8208 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8209 &strict_overflow_p);
8210 if (t)
8212 if (strict_overflow_p)
8213 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8214 return t;
8217 /* Try canonicalization by simplifying arg1 using the swapped
8218 comparison. */
8219 code = swap_tree_comparison (code);
8220 strict_overflow_p = false;
8221 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8222 &strict_overflow_p);
8223 if (t && strict_overflow_p)
8224 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8225 return t;
8228 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8229 space. This is used to avoid issuing overflow warnings for
8230 expressions like &p->x which can not wrap. */
8232 static bool
8233 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8235 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8236 return true;
8238 if (bitpos < 0)
8239 return true;
8241 wide_int wi_offset;
8242 int precision = TYPE_PRECISION (TREE_TYPE (base));
8243 if (offset == NULL_TREE)
8244 wi_offset = wi::zero (precision);
8245 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8246 return true;
8247 else
8248 wi_offset = offset;
8250 bool overflow;
8251 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8252 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8253 if (overflow)
8254 return true;
8256 if (!wi::fits_uhwi_p (total))
8257 return true;
8259 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8260 if (size <= 0)
8261 return true;
8263 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8264 array. */
8265 if (TREE_CODE (base) == ADDR_EXPR)
8267 HOST_WIDE_INT base_size;
8269 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8270 if (base_size > 0 && size < base_size)
8271 size = base_size;
8274 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8277 /* Return a positive integer when the symbol DECL is known to have
8278 a nonzero address, zero when it's known not to (e.g., it's a weak
8279 symbol), and a negative integer when the symbol is not yet in the
8280 symbol table and so whether or not its address is zero is unknown.
8281 For function local objects always return positive integer. */
8282 static int
8283 maybe_nonzero_address (tree decl)
8285 if (DECL_P (decl) && decl_in_symtab_p (decl))
8286 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8287 return symbol->nonzero_address ();
8289 /* Function local objects are never NULL. */
8290 if (DECL_P (decl)
8291 && (DECL_CONTEXT (decl)
8292 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
8293 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
8294 return 1;
8296 return -1;
8299 /* Subroutine of fold_binary. This routine performs all of the
8300 transformations that are common to the equality/inequality
8301 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8302 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8303 fold_binary should call fold_binary. Fold a comparison with
8304 tree code CODE and type TYPE with operands OP0 and OP1. Return
8305 the folded comparison or NULL_TREE. */
8307 static tree
8308 fold_comparison (location_t loc, enum tree_code code, tree type,
8309 tree op0, tree op1)
8311 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8312 tree arg0, arg1, tem;
8314 arg0 = op0;
8315 arg1 = op1;
8317 STRIP_SIGN_NOPS (arg0);
8318 STRIP_SIGN_NOPS (arg1);
8320 /* For comparisons of pointers we can decompose it to a compile time
8321 comparison of the base objects and the offsets into the object.
8322 This requires at least one operand being an ADDR_EXPR or a
8323 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8324 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8325 && (TREE_CODE (arg0) == ADDR_EXPR
8326 || TREE_CODE (arg1) == ADDR_EXPR
8327 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8328 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8330 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8331 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8332 machine_mode mode;
8333 int volatilep, reversep, unsignedp;
8334 bool indirect_base0 = false, indirect_base1 = false;
8336 /* Get base and offset for the access. Strip ADDR_EXPR for
8337 get_inner_reference, but put it back by stripping INDIRECT_REF
8338 off the base object if possible. indirect_baseN will be true
8339 if baseN is not an address but refers to the object itself. */
8340 base0 = arg0;
8341 if (TREE_CODE (arg0) == ADDR_EXPR)
8343 base0
8344 = get_inner_reference (TREE_OPERAND (arg0, 0),
8345 &bitsize, &bitpos0, &offset0, &mode,
8346 &unsignedp, &reversep, &volatilep);
8347 if (TREE_CODE (base0) == INDIRECT_REF)
8348 base0 = TREE_OPERAND (base0, 0);
8349 else
8350 indirect_base0 = true;
8352 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8354 base0 = TREE_OPERAND (arg0, 0);
8355 STRIP_SIGN_NOPS (base0);
8356 if (TREE_CODE (base0) == ADDR_EXPR)
8358 base0
8359 = get_inner_reference (TREE_OPERAND (base0, 0),
8360 &bitsize, &bitpos0, &offset0, &mode,
8361 &unsignedp, &reversep, &volatilep);
8362 if (TREE_CODE (base0) == INDIRECT_REF)
8363 base0 = TREE_OPERAND (base0, 0);
8364 else
8365 indirect_base0 = true;
8367 if (offset0 == NULL_TREE || integer_zerop (offset0))
8368 offset0 = TREE_OPERAND (arg0, 1);
8369 else
8370 offset0 = size_binop (PLUS_EXPR, offset0,
8371 TREE_OPERAND (arg0, 1));
8372 if (TREE_CODE (offset0) == INTEGER_CST)
8374 offset_int tem = wi::sext (wi::to_offset (offset0),
8375 TYPE_PRECISION (sizetype));
8376 tem <<= LOG2_BITS_PER_UNIT;
8377 tem += bitpos0;
8378 if (wi::fits_shwi_p (tem))
8380 bitpos0 = tem.to_shwi ();
8381 offset0 = NULL_TREE;
8386 base1 = arg1;
8387 if (TREE_CODE (arg1) == ADDR_EXPR)
8389 base1
8390 = get_inner_reference (TREE_OPERAND (arg1, 0),
8391 &bitsize, &bitpos1, &offset1, &mode,
8392 &unsignedp, &reversep, &volatilep);
8393 if (TREE_CODE (base1) == INDIRECT_REF)
8394 base1 = TREE_OPERAND (base1, 0);
8395 else
8396 indirect_base1 = true;
8398 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8400 base1 = TREE_OPERAND (arg1, 0);
8401 STRIP_SIGN_NOPS (base1);
8402 if (TREE_CODE (base1) == ADDR_EXPR)
8404 base1
8405 = get_inner_reference (TREE_OPERAND (base1, 0),
8406 &bitsize, &bitpos1, &offset1, &mode,
8407 &unsignedp, &reversep, &volatilep);
8408 if (TREE_CODE (base1) == INDIRECT_REF)
8409 base1 = TREE_OPERAND (base1, 0);
8410 else
8411 indirect_base1 = true;
8413 if (offset1 == NULL_TREE || integer_zerop (offset1))
8414 offset1 = TREE_OPERAND (arg1, 1);
8415 else
8416 offset1 = size_binop (PLUS_EXPR, offset1,
8417 TREE_OPERAND (arg1, 1));
8418 if (TREE_CODE (offset1) == INTEGER_CST)
8420 offset_int tem = wi::sext (wi::to_offset (offset1),
8421 TYPE_PRECISION (sizetype));
8422 tem <<= LOG2_BITS_PER_UNIT;
8423 tem += bitpos1;
8424 if (wi::fits_shwi_p (tem))
8426 bitpos1 = tem.to_shwi ();
8427 offset1 = NULL_TREE;
8432 /* If we have equivalent bases we might be able to simplify. */
8433 if (indirect_base0 == indirect_base1
8434 && operand_equal_p (base0, base1,
8435 indirect_base0 ? OEP_ADDRESS_OF : 0))
8437 /* We can fold this expression to a constant if the non-constant
8438 offset parts are equal. */
8439 if ((offset0 == offset1
8440 || (offset0 && offset1
8441 && operand_equal_p (offset0, offset1, 0)))
8442 && (equality_code
8443 || (indirect_base0
8444 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8445 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8448 if (!equality_code
8449 && bitpos0 != bitpos1
8450 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8451 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8452 fold_overflow_warning (("assuming pointer wraparound does not "
8453 "occur when comparing P +- C1 with "
8454 "P +- C2"),
8455 WARN_STRICT_OVERFLOW_CONDITIONAL);
8457 switch (code)
8459 case EQ_EXPR:
8460 return constant_boolean_node (bitpos0 == bitpos1, type);
8461 case NE_EXPR:
8462 return constant_boolean_node (bitpos0 != bitpos1, type);
8463 case LT_EXPR:
8464 return constant_boolean_node (bitpos0 < bitpos1, type);
8465 case LE_EXPR:
8466 return constant_boolean_node (bitpos0 <= bitpos1, type);
8467 case GE_EXPR:
8468 return constant_boolean_node (bitpos0 >= bitpos1, type);
8469 case GT_EXPR:
8470 return constant_boolean_node (bitpos0 > bitpos1, type);
8471 default:;
8474 /* We can simplify the comparison to a comparison of the variable
8475 offset parts if the constant offset parts are equal.
8476 Be careful to use signed sizetype here because otherwise we
8477 mess with array offsets in the wrong way. This is possible
8478 because pointer arithmetic is restricted to retain within an
8479 object and overflow on pointer differences is undefined as of
8480 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8481 else if (bitpos0 == bitpos1
8482 && (equality_code
8483 || (indirect_base0
8484 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8485 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8487 /* By converting to signed sizetype we cover middle-end pointer
8488 arithmetic which operates on unsigned pointer types of size
8489 type size and ARRAY_REF offsets which are properly sign or
8490 zero extended from their type in case it is narrower than
8491 sizetype. */
8492 if (offset0 == NULL_TREE)
8493 offset0 = build_int_cst (ssizetype, 0);
8494 else
8495 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8496 if (offset1 == NULL_TREE)
8497 offset1 = build_int_cst (ssizetype, 0);
8498 else
8499 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8501 if (!equality_code
8502 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8503 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8504 fold_overflow_warning (("assuming pointer wraparound does not "
8505 "occur when comparing P +- C1 with "
8506 "P +- C2"),
8507 WARN_STRICT_OVERFLOW_COMPARISON);
8509 return fold_build2_loc (loc, code, type, offset0, offset1);
8512 /* For equal offsets we can simplify to a comparison of the
8513 base addresses. */
8514 else if (bitpos0 == bitpos1
8515 && (indirect_base0
8516 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8517 && (indirect_base1
8518 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8519 && ((offset0 == offset1)
8520 || (offset0 && offset1
8521 && operand_equal_p (offset0, offset1, 0))))
8523 if (indirect_base0)
8524 base0 = build_fold_addr_expr_loc (loc, base0);
8525 if (indirect_base1)
8526 base1 = build_fold_addr_expr_loc (loc, base1);
8527 return fold_build2_loc (loc, code, type, base0, base1);
8529 /* Comparison between an ordinary (non-weak) symbol and a null
8530 pointer can be eliminated since such symbols must have a non
8531 null address. In C, relational expressions between pointers
8532 to objects and null pointers are undefined. The results
8533 below follow the C++ rules with the additional property that
8534 every object pointer compares greater than a null pointer.
8536 else if (((DECL_P (base0)
8537 && maybe_nonzero_address (base0) > 0
8538 /* Avoid folding references to struct members at offset 0 to
8539 prevent tests like '&ptr->firstmember == 0' from getting
8540 eliminated. When ptr is null, although the -> expression
8541 is strictly speaking invalid, GCC retains it as a matter
8542 of QoI. See PR c/44555. */
8543 && (offset0 == NULL_TREE && bitpos0 != 0))
8544 || CONSTANT_CLASS_P (base0))
8545 && indirect_base0
8546 /* The caller guarantees that when one of the arguments is
8547 constant (i.e., null in this case) it is second. */
8548 && integer_zerop (arg1))
8550 switch (code)
8552 case EQ_EXPR:
8553 case LE_EXPR:
8554 case LT_EXPR:
8555 return constant_boolean_node (false, type);
8556 case GE_EXPR:
8557 case GT_EXPR:
8558 case NE_EXPR:
8559 return constant_boolean_node (true, type);
8560 default:
8561 gcc_unreachable ();
8566 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8567 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8568 the resulting offset is smaller in absolute value than the
8569 original one and has the same sign. */
8570 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8571 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8572 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8573 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8574 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8575 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8576 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8577 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8579 tree const1 = TREE_OPERAND (arg0, 1);
8580 tree const2 = TREE_OPERAND (arg1, 1);
8581 tree variable1 = TREE_OPERAND (arg0, 0);
8582 tree variable2 = TREE_OPERAND (arg1, 0);
8583 tree cst;
8584 const char * const warnmsg = G_("assuming signed overflow does not "
8585 "occur when combining constants around "
8586 "a comparison");
8588 /* Put the constant on the side where it doesn't overflow and is
8589 of lower absolute value and of same sign than before. */
8590 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8591 ? MINUS_EXPR : PLUS_EXPR,
8592 const2, const1);
8593 if (!TREE_OVERFLOW (cst)
8594 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8595 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8597 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8598 return fold_build2_loc (loc, code, type,
8599 variable1,
8600 fold_build2_loc (loc, TREE_CODE (arg1),
8601 TREE_TYPE (arg1),
8602 variable2, cst));
8605 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8606 ? MINUS_EXPR : PLUS_EXPR,
8607 const1, const2);
8608 if (!TREE_OVERFLOW (cst)
8609 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8610 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8612 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8613 return fold_build2_loc (loc, code, type,
8614 fold_build2_loc (loc, TREE_CODE (arg0),
8615 TREE_TYPE (arg0),
8616 variable1, cst),
8617 variable2);
8621 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8622 if (tem)
8623 return tem;
8625 /* If we are comparing an expression that just has comparisons
8626 of two integer values, arithmetic expressions of those comparisons,
8627 and constants, we can simplify it. There are only three cases
8628 to check: the two values can either be equal, the first can be
8629 greater, or the second can be greater. Fold the expression for
8630 those three values. Since each value must be 0 or 1, we have
8631 eight possibilities, each of which corresponds to the constant 0
8632 or 1 or one of the six possible comparisons.
8634 This handles common cases like (a > b) == 0 but also handles
8635 expressions like ((x > y) - (y > x)) > 0, which supposedly
8636 occur in macroized code. */
8638 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8640 tree cval1 = 0, cval2 = 0;
8641 int save_p = 0;
8643 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8644 /* Don't handle degenerate cases here; they should already
8645 have been handled anyway. */
8646 && cval1 != 0 && cval2 != 0
8647 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8648 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8649 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8650 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8651 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8652 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8653 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8655 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8656 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8658 /* We can't just pass T to eval_subst in case cval1 or cval2
8659 was the same as ARG1. */
8661 tree high_result
8662 = fold_build2_loc (loc, code, type,
8663 eval_subst (loc, arg0, cval1, maxval,
8664 cval2, minval),
8665 arg1);
8666 tree equal_result
8667 = fold_build2_loc (loc, code, type,
8668 eval_subst (loc, arg0, cval1, maxval,
8669 cval2, maxval),
8670 arg1);
8671 tree low_result
8672 = fold_build2_loc (loc, code, type,
8673 eval_subst (loc, arg0, cval1, minval,
8674 cval2, maxval),
8675 arg1);
8677 /* All three of these results should be 0 or 1. Confirm they are.
8678 Then use those values to select the proper code to use. */
8680 if (TREE_CODE (high_result) == INTEGER_CST
8681 && TREE_CODE (equal_result) == INTEGER_CST
8682 && TREE_CODE (low_result) == INTEGER_CST)
8684 /* Make a 3-bit mask with the high-order bit being the
8685 value for `>', the next for '=', and the low for '<'. */
8686 switch ((integer_onep (high_result) * 4)
8687 + (integer_onep (equal_result) * 2)
8688 + integer_onep (low_result))
8690 case 0:
8691 /* Always false. */
8692 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8693 case 1:
8694 code = LT_EXPR;
8695 break;
8696 case 2:
8697 code = EQ_EXPR;
8698 break;
8699 case 3:
8700 code = LE_EXPR;
8701 break;
8702 case 4:
8703 code = GT_EXPR;
8704 break;
8705 case 5:
8706 code = NE_EXPR;
8707 break;
8708 case 6:
8709 code = GE_EXPR;
8710 break;
8711 case 7:
8712 /* Always true. */
8713 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8716 if (save_p)
8718 tem = save_expr (build2 (code, type, cval1, cval2));
8719 protected_set_expr_location (tem, loc);
8720 return tem;
8722 return fold_build2_loc (loc, code, type, cval1, cval2);
8727 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8728 into a single range test. */
8729 if (TREE_CODE (arg0) == TRUNC_DIV_EXPR
8730 && TREE_CODE (arg1) == INTEGER_CST
8731 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8732 && !integer_zerop (TREE_OPERAND (arg0, 1))
8733 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8734 && !TREE_OVERFLOW (arg1))
8736 tem = fold_div_compare (loc, code, type, arg0, arg1);
8737 if (tem != NULL_TREE)
8738 return tem;
8741 return NULL_TREE;
8745 /* Subroutine of fold_binary. Optimize complex multiplications of the
8746 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8747 argument EXPR represents the expression "z" of type TYPE. */
8749 static tree
8750 fold_mult_zconjz (location_t loc, tree type, tree expr)
8752 tree itype = TREE_TYPE (type);
8753 tree rpart, ipart, tem;
8755 if (TREE_CODE (expr) == COMPLEX_EXPR)
8757 rpart = TREE_OPERAND (expr, 0);
8758 ipart = TREE_OPERAND (expr, 1);
8760 else if (TREE_CODE (expr) == COMPLEX_CST)
8762 rpart = TREE_REALPART (expr);
8763 ipart = TREE_IMAGPART (expr);
8765 else
8767 expr = save_expr (expr);
8768 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8769 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8772 rpart = save_expr (rpart);
8773 ipart = save_expr (ipart);
8774 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8775 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8776 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8777 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8778 build_zero_cst (itype));
8782 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8783 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8785 static bool
8786 vec_cst_ctor_to_array (tree arg, tree *elts)
8788 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8790 if (TREE_CODE (arg) == VECTOR_CST)
8792 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8793 elts[i] = VECTOR_CST_ELT (arg, i);
8795 else if (TREE_CODE (arg) == CONSTRUCTOR)
8797 constructor_elt *elt;
8799 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8800 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8801 return false;
8802 else
8803 elts[i] = elt->value;
8805 else
8806 return false;
8807 for (; i < nelts; i++)
8808 elts[i]
8809 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8810 return true;
8813 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8814 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8815 NULL_TREE otherwise. */
8817 static tree
8818 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8820 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8821 tree *elts;
8822 bool need_ctor = false;
8824 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8825 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8826 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8827 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8828 return NULL_TREE;
8830 elts = XALLOCAVEC (tree, nelts * 3);
8831 if (!vec_cst_ctor_to_array (arg0, elts)
8832 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8833 return NULL_TREE;
8835 for (i = 0; i < nelts; i++)
8837 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8838 need_ctor = true;
8839 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8842 if (need_ctor)
8844 vec<constructor_elt, va_gc> *v;
8845 vec_alloc (v, nelts);
8846 for (i = 0; i < nelts; i++)
8847 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8848 return build_constructor (type, v);
8850 else
8851 return build_vector (type, &elts[2 * nelts]);
8854 /* Try to fold a pointer difference of type TYPE two address expressions of
8855 array references AREF0 and AREF1 using location LOC. Return a
8856 simplified expression for the difference or NULL_TREE. */
8858 static tree
8859 fold_addr_of_array_ref_difference (location_t loc, tree type,
8860 tree aref0, tree aref1)
8862 tree base0 = TREE_OPERAND (aref0, 0);
8863 tree base1 = TREE_OPERAND (aref1, 0);
8864 tree base_offset = build_int_cst (type, 0);
8866 /* If the bases are array references as well, recurse. If the bases
8867 are pointer indirections compute the difference of the pointers.
8868 If the bases are equal, we are set. */
8869 if ((TREE_CODE (base0) == ARRAY_REF
8870 && TREE_CODE (base1) == ARRAY_REF
8871 && (base_offset
8872 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8873 || (INDIRECT_REF_P (base0)
8874 && INDIRECT_REF_P (base1)
8875 && (base_offset
8876 = fold_binary_loc (loc, MINUS_EXPR, type,
8877 fold_convert (type, TREE_OPERAND (base0, 0)),
8878 fold_convert (type,
8879 TREE_OPERAND (base1, 0)))))
8880 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
8882 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8883 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8884 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8885 tree diff = build2 (MINUS_EXPR, type, op0, op1);
8886 return fold_build2_loc (loc, PLUS_EXPR, type,
8887 base_offset,
8888 fold_build2_loc (loc, MULT_EXPR, type,
8889 diff, esz));
8891 return NULL_TREE;
8894 /* If the real or vector real constant CST of type TYPE has an exact
8895 inverse, return it, else return NULL. */
8897 tree
8898 exact_inverse (tree type, tree cst)
8900 REAL_VALUE_TYPE r;
8901 tree unit_type, *elts;
8902 machine_mode mode;
8903 unsigned vec_nelts, i;
8905 switch (TREE_CODE (cst))
8907 case REAL_CST:
8908 r = TREE_REAL_CST (cst);
8910 if (exact_real_inverse (TYPE_MODE (type), &r))
8911 return build_real (type, r);
8913 return NULL_TREE;
8915 case VECTOR_CST:
8916 vec_nelts = VECTOR_CST_NELTS (cst);
8917 elts = XALLOCAVEC (tree, vec_nelts);
8918 unit_type = TREE_TYPE (type);
8919 mode = TYPE_MODE (unit_type);
8921 for (i = 0; i < vec_nelts; i++)
8923 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8924 if (!exact_real_inverse (mode, &r))
8925 return NULL_TREE;
8926 elts[i] = build_real (unit_type, r);
8929 return build_vector (type, elts);
8931 default:
8932 return NULL_TREE;
8936 /* Mask out the tz least significant bits of X of type TYPE where
8937 tz is the number of trailing zeroes in Y. */
8938 static wide_int
8939 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8941 int tz = wi::ctz (y);
8942 if (tz > 0)
8943 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8944 return x;
8947 /* Return true when T is an address and is known to be nonzero.
8948 For floating point we further ensure that T is not denormal.
8949 Similar logic is present in nonzero_address in rtlanal.h.
8951 If the return value is based on the assumption that signed overflow
8952 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8953 change *STRICT_OVERFLOW_P. */
8955 static bool
8956 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8958 tree type = TREE_TYPE (t);
8959 enum tree_code code;
8961 /* Doing something useful for floating point would need more work. */
8962 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8963 return false;
8965 code = TREE_CODE (t);
8966 switch (TREE_CODE_CLASS (code))
8968 case tcc_unary:
8969 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8970 strict_overflow_p);
8971 case tcc_binary:
8972 case tcc_comparison:
8973 return tree_binary_nonzero_warnv_p (code, type,
8974 TREE_OPERAND (t, 0),
8975 TREE_OPERAND (t, 1),
8976 strict_overflow_p);
8977 case tcc_constant:
8978 case tcc_declaration:
8979 case tcc_reference:
8980 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8982 default:
8983 break;
8986 switch (code)
8988 case TRUTH_NOT_EXPR:
8989 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8990 strict_overflow_p);
8992 case TRUTH_AND_EXPR:
8993 case TRUTH_OR_EXPR:
8994 case TRUTH_XOR_EXPR:
8995 return tree_binary_nonzero_warnv_p (code, type,
8996 TREE_OPERAND (t, 0),
8997 TREE_OPERAND (t, 1),
8998 strict_overflow_p);
9000 case COND_EXPR:
9001 case CONSTRUCTOR:
9002 case OBJ_TYPE_REF:
9003 case ASSERT_EXPR:
9004 case ADDR_EXPR:
9005 case WITH_SIZE_EXPR:
9006 case SSA_NAME:
9007 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9009 case COMPOUND_EXPR:
9010 case MODIFY_EXPR:
9011 case BIND_EXPR:
9012 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9013 strict_overflow_p);
9015 case SAVE_EXPR:
9016 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9017 strict_overflow_p);
9019 case CALL_EXPR:
9021 tree fndecl = get_callee_fndecl (t);
9022 if (!fndecl) return false;
9023 if (flag_delete_null_pointer_checks && !flag_check_new
9024 && DECL_IS_OPERATOR_NEW (fndecl)
9025 && !TREE_NOTHROW (fndecl))
9026 return true;
9027 if (flag_delete_null_pointer_checks
9028 && lookup_attribute ("returns_nonnull",
9029 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9030 return true;
9031 return alloca_call_p (t);
9034 default:
9035 break;
9037 return false;
9040 /* Return true when T is an address and is known to be nonzero.
9041 Handle warnings about undefined signed overflow. */
9043 bool
9044 tree_expr_nonzero_p (tree t)
9046 bool ret, strict_overflow_p;
9048 strict_overflow_p = false;
9049 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9050 if (strict_overflow_p)
9051 fold_overflow_warning (("assuming signed overflow does not occur when "
9052 "determining that expression is always "
9053 "non-zero"),
9054 WARN_STRICT_OVERFLOW_MISC);
9055 return ret;
9058 /* Return true if T is known not to be equal to an integer W. */
9060 bool
9061 expr_not_equal_to (tree t, const wide_int &w)
9063 wide_int min, max, nz;
9064 value_range_type rtype;
9065 switch (TREE_CODE (t))
9067 case INTEGER_CST:
9068 return wi::ne_p (t, w);
9070 case SSA_NAME:
9071 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9072 return false;
9073 rtype = get_range_info (t, &min, &max);
9074 if (rtype == VR_RANGE)
9076 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9077 return true;
9078 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9079 return true;
9081 else if (rtype == VR_ANTI_RANGE
9082 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9083 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9084 return true;
9085 /* If T has some known zero bits and W has any of those bits set,
9086 then T is known not to be equal to W. */
9087 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9088 TYPE_PRECISION (TREE_TYPE (t))), 0))
9089 return true;
9090 return false;
9092 default:
9093 return false;
9097 /* Fold a binary expression of code CODE and type TYPE with operands
9098 OP0 and OP1. LOC is the location of the resulting expression.
9099 Return the folded expression if folding is successful. Otherwise,
9100 return NULL_TREE. */
9102 tree
9103 fold_binary_loc (location_t loc,
9104 enum tree_code code, tree type, tree op0, tree op1)
9106 enum tree_code_class kind = TREE_CODE_CLASS (code);
9107 tree arg0, arg1, tem;
9108 tree t1 = NULL_TREE;
9109 bool strict_overflow_p;
9110 unsigned int prec;
9112 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9113 && TREE_CODE_LENGTH (code) == 2
9114 && op0 != NULL_TREE
9115 && op1 != NULL_TREE);
9117 arg0 = op0;
9118 arg1 = op1;
9120 /* Strip any conversions that don't change the mode. This is
9121 safe for every expression, except for a comparison expression
9122 because its signedness is derived from its operands. So, in
9123 the latter case, only strip conversions that don't change the
9124 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9125 preserved.
9127 Note that this is done as an internal manipulation within the
9128 constant folder, in order to find the simplest representation
9129 of the arguments so that their form can be studied. In any
9130 cases, the appropriate type conversions should be put back in
9131 the tree that will get out of the constant folder. */
9133 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9135 STRIP_SIGN_NOPS (arg0);
9136 STRIP_SIGN_NOPS (arg1);
9138 else
9140 STRIP_NOPS (arg0);
9141 STRIP_NOPS (arg1);
9144 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9145 constant but we can't do arithmetic on them. */
9146 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9148 tem = const_binop (code, type, arg0, arg1);
9149 if (tem != NULL_TREE)
9151 if (TREE_TYPE (tem) != type)
9152 tem = fold_convert_loc (loc, type, tem);
9153 return tem;
9157 /* If this is a commutative operation, and ARG0 is a constant, move it
9158 to ARG1 to reduce the number of tests below. */
9159 if (commutative_tree_code (code)
9160 && tree_swap_operands_p (arg0, arg1))
9161 return fold_build2_loc (loc, code, type, op1, op0);
9163 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9164 to ARG1 to reduce the number of tests below. */
9165 if (kind == tcc_comparison
9166 && tree_swap_operands_p (arg0, arg1))
9167 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9169 tem = generic_simplify (loc, code, type, op0, op1);
9170 if (tem)
9171 return tem;
9173 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9175 First check for cases where an arithmetic operation is applied to a
9176 compound, conditional, or comparison operation. Push the arithmetic
9177 operation inside the compound or conditional to see if any folding
9178 can then be done. Convert comparison to conditional for this purpose.
9179 The also optimizes non-constant cases that used to be done in
9180 expand_expr.
9182 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9183 one of the operands is a comparison and the other is a comparison, a
9184 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9185 code below would make the expression more complex. Change it to a
9186 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9187 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9189 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9190 || code == EQ_EXPR || code == NE_EXPR)
9191 && TREE_CODE (type) != VECTOR_TYPE
9192 && ((truth_value_p (TREE_CODE (arg0))
9193 && (truth_value_p (TREE_CODE (arg1))
9194 || (TREE_CODE (arg1) == BIT_AND_EXPR
9195 && integer_onep (TREE_OPERAND (arg1, 1)))))
9196 || (truth_value_p (TREE_CODE (arg1))
9197 && (truth_value_p (TREE_CODE (arg0))
9198 || (TREE_CODE (arg0) == BIT_AND_EXPR
9199 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9201 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9202 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9203 : TRUTH_XOR_EXPR,
9204 boolean_type_node,
9205 fold_convert_loc (loc, boolean_type_node, arg0),
9206 fold_convert_loc (loc, boolean_type_node, arg1));
9208 if (code == EQ_EXPR)
9209 tem = invert_truthvalue_loc (loc, tem);
9211 return fold_convert_loc (loc, type, tem);
9214 if (TREE_CODE_CLASS (code) == tcc_binary
9215 || TREE_CODE_CLASS (code) == tcc_comparison)
9217 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9219 tem = fold_build2_loc (loc, code, type,
9220 fold_convert_loc (loc, TREE_TYPE (op0),
9221 TREE_OPERAND (arg0, 1)), op1);
9222 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9223 tem);
9225 if (TREE_CODE (arg1) == COMPOUND_EXPR)
9227 tem = fold_build2_loc (loc, code, type, op0,
9228 fold_convert_loc (loc, TREE_TYPE (op1),
9229 TREE_OPERAND (arg1, 1)));
9230 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9231 tem);
9234 if (TREE_CODE (arg0) == COND_EXPR
9235 || TREE_CODE (arg0) == VEC_COND_EXPR
9236 || COMPARISON_CLASS_P (arg0))
9238 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9239 arg0, arg1,
9240 /*cond_first_p=*/1);
9241 if (tem != NULL_TREE)
9242 return tem;
9245 if (TREE_CODE (arg1) == COND_EXPR
9246 || TREE_CODE (arg1) == VEC_COND_EXPR
9247 || COMPARISON_CLASS_P (arg1))
9249 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9250 arg1, arg0,
9251 /*cond_first_p=*/0);
9252 if (tem != NULL_TREE)
9253 return tem;
9257 switch (code)
9259 case MEM_REF:
9260 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9261 if (TREE_CODE (arg0) == ADDR_EXPR
9262 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9264 tree iref = TREE_OPERAND (arg0, 0);
9265 return fold_build2 (MEM_REF, type,
9266 TREE_OPERAND (iref, 0),
9267 int_const_binop (PLUS_EXPR, arg1,
9268 TREE_OPERAND (iref, 1)));
9271 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9272 if (TREE_CODE (arg0) == ADDR_EXPR
9273 && handled_component_p (TREE_OPERAND (arg0, 0)))
9275 tree base;
9276 HOST_WIDE_INT coffset;
9277 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9278 &coffset);
9279 if (!base)
9280 return NULL_TREE;
9281 return fold_build2 (MEM_REF, type,
9282 build_fold_addr_expr (base),
9283 int_const_binop (PLUS_EXPR, arg1,
9284 size_int (coffset)));
9287 return NULL_TREE;
9289 case POINTER_PLUS_EXPR:
9290 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9291 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9292 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9293 return fold_convert_loc (loc, type,
9294 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9295 fold_convert_loc (loc, sizetype,
9296 arg1),
9297 fold_convert_loc (loc, sizetype,
9298 arg0)));
9300 return NULL_TREE;
9302 case PLUS_EXPR:
9303 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9305 /* X + (X / CST) * -CST is X % CST. */
9306 if (TREE_CODE (arg1) == MULT_EXPR
9307 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9308 && operand_equal_p (arg0,
9309 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9311 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9312 tree cst1 = TREE_OPERAND (arg1, 1);
9313 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9314 cst1, cst0);
9315 if (sum && integer_zerop (sum))
9316 return fold_convert_loc (loc, type,
9317 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9318 TREE_TYPE (arg0), arg0,
9319 cst0));
9323 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9324 one. Make sure the type is not saturating and has the signedness of
9325 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9326 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9327 if ((TREE_CODE (arg0) == MULT_EXPR
9328 || TREE_CODE (arg1) == MULT_EXPR)
9329 && !TYPE_SATURATING (type)
9330 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9331 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9332 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9334 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9335 if (tem)
9336 return tem;
9339 if (! FLOAT_TYPE_P (type))
9341 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9342 (plus (plus (mult) (mult)) (foo)) so that we can
9343 take advantage of the factoring cases below. */
9344 if (ANY_INTEGRAL_TYPE_P (type)
9345 && TYPE_OVERFLOW_WRAPS (type)
9346 && (((TREE_CODE (arg0) == PLUS_EXPR
9347 || TREE_CODE (arg0) == MINUS_EXPR)
9348 && TREE_CODE (arg1) == MULT_EXPR)
9349 || ((TREE_CODE (arg1) == PLUS_EXPR
9350 || TREE_CODE (arg1) == MINUS_EXPR)
9351 && TREE_CODE (arg0) == MULT_EXPR)))
9353 tree parg0, parg1, parg, marg;
9354 enum tree_code pcode;
9356 if (TREE_CODE (arg1) == MULT_EXPR)
9357 parg = arg0, marg = arg1;
9358 else
9359 parg = arg1, marg = arg0;
9360 pcode = TREE_CODE (parg);
9361 parg0 = TREE_OPERAND (parg, 0);
9362 parg1 = TREE_OPERAND (parg, 1);
9363 STRIP_NOPS (parg0);
9364 STRIP_NOPS (parg1);
9366 if (TREE_CODE (parg0) == MULT_EXPR
9367 && TREE_CODE (parg1) != MULT_EXPR)
9368 return fold_build2_loc (loc, pcode, type,
9369 fold_build2_loc (loc, PLUS_EXPR, type,
9370 fold_convert_loc (loc, type,
9371 parg0),
9372 fold_convert_loc (loc, type,
9373 marg)),
9374 fold_convert_loc (loc, type, parg1));
9375 if (TREE_CODE (parg0) != MULT_EXPR
9376 && TREE_CODE (parg1) == MULT_EXPR)
9377 return
9378 fold_build2_loc (loc, PLUS_EXPR, type,
9379 fold_convert_loc (loc, type, parg0),
9380 fold_build2_loc (loc, pcode, type,
9381 fold_convert_loc (loc, type, marg),
9382 fold_convert_loc (loc, type,
9383 parg1)));
9386 else
9388 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9389 to __complex__ ( x, y ). This is not the same for SNaNs or
9390 if signed zeros are involved. */
9391 if (!HONOR_SNANS (element_mode (arg0))
9392 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9393 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9395 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9396 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9397 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9398 bool arg0rz = false, arg0iz = false;
9399 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9400 || (arg0i && (arg0iz = real_zerop (arg0i))))
9402 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9403 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9404 if (arg0rz && arg1i && real_zerop (arg1i))
9406 tree rp = arg1r ? arg1r
9407 : build1 (REALPART_EXPR, rtype, arg1);
9408 tree ip = arg0i ? arg0i
9409 : build1 (IMAGPART_EXPR, rtype, arg0);
9410 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9412 else if (arg0iz && arg1r && real_zerop (arg1r))
9414 tree rp = arg0r ? arg0r
9415 : build1 (REALPART_EXPR, rtype, arg0);
9416 tree ip = arg1i ? arg1i
9417 : build1 (IMAGPART_EXPR, rtype, arg1);
9418 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9423 if (flag_unsafe_math_optimizations
9424 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9425 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9426 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9427 return tem;
9429 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9430 We associate floats only if the user has specified
9431 -fassociative-math. */
9432 if (flag_associative_math
9433 && TREE_CODE (arg1) == PLUS_EXPR
9434 && TREE_CODE (arg0) != MULT_EXPR)
9436 tree tree10 = TREE_OPERAND (arg1, 0);
9437 tree tree11 = TREE_OPERAND (arg1, 1);
9438 if (TREE_CODE (tree11) == MULT_EXPR
9439 && TREE_CODE (tree10) == MULT_EXPR)
9441 tree tree0;
9442 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9443 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9446 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9447 We associate floats only if the user has specified
9448 -fassociative-math. */
9449 if (flag_associative_math
9450 && TREE_CODE (arg0) == PLUS_EXPR
9451 && TREE_CODE (arg1) != MULT_EXPR)
9453 tree tree00 = TREE_OPERAND (arg0, 0);
9454 tree tree01 = TREE_OPERAND (arg0, 1);
9455 if (TREE_CODE (tree01) == MULT_EXPR
9456 && TREE_CODE (tree00) == MULT_EXPR)
9458 tree tree0;
9459 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9460 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9465 bit_rotate:
9466 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9467 is a rotate of A by C1 bits. */
9468 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9469 is a rotate of A by B bits. */
9471 enum tree_code code0, code1;
9472 tree rtype;
9473 code0 = TREE_CODE (arg0);
9474 code1 = TREE_CODE (arg1);
9475 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9476 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9477 && operand_equal_p (TREE_OPERAND (arg0, 0),
9478 TREE_OPERAND (arg1, 0), 0)
9479 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9480 TYPE_UNSIGNED (rtype))
9481 /* Only create rotates in complete modes. Other cases are not
9482 expanded properly. */
9483 && (element_precision (rtype)
9484 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9486 tree tree01, tree11;
9487 enum tree_code code01, code11;
9489 tree01 = TREE_OPERAND (arg0, 1);
9490 tree11 = TREE_OPERAND (arg1, 1);
9491 STRIP_NOPS (tree01);
9492 STRIP_NOPS (tree11);
9493 code01 = TREE_CODE (tree01);
9494 code11 = TREE_CODE (tree11);
9495 if (code01 == INTEGER_CST
9496 && code11 == INTEGER_CST
9497 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9498 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9500 tem = build2_loc (loc, LROTATE_EXPR,
9501 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9502 TREE_OPERAND (arg0, 0),
9503 code0 == LSHIFT_EXPR
9504 ? TREE_OPERAND (arg0, 1)
9505 : TREE_OPERAND (arg1, 1));
9506 return fold_convert_loc (loc, type, tem);
9508 else if (code11 == MINUS_EXPR)
9510 tree tree110, tree111;
9511 tree110 = TREE_OPERAND (tree11, 0);
9512 tree111 = TREE_OPERAND (tree11, 1);
9513 STRIP_NOPS (tree110);
9514 STRIP_NOPS (tree111);
9515 if (TREE_CODE (tree110) == INTEGER_CST
9516 && 0 == compare_tree_int (tree110,
9517 element_precision
9518 (TREE_TYPE (TREE_OPERAND
9519 (arg0, 0))))
9520 && operand_equal_p (tree01, tree111, 0))
9521 return
9522 fold_convert_loc (loc, type,
9523 build2 ((code0 == LSHIFT_EXPR
9524 ? LROTATE_EXPR
9525 : RROTATE_EXPR),
9526 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9527 TREE_OPERAND (arg0, 0),
9528 TREE_OPERAND (arg0, 1)));
9530 else if (code01 == MINUS_EXPR)
9532 tree tree010, tree011;
9533 tree010 = TREE_OPERAND (tree01, 0);
9534 tree011 = TREE_OPERAND (tree01, 1);
9535 STRIP_NOPS (tree010);
9536 STRIP_NOPS (tree011);
9537 if (TREE_CODE (tree010) == INTEGER_CST
9538 && 0 == compare_tree_int (tree010,
9539 element_precision
9540 (TREE_TYPE (TREE_OPERAND
9541 (arg0, 0))))
9542 && operand_equal_p (tree11, tree011, 0))
9543 return fold_convert_loc
9544 (loc, type,
9545 build2 ((code0 != LSHIFT_EXPR
9546 ? LROTATE_EXPR
9547 : RROTATE_EXPR),
9548 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9549 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9554 associate:
9555 /* In most languages, can't associate operations on floats through
9556 parentheses. Rather than remember where the parentheses were, we
9557 don't associate floats at all, unless the user has specified
9558 -fassociative-math.
9559 And, we need to make sure type is not saturating. */
9561 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9562 && !TYPE_SATURATING (type))
9564 tree var0, con0, lit0, minus_lit0;
9565 tree var1, con1, lit1, minus_lit1;
9566 tree atype = type;
9567 bool ok = true;
9569 /* Split both trees into variables, constants, and literals. Then
9570 associate each group together, the constants with literals,
9571 then the result with variables. This increases the chances of
9572 literals being recombined later and of generating relocatable
9573 expressions for the sum of a constant and literal. */
9574 var0 = split_tree (loc, arg0, type, code,
9575 &con0, &lit0, &minus_lit0, 0);
9576 var1 = split_tree (loc, arg1, type, code,
9577 &con1, &lit1, &minus_lit1, code == MINUS_EXPR);
9579 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9580 if (code == MINUS_EXPR)
9581 code = PLUS_EXPR;
9583 /* With undefined overflow prefer doing association in a type
9584 which wraps on overflow, if that is one of the operand types. */
9585 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9586 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9588 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9589 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9590 atype = TREE_TYPE (arg0);
9591 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9592 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9593 atype = TREE_TYPE (arg1);
9594 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9597 /* With undefined overflow we can only associate constants with one
9598 variable, and constants whose association doesn't overflow. */
9599 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9600 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9602 if (var0 && var1)
9604 tree tmp0 = var0;
9605 tree tmp1 = var1;
9606 bool one_neg = false;
9608 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9610 tmp0 = TREE_OPERAND (tmp0, 0);
9611 one_neg = !one_neg;
9613 if (CONVERT_EXPR_P (tmp0)
9614 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9615 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9616 <= TYPE_PRECISION (atype)))
9617 tmp0 = TREE_OPERAND (tmp0, 0);
9618 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9620 tmp1 = TREE_OPERAND (tmp1, 0);
9621 one_neg = !one_neg;
9623 if (CONVERT_EXPR_P (tmp1)
9624 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9625 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9626 <= TYPE_PRECISION (atype)))
9627 tmp1 = TREE_OPERAND (tmp1, 0);
9628 /* The only case we can still associate with two variables
9629 is if they cancel out. */
9630 if (!one_neg
9631 || !operand_equal_p (tmp0, tmp1, 0))
9632 ok = false;
9636 /* Only do something if we found more than two objects. Otherwise,
9637 nothing has changed and we risk infinite recursion. */
9638 if (ok
9639 && (2 < ((var0 != 0) + (var1 != 0)
9640 + (con0 != 0) + (con1 != 0)
9641 + (lit0 != 0) + (lit1 != 0)
9642 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9644 bool any_overflows = false;
9645 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
9646 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
9647 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
9648 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
9649 var0 = associate_trees (loc, var0, var1, code, atype);
9650 con0 = associate_trees (loc, con0, con1, code, atype);
9651 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9652 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9653 code, atype);
9655 /* Preserve the MINUS_EXPR if the negative part of the literal is
9656 greater than the positive part. Otherwise, the multiplicative
9657 folding code (i.e extract_muldiv) may be fooled in case
9658 unsigned constants are subtracted, like in the following
9659 example: ((X*2 + 4) - 8U)/2. */
9660 if (minus_lit0 && lit0)
9662 if (TREE_CODE (lit0) == INTEGER_CST
9663 && TREE_CODE (minus_lit0) == INTEGER_CST
9664 && tree_int_cst_lt (lit0, minus_lit0))
9666 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9667 MINUS_EXPR, atype);
9668 lit0 = 0;
9670 else
9672 lit0 = associate_trees (loc, lit0, minus_lit0,
9673 MINUS_EXPR, atype);
9674 minus_lit0 = 0;
9678 /* Don't introduce overflows through reassociation. */
9679 if (!any_overflows
9680 && ((lit0 && TREE_OVERFLOW_P (lit0))
9681 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
9682 return NULL_TREE;
9684 if (minus_lit0)
9686 if (con0 == 0)
9687 return
9688 fold_convert_loc (loc, type,
9689 associate_trees (loc, var0, minus_lit0,
9690 MINUS_EXPR, atype));
9691 else
9693 con0 = associate_trees (loc, con0, minus_lit0,
9694 MINUS_EXPR, atype);
9695 return
9696 fold_convert_loc (loc, type,
9697 associate_trees (loc, var0, con0,
9698 PLUS_EXPR, atype));
9702 con0 = associate_trees (loc, con0, lit0, code, atype);
9703 return
9704 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9705 code, atype));
9709 return NULL_TREE;
9711 case MINUS_EXPR:
9712 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9713 if (TREE_CODE (arg0) == NEGATE_EXPR
9714 && negate_expr_p (op1))
9715 return fold_build2_loc (loc, MINUS_EXPR, type,
9716 negate_expr (op1),
9717 fold_convert_loc (loc, type,
9718 TREE_OPERAND (arg0, 0)));
9720 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9721 __complex__ ( x, -y ). This is not the same for SNaNs or if
9722 signed zeros are involved. */
9723 if (!HONOR_SNANS (element_mode (arg0))
9724 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9725 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9727 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9728 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9729 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9730 bool arg0rz = false, arg0iz = false;
9731 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9732 || (arg0i && (arg0iz = real_zerop (arg0i))))
9734 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9735 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9736 if (arg0rz && arg1i && real_zerop (arg1i))
9738 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9739 arg1r ? arg1r
9740 : build1 (REALPART_EXPR, rtype, arg1));
9741 tree ip = arg0i ? arg0i
9742 : build1 (IMAGPART_EXPR, rtype, arg0);
9743 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9745 else if (arg0iz && arg1r && real_zerop (arg1r))
9747 tree rp = arg0r ? arg0r
9748 : build1 (REALPART_EXPR, rtype, arg0);
9749 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9750 arg1i ? arg1i
9751 : build1 (IMAGPART_EXPR, rtype, arg1));
9752 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9757 /* A - B -> A + (-B) if B is easily negatable. */
9758 if (negate_expr_p (op1)
9759 && ! TYPE_OVERFLOW_SANITIZED (type)
9760 && ((FLOAT_TYPE_P (type)
9761 /* Avoid this transformation if B is a positive REAL_CST. */
9762 && (TREE_CODE (op1) != REAL_CST
9763 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
9764 || INTEGRAL_TYPE_P (type)))
9765 return fold_build2_loc (loc, PLUS_EXPR, type,
9766 fold_convert_loc (loc, type, arg0),
9767 negate_expr (op1));
9769 /* Fold &a[i] - &a[j] to i-j. */
9770 if (TREE_CODE (arg0) == ADDR_EXPR
9771 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9772 && TREE_CODE (arg1) == ADDR_EXPR
9773 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9775 tree tem = fold_addr_of_array_ref_difference (loc, type,
9776 TREE_OPERAND (arg0, 0),
9777 TREE_OPERAND (arg1, 0));
9778 if (tem)
9779 return tem;
9782 if (FLOAT_TYPE_P (type)
9783 && flag_unsafe_math_optimizations
9784 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9785 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9786 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9787 return tem;
9789 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9790 one. Make sure the type is not saturating and has the signedness of
9791 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9792 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9793 if ((TREE_CODE (arg0) == MULT_EXPR
9794 || TREE_CODE (arg1) == MULT_EXPR)
9795 && !TYPE_SATURATING (type)
9796 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9797 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9798 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9800 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9801 if (tem)
9802 return tem;
9805 goto associate;
9807 case MULT_EXPR:
9808 if (! FLOAT_TYPE_P (type))
9810 /* Transform x * -C into -x * C if x is easily negatable. */
9811 if (TREE_CODE (op1) == INTEGER_CST
9812 && tree_int_cst_sgn (op1) == -1
9813 && negate_expr_p (op0)
9814 && (tem = negate_expr (op1)) != op1
9815 && ! TREE_OVERFLOW (tem))
9816 return fold_build2_loc (loc, MULT_EXPR, type,
9817 fold_convert_loc (loc, type,
9818 negate_expr (op0)), tem);
9820 strict_overflow_p = false;
9821 if (TREE_CODE (arg1) == INTEGER_CST
9822 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9823 &strict_overflow_p)))
9825 if (strict_overflow_p)
9826 fold_overflow_warning (("assuming signed overflow does not "
9827 "occur when simplifying "
9828 "multiplication"),
9829 WARN_STRICT_OVERFLOW_MISC);
9830 return fold_convert_loc (loc, type, tem);
9833 /* Optimize z * conj(z) for integer complex numbers. */
9834 if (TREE_CODE (arg0) == CONJ_EXPR
9835 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9836 return fold_mult_zconjz (loc, type, arg1);
9837 if (TREE_CODE (arg1) == CONJ_EXPR
9838 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9839 return fold_mult_zconjz (loc, type, arg0);
9841 else
9843 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9844 This is not the same for NaNs or if signed zeros are
9845 involved. */
9846 if (!HONOR_NANS (arg0)
9847 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9848 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9849 && TREE_CODE (arg1) == COMPLEX_CST
9850 && real_zerop (TREE_REALPART (arg1)))
9852 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9853 if (real_onep (TREE_IMAGPART (arg1)))
9854 return
9855 fold_build2_loc (loc, COMPLEX_EXPR, type,
9856 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9857 rtype, arg0)),
9858 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9859 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9860 return
9861 fold_build2_loc (loc, COMPLEX_EXPR, type,
9862 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9863 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9864 rtype, arg0)));
9867 /* Optimize z * conj(z) for floating point complex numbers.
9868 Guarded by flag_unsafe_math_optimizations as non-finite
9869 imaginary components don't produce scalar results. */
9870 if (flag_unsafe_math_optimizations
9871 && TREE_CODE (arg0) == CONJ_EXPR
9872 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9873 return fold_mult_zconjz (loc, type, arg1);
9874 if (flag_unsafe_math_optimizations
9875 && TREE_CODE (arg1) == CONJ_EXPR
9876 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9877 return fold_mult_zconjz (loc, type, arg0);
9879 goto associate;
9881 case BIT_IOR_EXPR:
9882 /* Canonicalize (X & C1) | C2. */
9883 if (TREE_CODE (arg0) == BIT_AND_EXPR
9884 && TREE_CODE (arg1) == INTEGER_CST
9885 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9887 int width = TYPE_PRECISION (type), w;
9888 wide_int c1 = TREE_OPERAND (arg0, 1);
9889 wide_int c2 = arg1;
9891 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9892 if ((c1 & c2) == c1)
9893 return omit_one_operand_loc (loc, type, arg1,
9894 TREE_OPERAND (arg0, 0));
9896 wide_int msk = wi::mask (width, false,
9897 TYPE_PRECISION (TREE_TYPE (arg1)));
9899 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9900 if (msk.and_not (c1 | c2) == 0)
9902 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9903 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
9906 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9907 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9908 mode which allows further optimizations. */
9909 c1 &= msk;
9910 c2 &= msk;
9911 wide_int c3 = c1.and_not (c2);
9912 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
9914 wide_int mask = wi::mask (w, false,
9915 TYPE_PRECISION (type));
9916 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
9918 c3 = mask;
9919 break;
9923 if (c3 != c1)
9925 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9926 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
9927 wide_int_to_tree (type, c3));
9928 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
9932 /* See if this can be simplified into a rotate first. If that
9933 is unsuccessful continue in the association code. */
9934 goto bit_rotate;
9936 case BIT_XOR_EXPR:
9937 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9938 if (TREE_CODE (arg0) == BIT_AND_EXPR
9939 && INTEGRAL_TYPE_P (type)
9940 && integer_onep (TREE_OPERAND (arg0, 1))
9941 && integer_onep (arg1))
9942 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
9943 build_zero_cst (TREE_TYPE (arg0)));
9945 /* See if this can be simplified into a rotate first. If that
9946 is unsuccessful continue in the association code. */
9947 goto bit_rotate;
9949 case BIT_AND_EXPR:
9950 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9951 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9952 && INTEGRAL_TYPE_P (type)
9953 && integer_onep (TREE_OPERAND (arg0, 1))
9954 && integer_onep (arg1))
9956 tree tem2;
9957 tem = TREE_OPERAND (arg0, 0);
9958 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9959 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9960 tem, tem2);
9961 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9962 build_zero_cst (TREE_TYPE (tem)));
9964 /* Fold ~X & 1 as (X & 1) == 0. */
9965 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9966 && INTEGRAL_TYPE_P (type)
9967 && integer_onep (arg1))
9969 tree tem2;
9970 tem = TREE_OPERAND (arg0, 0);
9971 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9972 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9973 tem, tem2);
9974 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9975 build_zero_cst (TREE_TYPE (tem)));
9977 /* Fold !X & 1 as X == 0. */
9978 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
9979 && integer_onep (arg1))
9981 tem = TREE_OPERAND (arg0, 0);
9982 return fold_build2_loc (loc, EQ_EXPR, type, tem,
9983 build_zero_cst (TREE_TYPE (tem)));
9986 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
9987 multiple of 1 << CST. */
9988 if (TREE_CODE (arg1) == INTEGER_CST)
9990 wide_int cst1 = arg1;
9991 wide_int ncst1 = -cst1;
9992 if ((cst1 & ncst1) == ncst1
9993 && multiple_of_p (type, arg0,
9994 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
9995 return fold_convert_loc (loc, type, arg0);
9998 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
9999 bits from CST2. */
10000 if (TREE_CODE (arg1) == INTEGER_CST
10001 && TREE_CODE (arg0) == MULT_EXPR
10002 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10004 wide_int warg1 = arg1;
10005 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
10007 if (masked == 0)
10008 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10009 arg0, arg1);
10010 else if (masked != warg1)
10012 /* Avoid the transform if arg1 is a mask of some
10013 mode which allows further optimizations. */
10014 int pop = wi::popcount (warg1);
10015 if (!(pop >= BITS_PER_UNIT
10016 && pow2p_hwi (pop)
10017 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10018 return fold_build2_loc (loc, code, type, op0,
10019 wide_int_to_tree (type, masked));
10023 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10024 ((A & N) + B) & M -> (A + B) & M
10025 Similarly if (N & M) == 0,
10026 ((A | N) + B) & M -> (A + B) & M
10027 and for - instead of + (or unary - instead of +)
10028 and/or ^ instead of |.
10029 If B is constant and (B & M) == 0, fold into A & M. */
10030 if (TREE_CODE (arg1) == INTEGER_CST)
10032 wide_int cst1 = arg1;
10033 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10034 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10035 && (TREE_CODE (arg0) == PLUS_EXPR
10036 || TREE_CODE (arg0) == MINUS_EXPR
10037 || TREE_CODE (arg0) == NEGATE_EXPR)
10038 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10039 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10041 tree pmop[2];
10042 int which = 0;
10043 wide_int cst0;
10045 /* Now we know that arg0 is (C + D) or (C - D) or
10046 -C and arg1 (M) is == (1LL << cst) - 1.
10047 Store C into PMOP[0] and D into PMOP[1]. */
10048 pmop[0] = TREE_OPERAND (arg0, 0);
10049 pmop[1] = NULL;
10050 if (TREE_CODE (arg0) != NEGATE_EXPR)
10052 pmop[1] = TREE_OPERAND (arg0, 1);
10053 which = 1;
10056 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10057 which = -1;
10059 for (; which >= 0; which--)
10060 switch (TREE_CODE (pmop[which]))
10062 case BIT_AND_EXPR:
10063 case BIT_IOR_EXPR:
10064 case BIT_XOR_EXPR:
10065 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10066 != INTEGER_CST)
10067 break;
10068 cst0 = TREE_OPERAND (pmop[which], 1);
10069 cst0 &= cst1;
10070 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10072 if (cst0 != cst1)
10073 break;
10075 else if (cst0 != 0)
10076 break;
10077 /* If C or D is of the form (A & N) where
10078 (N & M) == M, or of the form (A | N) or
10079 (A ^ N) where (N & M) == 0, replace it with A. */
10080 pmop[which] = TREE_OPERAND (pmop[which], 0);
10081 break;
10082 case INTEGER_CST:
10083 /* If C or D is a N where (N & M) == 0, it can be
10084 omitted (assumed 0). */
10085 if ((TREE_CODE (arg0) == PLUS_EXPR
10086 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10087 && (cst1 & pmop[which]) == 0)
10088 pmop[which] = NULL;
10089 break;
10090 default:
10091 break;
10094 /* Only build anything new if we optimized one or both arguments
10095 above. */
10096 if (pmop[0] != TREE_OPERAND (arg0, 0)
10097 || (TREE_CODE (arg0) != NEGATE_EXPR
10098 && pmop[1] != TREE_OPERAND (arg0, 1)))
10100 tree utype = TREE_TYPE (arg0);
10101 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10103 /* Perform the operations in a type that has defined
10104 overflow behavior. */
10105 utype = unsigned_type_for (TREE_TYPE (arg0));
10106 if (pmop[0] != NULL)
10107 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10108 if (pmop[1] != NULL)
10109 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10112 if (TREE_CODE (arg0) == NEGATE_EXPR)
10113 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10114 else if (TREE_CODE (arg0) == PLUS_EXPR)
10116 if (pmop[0] != NULL && pmop[1] != NULL)
10117 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10118 pmop[0], pmop[1]);
10119 else if (pmop[0] != NULL)
10120 tem = pmop[0];
10121 else if (pmop[1] != NULL)
10122 tem = pmop[1];
10123 else
10124 return build_int_cst (type, 0);
10126 else if (pmop[0] == NULL)
10127 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10128 else
10129 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10130 pmop[0], pmop[1]);
10131 /* TEM is now the new binary +, - or unary - replacement. */
10132 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10133 fold_convert_loc (loc, utype, arg1));
10134 return fold_convert_loc (loc, type, tem);
10139 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10140 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10141 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10143 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10145 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10146 if (mask == -1)
10147 return
10148 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10151 goto associate;
10153 case RDIV_EXPR:
10154 /* Don't touch a floating-point divide by zero unless the mode
10155 of the constant can represent infinity. */
10156 if (TREE_CODE (arg1) == REAL_CST
10157 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10158 && real_zerop (arg1))
10159 return NULL_TREE;
10161 /* (-A) / (-B) -> A / B */
10162 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10163 return fold_build2_loc (loc, RDIV_EXPR, type,
10164 TREE_OPERAND (arg0, 0),
10165 negate_expr (arg1));
10166 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10167 return fold_build2_loc (loc, RDIV_EXPR, type,
10168 negate_expr (arg0),
10169 TREE_OPERAND (arg1, 0));
10170 return NULL_TREE;
10172 case TRUNC_DIV_EXPR:
10173 /* Fall through */
10175 case FLOOR_DIV_EXPR:
10176 /* Simplify A / (B << N) where A and B are positive and B is
10177 a power of 2, to A >> (N + log2(B)). */
10178 strict_overflow_p = false;
10179 if (TREE_CODE (arg1) == LSHIFT_EXPR
10180 && (TYPE_UNSIGNED (type)
10181 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10183 tree sval = TREE_OPERAND (arg1, 0);
10184 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10186 tree sh_cnt = TREE_OPERAND (arg1, 1);
10187 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10188 wi::exact_log2 (sval));
10190 if (strict_overflow_p)
10191 fold_overflow_warning (("assuming signed overflow does not "
10192 "occur when simplifying A / (B << N)"),
10193 WARN_STRICT_OVERFLOW_MISC);
10195 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10196 sh_cnt, pow2);
10197 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10198 fold_convert_loc (loc, type, arg0), sh_cnt);
10202 /* Fall through */
10204 case ROUND_DIV_EXPR:
10205 case CEIL_DIV_EXPR:
10206 case EXACT_DIV_EXPR:
10207 if (integer_zerop (arg1))
10208 return NULL_TREE;
10210 /* Convert -A / -B to A / B when the type is signed and overflow is
10211 undefined. */
10212 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10213 && TREE_CODE (op0) == NEGATE_EXPR
10214 && negate_expr_p (op1))
10216 if (INTEGRAL_TYPE_P (type))
10217 fold_overflow_warning (("assuming signed overflow does not occur "
10218 "when distributing negation across "
10219 "division"),
10220 WARN_STRICT_OVERFLOW_MISC);
10221 return fold_build2_loc (loc, code, type,
10222 fold_convert_loc (loc, type,
10223 TREE_OPERAND (arg0, 0)),
10224 negate_expr (op1));
10226 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10227 && TREE_CODE (arg1) == NEGATE_EXPR
10228 && negate_expr_p (op0))
10230 if (INTEGRAL_TYPE_P (type))
10231 fold_overflow_warning (("assuming signed overflow does not occur "
10232 "when distributing negation across "
10233 "division"),
10234 WARN_STRICT_OVERFLOW_MISC);
10235 return fold_build2_loc (loc, code, type,
10236 negate_expr (op0),
10237 fold_convert_loc (loc, type,
10238 TREE_OPERAND (arg1, 0)));
10241 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10242 operation, EXACT_DIV_EXPR.
10244 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10245 At one time others generated faster code, it's not clear if they do
10246 after the last round to changes to the DIV code in expmed.c. */
10247 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10248 && multiple_of_p (type, arg0, arg1))
10249 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10250 fold_convert (type, arg0),
10251 fold_convert (type, arg1));
10253 strict_overflow_p = false;
10254 if (TREE_CODE (arg1) == INTEGER_CST
10255 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10256 &strict_overflow_p)))
10258 if (strict_overflow_p)
10259 fold_overflow_warning (("assuming signed overflow does not occur "
10260 "when simplifying division"),
10261 WARN_STRICT_OVERFLOW_MISC);
10262 return fold_convert_loc (loc, type, tem);
10265 return NULL_TREE;
10267 case CEIL_MOD_EXPR:
10268 case FLOOR_MOD_EXPR:
10269 case ROUND_MOD_EXPR:
10270 case TRUNC_MOD_EXPR:
10271 strict_overflow_p = false;
10272 if (TREE_CODE (arg1) == INTEGER_CST
10273 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10274 &strict_overflow_p)))
10276 if (strict_overflow_p)
10277 fold_overflow_warning (("assuming signed overflow does not occur "
10278 "when simplifying modulus"),
10279 WARN_STRICT_OVERFLOW_MISC);
10280 return fold_convert_loc (loc, type, tem);
10283 return NULL_TREE;
10285 case LROTATE_EXPR:
10286 case RROTATE_EXPR:
10287 case RSHIFT_EXPR:
10288 case LSHIFT_EXPR:
10289 /* Since negative shift count is not well-defined,
10290 don't try to compute it in the compiler. */
10291 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10292 return NULL_TREE;
10294 prec = element_precision (type);
10296 /* If we have a rotate of a bit operation with the rotate count and
10297 the second operand of the bit operation both constant,
10298 permute the two operations. */
10299 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10300 && (TREE_CODE (arg0) == BIT_AND_EXPR
10301 || TREE_CODE (arg0) == BIT_IOR_EXPR
10302 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10303 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10305 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10306 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10307 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10308 fold_build2_loc (loc, code, type,
10309 arg00, arg1),
10310 fold_build2_loc (loc, code, type,
10311 arg01, arg1));
10314 /* Two consecutive rotates adding up to the some integer
10315 multiple of the precision of the type can be ignored. */
10316 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10317 && TREE_CODE (arg0) == RROTATE_EXPR
10318 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10319 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10320 prec) == 0)
10321 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10323 return NULL_TREE;
10325 case MIN_EXPR:
10326 case MAX_EXPR:
10327 goto associate;
10329 case TRUTH_ANDIF_EXPR:
10330 /* Note that the operands of this must be ints
10331 and their values must be 0 or 1.
10332 ("true" is a fixed value perhaps depending on the language.) */
10333 /* If first arg is constant zero, return it. */
10334 if (integer_zerop (arg0))
10335 return fold_convert_loc (loc, type, arg0);
10336 /* FALLTHRU */
10337 case TRUTH_AND_EXPR:
10338 /* If either arg is constant true, drop it. */
10339 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10340 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10341 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10342 /* Preserve sequence points. */
10343 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10344 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10345 /* If second arg is constant zero, result is zero, but first arg
10346 must be evaluated. */
10347 if (integer_zerop (arg1))
10348 return omit_one_operand_loc (loc, type, arg1, arg0);
10349 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10350 case will be handled here. */
10351 if (integer_zerop (arg0))
10352 return omit_one_operand_loc (loc, type, arg0, arg1);
10354 /* !X && X is always false. */
10355 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10356 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10357 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10358 /* X && !X is always false. */
10359 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10360 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10361 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10363 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10364 means A >= Y && A != MAX, but in this case we know that
10365 A < X <= MAX. */
10367 if (!TREE_SIDE_EFFECTS (arg0)
10368 && !TREE_SIDE_EFFECTS (arg1))
10370 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10371 if (tem && !operand_equal_p (tem, arg0, 0))
10372 return fold_build2_loc (loc, code, type, tem, arg1);
10374 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10375 if (tem && !operand_equal_p (tem, arg1, 0))
10376 return fold_build2_loc (loc, code, type, arg0, tem);
10379 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10380 != NULL_TREE)
10381 return tem;
10383 return NULL_TREE;
10385 case TRUTH_ORIF_EXPR:
10386 /* Note that the operands of this must be ints
10387 and their values must be 0 or true.
10388 ("true" is a fixed value perhaps depending on the language.) */
10389 /* If first arg is constant true, return it. */
10390 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10391 return fold_convert_loc (loc, type, arg0);
10392 /* FALLTHRU */
10393 case TRUTH_OR_EXPR:
10394 /* If either arg is constant zero, drop it. */
10395 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10396 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10397 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10398 /* Preserve sequence points. */
10399 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10400 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10401 /* If second arg is constant true, result is true, but we must
10402 evaluate first arg. */
10403 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10404 return omit_one_operand_loc (loc, type, arg1, arg0);
10405 /* Likewise for first arg, but note this only occurs here for
10406 TRUTH_OR_EXPR. */
10407 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10408 return omit_one_operand_loc (loc, type, arg0, arg1);
10410 /* !X || X is always true. */
10411 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10412 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10413 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10414 /* X || !X is always true. */
10415 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10416 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10417 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10419 /* (X && !Y) || (!X && Y) is X ^ Y */
10420 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10421 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10423 tree a0, a1, l0, l1, n0, n1;
10425 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10426 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10428 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10429 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10431 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10432 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10434 if ((operand_equal_p (n0, a0, 0)
10435 && operand_equal_p (n1, a1, 0))
10436 || (operand_equal_p (n0, a1, 0)
10437 && operand_equal_p (n1, a0, 0)))
10438 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10441 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10442 != NULL_TREE)
10443 return tem;
10445 return NULL_TREE;
10447 case TRUTH_XOR_EXPR:
10448 /* If the second arg is constant zero, drop it. */
10449 if (integer_zerop (arg1))
10450 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10451 /* If the second arg is constant true, this is a logical inversion. */
10452 if (integer_onep (arg1))
10454 tem = invert_truthvalue_loc (loc, arg0);
10455 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10457 /* Identical arguments cancel to zero. */
10458 if (operand_equal_p (arg0, arg1, 0))
10459 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10461 /* !X ^ X is always true. */
10462 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10463 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10464 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10466 /* X ^ !X is always true. */
10467 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10468 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10469 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10471 return NULL_TREE;
10473 case EQ_EXPR:
10474 case NE_EXPR:
10475 STRIP_NOPS (arg0);
10476 STRIP_NOPS (arg1);
10478 tem = fold_comparison (loc, code, type, op0, op1);
10479 if (tem != NULL_TREE)
10480 return tem;
10482 /* bool_var != 1 becomes !bool_var. */
10483 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10484 && code == NE_EXPR)
10485 return fold_convert_loc (loc, type,
10486 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10487 TREE_TYPE (arg0), arg0));
10489 /* bool_var == 0 becomes !bool_var. */
10490 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10491 && code == EQ_EXPR)
10492 return fold_convert_loc (loc, type,
10493 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10494 TREE_TYPE (arg0), arg0));
10496 /* !exp != 0 becomes !exp */
10497 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10498 && code == NE_EXPR)
10499 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10501 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10502 if ((TREE_CODE (arg0) == PLUS_EXPR
10503 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10504 || TREE_CODE (arg0) == MINUS_EXPR)
10505 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10506 0)),
10507 arg1, 0)
10508 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10509 || POINTER_TYPE_P (TREE_TYPE (arg0))))
10511 tree val = TREE_OPERAND (arg0, 1);
10512 val = fold_build2_loc (loc, code, type, val,
10513 build_int_cst (TREE_TYPE (val), 0));
10514 return omit_two_operands_loc (loc, type, val,
10515 TREE_OPERAND (arg0, 0), arg1);
10518 /* Transform comparisons of the form X CMP X +- Y to Y CMP 0. */
10519 if ((TREE_CODE (arg1) == PLUS_EXPR
10520 || TREE_CODE (arg1) == POINTER_PLUS_EXPR
10521 || TREE_CODE (arg1) == MINUS_EXPR)
10522 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10523 0)),
10524 arg0, 0)
10525 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10526 || POINTER_TYPE_P (TREE_TYPE (arg1))))
10528 tree val = TREE_OPERAND (arg1, 1);
10529 val = fold_build2_loc (loc, code, type, val,
10530 build_int_cst (TREE_TYPE (val), 0));
10531 return omit_two_operands_loc (loc, type, val,
10532 TREE_OPERAND (arg1, 0), arg0);
10535 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
10536 if (TREE_CODE (arg0) == MINUS_EXPR
10537 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
10538 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10539 1)),
10540 arg1, 0)
10541 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
10542 return omit_two_operands_loc (loc, type,
10543 code == NE_EXPR
10544 ? boolean_true_node : boolean_false_node,
10545 TREE_OPERAND (arg0, 1), arg1);
10547 /* Transform comparisons of the form X CMP C - X if C % 2 == 1. */
10548 if (TREE_CODE (arg1) == MINUS_EXPR
10549 && TREE_CODE (TREE_OPERAND (arg1, 0)) == INTEGER_CST
10550 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10551 1)),
10552 arg0, 0)
10553 && wi::extract_uhwi (TREE_OPERAND (arg1, 0), 0, 1) == 1)
10554 return omit_two_operands_loc (loc, type,
10555 code == NE_EXPR
10556 ? boolean_true_node : boolean_false_node,
10557 TREE_OPERAND (arg1, 1), arg0);
10559 /* If this is an EQ or NE comparison with zero and ARG0 is
10560 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10561 two operations, but the latter can be done in one less insn
10562 on machines that have only two-operand insns or on which a
10563 constant cannot be the first operand. */
10564 if (TREE_CODE (arg0) == BIT_AND_EXPR
10565 && integer_zerop (arg1))
10567 tree arg00 = TREE_OPERAND (arg0, 0);
10568 tree arg01 = TREE_OPERAND (arg0, 1);
10569 if (TREE_CODE (arg00) == LSHIFT_EXPR
10570 && integer_onep (TREE_OPERAND (arg00, 0)))
10572 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10573 arg01, TREE_OPERAND (arg00, 1));
10574 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10575 build_int_cst (TREE_TYPE (arg0), 1));
10576 return fold_build2_loc (loc, code, type,
10577 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10578 arg1);
10580 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10581 && integer_onep (TREE_OPERAND (arg01, 0)))
10583 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10584 arg00, TREE_OPERAND (arg01, 1));
10585 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10586 build_int_cst (TREE_TYPE (arg0), 1));
10587 return fold_build2_loc (loc, code, type,
10588 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10589 arg1);
10593 /* If this is an NE or EQ comparison of zero against the result of a
10594 signed MOD operation whose second operand is a power of 2, make
10595 the MOD operation unsigned since it is simpler and equivalent. */
10596 if (integer_zerop (arg1)
10597 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10598 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10599 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10600 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10601 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10602 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10604 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10605 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10606 fold_convert_loc (loc, newtype,
10607 TREE_OPERAND (arg0, 0)),
10608 fold_convert_loc (loc, newtype,
10609 TREE_OPERAND (arg0, 1)));
10611 return fold_build2_loc (loc, code, type, newmod,
10612 fold_convert_loc (loc, newtype, arg1));
10615 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10616 C1 is a valid shift constant, and C2 is a power of two, i.e.
10617 a single bit. */
10618 if (TREE_CODE (arg0) == BIT_AND_EXPR
10619 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10620 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10621 == INTEGER_CST
10622 && integer_pow2p (TREE_OPERAND (arg0, 1))
10623 && integer_zerop (arg1))
10625 tree itype = TREE_TYPE (arg0);
10626 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10627 prec = TYPE_PRECISION (itype);
10629 /* Check for a valid shift count. */
10630 if (wi::ltu_p (arg001, prec))
10632 tree arg01 = TREE_OPERAND (arg0, 1);
10633 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10634 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10635 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10636 can be rewritten as (X & (C2 << C1)) != 0. */
10637 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10639 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10640 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10641 return fold_build2_loc (loc, code, type, tem,
10642 fold_convert_loc (loc, itype, arg1));
10644 /* Otherwise, for signed (arithmetic) shifts,
10645 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10646 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10647 else if (!TYPE_UNSIGNED (itype))
10648 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10649 arg000, build_int_cst (itype, 0));
10650 /* Otherwise, of unsigned (logical) shifts,
10651 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10652 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10653 else
10654 return omit_one_operand_loc (loc, type,
10655 code == EQ_EXPR ? integer_one_node
10656 : integer_zero_node,
10657 arg000);
10661 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10662 Similarly for NE_EXPR. */
10663 if (TREE_CODE (arg0) == BIT_AND_EXPR
10664 && TREE_CODE (arg1) == INTEGER_CST
10665 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10667 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
10668 TREE_TYPE (TREE_OPERAND (arg0, 1)),
10669 TREE_OPERAND (arg0, 1));
10670 tree dandnotc
10671 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10672 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
10673 notc);
10674 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10675 if (integer_nonzerop (dandnotc))
10676 return omit_one_operand_loc (loc, type, rslt, arg0);
10679 /* If this is a comparison of a field, we may be able to simplify it. */
10680 if ((TREE_CODE (arg0) == COMPONENT_REF
10681 || TREE_CODE (arg0) == BIT_FIELD_REF)
10682 /* Handle the constant case even without -O
10683 to make sure the warnings are given. */
10684 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10686 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10687 if (t1)
10688 return t1;
10691 /* Optimize comparisons of strlen vs zero to a compare of the
10692 first character of the string vs zero. To wit,
10693 strlen(ptr) == 0 => *ptr == 0
10694 strlen(ptr) != 0 => *ptr != 0
10695 Other cases should reduce to one of these two (or a constant)
10696 due to the return value of strlen being unsigned. */
10697 if (TREE_CODE (arg0) == CALL_EXPR
10698 && integer_zerop (arg1))
10700 tree fndecl = get_callee_fndecl (arg0);
10702 if (fndecl
10703 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10704 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10705 && call_expr_nargs (arg0) == 1
10706 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10708 tree iref = build_fold_indirect_ref_loc (loc,
10709 CALL_EXPR_ARG (arg0, 0));
10710 return fold_build2_loc (loc, code, type, iref,
10711 build_int_cst (TREE_TYPE (iref), 0));
10715 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10716 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10717 if (TREE_CODE (arg0) == RSHIFT_EXPR
10718 && integer_zerop (arg1)
10719 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10721 tree arg00 = TREE_OPERAND (arg0, 0);
10722 tree arg01 = TREE_OPERAND (arg0, 1);
10723 tree itype = TREE_TYPE (arg00);
10724 if (wi::eq_p (arg01, element_precision (itype) - 1))
10726 if (TYPE_UNSIGNED (itype))
10728 itype = signed_type_for (itype);
10729 arg00 = fold_convert_loc (loc, itype, arg00);
10731 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10732 type, arg00, build_zero_cst (itype));
10736 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10737 (X & C) == 0 when C is a single bit. */
10738 if (TREE_CODE (arg0) == BIT_AND_EXPR
10739 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10740 && integer_zerop (arg1)
10741 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10743 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10744 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10745 TREE_OPERAND (arg0, 1));
10746 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10747 type, tem,
10748 fold_convert_loc (loc, TREE_TYPE (arg0),
10749 arg1));
10752 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10753 constant C is a power of two, i.e. a single bit. */
10754 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10755 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10756 && integer_zerop (arg1)
10757 && integer_pow2p (TREE_OPERAND (arg0, 1))
10758 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10759 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10761 tree arg00 = TREE_OPERAND (arg0, 0);
10762 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10763 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10766 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10767 when is C is a power of two, i.e. a single bit. */
10768 if (TREE_CODE (arg0) == BIT_AND_EXPR
10769 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10770 && integer_zerop (arg1)
10771 && integer_pow2p (TREE_OPERAND (arg0, 1))
10772 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10773 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10775 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10776 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10777 arg000, TREE_OPERAND (arg0, 1));
10778 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10779 tem, build_int_cst (TREE_TYPE (tem), 0));
10782 if (integer_zerop (arg1)
10783 && tree_expr_nonzero_p (arg0))
10785 tree res = constant_boolean_node (code==NE_EXPR, type);
10786 return omit_one_operand_loc (loc, type, res, arg0);
10789 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10790 if (TREE_CODE (arg0) == BIT_AND_EXPR
10791 && TREE_CODE (arg1) == BIT_AND_EXPR)
10793 tree arg00 = TREE_OPERAND (arg0, 0);
10794 tree arg01 = TREE_OPERAND (arg0, 1);
10795 tree arg10 = TREE_OPERAND (arg1, 0);
10796 tree arg11 = TREE_OPERAND (arg1, 1);
10797 tree itype = TREE_TYPE (arg0);
10799 if (operand_equal_p (arg01, arg11, 0))
10801 tem = fold_convert_loc (loc, itype, arg10);
10802 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10803 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10804 return fold_build2_loc (loc, code, type, tem,
10805 build_zero_cst (itype));
10807 if (operand_equal_p (arg01, arg10, 0))
10809 tem = fold_convert_loc (loc, itype, arg11);
10810 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10811 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10812 return fold_build2_loc (loc, code, type, tem,
10813 build_zero_cst (itype));
10815 if (operand_equal_p (arg00, arg11, 0))
10817 tem = fold_convert_loc (loc, itype, arg10);
10818 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10819 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10820 return fold_build2_loc (loc, code, type, tem,
10821 build_zero_cst (itype));
10823 if (operand_equal_p (arg00, arg10, 0))
10825 tem = fold_convert_loc (loc, itype, arg11);
10826 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10827 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10828 return fold_build2_loc (loc, code, type, tem,
10829 build_zero_cst (itype));
10833 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10834 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10836 tree arg00 = TREE_OPERAND (arg0, 0);
10837 tree arg01 = TREE_OPERAND (arg0, 1);
10838 tree arg10 = TREE_OPERAND (arg1, 0);
10839 tree arg11 = TREE_OPERAND (arg1, 1);
10840 tree itype = TREE_TYPE (arg0);
10842 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10843 operand_equal_p guarantees no side-effects so we don't need
10844 to use omit_one_operand on Z. */
10845 if (operand_equal_p (arg01, arg11, 0))
10846 return fold_build2_loc (loc, code, type, arg00,
10847 fold_convert_loc (loc, TREE_TYPE (arg00),
10848 arg10));
10849 if (operand_equal_p (arg01, arg10, 0))
10850 return fold_build2_loc (loc, code, type, arg00,
10851 fold_convert_loc (loc, TREE_TYPE (arg00),
10852 arg11));
10853 if (operand_equal_p (arg00, arg11, 0))
10854 return fold_build2_loc (loc, code, type, arg01,
10855 fold_convert_loc (loc, TREE_TYPE (arg01),
10856 arg10));
10857 if (operand_equal_p (arg00, arg10, 0))
10858 return fold_build2_loc (loc, code, type, arg01,
10859 fold_convert_loc (loc, TREE_TYPE (arg01),
10860 arg11));
10862 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10863 if (TREE_CODE (arg01) == INTEGER_CST
10864 && TREE_CODE (arg11) == INTEGER_CST)
10866 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10867 fold_convert_loc (loc, itype, arg11));
10868 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10869 return fold_build2_loc (loc, code, type, tem,
10870 fold_convert_loc (loc, itype, arg10));
10874 /* Attempt to simplify equality/inequality comparisons of complex
10875 values. Only lower the comparison if the result is known or
10876 can be simplified to a single scalar comparison. */
10877 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10878 || TREE_CODE (arg0) == COMPLEX_CST)
10879 && (TREE_CODE (arg1) == COMPLEX_EXPR
10880 || TREE_CODE (arg1) == COMPLEX_CST))
10882 tree real0, imag0, real1, imag1;
10883 tree rcond, icond;
10885 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10887 real0 = TREE_OPERAND (arg0, 0);
10888 imag0 = TREE_OPERAND (arg0, 1);
10890 else
10892 real0 = TREE_REALPART (arg0);
10893 imag0 = TREE_IMAGPART (arg0);
10896 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10898 real1 = TREE_OPERAND (arg1, 0);
10899 imag1 = TREE_OPERAND (arg1, 1);
10901 else
10903 real1 = TREE_REALPART (arg1);
10904 imag1 = TREE_IMAGPART (arg1);
10907 rcond = fold_binary_loc (loc, code, type, real0, real1);
10908 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10910 if (integer_zerop (rcond))
10912 if (code == EQ_EXPR)
10913 return omit_two_operands_loc (loc, type, boolean_false_node,
10914 imag0, imag1);
10915 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10917 else
10919 if (code == NE_EXPR)
10920 return omit_two_operands_loc (loc, type, boolean_true_node,
10921 imag0, imag1);
10922 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10926 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10927 if (icond && TREE_CODE (icond) == INTEGER_CST)
10929 if (integer_zerop (icond))
10931 if (code == EQ_EXPR)
10932 return omit_two_operands_loc (loc, type, boolean_false_node,
10933 real0, real1);
10934 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
10936 else
10938 if (code == NE_EXPR)
10939 return omit_two_operands_loc (loc, type, boolean_true_node,
10940 real0, real1);
10941 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
10946 return NULL_TREE;
10948 case LT_EXPR:
10949 case GT_EXPR:
10950 case LE_EXPR:
10951 case GE_EXPR:
10952 tem = fold_comparison (loc, code, type, op0, op1);
10953 if (tem != NULL_TREE)
10954 return tem;
10956 /* Transform comparisons of the form X +- C CMP X. */
10957 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10958 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10959 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
10960 && !HONOR_SNANS (arg0))
10961 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10962 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
10964 tree arg01 = TREE_OPERAND (arg0, 1);
10965 enum tree_code code0 = TREE_CODE (arg0);
10966 int is_positive;
10968 if (TREE_CODE (arg01) == REAL_CST)
10969 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
10970 else
10971 is_positive = tree_int_cst_sgn (arg01);
10973 /* (X - c) > X becomes false. */
10974 if (code == GT_EXPR
10975 && ((code0 == MINUS_EXPR && is_positive >= 0)
10976 || (code0 == PLUS_EXPR && is_positive <= 0)))
10978 if (TREE_CODE (arg01) == INTEGER_CST
10979 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10980 fold_overflow_warning (("assuming signed overflow does not "
10981 "occur when assuming that (X - c) > X "
10982 "is always false"),
10983 WARN_STRICT_OVERFLOW_ALL);
10984 return constant_boolean_node (0, type);
10987 /* Likewise (X + c) < X becomes false. */
10988 if (code == LT_EXPR
10989 && ((code0 == PLUS_EXPR && is_positive >= 0)
10990 || (code0 == MINUS_EXPR && is_positive <= 0)))
10992 if (TREE_CODE (arg01) == INTEGER_CST
10993 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10994 fold_overflow_warning (("assuming signed overflow does not "
10995 "occur when assuming that "
10996 "(X + c) < X is always false"),
10997 WARN_STRICT_OVERFLOW_ALL);
10998 return constant_boolean_node (0, type);
11001 /* Convert (X - c) <= X to true. */
11002 if (!HONOR_NANS (arg1)
11003 && code == LE_EXPR
11004 && ((code0 == MINUS_EXPR && is_positive >= 0)
11005 || (code0 == PLUS_EXPR && is_positive <= 0)))
11007 if (TREE_CODE (arg01) == INTEGER_CST
11008 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11009 fold_overflow_warning (("assuming signed overflow does not "
11010 "occur when assuming that "
11011 "(X - c) <= X is always true"),
11012 WARN_STRICT_OVERFLOW_ALL);
11013 return constant_boolean_node (1, type);
11016 /* Convert (X + c) >= X to true. */
11017 if (!HONOR_NANS (arg1)
11018 && code == GE_EXPR
11019 && ((code0 == PLUS_EXPR && is_positive >= 0)
11020 || (code0 == MINUS_EXPR && is_positive <= 0)))
11022 if (TREE_CODE (arg01) == INTEGER_CST
11023 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11024 fold_overflow_warning (("assuming signed overflow does not "
11025 "occur when assuming that "
11026 "(X + c) >= X is always true"),
11027 WARN_STRICT_OVERFLOW_ALL);
11028 return constant_boolean_node (1, type);
11031 if (TREE_CODE (arg01) == INTEGER_CST)
11033 /* Convert X + c > X and X - c < X to true for integers. */
11034 if (code == GT_EXPR
11035 && ((code0 == PLUS_EXPR && is_positive > 0)
11036 || (code0 == MINUS_EXPR && is_positive < 0)))
11038 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11039 fold_overflow_warning (("assuming signed overflow does "
11040 "not occur when assuming that "
11041 "(X + c) > X is always true"),
11042 WARN_STRICT_OVERFLOW_ALL);
11043 return constant_boolean_node (1, type);
11046 if (code == LT_EXPR
11047 && ((code0 == MINUS_EXPR && is_positive > 0)
11048 || (code0 == PLUS_EXPR && is_positive < 0)))
11050 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11051 fold_overflow_warning (("assuming signed overflow does "
11052 "not occur when assuming that "
11053 "(X - c) < X is always true"),
11054 WARN_STRICT_OVERFLOW_ALL);
11055 return constant_boolean_node (1, type);
11058 /* Convert X + c <= X and X - c >= X to false for integers. */
11059 if (code == LE_EXPR
11060 && ((code0 == PLUS_EXPR && is_positive > 0)
11061 || (code0 == MINUS_EXPR && is_positive < 0)))
11063 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11064 fold_overflow_warning (("assuming signed overflow does "
11065 "not occur when assuming that "
11066 "(X + c) <= X is always false"),
11067 WARN_STRICT_OVERFLOW_ALL);
11068 return constant_boolean_node (0, type);
11071 if (code == GE_EXPR
11072 && ((code0 == MINUS_EXPR && is_positive > 0)
11073 || (code0 == PLUS_EXPR && is_positive < 0)))
11075 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11076 fold_overflow_warning (("assuming signed overflow does "
11077 "not occur when assuming that "
11078 "(X - c) >= X is always false"),
11079 WARN_STRICT_OVERFLOW_ALL);
11080 return constant_boolean_node (0, type);
11085 /* If we are comparing an ABS_EXPR with a constant, we can
11086 convert all the cases into explicit comparisons, but they may
11087 well not be faster than doing the ABS and one comparison.
11088 But ABS (X) <= C is a range comparison, which becomes a subtraction
11089 and a comparison, and is probably faster. */
11090 if (code == LE_EXPR
11091 && TREE_CODE (arg1) == INTEGER_CST
11092 && TREE_CODE (arg0) == ABS_EXPR
11093 && ! TREE_SIDE_EFFECTS (arg0)
11094 && (0 != (tem = negate_expr (arg1)))
11095 && TREE_CODE (tem) == INTEGER_CST
11096 && !TREE_OVERFLOW (tem))
11097 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11098 build2 (GE_EXPR, type,
11099 TREE_OPERAND (arg0, 0), tem),
11100 build2 (LE_EXPR, type,
11101 TREE_OPERAND (arg0, 0), arg1));
11103 /* Convert ABS_EXPR<x> >= 0 to true. */
11104 strict_overflow_p = false;
11105 if (code == GE_EXPR
11106 && (integer_zerop (arg1)
11107 || (! HONOR_NANS (arg0)
11108 && real_zerop (arg1)))
11109 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11111 if (strict_overflow_p)
11112 fold_overflow_warning (("assuming signed overflow does not occur "
11113 "when simplifying comparison of "
11114 "absolute value and zero"),
11115 WARN_STRICT_OVERFLOW_CONDITIONAL);
11116 return omit_one_operand_loc (loc, type,
11117 constant_boolean_node (true, type),
11118 arg0);
11121 /* Convert ABS_EXPR<x> < 0 to false. */
11122 strict_overflow_p = false;
11123 if (code == LT_EXPR
11124 && (integer_zerop (arg1) || real_zerop (arg1))
11125 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11127 if (strict_overflow_p)
11128 fold_overflow_warning (("assuming signed overflow does not occur "
11129 "when simplifying comparison of "
11130 "absolute value and zero"),
11131 WARN_STRICT_OVERFLOW_CONDITIONAL);
11132 return omit_one_operand_loc (loc, type,
11133 constant_boolean_node (false, type),
11134 arg0);
11137 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11138 and similarly for >= into !=. */
11139 if ((code == LT_EXPR || code == GE_EXPR)
11140 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11141 && TREE_CODE (arg1) == LSHIFT_EXPR
11142 && integer_onep (TREE_OPERAND (arg1, 0)))
11143 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11144 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11145 TREE_OPERAND (arg1, 1)),
11146 build_zero_cst (TREE_TYPE (arg0)));
11148 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11149 otherwise Y might be >= # of bits in X's type and thus e.g.
11150 (unsigned char) (1 << Y) for Y 15 might be 0.
11151 If the cast is widening, then 1 << Y should have unsigned type,
11152 otherwise if Y is number of bits in the signed shift type minus 1,
11153 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11154 31 might be 0xffffffff80000000. */
11155 if ((code == LT_EXPR || code == GE_EXPR)
11156 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11157 && CONVERT_EXPR_P (arg1)
11158 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11159 && (element_precision (TREE_TYPE (arg1))
11160 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11161 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11162 || (element_precision (TREE_TYPE (arg1))
11163 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11164 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11166 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11167 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11168 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11169 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11170 build_zero_cst (TREE_TYPE (arg0)));
11173 return NULL_TREE;
11175 case UNORDERED_EXPR:
11176 case ORDERED_EXPR:
11177 case UNLT_EXPR:
11178 case UNLE_EXPR:
11179 case UNGT_EXPR:
11180 case UNGE_EXPR:
11181 case UNEQ_EXPR:
11182 case LTGT_EXPR:
11183 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11185 tree targ0 = strip_float_extensions (arg0);
11186 tree targ1 = strip_float_extensions (arg1);
11187 tree newtype = TREE_TYPE (targ0);
11189 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11190 newtype = TREE_TYPE (targ1);
11192 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11193 return fold_build2_loc (loc, code, type,
11194 fold_convert_loc (loc, newtype, targ0),
11195 fold_convert_loc (loc, newtype, targ1));
11198 return NULL_TREE;
11200 case COMPOUND_EXPR:
11201 /* When pedantic, a compound expression can be neither an lvalue
11202 nor an integer constant expression. */
11203 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11204 return NULL_TREE;
11205 /* Don't let (0, 0) be null pointer constant. */
11206 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11207 : fold_convert_loc (loc, type, arg1);
11208 return pedantic_non_lvalue_loc (loc, tem);
11210 case ASSERT_EXPR:
11211 /* An ASSERT_EXPR should never be passed to fold_binary. */
11212 gcc_unreachable ();
11214 default:
11215 return NULL_TREE;
11216 } /* switch (code) */
11219 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11220 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11221 of GOTO_EXPR. */
11223 static tree
11224 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11226 switch (TREE_CODE (*tp))
11228 case LABEL_EXPR:
11229 return *tp;
11231 case GOTO_EXPR:
11232 *walk_subtrees = 0;
11234 /* fall through */
11236 default:
11237 return NULL_TREE;
11241 /* Return whether the sub-tree ST contains a label which is accessible from
11242 outside the sub-tree. */
11244 static bool
11245 contains_label_p (tree st)
11247 return
11248 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11251 /* Fold a ternary expression of code CODE and type TYPE with operands
11252 OP0, OP1, and OP2. Return the folded expression if folding is
11253 successful. Otherwise, return NULL_TREE. */
11255 tree
11256 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11257 tree op0, tree op1, tree op2)
11259 tree tem;
11260 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11261 enum tree_code_class kind = TREE_CODE_CLASS (code);
11263 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11264 && TREE_CODE_LENGTH (code) == 3);
11266 /* If this is a commutative operation, and OP0 is a constant, move it
11267 to OP1 to reduce the number of tests below. */
11268 if (commutative_ternary_tree_code (code)
11269 && tree_swap_operands_p (op0, op1))
11270 return fold_build3_loc (loc, code, type, op1, op0, op2);
11272 tem = generic_simplify (loc, code, type, op0, op1, op2);
11273 if (tem)
11274 return tem;
11276 /* Strip any conversions that don't change the mode. This is safe
11277 for every expression, except for a comparison expression because
11278 its signedness is derived from its operands. So, in the latter
11279 case, only strip conversions that don't change the signedness.
11281 Note that this is done as an internal manipulation within the
11282 constant folder, in order to find the simplest representation of
11283 the arguments so that their form can be studied. In any cases,
11284 the appropriate type conversions should be put back in the tree
11285 that will get out of the constant folder. */
11286 if (op0)
11288 arg0 = op0;
11289 STRIP_NOPS (arg0);
11292 if (op1)
11294 arg1 = op1;
11295 STRIP_NOPS (arg1);
11298 if (op2)
11300 arg2 = op2;
11301 STRIP_NOPS (arg2);
11304 switch (code)
11306 case COMPONENT_REF:
11307 if (TREE_CODE (arg0) == CONSTRUCTOR
11308 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11310 unsigned HOST_WIDE_INT idx;
11311 tree field, value;
11312 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11313 if (field == arg1)
11314 return value;
11316 return NULL_TREE;
11318 case COND_EXPR:
11319 case VEC_COND_EXPR:
11320 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11321 so all simple results must be passed through pedantic_non_lvalue. */
11322 if (TREE_CODE (arg0) == INTEGER_CST)
11324 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11325 tem = integer_zerop (arg0) ? op2 : op1;
11326 /* Only optimize constant conditions when the selected branch
11327 has the same type as the COND_EXPR. This avoids optimizing
11328 away "c ? x : throw", where the throw has a void type.
11329 Avoid throwing away that operand which contains label. */
11330 if ((!TREE_SIDE_EFFECTS (unused_op)
11331 || !contains_label_p (unused_op))
11332 && (! VOID_TYPE_P (TREE_TYPE (tem))
11333 || VOID_TYPE_P (type)))
11334 return pedantic_non_lvalue_loc (loc, tem);
11335 return NULL_TREE;
11337 else if (TREE_CODE (arg0) == VECTOR_CST)
11339 if ((TREE_CODE (arg1) == VECTOR_CST
11340 || TREE_CODE (arg1) == CONSTRUCTOR)
11341 && (TREE_CODE (arg2) == VECTOR_CST
11342 || TREE_CODE (arg2) == CONSTRUCTOR))
11344 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
11345 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
11346 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
11347 for (i = 0; i < nelts; i++)
11349 tree val = VECTOR_CST_ELT (arg0, i);
11350 if (integer_all_onesp (val))
11351 sel[i] = i;
11352 else if (integer_zerop (val))
11353 sel[i] = nelts + i;
11354 else /* Currently unreachable. */
11355 return NULL_TREE;
11357 tree t = fold_vec_perm (type, arg1, arg2, sel);
11358 if (t != NULL_TREE)
11359 return t;
11363 /* If we have A op B ? A : C, we may be able to convert this to a
11364 simpler expression, depending on the operation and the values
11365 of B and C. Signed zeros prevent all of these transformations,
11366 for reasons given above each one.
11368 Also try swapping the arguments and inverting the conditional. */
11369 if (COMPARISON_CLASS_P (arg0)
11370 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11371 arg1, TREE_OPERAND (arg0, 1))
11372 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
11374 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11375 if (tem)
11376 return tem;
11379 if (COMPARISON_CLASS_P (arg0)
11380 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11381 op2,
11382 TREE_OPERAND (arg0, 1))
11383 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11385 location_t loc0 = expr_location_or (arg0, loc);
11386 tem = fold_invert_truthvalue (loc0, arg0);
11387 if (tem && COMPARISON_CLASS_P (tem))
11389 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11390 if (tem)
11391 return tem;
11395 /* If the second operand is simpler than the third, swap them
11396 since that produces better jump optimization results. */
11397 if (truth_value_p (TREE_CODE (arg0))
11398 && tree_swap_operands_p (op1, op2))
11400 location_t loc0 = expr_location_or (arg0, loc);
11401 /* See if this can be inverted. If it can't, possibly because
11402 it was a floating-point inequality comparison, don't do
11403 anything. */
11404 tem = fold_invert_truthvalue (loc0, arg0);
11405 if (tem)
11406 return fold_build3_loc (loc, code, type, tem, op2, op1);
11409 /* Convert A ? 1 : 0 to simply A. */
11410 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11411 : (integer_onep (op1)
11412 && !VECTOR_TYPE_P (type)))
11413 && integer_zerop (op2)
11414 /* If we try to convert OP0 to our type, the
11415 call to fold will try to move the conversion inside
11416 a COND, which will recurse. In that case, the COND_EXPR
11417 is probably the best choice, so leave it alone. */
11418 && type == TREE_TYPE (arg0))
11419 return pedantic_non_lvalue_loc (loc, arg0);
11421 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11422 over COND_EXPR in cases such as floating point comparisons. */
11423 if (integer_zerop (op1)
11424 && code == COND_EXPR
11425 && integer_onep (op2)
11426 && !VECTOR_TYPE_P (type)
11427 && truth_value_p (TREE_CODE (arg0)))
11428 return pedantic_non_lvalue_loc (loc,
11429 fold_convert_loc (loc, type,
11430 invert_truthvalue_loc (loc,
11431 arg0)));
11433 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11434 if (TREE_CODE (arg0) == LT_EXPR
11435 && integer_zerop (TREE_OPERAND (arg0, 1))
11436 && integer_zerop (op2)
11437 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11439 /* sign_bit_p looks through both zero and sign extensions,
11440 but for this optimization only sign extensions are
11441 usable. */
11442 tree tem2 = TREE_OPERAND (arg0, 0);
11443 while (tem != tem2)
11445 if (TREE_CODE (tem2) != NOP_EXPR
11446 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11448 tem = NULL_TREE;
11449 break;
11451 tem2 = TREE_OPERAND (tem2, 0);
11453 /* sign_bit_p only checks ARG1 bits within A's precision.
11454 If <sign bit of A> has wider type than A, bits outside
11455 of A's precision in <sign bit of A> need to be checked.
11456 If they are all 0, this optimization needs to be done
11457 in unsigned A's type, if they are all 1 in signed A's type,
11458 otherwise this can't be done. */
11459 if (tem
11460 && TYPE_PRECISION (TREE_TYPE (tem))
11461 < TYPE_PRECISION (TREE_TYPE (arg1))
11462 && TYPE_PRECISION (TREE_TYPE (tem))
11463 < TYPE_PRECISION (type))
11465 int inner_width, outer_width;
11466 tree tem_type;
11468 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11469 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11470 if (outer_width > TYPE_PRECISION (type))
11471 outer_width = TYPE_PRECISION (type);
11473 wide_int mask = wi::shifted_mask
11474 (inner_width, outer_width - inner_width, false,
11475 TYPE_PRECISION (TREE_TYPE (arg1)));
11477 wide_int common = mask & arg1;
11478 if (common == mask)
11480 tem_type = signed_type_for (TREE_TYPE (tem));
11481 tem = fold_convert_loc (loc, tem_type, tem);
11483 else if (common == 0)
11485 tem_type = unsigned_type_for (TREE_TYPE (tem));
11486 tem = fold_convert_loc (loc, tem_type, tem);
11488 else
11489 tem = NULL;
11492 if (tem)
11493 return
11494 fold_convert_loc (loc, type,
11495 fold_build2_loc (loc, BIT_AND_EXPR,
11496 TREE_TYPE (tem), tem,
11497 fold_convert_loc (loc,
11498 TREE_TYPE (tem),
11499 arg1)));
11502 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11503 already handled above. */
11504 if (TREE_CODE (arg0) == BIT_AND_EXPR
11505 && integer_onep (TREE_OPERAND (arg0, 1))
11506 && integer_zerop (op2)
11507 && integer_pow2p (arg1))
11509 tree tem = TREE_OPERAND (arg0, 0);
11510 STRIP_NOPS (tem);
11511 if (TREE_CODE (tem) == RSHIFT_EXPR
11512 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11513 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
11514 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
11515 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11516 fold_convert_loc (loc, type,
11517 TREE_OPERAND (tem, 0)),
11518 op1);
11521 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11522 is probably obsolete because the first operand should be a
11523 truth value (that's why we have the two cases above), but let's
11524 leave it in until we can confirm this for all front-ends. */
11525 if (integer_zerop (op2)
11526 && TREE_CODE (arg0) == NE_EXPR
11527 && integer_zerop (TREE_OPERAND (arg0, 1))
11528 && integer_pow2p (arg1)
11529 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11530 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11531 arg1, OEP_ONLY_CONST))
11532 return pedantic_non_lvalue_loc (loc,
11533 fold_convert_loc (loc, type,
11534 TREE_OPERAND (arg0, 0)));
11536 /* Disable the transformations below for vectors, since
11537 fold_binary_op_with_conditional_arg may undo them immediately,
11538 yielding an infinite loop. */
11539 if (code == VEC_COND_EXPR)
11540 return NULL_TREE;
11542 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11543 if (integer_zerop (op2)
11544 && truth_value_p (TREE_CODE (arg0))
11545 && truth_value_p (TREE_CODE (arg1))
11546 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11547 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11548 : TRUTH_ANDIF_EXPR,
11549 type, fold_convert_loc (loc, type, arg0), op1);
11551 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11552 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11553 && truth_value_p (TREE_CODE (arg0))
11554 && truth_value_p (TREE_CODE (arg1))
11555 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11557 location_t loc0 = expr_location_or (arg0, loc);
11558 /* Only perform transformation if ARG0 is easily inverted. */
11559 tem = fold_invert_truthvalue (loc0, arg0);
11560 if (tem)
11561 return fold_build2_loc (loc, code == VEC_COND_EXPR
11562 ? BIT_IOR_EXPR
11563 : TRUTH_ORIF_EXPR,
11564 type, fold_convert_loc (loc, type, tem),
11565 op1);
11568 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11569 if (integer_zerop (arg1)
11570 && truth_value_p (TREE_CODE (arg0))
11571 && truth_value_p (TREE_CODE (op2))
11572 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11574 location_t loc0 = expr_location_or (arg0, loc);
11575 /* Only perform transformation if ARG0 is easily inverted. */
11576 tem = fold_invert_truthvalue (loc0, arg0);
11577 if (tem)
11578 return fold_build2_loc (loc, code == VEC_COND_EXPR
11579 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11580 type, fold_convert_loc (loc, type, tem),
11581 op2);
11584 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11585 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11586 && truth_value_p (TREE_CODE (arg0))
11587 && truth_value_p (TREE_CODE (op2))
11588 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11589 return fold_build2_loc (loc, code == VEC_COND_EXPR
11590 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11591 type, fold_convert_loc (loc, type, arg0), op2);
11593 return NULL_TREE;
11595 case CALL_EXPR:
11596 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11597 of fold_ternary on them. */
11598 gcc_unreachable ();
11600 case BIT_FIELD_REF:
11601 if (TREE_CODE (arg0) == VECTOR_CST
11602 && (type == TREE_TYPE (TREE_TYPE (arg0))
11603 || (TREE_CODE (type) == VECTOR_TYPE
11604 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11606 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11607 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11608 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11609 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11611 if (n != 0
11612 && (idx % width) == 0
11613 && (n % width) == 0
11614 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11616 idx = idx / width;
11617 n = n / width;
11619 if (TREE_CODE (arg0) == VECTOR_CST)
11621 if (n == 1)
11622 return VECTOR_CST_ELT (arg0, idx);
11624 tree *vals = XALLOCAVEC (tree, n);
11625 for (unsigned i = 0; i < n; ++i)
11626 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
11627 return build_vector (type, vals);
11632 /* On constants we can use native encode/interpret to constant
11633 fold (nearly) all BIT_FIELD_REFs. */
11634 if (CONSTANT_CLASS_P (arg0)
11635 && can_native_interpret_type_p (type)
11636 && BITS_PER_UNIT == 8)
11638 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11639 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11640 /* Limit us to a reasonable amount of work. To relax the
11641 other limitations we need bit-shifting of the buffer
11642 and rounding up the size. */
11643 if (bitpos % BITS_PER_UNIT == 0
11644 && bitsize % BITS_PER_UNIT == 0
11645 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11647 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11648 unsigned HOST_WIDE_INT len
11649 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11650 bitpos / BITS_PER_UNIT);
11651 if (len > 0
11652 && len * BITS_PER_UNIT >= bitsize)
11654 tree v = native_interpret_expr (type, b,
11655 bitsize / BITS_PER_UNIT);
11656 if (v)
11657 return v;
11662 return NULL_TREE;
11664 case FMA_EXPR:
11665 /* For integers we can decompose the FMA if possible. */
11666 if (TREE_CODE (arg0) == INTEGER_CST
11667 && TREE_CODE (arg1) == INTEGER_CST)
11668 return fold_build2_loc (loc, PLUS_EXPR, type,
11669 const_binop (MULT_EXPR, arg0, arg1), arg2);
11670 if (integer_zerop (arg2))
11671 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11673 return fold_fma (loc, type, arg0, arg1, arg2);
11675 case VEC_PERM_EXPR:
11676 if (TREE_CODE (arg2) == VECTOR_CST)
11678 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
11679 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
11680 unsigned char *sel2 = sel + nelts;
11681 bool need_mask_canon = false;
11682 bool need_mask_canon2 = false;
11683 bool all_in_vec0 = true;
11684 bool all_in_vec1 = true;
11685 bool maybe_identity = true;
11686 bool single_arg = (op0 == op1);
11687 bool changed = false;
11689 mask2 = 2 * nelts - 1;
11690 mask = single_arg ? (nelts - 1) : mask2;
11691 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
11692 for (i = 0; i < nelts; i++)
11694 tree val = VECTOR_CST_ELT (arg2, i);
11695 if (TREE_CODE (val) != INTEGER_CST)
11696 return NULL_TREE;
11698 /* Make sure that the perm value is in an acceptable
11699 range. */
11700 wide_int t = val;
11701 need_mask_canon |= wi::gtu_p (t, mask);
11702 need_mask_canon2 |= wi::gtu_p (t, mask2);
11703 sel[i] = t.to_uhwi () & mask;
11704 sel2[i] = t.to_uhwi () & mask2;
11706 if (sel[i] < nelts)
11707 all_in_vec1 = false;
11708 else
11709 all_in_vec0 = false;
11711 if ((sel[i] & (nelts-1)) != i)
11712 maybe_identity = false;
11715 if (maybe_identity)
11717 if (all_in_vec0)
11718 return op0;
11719 if (all_in_vec1)
11720 return op1;
11723 if (all_in_vec0)
11724 op1 = op0;
11725 else if (all_in_vec1)
11727 op0 = op1;
11728 for (i = 0; i < nelts; i++)
11729 sel[i] -= nelts;
11730 need_mask_canon = true;
11733 if ((TREE_CODE (op0) == VECTOR_CST
11734 || TREE_CODE (op0) == CONSTRUCTOR)
11735 && (TREE_CODE (op1) == VECTOR_CST
11736 || TREE_CODE (op1) == CONSTRUCTOR))
11738 tree t = fold_vec_perm (type, op0, op1, sel);
11739 if (t != NULL_TREE)
11740 return t;
11743 if (op0 == op1 && !single_arg)
11744 changed = true;
11746 /* Some targets are deficient and fail to expand a single
11747 argument permutation while still allowing an equivalent
11748 2-argument version. */
11749 if (need_mask_canon && arg2 == op2
11750 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
11751 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
11753 need_mask_canon = need_mask_canon2;
11754 sel = sel2;
11757 if (need_mask_canon && arg2 == op2)
11759 tree *tsel = XALLOCAVEC (tree, nelts);
11760 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
11761 for (i = 0; i < nelts; i++)
11762 tsel[i] = build_int_cst (eltype, sel[i]);
11763 op2 = build_vector (TREE_TYPE (arg2), tsel);
11764 changed = true;
11767 if (changed)
11768 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11770 return NULL_TREE;
11772 case BIT_INSERT_EXPR:
11773 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11774 if (TREE_CODE (arg0) == INTEGER_CST
11775 && TREE_CODE (arg1) == INTEGER_CST)
11777 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11778 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11779 wide_int tem = wi::bit_and (arg0,
11780 wi::shifted_mask (bitpos, bitsize, true,
11781 TYPE_PRECISION (type)));
11782 wide_int tem2
11783 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11784 bitsize), bitpos);
11785 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11787 else if (TREE_CODE (arg0) == VECTOR_CST
11788 && CONSTANT_CLASS_P (arg1)
11789 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11790 TREE_TYPE (arg1)))
11792 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11793 unsigned HOST_WIDE_INT elsize
11794 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11795 if (bitpos % elsize == 0)
11797 unsigned k = bitpos / elsize;
11798 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11799 return arg0;
11800 else
11802 tree *elts = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
11803 memcpy (elts, VECTOR_CST_ELTS (arg0),
11804 sizeof (tree) * TYPE_VECTOR_SUBPARTS (type));
11805 elts[k] = arg1;
11806 return build_vector (type, elts);
11810 return NULL_TREE;
11812 default:
11813 return NULL_TREE;
11814 } /* switch (code) */
11817 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11818 of an array (or vector). */
11820 tree
11821 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11823 tree index_type = NULL_TREE;
11824 offset_int low_bound = 0;
11826 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11828 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11829 if (domain_type && TYPE_MIN_VALUE (domain_type))
11831 /* Static constructors for variably sized objects makes no sense. */
11832 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11833 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11834 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11838 if (index_type)
11839 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11840 TYPE_SIGN (index_type));
11842 offset_int index = low_bound - 1;
11843 if (index_type)
11844 index = wi::ext (index, TYPE_PRECISION (index_type),
11845 TYPE_SIGN (index_type));
11847 offset_int max_index;
11848 unsigned HOST_WIDE_INT cnt;
11849 tree cfield, cval;
11851 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11853 /* Array constructor might explicitly set index, or specify a range,
11854 or leave index NULL meaning that it is next index after previous
11855 one. */
11856 if (cfield)
11858 if (TREE_CODE (cfield) == INTEGER_CST)
11859 max_index = index = wi::to_offset (cfield);
11860 else
11862 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11863 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11864 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11867 else
11869 index += 1;
11870 if (index_type)
11871 index = wi::ext (index, TYPE_PRECISION (index_type),
11872 TYPE_SIGN (index_type));
11873 max_index = index;
11876 /* Do we have match? */
11877 if (wi::cmpu (access_index, index) >= 0
11878 && wi::cmpu (access_index, max_index) <= 0)
11879 return cval;
11881 return NULL_TREE;
11884 /* Perform constant folding and related simplification of EXPR.
11885 The related simplifications include x*1 => x, x*0 => 0, etc.,
11886 and application of the associative law.
11887 NOP_EXPR conversions may be removed freely (as long as we
11888 are careful not to change the type of the overall expression).
11889 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11890 but we can constant-fold them if they have constant operands. */
11892 #ifdef ENABLE_FOLD_CHECKING
11893 # define fold(x) fold_1 (x)
11894 static tree fold_1 (tree);
11895 static
11896 #endif
11897 tree
11898 fold (tree expr)
11900 const tree t = expr;
11901 enum tree_code code = TREE_CODE (t);
11902 enum tree_code_class kind = TREE_CODE_CLASS (code);
11903 tree tem;
11904 location_t loc = EXPR_LOCATION (expr);
11906 /* Return right away if a constant. */
11907 if (kind == tcc_constant)
11908 return t;
11910 /* CALL_EXPR-like objects with variable numbers of operands are
11911 treated specially. */
11912 if (kind == tcc_vl_exp)
11914 if (code == CALL_EXPR)
11916 tem = fold_call_expr (loc, expr, false);
11917 return tem ? tem : expr;
11919 return expr;
11922 if (IS_EXPR_CODE_CLASS (kind))
11924 tree type = TREE_TYPE (t);
11925 tree op0, op1, op2;
11927 switch (TREE_CODE_LENGTH (code))
11929 case 1:
11930 op0 = TREE_OPERAND (t, 0);
11931 tem = fold_unary_loc (loc, code, type, op0);
11932 return tem ? tem : expr;
11933 case 2:
11934 op0 = TREE_OPERAND (t, 0);
11935 op1 = TREE_OPERAND (t, 1);
11936 tem = fold_binary_loc (loc, code, type, op0, op1);
11937 return tem ? tem : expr;
11938 case 3:
11939 op0 = TREE_OPERAND (t, 0);
11940 op1 = TREE_OPERAND (t, 1);
11941 op2 = TREE_OPERAND (t, 2);
11942 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
11943 return tem ? tem : expr;
11944 default:
11945 break;
11949 switch (code)
11951 case ARRAY_REF:
11953 tree op0 = TREE_OPERAND (t, 0);
11954 tree op1 = TREE_OPERAND (t, 1);
11956 if (TREE_CODE (op1) == INTEGER_CST
11957 && TREE_CODE (op0) == CONSTRUCTOR
11958 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
11960 tree val = get_array_ctor_element_at_index (op0,
11961 wi::to_offset (op1));
11962 if (val)
11963 return val;
11966 return t;
11969 /* Return a VECTOR_CST if possible. */
11970 case CONSTRUCTOR:
11972 tree type = TREE_TYPE (t);
11973 if (TREE_CODE (type) != VECTOR_TYPE)
11974 return t;
11976 unsigned i;
11977 tree val;
11978 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
11979 if (! CONSTANT_CLASS_P (val))
11980 return t;
11982 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
11985 case CONST_DECL:
11986 return fold (DECL_INITIAL (t));
11988 default:
11989 return t;
11990 } /* switch (code) */
11993 #ifdef ENABLE_FOLD_CHECKING
11994 #undef fold
11996 static void fold_checksum_tree (const_tree, struct md5_ctx *,
11997 hash_table<nofree_ptr_hash<const tree_node> > *);
11998 static void fold_check_failed (const_tree, const_tree);
11999 void print_fold_checksum (const_tree);
12001 /* When --enable-checking=fold, compute a digest of expr before
12002 and after actual fold call to see if fold did not accidentally
12003 change original expr. */
12005 tree
12006 fold (tree expr)
12008 tree ret;
12009 struct md5_ctx ctx;
12010 unsigned char checksum_before[16], checksum_after[16];
12011 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12013 md5_init_ctx (&ctx);
12014 fold_checksum_tree (expr, &ctx, &ht);
12015 md5_finish_ctx (&ctx, checksum_before);
12016 ht.empty ();
12018 ret = fold_1 (expr);
12020 md5_init_ctx (&ctx);
12021 fold_checksum_tree (expr, &ctx, &ht);
12022 md5_finish_ctx (&ctx, checksum_after);
12024 if (memcmp (checksum_before, checksum_after, 16))
12025 fold_check_failed (expr, ret);
12027 return ret;
12030 void
12031 print_fold_checksum (const_tree expr)
12033 struct md5_ctx ctx;
12034 unsigned char checksum[16], cnt;
12035 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12037 md5_init_ctx (&ctx);
12038 fold_checksum_tree (expr, &ctx, &ht);
12039 md5_finish_ctx (&ctx, checksum);
12040 for (cnt = 0; cnt < 16; ++cnt)
12041 fprintf (stderr, "%02x", checksum[cnt]);
12042 putc ('\n', stderr);
12045 static void
12046 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12048 internal_error ("fold check: original tree changed by fold");
12051 static void
12052 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12053 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12055 const tree_node **slot;
12056 enum tree_code code;
12057 union tree_node buf;
12058 int i, len;
12060 recursive_label:
12061 if (expr == NULL)
12062 return;
12063 slot = ht->find_slot (expr, INSERT);
12064 if (*slot != NULL)
12065 return;
12066 *slot = expr;
12067 code = TREE_CODE (expr);
12068 if (TREE_CODE_CLASS (code) == tcc_declaration
12069 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12071 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12072 memcpy ((char *) &buf, expr, tree_size (expr));
12073 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12074 buf.decl_with_vis.symtab_node = NULL;
12075 expr = (tree) &buf;
12077 else if (TREE_CODE_CLASS (code) == tcc_type
12078 && (TYPE_POINTER_TO (expr)
12079 || TYPE_REFERENCE_TO (expr)
12080 || TYPE_CACHED_VALUES_P (expr)
12081 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12082 || TYPE_NEXT_VARIANT (expr)
12083 || TYPE_ALIAS_SET_KNOWN_P (expr)))
12085 /* Allow these fields to be modified. */
12086 tree tmp;
12087 memcpy ((char *) &buf, expr, tree_size (expr));
12088 expr = tmp = (tree) &buf;
12089 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12090 TYPE_POINTER_TO (tmp) = NULL;
12091 TYPE_REFERENCE_TO (tmp) = NULL;
12092 TYPE_NEXT_VARIANT (tmp) = NULL;
12093 TYPE_ALIAS_SET (tmp) = -1;
12094 if (TYPE_CACHED_VALUES_P (tmp))
12096 TYPE_CACHED_VALUES_P (tmp) = 0;
12097 TYPE_CACHED_VALUES (tmp) = NULL;
12100 md5_process_bytes (expr, tree_size (expr), ctx);
12101 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12102 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12103 if (TREE_CODE_CLASS (code) != tcc_type
12104 && TREE_CODE_CLASS (code) != tcc_declaration
12105 && code != TREE_LIST
12106 && code != SSA_NAME
12107 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12108 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12109 switch (TREE_CODE_CLASS (code))
12111 case tcc_constant:
12112 switch (code)
12114 case STRING_CST:
12115 md5_process_bytes (TREE_STRING_POINTER (expr),
12116 TREE_STRING_LENGTH (expr), ctx);
12117 break;
12118 case COMPLEX_CST:
12119 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12120 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12121 break;
12122 case VECTOR_CST:
12123 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12124 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12125 break;
12126 default:
12127 break;
12129 break;
12130 case tcc_exceptional:
12131 switch (code)
12133 case TREE_LIST:
12134 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12135 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12136 expr = TREE_CHAIN (expr);
12137 goto recursive_label;
12138 break;
12139 case TREE_VEC:
12140 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12141 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12142 break;
12143 default:
12144 break;
12146 break;
12147 case tcc_expression:
12148 case tcc_reference:
12149 case tcc_comparison:
12150 case tcc_unary:
12151 case tcc_binary:
12152 case tcc_statement:
12153 case tcc_vl_exp:
12154 len = TREE_OPERAND_LENGTH (expr);
12155 for (i = 0; i < len; ++i)
12156 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12157 break;
12158 case tcc_declaration:
12159 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12160 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12161 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12163 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12164 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12165 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12166 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12167 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12170 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12172 if (TREE_CODE (expr) == FUNCTION_DECL)
12174 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12175 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12177 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12179 break;
12180 case tcc_type:
12181 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12182 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12183 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12184 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12185 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12186 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12187 if (INTEGRAL_TYPE_P (expr)
12188 || SCALAR_FLOAT_TYPE_P (expr))
12190 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12191 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12193 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12194 if (TREE_CODE (expr) == RECORD_TYPE
12195 || TREE_CODE (expr) == UNION_TYPE
12196 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12197 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12198 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12199 break;
12200 default:
12201 break;
12205 /* Helper function for outputting the checksum of a tree T. When
12206 debugging with gdb, you can "define mynext" to be "next" followed
12207 by "call debug_fold_checksum (op0)", then just trace down till the
12208 outputs differ. */
12210 DEBUG_FUNCTION void
12211 debug_fold_checksum (const_tree t)
12213 int i;
12214 unsigned char checksum[16];
12215 struct md5_ctx ctx;
12216 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12218 md5_init_ctx (&ctx);
12219 fold_checksum_tree (t, &ctx, &ht);
12220 md5_finish_ctx (&ctx, checksum);
12221 ht.empty ();
12223 for (i = 0; i < 16; i++)
12224 fprintf (stderr, "%d ", checksum[i]);
12226 fprintf (stderr, "\n");
12229 #endif
12231 /* Fold a unary tree expression with code CODE of type TYPE with an
12232 operand OP0. LOC is the location of the resulting expression.
12233 Return a folded expression if successful. Otherwise, return a tree
12234 expression with code CODE of type TYPE with an operand OP0. */
12236 tree
12237 fold_build1_stat_loc (location_t loc,
12238 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12240 tree tem;
12241 #ifdef ENABLE_FOLD_CHECKING
12242 unsigned char checksum_before[16], checksum_after[16];
12243 struct md5_ctx ctx;
12244 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12246 md5_init_ctx (&ctx);
12247 fold_checksum_tree (op0, &ctx, &ht);
12248 md5_finish_ctx (&ctx, checksum_before);
12249 ht.empty ();
12250 #endif
12252 tem = fold_unary_loc (loc, code, type, op0);
12253 if (!tem)
12254 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
12256 #ifdef ENABLE_FOLD_CHECKING
12257 md5_init_ctx (&ctx);
12258 fold_checksum_tree (op0, &ctx, &ht);
12259 md5_finish_ctx (&ctx, checksum_after);
12261 if (memcmp (checksum_before, checksum_after, 16))
12262 fold_check_failed (op0, tem);
12263 #endif
12264 return tem;
12267 /* Fold a binary tree expression with code CODE of type TYPE with
12268 operands OP0 and OP1. LOC is the location of the resulting
12269 expression. Return a folded expression if successful. Otherwise,
12270 return a tree expression with code CODE of type TYPE with operands
12271 OP0 and OP1. */
12273 tree
12274 fold_build2_stat_loc (location_t loc,
12275 enum tree_code code, tree type, tree op0, tree op1
12276 MEM_STAT_DECL)
12278 tree tem;
12279 #ifdef ENABLE_FOLD_CHECKING
12280 unsigned char checksum_before_op0[16],
12281 checksum_before_op1[16],
12282 checksum_after_op0[16],
12283 checksum_after_op1[16];
12284 struct md5_ctx ctx;
12285 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12287 md5_init_ctx (&ctx);
12288 fold_checksum_tree (op0, &ctx, &ht);
12289 md5_finish_ctx (&ctx, checksum_before_op0);
12290 ht.empty ();
12292 md5_init_ctx (&ctx);
12293 fold_checksum_tree (op1, &ctx, &ht);
12294 md5_finish_ctx (&ctx, checksum_before_op1);
12295 ht.empty ();
12296 #endif
12298 tem = fold_binary_loc (loc, code, type, op0, op1);
12299 if (!tem)
12300 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12302 #ifdef ENABLE_FOLD_CHECKING
12303 md5_init_ctx (&ctx);
12304 fold_checksum_tree (op0, &ctx, &ht);
12305 md5_finish_ctx (&ctx, checksum_after_op0);
12306 ht.empty ();
12308 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12309 fold_check_failed (op0, tem);
12311 md5_init_ctx (&ctx);
12312 fold_checksum_tree (op1, &ctx, &ht);
12313 md5_finish_ctx (&ctx, checksum_after_op1);
12315 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12316 fold_check_failed (op1, tem);
12317 #endif
12318 return tem;
12321 /* Fold a ternary tree expression with code CODE of type TYPE with
12322 operands OP0, OP1, and OP2. Return a folded expression if
12323 successful. Otherwise, return a tree expression with code CODE of
12324 type TYPE with operands OP0, OP1, and OP2. */
12326 tree
12327 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
12328 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12330 tree tem;
12331 #ifdef ENABLE_FOLD_CHECKING
12332 unsigned char checksum_before_op0[16],
12333 checksum_before_op1[16],
12334 checksum_before_op2[16],
12335 checksum_after_op0[16],
12336 checksum_after_op1[16],
12337 checksum_after_op2[16];
12338 struct md5_ctx ctx;
12339 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12341 md5_init_ctx (&ctx);
12342 fold_checksum_tree (op0, &ctx, &ht);
12343 md5_finish_ctx (&ctx, checksum_before_op0);
12344 ht.empty ();
12346 md5_init_ctx (&ctx);
12347 fold_checksum_tree (op1, &ctx, &ht);
12348 md5_finish_ctx (&ctx, checksum_before_op1);
12349 ht.empty ();
12351 md5_init_ctx (&ctx);
12352 fold_checksum_tree (op2, &ctx, &ht);
12353 md5_finish_ctx (&ctx, checksum_before_op2);
12354 ht.empty ();
12355 #endif
12357 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12358 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12359 if (!tem)
12360 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12362 #ifdef ENABLE_FOLD_CHECKING
12363 md5_init_ctx (&ctx);
12364 fold_checksum_tree (op0, &ctx, &ht);
12365 md5_finish_ctx (&ctx, checksum_after_op0);
12366 ht.empty ();
12368 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12369 fold_check_failed (op0, tem);
12371 md5_init_ctx (&ctx);
12372 fold_checksum_tree (op1, &ctx, &ht);
12373 md5_finish_ctx (&ctx, checksum_after_op1);
12374 ht.empty ();
12376 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12377 fold_check_failed (op1, tem);
12379 md5_init_ctx (&ctx);
12380 fold_checksum_tree (op2, &ctx, &ht);
12381 md5_finish_ctx (&ctx, checksum_after_op2);
12383 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12384 fold_check_failed (op2, tem);
12385 #endif
12386 return tem;
12389 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12390 arguments in ARGARRAY, and a null static chain.
12391 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12392 of type TYPE from the given operands as constructed by build_call_array. */
12394 tree
12395 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12396 int nargs, tree *argarray)
12398 tree tem;
12399 #ifdef ENABLE_FOLD_CHECKING
12400 unsigned char checksum_before_fn[16],
12401 checksum_before_arglist[16],
12402 checksum_after_fn[16],
12403 checksum_after_arglist[16];
12404 struct md5_ctx ctx;
12405 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12406 int i;
12408 md5_init_ctx (&ctx);
12409 fold_checksum_tree (fn, &ctx, &ht);
12410 md5_finish_ctx (&ctx, checksum_before_fn);
12411 ht.empty ();
12413 md5_init_ctx (&ctx);
12414 for (i = 0; i < nargs; i++)
12415 fold_checksum_tree (argarray[i], &ctx, &ht);
12416 md5_finish_ctx (&ctx, checksum_before_arglist);
12417 ht.empty ();
12418 #endif
12420 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12421 if (!tem)
12422 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12424 #ifdef ENABLE_FOLD_CHECKING
12425 md5_init_ctx (&ctx);
12426 fold_checksum_tree (fn, &ctx, &ht);
12427 md5_finish_ctx (&ctx, checksum_after_fn);
12428 ht.empty ();
12430 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12431 fold_check_failed (fn, tem);
12433 md5_init_ctx (&ctx);
12434 for (i = 0; i < nargs; i++)
12435 fold_checksum_tree (argarray[i], &ctx, &ht);
12436 md5_finish_ctx (&ctx, checksum_after_arglist);
12438 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12439 fold_check_failed (NULL_TREE, tem);
12440 #endif
12441 return tem;
12444 /* Perform constant folding and related simplification of initializer
12445 expression EXPR. These behave identically to "fold_buildN" but ignore
12446 potential run-time traps and exceptions that fold must preserve. */
12448 #define START_FOLD_INIT \
12449 int saved_signaling_nans = flag_signaling_nans;\
12450 int saved_trapping_math = flag_trapping_math;\
12451 int saved_rounding_math = flag_rounding_math;\
12452 int saved_trapv = flag_trapv;\
12453 int saved_folding_initializer = folding_initializer;\
12454 flag_signaling_nans = 0;\
12455 flag_trapping_math = 0;\
12456 flag_rounding_math = 0;\
12457 flag_trapv = 0;\
12458 folding_initializer = 1;
12460 #define END_FOLD_INIT \
12461 flag_signaling_nans = saved_signaling_nans;\
12462 flag_trapping_math = saved_trapping_math;\
12463 flag_rounding_math = saved_rounding_math;\
12464 flag_trapv = saved_trapv;\
12465 folding_initializer = saved_folding_initializer;
12467 tree
12468 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12469 tree type, tree op)
12471 tree result;
12472 START_FOLD_INIT;
12474 result = fold_build1_loc (loc, code, type, op);
12476 END_FOLD_INIT;
12477 return result;
12480 tree
12481 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12482 tree type, tree op0, tree op1)
12484 tree result;
12485 START_FOLD_INIT;
12487 result = fold_build2_loc (loc, code, type, op0, op1);
12489 END_FOLD_INIT;
12490 return result;
12493 tree
12494 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12495 int nargs, tree *argarray)
12497 tree result;
12498 START_FOLD_INIT;
12500 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12502 END_FOLD_INIT;
12503 return result;
12506 #undef START_FOLD_INIT
12507 #undef END_FOLD_INIT
12509 /* Determine if first argument is a multiple of second argument. Return 0 if
12510 it is not, or we cannot easily determined it to be.
12512 An example of the sort of thing we care about (at this point; this routine
12513 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12514 fold cases do now) is discovering that
12516 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12518 is a multiple of
12520 SAVE_EXPR (J * 8)
12522 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12524 This code also handles discovering that
12526 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12528 is a multiple of 8 so we don't have to worry about dealing with a
12529 possible remainder.
12531 Note that we *look* inside a SAVE_EXPR only to determine how it was
12532 calculated; it is not safe for fold to do much of anything else with the
12533 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12534 at run time. For example, the latter example above *cannot* be implemented
12535 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12536 evaluation time of the original SAVE_EXPR is not necessarily the same at
12537 the time the new expression is evaluated. The only optimization of this
12538 sort that would be valid is changing
12540 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12542 divided by 8 to
12544 SAVE_EXPR (I) * SAVE_EXPR (J)
12546 (where the same SAVE_EXPR (J) is used in the original and the
12547 transformed version). */
12550 multiple_of_p (tree type, const_tree top, const_tree bottom)
12552 gimple *stmt;
12553 tree t1, op1, op2;
12555 if (operand_equal_p (top, bottom, 0))
12556 return 1;
12558 if (TREE_CODE (type) != INTEGER_TYPE)
12559 return 0;
12561 switch (TREE_CODE (top))
12563 case BIT_AND_EXPR:
12564 /* Bitwise and provides a power of two multiple. If the mask is
12565 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12566 if (!integer_pow2p (bottom))
12567 return 0;
12568 /* FALLTHRU */
12570 case MULT_EXPR:
12571 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12572 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12574 case MINUS_EXPR:
12575 /* It is impossible to prove if op0 - op1 is multiple of bottom
12576 precisely, so be conservative here checking if both op0 and op1
12577 are multiple of bottom. Note we check the second operand first
12578 since it's usually simpler. */
12579 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12580 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12582 case PLUS_EXPR:
12583 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12584 as op0 - 3 if the expression has unsigned type. For example,
12585 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12586 op1 = TREE_OPERAND (top, 1);
12587 if (TYPE_UNSIGNED (type)
12588 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12589 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12590 return (multiple_of_p (type, op1, bottom)
12591 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12593 case LSHIFT_EXPR:
12594 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12596 op1 = TREE_OPERAND (top, 1);
12597 /* const_binop may not detect overflow correctly,
12598 so check for it explicitly here. */
12599 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
12600 && 0 != (t1 = fold_convert (type,
12601 const_binop (LSHIFT_EXPR,
12602 size_one_node,
12603 op1)))
12604 && !TREE_OVERFLOW (t1))
12605 return multiple_of_p (type, t1, bottom);
12607 return 0;
12609 case NOP_EXPR:
12610 /* Can't handle conversions from non-integral or wider integral type. */
12611 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12612 || (TYPE_PRECISION (type)
12613 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12614 return 0;
12616 /* fall through */
12618 case SAVE_EXPR:
12619 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12621 case COND_EXPR:
12622 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12623 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12625 case INTEGER_CST:
12626 if (TREE_CODE (bottom) != INTEGER_CST
12627 || integer_zerop (bottom)
12628 || (TYPE_UNSIGNED (type)
12629 && (tree_int_cst_sgn (top) < 0
12630 || tree_int_cst_sgn (bottom) < 0)))
12631 return 0;
12632 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12633 SIGNED);
12635 case SSA_NAME:
12636 if (TREE_CODE (bottom) == INTEGER_CST
12637 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12638 && gimple_code (stmt) == GIMPLE_ASSIGN)
12640 enum tree_code code = gimple_assign_rhs_code (stmt);
12642 /* Check for special cases to see if top is defined as multiple
12643 of bottom:
12645 top = (X & ~(bottom - 1) ; bottom is power of 2
12649 Y = X % bottom
12650 top = X - Y. */
12651 if (code == BIT_AND_EXPR
12652 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12653 && TREE_CODE (op2) == INTEGER_CST
12654 && integer_pow2p (bottom)
12655 && wi::multiple_of_p (wi::to_widest (op2),
12656 wi::to_widest (bottom), UNSIGNED))
12657 return 1;
12659 op1 = gimple_assign_rhs1 (stmt);
12660 if (code == MINUS_EXPR
12661 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12662 && TREE_CODE (op2) == SSA_NAME
12663 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12664 && gimple_code (stmt) == GIMPLE_ASSIGN
12665 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12666 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12667 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12668 return 1;
12671 /* fall through */
12673 default:
12674 return 0;
12678 #define tree_expr_nonnegative_warnv_p(X, Y) \
12679 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12681 #define RECURSE(X) \
12682 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12684 /* Return true if CODE or TYPE is known to be non-negative. */
12686 static bool
12687 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12689 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12690 && truth_value_p (code))
12691 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12692 have a signed:1 type (where the value is -1 and 0). */
12693 return true;
12694 return false;
12697 /* Return true if (CODE OP0) is known to be non-negative. If the return
12698 value is based on the assumption that signed overflow is undefined,
12699 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12700 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12702 bool
12703 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12704 bool *strict_overflow_p, int depth)
12706 if (TYPE_UNSIGNED (type))
12707 return true;
12709 switch (code)
12711 case ABS_EXPR:
12712 /* We can't return 1 if flag_wrapv is set because
12713 ABS_EXPR<INT_MIN> = INT_MIN. */
12714 if (!ANY_INTEGRAL_TYPE_P (type))
12715 return true;
12716 if (TYPE_OVERFLOW_UNDEFINED (type))
12718 *strict_overflow_p = true;
12719 return true;
12721 break;
12723 case NON_LVALUE_EXPR:
12724 case FLOAT_EXPR:
12725 case FIX_TRUNC_EXPR:
12726 return RECURSE (op0);
12728 CASE_CONVERT:
12730 tree inner_type = TREE_TYPE (op0);
12731 tree outer_type = type;
12733 if (TREE_CODE (outer_type) == REAL_TYPE)
12735 if (TREE_CODE (inner_type) == REAL_TYPE)
12736 return RECURSE (op0);
12737 if (INTEGRAL_TYPE_P (inner_type))
12739 if (TYPE_UNSIGNED (inner_type))
12740 return true;
12741 return RECURSE (op0);
12744 else if (INTEGRAL_TYPE_P (outer_type))
12746 if (TREE_CODE (inner_type) == REAL_TYPE)
12747 return RECURSE (op0);
12748 if (INTEGRAL_TYPE_P (inner_type))
12749 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12750 && TYPE_UNSIGNED (inner_type);
12753 break;
12755 default:
12756 return tree_simple_nonnegative_warnv_p (code, type);
12759 /* We don't know sign of `t', so be conservative and return false. */
12760 return false;
12763 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12764 value is based on the assumption that signed overflow is undefined,
12765 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12766 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12768 bool
12769 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12770 tree op1, bool *strict_overflow_p,
12771 int depth)
12773 if (TYPE_UNSIGNED (type))
12774 return true;
12776 switch (code)
12778 case POINTER_PLUS_EXPR:
12779 case PLUS_EXPR:
12780 if (FLOAT_TYPE_P (type))
12781 return RECURSE (op0) && RECURSE (op1);
12783 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12784 both unsigned and at least 2 bits shorter than the result. */
12785 if (TREE_CODE (type) == INTEGER_TYPE
12786 && TREE_CODE (op0) == NOP_EXPR
12787 && TREE_CODE (op1) == NOP_EXPR)
12789 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12790 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12791 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12792 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12794 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12795 TYPE_PRECISION (inner2)) + 1;
12796 return prec < TYPE_PRECISION (type);
12799 break;
12801 case MULT_EXPR:
12802 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12804 /* x * x is always non-negative for floating point x
12805 or without overflow. */
12806 if (operand_equal_p (op0, op1, 0)
12807 || (RECURSE (op0) && RECURSE (op1)))
12809 if (ANY_INTEGRAL_TYPE_P (type)
12810 && TYPE_OVERFLOW_UNDEFINED (type))
12811 *strict_overflow_p = true;
12812 return true;
12816 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12817 both unsigned and their total bits is shorter than the result. */
12818 if (TREE_CODE (type) == INTEGER_TYPE
12819 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12820 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12822 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12823 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12824 : TREE_TYPE (op0);
12825 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12826 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12827 : TREE_TYPE (op1);
12829 bool unsigned0 = TYPE_UNSIGNED (inner0);
12830 bool unsigned1 = TYPE_UNSIGNED (inner1);
12832 if (TREE_CODE (op0) == INTEGER_CST)
12833 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12835 if (TREE_CODE (op1) == INTEGER_CST)
12836 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12838 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12839 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12841 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12842 ? tree_int_cst_min_precision (op0, UNSIGNED)
12843 : TYPE_PRECISION (inner0);
12845 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12846 ? tree_int_cst_min_precision (op1, UNSIGNED)
12847 : TYPE_PRECISION (inner1);
12849 return precision0 + precision1 < TYPE_PRECISION (type);
12852 return false;
12854 case BIT_AND_EXPR:
12855 case MAX_EXPR:
12856 return RECURSE (op0) || RECURSE (op1);
12858 case BIT_IOR_EXPR:
12859 case BIT_XOR_EXPR:
12860 case MIN_EXPR:
12861 case RDIV_EXPR:
12862 case TRUNC_DIV_EXPR:
12863 case CEIL_DIV_EXPR:
12864 case FLOOR_DIV_EXPR:
12865 case ROUND_DIV_EXPR:
12866 return RECURSE (op0) && RECURSE (op1);
12868 case TRUNC_MOD_EXPR:
12869 return RECURSE (op0);
12871 case FLOOR_MOD_EXPR:
12872 return RECURSE (op1);
12874 case CEIL_MOD_EXPR:
12875 case ROUND_MOD_EXPR:
12876 default:
12877 return tree_simple_nonnegative_warnv_p (code, type);
12880 /* We don't know sign of `t', so be conservative and return false. */
12881 return false;
12884 /* Return true if T is known to be non-negative. If the return
12885 value is based on the assumption that signed overflow is undefined,
12886 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12887 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12889 bool
12890 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12892 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12893 return true;
12895 switch (TREE_CODE (t))
12897 case INTEGER_CST:
12898 return tree_int_cst_sgn (t) >= 0;
12900 case REAL_CST:
12901 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12903 case FIXED_CST:
12904 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12906 case COND_EXPR:
12907 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
12909 case SSA_NAME:
12910 /* Limit the depth of recursion to avoid quadratic behavior.
12911 This is expected to catch almost all occurrences in practice.
12912 If this code misses important cases that unbounded recursion
12913 would not, passes that need this information could be revised
12914 to provide it through dataflow propagation. */
12915 return (!name_registered_for_update_p (t)
12916 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
12917 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
12918 strict_overflow_p, depth));
12920 default:
12921 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
12925 /* Return true if T is known to be non-negative. If the return
12926 value is based on the assumption that signed overflow is undefined,
12927 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12928 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12930 bool
12931 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
12932 bool *strict_overflow_p, int depth)
12934 switch (fn)
12936 CASE_CFN_ACOS:
12937 CASE_CFN_ACOSH:
12938 CASE_CFN_CABS:
12939 CASE_CFN_COSH:
12940 CASE_CFN_ERFC:
12941 CASE_CFN_EXP:
12942 CASE_CFN_EXP10:
12943 CASE_CFN_EXP2:
12944 CASE_CFN_FABS:
12945 CASE_CFN_FDIM:
12946 CASE_CFN_HYPOT:
12947 CASE_CFN_POW10:
12948 CASE_CFN_FFS:
12949 CASE_CFN_PARITY:
12950 CASE_CFN_POPCOUNT:
12951 CASE_CFN_CLZ:
12952 CASE_CFN_CLRSB:
12953 case CFN_BUILT_IN_BSWAP32:
12954 case CFN_BUILT_IN_BSWAP64:
12955 /* Always true. */
12956 return true;
12958 CASE_CFN_SQRT:
12959 /* sqrt(-0.0) is -0.0. */
12960 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
12961 return true;
12962 return RECURSE (arg0);
12964 CASE_CFN_ASINH:
12965 CASE_CFN_ATAN:
12966 CASE_CFN_ATANH:
12967 CASE_CFN_CBRT:
12968 CASE_CFN_CEIL:
12969 CASE_CFN_ERF:
12970 CASE_CFN_EXPM1:
12971 CASE_CFN_FLOOR:
12972 CASE_CFN_FMOD:
12973 CASE_CFN_FREXP:
12974 CASE_CFN_ICEIL:
12975 CASE_CFN_IFLOOR:
12976 CASE_CFN_IRINT:
12977 CASE_CFN_IROUND:
12978 CASE_CFN_LCEIL:
12979 CASE_CFN_LDEXP:
12980 CASE_CFN_LFLOOR:
12981 CASE_CFN_LLCEIL:
12982 CASE_CFN_LLFLOOR:
12983 CASE_CFN_LLRINT:
12984 CASE_CFN_LLROUND:
12985 CASE_CFN_LRINT:
12986 CASE_CFN_LROUND:
12987 CASE_CFN_MODF:
12988 CASE_CFN_NEARBYINT:
12989 CASE_CFN_RINT:
12990 CASE_CFN_ROUND:
12991 CASE_CFN_SCALB:
12992 CASE_CFN_SCALBLN:
12993 CASE_CFN_SCALBN:
12994 CASE_CFN_SIGNBIT:
12995 CASE_CFN_SIGNIFICAND:
12996 CASE_CFN_SINH:
12997 CASE_CFN_TANH:
12998 CASE_CFN_TRUNC:
12999 /* True if the 1st argument is nonnegative. */
13000 return RECURSE (arg0);
13002 CASE_CFN_FMAX:
13003 /* True if the 1st OR 2nd arguments are nonnegative. */
13004 return RECURSE (arg0) || RECURSE (arg1);
13006 CASE_CFN_FMIN:
13007 /* True if the 1st AND 2nd arguments are nonnegative. */
13008 return RECURSE (arg0) && RECURSE (arg1);
13010 CASE_CFN_COPYSIGN:
13011 /* True if the 2nd argument is nonnegative. */
13012 return RECURSE (arg1);
13014 CASE_CFN_POWI:
13015 /* True if the 1st argument is nonnegative or the second
13016 argument is an even integer. */
13017 if (TREE_CODE (arg1) == INTEGER_CST
13018 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13019 return true;
13020 return RECURSE (arg0);
13022 CASE_CFN_POW:
13023 /* True if the 1st argument is nonnegative or the second
13024 argument is an even integer valued real. */
13025 if (TREE_CODE (arg1) == REAL_CST)
13027 REAL_VALUE_TYPE c;
13028 HOST_WIDE_INT n;
13030 c = TREE_REAL_CST (arg1);
13031 n = real_to_integer (&c);
13032 if ((n & 1) == 0)
13034 REAL_VALUE_TYPE cint;
13035 real_from_integer (&cint, VOIDmode, n, SIGNED);
13036 if (real_identical (&c, &cint))
13037 return true;
13040 return RECURSE (arg0);
13042 default:
13043 break;
13045 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
13048 /* Return true if T is known to be non-negative. If the return
13049 value is based on the assumption that signed overflow is undefined,
13050 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13051 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13053 static bool
13054 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13056 enum tree_code code = TREE_CODE (t);
13057 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13058 return true;
13060 switch (code)
13062 case TARGET_EXPR:
13064 tree temp = TARGET_EXPR_SLOT (t);
13065 t = TARGET_EXPR_INITIAL (t);
13067 /* If the initializer is non-void, then it's a normal expression
13068 that will be assigned to the slot. */
13069 if (!VOID_TYPE_P (t))
13070 return RECURSE (t);
13072 /* Otherwise, the initializer sets the slot in some way. One common
13073 way is an assignment statement at the end of the initializer. */
13074 while (1)
13076 if (TREE_CODE (t) == BIND_EXPR)
13077 t = expr_last (BIND_EXPR_BODY (t));
13078 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13079 || TREE_CODE (t) == TRY_CATCH_EXPR)
13080 t = expr_last (TREE_OPERAND (t, 0));
13081 else if (TREE_CODE (t) == STATEMENT_LIST)
13082 t = expr_last (t);
13083 else
13084 break;
13086 if (TREE_CODE (t) == MODIFY_EXPR
13087 && TREE_OPERAND (t, 0) == temp)
13088 return RECURSE (TREE_OPERAND (t, 1));
13090 return false;
13093 case CALL_EXPR:
13095 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13096 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13098 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13099 get_call_combined_fn (t),
13100 arg0,
13101 arg1,
13102 strict_overflow_p, depth);
13104 case COMPOUND_EXPR:
13105 case MODIFY_EXPR:
13106 return RECURSE (TREE_OPERAND (t, 1));
13108 case BIND_EXPR:
13109 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13111 case SAVE_EXPR:
13112 return RECURSE (TREE_OPERAND (t, 0));
13114 default:
13115 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13119 #undef RECURSE
13120 #undef tree_expr_nonnegative_warnv_p
13122 /* Return true if T is known to be non-negative. If the return
13123 value is based on the assumption that signed overflow is undefined,
13124 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13125 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13127 bool
13128 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13130 enum tree_code code;
13131 if (t == error_mark_node)
13132 return false;
13134 code = TREE_CODE (t);
13135 switch (TREE_CODE_CLASS (code))
13137 case tcc_binary:
13138 case tcc_comparison:
13139 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13140 TREE_TYPE (t),
13141 TREE_OPERAND (t, 0),
13142 TREE_OPERAND (t, 1),
13143 strict_overflow_p, depth);
13145 case tcc_unary:
13146 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13147 TREE_TYPE (t),
13148 TREE_OPERAND (t, 0),
13149 strict_overflow_p, depth);
13151 case tcc_constant:
13152 case tcc_declaration:
13153 case tcc_reference:
13154 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13156 default:
13157 break;
13160 switch (code)
13162 case TRUTH_AND_EXPR:
13163 case TRUTH_OR_EXPR:
13164 case TRUTH_XOR_EXPR:
13165 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13166 TREE_TYPE (t),
13167 TREE_OPERAND (t, 0),
13168 TREE_OPERAND (t, 1),
13169 strict_overflow_p, depth);
13170 case TRUTH_NOT_EXPR:
13171 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13172 TREE_TYPE (t),
13173 TREE_OPERAND (t, 0),
13174 strict_overflow_p, depth);
13176 case COND_EXPR:
13177 case CONSTRUCTOR:
13178 case OBJ_TYPE_REF:
13179 case ASSERT_EXPR:
13180 case ADDR_EXPR:
13181 case WITH_SIZE_EXPR:
13182 case SSA_NAME:
13183 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13185 default:
13186 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13190 /* Return true if `t' is known to be non-negative. Handle warnings
13191 about undefined signed overflow. */
13193 bool
13194 tree_expr_nonnegative_p (tree t)
13196 bool ret, strict_overflow_p;
13198 strict_overflow_p = false;
13199 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13200 if (strict_overflow_p)
13201 fold_overflow_warning (("assuming signed overflow does not occur when "
13202 "determining that expression is always "
13203 "non-negative"),
13204 WARN_STRICT_OVERFLOW_MISC);
13205 return ret;
13209 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13210 For floating point we further ensure that T is not denormal.
13211 Similar logic is present in nonzero_address in rtlanal.h.
13213 If the return value is based on the assumption that signed overflow
13214 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13215 change *STRICT_OVERFLOW_P. */
13217 bool
13218 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13219 bool *strict_overflow_p)
13221 switch (code)
13223 case ABS_EXPR:
13224 return tree_expr_nonzero_warnv_p (op0,
13225 strict_overflow_p);
13227 case NOP_EXPR:
13229 tree inner_type = TREE_TYPE (op0);
13230 tree outer_type = type;
13232 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13233 && tree_expr_nonzero_warnv_p (op0,
13234 strict_overflow_p));
13236 break;
13238 case NON_LVALUE_EXPR:
13239 return tree_expr_nonzero_warnv_p (op0,
13240 strict_overflow_p);
13242 default:
13243 break;
13246 return false;
13249 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13250 For floating point we further ensure that T is not denormal.
13251 Similar logic is present in nonzero_address in rtlanal.h.
13253 If the return value is based on the assumption that signed overflow
13254 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13255 change *STRICT_OVERFLOW_P. */
13257 bool
13258 tree_binary_nonzero_warnv_p (enum tree_code code,
13259 tree type,
13260 tree op0,
13261 tree op1, bool *strict_overflow_p)
13263 bool sub_strict_overflow_p;
13264 switch (code)
13266 case POINTER_PLUS_EXPR:
13267 case PLUS_EXPR:
13268 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13270 /* With the presence of negative values it is hard
13271 to say something. */
13272 sub_strict_overflow_p = false;
13273 if (!tree_expr_nonnegative_warnv_p (op0,
13274 &sub_strict_overflow_p)
13275 || !tree_expr_nonnegative_warnv_p (op1,
13276 &sub_strict_overflow_p))
13277 return false;
13278 /* One of operands must be positive and the other non-negative. */
13279 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13280 overflows, on a twos-complement machine the sum of two
13281 nonnegative numbers can never be zero. */
13282 return (tree_expr_nonzero_warnv_p (op0,
13283 strict_overflow_p)
13284 || tree_expr_nonzero_warnv_p (op1,
13285 strict_overflow_p));
13287 break;
13289 case MULT_EXPR:
13290 if (TYPE_OVERFLOW_UNDEFINED (type))
13292 if (tree_expr_nonzero_warnv_p (op0,
13293 strict_overflow_p)
13294 && tree_expr_nonzero_warnv_p (op1,
13295 strict_overflow_p))
13297 *strict_overflow_p = true;
13298 return true;
13301 break;
13303 case MIN_EXPR:
13304 sub_strict_overflow_p = false;
13305 if (tree_expr_nonzero_warnv_p (op0,
13306 &sub_strict_overflow_p)
13307 && tree_expr_nonzero_warnv_p (op1,
13308 &sub_strict_overflow_p))
13310 if (sub_strict_overflow_p)
13311 *strict_overflow_p = true;
13313 break;
13315 case MAX_EXPR:
13316 sub_strict_overflow_p = false;
13317 if (tree_expr_nonzero_warnv_p (op0,
13318 &sub_strict_overflow_p))
13320 if (sub_strict_overflow_p)
13321 *strict_overflow_p = true;
13323 /* When both operands are nonzero, then MAX must be too. */
13324 if (tree_expr_nonzero_warnv_p (op1,
13325 strict_overflow_p))
13326 return true;
13328 /* MAX where operand 0 is positive is positive. */
13329 return tree_expr_nonnegative_warnv_p (op0,
13330 strict_overflow_p);
13332 /* MAX where operand 1 is positive is positive. */
13333 else if (tree_expr_nonzero_warnv_p (op1,
13334 &sub_strict_overflow_p)
13335 && tree_expr_nonnegative_warnv_p (op1,
13336 &sub_strict_overflow_p))
13338 if (sub_strict_overflow_p)
13339 *strict_overflow_p = true;
13340 return true;
13342 break;
13344 case BIT_IOR_EXPR:
13345 return (tree_expr_nonzero_warnv_p (op1,
13346 strict_overflow_p)
13347 || tree_expr_nonzero_warnv_p (op0,
13348 strict_overflow_p));
13350 default:
13351 break;
13354 return false;
13357 /* Return true when T is an address and is known to be nonzero.
13358 For floating point we further ensure that T is not denormal.
13359 Similar logic is present in nonzero_address in rtlanal.h.
13361 If the return value is based on the assumption that signed overflow
13362 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13363 change *STRICT_OVERFLOW_P. */
13365 bool
13366 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13368 bool sub_strict_overflow_p;
13369 switch (TREE_CODE (t))
13371 case INTEGER_CST:
13372 return !integer_zerop (t);
13374 case ADDR_EXPR:
13376 tree base = TREE_OPERAND (t, 0);
13378 if (!DECL_P (base))
13379 base = get_base_address (base);
13381 if (base && TREE_CODE (base) == TARGET_EXPR)
13382 base = TARGET_EXPR_SLOT (base);
13384 if (!base)
13385 return false;
13387 /* For objects in symbol table check if we know they are non-zero.
13388 Don't do anything for variables and functions before symtab is built;
13389 it is quite possible that they will be declared weak later. */
13390 int nonzero_addr = maybe_nonzero_address (base);
13391 if (nonzero_addr >= 0)
13392 return nonzero_addr;
13394 /* Constants are never weak. */
13395 if (CONSTANT_CLASS_P (base))
13396 return true;
13398 return false;
13401 case COND_EXPR:
13402 sub_strict_overflow_p = false;
13403 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13404 &sub_strict_overflow_p)
13405 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13406 &sub_strict_overflow_p))
13408 if (sub_strict_overflow_p)
13409 *strict_overflow_p = true;
13410 return true;
13412 break;
13414 case SSA_NAME:
13415 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
13416 break;
13417 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
13419 default:
13420 break;
13422 return false;
13425 #define integer_valued_real_p(X) \
13426 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13428 #define RECURSE(X) \
13429 ((integer_valued_real_p) (X, depth + 1))
13431 /* Return true if the floating point result of (CODE OP0) has an
13432 integer value. We also allow +Inf, -Inf and NaN to be considered
13433 integer values. Return false for signaling NaN.
13435 DEPTH is the current nesting depth of the query. */
13437 bool
13438 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13440 switch (code)
13442 case FLOAT_EXPR:
13443 return true;
13445 case ABS_EXPR:
13446 return RECURSE (op0);
13448 CASE_CONVERT:
13450 tree type = TREE_TYPE (op0);
13451 if (TREE_CODE (type) == INTEGER_TYPE)
13452 return true;
13453 if (TREE_CODE (type) == REAL_TYPE)
13454 return RECURSE (op0);
13455 break;
13458 default:
13459 break;
13461 return false;
13464 /* Return true if the floating point result of (CODE OP0 OP1) has an
13465 integer value. We also allow +Inf, -Inf and NaN to be considered
13466 integer values. Return false for signaling NaN.
13468 DEPTH is the current nesting depth of the query. */
13470 bool
13471 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13473 switch (code)
13475 case PLUS_EXPR:
13476 case MINUS_EXPR:
13477 case MULT_EXPR:
13478 case MIN_EXPR:
13479 case MAX_EXPR:
13480 return RECURSE (op0) && RECURSE (op1);
13482 default:
13483 break;
13485 return false;
13488 /* Return true if the floating point result of calling FNDECL with arguments
13489 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13490 considered integer values. Return false for signaling NaN. If FNDECL
13491 takes fewer than 2 arguments, the remaining ARGn are null.
13493 DEPTH is the current nesting depth of the query. */
13495 bool
13496 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13498 switch (fn)
13500 CASE_CFN_CEIL:
13501 CASE_CFN_FLOOR:
13502 CASE_CFN_NEARBYINT:
13503 CASE_CFN_RINT:
13504 CASE_CFN_ROUND:
13505 CASE_CFN_TRUNC:
13506 return true;
13508 CASE_CFN_FMIN:
13509 CASE_CFN_FMAX:
13510 return RECURSE (arg0) && RECURSE (arg1);
13512 default:
13513 break;
13515 return false;
13518 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13519 has an integer value. We also allow +Inf, -Inf and NaN to be
13520 considered integer values. Return false for signaling NaN.
13522 DEPTH is the current nesting depth of the query. */
13524 bool
13525 integer_valued_real_single_p (tree t, int depth)
13527 switch (TREE_CODE (t))
13529 case REAL_CST:
13530 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13532 case COND_EXPR:
13533 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13535 case SSA_NAME:
13536 /* Limit the depth of recursion to avoid quadratic behavior.
13537 This is expected to catch almost all occurrences in practice.
13538 If this code misses important cases that unbounded recursion
13539 would not, passes that need this information could be revised
13540 to provide it through dataflow propagation. */
13541 return (!name_registered_for_update_p (t)
13542 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13543 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13544 depth));
13546 default:
13547 break;
13549 return false;
13552 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13553 has an integer value. We also allow +Inf, -Inf and NaN to be
13554 considered integer values. Return false for signaling NaN.
13556 DEPTH is the current nesting depth of the query. */
13558 static bool
13559 integer_valued_real_invalid_p (tree t, int depth)
13561 switch (TREE_CODE (t))
13563 case COMPOUND_EXPR:
13564 case MODIFY_EXPR:
13565 case BIND_EXPR:
13566 return RECURSE (TREE_OPERAND (t, 1));
13568 case SAVE_EXPR:
13569 return RECURSE (TREE_OPERAND (t, 0));
13571 default:
13572 break;
13574 return false;
13577 #undef RECURSE
13578 #undef integer_valued_real_p
13580 /* Return true if the floating point expression T has an integer value.
13581 We also allow +Inf, -Inf and NaN to be considered integer values.
13582 Return false for signaling NaN.
13584 DEPTH is the current nesting depth of the query. */
13586 bool
13587 integer_valued_real_p (tree t, int depth)
13589 if (t == error_mark_node)
13590 return false;
13592 tree_code code = TREE_CODE (t);
13593 switch (TREE_CODE_CLASS (code))
13595 case tcc_binary:
13596 case tcc_comparison:
13597 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13598 TREE_OPERAND (t, 1), depth);
13600 case tcc_unary:
13601 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13603 case tcc_constant:
13604 case tcc_declaration:
13605 case tcc_reference:
13606 return integer_valued_real_single_p (t, depth);
13608 default:
13609 break;
13612 switch (code)
13614 case COND_EXPR:
13615 case SSA_NAME:
13616 return integer_valued_real_single_p (t, depth);
13618 case CALL_EXPR:
13620 tree arg0 = (call_expr_nargs (t) > 0
13621 ? CALL_EXPR_ARG (t, 0)
13622 : NULL_TREE);
13623 tree arg1 = (call_expr_nargs (t) > 1
13624 ? CALL_EXPR_ARG (t, 1)
13625 : NULL_TREE);
13626 return integer_valued_real_call_p (get_call_combined_fn (t),
13627 arg0, arg1, depth);
13630 default:
13631 return integer_valued_real_invalid_p (t, depth);
13635 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13636 attempt to fold the expression to a constant without modifying TYPE,
13637 OP0 or OP1.
13639 If the expression could be simplified to a constant, then return
13640 the constant. If the expression would not be simplified to a
13641 constant, then return NULL_TREE. */
13643 tree
13644 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13646 tree tem = fold_binary (code, type, op0, op1);
13647 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13650 /* Given the components of a unary expression CODE, TYPE and OP0,
13651 attempt to fold the expression to a constant without modifying
13652 TYPE or OP0.
13654 If the expression could be simplified to a constant, then return
13655 the constant. If the expression would not be simplified to a
13656 constant, then return NULL_TREE. */
13658 tree
13659 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13661 tree tem = fold_unary (code, type, op0);
13662 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13665 /* If EXP represents referencing an element in a constant string
13666 (either via pointer arithmetic or array indexing), return the
13667 tree representing the value accessed, otherwise return NULL. */
13669 tree
13670 fold_read_from_constant_string (tree exp)
13672 if ((TREE_CODE (exp) == INDIRECT_REF
13673 || TREE_CODE (exp) == ARRAY_REF)
13674 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13676 tree exp1 = TREE_OPERAND (exp, 0);
13677 tree index;
13678 tree string;
13679 location_t loc = EXPR_LOCATION (exp);
13681 if (TREE_CODE (exp) == INDIRECT_REF)
13682 string = string_constant (exp1, &index);
13683 else
13685 tree low_bound = array_ref_low_bound (exp);
13686 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13688 /* Optimize the special-case of a zero lower bound.
13690 We convert the low_bound to sizetype to avoid some problems
13691 with constant folding. (E.g. suppose the lower bound is 1,
13692 and its mode is QI. Without the conversion,l (ARRAY
13693 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13694 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13695 if (! integer_zerop (low_bound))
13696 index = size_diffop_loc (loc, index,
13697 fold_convert_loc (loc, sizetype, low_bound));
13699 string = exp1;
13702 if (string
13703 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13704 && TREE_CODE (string) == STRING_CST
13705 && TREE_CODE (index) == INTEGER_CST
13706 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13707 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
13708 == MODE_INT)
13709 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
13710 return build_int_cst_type (TREE_TYPE (exp),
13711 (TREE_STRING_POINTER (string)
13712 [TREE_INT_CST_LOW (index)]));
13714 return NULL;
13717 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13718 an integer constant, real, or fixed-point constant.
13720 TYPE is the type of the result. */
13722 static tree
13723 fold_negate_const (tree arg0, tree type)
13725 tree t = NULL_TREE;
13727 switch (TREE_CODE (arg0))
13729 case INTEGER_CST:
13731 bool overflow;
13732 wide_int val = wi::neg (arg0, &overflow);
13733 t = force_fit_type (type, val, 1,
13734 (overflow | TREE_OVERFLOW (arg0))
13735 && !TYPE_UNSIGNED (type));
13736 break;
13739 case REAL_CST:
13740 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13741 break;
13743 case FIXED_CST:
13745 FIXED_VALUE_TYPE f;
13746 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13747 &(TREE_FIXED_CST (arg0)), NULL,
13748 TYPE_SATURATING (type));
13749 t = build_fixed (type, f);
13750 /* Propagate overflow flags. */
13751 if (overflow_p | TREE_OVERFLOW (arg0))
13752 TREE_OVERFLOW (t) = 1;
13753 break;
13756 default:
13757 gcc_unreachable ();
13760 return t;
13763 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13764 an integer constant or real constant.
13766 TYPE is the type of the result. */
13768 tree
13769 fold_abs_const (tree arg0, tree type)
13771 tree t = NULL_TREE;
13773 switch (TREE_CODE (arg0))
13775 case INTEGER_CST:
13777 /* If the value is unsigned or non-negative, then the absolute value
13778 is the same as the ordinary value. */
13779 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
13780 t = arg0;
13782 /* If the value is negative, then the absolute value is
13783 its negation. */
13784 else
13786 bool overflow;
13787 wide_int val = wi::neg (arg0, &overflow);
13788 t = force_fit_type (type, val, -1,
13789 overflow | TREE_OVERFLOW (arg0));
13792 break;
13794 case REAL_CST:
13795 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13796 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13797 else
13798 t = arg0;
13799 break;
13801 default:
13802 gcc_unreachable ();
13805 return t;
13808 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13809 constant. TYPE is the type of the result. */
13811 static tree
13812 fold_not_const (const_tree arg0, tree type)
13814 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13816 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
13819 /* Given CODE, a relational operator, the target type, TYPE and two
13820 constant operands OP0 and OP1, return the result of the
13821 relational operation. If the result is not a compile time
13822 constant, then return NULL_TREE. */
13824 static tree
13825 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13827 int result, invert;
13829 /* From here on, the only cases we handle are when the result is
13830 known to be a constant. */
13832 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13834 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13835 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13837 /* Handle the cases where either operand is a NaN. */
13838 if (real_isnan (c0) || real_isnan (c1))
13840 switch (code)
13842 case EQ_EXPR:
13843 case ORDERED_EXPR:
13844 result = 0;
13845 break;
13847 case NE_EXPR:
13848 case UNORDERED_EXPR:
13849 case UNLT_EXPR:
13850 case UNLE_EXPR:
13851 case UNGT_EXPR:
13852 case UNGE_EXPR:
13853 case UNEQ_EXPR:
13854 result = 1;
13855 break;
13857 case LT_EXPR:
13858 case LE_EXPR:
13859 case GT_EXPR:
13860 case GE_EXPR:
13861 case LTGT_EXPR:
13862 if (flag_trapping_math)
13863 return NULL_TREE;
13864 result = 0;
13865 break;
13867 default:
13868 gcc_unreachable ();
13871 return constant_boolean_node (result, type);
13874 return constant_boolean_node (real_compare (code, c0, c1), type);
13877 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13879 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13880 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13881 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13884 /* Handle equality/inequality of complex constants. */
13885 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13887 tree rcond = fold_relational_const (code, type,
13888 TREE_REALPART (op0),
13889 TREE_REALPART (op1));
13890 tree icond = fold_relational_const (code, type,
13891 TREE_IMAGPART (op0),
13892 TREE_IMAGPART (op1));
13893 if (code == EQ_EXPR)
13894 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13895 else if (code == NE_EXPR)
13896 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13897 else
13898 return NULL_TREE;
13901 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13903 if (!VECTOR_TYPE_P (type))
13905 /* Have vector comparison with scalar boolean result. */
13906 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
13907 && VECTOR_CST_NELTS (op0) == VECTOR_CST_NELTS (op1));
13908 for (unsigned i = 0; i < VECTOR_CST_NELTS (op0); i++)
13910 tree elem0 = VECTOR_CST_ELT (op0, i);
13911 tree elem1 = VECTOR_CST_ELT (op1, i);
13912 tree tmp = fold_relational_const (code, type, elem0, elem1);
13913 if (tmp == NULL_TREE)
13914 return NULL_TREE;
13915 if (integer_zerop (tmp))
13916 return constant_boolean_node (false, type);
13918 return constant_boolean_node (true, type);
13920 unsigned count = VECTOR_CST_NELTS (op0);
13921 tree *elts = XALLOCAVEC (tree, count);
13922 gcc_assert (VECTOR_CST_NELTS (op1) == count
13923 && TYPE_VECTOR_SUBPARTS (type) == count);
13925 for (unsigned i = 0; i < count; i++)
13927 tree elem_type = TREE_TYPE (type);
13928 tree elem0 = VECTOR_CST_ELT (op0, i);
13929 tree elem1 = VECTOR_CST_ELT (op1, i);
13931 tree tem = fold_relational_const (code, elem_type,
13932 elem0, elem1);
13934 if (tem == NULL_TREE)
13935 return NULL_TREE;
13937 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
13940 return build_vector (type, elts);
13943 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13945 To compute GT, swap the arguments and do LT.
13946 To compute GE, do LT and invert the result.
13947 To compute LE, swap the arguments, do LT and invert the result.
13948 To compute NE, do EQ and invert the result.
13950 Therefore, the code below must handle only EQ and LT. */
13952 if (code == LE_EXPR || code == GT_EXPR)
13954 std::swap (op0, op1);
13955 code = swap_tree_comparison (code);
13958 /* Note that it is safe to invert for real values here because we
13959 have already handled the one case that it matters. */
13961 invert = 0;
13962 if (code == NE_EXPR || code == GE_EXPR)
13964 invert = 1;
13965 code = invert_tree_comparison (code, false);
13968 /* Compute a result for LT or EQ if args permit;
13969 Otherwise return T. */
13970 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
13972 if (code == EQ_EXPR)
13973 result = tree_int_cst_equal (op0, op1);
13974 else
13975 result = tree_int_cst_lt (op0, op1);
13977 else
13978 return NULL_TREE;
13980 if (invert)
13981 result ^= 1;
13982 return constant_boolean_node (result, type);
13985 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13986 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13987 itself. */
13989 tree
13990 fold_build_cleanup_point_expr (tree type, tree expr)
13992 /* If the expression does not have side effects then we don't have to wrap
13993 it with a cleanup point expression. */
13994 if (!TREE_SIDE_EFFECTS (expr))
13995 return expr;
13997 /* If the expression is a return, check to see if the expression inside the
13998 return has no side effects or the right hand side of the modify expression
13999 inside the return. If either don't have side effects set we don't need to
14000 wrap the expression in a cleanup point expression. Note we don't check the
14001 left hand side of the modify because it should always be a return decl. */
14002 if (TREE_CODE (expr) == RETURN_EXPR)
14004 tree op = TREE_OPERAND (expr, 0);
14005 if (!op || !TREE_SIDE_EFFECTS (op))
14006 return expr;
14007 op = TREE_OPERAND (op, 1);
14008 if (!TREE_SIDE_EFFECTS (op))
14009 return expr;
14012 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr);
14015 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14016 of an indirection through OP0, or NULL_TREE if no simplification is
14017 possible. */
14019 tree
14020 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14022 tree sub = op0;
14023 tree subtype;
14025 STRIP_NOPS (sub);
14026 subtype = TREE_TYPE (sub);
14027 if (!POINTER_TYPE_P (subtype)
14028 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
14029 return NULL_TREE;
14031 if (TREE_CODE (sub) == ADDR_EXPR)
14033 tree op = TREE_OPERAND (sub, 0);
14034 tree optype = TREE_TYPE (op);
14035 /* *&CONST_DECL -> to the value of the const decl. */
14036 if (TREE_CODE (op) == CONST_DECL)
14037 return DECL_INITIAL (op);
14038 /* *&p => p; make sure to handle *&"str"[cst] here. */
14039 if (type == optype)
14041 tree fop = fold_read_from_constant_string (op);
14042 if (fop)
14043 return fop;
14044 else
14045 return op;
14047 /* *(foo *)&fooarray => fooarray[0] */
14048 else if (TREE_CODE (optype) == ARRAY_TYPE
14049 && type == TREE_TYPE (optype)
14050 && (!in_gimple_form
14051 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14053 tree type_domain = TYPE_DOMAIN (optype);
14054 tree min_val = size_zero_node;
14055 if (type_domain && TYPE_MIN_VALUE (type_domain))
14056 min_val = TYPE_MIN_VALUE (type_domain);
14057 if (in_gimple_form
14058 && TREE_CODE (min_val) != INTEGER_CST)
14059 return NULL_TREE;
14060 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14061 NULL_TREE, NULL_TREE);
14063 /* *(foo *)&complexfoo => __real__ complexfoo */
14064 else if (TREE_CODE (optype) == COMPLEX_TYPE
14065 && type == TREE_TYPE (optype))
14066 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14067 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14068 else if (TREE_CODE (optype) == VECTOR_TYPE
14069 && type == TREE_TYPE (optype))
14071 tree part_width = TYPE_SIZE (type);
14072 tree index = bitsize_int (0);
14073 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
14077 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14078 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14080 tree op00 = TREE_OPERAND (sub, 0);
14081 tree op01 = TREE_OPERAND (sub, 1);
14083 STRIP_NOPS (op00);
14084 if (TREE_CODE (op00) == ADDR_EXPR)
14086 tree op00type;
14087 op00 = TREE_OPERAND (op00, 0);
14088 op00type = TREE_TYPE (op00);
14090 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14091 if (TREE_CODE (op00type) == VECTOR_TYPE
14092 && type == TREE_TYPE (op00type))
14094 tree part_width = TYPE_SIZE (type);
14095 unsigned HOST_WIDE_INT max_offset
14096 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
14097 * TYPE_VECTOR_SUBPARTS (op00type));
14098 if (tree_int_cst_sign_bit (op01) == 0
14099 && compare_tree_int (op01, max_offset) == -1)
14101 unsigned HOST_WIDE_INT offset = tree_to_uhwi (op01);
14102 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
14103 tree index = bitsize_int (indexi);
14104 return fold_build3_loc (loc,
14105 BIT_FIELD_REF, type, op00,
14106 part_width, index);
14109 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14110 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14111 && type == TREE_TYPE (op00type))
14113 tree size = TYPE_SIZE_UNIT (type);
14114 if (tree_int_cst_equal (size, op01))
14115 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14117 /* ((foo *)&fooarray)[1] => fooarray[1] */
14118 else if (TREE_CODE (op00type) == ARRAY_TYPE
14119 && type == TREE_TYPE (op00type))
14121 tree type_domain = TYPE_DOMAIN (op00type);
14122 tree min_val = size_zero_node;
14123 if (type_domain && TYPE_MIN_VALUE (type_domain))
14124 min_val = TYPE_MIN_VALUE (type_domain);
14125 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
14126 TYPE_SIZE_UNIT (type));
14127 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
14128 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14129 NULL_TREE, NULL_TREE);
14134 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14135 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14136 && type == TREE_TYPE (TREE_TYPE (subtype))
14137 && (!in_gimple_form
14138 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14140 tree type_domain;
14141 tree min_val = size_zero_node;
14142 sub = build_fold_indirect_ref_loc (loc, sub);
14143 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14144 if (type_domain && TYPE_MIN_VALUE (type_domain))
14145 min_val = TYPE_MIN_VALUE (type_domain);
14146 if (in_gimple_form
14147 && TREE_CODE (min_val) != INTEGER_CST)
14148 return NULL_TREE;
14149 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14150 NULL_TREE);
14153 return NULL_TREE;
14156 /* Builds an expression for an indirection through T, simplifying some
14157 cases. */
14159 tree
14160 build_fold_indirect_ref_loc (location_t loc, tree t)
14162 tree type = TREE_TYPE (TREE_TYPE (t));
14163 tree sub = fold_indirect_ref_1 (loc, type, t);
14165 if (sub)
14166 return sub;
14168 return build1_loc (loc, INDIRECT_REF, type, t);
14171 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14173 tree
14174 fold_indirect_ref_loc (location_t loc, tree t)
14176 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14178 if (sub)
14179 return sub;
14180 else
14181 return t;
14184 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14185 whose result is ignored. The type of the returned tree need not be
14186 the same as the original expression. */
14188 tree
14189 fold_ignored_result (tree t)
14191 if (!TREE_SIDE_EFFECTS (t))
14192 return integer_zero_node;
14194 for (;;)
14195 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14197 case tcc_unary:
14198 t = TREE_OPERAND (t, 0);
14199 break;
14201 case tcc_binary:
14202 case tcc_comparison:
14203 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14204 t = TREE_OPERAND (t, 0);
14205 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14206 t = TREE_OPERAND (t, 1);
14207 else
14208 return t;
14209 break;
14211 case tcc_expression:
14212 switch (TREE_CODE (t))
14214 case COMPOUND_EXPR:
14215 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14216 return t;
14217 t = TREE_OPERAND (t, 0);
14218 break;
14220 case COND_EXPR:
14221 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14222 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14223 return t;
14224 t = TREE_OPERAND (t, 0);
14225 break;
14227 default:
14228 return t;
14230 break;
14232 default:
14233 return t;
14237 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14239 tree
14240 round_up_loc (location_t loc, tree value, unsigned int divisor)
14242 tree div = NULL_TREE;
14244 if (divisor == 1)
14245 return value;
14247 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14248 have to do anything. Only do this when we are not given a const,
14249 because in that case, this check is more expensive than just
14250 doing it. */
14251 if (TREE_CODE (value) != INTEGER_CST)
14253 div = build_int_cst (TREE_TYPE (value), divisor);
14255 if (multiple_of_p (TREE_TYPE (value), value, div))
14256 return value;
14259 /* If divisor is a power of two, simplify this to bit manipulation. */
14260 if (pow2_or_zerop (divisor))
14262 if (TREE_CODE (value) == INTEGER_CST)
14264 wide_int val = value;
14265 bool overflow_p;
14267 if ((val & (divisor - 1)) == 0)
14268 return value;
14270 overflow_p = TREE_OVERFLOW (value);
14271 val += divisor - 1;
14272 val &= (int) -divisor;
14273 if (val == 0)
14274 overflow_p = true;
14276 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14278 else
14280 tree t;
14282 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14283 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14284 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14285 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14288 else
14290 if (!div)
14291 div = build_int_cst (TREE_TYPE (value), divisor);
14292 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14293 value = size_binop_loc (loc, MULT_EXPR, value, div);
14296 return value;
14299 /* Likewise, but round down. */
14301 tree
14302 round_down_loc (location_t loc, tree value, int divisor)
14304 tree div = NULL_TREE;
14306 gcc_assert (divisor > 0);
14307 if (divisor == 1)
14308 return value;
14310 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14311 have to do anything. Only do this when we are not given a const,
14312 because in that case, this check is more expensive than just
14313 doing it. */
14314 if (TREE_CODE (value) != INTEGER_CST)
14316 div = build_int_cst (TREE_TYPE (value), divisor);
14318 if (multiple_of_p (TREE_TYPE (value), value, div))
14319 return value;
14322 /* If divisor is a power of two, simplify this to bit manipulation. */
14323 if (pow2_or_zerop (divisor))
14325 tree t;
14327 t = build_int_cst (TREE_TYPE (value), -divisor);
14328 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14330 else
14332 if (!div)
14333 div = build_int_cst (TREE_TYPE (value), divisor);
14334 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14335 value = size_binop_loc (loc, MULT_EXPR, value, div);
14338 return value;
14341 /* Returns the pointer to the base of the object addressed by EXP and
14342 extracts the information about the offset of the access, storing it
14343 to PBITPOS and POFFSET. */
14345 static tree
14346 split_address_to_core_and_offset (tree exp,
14347 HOST_WIDE_INT *pbitpos, tree *poffset)
14349 tree core;
14350 machine_mode mode;
14351 int unsignedp, reversep, volatilep;
14352 HOST_WIDE_INT bitsize;
14353 location_t loc = EXPR_LOCATION (exp);
14355 if (TREE_CODE (exp) == ADDR_EXPR)
14357 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14358 poffset, &mode, &unsignedp, &reversep,
14359 &volatilep);
14360 core = build_fold_addr_expr_loc (loc, core);
14362 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
14364 core = TREE_OPERAND (exp, 0);
14365 STRIP_NOPS (core);
14366 *pbitpos = 0;
14367 *poffset = TREE_OPERAND (exp, 1);
14368 if (TREE_CODE (*poffset) == INTEGER_CST)
14370 offset_int tem = wi::sext (wi::to_offset (*poffset),
14371 TYPE_PRECISION (TREE_TYPE (*poffset)));
14372 tem <<= LOG2_BITS_PER_UNIT;
14373 if (wi::fits_shwi_p (tem))
14375 *pbitpos = tem.to_shwi ();
14376 *poffset = NULL_TREE;
14380 else
14382 core = exp;
14383 *pbitpos = 0;
14384 *poffset = NULL_TREE;
14387 return core;
14390 /* Returns true if addresses of E1 and E2 differ by a constant, false
14391 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14393 bool
14394 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14396 tree core1, core2;
14397 HOST_WIDE_INT bitpos1, bitpos2;
14398 tree toffset1, toffset2, tdiff, type;
14400 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14401 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14403 if (bitpos1 % BITS_PER_UNIT != 0
14404 || bitpos2 % BITS_PER_UNIT != 0
14405 || !operand_equal_p (core1, core2, 0))
14406 return false;
14408 if (toffset1 && toffset2)
14410 type = TREE_TYPE (toffset1);
14411 if (type != TREE_TYPE (toffset2))
14412 toffset2 = fold_convert (type, toffset2);
14414 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14415 if (!cst_and_fits_in_hwi (tdiff))
14416 return false;
14418 *diff = int_cst_value (tdiff);
14420 else if (toffset1 || toffset2)
14422 /* If only one of the offsets is non-constant, the difference cannot
14423 be a constant. */
14424 return false;
14426 else
14427 *diff = 0;
14429 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14430 return true;
14433 /* Return OFF converted to a pointer offset type suitable as offset for
14434 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14435 tree
14436 convert_to_ptrofftype_loc (location_t loc, tree off)
14438 return fold_convert_loc (loc, sizetype, off);
14441 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14442 tree
14443 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14445 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14446 ptr, convert_to_ptrofftype_loc (loc, off));
14449 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14450 tree
14451 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14453 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14454 ptr, size_int (off));
14457 /* Return a char pointer for a C string if it is a string constant
14458 or sum of string constant and integer constant. We only support
14459 string constants properly terminated with '\0' character.
14460 If STRLEN is a valid pointer, length (including terminating character)
14461 of returned string is stored to the argument. */
14463 const char *
14464 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen)
14466 tree offset_node;
14468 if (strlen)
14469 *strlen = 0;
14471 src = string_constant (src, &offset_node);
14472 if (src == 0)
14473 return NULL;
14475 unsigned HOST_WIDE_INT offset = 0;
14476 if (offset_node != NULL_TREE)
14478 if (!tree_fits_uhwi_p (offset_node))
14479 return NULL;
14480 else
14481 offset = tree_to_uhwi (offset_node);
14484 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
14485 const char *string = TREE_STRING_POINTER (src);
14487 /* Support only properly null-terminated strings. */
14488 if (string_length == 0
14489 || string[string_length - 1] != '\0'
14490 || offset >= string_length)
14491 return NULL;
14493 if (strlen)
14494 *strlen = string_length - offset;
14495 return string + offset;
14498 #if CHECKING_P
14500 namespace selftest {
14502 /* Helper functions for writing tests of folding trees. */
14504 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14506 static void
14507 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14508 tree constant)
14510 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14513 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14514 wrapping WRAPPED_EXPR. */
14516 static void
14517 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14518 tree wrapped_expr)
14520 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14521 ASSERT_NE (wrapped_expr, result);
14522 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14523 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14526 /* Verify that various arithmetic binary operations are folded
14527 correctly. */
14529 static void
14530 test_arithmetic_folding ()
14532 tree type = integer_type_node;
14533 tree x = create_tmp_var_raw (type, "x");
14534 tree zero = build_zero_cst (type);
14535 tree one = build_int_cst (type, 1);
14537 /* Addition. */
14538 /* 1 <-- (0 + 1) */
14539 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14540 one);
14541 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14542 one);
14544 /* (nonlvalue)x <-- (x + 0) */
14545 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14548 /* Subtraction. */
14549 /* 0 <-- (x - x) */
14550 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14551 zero);
14552 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14555 /* Multiplication. */
14556 /* 0 <-- (x * 0) */
14557 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14558 zero);
14560 /* (nonlvalue)x <-- (x * 1) */
14561 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14565 /* Verify that various binary operations on vectors are folded
14566 correctly. */
14568 static void
14569 test_vector_folding ()
14571 tree inner_type = integer_type_node;
14572 tree type = build_vector_type (inner_type, 4);
14573 tree zero = build_zero_cst (type);
14574 tree one = build_one_cst (type);
14576 /* Verify equality tests that return a scalar boolean result. */
14577 tree res_type = boolean_type_node;
14578 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
14579 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
14580 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
14581 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
14584 /* Run all of the selftests within this file. */
14586 void
14587 fold_const_c_tests ()
14589 test_arithmetic_folding ();
14590 test_vector_folding ();
14593 } // namespace selftest
14595 #endif /* CHECKING_P */