2018-02-09 Sebastian Perta <sebastian.perta@renesas.com>
[official-gcc.git] / gcc / ipa-inline.c
blobf56a1a69107c703fd942d43f7f4b62bc7ef4487a
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
36 inlining heuristics
38 The inliner itself is split into two passes:
40 pass_early_inlining
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
68 pass_ipa_inline
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "target.h"
97 #include "rtl.h"
98 #include "tree.h"
99 #include "gimple.h"
100 #include "alloc-pool.h"
101 #include "tree-pass.h"
102 #include "gimple-ssa.h"
103 #include "cgraph.h"
104 #include "lto-streamer.h"
105 #include "trans-mem.h"
106 #include "calls.h"
107 #include "tree-inline.h"
108 #include "params.h"
109 #include "profile.h"
110 #include "symbol-summary.h"
111 #include "tree-vrp.h"
112 #include "ipa-prop.h"
113 #include "ipa-fnsummary.h"
114 #include "ipa-inline.h"
115 #include "ipa-utils.h"
116 #include "sreal.h"
117 #include "auto-profile.h"
118 #include "builtins.h"
119 #include "fibonacci_heap.h"
120 #include "stringpool.h"
121 #include "attribs.h"
122 #include "asan.h"
124 typedef fibonacci_heap <sreal, cgraph_edge> edge_heap_t;
125 typedef fibonacci_node <sreal, cgraph_edge> edge_heap_node_t;
127 /* Statistics we collect about inlining algorithm. */
128 static int overall_size;
129 static profile_count max_count;
130 static profile_count spec_rem;
132 /* Return false when inlining edge E would lead to violating
133 limits on function unit growth or stack usage growth.
135 The relative function body growth limit is present generally
136 to avoid problems with non-linear behavior of the compiler.
137 To allow inlining huge functions into tiny wrapper, the limit
138 is always based on the bigger of the two functions considered.
140 For stack growth limits we always base the growth in stack usage
141 of the callers. We want to prevent applications from segfaulting
142 on stack overflow when functions with huge stack frames gets
143 inlined. */
145 static bool
146 caller_growth_limits (struct cgraph_edge *e)
148 struct cgraph_node *to = e->caller;
149 struct cgraph_node *what = e->callee->ultimate_alias_target ();
150 int newsize;
151 int limit = 0;
152 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
153 ipa_fn_summary *info, *what_info, *outer_info = ipa_fn_summaries->get (to);
155 /* Look for function e->caller is inlined to. While doing
156 so work out the largest function body on the way. As
157 described above, we want to base our function growth
158 limits based on that. Not on the self size of the
159 outer function, not on the self size of inline code
160 we immediately inline to. This is the most relaxed
161 interpretation of the rule "do not grow large functions
162 too much in order to prevent compiler from exploding". */
163 while (true)
165 info = ipa_fn_summaries->get (to);
166 if (limit < info->self_size)
167 limit = info->self_size;
168 if (stack_size_limit < info->estimated_self_stack_size)
169 stack_size_limit = info->estimated_self_stack_size;
170 if (to->global.inlined_to)
171 to = to->callers->caller;
172 else
173 break;
176 what_info = ipa_fn_summaries->get (what);
178 if (limit < what_info->self_size)
179 limit = what_info->self_size;
181 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
183 /* Check the size after inlining against the function limits. But allow
184 the function to shrink if it went over the limits by forced inlining. */
185 newsize = estimate_size_after_inlining (to, e);
186 if (newsize >= info->size
187 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
188 && newsize > limit)
190 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
191 return false;
194 if (!what_info->estimated_stack_size)
195 return true;
197 /* FIXME: Stack size limit often prevents inlining in Fortran programs
198 due to large i/o datastructures used by the Fortran front-end.
199 We ought to ignore this limit when we know that the edge is executed
200 on every invocation of the caller (i.e. its call statement dominates
201 exit block). We do not track this information, yet. */
202 stack_size_limit += ((gcov_type)stack_size_limit
203 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
205 inlined_stack = (outer_info->stack_frame_offset
206 + outer_info->estimated_self_stack_size
207 + what_info->estimated_stack_size);
208 /* Check new stack consumption with stack consumption at the place
209 stack is used. */
210 if (inlined_stack > stack_size_limit
211 /* If function already has large stack usage from sibling
212 inline call, we can inline, too.
213 This bit overoptimistically assume that we are good at stack
214 packing. */
215 && inlined_stack > info->estimated_stack_size
216 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
218 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
219 return false;
221 return true;
224 /* Dump info about why inlining has failed. */
226 static void
227 report_inline_failed_reason (struct cgraph_edge *e)
229 if (dump_file)
231 fprintf (dump_file, " not inlinable: %s -> %s, %s\n",
232 e->caller->dump_name (),
233 e->callee->dump_name (),
234 cgraph_inline_failed_string (e->inline_failed));
235 if ((e->inline_failed == CIF_TARGET_OPTION_MISMATCH
236 || e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
237 && e->caller->lto_file_data
238 && e->callee->ultimate_alias_target ()->lto_file_data)
240 fprintf (dump_file, " LTO objects: %s, %s\n",
241 e->caller->lto_file_data->file_name,
242 e->callee->ultimate_alias_target ()->lto_file_data->file_name);
244 if (e->inline_failed == CIF_TARGET_OPTION_MISMATCH)
245 cl_target_option_print_diff
246 (dump_file, 2, target_opts_for_fn (e->caller->decl),
247 target_opts_for_fn (e->callee->ultimate_alias_target ()->decl));
248 if (e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
249 cl_optimization_print_diff
250 (dump_file, 2, opts_for_fn (e->caller->decl),
251 opts_for_fn (e->callee->ultimate_alias_target ()->decl));
255 /* Decide whether sanitizer-related attributes allow inlining. */
257 static bool
258 sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
260 if (!caller || !callee)
261 return true;
263 return ((sanitize_flags_p (SANITIZE_ADDRESS, caller)
264 == sanitize_flags_p (SANITIZE_ADDRESS, callee))
265 && (sanitize_flags_p (SANITIZE_POINTER_COMPARE, caller)
266 == sanitize_flags_p (SANITIZE_POINTER_COMPARE, callee))
267 && (sanitize_flags_p (SANITIZE_POINTER_SUBTRACT, caller)
268 == sanitize_flags_p (SANITIZE_POINTER_SUBTRACT, callee)));
271 /* Used for flags where it is safe to inline when caller's value is
272 grater than callee's. */
273 #define check_maybe_up(flag) \
274 (opts_for_fn (caller->decl)->x_##flag \
275 != opts_for_fn (callee->decl)->x_##flag \
276 && (!always_inline \
277 || opts_for_fn (caller->decl)->x_##flag \
278 < opts_for_fn (callee->decl)->x_##flag))
279 /* Used for flags where it is safe to inline when caller's value is
280 smaller than callee's. */
281 #define check_maybe_down(flag) \
282 (opts_for_fn (caller->decl)->x_##flag \
283 != opts_for_fn (callee->decl)->x_##flag \
284 && (!always_inline \
285 || opts_for_fn (caller->decl)->x_##flag \
286 > opts_for_fn (callee->decl)->x_##flag))
287 /* Used for flags where exact match is needed for correctness. */
288 #define check_match(flag) \
289 (opts_for_fn (caller->decl)->x_##flag \
290 != opts_for_fn (callee->decl)->x_##flag)
292 /* Decide if we can inline the edge and possibly update
293 inline_failed reason.
294 We check whether inlining is possible at all and whether
295 caller growth limits allow doing so.
297 if REPORT is true, output reason to the dump file. */
299 static bool
300 can_inline_edge_p (struct cgraph_edge *e, bool report,
301 bool early = false)
303 gcc_checking_assert (e->inline_failed);
305 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
307 if (report)
308 report_inline_failed_reason (e);
309 return false;
312 bool inlinable = true;
313 enum availability avail;
314 cgraph_node *caller = e->caller->global.inlined_to
315 ? e->caller->global.inlined_to : e->caller;
316 cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
318 if (!callee->definition)
320 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
321 inlinable = false;
323 if (!early && (!opt_for_fn (callee->decl, optimize)
324 || !opt_for_fn (caller->decl, optimize)))
326 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
327 inlinable = false;
329 else if (callee->calls_comdat_local)
331 e->inline_failed = CIF_USES_COMDAT_LOCAL;
332 inlinable = false;
334 else if (avail <= AVAIL_INTERPOSABLE)
336 e->inline_failed = CIF_OVERWRITABLE;
337 inlinable = false;
339 /* All edges with call_stmt_cannot_inline_p should have inline_failed
340 initialized to one of FINAL_ERROR reasons. */
341 else if (e->call_stmt_cannot_inline_p)
342 gcc_unreachable ();
343 /* Don't inline if the functions have different EH personalities. */
344 else if (DECL_FUNCTION_PERSONALITY (caller->decl)
345 && DECL_FUNCTION_PERSONALITY (callee->decl)
346 && (DECL_FUNCTION_PERSONALITY (caller->decl)
347 != DECL_FUNCTION_PERSONALITY (callee->decl)))
349 e->inline_failed = CIF_EH_PERSONALITY;
350 inlinable = false;
352 /* TM pure functions should not be inlined into non-TM_pure
353 functions. */
354 else if (is_tm_pure (callee->decl) && !is_tm_pure (caller->decl))
356 e->inline_failed = CIF_UNSPECIFIED;
357 inlinable = false;
359 /* Check compatibility of target optimization options. */
360 else if (!targetm.target_option.can_inline_p (caller->decl,
361 callee->decl))
363 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
364 inlinable = false;
366 else if (!ipa_fn_summaries->get (callee)->inlinable)
368 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
369 inlinable = false;
371 /* Don't inline a function with mismatched sanitization attributes. */
372 else if (!sanitize_attrs_match_for_inline_p (caller->decl, callee->decl))
374 e->inline_failed = CIF_ATTRIBUTE_MISMATCH;
375 inlinable = false;
377 if (!inlinable && report)
378 report_inline_failed_reason (e);
379 return inlinable;
382 /* Decide if we can inline the edge and possibly update
383 inline_failed reason.
384 We check whether inlining is possible at all and whether
385 caller growth limits allow doing so.
387 if REPORT is true, output reason to the dump file.
389 if DISREGARD_LIMITS is true, ignore size limits. */
391 static bool
392 can_inline_edge_by_limits_p (struct cgraph_edge *e, bool report,
393 bool disregard_limits = false, bool early = false)
395 gcc_checking_assert (e->inline_failed);
397 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
399 if (report)
400 report_inline_failed_reason (e);
401 return false;
404 bool inlinable = true;
405 enum availability avail;
406 cgraph_node *caller = e->caller->global.inlined_to
407 ? e->caller->global.inlined_to : e->caller;
408 cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
409 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller->decl);
410 tree callee_tree
411 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
412 /* Check if caller growth allows the inlining. */
413 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
414 && !disregard_limits
415 && !lookup_attribute ("flatten",
416 DECL_ATTRIBUTES (caller->decl))
417 && !caller_growth_limits (e))
418 inlinable = false;
419 /* Don't inline a function with a higher optimization level than the
420 caller. FIXME: this is really just tip of iceberg of handling
421 optimization attribute. */
422 else if (caller_tree != callee_tree)
424 bool always_inline =
425 (DECL_DISREGARD_INLINE_LIMITS (callee->decl)
426 && lookup_attribute ("always_inline",
427 DECL_ATTRIBUTES (callee->decl)));
428 ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
429 ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
431 /* Until GCC 4.9 we did not check the semantics alterning flags
432 bellow and inline across optimization boundry.
433 Enabling checks bellow breaks several packages by refusing
434 to inline library always_inline functions. See PR65873.
435 Disable the check for early inlining for now until better solution
436 is found. */
437 if (always_inline && early)
439 /* There are some options that change IL semantics which means
440 we cannot inline in these cases for correctness reason.
441 Not even for always_inline declared functions. */
442 else if (check_match (flag_wrapv)
443 || check_match (flag_trapv)
444 || check_match (flag_pcc_struct_return)
445 /* When caller or callee does FP math, be sure FP codegen flags
446 compatible. */
447 || ((caller_info->fp_expressions && callee_info->fp_expressions)
448 && (check_maybe_up (flag_rounding_math)
449 || check_maybe_up (flag_trapping_math)
450 || check_maybe_down (flag_unsafe_math_optimizations)
451 || check_maybe_down (flag_finite_math_only)
452 || check_maybe_up (flag_signaling_nans)
453 || check_maybe_down (flag_cx_limited_range)
454 || check_maybe_up (flag_signed_zeros)
455 || check_maybe_down (flag_associative_math)
456 || check_maybe_down (flag_reciprocal_math)
457 || check_maybe_down (flag_fp_int_builtin_inexact)
458 /* Strictly speaking only when the callee contains function
459 calls that may end up setting errno. */
460 || check_maybe_up (flag_errno_math)))
461 /* We do not want to make code compiled with exceptions to be
462 brought into a non-EH function unless we know that the callee
463 does not throw.
464 This is tracked by DECL_FUNCTION_PERSONALITY. */
465 || (check_maybe_up (flag_non_call_exceptions)
466 && DECL_FUNCTION_PERSONALITY (callee->decl))
467 || (check_maybe_up (flag_exceptions)
468 && DECL_FUNCTION_PERSONALITY (callee->decl))
469 /* When devirtualization is diabled for callee, it is not safe
470 to inline it as we possibly mangled the type info.
471 Allow early inlining of always inlines. */
472 || (!early && check_maybe_down (flag_devirtualize)))
474 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
475 inlinable = false;
477 /* gcc.dg/pr43564.c. Apply user-forced inline even at -O0. */
478 else if (always_inline)
480 /* When user added an attribute to the callee honor it. */
481 else if (lookup_attribute ("optimize", DECL_ATTRIBUTES (callee->decl))
482 && opts_for_fn (caller->decl) != opts_for_fn (callee->decl))
484 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
485 inlinable = false;
487 /* If explicit optimize attribute are not used, the mismatch is caused
488 by different command line options used to build different units.
489 Do not care about COMDAT functions - those are intended to be
490 optimized with the optimization flags of module they are used in.
491 Also do not care about mixing up size/speed optimization when
492 DECL_DISREGARD_INLINE_LIMITS is set. */
493 else if ((callee->merged_comdat
494 && !lookup_attribute ("optimize",
495 DECL_ATTRIBUTES (caller->decl)))
496 || DECL_DISREGARD_INLINE_LIMITS (callee->decl))
498 /* If mismatch is caused by merging two LTO units with different
499 optimizationflags we want to be bit nicer. However never inline
500 if one of functions is not optimized at all. */
501 else if (!opt_for_fn (callee->decl, optimize)
502 || !opt_for_fn (caller->decl, optimize))
504 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
505 inlinable = false;
507 /* If callee is optimized for size and caller is not, allow inlining if
508 code shrinks or we are in MAX_INLINE_INSNS_SINGLE limit and callee
509 is inline (and thus likely an unified comdat). This will allow caller
510 to run faster. */
511 else if (opt_for_fn (callee->decl, optimize_size)
512 > opt_for_fn (caller->decl, optimize_size))
514 int growth = estimate_edge_growth (e);
515 if (growth > 0
516 && (!DECL_DECLARED_INLINE_P (callee->decl)
517 && growth >= MAX (MAX_INLINE_INSNS_SINGLE,
518 MAX_INLINE_INSNS_AUTO)))
520 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
521 inlinable = false;
524 /* If callee is more aggressively optimized for performance than caller,
525 we generally want to inline only cheap (runtime wise) functions. */
526 else if (opt_for_fn (callee->decl, optimize_size)
527 < opt_for_fn (caller->decl, optimize_size)
528 || (opt_for_fn (callee->decl, optimize)
529 > opt_for_fn (caller->decl, optimize)))
531 if (estimate_edge_time (e)
532 >= 20 + ipa_call_summaries->get (e)->call_stmt_time)
534 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
535 inlinable = false;
541 if (!inlinable && report)
542 report_inline_failed_reason (e);
543 return inlinable;
547 /* Return true if the edge E is inlinable during early inlining. */
549 static bool
550 can_early_inline_edge_p (struct cgraph_edge *e)
552 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
553 /* Early inliner might get called at WPA stage when IPA pass adds new
554 function. In this case we can not really do any of early inlining
555 because function bodies are missing. */
556 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
557 return false;
558 if (!gimple_has_body_p (callee->decl))
560 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
561 return false;
563 /* In early inliner some of callees may not be in SSA form yet
564 (i.e. the callgraph is cyclic and we did not process
565 the callee by early inliner, yet). We don't have CIF code for this
566 case; later we will re-do the decision in the real inliner. */
567 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
568 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
570 if (dump_file)
571 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
572 return false;
574 if (!can_inline_edge_p (e, true, true)
575 || !can_inline_edge_by_limits_p (e, true, false, true))
576 return false;
577 return true;
581 /* Return number of calls in N. Ignore cheap builtins. */
583 static int
584 num_calls (struct cgraph_node *n)
586 struct cgraph_edge *e;
587 int num = 0;
589 for (e = n->callees; e; e = e->next_callee)
590 if (!is_inexpensive_builtin (e->callee->decl))
591 num++;
592 return num;
596 /* Return true if we are interested in inlining small function. */
598 static bool
599 want_early_inline_function_p (struct cgraph_edge *e)
601 bool want_inline = true;
602 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
604 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
606 /* For AutoFDO, we need to make sure that before profile summary, all
607 hot paths' IR look exactly the same as profiled binary. As a result,
608 in einliner, we will disregard size limit and inline those callsites
609 that are:
610 * inlined in the profiled binary, and
611 * the cloned callee has enough samples to be considered "hot". */
612 else if (flag_auto_profile && afdo_callsite_hot_enough_for_early_inline (e))
614 else if (!DECL_DECLARED_INLINE_P (callee->decl)
615 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
617 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
618 report_inline_failed_reason (e);
619 want_inline = false;
621 else
623 int growth = estimate_edge_growth (e);
624 int n;
626 if (growth <= 0)
628 else if (!e->maybe_hot_p ()
629 && growth > 0)
631 if (dump_file)
632 fprintf (dump_file, " will not early inline: %s->%s, "
633 "call is cold and code would grow by %i\n",
634 e->caller->dump_name (),
635 callee->dump_name (),
636 growth);
637 want_inline = false;
639 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
641 if (dump_file)
642 fprintf (dump_file, " will not early inline: %s->%s, "
643 "growth %i exceeds --param early-inlining-insns\n",
644 e->caller->dump_name (),
645 callee->dump_name (),
646 growth);
647 want_inline = false;
649 else if ((n = num_calls (callee)) != 0
650 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
652 if (dump_file)
653 fprintf (dump_file, " will not early inline: %s->%s, "
654 "growth %i exceeds --param early-inlining-insns "
655 "divided by number of calls\n",
656 e->caller->dump_name (),
657 callee->dump_name (),
658 growth);
659 want_inline = false;
662 return want_inline;
665 /* Compute time of the edge->caller + edge->callee execution when inlining
666 does not happen. */
668 inline sreal
669 compute_uninlined_call_time (struct cgraph_edge *edge,
670 sreal uninlined_call_time)
672 cgraph_node *caller = (edge->caller->global.inlined_to
673 ? edge->caller->global.inlined_to
674 : edge->caller);
676 sreal freq = edge->sreal_frequency ();
677 if (freq > 0)
678 uninlined_call_time *= freq;
679 else
680 uninlined_call_time = uninlined_call_time >> 11;
682 sreal caller_time = ipa_fn_summaries->get (caller)->time;
683 return uninlined_call_time + caller_time;
686 /* Same as compute_uinlined_call_time but compute time when inlining
687 does happen. */
689 inline sreal
690 compute_inlined_call_time (struct cgraph_edge *edge,
691 sreal time)
693 cgraph_node *caller = (edge->caller->global.inlined_to
694 ? edge->caller->global.inlined_to
695 : edge->caller);
696 sreal caller_time = ipa_fn_summaries->get (caller)->time;
698 sreal freq = edge->sreal_frequency ();
699 if (freq > 0)
700 time *= freq;
701 else
702 time = time >> 11;
704 /* This calculation should match one in ipa-inline-analysis.c
705 (estimate_edge_size_and_time). */
706 time -= (sreal)ipa_call_summaries->get (edge)->call_stmt_time * freq;
707 time += caller_time;
708 if (time <= 0)
709 time = ((sreal) 1) >> 8;
710 gcc_checking_assert (time >= 0);
711 return time;
714 /* Return true if the speedup for inlining E is bigger than
715 PARAM_MAX_INLINE_MIN_SPEEDUP. */
717 static bool
718 big_speedup_p (struct cgraph_edge *e)
720 sreal unspec_time;
721 sreal spec_time = estimate_edge_time (e, &unspec_time);
722 sreal time = compute_uninlined_call_time (e, unspec_time);
723 sreal inlined_time = compute_inlined_call_time (e, spec_time);
725 if ((time - inlined_time) * 100
726 > (sreal) (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP)))
727 return true;
728 return false;
731 /* Return true if we are interested in inlining small function.
732 When REPORT is true, report reason to dump file. */
734 static bool
735 want_inline_small_function_p (struct cgraph_edge *e, bool report)
737 bool want_inline = true;
738 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
740 /* Allow this function to be called before can_inline_edge_p,
741 since it's usually cheaper. */
742 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
743 want_inline = false;
744 else if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
746 else if (!DECL_DECLARED_INLINE_P (callee->decl)
747 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
749 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
750 want_inline = false;
752 /* Do fast and conservative check if the function can be good
753 inline candidate. At the moment we allow inline hints to
754 promote non-inline functions to inline and we increase
755 MAX_INLINE_INSNS_SINGLE 16-fold for inline functions. */
756 else if ((!DECL_DECLARED_INLINE_P (callee->decl)
757 && (!e->count.ipa ().initialized_p () || !e->maybe_hot_p ()))
758 && ipa_fn_summaries->get (callee)->min_size
759 - ipa_call_summaries->get (e)->call_stmt_size
760 > MAX (MAX_INLINE_INSNS_SINGLE, MAX_INLINE_INSNS_AUTO))
762 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
763 want_inline = false;
765 else if ((DECL_DECLARED_INLINE_P (callee->decl)
766 || e->count.ipa ().nonzero_p ())
767 && ipa_fn_summaries->get (callee)->min_size
768 - ipa_call_summaries->get (e)->call_stmt_size
769 > 16 * MAX_INLINE_INSNS_SINGLE)
771 e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
772 ? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
773 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
774 want_inline = false;
776 else
778 int growth = estimate_edge_growth (e);
779 ipa_hints hints = estimate_edge_hints (e);
780 bool big_speedup = big_speedup_p (e);
782 if (growth <= 0)
784 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
785 hints suggests that inlining given function is very profitable. */
786 else if (DECL_DECLARED_INLINE_P (callee->decl)
787 && growth >= MAX_INLINE_INSNS_SINGLE
788 && ((!big_speedup
789 && !(hints & (INLINE_HINT_indirect_call
790 | INLINE_HINT_known_hot
791 | INLINE_HINT_loop_iterations
792 | INLINE_HINT_array_index
793 | INLINE_HINT_loop_stride)))
794 || growth >= MAX_INLINE_INSNS_SINGLE * 16))
796 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
797 want_inline = false;
799 else if (!DECL_DECLARED_INLINE_P (callee->decl)
800 && !opt_for_fn (e->caller->decl, flag_inline_functions))
802 /* growth_likely_positive is expensive, always test it last. */
803 if (growth >= MAX_INLINE_INSNS_SINGLE
804 || growth_likely_positive (callee, growth))
806 e->inline_failed = CIF_NOT_DECLARED_INLINED;
807 want_inline = false;
810 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
811 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
812 inlining given function is very profitable. */
813 else if (!DECL_DECLARED_INLINE_P (callee->decl)
814 && !big_speedup
815 && !(hints & INLINE_HINT_known_hot)
816 && growth >= ((hints & (INLINE_HINT_indirect_call
817 | INLINE_HINT_loop_iterations
818 | INLINE_HINT_array_index
819 | INLINE_HINT_loop_stride))
820 ? MAX (MAX_INLINE_INSNS_AUTO,
821 MAX_INLINE_INSNS_SINGLE)
822 : MAX_INLINE_INSNS_AUTO))
824 /* growth_likely_positive is expensive, always test it last. */
825 if (growth >= MAX_INLINE_INSNS_SINGLE
826 || growth_likely_positive (callee, growth))
828 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
829 want_inline = false;
832 /* If call is cold, do not inline when function body would grow. */
833 else if (!e->maybe_hot_p ()
834 && (growth >= MAX_INLINE_INSNS_SINGLE
835 || growth_likely_positive (callee, growth)))
837 e->inline_failed = CIF_UNLIKELY_CALL;
838 want_inline = false;
841 if (!want_inline && report)
842 report_inline_failed_reason (e);
843 return want_inline;
846 /* EDGE is self recursive edge.
847 We hand two cases - when function A is inlining into itself
848 or when function A is being inlined into another inliner copy of function
849 A within function B.
851 In first case OUTER_NODE points to the toplevel copy of A, while
852 in the second case OUTER_NODE points to the outermost copy of A in B.
854 In both cases we want to be extra selective since
855 inlining the call will just introduce new recursive calls to appear. */
857 static bool
858 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
859 struct cgraph_node *outer_node,
860 bool peeling,
861 int depth)
863 char const *reason = NULL;
864 bool want_inline = true;
865 sreal caller_freq = 1;
866 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
868 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
869 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
871 if (!edge->maybe_hot_p ())
873 reason = "recursive call is cold";
874 want_inline = false;
876 else if (depth > max_depth)
878 reason = "--param max-inline-recursive-depth exceeded.";
879 want_inline = false;
881 else if (outer_node->global.inlined_to
882 && (caller_freq = outer_node->callers->sreal_frequency ()) == 0)
884 reason = "caller frequency is 0";
885 want_inline = false;
888 if (!want_inline)
890 /* Inlining of self recursive function into copy of itself within other
891 function is transformation similar to loop peeling.
893 Peeling is profitable if we can inline enough copies to make probability
894 of actual call to the self recursive function very small. Be sure that
895 the probability of recursion is small.
897 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
898 This way the expected number of recursion is at most max_depth. */
899 else if (peeling)
901 sreal max_prob = (sreal)1 - ((sreal)1 / (sreal)max_depth);
902 int i;
903 for (i = 1; i < depth; i++)
904 max_prob = max_prob * max_prob;
905 if (edge->sreal_frequency () >= max_prob * caller_freq)
907 reason = "frequency of recursive call is too large";
908 want_inline = false;
911 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if
912 recursion depth is large. We reduce function call overhead and increase
913 chances that things fit in hardware return predictor.
915 Recursive inlining might however increase cost of stack frame setup
916 actually slowing down functions whose recursion tree is wide rather than
917 deep.
919 Deciding reliably on when to do recursive inlining without profile feedback
920 is tricky. For now we disable recursive inlining when probability of self
921 recursion is low.
923 Recursive inlining of self recursive call within loop also results in
924 large loop depths that generally optimize badly. We may want to throttle
925 down inlining in those cases. In particular this seems to happen in one
926 of libstdc++ rb tree methods. */
927 else
929 if (edge->sreal_frequency () * 100
930 <= caller_freq
931 * PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY))
933 reason = "frequency of recursive call is too small";
934 want_inline = false;
937 if (!want_inline && dump_file)
938 fprintf (dump_file, " not inlining recursively: %s\n", reason);
939 return want_inline;
942 /* Return true when NODE has uninlinable caller;
943 set HAS_HOT_CALL if it has hot call.
944 Worker for cgraph_for_node_and_aliases. */
946 static bool
947 check_callers (struct cgraph_node *node, void *has_hot_call)
949 struct cgraph_edge *e;
950 for (e = node->callers; e; e = e->next_caller)
952 if (!opt_for_fn (e->caller->decl, flag_inline_functions_called_once)
953 || !opt_for_fn (e->caller->decl, optimize))
954 return true;
955 if (!can_inline_edge_p (e, true))
956 return true;
957 if (e->recursive_p ())
958 return true;
959 if (!can_inline_edge_by_limits_p (e, true))
960 return true;
961 if (!(*(bool *)has_hot_call) && e->maybe_hot_p ())
962 *(bool *)has_hot_call = true;
964 return false;
967 /* If NODE has a caller, return true. */
969 static bool
970 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
972 if (node->callers)
973 return true;
974 return false;
977 /* Decide if inlining NODE would reduce unit size by eliminating
978 the offline copy of function.
979 When COLD is true the cold calls are considered, too. */
981 static bool
982 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
984 bool has_hot_call = false;
986 /* Aliases gets inlined along with the function they alias. */
987 if (node->alias)
988 return false;
989 /* Already inlined? */
990 if (node->global.inlined_to)
991 return false;
992 /* Does it have callers? */
993 if (!node->call_for_symbol_and_aliases (has_caller_p, NULL, true))
994 return false;
995 /* Inlining into all callers would increase size? */
996 if (estimate_growth (node) > 0)
997 return false;
998 /* All inlines must be possible. */
999 if (node->call_for_symbol_and_aliases (check_callers, &has_hot_call,
1000 true))
1001 return false;
1002 if (!cold && !has_hot_call)
1003 return false;
1004 return true;
1007 /* A cost model driving the inlining heuristics in a way so the edges with
1008 smallest badness are inlined first. After each inlining is performed
1009 the costs of all caller edges of nodes affected are recomputed so the
1010 metrics may accurately depend on values such as number of inlinable callers
1011 of the function or function body size. */
1013 static sreal
1014 edge_badness (struct cgraph_edge *edge, bool dump)
1016 sreal badness;
1017 int growth;
1018 sreal edge_time, unspec_edge_time;
1019 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1020 struct ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
1021 ipa_hints hints;
1022 cgraph_node *caller = (edge->caller->global.inlined_to
1023 ? edge->caller->global.inlined_to
1024 : edge->caller);
1026 growth = estimate_edge_growth (edge);
1027 edge_time = estimate_edge_time (edge, &unspec_edge_time);
1028 hints = estimate_edge_hints (edge);
1029 gcc_checking_assert (edge_time >= 0);
1030 /* Check that inlined time is better, but tolerate some roundoff issues.
1031 FIXME: When callee profile drops to 0 we account calls more. This
1032 should be fixed by never doing that. */
1033 gcc_checking_assert ((edge_time * 100
1034 - callee_info->time * 101).to_int () <= 0
1035 || callee->count.ipa ().initialized_p ());
1036 gcc_checking_assert (growth <= callee_info->size);
1038 if (dump)
1040 fprintf (dump_file, " Badness calculation for %s -> %s\n",
1041 edge->caller->dump_name (),
1042 edge->callee->dump_name ());
1043 fprintf (dump_file, " size growth %i, time %f unspec %f ",
1044 growth,
1045 edge_time.to_double (),
1046 unspec_edge_time.to_double ());
1047 ipa_dump_hints (dump_file, hints);
1048 if (big_speedup_p (edge))
1049 fprintf (dump_file, " big_speedup");
1050 fprintf (dump_file, "\n");
1053 /* Always prefer inlining saving code size. */
1054 if (growth <= 0)
1056 badness = (sreal) (-SREAL_MIN_SIG + growth) << (SREAL_MAX_EXP / 256);
1057 if (dump)
1058 fprintf (dump_file, " %f: Growth %d <= 0\n", badness.to_double (),
1059 growth);
1061 /* Inlining into EXTERNAL functions is not going to change anything unless
1062 they are themselves inlined. */
1063 else if (DECL_EXTERNAL (caller->decl))
1065 if (dump)
1066 fprintf (dump_file, " max: function is external\n");
1067 return sreal::max ();
1069 /* When profile is available. Compute badness as:
1071 time_saved * caller_count
1072 goodness = -------------------------------------------------
1073 growth_of_caller * overall_growth * combined_size
1075 badness = - goodness
1077 Again use negative value to make calls with profile appear hotter
1078 then calls without.
1080 else if (opt_for_fn (caller->decl, flag_guess_branch_prob)
1081 || caller->count.ipa ().nonzero_p ())
1083 sreal numerator, denominator;
1084 int overall_growth;
1085 sreal inlined_time = compute_inlined_call_time (edge, edge_time);
1087 numerator = (compute_uninlined_call_time (edge, unspec_edge_time)
1088 - inlined_time);
1089 if (numerator <= 0)
1090 numerator = ((sreal) 1 >> 8);
1091 if (caller->count.ipa ().nonzero_p ())
1092 numerator *= caller->count.ipa ().to_gcov_type ();
1093 else if (caller->count.ipa ().initialized_p ())
1094 numerator = numerator >> 11;
1095 denominator = growth;
1097 overall_growth = callee_info->growth;
1099 /* Look for inliner wrappers of the form:
1101 inline_caller ()
1103 do_fast_job...
1104 if (need_more_work)
1105 noninline_callee ();
1107 Withhout panilizing this case, we usually inline noninline_callee
1108 into the inline_caller because overall_growth is small preventing
1109 further inlining of inline_caller.
1111 Penalize only callgraph edges to functions with small overall
1112 growth ...
1114 if (growth > overall_growth
1115 /* ... and having only one caller which is not inlined ... */
1116 && callee_info->single_caller
1117 && !edge->caller->global.inlined_to
1118 /* ... and edges executed only conditionally ... */
1119 && edge->sreal_frequency () < 1
1120 /* ... consider case where callee is not inline but caller is ... */
1121 && ((!DECL_DECLARED_INLINE_P (edge->callee->decl)
1122 && DECL_DECLARED_INLINE_P (caller->decl))
1123 /* ... or when early optimizers decided to split and edge
1124 frequency still indicates splitting is a win ... */
1125 || (callee->split_part && !caller->split_part
1126 && edge->sreal_frequency () * 100
1127 < PARAM_VALUE
1128 (PARAM_PARTIAL_INLINING_ENTRY_PROBABILITY)
1129 /* ... and do not overwrite user specified hints. */
1130 && (!DECL_DECLARED_INLINE_P (edge->callee->decl)
1131 || DECL_DECLARED_INLINE_P (caller->decl)))))
1133 struct ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
1134 int caller_growth = caller_info->growth;
1136 /* Only apply the penalty when caller looks like inline candidate,
1137 and it is not called once and. */
1138 if (!caller_info->single_caller && overall_growth < caller_growth
1139 && caller_info->inlinable
1140 && caller_info->size
1141 < (DECL_DECLARED_INLINE_P (caller->decl)
1142 ? MAX_INLINE_INSNS_SINGLE : MAX_INLINE_INSNS_AUTO))
1144 if (dump)
1145 fprintf (dump_file,
1146 " Wrapper penalty. Increasing growth %i to %i\n",
1147 overall_growth, caller_growth);
1148 overall_growth = caller_growth;
1151 if (overall_growth > 0)
1153 /* Strongly preffer functions with few callers that can be inlined
1154 fully. The square root here leads to smaller binaries at average.
1155 Watch however for extreme cases and return to linear function
1156 when growth is large. */
1157 if (overall_growth < 256)
1158 overall_growth *= overall_growth;
1159 else
1160 overall_growth += 256 * 256 - 256;
1161 denominator *= overall_growth;
1163 denominator *= inlined_time;
1165 badness = - numerator / denominator;
1167 if (dump)
1169 fprintf (dump_file,
1170 " %f: guessed profile. frequency %f, count %" PRId64
1171 " caller count %" PRId64
1172 " time w/o inlining %f, time with inlining %f"
1173 " overall growth %i (current) %i (original)"
1174 " %i (compensated)\n",
1175 badness.to_double (),
1176 edge->sreal_frequency ().to_double (),
1177 edge->count.ipa ().initialized_p () ? edge->count.ipa ().to_gcov_type () : -1,
1178 caller->count.ipa ().initialized_p () ? caller->count.ipa ().to_gcov_type () : -1,
1179 compute_uninlined_call_time (edge,
1180 unspec_edge_time).to_double (),
1181 inlined_time.to_double (),
1182 estimate_growth (callee),
1183 callee_info->growth, overall_growth);
1186 /* When function local profile is not available or it does not give
1187 useful information (ie frequency is zero), base the cost on
1188 loop nest and overall size growth, so we optimize for overall number
1189 of functions fully inlined in program. */
1190 else
1192 int nest = MIN (ipa_call_summaries->get (edge)->loop_depth, 8);
1193 badness = growth;
1195 /* Decrease badness if call is nested. */
1196 if (badness > 0)
1197 badness = badness >> nest;
1198 else
1199 badness = badness << nest;
1200 if (dump)
1201 fprintf (dump_file, " %f: no profile. nest %i\n",
1202 badness.to_double (), nest);
1204 gcc_checking_assert (badness != 0);
1206 if (edge->recursive_p ())
1207 badness = badness.shift (badness > 0 ? 4 : -4);
1208 if ((hints & (INLINE_HINT_indirect_call
1209 | INLINE_HINT_loop_iterations
1210 | INLINE_HINT_array_index
1211 | INLINE_HINT_loop_stride))
1212 || callee_info->growth <= 0)
1213 badness = badness.shift (badness > 0 ? -2 : 2);
1214 if (hints & (INLINE_HINT_same_scc))
1215 badness = badness.shift (badness > 0 ? 3 : -3);
1216 else if (hints & (INLINE_HINT_in_scc))
1217 badness = badness.shift (badness > 0 ? 2 : -2);
1218 else if (hints & (INLINE_HINT_cross_module))
1219 badness = badness.shift (badness > 0 ? 1 : -1);
1220 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1221 badness = badness.shift (badness > 0 ? -4 : 4);
1222 else if ((hints & INLINE_HINT_declared_inline))
1223 badness = badness.shift (badness > 0 ? -3 : 3);
1224 if (dump)
1225 fprintf (dump_file, " Adjusted by hints %f\n", badness.to_double ());
1226 return badness;
1229 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1230 static inline void
1231 update_edge_key (edge_heap_t *heap, struct cgraph_edge *edge)
1233 sreal badness = edge_badness (edge, false);
1234 if (edge->aux)
1236 edge_heap_node_t *n = (edge_heap_node_t *) edge->aux;
1237 gcc_checking_assert (n->get_data () == edge);
1239 /* fibonacci_heap::replace_key does busy updating of the
1240 heap that is unnecesarily expensive.
1241 We do lazy increases: after extracting minimum if the key
1242 turns out to be out of date, it is re-inserted into heap
1243 with correct value. */
1244 if (badness < n->get_key ())
1246 if (dump_file && (dump_flags & TDF_DETAILS))
1248 fprintf (dump_file,
1249 " decreasing badness %s -> %s, %f to %f\n",
1250 edge->caller->dump_name (),
1251 edge->callee->dump_name (),
1252 n->get_key ().to_double (),
1253 badness.to_double ());
1255 heap->decrease_key (n, badness);
1258 else
1260 if (dump_file && (dump_flags & TDF_DETAILS))
1262 fprintf (dump_file,
1263 " enqueuing call %s -> %s, badness %f\n",
1264 edge->caller->dump_name (),
1265 edge->callee->dump_name (),
1266 badness.to_double ());
1268 edge->aux = heap->insert (badness, edge);
1273 /* NODE was inlined.
1274 All caller edges needs to be resetted because
1275 size estimates change. Similarly callees needs reset
1276 because better context may be known. */
1278 static void
1279 reset_edge_caches (struct cgraph_node *node)
1281 struct cgraph_edge *edge;
1282 struct cgraph_edge *e = node->callees;
1283 struct cgraph_node *where = node;
1284 struct ipa_ref *ref;
1286 if (where->global.inlined_to)
1287 where = where->global.inlined_to;
1289 for (edge = where->callers; edge; edge = edge->next_caller)
1290 if (edge->inline_failed)
1291 reset_edge_growth_cache (edge);
1293 FOR_EACH_ALIAS (where, ref)
1294 reset_edge_caches (dyn_cast <cgraph_node *> (ref->referring));
1296 if (!e)
1297 return;
1299 while (true)
1300 if (!e->inline_failed && e->callee->callees)
1301 e = e->callee->callees;
1302 else
1304 if (e->inline_failed)
1305 reset_edge_growth_cache (e);
1306 if (e->next_callee)
1307 e = e->next_callee;
1308 else
1312 if (e->caller == node)
1313 return;
1314 e = e->caller->callers;
1316 while (!e->next_callee);
1317 e = e->next_callee;
1322 /* Recompute HEAP nodes for each of caller of NODE.
1323 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1324 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1325 it is inlinable. Otherwise check all edges. */
1327 static void
1328 update_caller_keys (edge_heap_t *heap, struct cgraph_node *node,
1329 bitmap updated_nodes,
1330 struct cgraph_edge *check_inlinablity_for)
1332 struct cgraph_edge *edge;
1333 struct ipa_ref *ref;
1335 if ((!node->alias && !ipa_fn_summaries->get (node)->inlinable)
1336 || node->global.inlined_to)
1337 return;
1338 if (!bitmap_set_bit (updated_nodes, node->uid))
1339 return;
1341 FOR_EACH_ALIAS (node, ref)
1343 struct cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
1344 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1347 for (edge = node->callers; edge; edge = edge->next_caller)
1348 if (edge->inline_failed)
1350 if (!check_inlinablity_for
1351 || check_inlinablity_for == edge)
1353 if (can_inline_edge_p (edge, false)
1354 && want_inline_small_function_p (edge, false)
1355 && can_inline_edge_by_limits_p (edge, false))
1356 update_edge_key (heap, edge);
1357 else if (edge->aux)
1359 report_inline_failed_reason (edge);
1360 heap->delete_node ((edge_heap_node_t *) edge->aux);
1361 edge->aux = NULL;
1364 else if (edge->aux)
1365 update_edge_key (heap, edge);
1369 /* Recompute HEAP nodes for each uninlined call in NODE.
1370 This is used when we know that edge badnesses are going only to increase
1371 (we introduced new call site) and thus all we need is to insert newly
1372 created edges into heap. */
1374 static void
1375 update_callee_keys (edge_heap_t *heap, struct cgraph_node *node,
1376 bitmap updated_nodes)
1378 struct cgraph_edge *e = node->callees;
1380 if (!e)
1381 return;
1382 while (true)
1383 if (!e->inline_failed && e->callee->callees)
1384 e = e->callee->callees;
1385 else
1387 enum availability avail;
1388 struct cgraph_node *callee;
1389 /* We do not reset callee growth cache here. Since we added a new call,
1390 growth chould have just increased and consequentely badness metric
1391 don't need updating. */
1392 if (e->inline_failed
1393 && (callee = e->callee->ultimate_alias_target (&avail, e->caller))
1394 && ipa_fn_summaries->get (callee)->inlinable
1395 && avail >= AVAIL_AVAILABLE
1396 && !bitmap_bit_p (updated_nodes, callee->uid))
1398 if (can_inline_edge_p (e, false)
1399 && want_inline_small_function_p (e, false)
1400 && can_inline_edge_by_limits_p (e, false))
1401 update_edge_key (heap, e);
1402 else if (e->aux)
1404 report_inline_failed_reason (e);
1405 heap->delete_node ((edge_heap_node_t *) e->aux);
1406 e->aux = NULL;
1409 if (e->next_callee)
1410 e = e->next_callee;
1411 else
1415 if (e->caller == node)
1416 return;
1417 e = e->caller->callers;
1419 while (!e->next_callee);
1420 e = e->next_callee;
1425 /* Enqueue all recursive calls from NODE into priority queue depending on
1426 how likely we want to recursively inline the call. */
1428 static void
1429 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1430 edge_heap_t *heap)
1432 struct cgraph_edge *e;
1433 enum availability avail;
1435 for (e = where->callees; e; e = e->next_callee)
1436 if (e->callee == node
1437 || (e->callee->ultimate_alias_target (&avail, e->caller) == node
1438 && avail > AVAIL_INTERPOSABLE))
1439 heap->insert (-e->sreal_frequency (), e);
1440 for (e = where->callees; e; e = e->next_callee)
1441 if (!e->inline_failed)
1442 lookup_recursive_calls (node, e->callee, heap);
1445 /* Decide on recursive inlining: in the case function has recursive calls,
1446 inline until body size reaches given argument. If any new indirect edges
1447 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1448 is NULL. */
1450 static bool
1451 recursive_inlining (struct cgraph_edge *edge,
1452 vec<cgraph_edge *> *new_edges)
1454 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1455 edge_heap_t heap (sreal::min ());
1456 struct cgraph_node *node;
1457 struct cgraph_edge *e;
1458 struct cgraph_node *master_clone = NULL, *next;
1459 int depth = 0;
1460 int n = 0;
1462 node = edge->caller;
1463 if (node->global.inlined_to)
1464 node = node->global.inlined_to;
1466 if (DECL_DECLARED_INLINE_P (node->decl))
1467 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1469 /* Make sure that function is small enough to be considered for inlining. */
1470 if (estimate_size_after_inlining (node, edge) >= limit)
1471 return false;
1472 lookup_recursive_calls (node, node, &heap);
1473 if (heap.empty ())
1474 return false;
1476 if (dump_file)
1477 fprintf (dump_file,
1478 " Performing recursive inlining on %s\n",
1479 node->name ());
1481 /* Do the inlining and update list of recursive call during process. */
1482 while (!heap.empty ())
1484 struct cgraph_edge *curr = heap.extract_min ();
1485 struct cgraph_node *cnode, *dest = curr->callee;
1487 if (!can_inline_edge_p (curr, true)
1488 || can_inline_edge_by_limits_p (curr, true))
1489 continue;
1491 /* MASTER_CLONE is produced in the case we already started modified
1492 the function. Be sure to redirect edge to the original body before
1493 estimating growths otherwise we will be seeing growths after inlining
1494 the already modified body. */
1495 if (master_clone)
1497 curr->redirect_callee (master_clone);
1498 reset_edge_growth_cache (curr);
1501 if (estimate_size_after_inlining (node, curr) > limit)
1503 curr->redirect_callee (dest);
1504 reset_edge_growth_cache (curr);
1505 break;
1508 depth = 1;
1509 for (cnode = curr->caller;
1510 cnode->global.inlined_to; cnode = cnode->callers->caller)
1511 if (node->decl
1512 == curr->callee->ultimate_alias_target ()->decl)
1513 depth++;
1515 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1517 curr->redirect_callee (dest);
1518 reset_edge_growth_cache (curr);
1519 continue;
1522 if (dump_file)
1524 fprintf (dump_file,
1525 " Inlining call of depth %i", depth);
1526 if (node->count.nonzero_p ())
1528 fprintf (dump_file, " called approx. %.2f times per call",
1529 (double)curr->count.to_gcov_type ()
1530 / node->count.to_gcov_type ());
1532 fprintf (dump_file, "\n");
1534 if (!master_clone)
1536 /* We need original clone to copy around. */
1537 master_clone = node->create_clone (node->decl, node->count,
1538 false, vNULL, true, NULL, NULL);
1539 for (e = master_clone->callees; e; e = e->next_callee)
1540 if (!e->inline_failed)
1541 clone_inlined_nodes (e, true, false, NULL);
1542 curr->redirect_callee (master_clone);
1543 reset_edge_growth_cache (curr);
1546 inline_call (curr, false, new_edges, &overall_size, true);
1547 lookup_recursive_calls (node, curr->callee, &heap);
1548 n++;
1551 if (!heap.empty () && dump_file)
1552 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1554 if (!master_clone)
1555 return false;
1557 if (dump_file)
1558 fprintf (dump_file,
1559 "\n Inlined %i times, "
1560 "body grown from size %i to %i, time %f to %f\n", n,
1561 ipa_fn_summaries->get (master_clone)->size,
1562 ipa_fn_summaries->get (node)->size,
1563 ipa_fn_summaries->get (master_clone)->time.to_double (),
1564 ipa_fn_summaries->get (node)->time.to_double ());
1566 /* Remove master clone we used for inlining. We rely that clones inlined
1567 into master clone gets queued just before master clone so we don't
1568 need recursion. */
1569 for (node = symtab->first_function (); node != master_clone;
1570 node = next)
1572 next = symtab->next_function (node);
1573 if (node->global.inlined_to == master_clone)
1574 node->remove ();
1576 master_clone->remove ();
1577 return true;
1581 /* Given whole compilation unit estimate of INSNS, compute how large we can
1582 allow the unit to grow. */
1584 static int
1585 compute_max_insns (int insns)
1587 int max_insns = insns;
1588 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1589 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1591 return ((int64_t) max_insns
1592 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1596 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1598 static void
1599 add_new_edges_to_heap (edge_heap_t *heap, vec<cgraph_edge *> new_edges)
1601 while (new_edges.length () > 0)
1603 struct cgraph_edge *edge = new_edges.pop ();
1605 gcc_assert (!edge->aux);
1606 if (edge->inline_failed
1607 && can_inline_edge_p (edge, true)
1608 && want_inline_small_function_p (edge, true)
1609 && can_inline_edge_by_limits_p (edge, true))
1610 edge->aux = heap->insert (edge_badness (edge, false), edge);
1614 /* Remove EDGE from the fibheap. */
1616 static void
1617 heap_edge_removal_hook (struct cgraph_edge *e, void *data)
1619 if (e->aux)
1621 ((edge_heap_t *)data)->delete_node ((edge_heap_node_t *)e->aux);
1622 e->aux = NULL;
1626 /* Return true if speculation of edge E seems useful.
1627 If ANTICIPATE_INLINING is true, be conservative and hope that E
1628 may get inlined. */
1630 bool
1631 speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
1633 enum availability avail;
1634 struct cgraph_node *target = e->callee->ultimate_alias_target (&avail,
1635 e->caller);
1636 struct cgraph_edge *direct, *indirect;
1637 struct ipa_ref *ref;
1639 gcc_assert (e->speculative && !e->indirect_unknown_callee);
1641 if (!e->maybe_hot_p ())
1642 return false;
1644 /* See if IP optimizations found something potentially useful about the
1645 function. For now we look only for CONST/PURE flags. Almost everything
1646 else we propagate is useless. */
1647 if (avail >= AVAIL_AVAILABLE)
1649 int ecf_flags = flags_from_decl_or_type (target->decl);
1650 if (ecf_flags & ECF_CONST)
1652 e->speculative_call_info (direct, indirect, ref);
1653 if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
1654 return true;
1656 else if (ecf_flags & ECF_PURE)
1658 e->speculative_call_info (direct, indirect, ref);
1659 if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
1660 return true;
1663 /* If we did not managed to inline the function nor redirect
1664 to an ipa-cp clone (that are seen by having local flag set),
1665 it is probably pointless to inline it unless hardware is missing
1666 indirect call predictor. */
1667 if (!anticipate_inlining && e->inline_failed && !target->local.local)
1668 return false;
1669 /* For overwritable targets there is not much to do. */
1670 if (e->inline_failed
1671 && (!can_inline_edge_p (e, false)
1672 || !can_inline_edge_by_limits_p (e, false, true)))
1673 return false;
1674 /* OK, speculation seems interesting. */
1675 return true;
1678 /* We know that EDGE is not going to be inlined.
1679 See if we can remove speculation. */
1681 static void
1682 resolve_noninline_speculation (edge_heap_t *edge_heap, struct cgraph_edge *edge)
1684 if (edge->speculative && !speculation_useful_p (edge, false))
1686 struct cgraph_node *node = edge->caller;
1687 struct cgraph_node *where = node->global.inlined_to
1688 ? node->global.inlined_to : node;
1689 auto_bitmap updated_nodes;
1691 if (edge->count.ipa ().initialized_p ())
1692 spec_rem += edge->count.ipa ();
1693 edge->resolve_speculation ();
1694 reset_edge_caches (where);
1695 ipa_update_overall_fn_summary (where);
1696 update_caller_keys (edge_heap, where,
1697 updated_nodes, NULL);
1698 update_callee_keys (edge_heap, where,
1699 updated_nodes);
1703 /* Return true if NODE should be accounted for overall size estimate.
1704 Skip all nodes optimized for size so we can measure the growth of hot
1705 part of program no matter of the padding. */
1707 bool
1708 inline_account_function_p (struct cgraph_node *node)
1710 return (!DECL_EXTERNAL (node->decl)
1711 && !opt_for_fn (node->decl, optimize_size)
1712 && node->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED);
1715 /* Count number of callers of NODE and store it into DATA (that
1716 points to int. Worker for cgraph_for_node_and_aliases. */
1718 static bool
1719 sum_callers (struct cgraph_node *node, void *data)
1721 struct cgraph_edge *e;
1722 int *num_calls = (int *)data;
1724 for (e = node->callers; e; e = e->next_caller)
1725 (*num_calls)++;
1726 return false;
1729 /* We use greedy algorithm for inlining of small functions:
1730 All inline candidates are put into prioritized heap ordered in
1731 increasing badness.
1733 The inlining of small functions is bounded by unit growth parameters. */
1735 static void
1736 inline_small_functions (void)
1738 struct cgraph_node *node;
1739 struct cgraph_edge *edge;
1740 edge_heap_t edge_heap (sreal::min ());
1741 auto_bitmap updated_nodes;
1742 int min_size, max_size;
1743 auto_vec<cgraph_edge *> new_indirect_edges;
1744 int initial_size = 0;
1745 struct cgraph_node **order = XCNEWVEC (cgraph_node *, symtab->cgraph_count);
1746 struct cgraph_edge_hook_list *edge_removal_hook_holder;
1747 new_indirect_edges.create (8);
1749 edge_removal_hook_holder
1750 = symtab->add_edge_removal_hook (&heap_edge_removal_hook, &edge_heap);
1752 /* Compute overall unit size and other global parameters used by badness
1753 metrics. */
1755 max_count = profile_count::uninitialized ();
1756 ipa_reduced_postorder (order, true, true, NULL);
1757 free (order);
1759 FOR_EACH_DEFINED_FUNCTION (node)
1760 if (!node->global.inlined_to)
1762 if (!node->alias && node->analyzed
1763 && (node->has_gimple_body_p () || node->thunk.thunk_p)
1764 && opt_for_fn (node->decl, optimize))
1766 struct ipa_fn_summary *info = ipa_fn_summaries->get (node);
1767 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
1769 /* Do not account external functions, they will be optimized out
1770 if not inlined. Also only count the non-cold portion of program. */
1771 if (inline_account_function_p (node))
1772 initial_size += info->size;
1773 info->growth = estimate_growth (node);
1775 int num_calls = 0;
1776 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
1777 true);
1778 if (num_calls == 1)
1779 info->single_caller = true;
1780 if (dfs && dfs->next_cycle)
1782 struct cgraph_node *n2;
1783 int id = dfs->scc_no + 1;
1784 for (n2 = node; n2;
1785 n2 = ((struct ipa_dfs_info *) node->aux)->next_cycle)
1786 if (opt_for_fn (n2->decl, optimize))
1788 struct ipa_fn_summary *info2 = ipa_fn_summaries->get (n2);
1789 if (info2->scc_no)
1790 break;
1791 info2->scc_no = id;
1796 for (edge = node->callers; edge; edge = edge->next_caller)
1797 max_count = max_count.max (edge->count.ipa ());
1799 ipa_free_postorder_info ();
1800 initialize_growth_caches ();
1802 if (dump_file)
1803 fprintf (dump_file,
1804 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1805 initial_size);
1807 overall_size = initial_size;
1808 max_size = compute_max_insns (overall_size);
1809 min_size = overall_size;
1811 /* Populate the heap with all edges we might inline. */
1813 FOR_EACH_DEFINED_FUNCTION (node)
1815 bool update = false;
1816 struct cgraph_edge *next = NULL;
1817 bool has_speculative = false;
1819 if (!opt_for_fn (node->decl, optimize))
1820 continue;
1822 if (dump_file)
1823 fprintf (dump_file, "Enqueueing calls in %s.\n", node->dump_name ());
1825 for (edge = node->callees; edge; edge = next)
1827 next = edge->next_callee;
1828 if (edge->inline_failed
1829 && !edge->aux
1830 && can_inline_edge_p (edge, true)
1831 && want_inline_small_function_p (edge, true)
1832 && can_inline_edge_by_limits_p (edge, true)
1833 && edge->inline_failed)
1835 gcc_assert (!edge->aux);
1836 update_edge_key (&edge_heap, edge);
1838 if (edge->speculative)
1839 has_speculative = true;
1841 if (has_speculative)
1842 for (edge = node->callees; edge; edge = next)
1843 if (edge->speculative && !speculation_useful_p (edge,
1844 edge->aux != NULL))
1846 edge->resolve_speculation ();
1847 update = true;
1849 if (update)
1851 struct cgraph_node *where = node->global.inlined_to
1852 ? node->global.inlined_to : node;
1853 ipa_update_overall_fn_summary (where);
1854 reset_edge_caches (where);
1855 update_caller_keys (&edge_heap, where,
1856 updated_nodes, NULL);
1857 update_callee_keys (&edge_heap, where,
1858 updated_nodes);
1859 bitmap_clear (updated_nodes);
1863 gcc_assert (in_lto_p
1864 || !(max_count > 0)
1865 || (profile_info && flag_branch_probabilities));
1867 while (!edge_heap.empty ())
1869 int old_size = overall_size;
1870 struct cgraph_node *where, *callee;
1871 sreal badness = edge_heap.min_key ();
1872 sreal current_badness;
1873 int growth;
1875 edge = edge_heap.extract_min ();
1876 gcc_assert (edge->aux);
1877 edge->aux = NULL;
1878 if (!edge->inline_failed || !edge->callee->analyzed)
1879 continue;
1881 #if CHECKING_P
1882 /* Be sure that caches are maintained consistent.
1883 This check is affected by scaling roundoff errors when compiling for
1884 IPA this we skip it in that case. */
1885 if (!edge->callee->count.ipa_p ()
1886 && (!max_count.initialized_p () || !max_count.nonzero_p ()))
1888 sreal cached_badness = edge_badness (edge, false);
1890 int old_size_est = estimate_edge_size (edge);
1891 sreal old_time_est = estimate_edge_time (edge);
1892 int old_hints_est = estimate_edge_hints (edge);
1894 reset_edge_growth_cache (edge);
1895 gcc_assert (old_size_est == estimate_edge_size (edge));
1896 gcc_assert (old_time_est == estimate_edge_time (edge));
1897 /* FIXME:
1899 gcc_assert (old_hints_est == estimate_edge_hints (edge));
1901 fails with profile feedback because some hints depends on
1902 maybe_hot_edge_p predicate and because callee gets inlined to other
1903 calls, the edge may become cold.
1904 This ought to be fixed by computing relative probabilities
1905 for given invocation but that will be better done once whole
1906 code is converted to sreals. Disable for now and revert to "wrong"
1907 value so enable/disable checking paths agree. */
1908 edge_growth_cache[edge->uid].hints = old_hints_est + 1;
1910 /* When updating the edge costs, we only decrease badness in the keys.
1911 Increases of badness are handled lazilly; when we see key with out
1912 of date value on it, we re-insert it now. */
1913 current_badness = edge_badness (edge, false);
1914 gcc_assert (cached_badness == current_badness);
1915 gcc_assert (current_badness >= badness);
1917 else
1918 current_badness = edge_badness (edge, false);
1919 #else
1920 current_badness = edge_badness (edge, false);
1921 #endif
1922 if (current_badness != badness)
1924 if (edge_heap.min () && current_badness > edge_heap.min_key ())
1926 edge->aux = edge_heap.insert (current_badness, edge);
1927 continue;
1929 else
1930 badness = current_badness;
1933 if (!can_inline_edge_p (edge, true)
1934 || !can_inline_edge_by_limits_p (edge, true))
1936 resolve_noninline_speculation (&edge_heap, edge);
1937 continue;
1940 callee = edge->callee->ultimate_alias_target ();
1941 growth = estimate_edge_growth (edge);
1942 if (dump_file)
1944 fprintf (dump_file,
1945 "\nConsidering %s with %i size\n",
1946 callee->dump_name (),
1947 ipa_fn_summaries->get (callee)->size);
1948 fprintf (dump_file,
1949 " to be inlined into %s in %s:%i\n"
1950 " Estimated badness is %f, frequency %.2f.\n",
1951 edge->caller->dump_name (),
1952 edge->call_stmt
1953 && (LOCATION_LOCUS (gimple_location ((const gimple *)
1954 edge->call_stmt))
1955 > BUILTINS_LOCATION)
1956 ? gimple_filename ((const gimple *) edge->call_stmt)
1957 : "unknown",
1958 edge->call_stmt
1959 ? gimple_lineno ((const gimple *) edge->call_stmt)
1960 : -1,
1961 badness.to_double (),
1962 edge->sreal_frequency ().to_double ());
1963 if (edge->count.ipa ().initialized_p ())
1965 fprintf (dump_file, " Called ");
1966 edge->count.ipa ().dump (dump_file);
1967 fprintf (dump_file, " times\n");
1969 if (dump_flags & TDF_DETAILS)
1970 edge_badness (edge, true);
1973 if (overall_size + growth > max_size
1974 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1976 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1977 report_inline_failed_reason (edge);
1978 resolve_noninline_speculation (&edge_heap, edge);
1979 continue;
1982 if (!want_inline_small_function_p (edge, true))
1984 resolve_noninline_speculation (&edge_heap, edge);
1985 continue;
1988 /* Heuristics for inlining small functions work poorly for
1989 recursive calls where we do effects similar to loop unrolling.
1990 When inlining such edge seems profitable, leave decision on
1991 specific inliner. */
1992 if (edge->recursive_p ())
1994 where = edge->caller;
1995 if (where->global.inlined_to)
1996 where = where->global.inlined_to;
1997 if (!recursive_inlining (edge,
1998 opt_for_fn (edge->caller->decl,
1999 flag_indirect_inlining)
2000 ? &new_indirect_edges : NULL))
2002 edge->inline_failed = CIF_RECURSIVE_INLINING;
2003 resolve_noninline_speculation (&edge_heap, edge);
2004 continue;
2006 reset_edge_caches (where);
2007 /* Recursive inliner inlines all recursive calls of the function
2008 at once. Consequently we need to update all callee keys. */
2009 if (opt_for_fn (edge->caller->decl, flag_indirect_inlining))
2010 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
2011 update_callee_keys (&edge_heap, where, updated_nodes);
2012 bitmap_clear (updated_nodes);
2014 else
2016 struct cgraph_node *outer_node = NULL;
2017 int depth = 0;
2019 /* Consider the case where self recursive function A is inlined
2020 into B. This is desired optimization in some cases, since it
2021 leads to effect similar of loop peeling and we might completely
2022 optimize out the recursive call. However we must be extra
2023 selective. */
2025 where = edge->caller;
2026 while (where->global.inlined_to)
2028 if (where->decl == callee->decl)
2029 outer_node = where, depth++;
2030 where = where->callers->caller;
2032 if (outer_node
2033 && !want_inline_self_recursive_call_p (edge, outer_node,
2034 true, depth))
2036 edge->inline_failed
2037 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
2038 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
2039 resolve_noninline_speculation (&edge_heap, edge);
2040 continue;
2042 else if (depth && dump_file)
2043 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
2045 gcc_checking_assert (!callee->global.inlined_to);
2046 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
2047 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
2049 reset_edge_caches (edge->callee);
2051 update_callee_keys (&edge_heap, where, updated_nodes);
2053 where = edge->caller;
2054 if (where->global.inlined_to)
2055 where = where->global.inlined_to;
2057 /* Our profitability metric can depend on local properties
2058 such as number of inlinable calls and size of the function body.
2059 After inlining these properties might change for the function we
2060 inlined into (since it's body size changed) and for the functions
2061 called by function we inlined (since number of it inlinable callers
2062 might change). */
2063 update_caller_keys (&edge_heap, where, updated_nodes, NULL);
2064 /* Offline copy count has possibly changed, recompute if profile is
2065 available. */
2066 struct cgraph_node *n = cgraph_node::get (edge->callee->decl);
2067 if (n != edge->callee && n->analyzed && n->count.ipa ().initialized_p ())
2068 update_callee_keys (&edge_heap, n, updated_nodes);
2069 bitmap_clear (updated_nodes);
2071 if (dump_file)
2073 fprintf (dump_file,
2074 " Inlined %s into %s which now has time %f and size %i, "
2075 "net change of %+i.\n",
2076 xstrdup_for_dump (edge->callee->name ()),
2077 xstrdup_for_dump (edge->caller->name ()),
2078 ipa_fn_summaries->get (edge->caller)->time.to_double (),
2079 ipa_fn_summaries->get (edge->caller)->size,
2080 overall_size - old_size);
2082 if (min_size > overall_size)
2084 min_size = overall_size;
2085 max_size = compute_max_insns (min_size);
2087 if (dump_file)
2088 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
2092 free_growth_caches ();
2093 if (dump_file)
2094 fprintf (dump_file,
2095 "Unit growth for small function inlining: %i->%i (%i%%)\n",
2096 initial_size, overall_size,
2097 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
2098 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
2101 /* Flatten NODE. Performed both during early inlining and
2102 at IPA inlining time. */
2104 static void
2105 flatten_function (struct cgraph_node *node, bool early)
2107 struct cgraph_edge *e;
2109 /* We shouldn't be called recursively when we are being processed. */
2110 gcc_assert (node->aux == NULL);
2112 node->aux = (void *) node;
2114 for (e = node->callees; e; e = e->next_callee)
2116 struct cgraph_node *orig_callee;
2117 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2119 /* We've hit cycle? It is time to give up. */
2120 if (callee->aux)
2122 if (dump_file)
2123 fprintf (dump_file,
2124 "Not inlining %s into %s to avoid cycle.\n",
2125 xstrdup_for_dump (callee->name ()),
2126 xstrdup_for_dump (e->caller->name ()));
2127 if (cgraph_inline_failed_type (e->inline_failed) != CIF_FINAL_ERROR)
2128 e->inline_failed = CIF_RECURSIVE_INLINING;
2129 continue;
2132 /* When the edge is already inlined, we just need to recurse into
2133 it in order to fully flatten the leaves. */
2134 if (!e->inline_failed)
2136 flatten_function (callee, early);
2137 continue;
2140 /* Flatten attribute needs to be processed during late inlining. For
2141 extra code quality we however do flattening during early optimization,
2142 too. */
2143 if (!early
2144 ? !can_inline_edge_p (e, true)
2145 && !can_inline_edge_by_limits_p (e, true)
2146 : !can_early_inline_edge_p (e))
2147 continue;
2149 if (e->recursive_p ())
2151 if (dump_file)
2152 fprintf (dump_file, "Not inlining: recursive call.\n");
2153 continue;
2156 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
2157 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
2159 if (dump_file)
2160 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
2161 continue;
2164 /* Inline the edge and flatten the inline clone. Avoid
2165 recursing through the original node if the node was cloned. */
2166 if (dump_file)
2167 fprintf (dump_file, " Inlining %s into %s.\n",
2168 xstrdup_for_dump (callee->name ()),
2169 xstrdup_for_dump (e->caller->name ()));
2170 orig_callee = callee;
2171 inline_call (e, true, NULL, NULL, false);
2172 if (e->callee != orig_callee)
2173 orig_callee->aux = (void *) node;
2174 flatten_function (e->callee, early);
2175 if (e->callee != orig_callee)
2176 orig_callee->aux = NULL;
2179 node->aux = NULL;
2180 if (!node->global.inlined_to)
2181 ipa_update_overall_fn_summary (node);
2184 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
2185 DATA points to number of calls originally found so we avoid infinite
2186 recursion. */
2188 static bool
2189 inline_to_all_callers_1 (struct cgraph_node *node, void *data,
2190 hash_set<cgraph_node *> *callers)
2192 int *num_calls = (int *)data;
2193 bool callee_removed = false;
2195 while (node->callers && !node->global.inlined_to)
2197 struct cgraph_node *caller = node->callers->caller;
2199 if (!can_inline_edge_p (node->callers, true)
2200 || !can_inline_edge_by_limits_p (node->callers, true)
2201 || node->callers->recursive_p ())
2203 if (dump_file)
2204 fprintf (dump_file, "Uninlinable call found; giving up.\n");
2205 *num_calls = 0;
2206 return false;
2209 if (dump_file)
2211 fprintf (dump_file,
2212 "\nInlining %s size %i.\n",
2213 node->name (),
2214 ipa_fn_summaries->get (node)->size);
2215 fprintf (dump_file,
2216 " Called once from %s %i insns.\n",
2217 node->callers->caller->name (),
2218 ipa_fn_summaries->get (node->callers->caller)->size);
2221 /* Remember which callers we inlined to, delaying updating the
2222 overall summary. */
2223 callers->add (node->callers->caller);
2224 inline_call (node->callers, true, NULL, NULL, false, &callee_removed);
2225 if (dump_file)
2226 fprintf (dump_file,
2227 " Inlined into %s which now has %i size\n",
2228 caller->name (),
2229 ipa_fn_summaries->get (caller)->size);
2230 if (!(*num_calls)--)
2232 if (dump_file)
2233 fprintf (dump_file, "New calls found; giving up.\n");
2234 return callee_removed;
2236 if (callee_removed)
2237 return true;
2239 return false;
2242 /* Wrapper around inline_to_all_callers_1 doing delayed overall summary
2243 update. */
2245 static bool
2246 inline_to_all_callers (struct cgraph_node *node, void *data)
2248 hash_set<cgraph_node *> callers;
2249 bool res = inline_to_all_callers_1 (node, data, &callers);
2250 /* Perform the delayed update of the overall summary of all callers
2251 processed. This avoids quadratic behavior in the cases where
2252 we have a lot of calls to the same function. */
2253 for (hash_set<cgraph_node *>::iterator i = callers.begin ();
2254 i != callers.end (); ++i)
2255 ipa_update_overall_fn_summary (*i);
2256 return res;
2259 /* Output overall time estimate. */
2260 static void
2261 dump_overall_stats (void)
2263 sreal sum_weighted = 0, sum = 0;
2264 struct cgraph_node *node;
2266 FOR_EACH_DEFINED_FUNCTION (node)
2267 if (!node->global.inlined_to
2268 && !node->alias)
2270 sreal time = ipa_fn_summaries->get (node)->time;
2271 sum += time;
2272 if (node->count.ipa ().initialized_p ())
2273 sum_weighted += time * node->count.ipa ().to_gcov_type ();
2275 fprintf (dump_file, "Overall time estimate: "
2276 "%f weighted by profile: "
2277 "%f\n", sum.to_double (), sum_weighted.to_double ());
2280 /* Output some useful stats about inlining. */
2282 static void
2283 dump_inline_stats (void)
2285 int64_t inlined_cnt = 0, inlined_indir_cnt = 0;
2286 int64_t inlined_virt_cnt = 0, inlined_virt_indir_cnt = 0;
2287 int64_t noninlined_cnt = 0, noninlined_indir_cnt = 0;
2288 int64_t noninlined_virt_cnt = 0, noninlined_virt_indir_cnt = 0;
2289 int64_t inlined_speculative = 0, inlined_speculative_ply = 0;
2290 int64_t indirect_poly_cnt = 0, indirect_cnt = 0;
2291 int64_t reason[CIF_N_REASONS][2];
2292 sreal reason_freq[CIF_N_REASONS];
2293 int i;
2294 struct cgraph_node *node;
2296 memset (reason, 0, sizeof (reason));
2297 for (i=0; i < CIF_N_REASONS; i++)
2298 reason_freq[i] = 0;
2299 FOR_EACH_DEFINED_FUNCTION (node)
2301 struct cgraph_edge *e;
2302 for (e = node->callees; e; e = e->next_callee)
2304 if (e->inline_failed)
2306 if (e->count.ipa ().initialized_p ())
2307 reason[(int) e->inline_failed][0] += e->count.ipa ().to_gcov_type ();
2308 reason_freq[(int) e->inline_failed] += e->sreal_frequency ();
2309 reason[(int) e->inline_failed][1] ++;
2310 if (DECL_VIRTUAL_P (e->callee->decl)
2311 && e->count.ipa ().initialized_p ())
2313 if (e->indirect_inlining_edge)
2314 noninlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2315 else
2316 noninlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2318 else if (e->count.ipa ().initialized_p ())
2320 if (e->indirect_inlining_edge)
2321 noninlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2322 else
2323 noninlined_cnt += e->count.ipa ().to_gcov_type ();
2326 else if (e->count.ipa ().initialized_p ())
2328 if (e->speculative)
2330 if (DECL_VIRTUAL_P (e->callee->decl))
2331 inlined_speculative_ply += e->count.ipa ().to_gcov_type ();
2332 else
2333 inlined_speculative += e->count.ipa ().to_gcov_type ();
2335 else if (DECL_VIRTUAL_P (e->callee->decl))
2337 if (e->indirect_inlining_edge)
2338 inlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2339 else
2340 inlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2342 else
2344 if (e->indirect_inlining_edge)
2345 inlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2346 else
2347 inlined_cnt += e->count.ipa ().to_gcov_type ();
2351 for (e = node->indirect_calls; e; e = e->next_callee)
2352 if (e->indirect_info->polymorphic
2353 & e->count.ipa ().initialized_p ())
2354 indirect_poly_cnt += e->count.ipa ().to_gcov_type ();
2355 else if (e->count.ipa ().initialized_p ())
2356 indirect_cnt += e->count.ipa ().to_gcov_type ();
2358 if (max_count.initialized_p ())
2360 fprintf (dump_file,
2361 "Inlined %" PRId64 " + speculative "
2362 "%" PRId64 " + speculative polymorphic "
2363 "%" PRId64 " + previously indirect "
2364 "%" PRId64 " + virtual "
2365 "%" PRId64 " + virtual and previously indirect "
2366 "%" PRId64 "\n" "Not inlined "
2367 "%" PRId64 " + previously indirect "
2368 "%" PRId64 " + virtual "
2369 "%" PRId64 " + virtual and previously indirect "
2370 "%" PRId64 " + stil indirect "
2371 "%" PRId64 " + still indirect polymorphic "
2372 "%" PRId64 "\n", inlined_cnt,
2373 inlined_speculative, inlined_speculative_ply,
2374 inlined_indir_cnt, inlined_virt_cnt, inlined_virt_indir_cnt,
2375 noninlined_cnt, noninlined_indir_cnt, noninlined_virt_cnt,
2376 noninlined_virt_indir_cnt, indirect_cnt, indirect_poly_cnt);
2377 fprintf (dump_file, "Removed speculations ");
2378 spec_rem.dump (dump_file);
2379 fprintf (dump_file, "\n");
2381 dump_overall_stats ();
2382 fprintf (dump_file, "\nWhy inlining failed?\n");
2383 for (i = 0; i < CIF_N_REASONS; i++)
2384 if (reason[i][1])
2385 fprintf (dump_file, "%-50s: %8i calls, %8f freq, %" PRId64" count\n",
2386 cgraph_inline_failed_string ((cgraph_inline_failed_t) i),
2387 (int) reason[i][1], reason_freq[i].to_double (), reason[i][0]);
2390 /* Called when node is removed. */
2392 static void
2393 flatten_remove_node_hook (struct cgraph_node *node, void *data)
2395 if (lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) == NULL)
2396 return;
2398 hash_set<struct cgraph_node *> *removed
2399 = (hash_set<struct cgraph_node *> *) data;
2400 removed->add (node);
2403 /* Decide on the inlining. We do so in the topological order to avoid
2404 expenses on updating data structures. */
2406 static unsigned int
2407 ipa_inline (void)
2409 struct cgraph_node *node;
2410 int nnodes;
2411 struct cgraph_node **order;
2412 int i, j;
2413 int cold;
2414 bool remove_functions = false;
2416 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
2418 if (dump_file)
2419 ipa_dump_fn_summaries (dump_file);
2421 nnodes = ipa_reverse_postorder (order);
2422 spec_rem = profile_count::zero ();
2424 FOR_EACH_FUNCTION (node)
2426 node->aux = 0;
2428 /* Recompute the default reasons for inlining because they may have
2429 changed during merging. */
2430 if (in_lto_p)
2432 for (cgraph_edge *e = node->callees; e; e = e->next_callee)
2434 gcc_assert (e->inline_failed);
2435 initialize_inline_failed (e);
2437 for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
2438 initialize_inline_failed (e);
2442 if (dump_file)
2443 fprintf (dump_file, "\nFlattening functions:\n");
2445 /* First shrink order array, so that it only contains nodes with
2446 flatten attribute. */
2447 for (i = nnodes - 1, j = i; i >= 0; i--)
2449 node = order[i];
2450 if (lookup_attribute ("flatten",
2451 DECL_ATTRIBUTES (node->decl)) != NULL)
2452 order[j--] = order[i];
2455 /* After the above loop, order[j + 1] ... order[nnodes - 1] contain
2456 nodes with flatten attribute. If there is more than one such
2457 node, we need to register a node removal hook, as flatten_function
2458 could remove other nodes with flatten attribute. See PR82801. */
2459 struct cgraph_node_hook_list *node_removal_hook_holder = NULL;
2460 hash_set<struct cgraph_node *> *flatten_removed_nodes = NULL;
2461 if (j < nnodes - 2)
2463 flatten_removed_nodes = new hash_set<struct cgraph_node *>;
2464 node_removal_hook_holder
2465 = symtab->add_cgraph_removal_hook (&flatten_remove_node_hook,
2466 flatten_removed_nodes);
2469 /* In the first pass handle functions to be flattened. Do this with
2470 a priority so none of our later choices will make this impossible. */
2471 for (i = nnodes - 1; i > j; i--)
2473 node = order[i];
2474 if (flatten_removed_nodes
2475 && flatten_removed_nodes->contains (node))
2476 continue;
2478 /* Handle nodes to be flattened.
2479 Ideally when processing callees we stop inlining at the
2480 entry of cycles, possibly cloning that entry point and
2481 try to flatten itself turning it into a self-recursive
2482 function. */
2483 if (dump_file)
2484 fprintf (dump_file, "Flattening %s\n", node->name ());
2485 flatten_function (node, false);
2488 if (j < nnodes - 2)
2490 symtab->remove_cgraph_removal_hook (node_removal_hook_holder);
2491 delete flatten_removed_nodes;
2493 free (order);
2495 if (dump_file)
2496 dump_overall_stats ();
2498 inline_small_functions ();
2500 gcc_assert (symtab->state == IPA_SSA);
2501 symtab->state = IPA_SSA_AFTER_INLINING;
2502 /* Do first after-inlining removal. We want to remove all "stale" extern
2503 inline functions and virtual functions so we really know what is called
2504 once. */
2505 symtab->remove_unreachable_nodes (dump_file);
2507 /* Inline functions with a property that after inlining into all callers the
2508 code size will shrink because the out-of-line copy is eliminated.
2509 We do this regardless on the callee size as long as function growth limits
2510 are met. */
2511 if (dump_file)
2512 fprintf (dump_file,
2513 "\nDeciding on functions to be inlined into all callers and "
2514 "removing useless speculations:\n");
2516 /* Inlining one function called once has good chance of preventing
2517 inlining other function into the same callee. Ideally we should
2518 work in priority order, but probably inlining hot functions first
2519 is good cut without the extra pain of maintaining the queue.
2521 ??? this is not really fitting the bill perfectly: inlining function
2522 into callee often leads to better optimization of callee due to
2523 increased context for optimization.
2524 For example if main() function calls a function that outputs help
2525 and then function that does the main optmization, we should inline
2526 the second with priority even if both calls are cold by themselves.
2528 We probably want to implement new predicate replacing our use of
2529 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2530 to be hot. */
2531 for (cold = 0; cold <= 1; cold ++)
2533 FOR_EACH_DEFINED_FUNCTION (node)
2535 struct cgraph_edge *edge, *next;
2536 bool update=false;
2538 if (!opt_for_fn (node->decl, optimize)
2539 || !opt_for_fn (node->decl, flag_inline_functions_called_once))
2540 continue;
2542 for (edge = node->callees; edge; edge = next)
2544 next = edge->next_callee;
2545 if (edge->speculative && !speculation_useful_p (edge, false))
2547 if (edge->count.ipa ().initialized_p ())
2548 spec_rem += edge->count.ipa ();
2549 edge->resolve_speculation ();
2550 update = true;
2551 remove_functions = true;
2554 if (update)
2556 struct cgraph_node *where = node->global.inlined_to
2557 ? node->global.inlined_to : node;
2558 reset_edge_caches (where);
2559 ipa_update_overall_fn_summary (where);
2561 if (want_inline_function_to_all_callers_p (node, cold))
2563 int num_calls = 0;
2564 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
2565 true);
2566 while (node->call_for_symbol_and_aliases
2567 (inline_to_all_callers, &num_calls, true))
2569 remove_functions = true;
2574 /* Free ipa-prop structures if they are no longer needed. */
2575 ipa_free_all_structures_after_iinln ();
2577 if (dump_file)
2579 fprintf (dump_file,
2580 "\nInlined %i calls, eliminated %i functions\n\n",
2581 ncalls_inlined, nfunctions_inlined);
2582 dump_inline_stats ();
2585 if (dump_file)
2586 ipa_dump_fn_summaries (dump_file);
2587 return remove_functions ? TODO_remove_functions : 0;
2590 /* Inline always-inline function calls in NODE. */
2592 static bool
2593 inline_always_inline_functions (struct cgraph_node *node)
2595 struct cgraph_edge *e;
2596 bool inlined = false;
2598 for (e = node->callees; e; e = e->next_callee)
2600 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2601 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2602 continue;
2604 if (e->recursive_p ())
2606 if (dump_file)
2607 fprintf (dump_file, " Not inlining recursive call to %s.\n",
2608 e->callee->name ());
2609 e->inline_failed = CIF_RECURSIVE_INLINING;
2610 continue;
2613 if (!can_early_inline_edge_p (e))
2615 /* Set inlined to true if the callee is marked "always_inline" but
2616 is not inlinable. This will allow flagging an error later in
2617 expand_call_inline in tree-inline.c. */
2618 if (lookup_attribute ("always_inline",
2619 DECL_ATTRIBUTES (callee->decl)) != NULL)
2620 inlined = true;
2621 continue;
2624 if (dump_file)
2625 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
2626 xstrdup_for_dump (e->callee->name ()),
2627 xstrdup_for_dump (e->caller->name ()));
2628 inline_call (e, true, NULL, NULL, false);
2629 inlined = true;
2631 if (inlined)
2632 ipa_update_overall_fn_summary (node);
2634 return inlined;
2637 /* Decide on the inlining. We do so in the topological order to avoid
2638 expenses on updating data structures. */
2640 static bool
2641 early_inline_small_functions (struct cgraph_node *node)
2643 struct cgraph_edge *e;
2644 bool inlined = false;
2646 for (e = node->callees; e; e = e->next_callee)
2648 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2649 if (!ipa_fn_summaries->get (callee)->inlinable
2650 || !e->inline_failed)
2651 continue;
2653 /* Do not consider functions not declared inline. */
2654 if (!DECL_DECLARED_INLINE_P (callee->decl)
2655 && !opt_for_fn (node->decl, flag_inline_small_functions)
2656 && !opt_for_fn (node->decl, flag_inline_functions))
2657 continue;
2659 if (dump_file)
2660 fprintf (dump_file, "Considering inline candidate %s.\n",
2661 callee->name ());
2663 if (!can_early_inline_edge_p (e))
2664 continue;
2666 if (e->recursive_p ())
2668 if (dump_file)
2669 fprintf (dump_file, " Not inlining: recursive call.\n");
2670 continue;
2673 if (!want_early_inline_function_p (e))
2674 continue;
2676 if (dump_file)
2677 fprintf (dump_file, " Inlining %s into %s.\n",
2678 xstrdup_for_dump (callee->name ()),
2679 xstrdup_for_dump (e->caller->name ()));
2680 inline_call (e, true, NULL, NULL, false);
2681 inlined = true;
2684 if (inlined)
2685 ipa_update_overall_fn_summary (node);
2687 return inlined;
2690 unsigned int
2691 early_inliner (function *fun)
2693 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2694 struct cgraph_edge *edge;
2695 unsigned int todo = 0;
2696 int iterations = 0;
2697 bool inlined = false;
2699 if (seen_error ())
2700 return 0;
2702 /* Do nothing if datastructures for ipa-inliner are already computed. This
2703 happens when some pass decides to construct new function and
2704 cgraph_add_new_function calls lowering passes and early optimization on
2705 it. This may confuse ourself when early inliner decide to inline call to
2706 function clone, because function clones don't have parameter list in
2707 ipa-prop matching their signature. */
2708 if (ipa_node_params_sum)
2709 return 0;
2711 if (flag_checking)
2712 node->verify ();
2713 node->remove_all_references ();
2715 /* Rebuild this reference because it dosn't depend on
2716 function's body and it's required to pass cgraph_node
2717 verification. */
2718 if (node->instrumented_version
2719 && !node->instrumentation_clone)
2720 node->create_reference (node->instrumented_version, IPA_REF_CHKP, NULL);
2722 /* Even when not optimizing or not inlining inline always-inline
2723 functions. */
2724 inlined = inline_always_inline_functions (node);
2726 if (!optimize
2727 || flag_no_inline
2728 || !flag_early_inlining
2729 /* Never inline regular functions into always-inline functions
2730 during incremental inlining. This sucks as functions calling
2731 always inline functions will get less optimized, but at the
2732 same time inlining of functions calling always inline
2733 function into an always inline function might introduce
2734 cycles of edges to be always inlined in the callgraph.
2736 We might want to be smarter and just avoid this type of inlining. */
2737 || (DECL_DISREGARD_INLINE_LIMITS (node->decl)
2738 && lookup_attribute ("always_inline",
2739 DECL_ATTRIBUTES (node->decl))))
2741 else if (lookup_attribute ("flatten",
2742 DECL_ATTRIBUTES (node->decl)) != NULL)
2744 /* When the function is marked to be flattened, recursively inline
2745 all calls in it. */
2746 if (dump_file)
2747 fprintf (dump_file,
2748 "Flattening %s\n", node->name ());
2749 flatten_function (node, true);
2750 inlined = true;
2752 else
2754 /* If some always_inline functions was inlined, apply the changes.
2755 This way we will not account always inline into growth limits and
2756 moreover we will inline calls from always inlines that we skipped
2757 previously because of conditional above. */
2758 if (inlined)
2760 timevar_push (TV_INTEGRATION);
2761 todo |= optimize_inline_calls (current_function_decl);
2762 /* optimize_inline_calls call above might have introduced new
2763 statements that don't have inline parameters computed. */
2764 for (edge = node->callees; edge; edge = edge->next_callee)
2766 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
2767 es->call_stmt_size
2768 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2769 es->call_stmt_time
2770 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2772 ipa_update_overall_fn_summary (node);
2773 inlined = false;
2774 timevar_pop (TV_INTEGRATION);
2776 /* We iterate incremental inlining to get trivial cases of indirect
2777 inlining. */
2778 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2779 && early_inline_small_functions (node))
2781 timevar_push (TV_INTEGRATION);
2782 todo |= optimize_inline_calls (current_function_decl);
2784 /* Technically we ought to recompute inline parameters so the new
2785 iteration of early inliner works as expected. We however have
2786 values approximately right and thus we only need to update edge
2787 info that might be cleared out for newly discovered edges. */
2788 for (edge = node->callees; edge; edge = edge->next_callee)
2790 /* We have no summary for new bound store calls yet. */
2791 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
2792 es->call_stmt_size
2793 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2794 es->call_stmt_time
2795 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2797 if (edge->callee->decl
2798 && !gimple_check_call_matching_types (
2799 edge->call_stmt, edge->callee->decl, false))
2801 edge->inline_failed = CIF_MISMATCHED_ARGUMENTS;
2802 edge->call_stmt_cannot_inline_p = true;
2805 if (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS) - 1)
2806 ipa_update_overall_fn_summary (node);
2807 timevar_pop (TV_INTEGRATION);
2808 iterations++;
2809 inlined = false;
2811 if (dump_file)
2812 fprintf (dump_file, "Iterations: %i\n", iterations);
2815 if (inlined)
2817 timevar_push (TV_INTEGRATION);
2818 todo |= optimize_inline_calls (current_function_decl);
2819 timevar_pop (TV_INTEGRATION);
2822 fun->always_inline_functions_inlined = true;
2824 return todo;
2827 /* Do inlining of small functions. Doing so early helps profiling and other
2828 passes to be somewhat more effective and avoids some code duplication in
2829 later real inlining pass for testcases with very many function calls. */
2831 namespace {
2833 const pass_data pass_data_early_inline =
2835 GIMPLE_PASS, /* type */
2836 "einline", /* name */
2837 OPTGROUP_INLINE, /* optinfo_flags */
2838 TV_EARLY_INLINING, /* tv_id */
2839 PROP_ssa, /* properties_required */
2840 0, /* properties_provided */
2841 0, /* properties_destroyed */
2842 0, /* todo_flags_start */
2843 0, /* todo_flags_finish */
2846 class pass_early_inline : public gimple_opt_pass
2848 public:
2849 pass_early_inline (gcc::context *ctxt)
2850 : gimple_opt_pass (pass_data_early_inline, ctxt)
2853 /* opt_pass methods: */
2854 virtual unsigned int execute (function *);
2856 }; // class pass_early_inline
2858 unsigned int
2859 pass_early_inline::execute (function *fun)
2861 return early_inliner (fun);
2864 } // anon namespace
2866 gimple_opt_pass *
2867 make_pass_early_inline (gcc::context *ctxt)
2869 return new pass_early_inline (ctxt);
2872 namespace {
2874 const pass_data pass_data_ipa_inline =
2876 IPA_PASS, /* type */
2877 "inline", /* name */
2878 OPTGROUP_INLINE, /* optinfo_flags */
2879 TV_IPA_INLINING, /* tv_id */
2880 0, /* properties_required */
2881 0, /* properties_provided */
2882 0, /* properties_destroyed */
2883 0, /* todo_flags_start */
2884 ( TODO_dump_symtab ), /* todo_flags_finish */
2887 class pass_ipa_inline : public ipa_opt_pass_d
2889 public:
2890 pass_ipa_inline (gcc::context *ctxt)
2891 : ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
2892 NULL, /* generate_summary */
2893 NULL, /* write_summary */
2894 NULL, /* read_summary */
2895 NULL, /* write_optimization_summary */
2896 NULL, /* read_optimization_summary */
2897 NULL, /* stmt_fixup */
2898 0, /* function_transform_todo_flags_start */
2899 inline_transform, /* function_transform */
2900 NULL) /* variable_transform */
2903 /* opt_pass methods: */
2904 virtual unsigned int execute (function *) { return ipa_inline (); }
2906 }; // class pass_ipa_inline
2908 } // anon namespace
2910 ipa_opt_pass_d *
2911 make_pass_ipa_inline (gcc::context *ctxt)
2913 return new pass_ipa_inline (ctxt);