2015-09-10 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / libgo / runtime / mgc0.c
blob662dd875762706b067fbc3571fba05e4a042ab0a
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Garbage collector (GC).
6 //
7 // GC is:
8 // - mark&sweep
9 // - mostly precise (with the exception of some C-allocated objects, assembly frames/arguments, etc)
10 // - parallel (up to MaxGcproc threads)
11 // - partially concurrent (mark is stop-the-world, while sweep is concurrent)
12 // - non-moving/non-compacting
13 // - full (non-partial)
15 // GC rate.
16 // Next GC is after we've allocated an extra amount of memory proportional to
17 // the amount already in use. The proportion is controlled by GOGC environment variable
18 // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
19 // (this mark is tracked in next_gc variable). This keeps the GC cost in linear
20 // proportion to the allocation cost. Adjusting GOGC just changes the linear constant
21 // (and also the amount of extra memory used).
23 // Concurrent sweep.
24 // The sweep phase proceeds concurrently with normal program execution.
25 // The heap is swept span-by-span both lazily (when a goroutine needs another span)
26 // and concurrently in a background goroutine (this helps programs that are not CPU bound).
27 // However, at the end of the stop-the-world GC phase we don't know the size of the live heap,
28 // and so next_gc calculation is tricky and happens as follows.
29 // At the end of the stop-the-world phase next_gc is conservatively set based on total
30 // heap size; all spans are marked as "needs sweeping".
31 // Whenever a span is swept, next_gc is decremented by GOGC*newly_freed_memory.
32 // The background sweeper goroutine simply sweeps spans one-by-one bringing next_gc
33 // closer to the target value. However, this is not enough to avoid over-allocating memory.
34 // Consider that a goroutine wants to allocate a new span for a large object and
35 // there are no free swept spans, but there are small-object unswept spans.
36 // If the goroutine naively allocates a new span, it can surpass the yet-unknown
37 // target next_gc value. In order to prevent such cases (1) when a goroutine needs
38 // to allocate a new small-object span, it sweeps small-object spans for the same
39 // object size until it frees at least one object; (2) when a goroutine needs to
40 // allocate large-object span from heap, it sweeps spans until it frees at least
41 // that many pages into heap. Together these two measures ensure that we don't surpass
42 // target next_gc value by a large margin. There is an exception: if a goroutine sweeps
43 // and frees two nonadjacent one-page spans to the heap, it will allocate a new two-page span,
44 // but there can still be other one-page unswept spans which could be combined into a two-page span.
45 // It's critical to ensure that no operations proceed on unswept spans (that would corrupt
46 // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
47 // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
48 // When a goroutine explicitly frees an object or sets a finalizer, it ensures that
49 // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
50 // The finalizer goroutine is kicked off only when all spans are swept.
51 // When the next GC starts, it sweeps all not-yet-swept spans (if any).
53 #include <unistd.h>
55 #include "runtime.h"
56 #include "arch.h"
57 #include "malloc.h"
58 #include "mgc0.h"
59 #include "chan.h"
60 #include "go-type.h"
62 // Map gccgo field names to gc field names.
63 // Slice aka __go_open_array.
64 #define array __values
65 #define cap __capacity
66 // Iface aka __go_interface
67 #define tab __methods
68 // Hmap aka __go_map
69 typedef struct __go_map Hmap;
70 // Type aka __go_type_descriptor
71 #define string __reflection
72 #define KindPtr GO_PTR
73 #define KindNoPointers GO_NO_POINTERS
74 #define kindMask GO_CODE_MASK
75 // PtrType aka __go_ptr_type
76 #define elem __element_type
78 #ifdef USING_SPLIT_STACK
80 extern void * __splitstack_find (void *, void *, size_t *, void **, void **,
81 void **);
83 extern void * __splitstack_find_context (void *context[10], size_t *, void **,
84 void **, void **);
86 #endif
88 enum {
89 Debug = 0,
90 CollectStats = 0,
91 ConcurrentSweep = 1,
93 WorkbufSize = 16*1024,
94 FinBlockSize = 4*1024,
96 handoffThreshold = 4,
97 IntermediateBufferCapacity = 64,
99 // Bits in type information
100 PRECISE = 1,
101 LOOP = 2,
102 PC_BITS = PRECISE | LOOP,
104 RootData = 0,
105 RootBss = 1,
106 RootFinalizers = 2,
107 RootSpanTypes = 3,
108 RootFlushCaches = 4,
109 RootCount = 5,
112 #define GcpercentUnknown (-2)
114 // Initialized from $GOGC. GOGC=off means no gc.
115 static int32 gcpercent = GcpercentUnknown;
117 static FuncVal* poolcleanup;
119 void sync_runtime_registerPoolCleanup(FuncVal*)
120 __asm__ (GOSYM_PREFIX "sync.runtime_registerPoolCleanup");
122 void
123 sync_runtime_registerPoolCleanup(FuncVal *f)
125 poolcleanup = f;
128 static void
129 clearpools(void)
131 P *p, **pp;
132 MCache *c;
134 // clear sync.Pool's
135 if(poolcleanup != nil) {
136 __builtin_call_with_static_chain(poolcleanup->fn(),
137 poolcleanup);
140 for(pp=runtime_allp; (p=*pp) != nil; pp++) {
141 // clear tinyalloc pool
142 c = p->mcache;
143 if(c != nil) {
144 c->tiny = nil;
145 c->tinysize = 0;
147 // clear defer pools
148 p->deferpool = nil;
152 // Holding worldsema grants an M the right to try to stop the world.
153 // The procedure is:
155 // runtime_semacquire(&runtime_worldsema);
156 // m->gcing = 1;
157 // runtime_stoptheworld();
159 // ... do stuff ...
161 // m->gcing = 0;
162 // runtime_semrelease(&runtime_worldsema);
163 // runtime_starttheworld();
165 uint32 runtime_worldsema = 1;
167 typedef struct Workbuf Workbuf;
168 struct Workbuf
170 #define SIZE (WorkbufSize-sizeof(LFNode)-sizeof(uintptr))
171 LFNode node; // must be first
172 uintptr nobj;
173 Obj obj[SIZE/sizeof(Obj) - 1];
174 uint8 _padding[SIZE%sizeof(Obj) + sizeof(Obj)];
175 #undef SIZE
178 typedef struct Finalizer Finalizer;
179 struct Finalizer
181 FuncVal *fn;
182 void *arg;
183 const struct __go_func_type *ft;
184 const PtrType *ot;
187 typedef struct FinBlock FinBlock;
188 struct FinBlock
190 FinBlock *alllink;
191 FinBlock *next;
192 int32 cnt;
193 int32 cap;
194 Finalizer fin[1];
197 static Lock finlock; // protects the following variables
198 static FinBlock *finq; // list of finalizers that are to be executed
199 static FinBlock *finc; // cache of free blocks
200 static FinBlock *allfin; // list of all blocks
201 bool runtime_fingwait;
202 bool runtime_fingwake;
204 static Lock gclock;
205 static G* fing;
207 static void runfinq(void*);
208 static void bgsweep(void*);
209 static Workbuf* getempty(Workbuf*);
210 static Workbuf* getfull(Workbuf*);
211 static void putempty(Workbuf*);
212 static Workbuf* handoff(Workbuf*);
213 static void gchelperstart(void);
214 static void flushallmcaches(void);
215 static void addstackroots(G *gp, Workbuf **wbufp);
217 static struct {
218 uint64 full; // lock-free list of full blocks
219 uint64 empty; // lock-free list of empty blocks
220 byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait
221 uint32 nproc;
222 int64 tstart;
223 volatile uint32 nwait;
224 volatile uint32 ndone;
225 Note alldone;
226 ParFor *markfor;
228 Lock;
229 byte *chunk;
230 uintptr nchunk;
231 } work __attribute__((aligned(8)));
233 enum {
234 GC_DEFAULT_PTR = GC_NUM_INSTR,
235 GC_CHAN,
237 GC_NUM_INSTR2
240 static struct {
241 struct {
242 uint64 sum;
243 uint64 cnt;
244 } ptr;
245 uint64 nbytes;
246 struct {
247 uint64 sum;
248 uint64 cnt;
249 uint64 notype;
250 uint64 typelookup;
251 } obj;
252 uint64 rescan;
253 uint64 rescanbytes;
254 uint64 instr[GC_NUM_INSTR2];
255 uint64 putempty;
256 uint64 getfull;
257 struct {
258 uint64 foundbit;
259 uint64 foundword;
260 uint64 foundspan;
261 } flushptrbuf;
262 struct {
263 uint64 foundbit;
264 uint64 foundword;
265 uint64 foundspan;
266 } markonly;
267 uint32 nbgsweep;
268 uint32 npausesweep;
269 } gcstats;
271 // markonly marks an object. It returns true if the object
272 // has been marked by this function, false otherwise.
273 // This function doesn't append the object to any buffer.
274 static bool
275 markonly(const void *obj)
277 byte *p;
278 uintptr *bitp, bits, shift, x, xbits, off, j;
279 MSpan *s;
280 PageID k;
282 // Words outside the arena cannot be pointers.
283 if((const byte*)obj < runtime_mheap.arena_start || (const byte*)obj >= runtime_mheap.arena_used)
284 return false;
286 // obj may be a pointer to a live object.
287 // Try to find the beginning of the object.
289 // Round down to word boundary.
290 obj = (const void*)((uintptr)obj & ~((uintptr)PtrSize-1));
292 // Find bits for this word.
293 off = (const uintptr*)obj - (uintptr*)runtime_mheap.arena_start;
294 bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
295 shift = off % wordsPerBitmapWord;
296 xbits = *bitp;
297 bits = xbits >> shift;
299 // Pointing at the beginning of a block?
300 if((bits & (bitAllocated|bitBlockBoundary)) != 0) {
301 if(CollectStats)
302 runtime_xadd64(&gcstats.markonly.foundbit, 1);
303 goto found;
306 // Pointing just past the beginning?
307 // Scan backward a little to find a block boundary.
308 for(j=shift; j-->0; ) {
309 if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) {
310 shift = j;
311 bits = xbits>>shift;
312 if(CollectStats)
313 runtime_xadd64(&gcstats.markonly.foundword, 1);
314 goto found;
318 // Otherwise consult span table to find beginning.
319 // (Manually inlined copy of MHeap_LookupMaybe.)
320 k = (uintptr)obj>>PageShift;
321 x = k;
322 x -= (uintptr)runtime_mheap.arena_start>>PageShift;
323 s = runtime_mheap.spans[x];
324 if(s == nil || k < s->start || (const byte*)obj >= s->limit || s->state != MSpanInUse)
325 return false;
326 p = (byte*)((uintptr)s->start<<PageShift);
327 if(s->sizeclass == 0) {
328 obj = p;
329 } else {
330 uintptr size = s->elemsize;
331 int32 i = ((const byte*)obj - p)/size;
332 obj = p+i*size;
335 // Now that we know the object header, reload bits.
336 off = (const uintptr*)obj - (uintptr*)runtime_mheap.arena_start;
337 bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
338 shift = off % wordsPerBitmapWord;
339 xbits = *bitp;
340 bits = xbits >> shift;
341 if(CollectStats)
342 runtime_xadd64(&gcstats.markonly.foundspan, 1);
344 found:
345 // Now we have bits, bitp, and shift correct for
346 // obj pointing at the base of the object.
347 // Only care about allocated and not marked.
348 if((bits & (bitAllocated|bitMarked)) != bitAllocated)
349 return false;
350 if(work.nproc == 1)
351 *bitp |= bitMarked<<shift;
352 else {
353 for(;;) {
354 x = *bitp;
355 if(x & (bitMarked<<shift))
356 return false;
357 if(runtime_casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift))))
358 break;
362 // The object is now marked
363 return true;
366 // PtrTarget is a structure used by intermediate buffers.
367 // The intermediate buffers hold GC data before it
368 // is moved/flushed to the work buffer (Workbuf).
369 // The size of an intermediate buffer is very small,
370 // such as 32 or 64 elements.
371 typedef struct PtrTarget PtrTarget;
372 struct PtrTarget
374 void *p;
375 uintptr ti;
378 typedef struct Scanbuf Scanbuf;
379 struct Scanbuf
381 struct {
382 PtrTarget *begin;
383 PtrTarget *end;
384 PtrTarget *pos;
385 } ptr;
386 struct {
387 Obj *begin;
388 Obj *end;
389 Obj *pos;
390 } obj;
391 Workbuf *wbuf;
392 Obj *wp;
393 uintptr nobj;
396 typedef struct BufferList BufferList;
397 struct BufferList
399 PtrTarget ptrtarget[IntermediateBufferCapacity];
400 Obj obj[IntermediateBufferCapacity];
401 uint32 busy;
402 byte pad[CacheLineSize];
404 static BufferList bufferList[MaxGcproc];
406 static void enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj);
408 // flushptrbuf moves data from the PtrTarget buffer to the work buffer.
409 // The PtrTarget buffer contains blocks irrespective of whether the blocks have been marked or scanned,
410 // while the work buffer contains blocks which have been marked
411 // and are prepared to be scanned by the garbage collector.
413 // _wp, _wbuf, _nobj are input/output parameters and are specifying the work buffer.
415 // A simplified drawing explaining how the todo-list moves from a structure to another:
417 // scanblock
418 // (find pointers)
419 // Obj ------> PtrTarget (pointer targets)
420 // ↑ |
421 // | |
422 // `----------'
423 // flushptrbuf
424 // (find block start, mark and enqueue)
425 static void
426 flushptrbuf(Scanbuf *sbuf)
428 byte *p, *arena_start, *obj;
429 uintptr size, *bitp, bits, shift, j, x, xbits, off, nobj, ti, n;
430 MSpan *s;
431 PageID k;
432 Obj *wp;
433 Workbuf *wbuf;
434 PtrTarget *ptrbuf;
435 PtrTarget *ptrbuf_end;
437 arena_start = runtime_mheap.arena_start;
439 wp = sbuf->wp;
440 wbuf = sbuf->wbuf;
441 nobj = sbuf->nobj;
443 ptrbuf = sbuf->ptr.begin;
444 ptrbuf_end = sbuf->ptr.pos;
445 n = ptrbuf_end - sbuf->ptr.begin;
446 sbuf->ptr.pos = sbuf->ptr.begin;
448 if(CollectStats) {
449 runtime_xadd64(&gcstats.ptr.sum, n);
450 runtime_xadd64(&gcstats.ptr.cnt, 1);
453 // If buffer is nearly full, get a new one.
454 if(wbuf == nil || nobj+n >= nelem(wbuf->obj)) {
455 if(wbuf != nil)
456 wbuf->nobj = nobj;
457 wbuf = getempty(wbuf);
458 wp = wbuf->obj;
459 nobj = 0;
461 if(n >= nelem(wbuf->obj))
462 runtime_throw("ptrbuf has to be smaller than WorkBuf");
465 while(ptrbuf < ptrbuf_end) {
466 obj = ptrbuf->p;
467 ti = ptrbuf->ti;
468 ptrbuf++;
470 // obj belongs to interval [mheap.arena_start, mheap.arena_used).
471 if(Debug > 1) {
472 if(obj < runtime_mheap.arena_start || obj >= runtime_mheap.arena_used)
473 runtime_throw("object is outside of mheap");
476 // obj may be a pointer to a live object.
477 // Try to find the beginning of the object.
479 // Round down to word boundary.
480 if(((uintptr)obj & ((uintptr)PtrSize-1)) != 0) {
481 obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1));
482 ti = 0;
485 // Find bits for this word.
486 off = (uintptr*)obj - (uintptr*)arena_start;
487 bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
488 shift = off % wordsPerBitmapWord;
489 xbits = *bitp;
490 bits = xbits >> shift;
492 // Pointing at the beginning of a block?
493 if((bits & (bitAllocated|bitBlockBoundary)) != 0) {
494 if(CollectStats)
495 runtime_xadd64(&gcstats.flushptrbuf.foundbit, 1);
496 goto found;
499 ti = 0;
501 // Pointing just past the beginning?
502 // Scan backward a little to find a block boundary.
503 for(j=shift; j-->0; ) {
504 if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) {
505 obj = (byte*)obj - (shift-j)*PtrSize;
506 shift = j;
507 bits = xbits>>shift;
508 if(CollectStats)
509 runtime_xadd64(&gcstats.flushptrbuf.foundword, 1);
510 goto found;
514 // Otherwise consult span table to find beginning.
515 // (Manually inlined copy of MHeap_LookupMaybe.)
516 k = (uintptr)obj>>PageShift;
517 x = k;
518 x -= (uintptr)arena_start>>PageShift;
519 s = runtime_mheap.spans[x];
520 if(s == nil || k < s->start || obj >= s->limit || s->state != MSpanInUse)
521 continue;
522 p = (byte*)((uintptr)s->start<<PageShift);
523 if(s->sizeclass == 0) {
524 obj = p;
525 } else {
526 size = s->elemsize;
527 int32 i = ((byte*)obj - p)/size;
528 obj = p+i*size;
531 // Now that we know the object header, reload bits.
532 off = (uintptr*)obj - (uintptr*)arena_start;
533 bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
534 shift = off % wordsPerBitmapWord;
535 xbits = *bitp;
536 bits = xbits >> shift;
537 if(CollectStats)
538 runtime_xadd64(&gcstats.flushptrbuf.foundspan, 1);
540 found:
541 // Now we have bits, bitp, and shift correct for
542 // obj pointing at the base of the object.
543 // Only care about allocated and not marked.
544 if((bits & (bitAllocated|bitMarked)) != bitAllocated)
545 continue;
546 if(work.nproc == 1)
547 *bitp |= bitMarked<<shift;
548 else {
549 for(;;) {
550 x = *bitp;
551 if(x & (bitMarked<<shift))
552 goto continue_obj;
553 if(runtime_casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift))))
554 break;
558 // If object has no pointers, don't need to scan further.
559 if((bits & bitScan) == 0)
560 continue;
562 // Ask span about size class.
563 // (Manually inlined copy of MHeap_Lookup.)
564 x = (uintptr)obj >> PageShift;
565 x -= (uintptr)arena_start>>PageShift;
566 s = runtime_mheap.spans[x];
568 PREFETCH(obj);
570 *wp = (Obj){obj, s->elemsize, ti};
571 wp++;
572 nobj++;
573 continue_obj:;
576 // If another proc wants a pointer, give it some.
577 if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) {
578 wbuf->nobj = nobj;
579 wbuf = handoff(wbuf);
580 nobj = wbuf->nobj;
581 wp = wbuf->obj + nobj;
584 sbuf->wp = wp;
585 sbuf->wbuf = wbuf;
586 sbuf->nobj = nobj;
589 static void
590 flushobjbuf(Scanbuf *sbuf)
592 uintptr nobj, off;
593 Obj *wp, obj;
594 Workbuf *wbuf;
595 Obj *objbuf;
596 Obj *objbuf_end;
598 wp = sbuf->wp;
599 wbuf = sbuf->wbuf;
600 nobj = sbuf->nobj;
602 objbuf = sbuf->obj.begin;
603 objbuf_end = sbuf->obj.pos;
604 sbuf->obj.pos = sbuf->obj.begin;
606 while(objbuf < objbuf_end) {
607 obj = *objbuf++;
609 // Align obj.b to a word boundary.
610 off = (uintptr)obj.p & (PtrSize-1);
611 if(off != 0) {
612 obj.p += PtrSize - off;
613 obj.n -= PtrSize - off;
614 obj.ti = 0;
617 if(obj.p == nil || obj.n == 0)
618 continue;
620 // If buffer is full, get a new one.
621 if(wbuf == nil || nobj >= nelem(wbuf->obj)) {
622 if(wbuf != nil)
623 wbuf->nobj = nobj;
624 wbuf = getempty(wbuf);
625 wp = wbuf->obj;
626 nobj = 0;
629 *wp = obj;
630 wp++;
631 nobj++;
634 // If another proc wants a pointer, give it some.
635 if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) {
636 wbuf->nobj = nobj;
637 wbuf = handoff(wbuf);
638 nobj = wbuf->nobj;
639 wp = wbuf->obj + nobj;
642 sbuf->wp = wp;
643 sbuf->wbuf = wbuf;
644 sbuf->nobj = nobj;
647 // Program that scans the whole block and treats every block element as a potential pointer
648 static uintptr defaultProg[2] = {PtrSize, GC_DEFAULT_PTR};
650 // Hchan program
651 static uintptr chanProg[2] = {0, GC_CHAN};
653 // Local variables of a program fragment or loop
654 typedef struct Frame Frame;
655 struct Frame {
656 uintptr count, elemsize, b;
657 const uintptr *loop_or_ret;
660 // Sanity check for the derived type info objti.
661 static void
662 checkptr(void *obj, uintptr objti)
664 uintptr *pc1, type, tisize, i, j, x;
665 const uintptr *pc2;
666 byte *objstart;
667 Type *t;
668 MSpan *s;
670 if(!Debug)
671 runtime_throw("checkptr is debug only");
673 if((byte*)obj < runtime_mheap.arena_start || (byte*)obj >= runtime_mheap.arena_used)
674 return;
675 type = runtime_gettype(obj);
676 t = (Type*)(type & ~(uintptr)(PtrSize-1));
677 if(t == nil)
678 return;
679 x = (uintptr)obj >> PageShift;
680 x -= (uintptr)(runtime_mheap.arena_start)>>PageShift;
681 s = runtime_mheap.spans[x];
682 objstart = (byte*)((uintptr)s->start<<PageShift);
683 if(s->sizeclass != 0) {
684 i = ((byte*)obj - objstart)/s->elemsize;
685 objstart += i*s->elemsize;
687 tisize = *(uintptr*)objti;
688 // Sanity check for object size: it should fit into the memory block.
689 if((byte*)obj + tisize > objstart + s->elemsize) {
690 runtime_printf("object of type '%S' at %p/%p does not fit in block %p/%p\n",
691 *t->string, obj, tisize, objstart, s->elemsize);
692 runtime_throw("invalid gc type info");
694 if(obj != objstart)
695 return;
696 // If obj points to the beginning of the memory block,
697 // check type info as well.
698 if(t->string == nil ||
699 // Gob allocates unsafe pointers for indirection.
700 (runtime_strcmp((const char *)t->string->str, (const char*)"unsafe.Pointer") &&
701 // Runtime and gc think differently about closures.
702 runtime_strstr((const char *)t->string->str, (const char*)"struct { F uintptr") != (const char *)t->string->str)) {
703 pc1 = (uintptr*)objti;
704 pc2 = (const uintptr*)t->__gc;
705 // A simple best-effort check until first GC_END.
706 for(j = 1; pc1[j] != GC_END && pc2[j] != GC_END; j++) {
707 if(pc1[j] != pc2[j]) {
708 runtime_printf("invalid gc type info for '%s', type info %p [%d]=%p, block info %p [%d]=%p\n",
709 t->string ? (const int8*)t->string->str : (const int8*)"?", pc1, (int32)j, pc1[j], pc2, (int32)j, pc2[j]);
710 runtime_throw("invalid gc type info");
716 // scanblock scans a block of n bytes starting at pointer b for references
717 // to other objects, scanning any it finds recursively until there are no
718 // unscanned objects left. Instead of using an explicit recursion, it keeps
719 // a work list in the Workbuf* structures and loops in the main function
720 // body. Keeping an explicit work list is easier on the stack allocator and
721 // more efficient.
722 static void
723 scanblock(Workbuf *wbuf, bool keepworking)
725 byte *b, *arena_start, *arena_used;
726 uintptr n, i, end_b, elemsize, size, ti, objti, count, type, nobj;
727 uintptr precise_type, nominal_size;
728 const uintptr *pc, *chan_ret;
729 uintptr chancap;
730 void *obj;
731 const Type *t, *et;
732 Slice *sliceptr;
733 String *stringptr;
734 Frame *stack_ptr, stack_top, stack[GC_STACK_CAPACITY+4];
735 BufferList *scanbuffers;
736 Scanbuf sbuf;
737 Eface *eface;
738 Iface *iface;
739 Hchan *chan;
740 const ChanType *chantype;
741 Obj *wp;
743 if(sizeof(Workbuf) % WorkbufSize != 0)
744 runtime_throw("scanblock: size of Workbuf is suboptimal");
746 // Memory arena parameters.
747 arena_start = runtime_mheap.arena_start;
748 arena_used = runtime_mheap.arena_used;
750 stack_ptr = stack+nelem(stack)-1;
752 precise_type = false;
753 nominal_size = 0;
755 if(wbuf) {
756 nobj = wbuf->nobj;
757 wp = &wbuf->obj[nobj];
758 } else {
759 nobj = 0;
760 wp = nil;
763 // Initialize sbuf
764 scanbuffers = &bufferList[runtime_m()->helpgc];
766 sbuf.ptr.begin = sbuf.ptr.pos = &scanbuffers->ptrtarget[0];
767 sbuf.ptr.end = sbuf.ptr.begin + nelem(scanbuffers->ptrtarget);
769 sbuf.obj.begin = sbuf.obj.pos = &scanbuffers->obj[0];
770 sbuf.obj.end = sbuf.obj.begin + nelem(scanbuffers->obj);
772 sbuf.wbuf = wbuf;
773 sbuf.wp = wp;
774 sbuf.nobj = nobj;
776 // (Silence the compiler)
777 chan = nil;
778 chantype = nil;
779 chan_ret = nil;
781 goto next_block;
783 for(;;) {
784 // Each iteration scans the block b of length n, queueing pointers in
785 // the work buffer.
787 if(CollectStats) {
788 runtime_xadd64(&gcstats.nbytes, n);
789 runtime_xadd64(&gcstats.obj.sum, sbuf.nobj);
790 runtime_xadd64(&gcstats.obj.cnt, 1);
793 if(ti != 0) {
794 if(Debug > 1) {
795 runtime_printf("scanblock %p %D ti %p\n", b, (int64)n, ti);
797 pc = (uintptr*)(ti & ~(uintptr)PC_BITS);
798 precise_type = (ti & PRECISE);
799 stack_top.elemsize = pc[0];
800 if(!precise_type)
801 nominal_size = pc[0];
802 if(ti & LOOP) {
803 stack_top.count = 0; // 0 means an infinite number of iterations
804 stack_top.loop_or_ret = pc+1;
805 } else {
806 stack_top.count = 1;
808 if(Debug) {
809 // Simple sanity check for provided type info ti:
810 // The declared size of the object must be not larger than the actual size
811 // (it can be smaller due to inferior pointers).
812 // It's difficult to make a comprehensive check due to inferior pointers,
813 // reflection, gob, etc.
814 if(pc[0] > n) {
815 runtime_printf("invalid gc type info: type info size %p, block size %p\n", pc[0], n);
816 runtime_throw("invalid gc type info");
819 } else if(UseSpanType) {
820 if(CollectStats)
821 runtime_xadd64(&gcstats.obj.notype, 1);
823 type = runtime_gettype(b);
824 if(type != 0) {
825 if(CollectStats)
826 runtime_xadd64(&gcstats.obj.typelookup, 1);
828 t = (Type*)(type & ~(uintptr)(PtrSize-1));
829 switch(type & (PtrSize-1)) {
830 case TypeInfo_SingleObject:
831 pc = (const uintptr*)t->__gc;
832 precise_type = true; // type information about 'b' is precise
833 stack_top.count = 1;
834 stack_top.elemsize = pc[0];
835 break;
836 case TypeInfo_Array:
837 pc = (const uintptr*)t->__gc;
838 if(pc[0] == 0)
839 goto next_block;
840 precise_type = true; // type information about 'b' is precise
841 stack_top.count = 0; // 0 means an infinite number of iterations
842 stack_top.elemsize = pc[0];
843 stack_top.loop_or_ret = pc+1;
844 break;
845 case TypeInfo_Chan:
846 chan = (Hchan*)b;
847 chantype = (const ChanType*)t;
848 chan_ret = nil;
849 pc = chanProg;
850 break;
851 default:
852 if(Debug > 1)
853 runtime_printf("scanblock %p %D type %p %S\n", b, (int64)n, type, *t->string);
854 runtime_throw("scanblock: invalid type");
855 return;
857 if(Debug > 1)
858 runtime_printf("scanblock %p %D type %p %S pc=%p\n", b, (int64)n, type, *t->string, pc);
859 } else {
860 pc = defaultProg;
861 if(Debug > 1)
862 runtime_printf("scanblock %p %D unknown type\n", b, (int64)n);
864 } else {
865 pc = defaultProg;
866 if(Debug > 1)
867 runtime_printf("scanblock %p %D no span types\n", b, (int64)n);
870 if(IgnorePreciseGC)
871 pc = defaultProg;
873 pc++;
874 stack_top.b = (uintptr)b;
875 end_b = (uintptr)b + n - PtrSize;
877 for(;;) {
878 if(CollectStats)
879 runtime_xadd64(&gcstats.instr[pc[0]], 1);
881 obj = nil;
882 objti = 0;
883 switch(pc[0]) {
884 case GC_PTR:
885 obj = *(void**)(stack_top.b + pc[1]);
886 objti = pc[2];
887 if(Debug > 2)
888 runtime_printf("gc_ptr @%p: %p ti=%p\n", stack_top.b+pc[1], obj, objti);
889 pc += 3;
890 if(Debug)
891 checkptr(obj, objti);
892 break;
894 case GC_SLICE:
895 sliceptr = (Slice*)(stack_top.b + pc[1]);
896 if(Debug > 2)
897 runtime_printf("gc_slice @%p: %p/%D/%D\n", sliceptr, sliceptr->array, (int64)sliceptr->__count, (int64)sliceptr->cap);
898 if(sliceptr->cap != 0) {
899 obj = sliceptr->array;
900 // Can't use slice element type for scanning,
901 // because if it points to an array embedded
902 // in the beginning of a struct,
903 // we will scan the whole struct as the slice.
904 // So just obtain type info from heap.
906 pc += 3;
907 break;
909 case GC_APTR:
910 obj = *(void**)(stack_top.b + pc[1]);
911 if(Debug > 2)
912 runtime_printf("gc_aptr @%p: %p\n", stack_top.b+pc[1], obj);
913 pc += 2;
914 break;
916 case GC_STRING:
917 stringptr = (String*)(stack_top.b + pc[1]);
918 if(Debug > 2)
919 runtime_printf("gc_string @%p: %p/%D\n", stack_top.b+pc[1], stringptr->str, (int64)stringptr->len);
920 if(stringptr->len != 0)
921 markonly(stringptr->str);
922 pc += 2;
923 continue;
925 case GC_EFACE:
926 eface = (Eface*)(stack_top.b + pc[1]);
927 pc += 2;
928 if(Debug > 2)
929 runtime_printf("gc_eface @%p: %p %p\n", stack_top.b+pc[1], eface->__type_descriptor, eface->__object);
930 if(eface->__type_descriptor == nil)
931 continue;
933 // eface->type
934 t = eface->__type_descriptor;
935 if((const byte*)t >= arena_start && (const byte*)t < arena_used) {
936 union { const Type *tc; Type *tr; } u;
937 u.tc = t;
938 *sbuf.ptr.pos++ = (PtrTarget){u.tr, 0};
939 if(sbuf.ptr.pos == sbuf.ptr.end)
940 flushptrbuf(&sbuf);
943 // eface->__object
944 if((byte*)eface->__object >= arena_start && (byte*)eface->__object < arena_used) {
945 if(__go_is_pointer_type(t)) {
946 if((t->__code & KindNoPointers))
947 continue;
949 obj = eface->__object;
950 if((t->__code & kindMask) == KindPtr) {
951 // Only use type information if it is a pointer-containing type.
952 // This matches the GC programs written by cmd/gc/reflect.c's
953 // dgcsym1 in case TPTR32/case TPTR64. See rationale there.
954 et = ((const PtrType*)t)->elem;
955 if(!(et->__code & KindNoPointers))
956 objti = (uintptr)((const PtrType*)t)->elem->__gc;
958 } else {
959 obj = eface->__object;
960 objti = (uintptr)t->__gc;
963 break;
965 case GC_IFACE:
966 iface = (Iface*)(stack_top.b + pc[1]);
967 pc += 2;
968 if(Debug > 2)
969 runtime_printf("gc_iface @%p: %p/%p %p\n", stack_top.b+pc[1], iface->__methods[0], nil, iface->__object);
970 if(iface->tab == nil)
971 continue;
973 // iface->tab
974 if((byte*)iface->tab >= arena_start && (byte*)iface->tab < arena_used) {
975 *sbuf.ptr.pos++ = (PtrTarget){iface->tab, 0};
976 if(sbuf.ptr.pos == sbuf.ptr.end)
977 flushptrbuf(&sbuf);
980 // iface->data
981 if((byte*)iface->__object >= arena_start && (byte*)iface->__object < arena_used) {
982 t = (const Type*)iface->tab[0];
983 if(__go_is_pointer_type(t)) {
984 if((t->__code & KindNoPointers))
985 continue;
987 obj = iface->__object;
988 if((t->__code & kindMask) == KindPtr) {
989 // Only use type information if it is a pointer-containing type.
990 // This matches the GC programs written by cmd/gc/reflect.c's
991 // dgcsym1 in case TPTR32/case TPTR64. See rationale there.
992 et = ((const PtrType*)t)->elem;
993 if(!(et->__code & KindNoPointers))
994 objti = (uintptr)((const PtrType*)t)->elem->__gc;
996 } else {
997 obj = iface->__object;
998 objti = (uintptr)t->__gc;
1001 break;
1003 case GC_DEFAULT_PTR:
1004 while(stack_top.b <= end_b) {
1005 obj = *(byte**)stack_top.b;
1006 if(Debug > 2)
1007 runtime_printf("gc_default_ptr @%p: %p\n", stack_top.b, obj);
1008 stack_top.b += PtrSize;
1009 if((byte*)obj >= arena_start && (byte*)obj < arena_used) {
1010 *sbuf.ptr.pos++ = (PtrTarget){obj, 0};
1011 if(sbuf.ptr.pos == sbuf.ptr.end)
1012 flushptrbuf(&sbuf);
1015 goto next_block;
1017 case GC_END:
1018 if(--stack_top.count != 0) {
1019 // Next iteration of a loop if possible.
1020 stack_top.b += stack_top.elemsize;
1021 if(stack_top.b + stack_top.elemsize <= end_b+PtrSize) {
1022 pc = stack_top.loop_or_ret;
1023 continue;
1025 i = stack_top.b;
1026 } else {
1027 // Stack pop if possible.
1028 if(stack_ptr+1 < stack+nelem(stack)) {
1029 pc = stack_top.loop_or_ret;
1030 stack_top = *(++stack_ptr);
1031 continue;
1033 i = (uintptr)b + nominal_size;
1035 if(!precise_type) {
1036 // Quickly scan [b+i,b+n) for possible pointers.
1037 for(; i<=end_b; i+=PtrSize) {
1038 if(*(byte**)i != nil) {
1039 // Found a value that may be a pointer.
1040 // Do a rescan of the entire block.
1041 enqueue((Obj){b, n, 0}, &sbuf.wbuf, &sbuf.wp, &sbuf.nobj);
1042 if(CollectStats) {
1043 runtime_xadd64(&gcstats.rescan, 1);
1044 runtime_xadd64(&gcstats.rescanbytes, n);
1046 break;
1050 goto next_block;
1052 case GC_ARRAY_START:
1053 i = stack_top.b + pc[1];
1054 count = pc[2];
1055 elemsize = pc[3];
1056 pc += 4;
1058 // Stack push.
1059 *stack_ptr-- = stack_top;
1060 stack_top = (Frame){count, elemsize, i, pc};
1061 continue;
1063 case GC_ARRAY_NEXT:
1064 if(--stack_top.count != 0) {
1065 stack_top.b += stack_top.elemsize;
1066 pc = stack_top.loop_or_ret;
1067 } else {
1068 // Stack pop.
1069 stack_top = *(++stack_ptr);
1070 pc += 1;
1072 continue;
1074 case GC_CALL:
1075 // Stack push.
1076 *stack_ptr-- = stack_top;
1077 stack_top = (Frame){1, 0, stack_top.b + pc[1], pc+3 /*return address*/};
1078 pc = (const uintptr*)((const byte*)pc + *(const int32*)(pc+2)); // target of the CALL instruction
1079 continue;
1081 case GC_REGION:
1082 obj = (void*)(stack_top.b + pc[1]);
1083 size = pc[2];
1084 objti = pc[3];
1085 pc += 4;
1087 if(Debug > 2)
1088 runtime_printf("gc_region @%p: %D %p\n", stack_top.b+pc[1], (int64)size, objti);
1089 *sbuf.obj.pos++ = (Obj){obj, size, objti};
1090 if(sbuf.obj.pos == sbuf.obj.end)
1091 flushobjbuf(&sbuf);
1092 continue;
1094 case GC_CHAN_PTR:
1095 chan = *(Hchan**)(stack_top.b + pc[1]);
1096 if(Debug > 2 && chan != nil)
1097 runtime_printf("gc_chan_ptr @%p: %p/%D/%D %p\n", stack_top.b+pc[1], chan, (int64)chan->qcount, (int64)chan->dataqsiz, pc[2]);
1098 if(chan == nil) {
1099 pc += 3;
1100 continue;
1102 if(markonly(chan)) {
1103 chantype = (ChanType*)pc[2];
1104 if(!(chantype->elem->__code & KindNoPointers)) {
1105 // Start chanProg.
1106 chan_ret = pc+3;
1107 pc = chanProg+1;
1108 continue;
1111 pc += 3;
1112 continue;
1114 case GC_CHAN:
1115 // There are no heap pointers in struct Hchan,
1116 // so we can ignore the leading sizeof(Hchan) bytes.
1117 if(!(chantype->elem->__code & KindNoPointers)) {
1118 // Channel's buffer follows Hchan immediately in memory.
1119 // Size of buffer (cap(c)) is second int in the chan struct.
1120 chancap = ((uintgo*)chan)[1];
1121 if(chancap > 0) {
1122 // TODO(atom): split into two chunks so that only the
1123 // in-use part of the circular buffer is scanned.
1124 // (Channel routines zero the unused part, so the current
1125 // code does not lead to leaks, it's just a little inefficient.)
1126 *sbuf.obj.pos++ = (Obj){(byte*)chan+runtime_Hchansize, chancap*chantype->elem->__size,
1127 (uintptr)chantype->elem->__gc | PRECISE | LOOP};
1128 if(sbuf.obj.pos == sbuf.obj.end)
1129 flushobjbuf(&sbuf);
1132 if(chan_ret == nil)
1133 goto next_block;
1134 pc = chan_ret;
1135 continue;
1137 default:
1138 runtime_printf("runtime: invalid GC instruction %p at %p\n", pc[0], pc);
1139 runtime_throw("scanblock: invalid GC instruction");
1140 return;
1143 if((byte*)obj >= arena_start && (byte*)obj < arena_used) {
1144 *sbuf.ptr.pos++ = (PtrTarget){obj, objti};
1145 if(sbuf.ptr.pos == sbuf.ptr.end)
1146 flushptrbuf(&sbuf);
1150 next_block:
1151 // Done scanning [b, b+n). Prepare for the next iteration of
1152 // the loop by setting b, n, ti to the parameters for the next block.
1154 if(sbuf.nobj == 0) {
1155 flushptrbuf(&sbuf);
1156 flushobjbuf(&sbuf);
1158 if(sbuf.nobj == 0) {
1159 if(!keepworking) {
1160 if(sbuf.wbuf)
1161 putempty(sbuf.wbuf);
1162 return;
1164 // Emptied our buffer: refill.
1165 sbuf.wbuf = getfull(sbuf.wbuf);
1166 if(sbuf.wbuf == nil)
1167 return;
1168 sbuf.nobj = sbuf.wbuf->nobj;
1169 sbuf.wp = sbuf.wbuf->obj + sbuf.wbuf->nobj;
1173 // Fetch b from the work buffer.
1174 --sbuf.wp;
1175 b = sbuf.wp->p;
1176 n = sbuf.wp->n;
1177 ti = sbuf.wp->ti;
1178 sbuf.nobj--;
1182 static struct root_list* roots;
1184 void
1185 __go_register_gc_roots (struct root_list* r)
1187 // FIXME: This needs locking if multiple goroutines can call
1188 // dlopen simultaneously.
1189 r->next = roots;
1190 roots = r;
1193 // Append obj to the work buffer.
1194 // _wbuf, _wp, _nobj are input/output parameters and are specifying the work buffer.
1195 static void
1196 enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj)
1198 uintptr nobj, off;
1199 Obj *wp;
1200 Workbuf *wbuf;
1202 if(Debug > 1)
1203 runtime_printf("append obj(%p %D %p)\n", obj.p, (int64)obj.n, obj.ti);
1205 // Align obj.b to a word boundary.
1206 off = (uintptr)obj.p & (PtrSize-1);
1207 if(off != 0) {
1208 obj.p += PtrSize - off;
1209 obj.n -= PtrSize - off;
1210 obj.ti = 0;
1213 if(obj.p == nil || obj.n == 0)
1214 return;
1216 // Load work buffer state
1217 wp = *_wp;
1218 wbuf = *_wbuf;
1219 nobj = *_nobj;
1221 // If another proc wants a pointer, give it some.
1222 if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) {
1223 wbuf->nobj = nobj;
1224 wbuf = handoff(wbuf);
1225 nobj = wbuf->nobj;
1226 wp = wbuf->obj + nobj;
1229 // If buffer is full, get a new one.
1230 if(wbuf == nil || nobj >= nelem(wbuf->obj)) {
1231 if(wbuf != nil)
1232 wbuf->nobj = nobj;
1233 wbuf = getempty(wbuf);
1234 wp = wbuf->obj;
1235 nobj = 0;
1238 *wp = obj;
1239 wp++;
1240 nobj++;
1242 // Save work buffer state
1243 *_wp = wp;
1244 *_wbuf = wbuf;
1245 *_nobj = nobj;
1248 static void
1249 enqueue1(Workbuf **wbufp, Obj obj)
1251 Workbuf *wbuf;
1253 wbuf = *wbufp;
1254 if(wbuf->nobj >= nelem(wbuf->obj))
1255 *wbufp = wbuf = getempty(wbuf);
1256 wbuf->obj[wbuf->nobj++] = obj;
1259 static void
1260 markroot(ParFor *desc, uint32 i)
1262 Workbuf *wbuf;
1263 FinBlock *fb;
1264 MHeap *h;
1265 MSpan **allspans, *s;
1266 uint32 spanidx, sg;
1267 G *gp;
1268 void *p;
1270 USED(&desc);
1271 wbuf = getempty(nil);
1272 // Note: if you add a case here, please also update heapdump.c:dumproots.
1273 switch(i) {
1274 case RootData:
1275 // For gccgo this is both data and bss.
1277 struct root_list *pl;
1279 for(pl = roots; pl != nil; pl = pl->next) {
1280 struct root *pr = &pl->roots[0];
1281 while(1) {
1282 void *decl = pr->decl;
1283 if(decl == nil)
1284 break;
1285 enqueue1(&wbuf, (Obj){decl, pr->size, 0});
1286 pr++;
1290 break;
1292 case RootBss:
1293 // For gccgo we use this for all the other global roots.
1294 enqueue1(&wbuf, (Obj){(byte*)&runtime_m0, sizeof runtime_m0, 0});
1295 enqueue1(&wbuf, (Obj){(byte*)&runtime_g0, sizeof runtime_g0, 0});
1296 enqueue1(&wbuf, (Obj){(byte*)&runtime_allg, sizeof runtime_allg, 0});
1297 enqueue1(&wbuf, (Obj){(byte*)&runtime_allm, sizeof runtime_allm, 0});
1298 enqueue1(&wbuf, (Obj){(byte*)&runtime_allp, sizeof runtime_allp, 0});
1299 enqueue1(&wbuf, (Obj){(byte*)&work, sizeof work, 0});
1300 runtime_proc_scan(&wbuf, enqueue1);
1301 runtime_MProf_Mark(&wbuf, enqueue1);
1302 runtime_time_scan(&wbuf, enqueue1);
1303 runtime_netpoll_scan(&wbuf, enqueue1);
1304 break;
1306 case RootFinalizers:
1307 for(fb=allfin; fb; fb=fb->alllink)
1308 enqueue1(&wbuf, (Obj){(byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]), 0});
1309 break;
1311 case RootSpanTypes:
1312 // mark span types and MSpan.specials (to walk spans only once)
1313 h = &runtime_mheap;
1314 sg = h->sweepgen;
1315 allspans = h->allspans;
1316 for(spanidx=0; spanidx<runtime_mheap.nspan; spanidx++) {
1317 Special *sp;
1318 SpecialFinalizer *spf;
1320 s = allspans[spanidx];
1321 if(s->sweepgen != sg) {
1322 runtime_printf("sweep %d %d\n", s->sweepgen, sg);
1323 runtime_throw("gc: unswept span");
1325 if(s->state != MSpanInUse)
1326 continue;
1327 // The garbage collector ignores type pointers stored in MSpan.types:
1328 // - Compiler-generated types are stored outside of heap.
1329 // - The reflect package has runtime-generated types cached in its data structures.
1330 // The garbage collector relies on finding the references via that cache.
1331 if(s->types.compression == MTypes_Words || s->types.compression == MTypes_Bytes)
1332 markonly((byte*)s->types.data);
1333 for(sp = s->specials; sp != nil; sp = sp->next) {
1334 if(sp->kind != KindSpecialFinalizer)
1335 continue;
1336 // don't mark finalized object, but scan it so we
1337 // retain everything it points to.
1338 spf = (SpecialFinalizer*)sp;
1339 // A finalizer can be set for an inner byte of an object, find object beginning.
1340 p = (void*)((s->start << PageShift) + spf->offset/s->elemsize*s->elemsize);
1341 enqueue1(&wbuf, (Obj){p, s->elemsize, 0});
1342 enqueue1(&wbuf, (Obj){(void*)&spf->fn, PtrSize, 0});
1343 enqueue1(&wbuf, (Obj){(void*)&spf->ft, PtrSize, 0});
1344 enqueue1(&wbuf, (Obj){(void*)&spf->ot, PtrSize, 0});
1347 break;
1349 case RootFlushCaches:
1350 flushallmcaches();
1351 break;
1353 default:
1354 // the rest is scanning goroutine stacks
1355 if(i - RootCount >= runtime_allglen)
1356 runtime_throw("markroot: bad index");
1357 gp = runtime_allg[i - RootCount];
1358 // remember when we've first observed the G blocked
1359 // needed only to output in traceback
1360 if((gp->status == Gwaiting || gp->status == Gsyscall) && gp->waitsince == 0)
1361 gp->waitsince = work.tstart;
1362 addstackroots(gp, &wbuf);
1363 break;
1367 if(wbuf)
1368 scanblock(wbuf, false);
1371 // Get an empty work buffer off the work.empty list,
1372 // allocating new buffers as needed.
1373 static Workbuf*
1374 getempty(Workbuf *b)
1376 if(b != nil)
1377 runtime_lfstackpush(&work.full, &b->node);
1378 b = (Workbuf*)runtime_lfstackpop(&work.empty);
1379 if(b == nil) {
1380 // Need to allocate.
1381 runtime_lock(&work);
1382 if(work.nchunk < sizeof *b) {
1383 work.nchunk = 1<<20;
1384 work.chunk = runtime_SysAlloc(work.nchunk, &mstats.gc_sys);
1385 if(work.chunk == nil)
1386 runtime_throw("runtime: cannot allocate memory");
1388 b = (Workbuf*)work.chunk;
1389 work.chunk += sizeof *b;
1390 work.nchunk -= sizeof *b;
1391 runtime_unlock(&work);
1393 b->nobj = 0;
1394 return b;
1397 static void
1398 putempty(Workbuf *b)
1400 if(CollectStats)
1401 runtime_xadd64(&gcstats.putempty, 1);
1403 runtime_lfstackpush(&work.empty, &b->node);
1406 // Get a full work buffer off the work.full list, or return nil.
1407 static Workbuf*
1408 getfull(Workbuf *b)
1410 M *m;
1411 int32 i;
1413 if(CollectStats)
1414 runtime_xadd64(&gcstats.getfull, 1);
1416 if(b != nil)
1417 runtime_lfstackpush(&work.empty, &b->node);
1418 b = (Workbuf*)runtime_lfstackpop(&work.full);
1419 if(b != nil || work.nproc == 1)
1420 return b;
1422 m = runtime_m();
1423 runtime_xadd(&work.nwait, +1);
1424 for(i=0;; i++) {
1425 if(work.full != 0) {
1426 runtime_xadd(&work.nwait, -1);
1427 b = (Workbuf*)runtime_lfstackpop(&work.full);
1428 if(b != nil)
1429 return b;
1430 runtime_xadd(&work.nwait, +1);
1432 if(work.nwait == work.nproc)
1433 return nil;
1434 if(i < 10) {
1435 m->gcstats.nprocyield++;
1436 runtime_procyield(20);
1437 } else if(i < 20) {
1438 m->gcstats.nosyield++;
1439 runtime_osyield();
1440 } else {
1441 m->gcstats.nsleep++;
1442 runtime_usleep(100);
1447 static Workbuf*
1448 handoff(Workbuf *b)
1450 M *m;
1451 int32 n;
1452 Workbuf *b1;
1454 m = runtime_m();
1456 // Make new buffer with half of b's pointers.
1457 b1 = getempty(nil);
1458 n = b->nobj/2;
1459 b->nobj -= n;
1460 b1->nobj = n;
1461 runtime_memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]);
1462 m->gcstats.nhandoff++;
1463 m->gcstats.nhandoffcnt += n;
1465 // Put b on full list - let first half of b get stolen.
1466 runtime_lfstackpush(&work.full, &b->node);
1467 return b1;
1470 static void
1471 addstackroots(G *gp, Workbuf **wbufp)
1473 switch(gp->status){
1474 default:
1475 runtime_printf("unexpected G.status %d (goroutine %p %D)\n", gp->status, gp, gp->goid);
1476 runtime_throw("mark - bad status");
1477 case Gdead:
1478 return;
1479 case Grunning:
1480 runtime_throw("mark - world not stopped");
1481 case Grunnable:
1482 case Gsyscall:
1483 case Gwaiting:
1484 break;
1487 #ifdef USING_SPLIT_STACK
1488 M *mp;
1489 void* sp;
1490 size_t spsize;
1491 void* next_segment;
1492 void* next_sp;
1493 void* initial_sp;
1495 if(gp == runtime_g()) {
1496 // Scanning our own stack.
1497 sp = __splitstack_find(nil, nil, &spsize, &next_segment,
1498 &next_sp, &initial_sp);
1499 } else if((mp = gp->m) != nil && mp->helpgc) {
1500 // gchelper's stack is in active use and has no interesting pointers.
1501 return;
1502 } else {
1503 // Scanning another goroutine's stack.
1504 // The goroutine is usually asleep (the world is stopped).
1506 // The exception is that if the goroutine is about to enter or might
1507 // have just exited a system call, it may be executing code such
1508 // as schedlock and may have needed to start a new stack segment.
1509 // Use the stack segment and stack pointer at the time of
1510 // the system call instead, since that won't change underfoot.
1511 if(gp->gcstack != nil) {
1512 sp = gp->gcstack;
1513 spsize = gp->gcstack_size;
1514 next_segment = gp->gcnext_segment;
1515 next_sp = gp->gcnext_sp;
1516 initial_sp = gp->gcinitial_sp;
1517 } else {
1518 sp = __splitstack_find_context(&gp->stack_context[0],
1519 &spsize, &next_segment,
1520 &next_sp, &initial_sp);
1523 if(sp != nil) {
1524 enqueue1(wbufp, (Obj){sp, spsize, 0});
1525 while((sp = __splitstack_find(next_segment, next_sp,
1526 &spsize, &next_segment,
1527 &next_sp, &initial_sp)) != nil)
1528 enqueue1(wbufp, (Obj){sp, spsize, 0});
1530 #else
1531 M *mp;
1532 byte* bottom;
1533 byte* top;
1535 if(gp == runtime_g()) {
1536 // Scanning our own stack.
1537 bottom = (byte*)&gp;
1538 } else if((mp = gp->m) != nil && mp->helpgc) {
1539 // gchelper's stack is in active use and has no interesting pointers.
1540 return;
1541 } else {
1542 // Scanning another goroutine's stack.
1543 // The goroutine is usually asleep (the world is stopped).
1544 bottom = (byte*)gp->gcnext_sp;
1545 if(bottom == nil)
1546 return;
1548 top = (byte*)gp->gcinitial_sp + gp->gcstack_size;
1549 if(top > bottom)
1550 enqueue1(wbufp, (Obj){bottom, top - bottom, 0});
1551 else
1552 enqueue1(wbufp, (Obj){top, bottom - top, 0});
1553 #endif
1556 void
1557 runtime_queuefinalizer(void *p, FuncVal *fn, const FuncType *ft, const PtrType *ot)
1559 FinBlock *block;
1560 Finalizer *f;
1562 runtime_lock(&finlock);
1563 if(finq == nil || finq->cnt == finq->cap) {
1564 if(finc == nil) {
1565 finc = runtime_persistentalloc(FinBlockSize, 0, &mstats.gc_sys);
1566 finc->cap = (FinBlockSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1;
1567 finc->alllink = allfin;
1568 allfin = finc;
1570 block = finc;
1571 finc = block->next;
1572 block->next = finq;
1573 finq = block;
1575 f = &finq->fin[finq->cnt];
1576 finq->cnt++;
1577 f->fn = fn;
1578 f->ft = ft;
1579 f->ot = ot;
1580 f->arg = p;
1581 runtime_fingwake = true;
1582 runtime_unlock(&finlock);
1585 void
1586 runtime_iterate_finq(void (*callback)(FuncVal*, void*, const FuncType*, const PtrType*))
1588 FinBlock *fb;
1589 Finalizer *f;
1590 int32 i;
1592 for(fb = allfin; fb; fb = fb->alllink) {
1593 for(i = 0; i < fb->cnt; i++) {
1594 f = &fb->fin[i];
1595 callback(f->fn, f->arg, f->ft, f->ot);
1600 void
1601 runtime_MSpan_EnsureSwept(MSpan *s)
1603 M *m = runtime_m();
1604 G *g = runtime_g();
1605 uint32 sg;
1607 // Caller must disable preemption.
1608 // Otherwise when this function returns the span can become unswept again
1609 // (if GC is triggered on another goroutine).
1610 if(m->locks == 0 && m->mallocing == 0 && g != m->g0)
1611 runtime_throw("MSpan_EnsureSwept: m is not locked");
1613 sg = runtime_mheap.sweepgen;
1614 if(runtime_atomicload(&s->sweepgen) == sg)
1615 return;
1616 if(runtime_cas(&s->sweepgen, sg-2, sg-1)) {
1617 runtime_MSpan_Sweep(s);
1618 return;
1620 // unfortunate condition, and we don't have efficient means to wait
1621 while(runtime_atomicload(&s->sweepgen) != sg)
1622 runtime_osyield();
1625 // Sweep frees or collects finalizers for blocks not marked in the mark phase.
1626 // It clears the mark bits in preparation for the next GC round.
1627 // Returns true if the span was returned to heap.
1628 bool
1629 runtime_MSpan_Sweep(MSpan *s)
1631 M *m;
1632 int32 cl, n, npages, nfree;
1633 uintptr size, off, *bitp, shift, bits;
1634 uint32 sweepgen;
1635 byte *p;
1636 MCache *c;
1637 byte *arena_start;
1638 MLink head, *end;
1639 byte *type_data;
1640 byte compression;
1641 uintptr type_data_inc;
1642 MLink *x;
1643 Special *special, **specialp, *y;
1644 bool res, sweepgenset;
1646 m = runtime_m();
1648 // It's critical that we enter this function with preemption disabled,
1649 // GC must not start while we are in the middle of this function.
1650 if(m->locks == 0 && m->mallocing == 0 && runtime_g() != m->g0)
1651 runtime_throw("MSpan_Sweep: m is not locked");
1652 sweepgen = runtime_mheap.sweepgen;
1653 if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) {
1654 runtime_printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n",
1655 s->state, s->sweepgen, sweepgen);
1656 runtime_throw("MSpan_Sweep: bad span state");
1658 arena_start = runtime_mheap.arena_start;
1659 cl = s->sizeclass;
1660 size = s->elemsize;
1661 if(cl == 0) {
1662 n = 1;
1663 } else {
1664 // Chunk full of small blocks.
1665 npages = runtime_class_to_allocnpages[cl];
1666 n = (npages << PageShift) / size;
1668 res = false;
1669 nfree = 0;
1670 end = &head;
1671 c = m->mcache;
1672 sweepgenset = false;
1674 // mark any free objects in this span so we don't collect them
1675 for(x = s->freelist; x != nil; x = x->next) {
1676 // This is markonly(x) but faster because we don't need
1677 // atomic access and we're guaranteed to be pointing at
1678 // the head of a valid object.
1679 off = (uintptr*)x - (uintptr*)runtime_mheap.arena_start;
1680 bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
1681 shift = off % wordsPerBitmapWord;
1682 *bitp |= bitMarked<<shift;
1685 // Unlink & free special records for any objects we're about to free.
1686 specialp = &s->specials;
1687 special = *specialp;
1688 while(special != nil) {
1689 // A finalizer can be set for an inner byte of an object, find object beginning.
1690 p = (byte*)(s->start << PageShift) + special->offset/size*size;
1691 off = (uintptr*)p - (uintptr*)arena_start;
1692 bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
1693 shift = off % wordsPerBitmapWord;
1694 bits = *bitp>>shift;
1695 if((bits & (bitAllocated|bitMarked)) == bitAllocated) {
1696 // Find the exact byte for which the special was setup
1697 // (as opposed to object beginning).
1698 p = (byte*)(s->start << PageShift) + special->offset;
1699 // about to free object: splice out special record
1700 y = special;
1701 special = special->next;
1702 *specialp = special;
1703 if(!runtime_freespecial(y, p, size, false)) {
1704 // stop freeing of object if it has a finalizer
1705 *bitp |= bitMarked << shift;
1707 } else {
1708 // object is still live: keep special record
1709 specialp = &special->next;
1710 special = *specialp;
1714 type_data = (byte*)s->types.data;
1715 type_data_inc = sizeof(uintptr);
1716 compression = s->types.compression;
1717 switch(compression) {
1718 case MTypes_Bytes:
1719 type_data += 8*sizeof(uintptr);
1720 type_data_inc = 1;
1721 break;
1724 // Sweep through n objects of given size starting at p.
1725 // This thread owns the span now, so it can manipulate
1726 // the block bitmap without atomic operations.
1727 p = (byte*)(s->start << PageShift);
1728 for(; n > 0; n--, p += size, type_data+=type_data_inc) {
1729 off = (uintptr*)p - (uintptr*)arena_start;
1730 bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
1731 shift = off % wordsPerBitmapWord;
1732 bits = *bitp>>shift;
1734 if((bits & bitAllocated) == 0)
1735 continue;
1737 if((bits & bitMarked) != 0) {
1738 *bitp &= ~(bitMarked<<shift);
1739 continue;
1742 if(runtime_debug.allocfreetrace)
1743 runtime_tracefree(p, size);
1745 // Clear mark and scan bits.
1746 *bitp &= ~((bitScan|bitMarked)<<shift);
1748 if(cl == 0) {
1749 // Free large span.
1750 runtime_unmarkspan(p, 1<<PageShift);
1751 s->needzero = 1;
1752 // important to set sweepgen before returning it to heap
1753 runtime_atomicstore(&s->sweepgen, sweepgen);
1754 sweepgenset = true;
1755 // See note about SysFault vs SysFree in malloc.goc.
1756 if(runtime_debug.efence)
1757 runtime_SysFault(p, size);
1758 else
1759 runtime_MHeap_Free(&runtime_mheap, s, 1);
1760 c->local_nlargefree++;
1761 c->local_largefree += size;
1762 runtime_xadd64(&mstats.next_gc, -(uint64)(size * (gcpercent + 100)/100));
1763 res = true;
1764 } else {
1765 // Free small object.
1766 switch(compression) {
1767 case MTypes_Words:
1768 *(uintptr*)type_data = 0;
1769 break;
1770 case MTypes_Bytes:
1771 *(byte*)type_data = 0;
1772 break;
1774 if(size > 2*sizeof(uintptr))
1775 ((uintptr*)p)[1] = (uintptr)0xdeaddeaddeaddeadll; // mark as "needs to be zeroed"
1776 else if(size > sizeof(uintptr))
1777 ((uintptr*)p)[1] = 0;
1779 end->next = (MLink*)p;
1780 end = (MLink*)p;
1781 nfree++;
1785 // We need to set s->sweepgen = h->sweepgen only when all blocks are swept,
1786 // because of the potential for a concurrent free/SetFinalizer.
1787 // But we need to set it before we make the span available for allocation
1788 // (return it to heap or mcentral), because allocation code assumes that a
1789 // span is already swept if available for allocation.
1791 if(!sweepgenset && nfree == 0) {
1792 // The span must be in our exclusive ownership until we update sweepgen,
1793 // check for potential races.
1794 if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) {
1795 runtime_printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n",
1796 s->state, s->sweepgen, sweepgen);
1797 runtime_throw("MSpan_Sweep: bad span state after sweep");
1799 runtime_atomicstore(&s->sweepgen, sweepgen);
1801 if(nfree > 0) {
1802 c->local_nsmallfree[cl] += nfree;
1803 c->local_cachealloc -= nfree * size;
1804 runtime_xadd64(&mstats.next_gc, -(uint64)(nfree * size * (gcpercent + 100)/100));
1805 res = runtime_MCentral_FreeSpan(&runtime_mheap.central[cl], s, nfree, head.next, end);
1806 //MCentral_FreeSpan updates sweepgen
1808 return res;
1811 // State of background sweep.
1812 // Protected by gclock.
1813 static struct
1815 G* g;
1816 bool parked;
1818 MSpan** spans;
1819 uint32 nspan;
1820 uint32 spanidx;
1821 } sweep;
1823 // background sweeping goroutine
1824 static void
1825 bgsweep(void* dummy __attribute__ ((unused)))
1827 runtime_g()->issystem = 1;
1828 for(;;) {
1829 while(runtime_sweepone() != (uintptr)-1) {
1830 gcstats.nbgsweep++;
1831 runtime_gosched();
1833 runtime_lock(&gclock);
1834 if(!runtime_mheap.sweepdone) {
1835 // It's possible if GC has happened between sweepone has
1836 // returned -1 and gclock lock.
1837 runtime_unlock(&gclock);
1838 continue;
1840 sweep.parked = true;
1841 runtime_g()->isbackground = true;
1842 runtime_parkunlock(&gclock, "GC sweep wait");
1843 runtime_g()->isbackground = false;
1847 // sweeps one span
1848 // returns number of pages returned to heap, or -1 if there is nothing to sweep
1849 uintptr
1850 runtime_sweepone(void)
1852 M *m = runtime_m();
1853 MSpan *s;
1854 uint32 idx, sg;
1855 uintptr npages;
1857 // increment locks to ensure that the goroutine is not preempted
1858 // in the middle of sweep thus leaving the span in an inconsistent state for next GC
1859 m->locks++;
1860 sg = runtime_mheap.sweepgen;
1861 for(;;) {
1862 idx = runtime_xadd(&sweep.spanidx, 1) - 1;
1863 if(idx >= sweep.nspan) {
1864 runtime_mheap.sweepdone = true;
1865 m->locks--;
1866 return (uintptr)-1;
1868 s = sweep.spans[idx];
1869 if(s->state != MSpanInUse) {
1870 s->sweepgen = sg;
1871 continue;
1873 if(s->sweepgen != sg-2 || !runtime_cas(&s->sweepgen, sg-2, sg-1))
1874 continue;
1875 if(s->incache)
1876 runtime_throw("sweep of incache span");
1877 npages = s->npages;
1878 if(!runtime_MSpan_Sweep(s))
1879 npages = 0;
1880 m->locks--;
1881 return npages;
1885 static void
1886 dumpspan(uint32 idx)
1888 int32 sizeclass, n, npages, i, column;
1889 uintptr size;
1890 byte *p;
1891 byte *arena_start;
1892 MSpan *s;
1893 bool allocated;
1895 s = runtime_mheap.allspans[idx];
1896 if(s->state != MSpanInUse)
1897 return;
1898 arena_start = runtime_mheap.arena_start;
1899 p = (byte*)(s->start << PageShift);
1900 sizeclass = s->sizeclass;
1901 size = s->elemsize;
1902 if(sizeclass == 0) {
1903 n = 1;
1904 } else {
1905 npages = runtime_class_to_allocnpages[sizeclass];
1906 n = (npages << PageShift) / size;
1909 runtime_printf("%p .. %p:\n", p, p+n*size);
1910 column = 0;
1911 for(; n>0; n--, p+=size) {
1912 uintptr off, *bitp, shift, bits;
1914 off = (uintptr*)p - (uintptr*)arena_start;
1915 bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
1916 shift = off % wordsPerBitmapWord;
1917 bits = *bitp>>shift;
1919 allocated = ((bits & bitAllocated) != 0);
1921 for(i=0; (uint32)i<size; i+=sizeof(void*)) {
1922 if(column == 0) {
1923 runtime_printf("\t");
1925 if(i == 0) {
1926 runtime_printf(allocated ? "(" : "[");
1927 runtime_printf("%p: ", p+i);
1928 } else {
1929 runtime_printf(" ");
1932 runtime_printf("%p", *(void**)(p+i));
1934 if(i+sizeof(void*) >= size) {
1935 runtime_printf(allocated ? ") " : "] ");
1938 column++;
1939 if(column == 8) {
1940 runtime_printf("\n");
1941 column = 0;
1945 runtime_printf("\n");
1948 // A debugging function to dump the contents of memory
1949 void
1950 runtime_memorydump(void)
1952 uint32 spanidx;
1954 for(spanidx=0; spanidx<runtime_mheap.nspan; spanidx++) {
1955 dumpspan(spanidx);
1959 void
1960 runtime_gchelper(void)
1962 uint32 nproc;
1964 runtime_m()->traceback = 2;
1965 gchelperstart();
1967 // parallel mark for over gc roots
1968 runtime_parfordo(work.markfor);
1970 // help other threads scan secondary blocks
1971 scanblock(nil, true);
1973 bufferList[runtime_m()->helpgc].busy = 0;
1974 nproc = work.nproc; // work.nproc can change right after we increment work.ndone
1975 if(runtime_xadd(&work.ndone, +1) == nproc-1)
1976 runtime_notewakeup(&work.alldone);
1977 runtime_m()->traceback = 0;
1980 static void
1981 cachestats(void)
1983 MCache *c;
1984 P *p, **pp;
1986 for(pp=runtime_allp; (p=*pp) != nil; pp++) {
1987 c = p->mcache;
1988 if(c==nil)
1989 continue;
1990 runtime_purgecachedstats(c);
1994 static void
1995 flushallmcaches(void)
1997 P *p, **pp;
1998 MCache *c;
2000 // Flush MCache's to MCentral.
2001 for(pp=runtime_allp; (p=*pp) != nil; pp++) {
2002 c = p->mcache;
2003 if(c==nil)
2004 continue;
2005 runtime_MCache_ReleaseAll(c);
2009 void
2010 runtime_updatememstats(GCStats *stats)
2012 M *mp;
2013 MSpan *s;
2014 uint32 i;
2015 uint64 stacks_inuse, smallfree;
2016 uint64 *src, *dst;
2018 if(stats)
2019 runtime_memclr((byte*)stats, sizeof(*stats));
2020 stacks_inuse = 0;
2021 for(mp=runtime_allm; mp; mp=mp->alllink) {
2022 //stacks_inuse += mp->stackinuse*FixedStack;
2023 if(stats) {
2024 src = (uint64*)&mp->gcstats;
2025 dst = (uint64*)stats;
2026 for(i=0; i<sizeof(*stats)/sizeof(uint64); i++)
2027 dst[i] += src[i];
2028 runtime_memclr((byte*)&mp->gcstats, sizeof(mp->gcstats));
2031 mstats.stacks_inuse = stacks_inuse;
2032 mstats.mcache_inuse = runtime_mheap.cachealloc.inuse;
2033 mstats.mspan_inuse = runtime_mheap.spanalloc.inuse;
2034 mstats.sys = mstats.heap_sys + mstats.stacks_sys + mstats.mspan_sys +
2035 mstats.mcache_sys + mstats.buckhash_sys + mstats.gc_sys + mstats.other_sys;
2037 // Calculate memory allocator stats.
2038 // During program execution we only count number of frees and amount of freed memory.
2039 // Current number of alive object in the heap and amount of alive heap memory
2040 // are calculated by scanning all spans.
2041 // Total number of mallocs is calculated as number of frees plus number of alive objects.
2042 // Similarly, total amount of allocated memory is calculated as amount of freed memory
2043 // plus amount of alive heap memory.
2044 mstats.alloc = 0;
2045 mstats.total_alloc = 0;
2046 mstats.nmalloc = 0;
2047 mstats.nfree = 0;
2048 for(i = 0; i < nelem(mstats.by_size); i++) {
2049 mstats.by_size[i].nmalloc = 0;
2050 mstats.by_size[i].nfree = 0;
2053 // Flush MCache's to MCentral.
2054 flushallmcaches();
2056 // Aggregate local stats.
2057 cachestats();
2059 // Scan all spans and count number of alive objects.
2060 for(i = 0; i < runtime_mheap.nspan; i++) {
2061 s = runtime_mheap.allspans[i];
2062 if(s->state != MSpanInUse)
2063 continue;
2064 if(s->sizeclass == 0) {
2065 mstats.nmalloc++;
2066 mstats.alloc += s->elemsize;
2067 } else {
2068 mstats.nmalloc += s->ref;
2069 mstats.by_size[s->sizeclass].nmalloc += s->ref;
2070 mstats.alloc += s->ref*s->elemsize;
2074 // Aggregate by size class.
2075 smallfree = 0;
2076 mstats.nfree = runtime_mheap.nlargefree;
2077 for(i = 0; i < nelem(mstats.by_size); i++) {
2078 mstats.nfree += runtime_mheap.nsmallfree[i];
2079 mstats.by_size[i].nfree = runtime_mheap.nsmallfree[i];
2080 mstats.by_size[i].nmalloc += runtime_mheap.nsmallfree[i];
2081 smallfree += runtime_mheap.nsmallfree[i] * runtime_class_to_size[i];
2083 mstats.nmalloc += mstats.nfree;
2085 // Calculate derived stats.
2086 mstats.total_alloc = mstats.alloc + runtime_mheap.largefree + smallfree;
2087 mstats.heap_alloc = mstats.alloc;
2088 mstats.heap_objects = mstats.nmalloc - mstats.nfree;
2091 // Structure of arguments passed to function gc().
2092 // This allows the arguments to be passed via runtime_mcall.
2093 struct gc_args
2095 int64 start_time; // start time of GC in ns (just before stoptheworld)
2096 bool eagersweep;
2099 static void gc(struct gc_args *args);
2100 static void mgc(G *gp);
2102 static int32
2103 readgogc(void)
2105 const byte *p;
2107 p = runtime_getenv("GOGC");
2108 if(p == nil || p[0] == '\0')
2109 return 100;
2110 if(runtime_strcmp((const char *)p, "off") == 0)
2111 return -1;
2112 return runtime_atoi(p);
2115 // force = 1 - do GC regardless of current heap usage
2116 // force = 2 - go GC and eager sweep
2117 void
2118 runtime_gc(int32 force)
2120 M *m;
2121 G *g;
2122 struct gc_args a;
2123 int32 i;
2125 // The atomic operations are not atomic if the uint64s
2126 // are not aligned on uint64 boundaries. This has been
2127 // a problem in the past.
2128 if((((uintptr)&work.empty) & 7) != 0)
2129 runtime_throw("runtime: gc work buffer is misaligned");
2130 if((((uintptr)&work.full) & 7) != 0)
2131 runtime_throw("runtime: gc work buffer is misaligned");
2133 // Make sure all registers are saved on stack so that
2134 // scanstack sees them.
2135 __builtin_unwind_init();
2137 // The gc is turned off (via enablegc) until
2138 // the bootstrap has completed.
2139 // Also, malloc gets called in the guts
2140 // of a number of libraries that might be
2141 // holding locks. To avoid priority inversion
2142 // problems, don't bother trying to run gc
2143 // while holding a lock. The next mallocgc
2144 // without a lock will do the gc instead.
2145 m = runtime_m();
2146 if(!mstats.enablegc || runtime_g() == m->g0 || m->locks > 0 || runtime_panicking)
2147 return;
2149 if(gcpercent == GcpercentUnknown) { // first time through
2150 runtime_lock(&runtime_mheap);
2151 if(gcpercent == GcpercentUnknown)
2152 gcpercent = readgogc();
2153 runtime_unlock(&runtime_mheap);
2155 if(gcpercent < 0)
2156 return;
2158 runtime_semacquire(&runtime_worldsema, false);
2159 if(force==0 && mstats.heap_alloc < mstats.next_gc) {
2160 // typically threads which lost the race to grab
2161 // worldsema exit here when gc is done.
2162 runtime_semrelease(&runtime_worldsema);
2163 return;
2166 // Ok, we're doing it! Stop everybody else
2167 a.start_time = runtime_nanotime();
2168 a.eagersweep = force >= 2;
2169 m->gcing = 1;
2170 runtime_stoptheworld();
2172 clearpools();
2174 // Run gc on the g0 stack. We do this so that the g stack
2175 // we're currently running on will no longer change. Cuts
2176 // the root set down a bit (g0 stacks are not scanned, and
2177 // we don't need to scan gc's internal state). Also an
2178 // enabler for copyable stacks.
2179 for(i = 0; i < (runtime_debug.gctrace > 1 ? 2 : 1); i++) {
2180 if(i > 0)
2181 a.start_time = runtime_nanotime();
2182 // switch to g0, call gc(&a), then switch back
2183 g = runtime_g();
2184 g->param = &a;
2185 g->status = Gwaiting;
2186 g->waitreason = "garbage collection";
2187 runtime_mcall(mgc);
2188 m = runtime_m();
2191 // all done
2192 m->gcing = 0;
2193 m->locks++;
2194 runtime_semrelease(&runtime_worldsema);
2195 runtime_starttheworld();
2196 m->locks--;
2198 // now that gc is done, kick off finalizer thread if needed
2199 if(!ConcurrentSweep) {
2200 // give the queued finalizers, if any, a chance to run
2201 runtime_gosched();
2202 } else {
2203 // For gccgo, let other goroutines run.
2204 runtime_gosched();
2208 static void
2209 mgc(G *gp)
2211 gc(gp->param);
2212 gp->param = nil;
2213 gp->status = Grunning;
2214 runtime_gogo(gp);
2217 static void
2218 gc(struct gc_args *args)
2220 M *m;
2221 int64 t0, t1, t2, t3, t4;
2222 uint64 heap0, heap1, obj, ninstr;
2223 GCStats stats;
2224 uint32 i;
2225 // Eface eface;
2227 m = runtime_m();
2229 if(runtime_debug.allocfreetrace)
2230 runtime_tracegc();
2232 m->traceback = 2;
2233 t0 = args->start_time;
2234 work.tstart = args->start_time;
2236 if(CollectStats)
2237 runtime_memclr((byte*)&gcstats, sizeof(gcstats));
2239 m->locks++; // disable gc during mallocs in parforalloc
2240 if(work.markfor == nil)
2241 work.markfor = runtime_parforalloc(MaxGcproc);
2242 m->locks--;
2244 t1 = 0;
2245 if(runtime_debug.gctrace)
2246 t1 = runtime_nanotime();
2248 // Sweep what is not sweeped by bgsweep.
2249 while(runtime_sweepone() != (uintptr)-1)
2250 gcstats.npausesweep++;
2252 work.nwait = 0;
2253 work.ndone = 0;
2254 work.nproc = runtime_gcprocs();
2255 runtime_parforsetup(work.markfor, work.nproc, RootCount + runtime_allglen, nil, false, markroot);
2256 if(work.nproc > 1) {
2257 runtime_noteclear(&work.alldone);
2258 runtime_helpgc(work.nproc);
2261 t2 = 0;
2262 if(runtime_debug.gctrace)
2263 t2 = runtime_nanotime();
2265 gchelperstart();
2266 runtime_parfordo(work.markfor);
2267 scanblock(nil, true);
2269 t3 = 0;
2270 if(runtime_debug.gctrace)
2271 t3 = runtime_nanotime();
2273 bufferList[m->helpgc].busy = 0;
2274 if(work.nproc > 1)
2275 runtime_notesleep(&work.alldone);
2277 cachestats();
2278 // next_gc calculation is tricky with concurrent sweep since we don't know size of live heap
2279 // estimate what was live heap size after previous GC (for tracing only)
2280 heap0 = mstats.next_gc*100/(gcpercent+100);
2281 // conservatively set next_gc to high value assuming that everything is live
2282 // concurrent/lazy sweep will reduce this number while discovering new garbage
2283 mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100;
2285 t4 = runtime_nanotime();
2286 mstats.last_gc = runtime_unixnanotime(); // must be Unix time to make sense to user
2287 mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t4 - t0;
2288 mstats.pause_total_ns += t4 - t0;
2289 mstats.numgc++;
2290 if(mstats.debuggc)
2291 runtime_printf("pause %D\n", t4-t0);
2293 if(runtime_debug.gctrace) {
2294 heap1 = mstats.heap_alloc;
2295 runtime_updatememstats(&stats);
2296 if(heap1 != mstats.heap_alloc) {
2297 runtime_printf("runtime: mstats skew: heap=%D/%D\n", heap1, mstats.heap_alloc);
2298 runtime_throw("mstats skew");
2300 obj = mstats.nmalloc - mstats.nfree;
2302 stats.nprocyield += work.markfor->nprocyield;
2303 stats.nosyield += work.markfor->nosyield;
2304 stats.nsleep += work.markfor->nsleep;
2306 runtime_printf("gc%d(%d): %D+%D+%D+%D us, %D -> %D MB, %D (%D-%D) objects,"
2307 " %d/%d/%d sweeps,"
2308 " %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n",
2309 mstats.numgc, work.nproc, (t1-t0)/1000, (t2-t1)/1000, (t3-t2)/1000, (t4-t3)/1000,
2310 heap0>>20, heap1>>20, obj,
2311 mstats.nmalloc, mstats.nfree,
2312 sweep.nspan, gcstats.nbgsweep, gcstats.npausesweep,
2313 stats.nhandoff, stats.nhandoffcnt,
2314 work.markfor->nsteal, work.markfor->nstealcnt,
2315 stats.nprocyield, stats.nosyield, stats.nsleep);
2316 gcstats.nbgsweep = gcstats.npausesweep = 0;
2317 if(CollectStats) {
2318 runtime_printf("scan: %D bytes, %D objects, %D untyped, %D types from MSpan\n",
2319 gcstats.nbytes, gcstats.obj.cnt, gcstats.obj.notype, gcstats.obj.typelookup);
2320 if(gcstats.ptr.cnt != 0)
2321 runtime_printf("avg ptrbufsize: %D (%D/%D)\n",
2322 gcstats.ptr.sum/gcstats.ptr.cnt, gcstats.ptr.sum, gcstats.ptr.cnt);
2323 if(gcstats.obj.cnt != 0)
2324 runtime_printf("avg nobj: %D (%D/%D)\n",
2325 gcstats.obj.sum/gcstats.obj.cnt, gcstats.obj.sum, gcstats.obj.cnt);
2326 runtime_printf("rescans: %D, %D bytes\n", gcstats.rescan, gcstats.rescanbytes);
2328 runtime_printf("instruction counts:\n");
2329 ninstr = 0;
2330 for(i=0; i<nelem(gcstats.instr); i++) {
2331 runtime_printf("\t%d:\t%D\n", i, gcstats.instr[i]);
2332 ninstr += gcstats.instr[i];
2334 runtime_printf("\ttotal:\t%D\n", ninstr);
2336 runtime_printf("putempty: %D, getfull: %D\n", gcstats.putempty, gcstats.getfull);
2338 runtime_printf("markonly base lookup: bit %D word %D span %D\n", gcstats.markonly.foundbit, gcstats.markonly.foundword, gcstats.markonly.foundspan);
2339 runtime_printf("flushptrbuf base lookup: bit %D word %D span %D\n", gcstats.flushptrbuf.foundbit, gcstats.flushptrbuf.foundword, gcstats.flushptrbuf.foundspan);
2343 // We cache current runtime_mheap.allspans array in sweep.spans,
2344 // because the former can be resized and freed.
2345 // Otherwise we would need to take heap lock every time
2346 // we want to convert span index to span pointer.
2348 // Free the old cached array if necessary.
2349 if(sweep.spans && sweep.spans != runtime_mheap.allspans)
2350 runtime_SysFree(sweep.spans, sweep.nspan*sizeof(sweep.spans[0]), &mstats.other_sys);
2351 // Cache the current array.
2352 runtime_mheap.sweepspans = runtime_mheap.allspans;
2353 runtime_mheap.sweepgen += 2;
2354 runtime_mheap.sweepdone = false;
2355 sweep.spans = runtime_mheap.allspans;
2356 sweep.nspan = runtime_mheap.nspan;
2357 sweep.spanidx = 0;
2359 // Temporary disable concurrent sweep, because we see failures on builders.
2360 if(ConcurrentSweep && !args->eagersweep) {
2361 runtime_lock(&gclock);
2362 if(sweep.g == nil)
2363 sweep.g = __go_go(bgsweep, nil);
2364 else if(sweep.parked) {
2365 sweep.parked = false;
2366 runtime_ready(sweep.g);
2368 runtime_unlock(&gclock);
2369 } else {
2370 // Sweep all spans eagerly.
2371 while(runtime_sweepone() != (uintptr)-1)
2372 gcstats.npausesweep++;
2373 // Do an additional mProf_GC, because all 'free' events are now real as well.
2374 runtime_MProf_GC();
2377 runtime_MProf_GC();
2378 m->traceback = 0;
2381 extern uintptr runtime_sizeof_C_MStats
2382 __asm__ (GOSYM_PREFIX "runtime.Sizeof_C_MStats");
2384 void runtime_ReadMemStats(MStats *)
2385 __asm__ (GOSYM_PREFIX "runtime.ReadMemStats");
2387 void
2388 runtime_ReadMemStats(MStats *stats)
2390 M *m;
2392 // Have to acquire worldsema to stop the world,
2393 // because stoptheworld can only be used by
2394 // one goroutine at a time, and there might be
2395 // a pending garbage collection already calling it.
2396 runtime_semacquire(&runtime_worldsema, false);
2397 m = runtime_m();
2398 m->gcing = 1;
2399 runtime_stoptheworld();
2400 runtime_updatememstats(nil);
2401 // Size of the trailing by_size array differs between Go and C,
2402 // NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
2403 runtime_memmove(stats, &mstats, runtime_sizeof_C_MStats);
2404 m->gcing = 0;
2405 m->locks++;
2406 runtime_semrelease(&runtime_worldsema);
2407 runtime_starttheworld();
2408 m->locks--;
2411 void runtime_debug_readGCStats(Slice*)
2412 __asm__("runtime_debug.readGCStats");
2414 void
2415 runtime_debug_readGCStats(Slice *pauses)
2417 uint64 *p;
2418 uint32 i, n;
2420 // Calling code in runtime/debug should make the slice large enough.
2421 if((size_t)pauses->cap < nelem(mstats.pause_ns)+3)
2422 runtime_throw("runtime: short slice passed to readGCStats");
2424 // Pass back: pauses, last gc (absolute time), number of gc, total pause ns.
2425 p = (uint64*)pauses->array;
2426 runtime_lock(&runtime_mheap);
2427 n = mstats.numgc;
2428 if(n > nelem(mstats.pause_ns))
2429 n = nelem(mstats.pause_ns);
2431 // The pause buffer is circular. The most recent pause is at
2432 // pause_ns[(numgc-1)%nelem(pause_ns)], and then backward
2433 // from there to go back farther in time. We deliver the times
2434 // most recent first (in p[0]).
2435 for(i=0; i<n; i++)
2436 p[i] = mstats.pause_ns[(mstats.numgc-1-i)%nelem(mstats.pause_ns)];
2438 p[n] = mstats.last_gc;
2439 p[n+1] = mstats.numgc;
2440 p[n+2] = mstats.pause_total_ns;
2441 runtime_unlock(&runtime_mheap);
2442 pauses->__count = n+3;
2445 int32
2446 runtime_setgcpercent(int32 in) {
2447 int32 out;
2449 runtime_lock(&runtime_mheap);
2450 if(gcpercent == GcpercentUnknown)
2451 gcpercent = readgogc();
2452 out = gcpercent;
2453 if(in < 0)
2454 in = -1;
2455 gcpercent = in;
2456 runtime_unlock(&runtime_mheap);
2457 return out;
2460 static void
2461 gchelperstart(void)
2463 M *m;
2465 m = runtime_m();
2466 if(m->helpgc < 0 || m->helpgc >= MaxGcproc)
2467 runtime_throw("gchelperstart: bad m->helpgc");
2468 if(runtime_xchg(&bufferList[m->helpgc].busy, 1))
2469 runtime_throw("gchelperstart: already busy");
2470 if(runtime_g() != m->g0)
2471 runtime_throw("gchelper not running on g0 stack");
2474 static void
2475 runfinq(void* dummy __attribute__ ((unused)))
2477 Finalizer *f;
2478 FinBlock *fb, *next;
2479 uint32 i;
2480 Eface ef;
2481 Iface iface;
2483 // This function blocks for long periods of time, and because it is written in C
2484 // we have no liveness information. Zero everything so that uninitialized pointers
2485 // do not cause memory leaks.
2486 f = nil;
2487 fb = nil;
2488 next = nil;
2489 i = 0;
2490 ef.__type_descriptor = nil;
2491 ef.__object = nil;
2493 // force flush to memory
2494 USED(&f);
2495 USED(&fb);
2496 USED(&next);
2497 USED(&i);
2498 USED(&ef);
2500 for(;;) {
2501 runtime_lock(&finlock);
2502 fb = finq;
2503 finq = nil;
2504 if(fb == nil) {
2505 runtime_fingwait = true;
2506 runtime_g()->isbackground = true;
2507 runtime_parkunlock(&finlock, "finalizer wait");
2508 runtime_g()->isbackground = false;
2509 continue;
2511 runtime_unlock(&finlock);
2512 for(; fb; fb=next) {
2513 next = fb->next;
2514 for(i=0; i<(uint32)fb->cnt; i++) {
2515 const Type *fint;
2516 void *param;
2518 f = &fb->fin[i];
2519 fint = ((const Type**)f->ft->__in.array)[0];
2520 if((fint->__code & kindMask) == KindPtr) {
2521 // direct use of pointer
2522 param = &f->arg;
2523 } else if(((const InterfaceType*)fint)->__methods.__count == 0) {
2524 // convert to empty interface
2525 ef.__type_descriptor = (const Type*)f->ot;
2526 ef.__object = f->arg;
2527 param = &ef;
2528 } else {
2529 // convert to interface with methods
2530 iface.__methods = __go_convert_interface_2((const Type*)fint,
2531 (const Type*)f->ot,
2533 iface.__object = f->arg;
2534 if(iface.__methods == nil)
2535 runtime_throw("invalid type conversion in runfinq");
2536 param = &iface;
2538 reflect_call(f->ft, f->fn, 0, 0, &param, nil);
2539 f->fn = nil;
2540 f->arg = nil;
2541 f->ot = nil;
2543 fb->cnt = 0;
2544 runtime_lock(&finlock);
2545 fb->next = finc;
2546 finc = fb;
2547 runtime_unlock(&finlock);
2550 // Zero everything that's dead, to avoid memory leaks.
2551 // See comment at top of function.
2552 f = nil;
2553 fb = nil;
2554 next = nil;
2555 i = 0;
2556 ef.__type_descriptor = nil;
2557 ef.__object = nil;
2558 runtime_gc(1); // trigger another gc to clean up the finalized objects, if possible
2562 void
2563 runtime_createfing(void)
2565 if(fing != nil)
2566 return;
2567 // Here we use gclock instead of finlock,
2568 // because newproc1 can allocate, which can cause on-demand span sweep,
2569 // which can queue finalizers, which would deadlock.
2570 runtime_lock(&gclock);
2571 if(fing == nil)
2572 fing = __go_go(runfinq, nil);
2573 runtime_unlock(&gclock);
2577 runtime_wakefing(void)
2579 G *res;
2581 res = nil;
2582 runtime_lock(&finlock);
2583 if(runtime_fingwait && runtime_fingwake) {
2584 runtime_fingwait = false;
2585 runtime_fingwake = false;
2586 res = fing;
2588 runtime_unlock(&finlock);
2589 return res;
2592 void
2593 runtime_marknogc(void *v)
2595 uintptr *b, off, shift;
2597 off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset
2598 b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
2599 shift = off % wordsPerBitmapWord;
2600 *b = (*b & ~(bitAllocated<<shift)) | bitBlockBoundary<<shift;
2603 void
2604 runtime_markscan(void *v)
2606 uintptr *b, off, shift;
2608 off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset
2609 b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
2610 shift = off % wordsPerBitmapWord;
2611 *b |= bitScan<<shift;
2614 // mark the block at v as freed.
2615 void
2616 runtime_markfreed(void *v)
2618 uintptr *b, off, shift;
2620 if(0)
2621 runtime_printf("markfreed %p\n", v);
2623 if((byte*)v > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
2624 runtime_throw("markfreed: bad pointer");
2626 off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset
2627 b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
2628 shift = off % wordsPerBitmapWord;
2629 *b = (*b & ~(bitMask<<shift)) | (bitAllocated<<shift);
2632 // check that the block at v of size n is marked freed.
2633 void
2634 runtime_checkfreed(void *v, uintptr n)
2636 uintptr *b, bits, off, shift;
2638 if(!runtime_checking)
2639 return;
2641 if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
2642 return; // not allocated, so okay
2644 off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset
2645 b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
2646 shift = off % wordsPerBitmapWord;
2648 bits = *b>>shift;
2649 if((bits & bitAllocated) != 0) {
2650 runtime_printf("checkfreed %p+%p: off=%p have=%p\n",
2651 v, n, off, bits & bitMask);
2652 runtime_throw("checkfreed: not freed");
2656 // mark the span of memory at v as having n blocks of the given size.
2657 // if leftover is true, there is left over space at the end of the span.
2658 void
2659 runtime_markspan(void *v, uintptr size, uintptr n, bool leftover)
2661 uintptr *b, *b0, off, shift, i, x;
2662 byte *p;
2664 if((byte*)v+size*n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
2665 runtime_throw("markspan: bad pointer");
2667 if(runtime_checking) {
2668 // bits should be all zero at the start
2669 off = (byte*)v + size - runtime_mheap.arena_start;
2670 b = (uintptr*)(runtime_mheap.arena_start - off/wordsPerBitmapWord);
2671 for(i = 0; i < size/PtrSize/wordsPerBitmapWord; i++) {
2672 if(b[i] != 0)
2673 runtime_throw("markspan: span bits not zero");
2677 p = v;
2678 if(leftover) // mark a boundary just past end of last block too
2679 n++;
2681 b0 = nil;
2682 x = 0;
2683 for(; n-- > 0; p += size) {
2684 // Okay to use non-atomic ops here, because we control
2685 // the entire span, and each bitmap word has bits for only
2686 // one span, so no other goroutines are changing these
2687 // bitmap words.
2688 off = (uintptr*)p - (uintptr*)runtime_mheap.arena_start; // word offset
2689 b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
2690 shift = off % wordsPerBitmapWord;
2691 if(b0 != b) {
2692 if(b0 != nil)
2693 *b0 = x;
2694 b0 = b;
2695 x = 0;
2697 x |= bitAllocated<<shift;
2699 *b0 = x;
2702 // unmark the span of memory at v of length n bytes.
2703 void
2704 runtime_unmarkspan(void *v, uintptr n)
2706 uintptr *p, *b, off;
2708 if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
2709 runtime_throw("markspan: bad pointer");
2711 p = v;
2712 off = p - (uintptr*)runtime_mheap.arena_start; // word offset
2713 if(off % wordsPerBitmapWord != 0)
2714 runtime_throw("markspan: unaligned pointer");
2715 b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
2716 n /= PtrSize;
2717 if(n%wordsPerBitmapWord != 0)
2718 runtime_throw("unmarkspan: unaligned length");
2719 // Okay to use non-atomic ops here, because we control
2720 // the entire span, and each bitmap word has bits for only
2721 // one span, so no other goroutines are changing these
2722 // bitmap words.
2723 n /= wordsPerBitmapWord;
2724 while(n-- > 0)
2725 *b-- = 0;
2728 void
2729 runtime_MHeap_MapBits(MHeap *h)
2731 size_t page_size;
2733 // Caller has added extra mappings to the arena.
2734 // Add extra mappings of bitmap words as needed.
2735 // We allocate extra bitmap pieces in chunks of bitmapChunk.
2736 enum {
2737 bitmapChunk = 8192
2739 uintptr n;
2741 n = (h->arena_used - h->arena_start) / wordsPerBitmapWord;
2742 n = ROUND(n, bitmapChunk);
2743 n = ROUND(n, PageSize);
2744 page_size = getpagesize();
2745 n = ROUND(n, page_size);
2746 if(h->bitmap_mapped >= n)
2747 return;
2749 runtime_SysMap(h->arena_start - n, n - h->bitmap_mapped, h->arena_reserved, &mstats.gc_sys);
2750 h->bitmap_mapped = n;