* lto-partition.c (add_symbol_to_partition_1,
[official-gcc.git] / gcc / tree-ssa-uninit.c
blob71a564c9944e89e7fbfeb1691971f92144a6de7c
1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "gimple-pretty-print.h"
31 #include "bitmap.h"
32 #include "pointer-set.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "gimple-expr.h"
36 #include "is-a.h"
37 #include "gimple.h"
38 #include "gimple-iterator.h"
39 #include "gimple-ssa.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "tree-ssa.h"
43 #include "tree-inline.h"
44 #include "hashtab.h"
45 #include "tree-pass.h"
46 #include "diagnostic-core.h"
48 /* This implements the pass that does predicate aware warning on uses of
49 possibly uninitialized variables. The pass first collects the set of
50 possibly uninitialized SSA names. For each such name, it walks through
51 all its immediate uses. For each immediate use, it rebuilds the condition
52 expression (the predicate) that guards the use. The predicate is then
53 examined to see if the variable is always defined under that same condition.
54 This is done either by pruning the unrealizable paths that lead to the
55 default definitions or by checking if the predicate set that guards the
56 defining paths is a superset of the use predicate. */
59 /* Pointer set of potentially undefined ssa names, i.e.,
60 ssa names that are defined by phi with operands that
61 are not defined or potentially undefined. */
62 static pointer_set_t *possibly_undefined_names = 0;
64 /* Bit mask handling macros. */
65 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
66 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
67 #define MASK_EMPTY(mask) (mask == 0)
69 /* Returns the first bit position (starting from LSB)
70 in mask that is non zero. Returns -1 if the mask is empty. */
71 static int
72 get_mask_first_set_bit (unsigned mask)
74 int pos = 0;
75 if (mask == 0)
76 return -1;
78 while ((mask & (1 << pos)) == 0)
79 pos++;
81 return pos;
83 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
85 /* Return true if T, an SSA_NAME, has an undefined value. */
86 static bool
87 has_undefined_value_p (tree t)
89 return (ssa_undefined_value_p (t)
90 || (possibly_undefined_names
91 && pointer_set_contains (possibly_undefined_names, t)));
96 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
97 is set on SSA_NAME_VAR. */
99 static inline bool
100 uninit_undefined_value_p (tree t) {
101 if (!has_undefined_value_p (t))
102 return false;
103 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
104 return false;
105 return true;
108 /* Emit warnings for uninitialized variables. This is done in two passes.
110 The first pass notices real uses of SSA names with undefined values.
111 Such uses are unconditionally uninitialized, and we can be certain that
112 such a use is a mistake. This pass is run before most optimizations,
113 so that we catch as many as we can.
115 The second pass follows PHI nodes to find uses that are potentially
116 uninitialized. In this case we can't necessarily prove that the use
117 is really uninitialized. This pass is run after most optimizations,
118 so that we thread as many jumps and possible, and delete as much dead
119 code as possible, in order to reduce false positives. We also look
120 again for plain uninitialized variables, since optimization may have
121 changed conditionally uninitialized to unconditionally uninitialized. */
123 /* Emit a warning for EXPR based on variable VAR at the point in the
124 program T, an SSA_NAME, is used being uninitialized. The exact
125 warning text is in MSGID and LOCUS may contain a location or be null.
126 WC is the warning code. */
128 static void
129 warn_uninit (enum opt_code wc, tree t,
130 tree expr, tree var, const char *gmsgid, void *data)
132 gimple context = (gimple) data;
133 location_t location, cfun_loc;
134 expanded_location xloc, floc;
136 if (!has_undefined_value_p (t))
137 return;
139 /* TREE_NO_WARNING either means we already warned, or the front end
140 wishes to suppress the warning. */
141 if ((context
142 && (gimple_no_warning_p (context)
143 || (gimple_assign_single_p (context)
144 && TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
145 || TREE_NO_WARNING (expr))
146 return;
148 location = (context != NULL && gimple_has_location (context))
149 ? gimple_location (context)
150 : DECL_SOURCE_LOCATION (var);
151 location = linemap_resolve_location (line_table, location,
152 LRK_SPELLING_LOCATION,
153 NULL);
154 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
155 xloc = expand_location (location);
156 floc = expand_location (cfun_loc);
157 if (warning_at (location, wc, gmsgid, expr))
159 TREE_NO_WARNING (expr) = 1;
161 if (location == DECL_SOURCE_LOCATION (var))
162 return;
163 if (xloc.file != floc.file
164 || linemap_location_before_p (line_table,
165 location, cfun_loc)
166 || linemap_location_before_p (line_table,
167 cfun->function_end_locus,
168 location))
169 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
173 static unsigned int
174 warn_uninitialized_vars (bool warn_possibly_uninitialized)
176 gimple_stmt_iterator gsi;
177 basic_block bb;
179 FOR_EACH_BB_FN (bb, cfun)
181 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS,
182 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)), bb);
183 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
185 gimple stmt = gsi_stmt (gsi);
186 use_operand_p use_p;
187 ssa_op_iter op_iter;
188 tree use;
190 if (is_gimple_debug (stmt))
191 continue;
193 /* We only do data flow with SSA_NAMEs, so that's all we
194 can warn about. */
195 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
197 use = USE_FROM_PTR (use_p);
198 if (always_executed)
199 warn_uninit (OPT_Wuninitialized, use,
200 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
201 "%qD is used uninitialized in this function",
202 stmt);
203 else if (warn_possibly_uninitialized)
204 warn_uninit (OPT_Wmaybe_uninitialized, use,
205 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
206 "%qD may be used uninitialized in this function",
207 stmt);
210 /* For memory the only cheap thing we can do is see if we
211 have a use of the default def of the virtual operand.
212 ??? Note that at -O0 we do not have virtual operands.
213 ??? Not so cheap would be to use the alias oracle via
214 walk_aliased_vdefs, if we don't find any aliasing vdef
215 warn as is-used-uninitialized, if we don't find an aliasing
216 vdef that kills our use (stmt_kills_ref_p), warn as
217 may-be-used-uninitialized. But this walk is quadratic and
218 so must be limited which means we would miss warning
219 opportunities. */
220 use = gimple_vuse (stmt);
221 if (use
222 && gimple_assign_single_p (stmt)
223 && !gimple_vdef (stmt)
224 && SSA_NAME_IS_DEFAULT_DEF (use))
226 tree rhs = gimple_assign_rhs1 (stmt);
227 tree base = get_base_address (rhs);
229 /* Do not warn if it can be initialized outside this function. */
230 if (TREE_CODE (base) != VAR_DECL
231 || DECL_HARD_REGISTER (base)
232 || is_global_var (base))
233 continue;
235 if (always_executed)
236 warn_uninit (OPT_Wuninitialized, use,
237 gimple_assign_rhs1 (stmt), base,
238 "%qE is used uninitialized in this function",
239 stmt);
240 else if (warn_possibly_uninitialized)
241 warn_uninit (OPT_Wmaybe_uninitialized, use,
242 gimple_assign_rhs1 (stmt), base,
243 "%qE may be used uninitialized in this function",
244 stmt);
249 return 0;
252 /* Checks if the operand OPND of PHI is defined by
253 another phi with one operand defined by this PHI,
254 but the rest operands are all defined. If yes,
255 returns true to skip this this operand as being
256 redundant. Can be enhanced to be more general. */
258 static bool
259 can_skip_redundant_opnd (tree opnd, gimple phi)
261 gimple op_def;
262 tree phi_def;
263 int i, n;
265 phi_def = gimple_phi_result (phi);
266 op_def = SSA_NAME_DEF_STMT (opnd);
267 if (gimple_code (op_def) != GIMPLE_PHI)
268 return false;
269 n = gimple_phi_num_args (op_def);
270 for (i = 0; i < n; ++i)
272 tree op = gimple_phi_arg_def (op_def, i);
273 if (TREE_CODE (op) != SSA_NAME)
274 continue;
275 if (op != phi_def && uninit_undefined_value_p (op))
276 return false;
279 return true;
282 /* Returns a bit mask holding the positions of arguments in PHI
283 that have empty (or possibly empty) definitions. */
285 static unsigned
286 compute_uninit_opnds_pos (gimple phi)
288 size_t i, n;
289 unsigned uninit_opnds = 0;
291 n = gimple_phi_num_args (phi);
292 /* Bail out for phi with too many args. */
293 if (n > 32)
294 return 0;
296 for (i = 0; i < n; ++i)
298 tree op = gimple_phi_arg_def (phi, i);
299 if (TREE_CODE (op) == SSA_NAME
300 && uninit_undefined_value_p (op)
301 && !can_skip_redundant_opnd (op, phi))
303 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
305 /* Ignore SSA_NAMEs that appear on abnormal edges
306 somewhere. */
307 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
308 continue;
310 MASK_SET_BIT (uninit_opnds, i);
313 return uninit_opnds;
316 /* Find the immediate postdominator PDOM of the specified
317 basic block BLOCK. */
319 static inline basic_block
320 find_pdom (basic_block block)
322 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
323 return EXIT_BLOCK_PTR_FOR_FN (cfun);
324 else
326 basic_block bb
327 = get_immediate_dominator (CDI_POST_DOMINATORS, block);
328 if (! bb)
329 return EXIT_BLOCK_PTR_FOR_FN (cfun);
330 return bb;
334 /* Find the immediate DOM of the specified
335 basic block BLOCK. */
337 static inline basic_block
338 find_dom (basic_block block)
340 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
341 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
342 else
344 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
345 if (! bb)
346 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
347 return bb;
351 /* Returns true if BB1 is postdominating BB2 and BB1 is
352 not a loop exit bb. The loop exit bb check is simple and does
353 not cover all cases. */
355 static bool
356 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
358 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
359 return false;
361 if (single_pred_p (bb1) && !single_succ_p (bb2))
362 return false;
364 return true;
367 /* Find the closest postdominator of a specified BB, which is control
368 equivalent to BB. */
370 static inline basic_block
371 find_control_equiv_block (basic_block bb)
373 basic_block pdom;
375 pdom = find_pdom (bb);
377 /* Skip the postdominating bb that is also loop exit. */
378 if (!is_non_loop_exit_postdominating (pdom, bb))
379 return NULL;
381 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
382 return pdom;
384 return NULL;
387 #define MAX_NUM_CHAINS 8
388 #define MAX_CHAIN_LEN 5
389 #define MAX_POSTDOM_CHECK 8
391 /* Computes the control dependence chains (paths of edges)
392 for DEP_BB up to the dominating basic block BB (the head node of a
393 chain should be dominated by it). CD_CHAINS is pointer to a
394 dynamic array holding the result chains. CUR_CD_CHAIN is the current
395 chain being computed. *NUM_CHAINS is total number of chains. The
396 function returns true if the information is successfully computed,
397 return false if there is no control dependence or not computed. */
399 static bool
400 compute_control_dep_chain (basic_block bb, basic_block dep_bb,
401 vec<edge> *cd_chains,
402 size_t *num_chains,
403 vec<edge> *cur_cd_chain)
405 edge_iterator ei;
406 edge e;
407 size_t i;
408 bool found_cd_chain = false;
409 size_t cur_chain_len = 0;
411 if (EDGE_COUNT (bb->succs) < 2)
412 return false;
414 /* Could use a set instead. */
415 cur_chain_len = cur_cd_chain->length ();
416 if (cur_chain_len > MAX_CHAIN_LEN)
417 return false;
419 for (i = 0; i < cur_chain_len; i++)
421 edge e = (*cur_cd_chain)[i];
422 /* Cycle detected. */
423 if (e->src == bb)
424 return false;
427 FOR_EACH_EDGE (e, ei, bb->succs)
429 basic_block cd_bb;
430 int post_dom_check = 0;
431 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
432 continue;
434 cd_bb = e->dest;
435 cur_cd_chain->safe_push (e);
436 while (!is_non_loop_exit_postdominating (cd_bb, bb))
438 if (cd_bb == dep_bb)
440 /* Found a direct control dependence. */
441 if (*num_chains < MAX_NUM_CHAINS)
443 cd_chains[*num_chains] = cur_cd_chain->copy ();
444 (*num_chains)++;
446 found_cd_chain = true;
447 /* Check path from next edge. */
448 break;
451 /* Now check if DEP_BB is indirectly control dependent on BB. */
452 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
453 num_chains, cur_cd_chain))
455 found_cd_chain = true;
456 break;
459 cd_bb = find_pdom (cd_bb);
460 post_dom_check++;
461 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || post_dom_check >
462 MAX_POSTDOM_CHECK)
463 break;
465 cur_cd_chain->pop ();
466 gcc_assert (cur_cd_chain->length () == cur_chain_len);
468 gcc_assert (cur_cd_chain->length () == cur_chain_len);
470 return found_cd_chain;
473 /* The type to represent a simple predicate */
475 typedef struct use_def_pred_info
477 tree pred_lhs;
478 tree pred_rhs;
479 enum tree_code cond_code;
480 bool invert;
481 } pred_info;
483 /* The type to represent a sequence of predicates grouped
484 with .AND. operation. */
486 typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
488 /* The type to represent a sequence of pred_chains grouped
489 with .OR. operation. */
491 typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
493 /* Converts the chains of control dependence edges into a set of
494 predicates. A control dependence chain is represented by a vector
495 edges. DEP_CHAINS points to an array of dependence chains.
496 NUM_CHAINS is the size of the chain array. One edge in a dependence
497 chain is mapped to predicate expression represented by pred_info
498 type. One dependence chain is converted to a composite predicate that
499 is the result of AND operation of pred_info mapped to each edge.
500 A composite predicate is presented by a vector of pred_info. On
501 return, *PREDS points to the resulting array of composite predicates.
502 *NUM_PREDS is the number of composite predictes. */
504 static bool
505 convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
506 size_t num_chains,
507 pred_chain_union *preds)
509 bool has_valid_pred = false;
510 size_t i, j;
511 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
512 return false;
514 /* Now convert the control dep chain into a set
515 of predicates. */
516 preds->reserve (num_chains);
518 for (i = 0; i < num_chains; i++)
520 vec<edge> one_cd_chain = dep_chains[i];
522 has_valid_pred = false;
523 pred_chain t_chain = vNULL;
524 for (j = 0; j < one_cd_chain.length (); j++)
526 gimple cond_stmt;
527 gimple_stmt_iterator gsi;
528 basic_block guard_bb;
529 pred_info one_pred;
530 edge e;
532 e = one_cd_chain[j];
533 guard_bb = e->src;
534 gsi = gsi_last_bb (guard_bb);
535 if (gsi_end_p (gsi))
537 has_valid_pred = false;
538 break;
540 cond_stmt = gsi_stmt (gsi);
541 if (is_gimple_call (cond_stmt)
542 && EDGE_COUNT (e->src->succs) >= 2)
544 /* Ignore EH edge. Can add assertion
545 on the other edge's flag. */
546 continue;
548 /* Skip if there is essentially one succesor. */
549 if (EDGE_COUNT (e->src->succs) == 2)
551 edge e1;
552 edge_iterator ei1;
553 bool skip = false;
555 FOR_EACH_EDGE (e1, ei1, e->src->succs)
557 if (EDGE_COUNT (e1->dest->succs) == 0)
559 skip = true;
560 break;
563 if (skip)
564 continue;
566 if (gimple_code (cond_stmt) != GIMPLE_COND)
568 has_valid_pred = false;
569 break;
571 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
572 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
573 one_pred.cond_code = gimple_cond_code (cond_stmt);
574 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
575 t_chain.safe_push (one_pred);
576 has_valid_pred = true;
579 if (!has_valid_pred)
580 break;
581 else
582 preds->safe_push (t_chain);
584 return has_valid_pred;
587 /* Computes all control dependence chains for USE_BB. The control
588 dependence chains are then converted to an array of composite
589 predicates pointed to by PREDS. PHI_BB is the basic block of
590 the phi whose result is used in USE_BB. */
592 static bool
593 find_predicates (pred_chain_union *preds,
594 basic_block phi_bb,
595 basic_block use_bb)
597 size_t num_chains = 0, i;
598 vec<edge> *dep_chains = 0;
599 vec<edge> cur_chain = vNULL;
600 bool has_valid_pred = false;
601 basic_block cd_root = 0;
603 typedef vec<edge> vec_edge_heap;
604 dep_chains = XCNEWVEC (vec_edge_heap, MAX_NUM_CHAINS);
606 /* First find the closest bb that is control equivalent to PHI_BB
607 that also dominates USE_BB. */
608 cd_root = phi_bb;
609 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
611 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
612 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
613 cd_root = ctrl_eq_bb;
614 else
615 break;
618 compute_control_dep_chain (cd_root, use_bb,
619 dep_chains, &num_chains,
620 &cur_chain);
622 has_valid_pred
623 = convert_control_dep_chain_into_preds (dep_chains,
624 num_chains,
625 preds);
626 /* Free individual chain */
627 cur_chain.release ();
628 for (i = 0; i < num_chains; i++)
629 dep_chains[i].release ();
630 free (dep_chains);
631 return has_valid_pred;
634 /* Computes the set of incoming edges of PHI that have non empty
635 definitions of a phi chain. The collection will be done
636 recursively on operands that are defined by phis. CD_ROOT
637 is the control dependence root. *EDGES holds the result, and
638 VISITED_PHIS is a pointer set for detecting cycles. */
640 static void
641 collect_phi_def_edges (gimple phi, basic_block cd_root,
642 vec<edge> *edges,
643 pointer_set_t *visited_phis)
645 size_t i, n;
646 edge opnd_edge;
647 tree opnd;
649 if (pointer_set_insert (visited_phis, phi))
650 return;
652 n = gimple_phi_num_args (phi);
653 for (i = 0; i < n; i++)
655 opnd_edge = gimple_phi_arg_edge (phi, i);
656 opnd = gimple_phi_arg_def (phi, i);
658 if (TREE_CODE (opnd) != SSA_NAME)
660 if (dump_file && (dump_flags & TDF_DETAILS))
662 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
663 print_gimple_stmt (dump_file, phi, 0, 0);
665 edges->safe_push (opnd_edge);
667 else
669 gimple def = SSA_NAME_DEF_STMT (opnd);
671 if (gimple_code (def) == GIMPLE_PHI
672 && dominated_by_p (CDI_DOMINATORS,
673 gimple_bb (def), cd_root))
674 collect_phi_def_edges (def, cd_root, edges,
675 visited_phis);
676 else if (!uninit_undefined_value_p (opnd))
678 if (dump_file && (dump_flags & TDF_DETAILS))
680 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
681 print_gimple_stmt (dump_file, phi, 0, 0);
683 edges->safe_push (opnd_edge);
689 /* For each use edge of PHI, computes all control dependence chains.
690 The control dependence chains are then converted to an array of
691 composite predicates pointed to by PREDS. */
693 static bool
694 find_def_preds (pred_chain_union *preds, gimple phi)
696 size_t num_chains = 0, i, n;
697 vec<edge> *dep_chains = 0;
698 vec<edge> cur_chain = vNULL;
699 vec<edge> def_edges = vNULL;
700 bool has_valid_pred = false;
701 basic_block phi_bb, cd_root = 0;
702 pointer_set_t *visited_phis;
704 typedef vec<edge> vec_edge_heap;
705 dep_chains = XCNEWVEC (vec_edge_heap, MAX_NUM_CHAINS);
707 phi_bb = gimple_bb (phi);
708 /* First find the closest dominating bb to be
709 the control dependence root */
710 cd_root = find_dom (phi_bb);
711 if (!cd_root)
712 return false;
714 visited_phis = pointer_set_create ();
715 collect_phi_def_edges (phi, cd_root, &def_edges, visited_phis);
716 pointer_set_destroy (visited_phis);
718 n = def_edges.length ();
719 if (n == 0)
720 return false;
722 for (i = 0; i < n; i++)
724 size_t prev_nc, j;
725 edge opnd_edge;
727 opnd_edge = def_edges[i];
728 prev_nc = num_chains;
729 compute_control_dep_chain (cd_root, opnd_edge->src,
730 dep_chains, &num_chains,
731 &cur_chain);
732 /* Free individual chain */
733 cur_chain.release ();
735 /* Now update the newly added chains with
736 the phi operand edge: */
737 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
739 if (prev_nc == num_chains
740 && num_chains < MAX_NUM_CHAINS)
741 num_chains++;
742 for (j = prev_nc; j < num_chains; j++)
744 dep_chains[j].safe_push (opnd_edge);
749 has_valid_pred
750 = convert_control_dep_chain_into_preds (dep_chains,
751 num_chains,
752 preds);
753 for (i = 0; i < num_chains; i++)
754 dep_chains[i].release ();
755 free (dep_chains);
756 return has_valid_pred;
759 /* Dumps the predicates (PREDS) for USESTMT. */
761 static void
762 dump_predicates (gimple usestmt, pred_chain_union preds,
763 const char* msg)
765 size_t i, j;
766 pred_chain one_pred_chain = vNULL;
767 fprintf (dump_file, msg);
768 print_gimple_stmt (dump_file, usestmt, 0, 0);
769 fprintf (dump_file, "is guarded by :\n\n");
770 size_t num_preds = preds.length ();
771 /* Do some dumping here: */
772 for (i = 0; i < num_preds; i++)
774 size_t np;
776 one_pred_chain = preds[i];
777 np = one_pred_chain.length ();
779 for (j = 0; j < np; j++)
781 pred_info one_pred = one_pred_chain[j];
782 if (one_pred.invert)
783 fprintf (dump_file, " (.NOT.) ");
784 print_generic_expr (dump_file, one_pred.pred_lhs, 0);
785 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
786 print_generic_expr (dump_file, one_pred.pred_rhs, 0);
787 if (j < np - 1)
788 fprintf (dump_file, " (.AND.) ");
789 else
790 fprintf (dump_file, "\n");
792 if (i < num_preds - 1)
793 fprintf (dump_file, "(.OR.)\n");
794 else
795 fprintf (dump_file, "\n\n");
799 /* Destroys the predicate set *PREDS. */
801 static void
802 destroy_predicate_vecs (pred_chain_union preds)
804 size_t i;
806 size_t n = preds.length ();
807 for (i = 0; i < n; i++)
808 preds[i].release ();
809 preds.release ();
813 /* Computes the 'normalized' conditional code with operand
814 swapping and condition inversion. */
816 static enum tree_code
817 get_cmp_code (enum tree_code orig_cmp_code,
818 bool swap_cond, bool invert)
820 enum tree_code tc = orig_cmp_code;
822 if (swap_cond)
823 tc = swap_tree_comparison (orig_cmp_code);
824 if (invert)
825 tc = invert_tree_comparison (tc, false);
827 switch (tc)
829 case LT_EXPR:
830 case LE_EXPR:
831 case GT_EXPR:
832 case GE_EXPR:
833 case EQ_EXPR:
834 case NE_EXPR:
835 break;
836 default:
837 return ERROR_MARK;
839 return tc;
842 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
843 all values in the range satisfies (x CMPC BOUNDARY) == true. */
845 static bool
846 is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
848 bool inverted = false;
849 bool is_unsigned;
850 bool result;
852 /* Only handle integer constant here. */
853 if (TREE_CODE (val) != INTEGER_CST
854 || TREE_CODE (boundary) != INTEGER_CST)
855 return true;
857 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
859 if (cmpc == GE_EXPR || cmpc == GT_EXPR
860 || cmpc == NE_EXPR)
862 cmpc = invert_tree_comparison (cmpc, false);
863 inverted = true;
866 if (is_unsigned)
868 if (cmpc == EQ_EXPR)
869 result = tree_int_cst_equal (val, boundary);
870 else if (cmpc == LT_EXPR)
871 result = INT_CST_LT_UNSIGNED (val, boundary);
872 else
874 gcc_assert (cmpc == LE_EXPR);
875 result = (tree_int_cst_equal (val, boundary)
876 || INT_CST_LT_UNSIGNED (val, boundary));
879 else
881 if (cmpc == EQ_EXPR)
882 result = tree_int_cst_equal (val, boundary);
883 else if (cmpc == LT_EXPR)
884 result = INT_CST_LT (val, boundary);
885 else
887 gcc_assert (cmpc == LE_EXPR);
888 result = (tree_int_cst_equal (val, boundary)
889 || INT_CST_LT (val, boundary));
893 if (inverted)
894 result ^= 1;
896 return result;
899 /* Returns true if PRED is common among all the predicate
900 chains (PREDS) (and therefore can be factored out).
901 NUM_PRED_CHAIN is the size of array PREDS. */
903 static bool
904 find_matching_predicate_in_rest_chains (pred_info pred,
905 pred_chain_union preds,
906 size_t num_pred_chains)
908 size_t i, j, n;
910 /* Trival case. */
911 if (num_pred_chains == 1)
912 return true;
914 for (i = 1; i < num_pred_chains; i++)
916 bool found = false;
917 pred_chain one_chain = preds[i];
918 n = one_chain.length ();
919 for (j = 0; j < n; j++)
921 pred_info pred2 = one_chain[j];
922 /* Can relax the condition comparison to not
923 use address comparison. However, the most common
924 case is that multiple control dependent paths share
925 a common path prefix, so address comparison should
926 be ok. */
928 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
929 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
930 && pred2.invert == pred.invert)
932 found = true;
933 break;
936 if (!found)
937 return false;
939 return true;
942 /* Forward declaration. */
943 static bool
944 is_use_properly_guarded (gimple use_stmt,
945 basic_block use_bb,
946 gimple phi,
947 unsigned uninit_opnds,
948 pointer_set_t *visited_phis);
950 /* Returns true if all uninitialized opnds are pruned. Returns false
951 otherwise. PHI is the phi node with uninitialized operands,
952 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
953 FLAG_DEF is the statement defining the flag guarding the use of the
954 PHI output, BOUNDARY_CST is the const value used in the predicate
955 associated with the flag, CMP_CODE is the comparison code used in
956 the predicate, VISITED_PHIS is the pointer set of phis visited, and
957 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
958 that are also phis.
960 Example scenario:
962 BB1:
963 flag_1 = phi <0, 1> // (1)
964 var_1 = phi <undef, some_val>
967 BB2:
968 flag_2 = phi <0, flag_1, flag_1> // (2)
969 var_2 = phi <undef, var_1, var_1>
970 if (flag_2 == 1)
971 goto BB3;
973 BB3:
974 use of var_2 // (3)
976 Because some flag arg in (1) is not constant, if we do not look into the
977 flag phis recursively, it is conservatively treated as unknown and var_1
978 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
979 a false warning will be emitted. Checking recursively into (1), the compiler can
980 find out that only some_val (which is defined) can flow into (3) which is OK.
984 static bool
985 prune_uninit_phi_opnds_in_unrealizable_paths (gimple phi,
986 unsigned uninit_opnds,
987 gimple flag_def,
988 tree boundary_cst,
989 enum tree_code cmp_code,
990 pointer_set_t *visited_phis,
991 bitmap *visited_flag_phis)
993 unsigned i;
995 for (i = 0; i < MIN (32, gimple_phi_num_args (flag_def)); i++)
997 tree flag_arg;
999 if (!MASK_TEST_BIT (uninit_opnds, i))
1000 continue;
1002 flag_arg = gimple_phi_arg_def (flag_def, i);
1003 if (!is_gimple_constant (flag_arg))
1005 gimple flag_arg_def, phi_arg_def;
1006 tree phi_arg;
1007 unsigned uninit_opnds_arg_phi;
1009 if (TREE_CODE (flag_arg) != SSA_NAME)
1010 return false;
1011 flag_arg_def = SSA_NAME_DEF_STMT (flag_arg);
1012 if (gimple_code (flag_arg_def) != GIMPLE_PHI)
1013 return false;
1015 phi_arg = gimple_phi_arg_def (phi, i);
1016 if (TREE_CODE (phi_arg) != SSA_NAME)
1017 return false;
1019 phi_arg_def = SSA_NAME_DEF_STMT (phi_arg);
1020 if (gimple_code (phi_arg_def) != GIMPLE_PHI)
1021 return false;
1023 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
1024 return false;
1026 if (!*visited_flag_phis)
1027 *visited_flag_phis = BITMAP_ALLOC (NULL);
1029 if (bitmap_bit_p (*visited_flag_phis,
1030 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
1031 return false;
1033 bitmap_set_bit (*visited_flag_phis,
1034 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1036 /* Now recursively prune the uninitialized phi args. */
1037 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
1038 if (!prune_uninit_phi_opnds_in_unrealizable_paths
1039 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def,
1040 boundary_cst, cmp_code, visited_phis, visited_flag_phis))
1041 return false;
1043 bitmap_clear_bit (*visited_flag_phis,
1044 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1045 continue;
1048 /* Now check if the constant is in the guarded range. */
1049 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
1051 tree opnd;
1052 gimple opnd_def;
1054 /* Now that we know that this undefined edge is not
1055 pruned. If the operand is defined by another phi,
1056 we can further prune the incoming edges of that
1057 phi by checking the predicates of this operands. */
1059 opnd = gimple_phi_arg_def (phi, i);
1060 opnd_def = SSA_NAME_DEF_STMT (opnd);
1061 if (gimple_code (opnd_def) == GIMPLE_PHI)
1063 edge opnd_edge;
1064 unsigned uninit_opnds2
1065 = compute_uninit_opnds_pos (opnd_def);
1066 gcc_assert (!MASK_EMPTY (uninit_opnds2));
1067 opnd_edge = gimple_phi_arg_edge (phi, i);
1068 if (!is_use_properly_guarded (phi,
1069 opnd_edge->src,
1070 opnd_def,
1071 uninit_opnds2,
1072 visited_phis))
1073 return false;
1075 else
1076 return false;
1080 return true;
1083 /* A helper function that determines if the predicate set
1084 of the use is not overlapping with that of the uninit paths.
1085 The most common senario of guarded use is in Example 1:
1086 Example 1:
1087 if (some_cond)
1089 x = ...;
1090 flag = true;
1093 ... some code ...
1095 if (flag)
1096 use (x);
1098 The real world examples are usually more complicated, but similar
1099 and usually result from inlining:
1101 bool init_func (int * x)
1103 if (some_cond)
1104 return false;
1105 *x = ..
1106 return true;
1109 void foo(..)
1111 int x;
1113 if (!init_func(&x))
1114 return;
1116 .. some_code ...
1117 use (x);
1120 Another possible use scenario is in the following trivial example:
1122 Example 2:
1123 if (n > 0)
1124 x = 1;
1126 if (n > 0)
1128 if (m < 2)
1129 .. = x;
1132 Predicate analysis needs to compute the composite predicate:
1134 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1135 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1136 (the predicate chain for phi operand defs can be computed
1137 starting from a bb that is control equivalent to the phi's
1138 bb and is dominating the operand def.)
1140 and check overlapping:
1141 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1142 <==> false
1144 This implementation provides framework that can handle
1145 scenarios. (Note that many simple cases are handled properly
1146 without the predicate analysis -- this is due to jump threading
1147 transformation which eliminates the merge point thus makes
1148 path sensitive analysis unnecessary.)
1150 NUM_PREDS is the number is the number predicate chains, PREDS is
1151 the array of chains, PHI is the phi node whose incoming (undefined)
1152 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
1153 uninit operand positions. VISITED_PHIS is the pointer set of phi
1154 stmts being checked. */
1157 static bool
1158 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
1159 gimple phi, unsigned uninit_opnds,
1160 pointer_set_t *visited_phis)
1162 unsigned int i, n;
1163 gimple flag_def = 0;
1164 tree boundary_cst = 0;
1165 enum tree_code cmp_code;
1166 bool swap_cond = false;
1167 bool invert = false;
1168 pred_chain the_pred_chain = vNULL;
1169 bitmap visited_flag_phis = NULL;
1170 bool all_pruned = false;
1171 size_t num_preds = preds.length ();
1173 gcc_assert (num_preds > 0);
1174 /* Find within the common prefix of multiple predicate chains
1175 a predicate that is a comparison of a flag variable against
1176 a constant. */
1177 the_pred_chain = preds[0];
1178 n = the_pred_chain.length ();
1179 for (i = 0; i < n; i++)
1181 tree cond_lhs, cond_rhs, flag = 0;
1183 pred_info the_pred = the_pred_chain[i];
1185 invert = the_pred.invert;
1186 cond_lhs = the_pred.pred_lhs;
1187 cond_rhs = the_pred.pred_rhs;
1188 cmp_code = the_pred.cond_code;
1190 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1191 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1193 boundary_cst = cond_rhs;
1194 flag = cond_lhs;
1196 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1197 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1199 boundary_cst = cond_lhs;
1200 flag = cond_rhs;
1201 swap_cond = true;
1204 if (!flag)
1205 continue;
1207 flag_def = SSA_NAME_DEF_STMT (flag);
1209 if (!flag_def)
1210 continue;
1212 if ((gimple_code (flag_def) == GIMPLE_PHI)
1213 && (gimple_bb (flag_def) == gimple_bb (phi))
1214 && find_matching_predicate_in_rest_chains (the_pred, preds,
1215 num_preds))
1216 break;
1218 flag_def = 0;
1221 if (!flag_def)
1222 return false;
1224 /* Now check all the uninit incoming edge has a constant flag value
1225 that is in conflict with the use guard/predicate. */
1226 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1228 if (cmp_code == ERROR_MARK)
1229 return false;
1231 all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
1232 uninit_opnds,
1233 flag_def,
1234 boundary_cst,
1235 cmp_code,
1236 visited_phis,
1237 &visited_flag_phis);
1239 if (visited_flag_phis)
1240 BITMAP_FREE (visited_flag_phis);
1242 return all_pruned;
1245 /* The helper function returns true if two predicates X1 and X2
1246 are equivalent. It assumes the expressions have already
1247 properly re-associated. */
1249 static inline bool
1250 pred_equal_p (pred_info x1, pred_info x2)
1252 enum tree_code c1, c2;
1253 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1254 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1255 return false;
1257 c1 = x1.cond_code;
1258 if (x1.invert != x2.invert)
1259 c2 = invert_tree_comparison (x2.cond_code, false);
1260 else
1261 c2 = x2.cond_code;
1263 return c1 == c2;
1266 /* Returns true if the predication is testing !=. */
1268 static inline bool
1269 is_neq_relop_p (pred_info pred)
1272 return (pred.cond_code == NE_EXPR && !pred.invert)
1273 || (pred.cond_code == EQ_EXPR && pred.invert);
1276 /* Returns true if pred is of the form X != 0. */
1278 static inline bool
1279 is_neq_zero_form_p (pred_info pred)
1281 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
1282 || TREE_CODE (pred.pred_lhs) != SSA_NAME)
1283 return false;
1284 return true;
1287 /* The helper function returns true if two predicates X1
1288 is equivalent to X2 != 0. */
1290 static inline bool
1291 pred_expr_equal_p (pred_info x1, tree x2)
1293 if (!is_neq_zero_form_p (x1))
1294 return false;
1296 return operand_equal_p (x1.pred_lhs, x2, 0);
1299 /* Returns true of the domain of single predicate expression
1300 EXPR1 is a subset of that of EXPR2. Returns false if it
1301 can not be proved. */
1303 static bool
1304 is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
1306 enum tree_code code1, code2;
1308 if (pred_equal_p (expr1, expr2))
1309 return true;
1311 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
1312 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
1313 return false;
1315 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
1316 return false;
1318 code1 = expr1.cond_code;
1319 if (expr1.invert)
1320 code1 = invert_tree_comparison (code1, false);
1321 code2 = expr2.cond_code;
1322 if (expr2.invert)
1323 code2 = invert_tree_comparison (code2, false);
1325 if (code1 != code2 && code2 != NE_EXPR)
1326 return false;
1328 if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2))
1329 return true;
1331 return false;
1334 /* Returns true if the domain of PRED1 is a subset
1335 of that of PRED2. Returns false if it can not be proved so. */
1337 static bool
1338 is_pred_chain_subset_of (pred_chain pred1,
1339 pred_chain pred2)
1341 size_t np1, np2, i1, i2;
1343 np1 = pred1.length ();
1344 np2 = pred2.length ();
1346 for (i2 = 0; i2 < np2; i2++)
1348 bool found = false;
1349 pred_info info2 = pred2[i2];
1350 for (i1 = 0; i1 < np1; i1++)
1352 pred_info info1 = pred1[i1];
1353 if (is_pred_expr_subset_of (info1, info2))
1355 found = true;
1356 break;
1359 if (!found)
1360 return false;
1362 return true;
1365 /* Returns true if the domain defined by
1366 one pred chain ONE_PRED is a subset of the domain
1367 of *PREDS. It returns false if ONE_PRED's domain is
1368 not a subset of any of the sub-domains of PREDS
1369 (corresponding to each individual chains in it), even
1370 though it may be still be a subset of whole domain
1371 of PREDS which is the union (ORed) of all its subdomains.
1372 In other words, the result is conservative. */
1374 static bool
1375 is_included_in (pred_chain one_pred, pred_chain_union preds)
1377 size_t i;
1378 size_t n = preds.length ();
1380 for (i = 0; i < n; i++)
1382 if (is_pred_chain_subset_of (one_pred, preds[i]))
1383 return true;
1386 return false;
1389 /* Compares two predicate sets PREDS1 and PREDS2 and returns
1390 true if the domain defined by PREDS1 is a superset
1391 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1392 PREDS2 respectively. The implementation chooses not to build
1393 generic trees (and relying on the folding capability of the
1394 compiler), but instead performs brute force comparison of
1395 individual predicate chains (won't be a compile time problem
1396 as the chains are pretty short). When the function returns
1397 false, it does not necessarily mean *PREDS1 is not a superset
1398 of *PREDS2, but mean it may not be so since the analysis can
1399 not prove it. In such cases, false warnings may still be
1400 emitted. */
1402 static bool
1403 is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
1405 size_t i, n2;
1406 pred_chain one_pred_chain = vNULL;
1408 n2 = preds2.length ();
1410 for (i = 0; i < n2; i++)
1412 one_pred_chain = preds2[i];
1413 if (!is_included_in (one_pred_chain, preds1))
1414 return false;
1417 return true;
1420 /* Returns true if TC is AND or OR. */
1422 static inline bool
1423 is_and_or_or_p (enum tree_code tc, tree type)
1425 return (tc == BIT_IOR_EXPR
1426 || (tc == BIT_AND_EXPR
1427 && (type == 0 || TREE_CODE (type) == BOOLEAN_TYPE)));
1430 /* Returns true if X1 is the negate of X2. */
1432 static inline bool
1433 pred_neg_p (pred_info x1, pred_info x2)
1435 enum tree_code c1, c2;
1436 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1437 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1438 return false;
1440 c1 = x1.cond_code;
1441 if (x1.invert == x2.invert)
1442 c2 = invert_tree_comparison (x2.cond_code, false);
1443 else
1444 c2 = x2.cond_code;
1446 return c1 == c2;
1449 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1450 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1451 3) X OR (!X AND Y) is equivalent to (X OR Y);
1452 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1453 (x != 0 AND y != 0)
1454 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1455 (X AND Y) OR Z
1457 PREDS is the predicate chains, and N is the number of chains. */
1459 /* Helper function to implement rule 1 above. ONE_CHAIN is
1460 the AND predication to be simplified. */
1462 static void
1463 simplify_pred (pred_chain *one_chain)
1465 size_t i, j, n;
1466 bool simplified = false;
1467 pred_chain s_chain = vNULL;
1469 n = one_chain->length ();
1471 for (i = 0; i < n; i++)
1473 pred_info *a_pred = &(*one_chain)[i];
1475 if (!a_pred->pred_lhs)
1476 continue;
1477 if (!is_neq_zero_form_p (*a_pred))
1478 continue;
1480 gimple def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
1481 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1482 continue;
1483 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
1485 for (j = 0; j < n; j++)
1487 pred_info *b_pred = &(*one_chain)[j];
1489 if (!b_pred->pred_lhs)
1490 continue;
1491 if (!is_neq_zero_form_p (*b_pred))
1492 continue;
1494 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
1495 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
1497 /* Mark a_pred for removal. */
1498 a_pred->pred_lhs = NULL;
1499 a_pred->pred_rhs = NULL;
1500 simplified = true;
1501 break;
1507 if (!simplified)
1508 return;
1510 for (i = 0; i < n; i++)
1512 pred_info *a_pred = &(*one_chain)[i];
1513 if (!a_pred->pred_lhs)
1514 continue;
1515 s_chain.safe_push (*a_pred);
1518 one_chain->release ();
1519 *one_chain = s_chain;
1522 /* The helper function implements the rule 2 for the
1523 OR predicate PREDS.
1525 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1527 static bool
1528 simplify_preds_2 (pred_chain_union *preds)
1530 size_t i, j, n;
1531 bool simplified = false;
1532 pred_chain_union s_preds = vNULL;
1534 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1535 (X AND Y) OR (X AND !Y) is equivalent to X. */
1537 n = preds->length ();
1538 for (i = 0; i < n; i++)
1540 pred_info x, y;
1541 pred_chain *a_chain = &(*preds)[i];
1543 if (a_chain->length () != 2)
1544 continue;
1546 x = (*a_chain)[0];
1547 y = (*a_chain)[1];
1549 for (j = 0; j < n; j++)
1551 pred_chain *b_chain;
1552 pred_info x2, y2;
1554 if (j == i)
1555 continue;
1557 b_chain = &(*preds)[j];
1558 if (b_chain->length () != 2)
1559 continue;
1561 x2 = (*b_chain)[0];
1562 y2 = (*b_chain)[1];
1564 if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
1566 /* Kill a_chain. */
1567 a_chain->release ();
1568 b_chain->release ();
1569 b_chain->safe_push (x);
1570 simplified = true;
1571 break;
1573 if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
1575 /* Kill a_chain. */
1576 a_chain->release ();
1577 b_chain->release ();
1578 b_chain->safe_push (y);
1579 simplified = true;
1580 break;
1584 /* Now clean up the chain. */
1585 if (simplified)
1587 for (i = 0; i < n; i++)
1589 if ((*preds)[i].is_empty ())
1590 continue;
1591 s_preds.safe_push ((*preds)[i]);
1593 preds->release ();
1594 (*preds) = s_preds;
1595 s_preds = vNULL;
1598 return simplified;
1601 /* The helper function implements the rule 2 for the
1602 OR predicate PREDS.
1604 3) x OR (!x AND y) is equivalent to x OR y. */
1606 static bool
1607 simplify_preds_3 (pred_chain_union *preds)
1609 size_t i, j, n;
1610 bool simplified = false;
1612 /* Now iteratively simplify X OR (!X AND Z ..)
1613 into X OR (Z ...). */
1615 n = preds->length ();
1616 if (n < 2)
1617 return false;
1619 for (i = 0; i < n; i++)
1621 pred_info x;
1622 pred_chain *a_chain = &(*preds)[i];
1624 if (a_chain->length () != 1)
1625 continue;
1627 x = (*a_chain)[0];
1629 for (j = 0; j < n; j++)
1631 pred_chain *b_chain;
1632 pred_info x2;
1633 size_t k;
1635 if (j == i)
1636 continue;
1638 b_chain = &(*preds)[j];
1639 if (b_chain->length () < 2)
1640 continue;
1642 for (k = 0; k < b_chain->length (); k++)
1644 x2 = (*b_chain)[k];
1645 if (pred_neg_p (x, x2))
1647 b_chain->unordered_remove (k);
1648 simplified = true;
1649 break;
1654 return simplified;
1657 /* The helper function implements the rule 4 for the
1658 OR predicate PREDS.
1660 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1661 (x != 0 ANd y != 0). */
1663 static bool
1664 simplify_preds_4 (pred_chain_union *preds)
1666 size_t i, j, n;
1667 bool simplified = false;
1668 pred_chain_union s_preds = vNULL;
1669 gimple def_stmt;
1671 n = preds->length ();
1672 for (i = 0; i < n; i++)
1674 pred_info z;
1675 pred_chain *a_chain = &(*preds)[i];
1677 if (a_chain->length () != 1)
1678 continue;
1680 z = (*a_chain)[0];
1682 if (!is_neq_zero_form_p (z))
1683 continue;
1685 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
1686 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1687 continue;
1689 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
1690 continue;
1692 for (j = 0; j < n; j++)
1694 pred_chain *b_chain;
1695 pred_info x2, y2;
1697 if (j == i)
1698 continue;
1700 b_chain = &(*preds)[j];
1701 if (b_chain->length () != 2)
1702 continue;
1704 x2 = (*b_chain)[0];
1705 y2 = (*b_chain)[1];
1706 if (!is_neq_zero_form_p (x2)
1707 || !is_neq_zero_form_p (y2))
1708 continue;
1710 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
1711 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
1712 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
1713 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
1715 /* Kill a_chain. */
1716 a_chain->release ();
1717 simplified = true;
1718 break;
1722 /* Now clean up the chain. */
1723 if (simplified)
1725 for (i = 0; i < n; i++)
1727 if ((*preds)[i].is_empty ())
1728 continue;
1729 s_preds.safe_push ((*preds)[i]);
1731 preds->release ();
1732 (*preds) = s_preds;
1733 s_preds = vNULL;
1736 return simplified;
1740 /* This function simplifies predicates in PREDS. */
1742 static void
1743 simplify_preds (pred_chain_union *preds, gimple use_or_def, bool is_use)
1745 size_t i, n;
1746 bool changed = false;
1748 if (dump_file && dump_flags & TDF_DETAILS)
1750 fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
1751 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
1754 for (i = 0; i < preds->length (); i++)
1755 simplify_pred (&(*preds)[i]);
1757 n = preds->length ();
1758 if (n < 2)
1759 return;
1763 changed = false;
1764 if (simplify_preds_2 (preds))
1765 changed = true;
1767 /* Now iteratively simplify X OR (!X AND Z ..)
1768 into X OR (Z ...). */
1769 if (simplify_preds_3 (preds))
1770 changed = true;
1772 if (simplify_preds_4 (preds))
1773 changed = true;
1775 } while (changed);
1777 return;
1780 /* This is a helper function which attempts to normalize predicate chains
1781 by following UD chains. It basically builds up a big tree of either IOR
1782 operations or AND operations, and convert the IOR tree into a
1783 pred_chain_union or BIT_AND tree into a pred_chain.
1784 Example:
1786 _3 = _2 RELOP1 _1;
1787 _6 = _5 RELOP2 _4;
1788 _9 = _8 RELOP3 _7;
1789 _10 = _3 | _6;
1790 _12 = _9 | _0;
1791 _t = _10 | _12;
1793 then _t != 0 will be normalized into a pred_chain_union
1795 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1797 Similarly given,
1799 _3 = _2 RELOP1 _1;
1800 _6 = _5 RELOP2 _4;
1801 _9 = _8 RELOP3 _7;
1802 _10 = _3 & _6;
1803 _12 = _9 & _0;
1805 then _t != 0 will be normalized into a pred_chain:
1806 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1810 /* This is a helper function that stores a PRED into NORM_PREDS. */
1812 inline static void
1813 push_pred (pred_chain_union *norm_preds, pred_info pred)
1815 pred_chain pred_chain = vNULL;
1816 pred_chain.safe_push (pred);
1817 norm_preds->safe_push (pred_chain);
1820 /* A helper function that creates a predicate of the form
1821 OP != 0 and push it WORK_LIST. */
1823 inline static void
1824 push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
1825 pointer_set_t *mark_set)
1827 if (pointer_set_contains (mark_set, op))
1828 return;
1829 pointer_set_insert (mark_set, op);
1831 pred_info arg_pred;
1832 arg_pred.pred_lhs = op;
1833 arg_pred.pred_rhs = integer_zero_node;
1834 arg_pred.cond_code = NE_EXPR;
1835 arg_pred.invert = false;
1836 work_list->safe_push (arg_pred);
1839 /* A helper that generates a pred_info from a gimple assignment
1840 CMP_ASSIGN with comparison rhs. */
1842 static pred_info
1843 get_pred_info_from_cmp (gimple cmp_assign)
1845 pred_info n_pred;
1846 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
1847 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
1848 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
1849 n_pred.invert = false;
1850 return n_pred;
1853 /* Returns true if the PHI is a degenerated phi with
1854 all args with the same value (relop). In that case, *PRED
1855 will be updated to that value. */
1857 static bool
1858 is_degenerated_phi (gimple phi, pred_info *pred_p)
1860 int i, n;
1861 tree op0;
1862 gimple def0;
1863 pred_info pred0;
1865 n = gimple_phi_num_args (phi);
1866 op0 = gimple_phi_arg_def (phi, 0);
1868 if (TREE_CODE (op0) != SSA_NAME)
1869 return false;
1871 def0 = SSA_NAME_DEF_STMT (op0);
1872 if (gimple_code (def0) != GIMPLE_ASSIGN)
1873 return false;
1874 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0))
1875 != tcc_comparison)
1876 return false;
1877 pred0 = get_pred_info_from_cmp (def0);
1879 for (i = 1; i < n; ++i)
1881 gimple def;
1882 pred_info pred;
1883 tree op = gimple_phi_arg_def (phi, i);
1885 if (TREE_CODE (op) != SSA_NAME)
1886 return false;
1888 def = SSA_NAME_DEF_STMT (op);
1889 if (gimple_code (def) != GIMPLE_ASSIGN)
1890 return false;
1891 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def))
1892 != tcc_comparison)
1893 return false;
1894 pred = get_pred_info_from_cmp (def);
1895 if (!pred_equal_p (pred, pred0))
1896 return false;
1899 *pred_p = pred0;
1900 return true;
1903 /* Normalize one predicate PRED
1904 1) if PRED can no longer be normlized, put it into NORM_PREDS.
1905 2) otherwise if PRED is of the form x != 0, follow x's definition
1906 and put normalized predicates into WORK_LIST. */
1908 static void
1909 normalize_one_pred_1 (pred_chain_union *norm_preds,
1910 pred_chain *norm_chain,
1911 pred_info pred,
1912 enum tree_code and_or_code,
1913 vec<pred_info, va_heap, vl_ptr> *work_list,
1914 pointer_set_t *mark_set)
1916 if (!is_neq_zero_form_p (pred))
1918 if (and_or_code == BIT_IOR_EXPR)
1919 push_pred (norm_preds, pred);
1920 else
1921 norm_chain->safe_push (pred);
1922 return;
1925 gimple def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
1927 if (gimple_code (def_stmt) == GIMPLE_PHI
1928 && is_degenerated_phi (def_stmt, &pred))
1929 work_list->safe_push (pred);
1930 else if (gimple_code (def_stmt) == GIMPLE_PHI
1931 && and_or_code == BIT_IOR_EXPR)
1933 int i, n;
1934 n = gimple_phi_num_args (def_stmt);
1936 /* If we see non zero constant, we should punt. The predicate
1937 * should be one guarding the phi edge. */
1938 for (i = 0; i < n; ++i)
1940 tree op = gimple_phi_arg_def (def_stmt, i);
1941 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
1943 push_pred (norm_preds, pred);
1944 return;
1948 for (i = 0; i < n; ++i)
1950 tree op = gimple_phi_arg_def (def_stmt, i);
1951 if (integer_zerop (op))
1952 continue;
1954 push_to_worklist (op, work_list, mark_set);
1957 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1959 if (and_or_code == BIT_IOR_EXPR)
1960 push_pred (norm_preds, pred);
1961 else
1962 norm_chain->safe_push (pred);
1964 else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
1966 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
1967 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
1969 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
1970 == tcc_comparison)
1972 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
1973 if (and_or_code == BIT_IOR_EXPR)
1974 push_pred (norm_preds, n_pred);
1975 else
1976 norm_chain->safe_push (n_pred);
1978 else
1980 if (and_or_code == BIT_IOR_EXPR)
1981 push_pred (norm_preds, pred);
1982 else
1983 norm_chain->safe_push (pred);
1987 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */
1989 static void
1990 normalize_one_pred (pred_chain_union *norm_preds,
1991 pred_info pred)
1993 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
1994 pointer_set_t *mark_set = NULL;
1995 enum tree_code and_or_code = ERROR_MARK;
1996 pred_chain norm_chain = vNULL;
1998 if (!is_neq_zero_form_p (pred))
2000 push_pred (norm_preds, pred);
2001 return;
2004 gimple def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
2005 if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
2006 and_or_code = gimple_assign_rhs_code (def_stmt);
2007 if (and_or_code != BIT_IOR_EXPR
2008 && and_or_code != BIT_AND_EXPR)
2010 if (TREE_CODE_CLASS (and_or_code)
2011 == tcc_comparison)
2013 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2014 push_pred (norm_preds, n_pred);
2016 else
2017 push_pred (norm_preds, pred);
2018 return;
2021 work_list.safe_push (pred);
2022 mark_set = pointer_set_create ();
2024 while (!work_list.is_empty ())
2026 pred_info a_pred = work_list.pop ();
2027 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred,
2028 and_or_code, &work_list, mark_set);
2030 if (and_or_code == BIT_AND_EXPR)
2031 norm_preds->safe_push (norm_chain);
2033 work_list.release ();
2034 pointer_set_destroy (mark_set);
2037 static void
2038 normalize_one_pred_chain (pred_chain_union *norm_preds,
2039 pred_chain one_chain)
2041 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2042 pointer_set_t *mark_set = pointer_set_create ();
2043 pred_chain norm_chain = vNULL;
2044 size_t i;
2046 for (i = 0; i < one_chain.length (); i++)
2048 work_list.safe_push (one_chain[i]);
2049 pointer_set_insert (mark_set, one_chain[i].pred_lhs);
2052 while (!work_list.is_empty ())
2054 pred_info a_pred = work_list.pop ();
2055 normalize_one_pred_1 (0, &norm_chain, a_pred,
2056 BIT_AND_EXPR, &work_list, mark_set);
2059 norm_preds->safe_push (norm_chain);
2060 work_list.release ();
2061 pointer_set_destroy (mark_set);
2064 /* Normalize predicate chains PREDS and returns the normalized one. */
2066 static pred_chain_union
2067 normalize_preds (pred_chain_union preds, gimple use_or_def, bool is_use)
2069 pred_chain_union norm_preds = vNULL;
2070 size_t n = preds.length ();
2071 size_t i;
2073 if (dump_file && dump_flags & TDF_DETAILS)
2075 fprintf (dump_file, "[BEFORE NORMALIZATION --");
2076 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2079 for (i = 0; i < n; i++)
2081 if (preds[i].length () != 1)
2082 normalize_one_pred_chain (&norm_preds, preds[i]);
2083 else
2085 normalize_one_pred (&norm_preds, preds[i][0]);
2086 preds[i].release ();
2090 if (dump_file)
2092 fprintf (dump_file, "[AFTER NORMALIZATION -- ");
2093 dump_predicates (use_or_def, norm_preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2096 preds.release ();
2097 return norm_preds;
2101 /* Computes the predicates that guard the use and checks
2102 if the incoming paths that have empty (or possibly
2103 empty) definition can be pruned/filtered. The function returns
2104 true if it can be determined that the use of PHI's def in
2105 USE_STMT is guarded with a predicate set not overlapping with
2106 predicate sets of all runtime paths that do not have a definition.
2107 Returns false if it is not or it can not be determined. USE_BB is
2108 the bb of the use (for phi operand use, the bb is not the bb of
2109 the phi stmt, but the src bb of the operand edge). UNINIT_OPNDS
2110 is a bit vector. If an operand of PHI is uninitialized, the
2111 corresponding bit in the vector is 1. VISIED_PHIS is a pointer
2112 set of phis being visted. */
2114 static bool
2115 is_use_properly_guarded (gimple use_stmt,
2116 basic_block use_bb,
2117 gimple phi,
2118 unsigned uninit_opnds,
2119 pointer_set_t *visited_phis)
2121 basic_block phi_bb;
2122 pred_chain_union preds = vNULL;
2123 pred_chain_union def_preds = vNULL;
2124 bool has_valid_preds = false;
2125 bool is_properly_guarded = false;
2127 if (pointer_set_insert (visited_phis, phi))
2128 return false;
2130 phi_bb = gimple_bb (phi);
2132 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
2133 return false;
2135 has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
2137 if (!has_valid_preds)
2139 destroy_predicate_vecs (preds);
2140 return false;
2143 /* Try to prune the dead incoming phi edges. */
2144 is_properly_guarded
2145 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
2146 visited_phis);
2148 if (is_properly_guarded)
2150 destroy_predicate_vecs (preds);
2151 return true;
2154 has_valid_preds = find_def_preds (&def_preds, phi);
2156 if (!has_valid_preds)
2158 destroy_predicate_vecs (preds);
2159 destroy_predicate_vecs (def_preds);
2160 return false;
2163 simplify_preds (&preds, use_stmt, true);
2164 preds = normalize_preds (preds, use_stmt, true);
2166 simplify_preds (&def_preds, phi, false);
2167 def_preds = normalize_preds (def_preds, phi, false);
2169 is_properly_guarded = is_superset_of (def_preds, preds);
2171 destroy_predicate_vecs (preds);
2172 destroy_predicate_vecs (def_preds);
2173 return is_properly_guarded;
2176 /* Searches through all uses of a potentially
2177 uninitialized variable defined by PHI and returns a use
2178 statement if the use is not properly guarded. It returns
2179 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2180 holding the position(s) of uninit PHI operands. WORKLIST
2181 is the vector of candidate phis that may be updated by this
2182 function. ADDED_TO_WORKLIST is the pointer set tracking
2183 if the new phi is already in the worklist. */
2185 static gimple
2186 find_uninit_use (gimple phi, unsigned uninit_opnds,
2187 vec<gimple> *worklist,
2188 pointer_set_t *added_to_worklist)
2190 tree phi_result;
2191 use_operand_p use_p;
2192 gimple use_stmt;
2193 imm_use_iterator iter;
2195 phi_result = gimple_phi_result (phi);
2197 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
2199 pointer_set_t *visited_phis;
2200 basic_block use_bb;
2202 use_stmt = USE_STMT (use_p);
2203 if (is_gimple_debug (use_stmt))
2204 continue;
2206 visited_phis = pointer_set_create ();
2208 if (gimple_code (use_stmt) == GIMPLE_PHI)
2209 use_bb = gimple_phi_arg_edge (use_stmt,
2210 PHI_ARG_INDEX_FROM_USE (use_p))->src;
2211 else
2212 use_bb = gimple_bb (use_stmt);
2214 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
2215 visited_phis))
2217 pointer_set_destroy (visited_phis);
2218 continue;
2220 pointer_set_destroy (visited_phis);
2222 if (dump_file && (dump_flags & TDF_DETAILS))
2224 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
2225 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2227 /* Found one real use, return. */
2228 if (gimple_code (use_stmt) != GIMPLE_PHI)
2229 return use_stmt;
2231 /* Found a phi use that is not guarded,
2232 add the phi to the worklist. */
2233 if (!pointer_set_insert (added_to_worklist, use_stmt))
2235 if (dump_file && (dump_flags & TDF_DETAILS))
2237 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
2238 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2241 worklist->safe_push (use_stmt);
2242 pointer_set_insert (possibly_undefined_names, phi_result);
2246 return NULL;
2249 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2250 and gives warning if there exists a runtime path from the entry to a
2251 use of the PHI def that does not contain a definition. In other words,
2252 the warning is on the real use. The more dead paths that can be pruned
2253 by the compiler, the fewer false positives the warning is. WORKLIST
2254 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2255 a pointer set tracking if the new phi is added to the worklist or not. */
2257 static void
2258 warn_uninitialized_phi (gimple phi, vec<gimple> *worklist,
2259 pointer_set_t *added_to_worklist)
2261 unsigned uninit_opnds;
2262 gimple uninit_use_stmt = 0;
2263 tree uninit_op;
2265 /* Don't look at virtual operands. */
2266 if (virtual_operand_p (gimple_phi_result (phi)))
2267 return;
2269 uninit_opnds = compute_uninit_opnds_pos (phi);
2271 if (MASK_EMPTY (uninit_opnds))
2272 return;
2274 if (dump_file && (dump_flags & TDF_DETAILS))
2276 fprintf (dump_file, "[CHECK]: examining phi: ");
2277 print_gimple_stmt (dump_file, phi, 0, 0);
2280 /* Now check if we have any use of the value without proper guard. */
2281 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
2282 worklist, added_to_worklist);
2284 /* All uses are properly guarded. */
2285 if (!uninit_use_stmt)
2286 return;
2288 uninit_op = gimple_phi_arg_def (phi, MASK_FIRST_SET_BIT (uninit_opnds));
2289 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
2290 return;
2291 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
2292 SSA_NAME_VAR (uninit_op),
2293 "%qD may be used uninitialized in this function",
2294 uninit_use_stmt);
2299 /* Entry point to the late uninitialized warning pass. */
2301 static unsigned int
2302 execute_late_warn_uninitialized (void)
2304 basic_block bb;
2305 gimple_stmt_iterator gsi;
2306 vec<gimple> worklist = vNULL;
2307 pointer_set_t *added_to_worklist;
2309 calculate_dominance_info (CDI_DOMINATORS);
2310 calculate_dominance_info (CDI_POST_DOMINATORS);
2311 /* Re-do the plain uninitialized variable check, as optimization may have
2312 straightened control flow. Do this first so that we don't accidentally
2313 get a "may be" warning when we'd have seen an "is" warning later. */
2314 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2316 timevar_push (TV_TREE_UNINIT);
2318 possibly_undefined_names = pointer_set_create ();
2319 added_to_worklist = pointer_set_create ();
2321 /* Initialize worklist */
2322 FOR_EACH_BB_FN (bb, cfun)
2323 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2325 gimple phi = gsi_stmt (gsi);
2326 size_t n, i;
2328 n = gimple_phi_num_args (phi);
2330 /* Don't look at virtual operands. */
2331 if (virtual_operand_p (gimple_phi_result (phi)))
2332 continue;
2334 for (i = 0; i < n; ++i)
2336 tree op = gimple_phi_arg_def (phi, i);
2337 if (TREE_CODE (op) == SSA_NAME
2338 && uninit_undefined_value_p (op))
2340 worklist.safe_push (phi);
2341 pointer_set_insert (added_to_worklist, phi);
2342 if (dump_file && (dump_flags & TDF_DETAILS))
2344 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
2345 print_gimple_stmt (dump_file, phi, 0, 0);
2347 break;
2352 while (worklist.length () != 0)
2354 gimple cur_phi = 0;
2355 cur_phi = worklist.pop ();
2356 warn_uninitialized_phi (cur_phi, &worklist, added_to_worklist);
2359 worklist.release ();
2360 pointer_set_destroy (added_to_worklist);
2361 pointer_set_destroy (possibly_undefined_names);
2362 possibly_undefined_names = NULL;
2363 free_dominance_info (CDI_POST_DOMINATORS);
2364 timevar_pop (TV_TREE_UNINIT);
2365 return 0;
2368 static bool
2369 gate_warn_uninitialized (void)
2371 return warn_uninitialized != 0;
2374 namespace {
2376 const pass_data pass_data_late_warn_uninitialized =
2378 GIMPLE_PASS, /* type */
2379 "uninit", /* name */
2380 OPTGROUP_NONE, /* optinfo_flags */
2381 true, /* has_gate */
2382 true, /* has_execute */
2383 TV_NONE, /* tv_id */
2384 PROP_ssa, /* properties_required */
2385 0, /* properties_provided */
2386 0, /* properties_destroyed */
2387 0, /* todo_flags_start */
2388 0, /* todo_flags_finish */
2391 class pass_late_warn_uninitialized : public gimple_opt_pass
2393 public:
2394 pass_late_warn_uninitialized (gcc::context *ctxt)
2395 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
2398 /* opt_pass methods: */
2399 opt_pass * clone () { return new pass_late_warn_uninitialized (m_ctxt); }
2400 bool gate () { return gate_warn_uninitialized (); }
2401 unsigned int execute () { return execute_late_warn_uninitialized (); }
2403 }; // class pass_late_warn_uninitialized
2405 } // anon namespace
2407 gimple_opt_pass *
2408 make_pass_late_warn_uninitialized (gcc::context *ctxt)
2410 return new pass_late_warn_uninitialized (ctxt);
2414 static unsigned int
2415 execute_early_warn_uninitialized (void)
2417 /* Currently, this pass runs always but
2418 execute_late_warn_uninitialized only runs with optimization. With
2419 optimization we want to warn about possible uninitialized as late
2420 as possible, thus don't do it here. However, without
2421 optimization we need to warn here about "may be uninitialized". */
2422 calculate_dominance_info (CDI_POST_DOMINATORS);
2424 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
2426 /* Post-dominator information can not be reliably updated. Free it
2427 after the use. */
2429 free_dominance_info (CDI_POST_DOMINATORS);
2430 return 0;
2434 namespace {
2436 const pass_data pass_data_early_warn_uninitialized =
2438 GIMPLE_PASS, /* type */
2439 "*early_warn_uninitialized", /* name */
2440 OPTGROUP_NONE, /* optinfo_flags */
2441 true, /* has_gate */
2442 true, /* has_execute */
2443 TV_TREE_UNINIT, /* tv_id */
2444 PROP_ssa, /* properties_required */
2445 0, /* properties_provided */
2446 0, /* properties_destroyed */
2447 0, /* todo_flags_start */
2448 0, /* todo_flags_finish */
2451 class pass_early_warn_uninitialized : public gimple_opt_pass
2453 public:
2454 pass_early_warn_uninitialized (gcc::context *ctxt)
2455 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
2458 /* opt_pass methods: */
2459 bool gate () { return gate_warn_uninitialized (); }
2460 unsigned int execute () { return execute_early_warn_uninitialized (); }
2462 }; // class pass_early_warn_uninitialized
2464 } // anon namespace
2466 gimple_opt_pass *
2467 make_pass_early_warn_uninitialized (gcc::context *ctxt)
2469 return new pass_early_warn_uninitialized (ctxt);