* lto-partition.c (add_symbol_to_partition_1,
[official-gcc.git] / gcc / sel-sched.c
blob490f3610aea2886fa599364b984909291043464e
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h"
44 #include "ira.h"
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 #include "sel-sched-dump.h"
49 #include "sel-sched.h"
50 #include "dbgcnt.h"
52 /* Implementation of selective scheduling approach.
53 The below implementation follows the original approach with the following
54 changes:
56 o the scheduler works after register allocation (but can be also tuned
57 to work before RA);
58 o some instructions are not copied or register renamed;
59 o conditional jumps are not moved with code duplication;
60 o several jumps in one parallel group are not supported;
61 o when pipelining outer loops, code motion through inner loops
62 is not supported;
63 o control and data speculation are supported;
64 o some improvements for better compile time/performance were made.
66 Terminology
67 ===========
69 A vinsn, or virtual insn, is an insn with additional data characterizing
70 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
71 Vinsns also act as smart pointers to save memory by reusing them in
72 different expressions. A vinsn is described by vinsn_t type.
74 An expression is a vinsn with additional data characterizing its properties
75 at some point in the control flow graph. The data may be its usefulness,
76 priority, speculative status, whether it was renamed/subsituted, etc.
77 An expression is described by expr_t type.
79 Availability set (av_set) is a set of expressions at a given control flow
80 point. It is represented as av_set_t. The expressions in av sets are kept
81 sorted in the terms of expr_greater_p function. It allows to truncate
82 the set while leaving the best expressions.
84 A fence is a point through which code motion is prohibited. On each step,
85 we gather a parallel group of insns at a fence. It is possible to have
86 multiple fences. A fence is represented via fence_t.
88 A boundary is the border between the fence group and the rest of the code.
89 Currently, we never have more than one boundary per fence, as we finalize
90 the fence group when a jump is scheduled. A boundary is represented
91 via bnd_t.
93 High-level overview
94 ===================
96 The scheduler finds regions to schedule, schedules each one, and finalizes.
97 The regions are formed starting from innermost loops, so that when the inner
98 loop is pipelined, its prologue can be scheduled together with yet unprocessed
99 outer loop. The rest of acyclic regions are found using extend_rgns:
100 the blocks that are not yet allocated to any regions are traversed in top-down
101 order, and a block is added to a region to which all its predecessors belong;
102 otherwise, the block starts its own region.
104 The main scheduling loop (sel_sched_region_2) consists of just
105 scheduling on each fence and updating fences. For each fence,
106 we fill a parallel group of insns (fill_insns) until some insns can be added.
107 First, we compute available exprs (av-set) at the boundary of the current
108 group. Second, we choose the best expression from it. If the stall is
109 required to schedule any of the expressions, we advance the current cycle
110 appropriately. So, the final group does not exactly correspond to a VLIW
111 word. Third, we move the chosen expression to the boundary (move_op)
112 and update the intermediate av sets and liveness sets. We quit fill_insns
113 when either no insns left for scheduling or we have scheduled enough insns
114 so we feel like advancing a scheduling point.
116 Computing available expressions
117 ===============================
119 The computation (compute_av_set) is a bottom-up traversal. At each insn,
120 we're moving the union of its successors' sets through it via
121 moveup_expr_set. The dependent expressions are removed. Local
122 transformations (substitution, speculation) are applied to move more
123 exprs. Then the expr corresponding to the current insn is added.
124 The result is saved on each basic block header.
126 When traversing the CFG, we're moving down for no more than max_ws insns.
127 Also, we do not move down to ineligible successors (is_ineligible_successor),
128 which include moving along a back-edge, moving to already scheduled code,
129 and moving to another fence. The first two restrictions are lifted during
130 pipelining, which allows us to move insns along a back-edge. We always have
131 an acyclic region for scheduling because we forbid motion through fences.
133 Choosing the best expression
134 ============================
136 We sort the final availability set via sel_rank_for_schedule, then we remove
137 expressions which are not yet ready (tick_check_p) or which dest registers
138 cannot be used. For some of them, we choose another register via
139 find_best_reg. To do this, we run find_used_regs to calculate the set of
140 registers which cannot be used. The find_used_regs function performs
141 a traversal of code motion paths for an expr. We consider for renaming
142 only registers which are from the same regclass as the original one and
143 using which does not interfere with any live ranges. Finally, we convert
144 the resulting set to the ready list format and use max_issue and reorder*
145 hooks similarly to the Haifa scheduler.
147 Scheduling the best expression
148 ==============================
150 We run the move_op routine to perform the same type of code motion paths
151 traversal as in find_used_regs. (These are working via the same driver,
152 code_motion_path_driver.) When moving down the CFG, we look for original
153 instruction that gave birth to a chosen expression. We undo
154 the transformations performed on an expression via the history saved in it.
155 When found, we remove the instruction or leave a reg-reg copy/speculation
156 check if needed. On a way up, we insert bookkeeping copies at each join
157 point. If a copy is not needed, it will be removed later during this
158 traversal. We update the saved av sets and liveness sets on the way up, too.
160 Finalizing the schedule
161 =======================
163 When pipelining, we reschedule the blocks from which insns were pipelined
164 to get a tighter schedule. On Itanium, we also perform bundling via
165 the same routine from ia64.c.
167 Dependence analysis changes
168 ===========================
170 We augmented the sched-deps.c with hooks that get called when a particular
171 dependence is found in a particular part of an insn. Using these hooks, we
172 can do several actions such as: determine whether an insn can be moved through
173 another (has_dependence_p, moveup_expr); find out whether an insn can be
174 scheduled on the current cycle (tick_check_p); find out registers that
175 are set/used/clobbered by an insn and find out all the strange stuff that
176 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
177 init_global_and_expr_for_insn).
179 Initialization changes
180 ======================
182 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
183 reused in all of the schedulers. We have split up the initialization of data
184 of such parts into different functions prefixed with scheduler type and
185 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
186 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
187 The same splitting is done with current_sched_info structure:
188 dependence-related parts are in sched_deps_info, common part is in
189 common_sched_info, and haifa/sel/etc part is in current_sched_info.
191 Target contexts
192 ===============
194 As we now have multiple-point scheduling, this would not work with backends
195 which save some of the scheduler state to use it in the target hooks.
196 For this purpose, we introduce a concept of target contexts, which
197 encapsulate such information. The backend should implement simple routines
198 of allocating/freeing/setting such a context. The scheduler calls these
199 as target hooks and handles the target context as an opaque pointer (similar
200 to the DFA state type, state_t).
202 Various speedups
203 ================
205 As the correct data dependence graph is not supported during scheduling (which
206 is to be changed in mid-term), we cache as much of the dependence analysis
207 results as possible to avoid reanalyzing. This includes: bitmap caches on
208 each insn in stream of the region saying yes/no for a query with a pair of
209 UIDs; hashtables with the previously done transformations on each insn in
210 stream; a vector keeping a history of transformations on each expr.
212 Also, we try to minimize the dependence context used on each fence to check
213 whether the given expression is ready for scheduling by removing from it
214 insns that are definitely completed the execution. The results of
215 tick_check_p checks are also cached in a vector on each fence.
217 We keep a valid liveness set on each insn in a region to avoid the high
218 cost of recomputation on large basic blocks.
220 Finally, we try to minimize the number of needed updates to the availability
221 sets. The updates happen in two cases: when fill_insns terminates,
222 we advance all fences and increase the stage number to show that the region
223 has changed and the sets are to be recomputed; and when the next iteration
224 of a loop in fill_insns happens (but this one reuses the saved av sets
225 on bb headers.) Thus, we try to break the fill_insns loop only when
226 "significant" number of insns from the current scheduling window was
227 scheduled. This should be made a target param.
230 TODO: correctly support the data dependence graph at all stages and get rid
231 of all caches. This should speed up the scheduler.
232 TODO: implement moving cond jumps with bookkeeping copies on both targets.
233 TODO: tune the scheduler before RA so it does not create too much pseudos.
236 References:
237 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
238 selective scheduling and software pipelining.
239 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
241 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
242 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
243 for GCC. In Proceedings of GCC Developers' Summit 2006.
245 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
246 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
247 http://rogue.colorado.edu/EPIC7/.
251 /* True when pipelining is enabled. */
252 bool pipelining_p;
254 /* True if bookkeeping is enabled. */
255 bool bookkeeping_p;
257 /* Maximum number of insns that are eligible for renaming. */
258 int max_insns_to_rename;
261 /* Definitions of local types and macros. */
263 /* Represents possible outcomes of moving an expression through an insn. */
264 enum MOVEUP_EXPR_CODE
266 /* The expression is not changed. */
267 MOVEUP_EXPR_SAME,
269 /* Not changed, but requires a new destination register. */
270 MOVEUP_EXPR_AS_RHS,
272 /* Cannot be moved. */
273 MOVEUP_EXPR_NULL,
275 /* Changed (substituted or speculated). */
276 MOVEUP_EXPR_CHANGED
279 /* The container to be passed into rtx search & replace functions. */
280 struct rtx_search_arg
282 /* What we are searching for. */
283 rtx x;
285 /* The occurrence counter. */
286 int n;
289 typedef struct rtx_search_arg *rtx_search_arg_p;
291 /* This struct contains precomputed hard reg sets that are needed when
292 computing registers available for renaming. */
293 struct hard_regs_data
295 /* For every mode, this stores registers available for use with
296 that mode. */
297 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
299 /* True when regs_for_mode[mode] is initialized. */
300 bool regs_for_mode_ok[NUM_MACHINE_MODES];
302 /* For every register, it has regs that are ok to rename into it.
303 The register in question is always set. If not, this means
304 that the whole set is not computed yet. */
305 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
307 /* For every mode, this stores registers not available due to
308 call clobbering. */
309 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
311 /* All registers that are used or call used. */
312 HARD_REG_SET regs_ever_used;
314 #ifdef STACK_REGS
315 /* Stack registers. */
316 HARD_REG_SET stack_regs;
317 #endif
320 /* Holds the results of computation of available for renaming and
321 unavailable hard registers. */
322 struct reg_rename
324 /* These are unavailable due to calls crossing, globalness, etc. */
325 HARD_REG_SET unavailable_hard_regs;
327 /* These are *available* for renaming. */
328 HARD_REG_SET available_for_renaming;
330 /* Whether this code motion path crosses a call. */
331 bool crosses_call;
334 /* A global structure that contains the needed information about harg
335 regs. */
336 static struct hard_regs_data sel_hrd;
339 /* This structure holds local data used in code_motion_path_driver hooks on
340 the same or adjacent levels of recursion. Here we keep those parameters
341 that are not used in code_motion_path_driver routine itself, but only in
342 its hooks. Moreover, all parameters that can be modified in hooks are
343 in this structure, so all other parameters passed explicitly to hooks are
344 read-only. */
345 struct cmpd_local_params
347 /* Local params used in move_op_* functions. */
349 /* Edges for bookkeeping generation. */
350 edge e1, e2;
352 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
353 expr_t c_expr_merged, c_expr_local;
355 /* Local params used in fur_* functions. */
356 /* Copy of the ORIGINAL_INSN list, stores the original insns already
357 found before entering the current level of code_motion_path_driver. */
358 def_list_t old_original_insns;
360 /* Local params used in move_op_* functions. */
361 /* True when we have removed last insn in the block which was
362 also a boundary. Do not update anything or create bookkeeping copies. */
363 BOOL_BITFIELD removed_last_insn : 1;
366 /* Stores the static parameters for move_op_* calls. */
367 struct moveop_static_params
369 /* Destination register. */
370 rtx dest;
372 /* Current C_EXPR. */
373 expr_t c_expr;
375 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
376 they are to be removed. */
377 int uid;
379 #ifdef ENABLE_CHECKING
380 /* This is initialized to the insn on which the driver stopped its traversal. */
381 insn_t failed_insn;
382 #endif
384 /* True if we scheduled an insn with different register. */
385 bool was_renamed;
388 /* Stores the static parameters for fur_* calls. */
389 struct fur_static_params
391 /* Set of registers unavailable on the code motion path. */
392 regset used_regs;
394 /* Pointer to the list of original insns definitions. */
395 def_list_t *original_insns;
397 /* True if a code motion path contains a CALL insn. */
398 bool crosses_call;
401 typedef struct fur_static_params *fur_static_params_p;
402 typedef struct cmpd_local_params *cmpd_local_params_p;
403 typedef struct moveop_static_params *moveop_static_params_p;
405 /* Set of hooks and parameters that determine behaviour specific to
406 move_op or find_used_regs functions. */
407 struct code_motion_path_driver_info_def
409 /* Called on enter to the basic block. */
410 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
412 /* Called when original expr is found. */
413 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
415 /* Called while descending current basic block if current insn is not
416 the original EXPR we're searching for. */
417 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
419 /* Function to merge C_EXPRes from different successors. */
420 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
422 /* Function to finalize merge from different successors and possibly
423 deallocate temporary data structures used for merging. */
424 void (*after_merge_succs) (cmpd_local_params_p, void *);
426 /* Called on the backward stage of recursion to do moveup_expr.
427 Used only with move_op_*. */
428 void (*ascend) (insn_t, void *);
430 /* Called on the ascending pass, before returning from the current basic
431 block or from the whole traversal. */
432 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
434 /* When processing successors in move_op we need only descend into
435 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
436 int succ_flags;
438 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
439 const char *routine_name;
442 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
443 FUR_HOOKS. */
444 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
446 /* Set of hooks for performing move_op and find_used_regs routines with
447 code_motion_path_driver. */
448 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
450 /* True if/when we want to emulate Haifa scheduler in the common code.
451 This is used in sched_rgn_local_init and in various places in
452 sched-deps.c. */
453 int sched_emulate_haifa_p;
455 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
456 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
457 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
458 scheduling window. */
459 int global_level;
461 /* Current fences. */
462 flist_t fences;
464 /* True when separable insns should be scheduled as RHSes. */
465 static bool enable_schedule_as_rhs_p;
467 /* Used in verify_target_availability to assert that target reg is reported
468 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
469 we haven't scheduled anything on the previous fence.
470 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
471 have more conservative value than the one returned by the
472 find_used_regs, thus we shouldn't assert that these values are equal. */
473 static bool scheduled_something_on_previous_fence;
475 /* All newly emitted insns will have their uids greater than this value. */
476 static int first_emitted_uid;
478 /* Set of basic blocks that are forced to start new ebbs. This is a subset
479 of all the ebb heads. */
480 static bitmap_head _forced_ebb_heads;
481 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
483 /* Blocks that need to be rescheduled after pipelining. */
484 bitmap blocks_to_reschedule = NULL;
486 /* True when the first lv set should be ignored when updating liveness. */
487 static bool ignore_first = false;
489 /* Number of insns max_issue has initialized data structures for. */
490 static int max_issue_size = 0;
492 /* Whether we can issue more instructions. */
493 static int can_issue_more;
495 /* Maximum software lookahead window size, reduced when rescheduling after
496 pipelining. */
497 static int max_ws;
499 /* Number of insns scheduled in current region. */
500 static int num_insns_scheduled;
502 /* A vector of expressions is used to be able to sort them. */
503 static vec<expr_t> vec_av_set = vNULL;
505 /* A vector of vinsns is used to hold temporary lists of vinsns. */
506 typedef vec<vinsn_t> vinsn_vec_t;
508 /* This vector has the exprs which may still present in av_sets, but actually
509 can't be moved up due to bookkeeping created during code motion to another
510 fence. See comment near the call to update_and_record_unavailable_insns
511 for the detailed explanations. */
512 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
514 /* This vector has vinsns which are scheduled with renaming on the first fence
515 and then seen on the second. For expressions with such vinsns, target
516 availability information may be wrong. */
517 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
519 /* Vector to store temporary nops inserted in move_op to prevent removal
520 of empty bbs. */
521 static vec<insn_t> vec_temp_moveop_nops = vNULL;
523 /* These bitmaps record original instructions scheduled on the current
524 iteration and bookkeeping copies created by them. */
525 static bitmap current_originators = NULL;
526 static bitmap current_copies = NULL;
528 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
529 visit them afterwards. */
530 static bitmap code_motion_visited_blocks = NULL;
532 /* Variables to accumulate different statistics. */
534 /* The number of bookkeeping copies created. */
535 static int stat_bookkeeping_copies;
537 /* The number of insns that required bookkeeiping for their scheduling. */
538 static int stat_insns_needed_bookkeeping;
540 /* The number of insns that got renamed. */
541 static int stat_renamed_scheduled;
543 /* The number of substitutions made during scheduling. */
544 static int stat_substitutions_total;
547 /* Forward declarations of static functions. */
548 static bool rtx_ok_for_substitution_p (rtx, rtx);
549 static int sel_rank_for_schedule (const void *, const void *);
550 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
551 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
553 static rtx get_dest_from_orig_ops (av_set_t);
554 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
555 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
556 def_list_t *);
557 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
558 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
559 cmpd_local_params_p, void *);
560 static void sel_sched_region_1 (void);
561 static void sel_sched_region_2 (int);
562 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
564 static void debug_state (state_t);
567 /* Functions that work with fences. */
569 /* Advance one cycle on FENCE. */
570 static void
571 advance_one_cycle (fence_t fence)
573 unsigned i;
574 int cycle;
575 rtx insn;
577 advance_state (FENCE_STATE (fence));
578 cycle = ++FENCE_CYCLE (fence);
579 FENCE_ISSUED_INSNS (fence) = 0;
580 FENCE_STARTS_CYCLE_P (fence) = 1;
581 can_issue_more = issue_rate;
582 FENCE_ISSUE_MORE (fence) = can_issue_more;
584 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
586 if (INSN_READY_CYCLE (insn) < cycle)
588 remove_from_deps (FENCE_DC (fence), insn);
589 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
590 continue;
592 i++;
594 if (sched_verbose >= 2)
596 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
597 debug_state (FENCE_STATE (fence));
601 /* Returns true when SUCC in a fallthru bb of INSN, possibly
602 skipping empty basic blocks. */
603 static bool
604 in_fallthru_bb_p (rtx insn, rtx succ)
606 basic_block bb = BLOCK_FOR_INSN (insn);
607 edge e;
609 if (bb == BLOCK_FOR_INSN (succ))
610 return true;
612 e = find_fallthru_edge_from (bb);
613 if (e)
614 bb = e->dest;
615 else
616 return false;
618 while (sel_bb_empty_p (bb))
619 bb = bb->next_bb;
621 return bb == BLOCK_FOR_INSN (succ);
624 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
625 When a successor will continue a ebb, transfer all parameters of a fence
626 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
627 of scheduling helping to distinguish between the old and the new code. */
628 static void
629 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
630 int orig_max_seqno)
632 bool was_here_p = false;
633 insn_t insn = NULL_RTX;
634 insn_t succ;
635 succ_iterator si;
636 ilist_iterator ii;
637 fence_t fence = FLIST_FENCE (old_fences);
638 basic_block bb;
640 /* Get the only element of FENCE_BNDS (fence). */
641 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
643 gcc_assert (!was_here_p);
644 was_here_p = true;
646 gcc_assert (was_here_p && insn != NULL_RTX);
648 /* When in the "middle" of the block, just move this fence
649 to the new list. */
650 bb = BLOCK_FOR_INSN (insn);
651 if (! sel_bb_end_p (insn)
652 || (single_succ_p (bb)
653 && single_pred_p (single_succ (bb))))
655 insn_t succ;
657 succ = (sel_bb_end_p (insn)
658 ? sel_bb_head (single_succ (bb))
659 : NEXT_INSN (insn));
661 if (INSN_SEQNO (succ) > 0
662 && INSN_SEQNO (succ) <= orig_max_seqno
663 && INSN_SCHED_TIMES (succ) <= 0)
665 FENCE_INSN (fence) = succ;
666 move_fence_to_fences (old_fences, new_fences);
668 if (sched_verbose >= 1)
669 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
670 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
672 return;
675 /* Otherwise copy fence's structures to (possibly) multiple successors. */
676 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
678 int seqno = INSN_SEQNO (succ);
680 if (0 < seqno && seqno <= orig_max_seqno
681 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
683 bool b = (in_same_ebb_p (insn, succ)
684 || in_fallthru_bb_p (insn, succ));
686 if (sched_verbose >= 1)
687 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
688 INSN_UID (insn), INSN_UID (succ),
689 BLOCK_NUM (succ), b ? "continue" : "reset");
691 if (b)
692 add_dirty_fence_to_fences (new_fences, succ, fence);
693 else
695 /* Mark block of the SUCC as head of the new ebb. */
696 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
697 add_clean_fence_to_fences (new_fences, succ, fence);
704 /* Functions to support substitution. */
706 /* Returns whether INSN with dependence status DS is eligible for
707 substitution, i.e. it's a copy operation x := y, and RHS that is
708 moved up through this insn should be substituted. */
709 static bool
710 can_substitute_through_p (insn_t insn, ds_t ds)
712 /* We can substitute only true dependencies. */
713 if ((ds & DEP_OUTPUT)
714 || (ds & DEP_ANTI)
715 || ! INSN_RHS (insn)
716 || ! INSN_LHS (insn))
717 return false;
719 /* Now we just need to make sure the INSN_RHS consists of only one
720 simple REG rtx. */
721 if (REG_P (INSN_LHS (insn))
722 && REG_P (INSN_RHS (insn)))
723 return true;
724 return false;
727 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
728 source (if INSN is eligible for substitution). Returns TRUE if
729 substitution was actually performed, FALSE otherwise. Substitution might
730 be not performed because it's either EXPR' vinsn doesn't contain INSN's
731 destination or the resulting insn is invalid for the target machine.
732 When UNDO is true, perform unsubstitution instead (the difference is in
733 the part of rtx on which validate_replace_rtx is called). */
734 static bool
735 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
737 rtx *where;
738 bool new_insn_valid;
739 vinsn_t *vi = &EXPR_VINSN (expr);
740 bool has_rhs = VINSN_RHS (*vi) != NULL;
741 rtx old, new_rtx;
743 /* Do not try to replace in SET_DEST. Although we'll choose new
744 register for the RHS, we don't want to change RHS' original reg.
745 If the insn is not SET, we may still be able to substitute something
746 in it, and if we're here (don't have deps), it doesn't write INSN's
747 dest. */
748 where = (has_rhs
749 ? &VINSN_RHS (*vi)
750 : &PATTERN (VINSN_INSN_RTX (*vi)));
751 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
753 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
754 if (rtx_ok_for_substitution_p (old, *where))
756 rtx new_insn;
757 rtx *where_replace;
759 /* We should copy these rtxes before substitution. */
760 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
761 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
763 /* Where we'll replace.
764 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
765 used instead of SET_SRC. */
766 where_replace = (has_rhs
767 ? &SET_SRC (PATTERN (new_insn))
768 : &PATTERN (new_insn));
770 new_insn_valid
771 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
772 new_insn);
774 /* ??? Actually, constrain_operands result depends upon choice of
775 destination register. E.g. if we allow single register to be an rhs,
776 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
777 in invalid insn dx=dx, so we'll loose this rhs here.
778 Just can't come up with significant testcase for this, so just
779 leaving it for now. */
780 if (new_insn_valid)
782 change_vinsn_in_expr (expr,
783 create_vinsn_from_insn_rtx (new_insn, false));
785 /* Do not allow clobbering the address register of speculative
786 insns. */
787 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
788 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
789 expr_dest_reg (expr)))
790 EXPR_TARGET_AVAILABLE (expr) = false;
792 return true;
794 else
795 return false;
797 else
798 return false;
801 /* Helper function for count_occurences_equiv. */
802 static int
803 count_occurrences_1 (rtx *cur_rtx, void *arg)
805 rtx_search_arg_p p = (rtx_search_arg_p) arg;
807 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
809 /* Bail out if mode is different or more than one register is used. */
810 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
811 || (HARD_REGISTER_P (*cur_rtx)
812 && hard_regno_nregs[REGNO (*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
814 p->n = 0;
815 return 1;
818 p->n++;
820 /* Do not traverse subexprs. */
821 return -1;
824 if (GET_CODE (*cur_rtx) == SUBREG
825 && (!REG_P (SUBREG_REG (*cur_rtx))
826 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
828 /* ??? Do not support substituting regs inside subregs. In that case,
829 simplify_subreg will be called by validate_replace_rtx, and
830 unsubstitution will fail later. */
831 p->n = 0;
832 return 1;
835 /* Continue search. */
836 return 0;
839 /* Return the number of places WHAT appears within WHERE.
840 Bail out when we found a reference occupying several hard registers. */
841 static int
842 count_occurrences_equiv (rtx what, rtx where)
844 struct rtx_search_arg arg;
846 gcc_assert (REG_P (what));
847 arg.x = what;
848 arg.n = 0;
850 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
852 return arg.n;
855 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
856 static bool
857 rtx_ok_for_substitution_p (rtx what, rtx where)
859 return (count_occurrences_equiv (what, where) > 0);
863 /* Functions to support register renaming. */
865 /* Substitute VI's set source with REGNO. Returns newly created pattern
866 that has REGNO as its source. */
867 static rtx
868 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
870 rtx lhs_rtx;
871 rtx pattern;
872 rtx insn_rtx;
874 lhs_rtx = copy_rtx (VINSN_LHS (vi));
876 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
877 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
879 return insn_rtx;
882 /* Returns whether INSN's src can be replaced with register number
883 NEW_SRC_REG. E.g. the following insn is valid for i386:
885 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
886 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
887 (reg:SI 0 ax [orig:770 c1 ] [770]))
888 (const_int 288 [0x120])) [0 str S1 A8])
889 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
890 (nil))
892 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
893 because of operand constraints:
895 (define_insn "*movqi_1"
896 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
897 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
900 So do constrain_operands here, before choosing NEW_SRC_REG as best
901 reg for rhs. */
903 static bool
904 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
906 vinsn_t vi = INSN_VINSN (insn);
907 enum machine_mode mode;
908 rtx dst_loc;
909 bool res;
911 gcc_assert (VINSN_SEPARABLE_P (vi));
913 get_dest_and_mode (insn, &dst_loc, &mode);
914 gcc_assert (mode == GET_MODE (new_src_reg));
916 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
917 return true;
919 /* See whether SET_SRC can be replaced with this register. */
920 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
921 res = verify_changes (0);
922 cancel_changes (0);
924 return res;
927 /* Returns whether INSN still be valid after replacing it's DEST with
928 register NEW_REG. */
929 static bool
930 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
932 vinsn_t vi = INSN_VINSN (insn);
933 bool res;
935 /* We should deal here only with separable insns. */
936 gcc_assert (VINSN_SEPARABLE_P (vi));
937 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
939 /* See whether SET_DEST can be replaced with this register. */
940 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
941 res = verify_changes (0);
942 cancel_changes (0);
944 return res;
947 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
948 static rtx
949 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
951 rtx rhs_rtx;
952 rtx pattern;
953 rtx insn_rtx;
955 rhs_rtx = copy_rtx (VINSN_RHS (vi));
957 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
958 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
960 return insn_rtx;
963 /* Substitute lhs in the given expression EXPR for the register with number
964 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
965 static void
966 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
968 rtx insn_rtx;
969 vinsn_t vinsn;
971 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
972 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
974 change_vinsn_in_expr (expr, vinsn);
975 EXPR_WAS_RENAMED (expr) = 1;
976 EXPR_TARGET_AVAILABLE (expr) = 1;
979 /* Returns whether VI writes either one of the USED_REGS registers or,
980 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
981 static bool
982 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
983 HARD_REG_SET unavailable_hard_regs)
985 unsigned regno;
986 reg_set_iterator rsi;
988 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
990 if (REGNO_REG_SET_P (used_regs, regno))
991 return true;
992 if (HARD_REGISTER_NUM_P (regno)
993 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
994 return true;
997 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
999 if (REGNO_REG_SET_P (used_regs, regno))
1000 return true;
1001 if (HARD_REGISTER_NUM_P (regno)
1002 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1003 return true;
1006 return false;
1009 /* Returns register class of the output register in INSN.
1010 Returns NO_REGS for call insns because some targets have constraints on
1011 destination register of a call insn.
1013 Code adopted from regrename.c::build_def_use. */
1014 static enum reg_class
1015 get_reg_class (rtx insn)
1017 int alt, i, n_ops;
1019 extract_insn (insn);
1020 if (! constrain_operands (1))
1021 fatal_insn_not_found (insn);
1022 preprocess_constraints ();
1023 alt = which_alternative;
1024 n_ops = recog_data.n_operands;
1026 for (i = 0; i < n_ops; ++i)
1028 int matches = recog_op_alt[i][alt].matches;
1029 if (matches >= 0)
1030 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1033 if (asm_noperands (PATTERN (insn)) > 0)
1035 for (i = 0; i < n_ops; i++)
1036 if (recog_data.operand_type[i] == OP_OUT)
1038 rtx *loc = recog_data.operand_loc[i];
1039 rtx op = *loc;
1040 enum reg_class cl = recog_op_alt[i][alt].cl;
1042 if (REG_P (op)
1043 && REGNO (op) == ORIGINAL_REGNO (op))
1044 continue;
1046 return cl;
1049 else if (!CALL_P (insn))
1051 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1053 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1054 enum reg_class cl = recog_op_alt[opn][alt].cl;
1056 if (recog_data.operand_type[opn] == OP_OUT ||
1057 recog_data.operand_type[opn] == OP_INOUT)
1058 return cl;
1062 /* Insns like
1063 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1064 may result in returning NO_REGS, cause flags is written implicitly through
1065 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1066 return NO_REGS;
1069 #ifdef HARD_REGNO_RENAME_OK
1070 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1071 static void
1072 init_hard_regno_rename (int regno)
1074 int cur_reg;
1076 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1078 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1080 /* We are not interested in renaming in other regs. */
1081 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1082 continue;
1084 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1085 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1088 #endif
1090 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1091 data first. */
1092 static inline bool
1093 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1095 #ifdef HARD_REGNO_RENAME_OK
1096 /* Check whether this is all calculated. */
1097 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1098 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1100 init_hard_regno_rename (from);
1102 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1103 #else
1104 return true;
1105 #endif
1108 /* Calculate set of registers that are capable of holding MODE. */
1109 static void
1110 init_regs_for_mode (enum machine_mode mode)
1112 int cur_reg;
1114 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1115 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1117 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1119 int nregs;
1120 int i;
1122 /* See whether it accepts all modes that occur in
1123 original insns. */
1124 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1125 continue;
1127 nregs = hard_regno_nregs[cur_reg][mode];
1129 for (i = nregs - 1; i >= 0; --i)
1130 if (fixed_regs[cur_reg + i]
1131 || global_regs[cur_reg + i]
1132 /* Can't use regs which aren't saved by
1133 the prologue. */
1134 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1135 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1136 it affects aliasing globally and invalidates all AV sets. */
1137 || get_reg_base_value (cur_reg + i)
1138 #ifdef LEAF_REGISTERS
1139 /* We can't use a non-leaf register if we're in a
1140 leaf function. */
1141 || (crtl->is_leaf
1142 && !LEAF_REGISTERS[cur_reg + i])
1143 #endif
1145 break;
1147 if (i >= 0)
1148 continue;
1150 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1151 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1152 cur_reg);
1154 /* If the CUR_REG passed all the checks above,
1155 then it's ok. */
1156 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1159 sel_hrd.regs_for_mode_ok[mode] = true;
1162 /* Init all register sets gathered in HRD. */
1163 static void
1164 init_hard_regs_data (void)
1166 int cur_reg = 0;
1167 int cur_mode = 0;
1169 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1170 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1171 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1172 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1174 /* Initialize registers that are valid based on mode when this is
1175 really needed. */
1176 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1177 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1179 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1180 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1181 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1183 #ifdef STACK_REGS
1184 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1186 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1187 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1188 #endif
1191 /* Mark hardware regs in REG_RENAME_P that are not suitable
1192 for renaming rhs in INSN due to hardware restrictions (register class,
1193 modes compatibility etc). This doesn't affect original insn's dest reg,
1194 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1195 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1196 Registers that are in used_regs are always marked in
1197 unavailable_hard_regs as well. */
1199 static void
1200 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1201 regset used_regs ATTRIBUTE_UNUSED)
1203 enum machine_mode mode;
1204 enum reg_class cl = NO_REGS;
1205 rtx orig_dest;
1206 unsigned cur_reg, regno;
1207 hard_reg_set_iterator hrsi;
1209 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1210 gcc_assert (reg_rename_p);
1212 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1214 /* We have decided not to rename 'mem = something;' insns, as 'something'
1215 is usually a register. */
1216 if (!REG_P (orig_dest))
1217 return;
1219 regno = REGNO (orig_dest);
1221 /* If before reload, don't try to work with pseudos. */
1222 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1223 return;
1225 if (reload_completed)
1226 cl = get_reg_class (def->orig_insn);
1228 /* Stop if the original register is one of the fixed_regs, global_regs or
1229 frame pointer, or we could not discover its class. */
1230 if (fixed_regs[regno]
1231 || global_regs[regno]
1232 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1233 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1234 #else
1235 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1236 #endif
1237 || (reload_completed && cl == NO_REGS))
1239 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1241 /* Give a chance for original register, if it isn't in used_regs. */
1242 if (!def->crosses_call)
1243 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1245 return;
1248 /* If something allocated on stack in this function, mark frame pointer
1249 register unavailable, considering also modes.
1250 FIXME: it is enough to do this once per all original defs. */
1251 if (frame_pointer_needed)
1253 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1254 Pmode, FRAME_POINTER_REGNUM);
1256 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1257 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1258 Pmode, HARD_FRAME_POINTER_REGNUM);
1261 #ifdef STACK_REGS
1262 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1263 is equivalent to as if all stack regs were in this set.
1264 I.e. no stack register can be renamed, and even if it's an original
1265 register here we make sure it won't be lifted over it's previous def
1266 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1267 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1268 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1269 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1270 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1271 sel_hrd.stack_regs);
1272 #endif
1274 /* If there's a call on this path, make regs from call_used_reg_set
1275 unavailable. */
1276 if (def->crosses_call)
1277 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1278 call_used_reg_set);
1280 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1281 but not register classes. */
1282 if (!reload_completed)
1283 return;
1285 /* Leave regs as 'available' only from the current
1286 register class. */
1287 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1288 reg_class_contents[cl]);
1290 mode = GET_MODE (orig_dest);
1292 /* Leave only registers available for this mode. */
1293 if (!sel_hrd.regs_for_mode_ok[mode])
1294 init_regs_for_mode (mode);
1295 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1296 sel_hrd.regs_for_mode[mode]);
1298 /* Exclude registers that are partially call clobbered. */
1299 if (def->crosses_call
1300 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1301 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1302 sel_hrd.regs_for_call_clobbered[mode]);
1304 /* Leave only those that are ok to rename. */
1305 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1306 0, cur_reg, hrsi)
1308 int nregs;
1309 int i;
1311 nregs = hard_regno_nregs[cur_reg][mode];
1312 gcc_assert (nregs > 0);
1314 for (i = nregs - 1; i >= 0; --i)
1315 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1316 break;
1318 if (i >= 0)
1319 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1320 cur_reg);
1323 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1324 reg_rename_p->unavailable_hard_regs);
1326 /* Regno is always ok from the renaming part of view, but it really
1327 could be in *unavailable_hard_regs already, so set it here instead
1328 of there. */
1329 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1332 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1333 best register more recently than REG2. */
1334 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1336 /* Indicates the number of times renaming happened before the current one. */
1337 static int reg_rename_this_tick;
1339 /* Choose the register among free, that is suitable for storing
1340 the rhs value.
1342 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1343 originally appears. There could be multiple original operations
1344 for single rhs since we moving it up and merging along different
1345 paths.
1347 Some code is adapted from regrename.c (regrename_optimize).
1348 If original register is available, function returns it.
1349 Otherwise it performs the checks, so the new register should
1350 comply with the following:
1351 - it should not violate any live ranges (such registers are in
1352 REG_RENAME_P->available_for_renaming set);
1353 - it should not be in the HARD_REGS_USED regset;
1354 - it should be in the class compatible with original uses;
1355 - it should not be clobbered through reference with different mode;
1356 - if we're in the leaf function, then the new register should
1357 not be in the LEAF_REGISTERS;
1358 - etc.
1360 If several registers meet the conditions, the register with smallest
1361 tick is returned to achieve more even register allocation.
1363 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1365 If no register satisfies the above conditions, NULL_RTX is returned. */
1366 static rtx
1367 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1368 struct reg_rename *reg_rename_p,
1369 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1371 int best_new_reg;
1372 unsigned cur_reg;
1373 enum machine_mode mode = VOIDmode;
1374 unsigned regno, i, n;
1375 hard_reg_set_iterator hrsi;
1376 def_list_iterator di;
1377 def_t def;
1379 /* If original register is available, return it. */
1380 *is_orig_reg_p_ptr = true;
1382 FOR_EACH_DEF (def, di, original_insns)
1384 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1386 gcc_assert (REG_P (orig_dest));
1388 /* Check that all original operations have the same mode.
1389 This is done for the next loop; if we'd return from this
1390 loop, we'd check only part of them, but in this case
1391 it doesn't matter. */
1392 if (mode == VOIDmode)
1393 mode = GET_MODE (orig_dest);
1394 gcc_assert (mode == GET_MODE (orig_dest));
1396 regno = REGNO (orig_dest);
1397 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1398 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1399 break;
1401 /* All hard registers are available. */
1402 if (i == n)
1404 gcc_assert (mode != VOIDmode);
1406 /* Hard registers should not be shared. */
1407 return gen_rtx_REG (mode, regno);
1411 *is_orig_reg_p_ptr = false;
1412 best_new_reg = -1;
1414 /* Among all available regs choose the register that was
1415 allocated earliest. */
1416 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1417 0, cur_reg, hrsi)
1418 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1420 /* Check that all hard regs for mode are available. */
1421 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1422 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1423 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1424 cur_reg + i))
1425 break;
1427 if (i < n)
1428 continue;
1430 /* All hard registers are available. */
1431 if (best_new_reg < 0
1432 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1434 best_new_reg = cur_reg;
1436 /* Return immediately when we know there's no better reg. */
1437 if (! reg_rename_tick[best_new_reg])
1438 break;
1442 if (best_new_reg >= 0)
1444 /* Use the check from the above loop. */
1445 gcc_assert (mode != VOIDmode);
1446 return gen_rtx_REG (mode, best_new_reg);
1449 return NULL_RTX;
1452 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1453 assumptions about available registers in the function. */
1454 static rtx
1455 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1456 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1458 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1459 original_insns, is_orig_reg_p_ptr);
1461 /* FIXME loop over hard_regno_nregs here. */
1462 gcc_assert (best_reg == NULL_RTX
1463 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1465 return best_reg;
1468 /* Choose the pseudo register for storing rhs value. As this is supposed
1469 to work before reload, we return either the original register or make
1470 the new one. The parameters are the same that in choose_nest_reg_1
1471 functions, except that USED_REGS may contain pseudos.
1472 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1474 TODO: take into account register pressure while doing this. Up to this
1475 moment, this function would never return NULL for pseudos, but we should
1476 not rely on this. */
1477 static rtx
1478 choose_best_pseudo_reg (regset used_regs,
1479 struct reg_rename *reg_rename_p,
1480 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1482 def_list_iterator i;
1483 def_t def;
1484 enum machine_mode mode = VOIDmode;
1485 bool bad_hard_regs = false;
1487 /* We should not use this after reload. */
1488 gcc_assert (!reload_completed);
1490 /* If original register is available, return it. */
1491 *is_orig_reg_p_ptr = true;
1493 FOR_EACH_DEF (def, i, original_insns)
1495 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1496 int orig_regno;
1498 gcc_assert (REG_P (dest));
1500 /* Check that all original operations have the same mode. */
1501 if (mode == VOIDmode)
1502 mode = GET_MODE (dest);
1503 else
1504 gcc_assert (mode == GET_MODE (dest));
1505 orig_regno = REGNO (dest);
1507 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1509 if (orig_regno < FIRST_PSEUDO_REGISTER)
1511 gcc_assert (df_regs_ever_live_p (orig_regno));
1513 /* For hard registers, we have to check hardware imposed
1514 limitations (frame/stack registers, calls crossed). */
1515 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1516 orig_regno))
1518 /* Don't let register cross a call if it doesn't already
1519 cross one. This condition is written in accordance with
1520 that in sched-deps.c sched_analyze_reg(). */
1521 if (!reg_rename_p->crosses_call
1522 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1523 return gen_rtx_REG (mode, orig_regno);
1526 bad_hard_regs = true;
1528 else
1529 return dest;
1533 *is_orig_reg_p_ptr = false;
1535 /* We had some original hard registers that couldn't be used.
1536 Those were likely special. Don't try to create a pseudo. */
1537 if (bad_hard_regs)
1538 return NULL_RTX;
1540 /* We haven't found a register from original operations. Get a new one.
1541 FIXME: control register pressure somehow. */
1543 rtx new_reg = gen_reg_rtx (mode);
1545 gcc_assert (mode != VOIDmode);
1547 max_regno = max_reg_num ();
1548 maybe_extend_reg_info_p ();
1549 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1551 return new_reg;
1555 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1556 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1557 static void
1558 verify_target_availability (expr_t expr, regset used_regs,
1559 struct reg_rename *reg_rename_p)
1561 unsigned n, i, regno;
1562 enum machine_mode mode;
1563 bool target_available, live_available, hard_available;
1565 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1566 return;
1568 regno = expr_dest_regno (expr);
1569 mode = GET_MODE (EXPR_LHS (expr));
1570 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1571 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1573 live_available = hard_available = true;
1574 for (i = 0; i < n; i++)
1576 if (bitmap_bit_p (used_regs, regno + i))
1577 live_available = false;
1578 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1579 hard_available = false;
1582 /* When target is not available, it may be due to hard register
1583 restrictions, e.g. crosses calls, so we check hard_available too. */
1584 if (target_available)
1585 gcc_assert (live_available);
1586 else
1587 /* Check only if we haven't scheduled something on the previous fence,
1588 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1589 and having more than one fence, we may end having targ_un in a block
1590 in which successors target register is actually available.
1592 The last condition handles the case when a dependence from a call insn
1593 was created in sched-deps.c for insns with destination registers that
1594 never crossed a call before, but do cross one after our code motion.
1596 FIXME: in the latter case, we just uselessly called find_used_regs,
1597 because we can't move this expression with any other register
1598 as well. */
1599 gcc_assert (scheduled_something_on_previous_fence || !live_available
1600 || !hard_available
1601 || (!reload_completed && reg_rename_p->crosses_call
1602 && REG_N_CALLS_CROSSED (regno) == 0));
1605 /* Collect unavailable registers due to liveness for EXPR from BNDS
1606 into USED_REGS. Save additional information about available
1607 registers and unavailable due to hardware restriction registers
1608 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1609 list. */
1610 static void
1611 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1612 struct reg_rename *reg_rename_p,
1613 def_list_t *original_insns)
1615 for (; bnds; bnds = BLIST_NEXT (bnds))
1617 bool res;
1618 av_set_t orig_ops = NULL;
1619 bnd_t bnd = BLIST_BND (bnds);
1621 /* If the chosen best expr doesn't belong to current boundary,
1622 skip it. */
1623 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1624 continue;
1626 /* Put in ORIG_OPS all exprs from this boundary that became
1627 RES on top. */
1628 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1630 /* Compute used regs and OR it into the USED_REGS. */
1631 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1632 reg_rename_p, original_insns);
1634 /* FIXME: the assert is true until we'd have several boundaries. */
1635 gcc_assert (res);
1636 av_set_clear (&orig_ops);
1640 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1641 If BEST_REG is valid, replace LHS of EXPR with it. */
1642 static bool
1643 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1645 /* Try whether we'll be able to generate the insn
1646 'dest := best_reg' at the place of the original operation. */
1647 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1649 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1651 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1653 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1654 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1655 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1656 return false;
1659 /* Make sure that EXPR has the right destination
1660 register. */
1661 if (expr_dest_regno (expr) != REGNO (best_reg))
1662 replace_dest_with_reg_in_expr (expr, best_reg);
1663 else
1664 EXPR_TARGET_AVAILABLE (expr) = 1;
1666 return true;
1669 /* Select and assign best register to EXPR searching from BNDS.
1670 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1671 Return FALSE if no register can be chosen, which could happen when:
1672 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1673 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1674 that are used on the moving path. */
1675 static bool
1676 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1678 static struct reg_rename reg_rename_data;
1680 regset used_regs;
1681 def_list_t original_insns = NULL;
1682 bool reg_ok;
1684 *is_orig_reg_p = false;
1686 /* Don't bother to do anything if this insn doesn't set any registers. */
1687 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1688 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1689 return true;
1691 used_regs = get_clear_regset_from_pool ();
1692 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1694 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1695 &original_insns);
1697 #ifdef ENABLE_CHECKING
1698 /* If after reload, make sure we're working with hard regs here. */
1699 if (reload_completed)
1701 reg_set_iterator rsi;
1702 unsigned i;
1704 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1705 gcc_unreachable ();
1707 #endif
1709 if (EXPR_SEPARABLE_P (expr))
1711 rtx best_reg = NULL_RTX;
1712 /* Check that we have computed availability of a target register
1713 correctly. */
1714 verify_target_availability (expr, used_regs, &reg_rename_data);
1716 /* Turn everything in hard regs after reload. */
1717 if (reload_completed)
1719 HARD_REG_SET hard_regs_used;
1720 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1722 /* Join hard registers unavailable due to register class
1723 restrictions and live range intersection. */
1724 IOR_HARD_REG_SET (hard_regs_used,
1725 reg_rename_data.unavailable_hard_regs);
1727 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1728 original_insns, is_orig_reg_p);
1730 else
1731 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1732 original_insns, is_orig_reg_p);
1734 if (!best_reg)
1735 reg_ok = false;
1736 else if (*is_orig_reg_p)
1738 /* In case of unification BEST_REG may be different from EXPR's LHS
1739 when EXPR's LHS is unavailable, and there is another LHS among
1740 ORIGINAL_INSNS. */
1741 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1743 else
1745 /* Forbid renaming of low-cost insns. */
1746 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1747 reg_ok = false;
1748 else
1749 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1752 else
1754 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1755 any of the HARD_REGS_USED set. */
1756 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1757 reg_rename_data.unavailable_hard_regs))
1759 reg_ok = false;
1760 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1762 else
1764 reg_ok = true;
1765 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1769 ilist_clear (&original_insns);
1770 return_regset_to_pool (used_regs);
1772 return reg_ok;
1776 /* Return true if dependence described by DS can be overcomed. */
1777 static bool
1778 can_speculate_dep_p (ds_t ds)
1780 if (spec_info == NULL)
1781 return false;
1783 /* Leave only speculative data. */
1784 ds &= SPECULATIVE;
1786 if (ds == 0)
1787 return false;
1790 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1791 that we can overcome. */
1792 ds_t spec_mask = spec_info->mask;
1794 if ((ds & spec_mask) != ds)
1795 return false;
1798 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1799 return false;
1801 return true;
1804 /* Get a speculation check instruction.
1805 C_EXPR is a speculative expression,
1806 CHECK_DS describes speculations that should be checked,
1807 ORIG_INSN is the original non-speculative insn in the stream. */
1808 static insn_t
1809 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1811 rtx check_pattern;
1812 rtx insn_rtx;
1813 insn_t insn;
1814 basic_block recovery_block;
1815 rtx label;
1817 /* Create a recovery block if target is going to emit branchy check, or if
1818 ORIG_INSN was speculative already. */
1819 if (targetm.sched.needs_block_p (check_ds)
1820 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1822 recovery_block = sel_create_recovery_block (orig_insn);
1823 label = BB_HEAD (recovery_block);
1825 else
1827 recovery_block = NULL;
1828 label = NULL_RTX;
1831 /* Get pattern of the check. */
1832 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1833 check_ds);
1835 gcc_assert (check_pattern != NULL);
1837 /* Emit check. */
1838 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1840 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1841 INSN_SEQNO (orig_insn), orig_insn);
1843 /* Make check to be non-speculative. */
1844 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1845 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1847 /* Decrease priority of check by difference of load/check instruction
1848 latencies. */
1849 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1850 - sel_vinsn_cost (INSN_VINSN (insn)));
1852 /* Emit copy of original insn (though with replaced target register,
1853 if needed) to the recovery block. */
1854 if (recovery_block != NULL)
1856 rtx twin_rtx;
1858 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1859 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1860 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1861 INSN_EXPR (orig_insn),
1862 INSN_SEQNO (insn),
1863 bb_note (recovery_block));
1866 /* If we've generated a data speculation check, make sure
1867 that all the bookkeeping instruction we'll create during
1868 this move_op () will allocate an ALAT entry so that the
1869 check won't fail.
1870 In case of control speculation we must convert C_EXPR to control
1871 speculative mode, because failing to do so will bring us an exception
1872 thrown by the non-control-speculative load. */
1873 check_ds = ds_get_max_dep_weak (check_ds);
1874 speculate_expr (c_expr, check_ds);
1876 return insn;
1879 /* True when INSN is a "regN = regN" copy. */
1880 static bool
1881 identical_copy_p (rtx insn)
1883 rtx lhs, rhs, pat;
1885 pat = PATTERN (insn);
1887 if (GET_CODE (pat) != SET)
1888 return false;
1890 lhs = SET_DEST (pat);
1891 if (!REG_P (lhs))
1892 return false;
1894 rhs = SET_SRC (pat);
1895 if (!REG_P (rhs))
1896 return false;
1898 return REGNO (lhs) == REGNO (rhs);
1901 /* Undo all transformations on *AV_PTR that were done when
1902 moving through INSN. */
1903 static void
1904 undo_transformations (av_set_t *av_ptr, rtx insn)
1906 av_set_iterator av_iter;
1907 expr_t expr;
1908 av_set_t new_set = NULL;
1910 /* First, kill any EXPR that uses registers set by an insn. This is
1911 required for correctness. */
1912 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1913 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1914 && bitmap_intersect_p (INSN_REG_SETS (insn),
1915 VINSN_REG_USES (EXPR_VINSN (expr)))
1916 /* When an insn looks like 'r1 = r1', we could substitute through
1917 it, but the above condition will still hold. This happened with
1918 gcc.c-torture/execute/961125-1.c. */
1919 && !identical_copy_p (insn))
1921 if (sched_verbose >= 6)
1922 sel_print ("Expr %d removed due to use/set conflict\n",
1923 INSN_UID (EXPR_INSN_RTX (expr)));
1924 av_set_iter_remove (&av_iter);
1927 /* Undo transformations looking at the history vector. */
1928 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1930 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1931 insn, EXPR_VINSN (expr), true);
1933 if (index >= 0)
1935 expr_history_def *phist;
1937 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1939 switch (phist->type)
1941 case TRANS_SPECULATION:
1943 ds_t old_ds, new_ds;
1945 /* Compute the difference between old and new speculative
1946 statuses: that's what we need to check.
1947 Earlier we used to assert that the status will really
1948 change. This no longer works because only the probability
1949 bits in the status may have changed during compute_av_set,
1950 and in the case of merging different probabilities of the
1951 same speculative status along different paths we do not
1952 record this in the history vector. */
1953 old_ds = phist->spec_ds;
1954 new_ds = EXPR_SPEC_DONE_DS (expr);
1956 old_ds &= SPECULATIVE;
1957 new_ds &= SPECULATIVE;
1958 new_ds &= ~old_ds;
1960 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1961 break;
1963 case TRANS_SUBSTITUTION:
1965 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1966 vinsn_t new_vi;
1967 bool add = true;
1969 new_vi = phist->old_expr_vinsn;
1971 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1972 == EXPR_SEPARABLE_P (expr));
1973 copy_expr (tmp_expr, expr);
1975 if (vinsn_equal_p (phist->new_expr_vinsn,
1976 EXPR_VINSN (tmp_expr)))
1977 change_vinsn_in_expr (tmp_expr, new_vi);
1978 else
1979 /* This happens when we're unsubstituting on a bookkeeping
1980 copy, which was in turn substituted. The history is wrong
1981 in this case. Do it the hard way. */
1982 add = substitute_reg_in_expr (tmp_expr, insn, true);
1983 if (add)
1984 av_set_add (&new_set, tmp_expr);
1985 clear_expr (tmp_expr);
1986 break;
1988 default:
1989 gcc_unreachable ();
1995 av_set_union_and_clear (av_ptr, &new_set, NULL);
1999 /* Moveup_* helpers for code motion and computing av sets. */
2001 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2002 The difference from the below function is that only substitution is
2003 performed. */
2004 static enum MOVEUP_EXPR_CODE
2005 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2007 vinsn_t vi = EXPR_VINSN (expr);
2008 ds_t *has_dep_p;
2009 ds_t full_ds;
2011 /* Do this only inside insn group. */
2012 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2014 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2015 if (full_ds == 0)
2016 return MOVEUP_EXPR_SAME;
2018 /* Substitution is the possible choice in this case. */
2019 if (has_dep_p[DEPS_IN_RHS])
2021 /* Can't substitute UNIQUE VINSNs. */
2022 gcc_assert (!VINSN_UNIQUE_P (vi));
2024 if (can_substitute_through_p (through_insn,
2025 has_dep_p[DEPS_IN_RHS])
2026 && substitute_reg_in_expr (expr, through_insn, false))
2028 EXPR_WAS_SUBSTITUTED (expr) = true;
2029 return MOVEUP_EXPR_CHANGED;
2032 /* Don't care about this, as even true dependencies may be allowed
2033 in an insn group. */
2034 return MOVEUP_EXPR_SAME;
2037 /* This can catch output dependencies in COND_EXECs. */
2038 if (has_dep_p[DEPS_IN_INSN])
2039 return MOVEUP_EXPR_NULL;
2041 /* This is either an output or an anti dependence, which usually have
2042 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2043 will fix this. */
2044 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2045 return MOVEUP_EXPR_AS_RHS;
2048 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2049 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2050 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2051 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2052 && !sel_insn_is_speculation_check (through_insn))
2054 /* True when a conflict on a target register was found during moveup_expr. */
2055 static bool was_target_conflict = false;
2057 /* Return true when moving a debug INSN across THROUGH_INSN will
2058 create a bookkeeping block. We don't want to create such blocks,
2059 for they would cause codegen differences between compilations with
2060 and without debug info. */
2062 static bool
2063 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2064 insn_t through_insn)
2066 basic_block bbi, bbt;
2067 edge e1, e2;
2068 edge_iterator ei1, ei2;
2070 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2072 if (sched_verbose >= 9)
2073 sel_print ("no bookkeeping required: ");
2074 return FALSE;
2077 bbi = BLOCK_FOR_INSN (insn);
2079 if (EDGE_COUNT (bbi->preds) == 1)
2081 if (sched_verbose >= 9)
2082 sel_print ("only one pred edge: ");
2083 return TRUE;
2086 bbt = BLOCK_FOR_INSN (through_insn);
2088 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2090 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2092 if (find_block_for_bookkeeping (e1, e2, TRUE))
2094 if (sched_verbose >= 9)
2095 sel_print ("found existing block: ");
2096 return FALSE;
2101 if (sched_verbose >= 9)
2102 sel_print ("would create bookkeeping block: ");
2104 return TRUE;
2107 /* Return true when the conflict with newly created implicit clobbers
2108 between EXPR and THROUGH_INSN is found because of renaming. */
2109 static bool
2110 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2112 HARD_REG_SET temp;
2113 rtx insn, reg, rhs, pat;
2114 hard_reg_set_iterator hrsi;
2115 unsigned regno;
2116 bool valid;
2118 /* Make a new pseudo register. */
2119 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2120 max_regno = max_reg_num ();
2121 maybe_extend_reg_info_p ();
2123 /* Validate a change and bail out early. */
2124 insn = EXPR_INSN_RTX (expr);
2125 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2126 valid = verify_changes (0);
2127 cancel_changes (0);
2128 if (!valid)
2130 if (sched_verbose >= 6)
2131 sel_print ("implicit clobbers failed validation, ");
2132 return true;
2135 /* Make a new insn with it. */
2136 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2137 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2138 start_sequence ();
2139 insn = emit_insn (pat);
2140 end_sequence ();
2142 /* Calculate implicit clobbers. */
2143 extract_insn (insn);
2144 preprocess_constraints ();
2145 ira_implicitly_set_insn_hard_regs (&temp);
2146 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2148 /* If any implicit clobber registers intersect with regular ones in
2149 through_insn, we have a dependency and thus bail out. */
2150 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2152 vinsn_t vi = INSN_VINSN (through_insn);
2153 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2154 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2155 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2156 return true;
2159 return false;
2162 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2163 performing necessary transformations. Record the type of transformation
2164 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2165 permit all dependencies except true ones, and try to remove those
2166 too via forward substitution. All cases when a non-eliminable
2167 non-zero cost dependency exists inside an insn group will be fixed
2168 in tick_check_p instead. */
2169 static enum MOVEUP_EXPR_CODE
2170 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2171 enum local_trans_type *ptrans_type)
2173 vinsn_t vi = EXPR_VINSN (expr);
2174 insn_t insn = VINSN_INSN_RTX (vi);
2175 bool was_changed = false;
2176 bool as_rhs = false;
2177 ds_t *has_dep_p;
2178 ds_t full_ds;
2180 /* ??? We use dependencies of non-debug insns on debug insns to
2181 indicate that the debug insns need to be reset if the non-debug
2182 insn is pulled ahead of it. It's hard to figure out how to
2183 introduce such a notion in sel-sched, but it already fails to
2184 support debug insns in other ways, so we just go ahead and
2185 let the deug insns go corrupt for now. */
2186 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2187 return MOVEUP_EXPR_SAME;
2189 /* When inside_insn_group, delegate to the helper. */
2190 if (inside_insn_group)
2191 return moveup_expr_inside_insn_group (expr, through_insn);
2193 /* Deal with unique insns and control dependencies. */
2194 if (VINSN_UNIQUE_P (vi))
2196 /* We can move jumps without side-effects or jumps that are
2197 mutually exclusive with instruction THROUGH_INSN (all in cases
2198 dependencies allow to do so and jump is not speculative). */
2199 if (control_flow_insn_p (insn))
2201 basic_block fallthru_bb;
2203 /* Do not move checks and do not move jumps through other
2204 jumps. */
2205 if (control_flow_insn_p (through_insn)
2206 || sel_insn_is_speculation_check (insn))
2207 return MOVEUP_EXPR_NULL;
2209 /* Don't move jumps through CFG joins. */
2210 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2211 return MOVEUP_EXPR_NULL;
2213 /* The jump should have a clear fallthru block, and
2214 this block should be in the current region. */
2215 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2216 || ! in_current_region_p (fallthru_bb))
2217 return MOVEUP_EXPR_NULL;
2219 /* And it should be mutually exclusive with through_insn. */
2220 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2221 && ! DEBUG_INSN_P (through_insn))
2222 return MOVEUP_EXPR_NULL;
2225 /* Don't move what we can't move. */
2226 if (EXPR_CANT_MOVE (expr)
2227 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2228 return MOVEUP_EXPR_NULL;
2230 /* Don't move SCHED_GROUP instruction through anything.
2231 If we don't force this, then it will be possible to start
2232 scheduling a sched_group before all its dependencies are
2233 resolved.
2234 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2235 as late as possible through rank_for_schedule. */
2236 if (SCHED_GROUP_P (insn))
2237 return MOVEUP_EXPR_NULL;
2239 else
2240 gcc_assert (!control_flow_insn_p (insn));
2242 /* Don't move debug insns if this would require bookkeeping. */
2243 if (DEBUG_INSN_P (insn)
2244 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2245 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2246 return MOVEUP_EXPR_NULL;
2248 /* Deal with data dependencies. */
2249 was_target_conflict = false;
2250 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2251 if (full_ds == 0)
2253 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2254 return MOVEUP_EXPR_SAME;
2256 else
2258 /* We can move UNIQUE insn up only as a whole and unchanged,
2259 so it shouldn't have any dependencies. */
2260 if (VINSN_UNIQUE_P (vi))
2261 return MOVEUP_EXPR_NULL;
2264 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2266 int res;
2268 res = speculate_expr (expr, full_ds);
2269 if (res >= 0)
2271 /* Speculation was successful. */
2272 full_ds = 0;
2273 was_changed = (res > 0);
2274 if (res == 2)
2275 was_target_conflict = true;
2276 if (ptrans_type)
2277 *ptrans_type = TRANS_SPECULATION;
2278 sel_clear_has_dependence ();
2282 if (has_dep_p[DEPS_IN_INSN])
2283 /* We have some dependency that cannot be discarded. */
2284 return MOVEUP_EXPR_NULL;
2286 if (has_dep_p[DEPS_IN_LHS])
2288 /* Only separable insns can be moved up with the new register.
2289 Anyways, we should mark that the original register is
2290 unavailable. */
2291 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2292 return MOVEUP_EXPR_NULL;
2294 /* When renaming a hard register to a pseudo before reload, extra
2295 dependencies can occur from the implicit clobbers of the insn.
2296 Filter out such cases here. */
2297 if (!reload_completed && REG_P (EXPR_LHS (expr))
2298 && HARD_REGISTER_P (EXPR_LHS (expr))
2299 && implicit_clobber_conflict_p (through_insn, expr))
2301 if (sched_verbose >= 6)
2302 sel_print ("implicit clobbers conflict detected, ");
2303 return MOVEUP_EXPR_NULL;
2305 EXPR_TARGET_AVAILABLE (expr) = false;
2306 was_target_conflict = true;
2307 as_rhs = true;
2310 /* At this point we have either separable insns, that will be lifted
2311 up only as RHSes, or non-separable insns with no dependency in lhs.
2312 If dependency is in RHS, then try to perform substitution and move up
2313 substituted RHS:
2315 Ex. 1: Ex.2
2316 y = x; y = x;
2317 z = y*2; y = y*2;
2319 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2320 moved above y=x assignment as z=x*2.
2322 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2323 side can be moved because of the output dependency. The operation was
2324 cropped to its rhs above. */
2325 if (has_dep_p[DEPS_IN_RHS])
2327 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2329 /* Can't substitute UNIQUE VINSNs. */
2330 gcc_assert (!VINSN_UNIQUE_P (vi));
2332 if (can_speculate_dep_p (*rhs_dsp))
2334 int res;
2336 res = speculate_expr (expr, *rhs_dsp);
2337 if (res >= 0)
2339 /* Speculation was successful. */
2340 *rhs_dsp = 0;
2341 was_changed = (res > 0);
2342 if (res == 2)
2343 was_target_conflict = true;
2344 if (ptrans_type)
2345 *ptrans_type = TRANS_SPECULATION;
2347 else
2348 return MOVEUP_EXPR_NULL;
2350 else if (can_substitute_through_p (through_insn,
2351 *rhs_dsp)
2352 && substitute_reg_in_expr (expr, through_insn, false))
2354 /* ??? We cannot perform substitution AND speculation on the same
2355 insn. */
2356 gcc_assert (!was_changed);
2357 was_changed = true;
2358 if (ptrans_type)
2359 *ptrans_type = TRANS_SUBSTITUTION;
2360 EXPR_WAS_SUBSTITUTED (expr) = true;
2362 else
2363 return MOVEUP_EXPR_NULL;
2366 /* Don't move trapping insns through jumps.
2367 This check should be at the end to give a chance to control speculation
2368 to perform its duties. */
2369 if (CANT_MOVE_TRAPPING (expr, through_insn))
2370 return MOVEUP_EXPR_NULL;
2372 return (was_changed
2373 ? MOVEUP_EXPR_CHANGED
2374 : (as_rhs
2375 ? MOVEUP_EXPR_AS_RHS
2376 : MOVEUP_EXPR_SAME));
2379 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2380 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2381 that can exist within a parallel group. Write to RES the resulting
2382 code for moveup_expr. */
2383 static bool
2384 try_bitmap_cache (expr_t expr, insn_t insn,
2385 bool inside_insn_group,
2386 enum MOVEUP_EXPR_CODE *res)
2388 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2390 /* First check whether we've analyzed this situation already. */
2391 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2393 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2395 if (sched_verbose >= 6)
2396 sel_print ("removed (cached)\n");
2397 *res = MOVEUP_EXPR_NULL;
2398 return true;
2400 else
2402 if (sched_verbose >= 6)
2403 sel_print ("unchanged (cached)\n");
2404 *res = MOVEUP_EXPR_SAME;
2405 return true;
2408 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2410 if (inside_insn_group)
2412 if (sched_verbose >= 6)
2413 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2414 *res = MOVEUP_EXPR_SAME;
2415 return true;
2418 else
2419 EXPR_TARGET_AVAILABLE (expr) = false;
2421 /* This is the only case when propagation result can change over time,
2422 as we can dynamically switch off scheduling as RHS. In this case,
2423 just check the flag to reach the correct decision. */
2424 if (enable_schedule_as_rhs_p)
2426 if (sched_verbose >= 6)
2427 sel_print ("unchanged (as RHS, cached)\n");
2428 *res = MOVEUP_EXPR_AS_RHS;
2429 return true;
2431 else
2433 if (sched_verbose >= 6)
2434 sel_print ("removed (cached as RHS, but renaming"
2435 " is now disabled)\n");
2436 *res = MOVEUP_EXPR_NULL;
2437 return true;
2441 return false;
2444 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2445 if successful. Write to RES the resulting code for moveup_expr. */
2446 static bool
2447 try_transformation_cache (expr_t expr, insn_t insn,
2448 enum MOVEUP_EXPR_CODE *res)
2450 struct transformed_insns *pti
2451 = (struct transformed_insns *)
2452 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2453 &EXPR_VINSN (expr),
2454 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2455 if (pti)
2457 /* This EXPR was already moved through this insn and was
2458 changed as a result. Fetch the proper data from
2459 the hashtable. */
2460 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2461 INSN_UID (insn), pti->type,
2462 pti->vinsn_old, pti->vinsn_new,
2463 EXPR_SPEC_DONE_DS (expr));
2465 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2466 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2467 change_vinsn_in_expr (expr, pti->vinsn_new);
2468 if (pti->was_target_conflict)
2469 EXPR_TARGET_AVAILABLE (expr) = false;
2470 if (pti->type == TRANS_SPECULATION)
2472 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2473 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2476 if (sched_verbose >= 6)
2478 sel_print ("changed (cached): ");
2479 dump_expr (expr);
2480 sel_print ("\n");
2483 *res = MOVEUP_EXPR_CHANGED;
2484 return true;
2487 return false;
2490 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2491 static void
2492 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2493 enum MOVEUP_EXPR_CODE res)
2495 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2497 /* Do not cache result of propagating jumps through an insn group,
2498 as it is always true, which is not useful outside the group. */
2499 if (inside_insn_group)
2500 return;
2502 if (res == MOVEUP_EXPR_NULL)
2504 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2505 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2507 else if (res == MOVEUP_EXPR_SAME)
2509 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2510 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2512 else if (res == MOVEUP_EXPR_AS_RHS)
2514 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2515 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2517 else
2518 gcc_unreachable ();
2521 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2522 and transformation type TRANS_TYPE. */
2523 static void
2524 update_transformation_cache (expr_t expr, insn_t insn,
2525 bool inside_insn_group,
2526 enum local_trans_type trans_type,
2527 vinsn_t expr_old_vinsn)
2529 struct transformed_insns *pti;
2531 if (inside_insn_group)
2532 return;
2534 pti = XNEW (struct transformed_insns);
2535 pti->vinsn_old = expr_old_vinsn;
2536 pti->vinsn_new = EXPR_VINSN (expr);
2537 pti->type = trans_type;
2538 pti->was_target_conflict = was_target_conflict;
2539 pti->ds = EXPR_SPEC_DONE_DS (expr);
2540 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2541 vinsn_attach (pti->vinsn_old);
2542 vinsn_attach (pti->vinsn_new);
2543 *((struct transformed_insns **)
2544 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2545 pti, VINSN_HASH_RTX (expr_old_vinsn),
2546 INSERT)) = pti;
2549 /* Same as moveup_expr, but first looks up the result of
2550 transformation in caches. */
2551 static enum MOVEUP_EXPR_CODE
2552 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2554 enum MOVEUP_EXPR_CODE res;
2555 bool got_answer = false;
2557 if (sched_verbose >= 6)
2559 sel_print ("Moving ");
2560 dump_expr (expr);
2561 sel_print (" through %d: ", INSN_UID (insn));
2564 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2565 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2566 == EXPR_INSN_RTX (expr)))
2567 /* Don't use cached information for debug insns that are heads of
2568 basic blocks. */;
2569 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2570 /* When inside insn group, we do not want remove stores conflicting
2571 with previosly issued loads. */
2572 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2573 else if (try_transformation_cache (expr, insn, &res))
2574 got_answer = true;
2576 if (! got_answer)
2578 /* Invoke moveup_expr and record the results. */
2579 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2580 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2581 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2582 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2583 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2585 /* ??? Invent something better than this. We can't allow old_vinsn
2586 to go, we need it for the history vector. */
2587 vinsn_attach (expr_old_vinsn);
2589 res = moveup_expr (expr, insn, inside_insn_group,
2590 &trans_type);
2591 switch (res)
2593 case MOVEUP_EXPR_NULL:
2594 update_bitmap_cache (expr, insn, inside_insn_group, res);
2595 if (sched_verbose >= 6)
2596 sel_print ("removed\n");
2597 break;
2599 case MOVEUP_EXPR_SAME:
2600 update_bitmap_cache (expr, insn, inside_insn_group, res);
2601 if (sched_verbose >= 6)
2602 sel_print ("unchanged\n");
2603 break;
2605 case MOVEUP_EXPR_AS_RHS:
2606 gcc_assert (!unique_p || inside_insn_group);
2607 update_bitmap_cache (expr, insn, inside_insn_group, res);
2608 if (sched_verbose >= 6)
2609 sel_print ("unchanged (as RHS)\n");
2610 break;
2612 case MOVEUP_EXPR_CHANGED:
2613 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2614 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2615 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2616 INSN_UID (insn), trans_type,
2617 expr_old_vinsn, EXPR_VINSN (expr),
2618 expr_old_spec_ds);
2619 update_transformation_cache (expr, insn, inside_insn_group,
2620 trans_type, expr_old_vinsn);
2621 if (sched_verbose >= 6)
2623 sel_print ("changed: ");
2624 dump_expr (expr);
2625 sel_print ("\n");
2627 break;
2628 default:
2629 gcc_unreachable ();
2632 vinsn_detach (expr_old_vinsn);
2635 return res;
2638 /* Moves an av set AVP up through INSN, performing necessary
2639 transformations. */
2640 static void
2641 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2643 av_set_iterator i;
2644 expr_t expr;
2646 FOR_EACH_EXPR_1 (expr, i, avp)
2649 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2651 case MOVEUP_EXPR_SAME:
2652 case MOVEUP_EXPR_AS_RHS:
2653 break;
2655 case MOVEUP_EXPR_NULL:
2656 av_set_iter_remove (&i);
2657 break;
2659 case MOVEUP_EXPR_CHANGED:
2660 expr = merge_with_other_exprs (avp, &i, expr);
2661 break;
2663 default:
2664 gcc_unreachable ();
2669 /* Moves AVP set along PATH. */
2670 static void
2671 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2673 int last_cycle;
2675 if (sched_verbose >= 6)
2676 sel_print ("Moving expressions up in the insn group...\n");
2677 if (! path)
2678 return;
2679 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2680 while (path
2681 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2683 moveup_set_expr (avp, ILIST_INSN (path), true);
2684 path = ILIST_NEXT (path);
2688 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2689 static bool
2690 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2692 expr_def _tmp, *tmp = &_tmp;
2693 int last_cycle;
2694 bool res = true;
2696 copy_expr_onside (tmp, expr);
2697 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2698 while (path
2699 && res
2700 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2702 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2703 != MOVEUP_EXPR_NULL);
2704 path = ILIST_NEXT (path);
2707 if (res)
2709 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2710 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2712 if (tmp_vinsn != expr_vliw_vinsn)
2713 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2716 clear_expr (tmp);
2717 return res;
2721 /* Functions that compute av and lv sets. */
2723 /* Returns true if INSN is not a downward continuation of the given path P in
2724 the current stage. */
2725 static bool
2726 is_ineligible_successor (insn_t insn, ilist_t p)
2728 insn_t prev_insn;
2730 /* Check if insn is not deleted. */
2731 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2732 gcc_unreachable ();
2733 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2734 gcc_unreachable ();
2736 /* If it's the first insn visited, then the successor is ok. */
2737 if (!p)
2738 return false;
2740 prev_insn = ILIST_INSN (p);
2742 if (/* a backward edge. */
2743 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2744 /* is already visited. */
2745 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2746 && (ilist_is_in_p (p, insn)
2747 /* We can reach another fence here and still seqno of insn
2748 would be equal to seqno of prev_insn. This is possible
2749 when prev_insn is a previously created bookkeeping copy.
2750 In that case it'd get a seqno of insn. Thus, check here
2751 whether insn is in current fence too. */
2752 || IN_CURRENT_FENCE_P (insn)))
2753 /* Was already scheduled on this round. */
2754 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2755 && IN_CURRENT_FENCE_P (insn))
2756 /* An insn from another fence could also be
2757 scheduled earlier even if this insn is not in
2758 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2759 || (!pipelining_p
2760 && INSN_SCHED_TIMES (insn) > 0))
2761 return true;
2762 else
2763 return false;
2766 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2767 of handling multiple successors and properly merging its av_sets. P is
2768 the current path traversed. WS is the size of lookahead window.
2769 Return the av set computed. */
2770 static av_set_t
2771 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2773 struct succs_info *sinfo;
2774 av_set_t expr_in_all_succ_branches = NULL;
2775 int is;
2776 insn_t succ, zero_succ = NULL;
2777 av_set_t av1 = NULL;
2779 gcc_assert (sel_bb_end_p (insn));
2781 /* Find different kind of successors needed for correct computing of
2782 SPEC and TARGET_AVAILABLE attributes. */
2783 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2785 /* Debug output. */
2786 if (sched_verbose >= 6)
2788 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2789 dump_insn_vector (sinfo->succs_ok);
2790 sel_print ("\n");
2791 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2792 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2795 /* Add insn to the tail of current path. */
2796 ilist_add (&p, insn);
2798 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2800 av_set_t succ_set;
2802 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2803 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2805 av_set_split_usefulness (succ_set,
2806 sinfo->probs_ok[is],
2807 sinfo->all_prob);
2809 if (sinfo->all_succs_n > 1)
2811 /* Find EXPR'es that came from *all* successors and save them
2812 into expr_in_all_succ_branches. This set will be used later
2813 for calculating speculation attributes of EXPR'es. */
2814 if (is == 0)
2816 expr_in_all_succ_branches = av_set_copy (succ_set);
2818 /* Remember the first successor for later. */
2819 zero_succ = succ;
2821 else
2823 av_set_iterator i;
2824 expr_t expr;
2826 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2827 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2828 av_set_iter_remove (&i);
2832 /* Union the av_sets. Check liveness restrictions on target registers
2833 in special case of two successors. */
2834 if (sinfo->succs_ok_n == 2 && is == 1)
2836 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2837 basic_block bb1 = BLOCK_FOR_INSN (succ);
2839 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2840 av_set_union_and_live (&av1, &succ_set,
2841 BB_LV_SET (bb0),
2842 BB_LV_SET (bb1),
2843 insn);
2845 else
2846 av_set_union_and_clear (&av1, &succ_set, insn);
2849 /* Check liveness restrictions via hard way when there are more than
2850 two successors. */
2851 if (sinfo->succs_ok_n > 2)
2852 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2854 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2856 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2857 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2858 BB_LV_SET (succ_bb));
2861 /* Finally, check liveness restrictions on paths leaving the region. */
2862 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2863 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2864 mark_unavailable_targets
2865 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2867 if (sinfo->all_succs_n > 1)
2869 av_set_iterator i;
2870 expr_t expr;
2872 /* Increase the spec attribute of all EXPR'es that didn't come
2873 from all successors. */
2874 FOR_EACH_EXPR (expr, i, av1)
2875 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2876 EXPR_SPEC (expr)++;
2878 av_set_clear (&expr_in_all_succ_branches);
2880 /* Do not move conditional branches through other
2881 conditional branches. So, remove all conditional
2882 branches from av_set if current operator is a conditional
2883 branch. */
2884 av_set_substract_cond_branches (&av1);
2887 ilist_remove (&p);
2888 free_succs_info (sinfo);
2890 if (sched_verbose >= 6)
2892 sel_print ("av_succs (%d): ", INSN_UID (insn));
2893 dump_av_set (av1);
2894 sel_print ("\n");
2897 return av1;
2900 /* This function computes av_set for the FIRST_INSN by dragging valid
2901 av_set through all basic block insns either from the end of basic block
2902 (computed using compute_av_set_at_bb_end) or from the insn on which
2903 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2904 below the basic block and handling conditional branches.
2905 FIRST_INSN - the basic block head, P - path consisting of the insns
2906 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2907 and bb ends are added to the path), WS - current window size,
2908 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2909 static av_set_t
2910 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2911 bool need_copy_p)
2913 insn_t cur_insn;
2914 int end_ws = ws;
2915 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2916 insn_t after_bb_end = NEXT_INSN (bb_end);
2917 insn_t last_insn;
2918 av_set_t av = NULL;
2919 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2921 /* Return NULL if insn is not on the legitimate downward path. */
2922 if (is_ineligible_successor (first_insn, p))
2924 if (sched_verbose >= 6)
2925 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2927 return NULL;
2930 /* If insn already has valid av(insn) computed, just return it. */
2931 if (AV_SET_VALID_P (first_insn))
2933 av_set_t av_set;
2935 if (sel_bb_head_p (first_insn))
2936 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2937 else
2938 av_set = NULL;
2940 if (sched_verbose >= 6)
2942 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2943 dump_av_set (av_set);
2944 sel_print ("\n");
2947 return need_copy_p ? av_set_copy (av_set) : av_set;
2950 ilist_add (&p, first_insn);
2952 /* As the result after this loop have completed, in LAST_INSN we'll
2953 have the insn which has valid av_set to start backward computation
2954 from: it either will be NULL because on it the window size was exceeded
2955 or other valid av_set as returned by compute_av_set for the last insn
2956 of the basic block. */
2957 for (last_insn = first_insn; last_insn != after_bb_end;
2958 last_insn = NEXT_INSN (last_insn))
2960 /* We may encounter valid av_set not only on bb_head, but also on
2961 those insns on which previously MAX_WS was exceeded. */
2962 if (AV_SET_VALID_P (last_insn))
2964 if (sched_verbose >= 6)
2965 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2966 break;
2969 /* The special case: the last insn of the BB may be an
2970 ineligible_successor due to its SEQ_NO that was set on
2971 it as a bookkeeping. */
2972 if (last_insn != first_insn
2973 && is_ineligible_successor (last_insn, p))
2975 if (sched_verbose >= 6)
2976 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2977 break;
2980 if (DEBUG_INSN_P (last_insn))
2981 continue;
2983 if (end_ws > max_ws)
2985 /* We can reach max lookahead size at bb_header, so clean av_set
2986 first. */
2987 INSN_WS_LEVEL (last_insn) = global_level;
2989 if (sched_verbose >= 6)
2990 sel_print ("Insn %d is beyond the software lookahead window size\n",
2991 INSN_UID (last_insn));
2992 break;
2995 end_ws++;
2998 /* Get the valid av_set into AV above the LAST_INSN to start backward
2999 computation from. It either will be empty av_set or av_set computed from
3000 the successors on the last insn of the current bb. */
3001 if (last_insn != after_bb_end)
3003 av = NULL;
3005 /* This is needed only to obtain av_sets that are identical to
3006 those computed by the old compute_av_set version. */
3007 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
3008 av_set_add (&av, INSN_EXPR (last_insn));
3010 else
3011 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
3012 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
3014 /* Compute av_set in AV starting from below the LAST_INSN up to
3015 location above the FIRST_INSN. */
3016 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
3017 cur_insn = PREV_INSN (cur_insn))
3018 if (!INSN_NOP_P (cur_insn))
3020 expr_t expr;
3022 moveup_set_expr (&av, cur_insn, false);
3024 /* If the expression for CUR_INSN is already in the set,
3025 replace it by the new one. */
3026 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3027 if (expr != NULL)
3029 clear_expr (expr);
3030 copy_expr (expr, INSN_EXPR (cur_insn));
3032 else
3033 av_set_add (&av, INSN_EXPR (cur_insn));
3036 /* Clear stale bb_av_set. */
3037 if (sel_bb_head_p (first_insn))
3039 av_set_clear (&BB_AV_SET (cur_bb));
3040 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3041 BB_AV_LEVEL (cur_bb) = global_level;
3044 if (sched_verbose >= 6)
3046 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3047 dump_av_set (av);
3048 sel_print ("\n");
3051 ilist_remove (&p);
3052 return av;
3055 /* Compute av set before INSN.
3056 INSN - the current operation (actual rtx INSN)
3057 P - the current path, which is list of insns visited so far
3058 WS - software lookahead window size.
3059 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3060 if we want to save computed av_set in s_i_d, we should make a copy of it.
3062 In the resulting set we will have only expressions that don't have delay
3063 stalls and nonsubstitutable dependences. */
3064 static av_set_t
3065 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3067 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3070 /* Propagate a liveness set LV through INSN. */
3071 static void
3072 propagate_lv_set (regset lv, insn_t insn)
3074 gcc_assert (INSN_P (insn));
3076 if (INSN_NOP_P (insn))
3077 return;
3079 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3082 /* Return livness set at the end of BB. */
3083 static regset
3084 compute_live_after_bb (basic_block bb)
3086 edge e;
3087 edge_iterator ei;
3088 regset lv = get_clear_regset_from_pool ();
3090 gcc_assert (!ignore_first);
3092 FOR_EACH_EDGE (e, ei, bb->succs)
3093 if (sel_bb_empty_p (e->dest))
3095 if (! BB_LV_SET_VALID_P (e->dest))
3097 gcc_unreachable ();
3098 gcc_assert (BB_LV_SET (e->dest) == NULL);
3099 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3100 BB_LV_SET_VALID_P (e->dest) = true;
3102 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3104 else
3105 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3107 return lv;
3110 /* Compute the set of all live registers at the point before INSN and save
3111 it at INSN if INSN is bb header. */
3112 regset
3113 compute_live (insn_t insn)
3115 basic_block bb = BLOCK_FOR_INSN (insn);
3116 insn_t final, temp;
3117 regset lv;
3119 /* Return the valid set if we're already on it. */
3120 if (!ignore_first)
3122 regset src = NULL;
3124 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3125 src = BB_LV_SET (bb);
3126 else
3128 gcc_assert (in_current_region_p (bb));
3129 if (INSN_LIVE_VALID_P (insn))
3130 src = INSN_LIVE (insn);
3133 if (src)
3135 lv = get_regset_from_pool ();
3136 COPY_REG_SET (lv, src);
3138 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3140 COPY_REG_SET (BB_LV_SET (bb), lv);
3141 BB_LV_SET_VALID_P (bb) = true;
3144 return_regset_to_pool (lv);
3145 return lv;
3149 /* We've skipped the wrong lv_set. Don't skip the right one. */
3150 ignore_first = false;
3151 gcc_assert (in_current_region_p (bb));
3153 /* Find a valid LV set in this block or below, if needed.
3154 Start searching from the next insn: either ignore_first is true, or
3155 INSN doesn't have a correct live set. */
3156 temp = NEXT_INSN (insn);
3157 final = NEXT_INSN (BB_END (bb));
3158 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3159 temp = NEXT_INSN (temp);
3160 if (temp == final)
3162 lv = compute_live_after_bb (bb);
3163 temp = PREV_INSN (temp);
3165 else
3167 lv = get_regset_from_pool ();
3168 COPY_REG_SET (lv, INSN_LIVE (temp));
3171 /* Put correct lv sets on the insns which have bad sets. */
3172 final = PREV_INSN (insn);
3173 while (temp != final)
3175 propagate_lv_set (lv, temp);
3176 COPY_REG_SET (INSN_LIVE (temp), lv);
3177 INSN_LIVE_VALID_P (temp) = true;
3178 temp = PREV_INSN (temp);
3181 /* Also put it in a BB. */
3182 if (sel_bb_head_p (insn))
3184 basic_block bb = BLOCK_FOR_INSN (insn);
3186 COPY_REG_SET (BB_LV_SET (bb), lv);
3187 BB_LV_SET_VALID_P (bb) = true;
3190 /* We return LV to the pool, but will not clear it there. Thus we can
3191 legimatelly use LV till the next use of regset_pool_get (). */
3192 return_regset_to_pool (lv);
3193 return lv;
3196 /* Update liveness sets for INSN. */
3197 static inline void
3198 update_liveness_on_insn (rtx insn)
3200 ignore_first = true;
3201 compute_live (insn);
3204 /* Compute liveness below INSN and write it into REGS. */
3205 static inline void
3206 compute_live_below_insn (rtx insn, regset regs)
3208 rtx succ;
3209 succ_iterator si;
3211 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3212 IOR_REG_SET (regs, compute_live (succ));
3215 /* Update the data gathered in av and lv sets starting from INSN. */
3216 static void
3217 update_data_sets (rtx insn)
3219 update_liveness_on_insn (insn);
3220 if (sel_bb_head_p (insn))
3222 gcc_assert (AV_LEVEL (insn) != 0);
3223 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3224 compute_av_set (insn, NULL, 0, 0);
3229 /* Helper for move_op () and find_used_regs ().
3230 Return speculation type for which a check should be created on the place
3231 of INSN. EXPR is one of the original ops we are searching for. */
3232 static ds_t
3233 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3235 ds_t to_check_ds;
3236 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3238 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3240 if (targetm.sched.get_insn_checked_ds)
3241 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3243 if (spec_info != NULL
3244 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3245 already_checked_ds |= BEGIN_CONTROL;
3247 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3249 to_check_ds &= ~already_checked_ds;
3251 return to_check_ds;
3254 /* Find the set of registers that are unavailable for storing expres
3255 while moving ORIG_OPS up on the path starting from INSN due to
3256 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3258 All the original operations found during the traversal are saved in the
3259 ORIGINAL_INSNS list.
3261 REG_RENAME_P denotes the set of hardware registers that
3262 can not be used with renaming due to the register class restrictions,
3263 mode restrictions and other (the register we'll choose should be
3264 compatible class with the original uses, shouldn't be in call_used_regs,
3265 should be HARD_REGNO_RENAME_OK etc).
3267 Returns TRUE if we've found all original insns, FALSE otherwise.
3269 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3270 to traverse the code motion paths. This helper function finds registers
3271 that are not available for storing expres while moving ORIG_OPS up on the
3272 path starting from INSN. A register considered as used on the moving path,
3273 if one of the following conditions is not satisfied:
3275 (1) a register not set or read on any path from xi to an instance of
3276 the original operation,
3277 (2) not among the live registers of the point immediately following the
3278 first original operation on a given downward path, except for the
3279 original target register of the operation,
3280 (3) not live on the other path of any conditional branch that is passed
3281 by the operation, in case original operations are not present on
3282 both paths of the conditional branch.
3284 All the original operations found during the traversal are saved in the
3285 ORIGINAL_INSNS list.
3287 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3288 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3289 to unavailable hard regs at the point original operation is found. */
3291 static bool
3292 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3293 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3295 def_list_iterator i;
3296 def_t def;
3297 int res;
3298 bool needs_spec_check_p = false;
3299 expr_t expr;
3300 av_set_iterator expr_iter;
3301 struct fur_static_params sparams;
3302 struct cmpd_local_params lparams;
3304 /* We haven't visited any blocks yet. */
3305 bitmap_clear (code_motion_visited_blocks);
3307 /* Init parameters for code_motion_path_driver. */
3308 sparams.crosses_call = false;
3309 sparams.original_insns = original_insns;
3310 sparams.used_regs = used_regs;
3312 /* Set the appropriate hooks and data. */
3313 code_motion_path_driver_info = &fur_hooks;
3315 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3317 reg_rename_p->crosses_call |= sparams.crosses_call;
3319 gcc_assert (res == 1);
3320 gcc_assert (original_insns && *original_insns);
3322 /* ??? We calculate whether an expression needs a check when computing
3323 av sets. This information is not as precise as it could be due to
3324 merging this bit in merge_expr. We can do better in find_used_regs,
3325 but we want to avoid multiple traversals of the same code motion
3326 paths. */
3327 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3328 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3330 /* Mark hardware regs in REG_RENAME_P that are not suitable
3331 for renaming expr in INSN due to hardware restrictions (register class,
3332 modes compatibility etc). */
3333 FOR_EACH_DEF (def, i, *original_insns)
3335 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3337 if (VINSN_SEPARABLE_P (vinsn))
3338 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3340 /* Do not allow clobbering of ld.[sa] address in case some of the
3341 original operations need a check. */
3342 if (needs_spec_check_p)
3343 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3346 return true;
3350 /* Functions to choose the best insn from available ones. */
3352 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3353 static int
3354 sel_target_adjust_priority (expr_t expr)
3356 int priority = EXPR_PRIORITY (expr);
3357 int new_priority;
3359 if (targetm.sched.adjust_priority)
3360 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3361 else
3362 new_priority = priority;
3364 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3365 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3367 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3369 if (sched_verbose >= 4)
3370 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3371 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3372 EXPR_PRIORITY_ADJ (expr), new_priority);
3374 return new_priority;
3377 /* Rank two available exprs for schedule. Never return 0 here. */
3378 static int
3379 sel_rank_for_schedule (const void *x, const void *y)
3381 expr_t tmp = *(const expr_t *) y;
3382 expr_t tmp2 = *(const expr_t *) x;
3383 insn_t tmp_insn, tmp2_insn;
3384 vinsn_t tmp_vinsn, tmp2_vinsn;
3385 int val;
3387 tmp_vinsn = EXPR_VINSN (tmp);
3388 tmp2_vinsn = EXPR_VINSN (tmp2);
3389 tmp_insn = EXPR_INSN_RTX (tmp);
3390 tmp2_insn = EXPR_INSN_RTX (tmp2);
3392 /* Schedule debug insns as early as possible. */
3393 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3394 return -1;
3395 else if (DEBUG_INSN_P (tmp2_insn))
3396 return 1;
3398 /* Prefer SCHED_GROUP_P insns to any others. */
3399 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3401 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3402 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3404 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3405 cannot be cloned. */
3406 if (VINSN_UNIQUE_P (tmp2_vinsn))
3407 return 1;
3408 return -1;
3411 /* Discourage scheduling of speculative checks. */
3412 val = (sel_insn_is_speculation_check (tmp_insn)
3413 - sel_insn_is_speculation_check (tmp2_insn));
3414 if (val)
3415 return val;
3417 /* Prefer not scheduled insn over scheduled one. */
3418 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3420 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3421 if (val)
3422 return val;
3425 /* Prefer jump over non-jump instruction. */
3426 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3427 return -1;
3428 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3429 return 1;
3431 /* Prefer an expr with greater priority. */
3432 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3434 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3435 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3437 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3439 else
3440 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3441 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3442 if (val)
3443 return val;
3445 if (spec_info != NULL && spec_info->mask != 0)
3446 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3448 ds_t ds1, ds2;
3449 dw_t dw1, dw2;
3450 int dw;
3452 ds1 = EXPR_SPEC_DONE_DS (tmp);
3453 if (ds1)
3454 dw1 = ds_weak (ds1);
3455 else
3456 dw1 = NO_DEP_WEAK;
3458 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3459 if (ds2)
3460 dw2 = ds_weak (ds2);
3461 else
3462 dw2 = NO_DEP_WEAK;
3464 dw = dw2 - dw1;
3465 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3466 return dw;
3469 /* Prefer an old insn to a bookkeeping insn. */
3470 if (INSN_UID (tmp_insn) < first_emitted_uid
3471 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3472 return -1;
3473 if (INSN_UID (tmp_insn) >= first_emitted_uid
3474 && INSN_UID (tmp2_insn) < first_emitted_uid)
3475 return 1;
3477 /* Prefer an insn with smaller UID, as a last resort.
3478 We can't safely use INSN_LUID as it is defined only for those insns
3479 that are in the stream. */
3480 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3483 /* Filter out expressions from av set pointed to by AV_PTR
3484 that are pipelined too many times. */
3485 static void
3486 process_pipelined_exprs (av_set_t *av_ptr)
3488 expr_t expr;
3489 av_set_iterator si;
3491 /* Don't pipeline already pipelined code as that would increase
3492 number of unnecessary register moves. */
3493 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3495 if (EXPR_SCHED_TIMES (expr)
3496 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3497 av_set_iter_remove (&si);
3501 /* Filter speculative insns from AV_PTR if we don't want them. */
3502 static void
3503 process_spec_exprs (av_set_t *av_ptr)
3505 bool try_data_p = true;
3506 bool try_control_p = true;
3507 expr_t expr;
3508 av_set_iterator si;
3510 if (spec_info == NULL)
3511 return;
3513 /* Scan *AV_PTR to find out if we want to consider speculative
3514 instructions for scheduling. */
3515 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3517 ds_t ds;
3519 ds = EXPR_SPEC_DONE_DS (expr);
3521 /* The probability of a success is too low - don't speculate. */
3522 if ((ds & SPECULATIVE)
3523 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3524 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3525 || (pipelining_p && false
3526 && (ds & DATA_SPEC)
3527 && (ds & CONTROL_SPEC))))
3529 av_set_iter_remove (&si);
3530 continue;
3533 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3534 && !(ds & BEGIN_DATA))
3535 try_data_p = false;
3537 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3538 && !(ds & BEGIN_CONTROL))
3539 try_control_p = false;
3542 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3544 ds_t ds;
3546 ds = EXPR_SPEC_DONE_DS (expr);
3548 if (ds & SPECULATIVE)
3550 if ((ds & BEGIN_DATA) && !try_data_p)
3551 /* We don't want any data speculative instructions right
3552 now. */
3553 av_set_iter_remove (&si);
3555 if ((ds & BEGIN_CONTROL) && !try_control_p)
3556 /* We don't want any control speculative instructions right
3557 now. */
3558 av_set_iter_remove (&si);
3563 /* Search for any use-like insns in AV_PTR and decide on scheduling
3564 them. Return one when found, and NULL otherwise.
3565 Note that we check here whether a USE could be scheduled to avoid
3566 an infinite loop later. */
3567 static expr_t
3568 process_use_exprs (av_set_t *av_ptr)
3570 expr_t expr;
3571 av_set_iterator si;
3572 bool uses_present_p = false;
3573 bool try_uses_p = true;
3575 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3577 /* This will also initialize INSN_CODE for later use. */
3578 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3580 /* If we have a USE in *AV_PTR that was not scheduled yet,
3581 do so because it will do good only. */
3582 if (EXPR_SCHED_TIMES (expr) <= 0)
3584 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3585 return expr;
3587 av_set_iter_remove (&si);
3589 else
3591 gcc_assert (pipelining_p);
3593 uses_present_p = true;
3596 else
3597 try_uses_p = false;
3600 if (uses_present_p)
3602 /* If we don't want to schedule any USEs right now and we have some
3603 in *AV_PTR, remove them, else just return the first one found. */
3604 if (!try_uses_p)
3606 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3607 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3608 av_set_iter_remove (&si);
3610 else
3612 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3614 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3616 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3617 return expr;
3619 av_set_iter_remove (&si);
3624 return NULL;
3627 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3628 EXPR's history of changes. */
3629 static bool
3630 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3632 vinsn_t vinsn, expr_vinsn;
3633 int n;
3634 unsigned i;
3636 /* Start with checking expr itself and then proceed with all the old forms
3637 of expr taken from its history vector. */
3638 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3639 expr_vinsn;
3640 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3641 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3642 : NULL))
3643 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3644 if (VINSN_SEPARABLE_P (vinsn))
3646 if (vinsn_equal_p (vinsn, expr_vinsn))
3647 return true;
3649 else
3651 /* For non-separable instructions, the blocking insn can have
3652 another pattern due to substitution, and we can't choose
3653 different register as in the above case. Check all registers
3654 being written instead. */
3655 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3656 VINSN_REG_SETS (expr_vinsn)))
3657 return true;
3660 return false;
3663 #ifdef ENABLE_CHECKING
3664 /* Return true if either of expressions from ORIG_OPS can be blocked
3665 by previously created bookkeeping code. STATIC_PARAMS points to static
3666 parameters of move_op. */
3667 static bool
3668 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3670 expr_t expr;
3671 av_set_iterator iter;
3672 moveop_static_params_p sparams;
3674 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3675 created while scheduling on another fence. */
3676 FOR_EACH_EXPR (expr, iter, orig_ops)
3677 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3678 return true;
3680 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3681 sparams = (moveop_static_params_p) static_params;
3683 /* Expressions can be also blocked by bookkeeping created during current
3684 move_op. */
3685 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3686 FOR_EACH_EXPR (expr, iter, orig_ops)
3687 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3688 return true;
3690 /* Expressions in ORIG_OPS may have wrong destination register due to
3691 renaming. Check with the right register instead. */
3692 if (sparams->dest && REG_P (sparams->dest))
3694 rtx reg = sparams->dest;
3695 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3697 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3698 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3699 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3700 return true;
3703 return false;
3705 #endif
3707 /* Clear VINSN_VEC and detach vinsns. */
3708 static void
3709 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3711 unsigned len = vinsn_vec->length ();
3712 if (len > 0)
3714 vinsn_t vinsn;
3715 int n;
3717 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3718 vinsn_detach (vinsn);
3719 vinsn_vec->block_remove (0, len);
3723 /* Add the vinsn of EXPR to the VINSN_VEC. */
3724 static void
3725 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3727 vinsn_attach (EXPR_VINSN (expr));
3728 vinsn_vec->safe_push (EXPR_VINSN (expr));
3731 /* Free the vector representing blocked expressions. */
3732 static void
3733 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3735 vinsn_vec.release ();
3738 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3740 void sel_add_to_insn_priority (rtx insn, int amount)
3742 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3744 if (sched_verbose >= 2)
3745 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3746 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3747 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3750 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3751 true if there is something to schedule. BNDS and FENCE are current
3752 boundaries and fence, respectively. If we need to stall for some cycles
3753 before an expr from AV would become available, write this number to
3754 *PNEED_STALL. */
3755 static bool
3756 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3757 int *pneed_stall)
3759 av_set_iterator si;
3760 expr_t expr;
3761 int sched_next_worked = 0, stalled, n;
3762 static int av_max_prio, est_ticks_till_branch;
3763 int min_need_stall = -1;
3764 deps_t dc = BND_DC (BLIST_BND (bnds));
3766 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3767 already scheduled. */
3768 if (av == NULL)
3769 return false;
3771 /* Empty vector from the previous stuff. */
3772 if (vec_av_set.length () > 0)
3773 vec_av_set.block_remove (0, vec_av_set.length ());
3775 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3776 for each insn. */
3777 gcc_assert (vec_av_set.is_empty ());
3778 FOR_EACH_EXPR (expr, si, av)
3780 vec_av_set.safe_push (expr);
3782 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3784 /* Adjust priority using target backend hook. */
3785 sel_target_adjust_priority (expr);
3788 /* Sort the vector. */
3789 vec_av_set.qsort (sel_rank_for_schedule);
3791 /* We record maximal priority of insns in av set for current instruction
3792 group. */
3793 if (FENCE_STARTS_CYCLE_P (fence))
3794 av_max_prio = est_ticks_till_branch = INT_MIN;
3796 /* Filter out inappropriate expressions. Loop's direction is reversed to
3797 visit "best" instructions first. We assume that vec::unordered_remove
3798 moves last element in place of one being deleted. */
3799 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3801 expr_t expr = vec_av_set[n];
3802 insn_t insn = EXPR_INSN_RTX (expr);
3803 signed char target_available;
3804 bool is_orig_reg_p = true;
3805 int need_cycles, new_prio;
3806 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3808 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3809 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3811 vec_av_set.unordered_remove (n);
3812 continue;
3815 /* Set number of sched_next insns (just in case there
3816 could be several). */
3817 if (FENCE_SCHED_NEXT (fence))
3818 sched_next_worked++;
3820 /* Check all liveness requirements and try renaming.
3821 FIXME: try to minimize calls to this. */
3822 target_available = EXPR_TARGET_AVAILABLE (expr);
3824 /* If insn was already scheduled on the current fence,
3825 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3826 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3827 target_available = -1;
3829 /* If the availability of the EXPR is invalidated by the insertion of
3830 bookkeeping earlier, make sure that we won't choose this expr for
3831 scheduling if it's not separable, and if it is separable, then
3832 we have to recompute the set of available registers for it. */
3833 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3835 vec_av_set.unordered_remove (n);
3836 if (sched_verbose >= 4)
3837 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3838 INSN_UID (insn));
3839 continue;
3842 if (target_available == true)
3844 /* Do nothing -- we can use an existing register. */
3845 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3847 else if (/* Non-separable instruction will never
3848 get another register. */
3849 (target_available == false
3850 && !EXPR_SEPARABLE_P (expr))
3851 /* Don't try to find a register for low-priority expression. */
3852 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3853 /* ??? FIXME: Don't try to rename data speculation. */
3854 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3855 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3857 vec_av_set.unordered_remove (n);
3858 if (sched_verbose >= 4)
3859 sel_print ("Expr %d has no suitable target register\n",
3860 INSN_UID (insn));
3862 /* A fence insn should not get here. */
3863 gcc_assert (!fence_insn_p);
3864 continue;
3867 /* At this point a fence insn should always be available. */
3868 gcc_assert (!fence_insn_p
3869 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3871 /* Filter expressions that need to be renamed or speculated when
3872 pipelining, because compensating register copies or speculation
3873 checks are likely to be placed near the beginning of the loop,
3874 causing a stall. */
3875 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3876 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3878 /* Estimation of number of cycles until loop branch for
3879 renaming/speculation to be successful. */
3880 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3882 if ((int) current_loop_nest->ninsns < 9)
3884 vec_av_set.unordered_remove (n);
3885 if (sched_verbose >= 4)
3886 sel_print ("Pipelining expr %d will likely cause stall\n",
3887 INSN_UID (insn));
3888 continue;
3891 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3892 < need_n_ticks_till_branch * issue_rate / 2
3893 && est_ticks_till_branch < need_n_ticks_till_branch)
3895 vec_av_set.unordered_remove (n);
3896 if (sched_verbose >= 4)
3897 sel_print ("Pipelining expr %d will likely cause stall\n",
3898 INSN_UID (insn));
3899 continue;
3903 /* We want to schedule speculation checks as late as possible. Discard
3904 them from av set if there are instructions with higher priority. */
3905 if (sel_insn_is_speculation_check (insn)
3906 && EXPR_PRIORITY (expr) < av_max_prio)
3908 stalled++;
3909 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3910 vec_av_set.unordered_remove (n);
3911 if (sched_verbose >= 4)
3912 sel_print ("Delaying speculation check %d until its first use\n",
3913 INSN_UID (insn));
3914 continue;
3917 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3918 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3919 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3921 /* Don't allow any insns whose data is not yet ready.
3922 Check first whether we've already tried them and failed. */
3923 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3925 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3926 - FENCE_CYCLE (fence));
3927 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3928 est_ticks_till_branch = MAX (est_ticks_till_branch,
3929 EXPR_PRIORITY (expr) + need_cycles);
3931 if (need_cycles > 0)
3933 stalled++;
3934 min_need_stall = (min_need_stall < 0
3935 ? need_cycles
3936 : MIN (min_need_stall, need_cycles));
3937 vec_av_set.unordered_remove (n);
3939 if (sched_verbose >= 4)
3940 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3941 INSN_UID (insn),
3942 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3943 continue;
3947 /* Now resort to dependence analysis to find whether EXPR might be
3948 stalled due to dependencies from FENCE's context. */
3949 need_cycles = tick_check_p (expr, dc, fence);
3950 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3952 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3953 est_ticks_till_branch = MAX (est_ticks_till_branch,
3954 new_prio);
3956 if (need_cycles > 0)
3958 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3960 int new_size = INSN_UID (insn) * 3 / 2;
3962 FENCE_READY_TICKS (fence)
3963 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3964 new_size, FENCE_READY_TICKS_SIZE (fence),
3965 sizeof (int));
3967 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3968 = FENCE_CYCLE (fence) + need_cycles;
3970 stalled++;
3971 min_need_stall = (min_need_stall < 0
3972 ? need_cycles
3973 : MIN (min_need_stall, need_cycles));
3975 vec_av_set.unordered_remove (n);
3977 if (sched_verbose >= 4)
3978 sel_print ("Expr %d is not ready yet until cycle %d\n",
3979 INSN_UID (insn),
3980 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3981 continue;
3984 if (sched_verbose >= 4)
3985 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3986 min_need_stall = 0;
3989 /* Clear SCHED_NEXT. */
3990 if (FENCE_SCHED_NEXT (fence))
3992 gcc_assert (sched_next_worked == 1);
3993 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3996 /* No need to stall if this variable was not initialized. */
3997 if (min_need_stall < 0)
3998 min_need_stall = 0;
4000 if (vec_av_set.is_empty ())
4002 /* We need to set *pneed_stall here, because later we skip this code
4003 when ready list is empty. */
4004 *pneed_stall = min_need_stall;
4005 return false;
4007 else
4008 gcc_assert (min_need_stall == 0);
4010 /* Sort the vector. */
4011 vec_av_set.qsort (sel_rank_for_schedule);
4013 if (sched_verbose >= 4)
4015 sel_print ("Total ready exprs: %d, stalled: %d\n",
4016 vec_av_set.length (), stalled);
4017 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
4018 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4019 dump_expr (expr);
4020 sel_print ("\n");
4023 *pneed_stall = 0;
4024 return true;
4027 /* Convert a vectored and sorted av set to the ready list that
4028 the rest of the backend wants to see. */
4029 static void
4030 convert_vec_av_set_to_ready (void)
4032 int n;
4033 expr_t expr;
4035 /* Allocate and fill the ready list from the sorted vector. */
4036 ready.n_ready = vec_av_set.length ();
4037 ready.first = ready.n_ready - 1;
4039 gcc_assert (ready.n_ready > 0);
4041 if (ready.n_ready > max_issue_size)
4043 max_issue_size = ready.n_ready;
4044 sched_extend_ready_list (ready.n_ready);
4047 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4049 vinsn_t vi = EXPR_VINSN (expr);
4050 insn_t insn = VINSN_INSN_RTX (vi);
4052 ready_try[n] = 0;
4053 ready.vec[n] = insn;
4057 /* Initialize ready list from *AV_PTR for the max_issue () call.
4058 If any unrecognizable insn found in *AV_PTR, return it (and skip
4059 max_issue). BND and FENCE are current boundary and fence,
4060 respectively. If we need to stall for some cycles before an expr
4061 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4062 static expr_t
4063 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4064 int *pneed_stall)
4066 expr_t expr;
4068 /* We do not support multiple boundaries per fence. */
4069 gcc_assert (BLIST_NEXT (bnds) == NULL);
4071 /* Process expressions required special handling, i.e. pipelined,
4072 speculative and recog() < 0 expressions first. */
4073 process_pipelined_exprs (av_ptr);
4074 process_spec_exprs (av_ptr);
4076 /* A USE could be scheduled immediately. */
4077 expr = process_use_exprs (av_ptr);
4078 if (expr)
4080 *pneed_stall = 0;
4081 return expr;
4084 /* Turn the av set to a vector for sorting. */
4085 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4087 ready.n_ready = 0;
4088 return NULL;
4091 /* Build the final ready list. */
4092 convert_vec_av_set_to_ready ();
4093 return NULL;
4096 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4097 static bool
4098 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4100 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4101 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4102 : FENCE_CYCLE (fence) - 1;
4103 bool res = false;
4104 int sort_p = 0;
4106 if (!targetm.sched.dfa_new_cycle)
4107 return false;
4109 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4111 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4112 insn, last_scheduled_cycle,
4113 FENCE_CYCLE (fence), &sort_p))
4115 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4116 advance_one_cycle (fence);
4117 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4118 res = true;
4121 return res;
4124 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4125 we can issue. FENCE is the current fence. */
4126 static int
4127 invoke_reorder_hooks (fence_t fence)
4129 int issue_more;
4130 bool ran_hook = false;
4132 /* Call the reorder hook at the beginning of the cycle, and call
4133 the reorder2 hook in the middle of the cycle. */
4134 if (FENCE_ISSUED_INSNS (fence) == 0)
4136 if (targetm.sched.reorder
4137 && !SCHED_GROUP_P (ready_element (&ready, 0))
4138 && ready.n_ready > 1)
4140 /* Don't give reorder the most prioritized insn as it can break
4141 pipelining. */
4142 if (pipelining_p)
4143 --ready.n_ready;
4145 issue_more
4146 = targetm.sched.reorder (sched_dump, sched_verbose,
4147 ready_lastpos (&ready),
4148 &ready.n_ready, FENCE_CYCLE (fence));
4150 if (pipelining_p)
4151 ++ready.n_ready;
4153 ran_hook = true;
4155 else
4156 /* Initialize can_issue_more for variable_issue. */
4157 issue_more = issue_rate;
4159 else if (targetm.sched.reorder2
4160 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4162 if (ready.n_ready == 1)
4163 issue_more =
4164 targetm.sched.reorder2 (sched_dump, sched_verbose,
4165 ready_lastpos (&ready),
4166 &ready.n_ready, FENCE_CYCLE (fence));
4167 else
4169 if (pipelining_p)
4170 --ready.n_ready;
4172 issue_more =
4173 targetm.sched.reorder2 (sched_dump, sched_verbose,
4174 ready.n_ready
4175 ? ready_lastpos (&ready) : NULL,
4176 &ready.n_ready, FENCE_CYCLE (fence));
4178 if (pipelining_p)
4179 ++ready.n_ready;
4182 ran_hook = true;
4184 else
4185 issue_more = FENCE_ISSUE_MORE (fence);
4187 /* Ensure that ready list and vec_av_set are in line with each other,
4188 i.e. vec_av_set[i] == ready_element (&ready, i). */
4189 if (issue_more && ran_hook)
4191 int i, j, n;
4192 rtx *arr = ready.vec;
4193 expr_t *vec = vec_av_set.address ();
4195 for (i = 0, n = ready.n_ready; i < n; i++)
4196 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4198 expr_t tmp;
4200 for (j = i; j < n; j++)
4201 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4202 break;
4203 gcc_assert (j < n);
4205 tmp = vec[i];
4206 vec[i] = vec[j];
4207 vec[j] = tmp;
4211 return issue_more;
4214 /* Return an EXPR corresponding to INDEX element of ready list, if
4215 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4216 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4217 ready.vec otherwise. */
4218 static inline expr_t
4219 find_expr_for_ready (int index, bool follow_ready_element)
4221 expr_t expr;
4222 int real_index;
4224 real_index = follow_ready_element ? ready.first - index : index;
4226 expr = vec_av_set[real_index];
4227 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4229 return expr;
4232 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4233 of such insns found. */
4234 static int
4235 invoke_dfa_lookahead_guard (void)
4237 int i, n;
4238 bool have_hook
4239 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4241 if (sched_verbose >= 2)
4242 sel_print ("ready after reorder: ");
4244 for (i = 0, n = 0; i < ready.n_ready; i++)
4246 expr_t expr;
4247 insn_t insn;
4248 int r;
4250 /* In this loop insn is Ith element of the ready list given by
4251 ready_element, not Ith element of ready.vec. */
4252 insn = ready_element (&ready, i);
4254 if (! have_hook || i == 0)
4255 r = 0;
4256 else
4257 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4259 gcc_assert (INSN_CODE (insn) >= 0);
4261 /* Only insns with ready_try = 0 can get here
4262 from fill_ready_list. */
4263 gcc_assert (ready_try [i] == 0);
4264 ready_try[i] = r;
4265 if (!r)
4266 n++;
4268 expr = find_expr_for_ready (i, true);
4270 if (sched_verbose >= 2)
4272 dump_vinsn (EXPR_VINSN (expr));
4273 sel_print (":%d; ", ready_try[i]);
4277 if (sched_verbose >= 2)
4278 sel_print ("\n");
4279 return n;
4282 /* Calculate the number of privileged insns and return it. */
4283 static int
4284 calculate_privileged_insns (void)
4286 expr_t cur_expr, min_spec_expr = NULL;
4287 int privileged_n = 0, i;
4289 for (i = 0; i < ready.n_ready; i++)
4291 if (ready_try[i])
4292 continue;
4294 if (! min_spec_expr)
4295 min_spec_expr = find_expr_for_ready (i, true);
4297 cur_expr = find_expr_for_ready (i, true);
4299 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4300 break;
4302 ++privileged_n;
4305 if (i == ready.n_ready)
4306 privileged_n = 0;
4308 if (sched_verbose >= 2)
4309 sel_print ("privileged_n: %d insns with SPEC %d\n",
4310 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4311 return privileged_n;
4314 /* Call the rest of the hooks after the choice was made. Return
4315 the number of insns that still can be issued given that the current
4316 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4317 and the insn chosen for scheduling, respectively. */
4318 static int
4319 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4321 gcc_assert (INSN_P (best_insn));
4323 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4324 sel_dfa_new_cycle (best_insn, fence);
4326 if (targetm.sched.variable_issue)
4328 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4329 issue_more =
4330 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4331 issue_more);
4332 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4334 else if (GET_CODE (PATTERN (best_insn)) != USE
4335 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4336 issue_more--;
4338 return issue_more;
4341 /* Estimate the cost of issuing INSN on DFA state STATE. */
4342 static int
4343 estimate_insn_cost (rtx insn, state_t state)
4345 static state_t temp = NULL;
4346 int cost;
4348 if (!temp)
4349 temp = xmalloc (dfa_state_size);
4351 memcpy (temp, state, dfa_state_size);
4352 cost = state_transition (temp, insn);
4354 if (cost < 0)
4355 return 0;
4356 else if (cost == 0)
4357 return 1;
4358 return cost;
4361 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4362 This function properly handles ASMs, USEs etc. */
4363 static int
4364 get_expr_cost (expr_t expr, fence_t fence)
4366 rtx insn = EXPR_INSN_RTX (expr);
4368 if (recog_memoized (insn) < 0)
4370 if (!FENCE_STARTS_CYCLE_P (fence)
4371 && INSN_ASM_P (insn))
4372 /* This is asm insn which is tryed to be issued on the
4373 cycle not first. Issue it on the next cycle. */
4374 return 1;
4375 else
4376 /* A USE insn, or something else we don't need to
4377 understand. We can't pass these directly to
4378 state_transition because it will trigger a
4379 fatal error for unrecognizable insns. */
4380 return 0;
4382 else
4383 return estimate_insn_cost (insn, FENCE_STATE (fence));
4386 /* Find the best insn for scheduling, either via max_issue or just take
4387 the most prioritized available. */
4388 static int
4389 choose_best_insn (fence_t fence, int privileged_n, int *index)
4391 int can_issue = 0;
4393 if (dfa_lookahead > 0)
4395 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4396 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4397 can_issue = max_issue (&ready, privileged_n,
4398 FENCE_STATE (fence), true, index);
4399 if (sched_verbose >= 2)
4400 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4401 can_issue, FENCE_ISSUED_INSNS (fence));
4403 else
4405 /* We can't use max_issue; just return the first available element. */
4406 int i;
4408 for (i = 0; i < ready.n_ready; i++)
4410 expr_t expr = find_expr_for_ready (i, true);
4412 if (get_expr_cost (expr, fence) < 1)
4414 can_issue = can_issue_more;
4415 *index = i;
4417 if (sched_verbose >= 2)
4418 sel_print ("using %dth insn from the ready list\n", i + 1);
4420 break;
4424 if (i == ready.n_ready)
4426 can_issue = 0;
4427 *index = -1;
4431 return can_issue;
4434 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4435 BNDS and FENCE are current boundaries and scheduling fence respectively.
4436 Return the expr found and NULL if nothing can be issued atm.
4437 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4438 static expr_t
4439 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4440 int *pneed_stall)
4442 expr_t best;
4444 /* Choose the best insn for scheduling via:
4445 1) sorting the ready list based on priority;
4446 2) calling the reorder hook;
4447 3) calling max_issue. */
4448 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4449 if (best == NULL && ready.n_ready > 0)
4451 int privileged_n, index;
4453 can_issue_more = invoke_reorder_hooks (fence);
4454 if (can_issue_more > 0)
4456 /* Try choosing the best insn until we find one that is could be
4457 scheduled due to liveness restrictions on its destination register.
4458 In the future, we'd like to choose once and then just probe insns
4459 in the order of their priority. */
4460 invoke_dfa_lookahead_guard ();
4461 privileged_n = calculate_privileged_insns ();
4462 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4463 if (can_issue_more)
4464 best = find_expr_for_ready (index, true);
4466 /* We had some available insns, so if we can't issue them,
4467 we have a stall. */
4468 if (can_issue_more == 0)
4470 best = NULL;
4471 *pneed_stall = 1;
4475 if (best != NULL)
4477 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4478 can_issue_more);
4479 if (targetm.sched.variable_issue
4480 && can_issue_more == 0)
4481 *pneed_stall = 1;
4484 if (sched_verbose >= 2)
4486 if (best != NULL)
4488 sel_print ("Best expression (vliw form): ");
4489 dump_expr (best);
4490 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4492 else
4493 sel_print ("No best expr found!\n");
4496 return best;
4500 /* Functions that implement the core of the scheduler. */
4503 /* Emit an instruction from EXPR with SEQNO and VINSN after
4504 PLACE_TO_INSERT. */
4505 static insn_t
4506 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4507 insn_t place_to_insert)
4509 /* This assert fails when we have identical instructions
4510 one of which dominates the other. In this case move_op ()
4511 finds the first instruction and doesn't search for second one.
4512 The solution would be to compute av_set after the first found
4513 insn and, if insn present in that set, continue searching.
4514 For now we workaround this issue in move_op. */
4515 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4517 if (EXPR_WAS_RENAMED (expr))
4519 unsigned regno = expr_dest_regno (expr);
4521 if (HARD_REGISTER_NUM_P (regno))
4523 df_set_regs_ever_live (regno, true);
4524 reg_rename_tick[regno] = ++reg_rename_this_tick;
4528 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4529 place_to_insert);
4532 /* Return TRUE if BB can hold bookkeeping code. */
4533 static bool
4534 block_valid_for_bookkeeping_p (basic_block bb)
4536 insn_t bb_end = BB_END (bb);
4538 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4539 return false;
4541 if (INSN_P (bb_end))
4543 if (INSN_SCHED_TIMES (bb_end) > 0)
4544 return false;
4546 else
4547 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4549 return true;
4552 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4553 into E2->dest, except from E1->src (there may be a sequence of empty basic
4554 blocks between E1->src and E2->dest). Return found block, or NULL if new
4555 one must be created. If LAX holds, don't assume there is a simple path
4556 from E1->src to E2->dest. */
4557 static basic_block
4558 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4560 basic_block candidate_block = NULL;
4561 edge e;
4563 /* Loop over edges from E1 to E2, inclusive. */
4564 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4565 EDGE_SUCC (e->dest, 0))
4567 if (EDGE_COUNT (e->dest->preds) == 2)
4569 if (candidate_block == NULL)
4570 candidate_block = (EDGE_PRED (e->dest, 0) == e
4571 ? EDGE_PRED (e->dest, 1)->src
4572 : EDGE_PRED (e->dest, 0)->src);
4573 else
4574 /* Found additional edge leading to path from e1 to e2
4575 from aside. */
4576 return NULL;
4578 else if (EDGE_COUNT (e->dest->preds) > 2)
4579 /* Several edges leading to path from e1 to e2 from aside. */
4580 return NULL;
4582 if (e == e2)
4583 return ((!lax || candidate_block)
4584 && block_valid_for_bookkeeping_p (candidate_block)
4585 ? candidate_block
4586 : NULL);
4588 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4589 return NULL;
4592 if (lax)
4593 return NULL;
4595 gcc_unreachable ();
4598 /* Create new basic block for bookkeeping code for path(s) incoming into
4599 E2->dest, except from E1->src. Return created block. */
4600 static basic_block
4601 create_block_for_bookkeeping (edge e1, edge e2)
4603 basic_block new_bb, bb = e2->dest;
4605 /* Check that we don't spoil the loop structure. */
4606 if (current_loop_nest)
4608 basic_block latch = current_loop_nest->latch;
4610 /* We do not split header. */
4611 gcc_assert (e2->dest != current_loop_nest->header);
4613 /* We do not redirect the only edge to the latch block. */
4614 gcc_assert (e1->dest != latch
4615 || !single_pred_p (latch)
4616 || e1 != single_pred_edge (latch));
4619 /* Split BB to insert BOOK_INSN there. */
4620 new_bb = sched_split_block (bb, NULL);
4622 /* Move note_list from the upper bb. */
4623 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4624 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4625 BB_NOTE_LIST (bb) = NULL_RTX;
4627 gcc_assert (e2->dest == bb);
4629 /* Skip block for bookkeeping copy when leaving E1->src. */
4630 if (e1->flags & EDGE_FALLTHRU)
4631 sel_redirect_edge_and_branch_force (e1, new_bb);
4632 else
4633 sel_redirect_edge_and_branch (e1, new_bb);
4635 gcc_assert (e1->dest == new_bb);
4636 gcc_assert (sel_bb_empty_p (bb));
4638 /* To keep basic block numbers in sync between debug and non-debug
4639 compilations, we have to rotate blocks here. Consider that we
4640 started from (a,b)->d, (c,d)->e, and d contained only debug
4641 insns. It would have been removed before if the debug insns
4642 weren't there, so we'd have split e rather than d. So what we do
4643 now is to swap the block numbers of new_bb and
4644 single_succ(new_bb) == e, so that the insns that were in e before
4645 get the new block number. */
4647 if (MAY_HAVE_DEBUG_INSNS)
4649 basic_block succ;
4650 insn_t insn = sel_bb_head (new_bb);
4651 insn_t last;
4653 if (DEBUG_INSN_P (insn)
4654 && single_succ_p (new_bb)
4655 && (succ = single_succ (new_bb))
4656 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4657 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4659 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4660 insn = NEXT_INSN (insn);
4662 if (insn == last)
4664 sel_global_bb_info_def gbi;
4665 sel_region_bb_info_def rbi;
4666 int i;
4668 if (sched_verbose >= 2)
4669 sel_print ("Swapping block ids %i and %i\n",
4670 new_bb->index, succ->index);
4672 i = new_bb->index;
4673 new_bb->index = succ->index;
4674 succ->index = i;
4676 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4677 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4679 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4680 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4681 sizeof (gbi));
4682 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4684 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4685 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4686 sizeof (rbi));
4687 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4689 i = BLOCK_TO_BB (new_bb->index);
4690 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4691 BLOCK_TO_BB (succ->index) = i;
4693 i = CONTAINING_RGN (new_bb->index);
4694 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4695 CONTAINING_RGN (succ->index) = i;
4697 for (i = 0; i < current_nr_blocks; i++)
4698 if (BB_TO_BLOCK (i) == succ->index)
4699 BB_TO_BLOCK (i) = new_bb->index;
4700 else if (BB_TO_BLOCK (i) == new_bb->index)
4701 BB_TO_BLOCK (i) = succ->index;
4703 FOR_BB_INSNS (new_bb, insn)
4704 if (INSN_P (insn))
4705 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4707 FOR_BB_INSNS (succ, insn)
4708 if (INSN_P (insn))
4709 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4711 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4712 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4714 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4715 && LABEL_P (BB_HEAD (succ)));
4717 if (sched_verbose >= 4)
4718 sel_print ("Swapping code labels %i and %i\n",
4719 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4720 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4722 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4723 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4724 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4725 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4730 return bb;
4733 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4734 into E2->dest, except from E1->src. If the returned insn immediately
4735 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4736 static insn_t
4737 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4739 insn_t place_to_insert;
4740 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4741 create new basic block, but insert bookkeeping there. */
4742 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4744 if (book_block)
4746 place_to_insert = BB_END (book_block);
4748 /* Don't use a block containing only debug insns for
4749 bookkeeping, this causes scheduling differences between debug
4750 and non-debug compilations, for the block would have been
4751 removed already. */
4752 if (DEBUG_INSN_P (place_to_insert))
4754 rtx insn = sel_bb_head (book_block);
4756 while (insn != place_to_insert &&
4757 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4758 insn = NEXT_INSN (insn);
4760 if (insn == place_to_insert)
4761 book_block = NULL;
4765 if (!book_block)
4767 book_block = create_block_for_bookkeeping (e1, e2);
4768 place_to_insert = BB_END (book_block);
4769 if (sched_verbose >= 9)
4770 sel_print ("New block is %i, split from bookkeeping block %i\n",
4771 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4773 else
4775 if (sched_verbose >= 9)
4776 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4779 *fence_to_rewind = NULL;
4780 /* If basic block ends with a jump, insert bookkeeping code right before it.
4781 Notice if we are crossing a fence when taking PREV_INSN. */
4782 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4784 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4785 place_to_insert = PREV_INSN (place_to_insert);
4788 return place_to_insert;
4791 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4792 for JOIN_POINT. */
4793 static int
4794 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4796 int seqno;
4797 rtx next;
4799 /* Check if we are about to insert bookkeeping copy before a jump, and use
4800 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4801 next = NEXT_INSN (place_to_insert);
4802 if (INSN_P (next)
4803 && JUMP_P (next)
4804 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4806 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4807 seqno = INSN_SEQNO (next);
4809 else if (INSN_SEQNO (join_point) > 0)
4810 seqno = INSN_SEQNO (join_point);
4811 else
4813 seqno = get_seqno_by_preds (place_to_insert);
4815 /* Sometimes the fences can move in such a way that there will be
4816 no instructions with positive seqno around this bookkeeping.
4817 This means that there will be no way to get to it by a regular
4818 fence movement. Never mind because we pick up such pieces for
4819 rescheduling anyways, so any positive value will do for now. */
4820 if (seqno < 0)
4822 gcc_assert (pipelining_p);
4823 seqno = 1;
4827 gcc_assert (seqno > 0);
4828 return seqno;
4831 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4832 NEW_SEQNO to it. Return created insn. */
4833 static insn_t
4834 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4836 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4838 vinsn_t new_vinsn
4839 = create_vinsn_from_insn_rtx (new_insn_rtx,
4840 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4842 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4843 place_to_insert);
4845 INSN_SCHED_TIMES (new_insn) = 0;
4846 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4848 return new_insn;
4851 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4852 E2->dest, except from E1->src (there may be a sequence of empty blocks
4853 between E1->src and E2->dest). Return block containing the copy.
4854 All scheduler data is initialized for the newly created insn. */
4855 static basic_block
4856 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4858 insn_t join_point, place_to_insert, new_insn;
4859 int new_seqno;
4860 bool need_to_exchange_data_sets;
4861 fence_t fence_to_rewind;
4863 if (sched_verbose >= 4)
4864 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4865 e2->dest->index);
4867 join_point = sel_bb_head (e2->dest);
4868 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4869 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4870 need_to_exchange_data_sets
4871 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4873 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4875 if (fence_to_rewind)
4876 FENCE_INSN (fence_to_rewind) = new_insn;
4878 /* When inserting bookkeeping insn in new block, av sets should be
4879 following: old basic block (that now holds bookkeeping) data sets are
4880 the same as was before generation of bookkeeping, and new basic block
4881 (that now hold all other insns of old basic block) data sets are
4882 invalid. So exchange data sets for these basic blocks as sel_split_block
4883 mistakenly exchanges them in this case. Cannot do it earlier because
4884 when single instruction is added to new basic block it should hold NULL
4885 lv_set. */
4886 if (need_to_exchange_data_sets)
4887 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4888 BLOCK_FOR_INSN (join_point));
4890 stat_bookkeeping_copies++;
4891 return BLOCK_FOR_INSN (new_insn);
4894 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4895 on FENCE, but we are unable to copy them. */
4896 static void
4897 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4899 expr_t expr;
4900 av_set_iterator i;
4902 /* An expression does not need bookkeeping if it is available on all paths
4903 from current block to original block and current block dominates
4904 original block. We check availability on all paths by examining
4905 EXPR_SPEC; this is not equivalent, because it may be positive even
4906 if expr is available on all paths (but if expr is not available on
4907 any path, EXPR_SPEC will be positive). */
4909 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4911 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4912 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4913 && (EXPR_SPEC (expr)
4914 || !EXPR_ORIG_BB_INDEX (expr)
4915 || !dominated_by_p (CDI_DOMINATORS,
4916 BASIC_BLOCK_FOR_FN (cfun,
4917 EXPR_ORIG_BB_INDEX (expr)),
4918 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4920 if (sched_verbose >= 4)
4921 sel_print ("Expr %d removed because it would need bookkeeping, which "
4922 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4923 av_set_iter_remove (&i);
4928 /* Moving conditional jump through some instructions.
4930 Consider example:
4932 ... <- current scheduling point
4933 NOTE BASIC BLOCK: <- bb header
4934 (p8) add r14=r14+0x9;;
4935 (p8) mov [r14]=r23
4936 (!p8) jump L1;;
4937 NOTE BASIC BLOCK:
4940 We can schedule jump one cycle earlier, than mov, because they cannot be
4941 executed together as their predicates are mutually exclusive.
4943 This is done in this way: first, new fallthrough basic block is created
4944 after jump (it is always can be done, because there already should be a
4945 fallthrough block, where control flow goes in case of predicate being true -
4946 in our example; otherwise there should be a dependence between those
4947 instructions and jump and we cannot schedule jump right now);
4948 next, all instructions between jump and current scheduling point are moved
4949 to this new block. And the result is this:
4951 NOTE BASIC BLOCK:
4952 (!p8) jump L1 <- current scheduling point
4953 NOTE BASIC BLOCK: <- bb header
4954 (p8) add r14=r14+0x9;;
4955 (p8) mov [r14]=r23
4956 NOTE BASIC BLOCK:
4959 static void
4960 move_cond_jump (rtx insn, bnd_t bnd)
4962 edge ft_edge;
4963 basic_block block_from, block_next, block_new, block_bnd, bb;
4964 rtx next, prev, link, head;
4966 block_from = BLOCK_FOR_INSN (insn);
4967 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4968 prev = BND_TO (bnd);
4970 #ifdef ENABLE_CHECKING
4971 /* Moving of jump should not cross any other jumps or beginnings of new
4972 basic blocks. The only exception is when we move a jump through
4973 mutually exclusive insns along fallthru edges. */
4974 if (block_from != block_bnd)
4976 bb = block_from;
4977 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4978 link = PREV_INSN (link))
4980 if (INSN_P (link))
4981 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4982 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4984 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4985 bb = BLOCK_FOR_INSN (link);
4989 #endif
4991 /* Jump is moved to the boundary. */
4992 next = PREV_INSN (insn);
4993 BND_TO (bnd) = insn;
4995 ft_edge = find_fallthru_edge_from (block_from);
4996 block_next = ft_edge->dest;
4997 /* There must be a fallthrough block (or where should go
4998 control flow in case of false jump predicate otherwise?). */
4999 gcc_assert (block_next);
5001 /* Create new empty basic block after source block. */
5002 block_new = sel_split_edge (ft_edge);
5003 gcc_assert (block_new->next_bb == block_next
5004 && block_from->next_bb == block_new);
5006 /* Move all instructions except INSN to BLOCK_NEW. */
5007 bb = block_bnd;
5008 head = BB_HEAD (block_new);
5009 while (bb != block_from->next_bb)
5011 rtx from, to;
5012 from = bb == block_bnd ? prev : sel_bb_head (bb);
5013 to = bb == block_from ? next : sel_bb_end (bb);
5015 /* The jump being moved can be the first insn in the block.
5016 In this case we don't have to move anything in this block. */
5017 if (NEXT_INSN (to) != from)
5019 reorder_insns (from, to, head);
5021 for (link = to; link != head; link = PREV_INSN (link))
5022 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
5023 head = to;
5026 /* Cleanup possibly empty blocks left. */
5027 block_next = bb->next_bb;
5028 if (bb != block_from)
5029 tidy_control_flow (bb, false);
5030 bb = block_next;
5033 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
5034 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
5036 gcc_assert (!sel_bb_empty_p (block_from)
5037 && !sel_bb_empty_p (block_new));
5039 /* Update data sets for BLOCK_NEW to represent that INSN and
5040 instructions from the other branch of INSN is no longer
5041 available at BLOCK_NEW. */
5042 BB_AV_LEVEL (block_new) = global_level;
5043 gcc_assert (BB_LV_SET (block_new) == NULL);
5044 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
5045 update_data_sets (sel_bb_head (block_new));
5047 /* INSN is a new basic block header - so prepare its data
5048 structures and update availability and liveness sets. */
5049 update_data_sets (insn);
5051 if (sched_verbose >= 4)
5052 sel_print ("Moving jump %d\n", INSN_UID (insn));
5055 /* Remove nops generated during move_op for preventing removal of empty
5056 basic blocks. */
5057 static void
5058 remove_temp_moveop_nops (bool full_tidying)
5060 int i;
5061 insn_t insn;
5063 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
5065 gcc_assert (INSN_NOP_P (insn));
5066 return_nop_to_pool (insn, full_tidying);
5069 /* Empty the vector. */
5070 if (vec_temp_moveop_nops.length () > 0)
5071 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5074 /* Records the maximal UID before moving up an instruction. Used for
5075 distinguishing between bookkeeping copies and original insns. */
5076 static int max_uid_before_move_op = 0;
5078 /* Remove from AV_VLIW_P all instructions but next when debug counter
5079 tells us so. Next instruction is fetched from BNDS. */
5080 static void
5081 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5083 if (! dbg_cnt (sel_sched_insn_cnt))
5084 /* Leave only the next insn in av_vliw. */
5086 av_set_iterator av_it;
5087 expr_t expr;
5088 bnd_t bnd = BLIST_BND (bnds);
5089 insn_t next = BND_TO (bnd);
5091 gcc_assert (BLIST_NEXT (bnds) == NULL);
5093 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5094 if (EXPR_INSN_RTX (expr) != next)
5095 av_set_iter_remove (&av_it);
5099 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5100 the computed set to *AV_VLIW_P. */
5101 static void
5102 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5104 if (sched_verbose >= 2)
5106 sel_print ("Boundaries: ");
5107 dump_blist (bnds);
5108 sel_print ("\n");
5111 for (; bnds; bnds = BLIST_NEXT (bnds))
5113 bnd_t bnd = BLIST_BND (bnds);
5114 av_set_t av1_copy;
5115 insn_t bnd_to = BND_TO (bnd);
5117 /* Rewind BND->TO to the basic block header in case some bookkeeping
5118 instructions were inserted before BND->TO and it needs to be
5119 adjusted. */
5120 if (sel_bb_head_p (bnd_to))
5121 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5122 else
5123 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5125 bnd_to = PREV_INSN (bnd_to);
5126 if (sel_bb_head_p (bnd_to))
5127 break;
5130 if (BND_TO (bnd) != bnd_to)
5132 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5133 FENCE_INSN (fence) = bnd_to;
5134 BND_TO (bnd) = bnd_to;
5137 av_set_clear (&BND_AV (bnd));
5138 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5140 av_set_clear (&BND_AV1 (bnd));
5141 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5143 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5145 av1_copy = av_set_copy (BND_AV1 (bnd));
5146 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5149 if (sched_verbose >= 2)
5151 sel_print ("Available exprs (vliw form): ");
5152 dump_av_set (*av_vliw_p);
5153 sel_print ("\n");
5157 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5158 expression. When FOR_MOVEOP is true, also replace the register of
5159 expressions found with the register from EXPR_VLIW. */
5160 static av_set_t
5161 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5163 av_set_t expr_seq = NULL;
5164 expr_t expr;
5165 av_set_iterator i;
5167 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5169 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5171 if (for_moveop)
5173 /* The sequential expression has the right form to pass
5174 to move_op except when renaming happened. Put the
5175 correct register in EXPR then. */
5176 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5178 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5180 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5181 stat_renamed_scheduled++;
5183 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5184 This is needed when renaming came up with original
5185 register. */
5186 else if (EXPR_TARGET_AVAILABLE (expr)
5187 != EXPR_TARGET_AVAILABLE (expr_vliw))
5189 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5190 EXPR_TARGET_AVAILABLE (expr) = 1;
5193 if (EXPR_WAS_SUBSTITUTED (expr))
5194 stat_substitutions_total++;
5197 av_set_add (&expr_seq, expr);
5199 /* With substitution inside insn group, it is possible
5200 that more than one expression in expr_seq will correspond
5201 to expr_vliw. In this case, choose one as the attempt to
5202 move both leads to miscompiles. */
5203 break;
5207 if (for_moveop && sched_verbose >= 2)
5209 sel_print ("Best expression(s) (sequential form): ");
5210 dump_av_set (expr_seq);
5211 sel_print ("\n");
5214 return expr_seq;
5218 /* Move nop to previous block. */
5219 static void ATTRIBUTE_UNUSED
5220 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5222 insn_t prev_insn, next_insn, note;
5224 gcc_assert (sel_bb_head_p (nop)
5225 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5226 note = bb_note (BLOCK_FOR_INSN (nop));
5227 prev_insn = sel_bb_end (prev_bb);
5228 next_insn = NEXT_INSN (nop);
5229 gcc_assert (prev_insn != NULL_RTX
5230 && PREV_INSN (note) == prev_insn);
5232 NEXT_INSN (prev_insn) = nop;
5233 PREV_INSN (nop) = prev_insn;
5235 PREV_INSN (note) = nop;
5236 NEXT_INSN (note) = next_insn;
5238 NEXT_INSN (nop) = note;
5239 PREV_INSN (next_insn) = note;
5241 BB_END (prev_bb) = nop;
5242 BLOCK_FOR_INSN (nop) = prev_bb;
5245 /* Prepare a place to insert the chosen expression on BND. */
5246 static insn_t
5247 prepare_place_to_insert (bnd_t bnd)
5249 insn_t place_to_insert;
5251 /* Init place_to_insert before calling move_op, as the later
5252 can possibly remove BND_TO (bnd). */
5253 if (/* If this is not the first insn scheduled. */
5254 BND_PTR (bnd))
5256 /* Add it after last scheduled. */
5257 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5258 if (DEBUG_INSN_P (place_to_insert))
5260 ilist_t l = BND_PTR (bnd);
5261 while ((l = ILIST_NEXT (l)) &&
5262 DEBUG_INSN_P (ILIST_INSN (l)))
5264 if (!l)
5265 place_to_insert = NULL;
5268 else
5269 place_to_insert = NULL;
5271 if (!place_to_insert)
5273 /* Add it before BND_TO. The difference is in the
5274 basic block, where INSN will be added. */
5275 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5276 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5277 == BLOCK_FOR_INSN (BND_TO (bnd)));
5280 return place_to_insert;
5283 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5284 Return the expression to emit in C_EXPR. */
5285 static bool
5286 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5287 av_set_t expr_seq, expr_t c_expr)
5289 bool b, should_move;
5290 unsigned book_uid;
5291 bitmap_iterator bi;
5292 int n_bookkeeping_copies_before_moveop;
5294 /* Make a move. This call will remove the original operation,
5295 insert all necessary bookkeeping instructions and update the
5296 data sets. After that all we have to do is add the operation
5297 at before BND_TO (BND). */
5298 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5299 max_uid_before_move_op = get_max_uid ();
5300 bitmap_clear (current_copies);
5301 bitmap_clear (current_originators);
5303 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5304 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5306 /* We should be able to find the expression we've chosen for
5307 scheduling. */
5308 gcc_assert (b);
5310 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5311 stat_insns_needed_bookkeeping++;
5313 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5315 unsigned uid;
5316 bitmap_iterator bi;
5318 /* We allocate these bitmaps lazily. */
5319 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5320 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5322 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5323 current_originators);
5325 /* Transitively add all originators' originators. */
5326 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5327 if (INSN_ORIGINATORS_BY_UID (uid))
5328 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5329 INSN_ORIGINATORS_BY_UID (uid));
5332 return should_move;
5336 /* Debug a DFA state as an array of bytes. */
5337 static void
5338 debug_state (state_t state)
5340 unsigned char *p;
5341 unsigned int i, size = dfa_state_size;
5343 sel_print ("state (%u):", size);
5344 for (i = 0, p = (unsigned char *) state; i < size; i++)
5345 sel_print (" %d", p[i]);
5346 sel_print ("\n");
5349 /* Advance state on FENCE with INSN. Return true if INSN is
5350 an ASM, and we should advance state once more. */
5351 static bool
5352 advance_state_on_fence (fence_t fence, insn_t insn)
5354 bool asm_p;
5356 if (recog_memoized (insn) >= 0)
5358 int res;
5359 state_t temp_state = alloca (dfa_state_size);
5361 gcc_assert (!INSN_ASM_P (insn));
5362 asm_p = false;
5364 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5365 res = state_transition (FENCE_STATE (fence), insn);
5366 gcc_assert (res < 0);
5368 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5370 FENCE_ISSUED_INSNS (fence)++;
5372 /* We should never issue more than issue_rate insns. */
5373 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5374 gcc_unreachable ();
5377 else
5379 /* This could be an ASM insn which we'd like to schedule
5380 on the next cycle. */
5381 asm_p = INSN_ASM_P (insn);
5382 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5383 advance_one_cycle (fence);
5386 if (sched_verbose >= 2)
5387 debug_state (FENCE_STATE (fence));
5388 if (!DEBUG_INSN_P (insn))
5389 FENCE_STARTS_CYCLE_P (fence) = 0;
5390 FENCE_ISSUE_MORE (fence) = can_issue_more;
5391 return asm_p;
5394 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5395 is nonzero if we need to stall after issuing INSN. */
5396 static void
5397 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5399 bool asm_p;
5401 /* First, reflect that something is scheduled on this fence. */
5402 asm_p = advance_state_on_fence (fence, insn);
5403 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5404 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5405 if (SCHED_GROUP_P (insn))
5407 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5408 SCHED_GROUP_P (insn) = 0;
5410 else
5411 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5412 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5413 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5415 /* Set instruction scheduling info. This will be used in bundling,
5416 pipelining, tick computations etc. */
5417 ++INSN_SCHED_TIMES (insn);
5418 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5419 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5420 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5421 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5423 /* This does not account for adjust_cost hooks, just add the biggest
5424 constant the hook may add to the latency. TODO: make this
5425 a target dependent constant. */
5426 INSN_READY_CYCLE (insn)
5427 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5429 : maximal_insn_latency (insn) + 1);
5431 /* Change these fields last, as they're used above. */
5432 FENCE_AFTER_STALL_P (fence) = 0;
5433 if (asm_p || need_stall)
5434 advance_one_cycle (fence);
5436 /* Indicate that we've scheduled something on this fence. */
5437 FENCE_SCHEDULED_P (fence) = true;
5438 scheduled_something_on_previous_fence = true;
5440 /* Print debug information when insn's fields are updated. */
5441 if (sched_verbose >= 2)
5443 sel_print ("Scheduling insn: ");
5444 dump_insn_1 (insn, 1);
5445 sel_print ("\n");
5449 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5450 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5451 return it. */
5452 static blist_t *
5453 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5454 blist_t *bnds_tailp)
5456 succ_iterator si;
5457 insn_t succ;
5459 advance_deps_context (BND_DC (bnd), insn);
5460 FOR_EACH_SUCC_1 (succ, si, insn,
5461 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5463 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5465 ilist_add (&ptr, insn);
5467 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5468 && is_ineligible_successor (succ, ptr))
5470 ilist_clear (&ptr);
5471 continue;
5474 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5476 if (sched_verbose >= 9)
5477 sel_print ("Updating fence insn from %i to %i\n",
5478 INSN_UID (insn), INSN_UID (succ));
5479 FENCE_INSN (fence) = succ;
5481 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5482 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5485 blist_remove (bndsp);
5486 return bnds_tailp;
5489 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5490 static insn_t
5491 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5493 av_set_t expr_seq;
5494 expr_t c_expr = XALLOCA (expr_def);
5495 insn_t place_to_insert;
5496 insn_t insn;
5497 bool should_move;
5499 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5501 /* In case of scheduling a jump skipping some other instructions,
5502 prepare CFG. After this, jump is at the boundary and can be
5503 scheduled as usual insn by MOVE_OP. */
5504 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5506 insn = EXPR_INSN_RTX (expr_vliw);
5508 /* Speculative jumps are not handled. */
5509 if (insn != BND_TO (bnd)
5510 && !sel_insn_is_speculation_check (insn))
5511 move_cond_jump (insn, bnd);
5514 /* Find a place for C_EXPR to schedule. */
5515 place_to_insert = prepare_place_to_insert (bnd);
5516 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5517 clear_expr (c_expr);
5519 /* Add the instruction. The corner case to care about is when
5520 the expr_seq set has more than one expr, and we chose the one that
5521 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5522 we can't use it. Generate the new vinsn. */
5523 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5525 vinsn_t vinsn_new;
5527 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5528 change_vinsn_in_expr (expr_vliw, vinsn_new);
5529 should_move = false;
5531 if (should_move)
5532 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5533 else
5534 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5535 place_to_insert);
5537 /* Return the nops generated for preserving of data sets back
5538 into pool. */
5539 if (INSN_NOP_P (place_to_insert))
5540 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5541 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5543 av_set_clear (&expr_seq);
5545 /* Save the expression scheduled so to reset target availability if we'll
5546 meet it later on the same fence. */
5547 if (EXPR_WAS_RENAMED (expr_vliw))
5548 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5550 /* Check that the recent movement didn't destroyed loop
5551 structure. */
5552 gcc_assert (!pipelining_p
5553 || current_loop_nest == NULL
5554 || loop_latch_edge (current_loop_nest));
5555 return insn;
5558 /* Stall for N cycles on FENCE. */
5559 static void
5560 stall_for_cycles (fence_t fence, int n)
5562 int could_more;
5564 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5565 while (n--)
5566 advance_one_cycle (fence);
5567 if (could_more)
5568 FENCE_AFTER_STALL_P (fence) = 1;
5571 /* Gather a parallel group of insns at FENCE and assign their seqno
5572 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5573 list for later recalculation of seqnos. */
5574 static void
5575 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5577 blist_t bnds = NULL, *bnds_tailp;
5578 av_set_t av_vliw = NULL;
5579 insn_t insn = FENCE_INSN (fence);
5581 if (sched_verbose >= 2)
5582 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5583 INSN_UID (insn), FENCE_CYCLE (fence));
5585 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5586 bnds_tailp = &BLIST_NEXT (bnds);
5587 set_target_context (FENCE_TC (fence));
5588 can_issue_more = FENCE_ISSUE_MORE (fence);
5589 target_bb = INSN_BB (insn);
5591 /* Do while we can add any operation to the current group. */
5594 blist_t *bnds_tailp1, *bndsp;
5595 expr_t expr_vliw;
5596 int need_stall = false;
5597 int was_stall = 0, scheduled_insns = 0;
5598 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5599 int max_stall = pipelining_p ? 1 : 3;
5600 bool last_insn_was_debug = false;
5601 bool was_debug_bb_end_p = false;
5603 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5604 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5605 remove_insns_for_debug (bnds, &av_vliw);
5607 /* Return early if we have nothing to schedule. */
5608 if (av_vliw == NULL)
5609 break;
5611 /* Choose the best expression and, if needed, destination register
5612 for it. */
5615 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5616 if (! expr_vliw && need_stall)
5618 /* All expressions required a stall. Do not recompute av sets
5619 as we'll get the same answer (modulo the insns between
5620 the fence and its boundary, which will not be available for
5621 pipelining).
5622 If we are going to stall for too long, break to recompute av
5623 sets and bring more insns for pipelining. */
5624 was_stall++;
5625 if (need_stall <= 3)
5626 stall_for_cycles (fence, need_stall);
5627 else
5629 stall_for_cycles (fence, 1);
5630 break;
5634 while (! expr_vliw && need_stall);
5636 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5637 if (!expr_vliw)
5639 av_set_clear (&av_vliw);
5640 break;
5643 bndsp = &bnds;
5644 bnds_tailp1 = bnds_tailp;
5647 /* This code will be executed only once until we'd have several
5648 boundaries per fence. */
5650 bnd_t bnd = BLIST_BND (*bndsp);
5652 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5654 bndsp = &BLIST_NEXT (*bndsp);
5655 continue;
5658 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5659 last_insn_was_debug = DEBUG_INSN_P (insn);
5660 if (last_insn_was_debug)
5661 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5662 update_fence_and_insn (fence, insn, need_stall);
5663 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5665 /* Add insn to the list of scheduled on this cycle instructions. */
5666 ilist_add (*scheduled_insns_tailpp, insn);
5667 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5669 while (*bndsp != *bnds_tailp1);
5671 av_set_clear (&av_vliw);
5672 if (!last_insn_was_debug)
5673 scheduled_insns++;
5675 /* We currently support information about candidate blocks only for
5676 one 'target_bb' block. Hence we can't schedule after jump insn,
5677 as this will bring two boundaries and, hence, necessity to handle
5678 information for two or more blocks concurrently. */
5679 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5680 || (was_stall
5681 && (was_stall >= max_stall
5682 || scheduled_insns >= max_insns)))
5683 break;
5685 while (bnds);
5687 gcc_assert (!FENCE_BNDS (fence));
5689 /* Update boundaries of the FENCE. */
5690 while (bnds)
5692 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5694 if (ptr)
5696 insn = ILIST_INSN (ptr);
5698 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5699 ilist_add (&FENCE_BNDS (fence), insn);
5702 blist_remove (&bnds);
5705 /* Update target context on the fence. */
5706 reset_target_context (FENCE_TC (fence), false);
5709 /* All exprs in ORIG_OPS must have the same destination register or memory.
5710 Return that destination. */
5711 static rtx
5712 get_dest_from_orig_ops (av_set_t orig_ops)
5714 rtx dest = NULL_RTX;
5715 av_set_iterator av_it;
5716 expr_t expr;
5717 bool first_p = true;
5719 FOR_EACH_EXPR (expr, av_it, orig_ops)
5721 rtx x = EXPR_LHS (expr);
5723 if (first_p)
5725 first_p = false;
5726 dest = x;
5728 else
5729 gcc_assert (dest == x
5730 || (dest != NULL_RTX && x != NULL_RTX
5731 && rtx_equal_p (dest, x)));
5734 return dest;
5737 /* Update data sets for the bookkeeping block and record those expressions
5738 which become no longer available after inserting this bookkeeping. */
5739 static void
5740 update_and_record_unavailable_insns (basic_block book_block)
5742 av_set_iterator i;
5743 av_set_t old_av_set = NULL;
5744 expr_t cur_expr;
5745 rtx bb_end = sel_bb_end (book_block);
5747 /* First, get correct liveness in the bookkeeping block. The problem is
5748 the range between the bookeeping insn and the end of block. */
5749 update_liveness_on_insn (bb_end);
5750 if (control_flow_insn_p (bb_end))
5751 update_liveness_on_insn (PREV_INSN (bb_end));
5753 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5754 fence above, where we may choose to schedule an insn which is
5755 actually blocked from moving up with the bookkeeping we create here. */
5756 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5758 old_av_set = av_set_copy (BB_AV_SET (book_block));
5759 update_data_sets (sel_bb_head (book_block));
5761 /* Traverse all the expressions in the old av_set and check whether
5762 CUR_EXPR is in new AV_SET. */
5763 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5765 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5766 EXPR_VINSN (cur_expr));
5768 if (! new_expr
5769 /* In this case, we can just turn off the E_T_A bit, but we can't
5770 represent this information with the current vector. */
5771 || EXPR_TARGET_AVAILABLE (new_expr)
5772 != EXPR_TARGET_AVAILABLE (cur_expr))
5773 /* Unfortunately, the below code could be also fired up on
5774 separable insns, e.g. when moving insns through the new
5775 speculation check as in PR 53701. */
5776 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5779 av_set_clear (&old_av_set);
5783 /* The main effect of this function is that sparams->c_expr is merged
5784 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5785 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5786 lparams->c_expr_merged is copied back to sparams->c_expr after all
5787 successors has been traversed. lparams->c_expr_local is an expr allocated
5788 on stack in the caller function, and is used if there is more than one
5789 successor.
5791 SUCC is one of the SUCCS_NORMAL successors of INSN,
5792 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5793 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5794 static void
5795 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5796 insn_t succ ATTRIBUTE_UNUSED,
5797 int moveop_drv_call_res,
5798 cmpd_local_params_p lparams, void *static_params)
5800 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5802 /* Nothing to do, if original expr wasn't found below. */
5803 if (moveop_drv_call_res != 1)
5804 return;
5806 /* If this is a first successor. */
5807 if (!lparams->c_expr_merged)
5809 lparams->c_expr_merged = sparams->c_expr;
5810 sparams->c_expr = lparams->c_expr_local;
5812 else
5814 /* We must merge all found expressions to get reasonable
5815 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5816 do so then we can first find the expr with epsilon
5817 speculation success probability and only then with the
5818 good probability. As a result the insn will get epsilon
5819 probability and will never be scheduled because of
5820 weakness_cutoff in find_best_expr.
5822 We call merge_expr_data here instead of merge_expr
5823 because due to speculation C_EXPR and X may have the
5824 same insns with different speculation types. And as of
5825 now such insns are considered non-equal.
5827 However, EXPR_SCHED_TIMES is different -- we must get
5828 SCHED_TIMES from a real insn, not a bookkeeping copy.
5829 We force this here. Instead, we may consider merging
5830 SCHED_TIMES to the maximum instead of minimum in the
5831 below function. */
5832 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5834 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5835 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5836 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5838 clear_expr (sparams->c_expr);
5842 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5844 SUCC is one of the SUCCS_NORMAL successors of INSN,
5845 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5846 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5847 STATIC_PARAMS contain USED_REGS set. */
5848 static void
5849 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5850 int moveop_drv_call_res,
5851 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5852 void *static_params)
5854 regset succ_live;
5855 fur_static_params_p sparams = (fur_static_params_p) static_params;
5857 /* Here we compute live regsets only for branches that do not lie
5858 on the code motion paths. These branches correspond to value
5859 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5860 for such branches code_motion_path_driver is not called. */
5861 if (moveop_drv_call_res != 0)
5862 return;
5864 /* Mark all registers that do not meet the following condition:
5865 (3) not live on the other path of any conditional branch
5866 that is passed by the operation, in case original
5867 operations are not present on both paths of the
5868 conditional branch. */
5869 succ_live = compute_live (succ);
5870 IOR_REG_SET (sparams->used_regs, succ_live);
5873 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5874 into SP->CEXPR. */
5875 static void
5876 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5878 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5880 sp->c_expr = lp->c_expr_merged;
5883 /* Track bookkeeping copies created, insns scheduled, and blocks for
5884 rescheduling when INSN is found by move_op. */
5885 static void
5886 track_scheduled_insns_and_blocks (rtx insn)
5888 /* Even if this insn can be a copy that will be removed during current move_op,
5889 we still need to count it as an originator. */
5890 bitmap_set_bit (current_originators, INSN_UID (insn));
5892 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5894 /* Note that original block needs to be rescheduled, as we pulled an
5895 instruction out of it. */
5896 if (INSN_SCHED_TIMES (insn) > 0)
5897 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5898 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5899 num_insns_scheduled++;
5902 /* For instructions we must immediately remove insn from the
5903 stream, so subsequent update_data_sets () won't include this
5904 insn into av_set.
5905 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5906 if (INSN_UID (insn) > max_uid_before_move_op)
5907 stat_bookkeeping_copies--;
5910 /* Emit a register-register copy for INSN if needed. Return true if
5911 emitted one. PARAMS is the move_op static parameters. */
5912 static bool
5913 maybe_emit_renaming_copy (rtx insn,
5914 moveop_static_params_p params)
5916 bool insn_emitted = false;
5917 rtx cur_reg;
5919 /* Bail out early when expression can not be renamed at all. */
5920 if (!EXPR_SEPARABLE_P (params->c_expr))
5921 return false;
5923 cur_reg = expr_dest_reg (params->c_expr);
5924 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5926 /* If original operation has expr and the register chosen for
5927 that expr is not original operation's dest reg, substitute
5928 operation's right hand side with the register chosen. */
5929 if (REGNO (params->dest) != REGNO (cur_reg))
5931 insn_t reg_move_insn, reg_move_insn_rtx;
5933 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5934 params->dest);
5935 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5936 INSN_EXPR (insn),
5937 INSN_SEQNO (insn),
5938 insn);
5939 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5940 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5942 insn_emitted = true;
5943 params->was_renamed = true;
5946 return insn_emitted;
5949 /* Emit a speculative check for INSN speculated as EXPR if needed.
5950 Return true if we've emitted one. PARAMS is the move_op static
5951 parameters. */
5952 static bool
5953 maybe_emit_speculative_check (rtx insn, expr_t expr,
5954 moveop_static_params_p params)
5956 bool insn_emitted = false;
5957 insn_t x;
5958 ds_t check_ds;
5960 check_ds = get_spec_check_type_for_insn (insn, expr);
5961 if (check_ds != 0)
5963 /* A speculation check should be inserted. */
5964 x = create_speculation_check (params->c_expr, check_ds, insn);
5965 insn_emitted = true;
5967 else
5969 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5970 x = insn;
5973 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5974 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5975 return insn_emitted;
5978 /* Handle transformations that leave an insn in place of original
5979 insn such as renaming/speculation. Return true if one of such
5980 transformations actually happened, and we have emitted this insn. */
5981 static bool
5982 handle_emitting_transformations (rtx insn, expr_t expr,
5983 moveop_static_params_p params)
5985 bool insn_emitted = false;
5987 insn_emitted = maybe_emit_renaming_copy (insn, params);
5988 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5990 return insn_emitted;
5993 /* If INSN is the only insn in the basic block (not counting JUMP,
5994 which may be a jump to next insn, and DEBUG_INSNs), we want to
5995 leave a NOP there till the return to fill_insns. */
5997 static bool
5998 need_nop_to_preserve_insn_bb (rtx insn)
6000 insn_t bb_head, bb_end, bb_next, in_next;
6001 basic_block bb = BLOCK_FOR_INSN (insn);
6003 bb_head = sel_bb_head (bb);
6004 bb_end = sel_bb_end (bb);
6006 if (bb_head == bb_end)
6007 return true;
6009 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
6010 bb_head = NEXT_INSN (bb_head);
6012 if (bb_head == bb_end)
6013 return true;
6015 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
6016 bb_end = PREV_INSN (bb_end);
6018 if (bb_head == bb_end)
6019 return true;
6021 bb_next = NEXT_INSN (bb_head);
6022 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
6023 bb_next = NEXT_INSN (bb_next);
6025 if (bb_next == bb_end && JUMP_P (bb_end))
6026 return true;
6028 in_next = NEXT_INSN (insn);
6029 while (DEBUG_INSN_P (in_next))
6030 in_next = NEXT_INSN (in_next);
6032 if (IN_CURRENT_FENCE_P (in_next))
6033 return true;
6035 return false;
6038 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
6039 is not removed but reused when INSN is re-emitted. */
6040 static void
6041 remove_insn_from_stream (rtx insn, bool only_disconnect)
6043 /* If there's only one insn in the BB, make sure that a nop is
6044 inserted into it, so the basic block won't disappear when we'll
6045 delete INSN below with sel_remove_insn. It should also survive
6046 till the return to fill_insns. */
6047 if (need_nop_to_preserve_insn_bb (insn))
6049 insn_t nop = get_nop_from_pool (insn);
6050 gcc_assert (INSN_NOP_P (nop));
6051 vec_temp_moveop_nops.safe_push (nop);
6054 sel_remove_insn (insn, only_disconnect, false);
6057 /* This function is called when original expr is found.
6058 INSN - current insn traversed, EXPR - the corresponding expr found.
6059 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6060 is static parameters of move_op. */
6061 static void
6062 move_op_orig_expr_found (insn_t insn, expr_t expr,
6063 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6064 void *static_params)
6066 bool only_disconnect;
6067 moveop_static_params_p params = (moveop_static_params_p) static_params;
6069 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6070 track_scheduled_insns_and_blocks (insn);
6071 handle_emitting_transformations (insn, expr, params);
6072 only_disconnect = params->uid == INSN_UID (insn);
6074 /* Mark that we've disconnected an insn. */
6075 if (only_disconnect)
6076 params->uid = -1;
6077 remove_insn_from_stream (insn, only_disconnect);
6080 /* The function is called when original expr is found.
6081 INSN - current insn traversed, EXPR - the corresponding expr found,
6082 crosses_call and original_insns in STATIC_PARAMS are updated. */
6083 static void
6084 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6085 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6086 void *static_params)
6088 fur_static_params_p params = (fur_static_params_p) static_params;
6089 regset tmp;
6091 if (CALL_P (insn))
6092 params->crosses_call = true;
6094 def_list_add (params->original_insns, insn, params->crosses_call);
6096 /* Mark the registers that do not meet the following condition:
6097 (2) not among the live registers of the point
6098 immediately following the first original operation on
6099 a given downward path, except for the original target
6100 register of the operation. */
6101 tmp = get_clear_regset_from_pool ();
6102 compute_live_below_insn (insn, tmp);
6103 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6104 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6105 IOR_REG_SET (params->used_regs, tmp);
6106 return_regset_to_pool (tmp);
6108 /* (*1) We need to add to USED_REGS registers that are read by
6109 INSN's lhs. This may lead to choosing wrong src register.
6110 E.g. (scheduling const expr enabled):
6112 429: ax=0x0 <- Can't use AX for this expr (0x0)
6113 433: dx=[bp-0x18]
6114 427: [ax+dx+0x1]=ax
6115 REG_DEAD: ax
6116 168: di=dx
6117 REG_DEAD: dx
6119 /* FIXME: see comment above and enable MEM_P
6120 in vinsn_separable_p. */
6121 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6122 || !MEM_P (INSN_LHS (insn)));
6125 /* This function is called on the ascending pass, before returning from
6126 current basic block. */
6127 static void
6128 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6129 void *static_params)
6131 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6132 basic_block book_block = NULL;
6134 /* When we have removed the boundary insn for scheduling, which also
6135 happened to be the end insn in its bb, we don't need to update sets. */
6136 if (!lparams->removed_last_insn
6137 && lparams->e1
6138 && sel_bb_head_p (insn))
6140 /* We should generate bookkeeping code only if we are not at the
6141 top level of the move_op. */
6142 if (sel_num_cfg_preds_gt_1 (insn))
6143 book_block = generate_bookkeeping_insn (sparams->c_expr,
6144 lparams->e1, lparams->e2);
6145 /* Update data sets for the current insn. */
6146 update_data_sets (insn);
6149 /* If bookkeeping code was inserted, we need to update av sets of basic
6150 block that received bookkeeping. After generation of bookkeeping insn,
6151 bookkeeping block does not contain valid av set because we are not following
6152 the original algorithm in every detail with regards to e.g. renaming
6153 simple reg-reg copies. Consider example:
6155 bookkeeping block scheduling fence
6157 \ join /
6158 ----------
6160 ----------
6163 r1 := r2 r1 := r3
6165 We try to schedule insn "r1 := r3" on the current
6166 scheduling fence. Also, note that av set of bookkeeping block
6167 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6168 been scheduled, the CFG is as follows:
6170 r1 := r3 r1 := r3
6171 bookkeeping block scheduling fence
6173 \ join /
6174 ----------
6176 ----------
6179 r1 := r2
6181 Here, insn "r1 := r3" was scheduled at the current scheduling point
6182 and bookkeeping code was generated at the bookeeping block. This
6183 way insn "r1 := r2" is no longer available as a whole instruction
6184 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6185 This situation is handled by calling update_data_sets.
6187 Since update_data_sets is called only on the bookkeeping block, and
6188 it also may have predecessors with av_sets, containing instructions that
6189 are no longer available, we save all such expressions that become
6190 unavailable during data sets update on the bookkeeping block in
6191 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6192 expressions for scheduling. This allows us to avoid recomputation of
6193 av_sets outside the code motion path. */
6195 if (book_block)
6196 update_and_record_unavailable_insns (book_block);
6198 /* If INSN was previously marked for deletion, it's time to do it. */
6199 if (lparams->removed_last_insn)
6200 insn = PREV_INSN (insn);
6202 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6203 kill a block with a single nop in which the insn should be emitted. */
6204 if (lparams->e1)
6205 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6208 /* This function is called on the ascending pass, before returning from the
6209 current basic block. */
6210 static void
6211 fur_at_first_insn (insn_t insn,
6212 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6213 void *static_params ATTRIBUTE_UNUSED)
6215 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6216 || AV_LEVEL (insn) == -1);
6219 /* Called on the backward stage of recursion to call moveup_expr for insn
6220 and sparams->c_expr. */
6221 static void
6222 move_op_ascend (insn_t insn, void *static_params)
6224 enum MOVEUP_EXPR_CODE res;
6225 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6227 if (! INSN_NOP_P (insn))
6229 res = moveup_expr_cached (sparams->c_expr, insn, false);
6230 gcc_assert (res != MOVEUP_EXPR_NULL);
6233 /* Update liveness for this insn as it was invalidated. */
6234 update_liveness_on_insn (insn);
6237 /* This function is called on enter to the basic block.
6238 Returns TRUE if this block already have been visited and
6239 code_motion_path_driver should return 1, FALSE otherwise. */
6240 static int
6241 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6242 void *static_params, bool visited_p)
6244 fur_static_params_p sparams = (fur_static_params_p) static_params;
6246 if (visited_p)
6248 /* If we have found something below this block, there should be at
6249 least one insn in ORIGINAL_INSNS. */
6250 gcc_assert (*sparams->original_insns);
6252 /* Adjust CROSSES_CALL, since we may have come to this block along
6253 different path. */
6254 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6255 |= sparams->crosses_call;
6257 else
6258 local_params->old_original_insns = *sparams->original_insns;
6260 return 1;
6263 /* Same as above but for move_op. */
6264 static int
6265 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6266 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6267 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6269 if (visited_p)
6270 return -1;
6271 return 1;
6274 /* This function is called while descending current basic block if current
6275 insn is not the original EXPR we're searching for.
6277 Return value: FALSE, if code_motion_path_driver should perform a local
6278 cleanup and return 0 itself;
6279 TRUE, if code_motion_path_driver should continue. */
6280 static bool
6281 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6282 void *static_params)
6284 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6286 #ifdef ENABLE_CHECKING
6287 sparams->failed_insn = insn;
6288 #endif
6290 /* If we're scheduling separate expr, in order to generate correct code
6291 we need to stop the search at bookkeeping code generated with the
6292 same destination register or memory. */
6293 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6294 return false;
6295 return true;
6298 /* This function is called while descending current basic block if current
6299 insn is not the original EXPR we're searching for.
6301 Return value: TRUE (code_motion_path_driver should continue). */
6302 static bool
6303 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6305 bool mutexed;
6306 expr_t r;
6307 av_set_iterator avi;
6308 fur_static_params_p sparams = (fur_static_params_p) static_params;
6310 if (CALL_P (insn))
6311 sparams->crosses_call = true;
6312 else if (DEBUG_INSN_P (insn))
6313 return true;
6315 /* If current insn we are looking at cannot be executed together
6316 with original insn, then we can skip it safely.
6318 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6319 INSN = (!p6) r14 = r14 + 1;
6321 Here we can schedule ORIG_OP with lhs = r14, though only
6322 looking at the set of used and set registers of INSN we must
6323 forbid it. So, add set/used in INSN registers to the
6324 untouchable set only if there is an insn in ORIG_OPS that can
6325 affect INSN. */
6326 mutexed = true;
6327 FOR_EACH_EXPR (r, avi, orig_ops)
6328 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6330 mutexed = false;
6331 break;
6334 /* Mark all registers that do not meet the following condition:
6335 (1) Not set or read on any path from xi to an instance of the
6336 original operation. */
6337 if (!mutexed)
6339 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6340 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6341 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6344 return true;
6347 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6348 struct code_motion_path_driver_info_def move_op_hooks = {
6349 move_op_on_enter,
6350 move_op_orig_expr_found,
6351 move_op_orig_expr_not_found,
6352 move_op_merge_succs,
6353 move_op_after_merge_succs,
6354 move_op_ascend,
6355 move_op_at_first_insn,
6356 SUCCS_NORMAL,
6357 "move_op"
6360 /* Hooks and data to perform find_used_regs operations
6361 with code_motion_path_driver. */
6362 struct code_motion_path_driver_info_def fur_hooks = {
6363 fur_on_enter,
6364 fur_orig_expr_found,
6365 fur_orig_expr_not_found,
6366 fur_merge_succs,
6367 NULL, /* fur_after_merge_succs */
6368 NULL, /* fur_ascend */
6369 fur_at_first_insn,
6370 SUCCS_ALL,
6371 "find_used_regs"
6374 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6375 code_motion_path_driver is called recursively. Original operation
6376 was found at least on one path that is starting with one of INSN's
6377 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6378 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6379 of either move_op or find_used_regs depending on the caller.
6381 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6382 know for sure at this point. */
6383 static int
6384 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6385 ilist_t path, void *static_params)
6387 int res = 0;
6388 succ_iterator succ_i;
6389 rtx succ;
6390 basic_block bb;
6391 int old_index;
6392 unsigned old_succs;
6394 struct cmpd_local_params lparams;
6395 expr_def _x;
6397 lparams.c_expr_local = &_x;
6398 lparams.c_expr_merged = NULL;
6400 /* We need to process only NORMAL succs for move_op, and collect live
6401 registers from ALL branches (including those leading out of the
6402 region) for find_used_regs.
6404 In move_op, there can be a case when insn's bb number has changed
6405 due to created bookkeeping. This happens very rare, as we need to
6406 move expression from the beginning to the end of the same block.
6407 Rescan successors in this case. */
6409 rescan:
6410 bb = BLOCK_FOR_INSN (insn);
6411 old_index = bb->index;
6412 old_succs = EDGE_COUNT (bb->succs);
6414 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6416 int b;
6418 lparams.e1 = succ_i.e1;
6419 lparams.e2 = succ_i.e2;
6421 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6422 current region). */
6423 if (succ_i.current_flags == SUCCS_NORMAL)
6424 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6425 static_params);
6426 else
6427 b = 0;
6429 /* Merge c_expres found or unify live register sets from different
6430 successors. */
6431 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6432 static_params);
6433 if (b == 1)
6434 res = b;
6435 else if (b == -1 && res != 1)
6436 res = b;
6438 /* We have simplified the control flow below this point. In this case,
6439 the iterator becomes invalid. We need to try again.
6440 If we have removed the insn itself, it could be only an
6441 unconditional jump. Thus, do not rescan but break immediately --
6442 we have already visited the only successor block. */
6443 if (!BLOCK_FOR_INSN (insn))
6445 if (sched_verbose >= 6)
6446 sel_print ("Not doing rescan: already visited the only successor"
6447 " of block %d\n", old_index);
6448 break;
6450 if (BLOCK_FOR_INSN (insn)->index != old_index
6451 || EDGE_COUNT (bb->succs) != old_succs)
6453 if (sched_verbose >= 6)
6454 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6455 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6456 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6457 goto rescan;
6461 #ifdef ENABLE_CHECKING
6462 /* Here, RES==1 if original expr was found at least for one of the
6463 successors. After the loop, RES may happen to have zero value
6464 only if at some point the expr searched is present in av_set, but is
6465 not found below. In most cases, this situation is an error.
6466 The exception is when the original operation is blocked by
6467 bookkeeping generated for another fence or for another path in current
6468 move_op. */
6469 gcc_assert (res == 1
6470 || (res == 0
6471 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6472 static_params))
6473 || res == -1);
6474 #endif
6476 /* Merge data, clean up, etc. */
6477 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6478 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6480 return res;
6484 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6485 is the pointer to the av set with expressions we were looking for,
6486 PATH_P is the pointer to the traversed path. */
6487 static inline void
6488 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6490 ilist_remove (path_p);
6491 av_set_clear (orig_ops_p);
6494 /* The driver function that implements move_op or find_used_regs
6495 functionality dependent whether code_motion_path_driver_INFO is set to
6496 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6497 of code (CFG traversal etc) that are shared among both functions. INSN
6498 is the insn we're starting the search from, ORIG_OPS are the expressions
6499 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6500 parameters of the driver, and STATIC_PARAMS are static parameters of
6501 the caller.
6503 Returns whether original instructions were found. Note that top-level
6504 code_motion_path_driver always returns true. */
6505 static int
6506 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6507 cmpd_local_params_p local_params_in,
6508 void *static_params)
6510 expr_t expr = NULL;
6511 basic_block bb = BLOCK_FOR_INSN (insn);
6512 insn_t first_insn, bb_tail, before_first;
6513 bool removed_last_insn = false;
6515 if (sched_verbose >= 6)
6517 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6518 dump_insn (insn);
6519 sel_print (",");
6520 dump_av_set (orig_ops);
6521 sel_print (")\n");
6524 gcc_assert (orig_ops);
6526 /* If no original operations exist below this insn, return immediately. */
6527 if (is_ineligible_successor (insn, path))
6529 if (sched_verbose >= 6)
6530 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6531 return false;
6534 /* The block can have invalid av set, in which case it was created earlier
6535 during move_op. Return immediately. */
6536 if (sel_bb_head_p (insn))
6538 if (! AV_SET_VALID_P (insn))
6540 if (sched_verbose >= 6)
6541 sel_print ("Returned from block %d as it had invalid av set\n",
6542 bb->index);
6543 return false;
6546 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6548 /* We have already found an original operation on this branch, do not
6549 go any further and just return TRUE here. If we don't stop here,
6550 function can have exponential behaviour even on the small code
6551 with many different paths (e.g. with data speculation and
6552 recovery blocks). */
6553 if (sched_verbose >= 6)
6554 sel_print ("Block %d already visited in this traversal\n", bb->index);
6555 if (code_motion_path_driver_info->on_enter)
6556 return code_motion_path_driver_info->on_enter (insn,
6557 local_params_in,
6558 static_params,
6559 true);
6563 if (code_motion_path_driver_info->on_enter)
6564 code_motion_path_driver_info->on_enter (insn, local_params_in,
6565 static_params, false);
6566 orig_ops = av_set_copy (orig_ops);
6568 /* Filter the orig_ops set. */
6569 if (AV_SET_VALID_P (insn))
6570 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6572 /* If no more original ops, return immediately. */
6573 if (!orig_ops)
6575 if (sched_verbose >= 6)
6576 sel_print ("No intersection with av set of block %d\n", bb->index);
6577 return false;
6580 /* For non-speculative insns we have to leave only one form of the
6581 original operation, because if we don't, we may end up with
6582 different C_EXPRes and, consequently, with bookkeepings for different
6583 expression forms along the same code motion path. That may lead to
6584 generation of incorrect code. So for each code motion we stick to
6585 the single form of the instruction, except for speculative insns
6586 which we need to keep in different forms with all speculation
6587 types. */
6588 av_set_leave_one_nonspec (&orig_ops);
6590 /* It is not possible that all ORIG_OPS are filtered out. */
6591 gcc_assert (orig_ops);
6593 /* It is enough to place only heads and tails of visited basic blocks into
6594 the PATH. */
6595 ilist_add (&path, insn);
6596 first_insn = insn;
6597 bb_tail = sel_bb_end (bb);
6599 /* Descend the basic block in search of the original expr; this part
6600 corresponds to the part of the original move_op procedure executed
6601 before the recursive call. */
6602 for (;;)
6604 /* Look at the insn and decide if it could be an ancestor of currently
6605 scheduling operation. If it is so, then the insn "dest = op" could
6606 either be replaced with "dest = reg", because REG now holds the result
6607 of OP, or just removed, if we've scheduled the insn as a whole.
6609 If this insn doesn't contain currently scheduling OP, then proceed
6610 with searching and look at its successors. Operations we're searching
6611 for could have changed when moving up through this insn via
6612 substituting. In this case, perform unsubstitution on them first.
6614 When traversing the DAG below this insn is finished, insert
6615 bookkeeping code, if the insn is a joint point, and remove
6616 leftovers. */
6618 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6619 if (expr)
6621 insn_t last_insn = PREV_INSN (insn);
6623 /* We have found the original operation. */
6624 if (sched_verbose >= 6)
6625 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6627 code_motion_path_driver_info->orig_expr_found
6628 (insn, expr, local_params_in, static_params);
6630 /* Step back, so on the way back we'll start traversing from the
6631 previous insn (or we'll see that it's bb_note and skip that
6632 loop). */
6633 if (insn == first_insn)
6635 first_insn = NEXT_INSN (last_insn);
6636 removed_last_insn = sel_bb_end_p (last_insn);
6638 insn = last_insn;
6639 break;
6641 else
6643 /* We haven't found the original expr, continue descending the basic
6644 block. */
6645 if (code_motion_path_driver_info->orig_expr_not_found
6646 (insn, orig_ops, static_params))
6648 /* Av set ops could have been changed when moving through this
6649 insn. To find them below it, we have to un-substitute them. */
6650 undo_transformations (&orig_ops, insn);
6652 else
6654 /* Clean up and return, if the hook tells us to do so. It may
6655 happen if we've encountered the previously created
6656 bookkeeping. */
6657 code_motion_path_driver_cleanup (&orig_ops, &path);
6658 return -1;
6661 gcc_assert (orig_ops);
6664 /* Stop at insn if we got to the end of BB. */
6665 if (insn == bb_tail)
6666 break;
6668 insn = NEXT_INSN (insn);
6671 /* Here INSN either points to the insn before the original insn (may be
6672 bb_note, if original insn was a bb_head) or to the bb_end. */
6673 if (!expr)
6675 int res;
6676 rtx last_insn = PREV_INSN (insn);
6677 bool added_to_path;
6679 gcc_assert (insn == sel_bb_end (bb));
6681 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6682 it's already in PATH then). */
6683 if (insn != first_insn)
6685 ilist_add (&path, insn);
6686 added_to_path = true;
6688 else
6689 added_to_path = false;
6691 /* Process_successors should be able to find at least one
6692 successor for which code_motion_path_driver returns TRUE. */
6693 res = code_motion_process_successors (insn, orig_ops,
6694 path, static_params);
6696 /* Jump in the end of basic block could have been removed or replaced
6697 during code_motion_process_successors, so recompute insn as the
6698 last insn in bb. */
6699 if (NEXT_INSN (last_insn) != insn)
6701 insn = sel_bb_end (bb);
6702 first_insn = sel_bb_head (bb);
6705 /* Remove bb tail from path. */
6706 if (added_to_path)
6707 ilist_remove (&path);
6709 if (res != 1)
6711 /* This is the case when one of the original expr is no longer available
6712 due to bookkeeping created on this branch with the same register.
6713 In the original algorithm, which doesn't have update_data_sets call
6714 on a bookkeeping block, it would simply result in returning
6715 FALSE when we've encountered a previously generated bookkeeping
6716 insn in moveop_orig_expr_not_found. */
6717 code_motion_path_driver_cleanup (&orig_ops, &path);
6718 return res;
6722 /* Don't need it any more. */
6723 av_set_clear (&orig_ops);
6725 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6726 the beginning of the basic block. */
6727 before_first = PREV_INSN (first_insn);
6728 while (insn != before_first)
6730 if (code_motion_path_driver_info->ascend)
6731 code_motion_path_driver_info->ascend (insn, static_params);
6733 insn = PREV_INSN (insn);
6736 /* Now we're at the bb head. */
6737 insn = first_insn;
6738 ilist_remove (&path);
6739 local_params_in->removed_last_insn = removed_last_insn;
6740 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6742 /* This should be the very last operation as at bb head we could change
6743 the numbering by creating bookkeeping blocks. */
6744 if (removed_last_insn)
6745 insn = PREV_INSN (insn);
6747 /* If we have simplified the control flow and removed the first jump insn,
6748 there's no point in marking this block in the visited blocks bitmap. */
6749 if (BLOCK_FOR_INSN (insn))
6750 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6751 return true;
6754 /* Move up the operations from ORIG_OPS set traversing the dag starting
6755 from INSN. PATH represents the edges traversed so far.
6756 DEST is the register chosen for scheduling the current expr. Insert
6757 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6758 C_EXPR is how it looks like at the given cfg point.
6759 Set *SHOULD_MOVE to indicate whether we have only disconnected
6760 one of the insns found.
6762 Returns whether original instructions were found, which is asserted
6763 to be true in the caller. */
6764 static bool
6765 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6766 rtx dest, expr_t c_expr, bool *should_move)
6768 struct moveop_static_params sparams;
6769 struct cmpd_local_params lparams;
6770 int res;
6772 /* Init params for code_motion_path_driver. */
6773 sparams.dest = dest;
6774 sparams.c_expr = c_expr;
6775 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6776 #ifdef ENABLE_CHECKING
6777 sparams.failed_insn = NULL;
6778 #endif
6779 sparams.was_renamed = false;
6780 lparams.e1 = NULL;
6782 /* We haven't visited any blocks yet. */
6783 bitmap_clear (code_motion_visited_blocks);
6785 /* Set appropriate hooks and data. */
6786 code_motion_path_driver_info = &move_op_hooks;
6787 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6789 gcc_assert (res != -1);
6791 if (sparams.was_renamed)
6792 EXPR_WAS_RENAMED (expr_vliw) = true;
6794 *should_move = (sparams.uid == -1);
6796 return res;
6800 /* Functions that work with regions. */
6802 /* Current number of seqno used in init_seqno and init_seqno_1. */
6803 static int cur_seqno;
6805 /* A helper for init_seqno. Traverse the region starting from BB and
6806 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6807 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6808 static void
6809 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6811 int bbi = BLOCK_TO_BB (bb->index);
6812 insn_t insn, note = bb_note (bb);
6813 insn_t succ_insn;
6814 succ_iterator si;
6816 bitmap_set_bit (visited_bbs, bbi);
6817 if (blocks_to_reschedule)
6818 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6820 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6821 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6823 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6824 int succ_bbi = BLOCK_TO_BB (succ->index);
6826 gcc_assert (in_current_region_p (succ));
6828 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6830 gcc_assert (succ_bbi > bbi);
6832 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6834 else if (blocks_to_reschedule)
6835 bitmap_set_bit (forced_ebb_heads, succ->index);
6838 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6839 INSN_SEQNO (insn) = cur_seqno--;
6842 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6843 blocks on which we're rescheduling when pipelining, FROM is the block where
6844 traversing region begins (it may not be the head of the region when
6845 pipelining, but the head of the loop instead).
6847 Returns the maximal seqno found. */
6848 static int
6849 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6851 sbitmap visited_bbs;
6852 bitmap_iterator bi;
6853 unsigned bbi;
6855 visited_bbs = sbitmap_alloc (current_nr_blocks);
6857 if (blocks_to_reschedule)
6859 bitmap_ones (visited_bbs);
6860 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6862 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6863 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6866 else
6868 bitmap_clear (visited_bbs);
6869 from = EBB_FIRST_BB (0);
6872 cur_seqno = sched_max_luid - 1;
6873 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6875 /* cur_seqno may be positive if the number of instructions is less than
6876 sched_max_luid - 1 (when rescheduling or if some instructions have been
6877 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6878 gcc_assert (cur_seqno >= 0);
6880 sbitmap_free (visited_bbs);
6881 return sched_max_luid - 1;
6884 /* Initialize scheduling parameters for current region. */
6885 static void
6886 sel_setup_region_sched_flags (void)
6888 enable_schedule_as_rhs_p = 1;
6889 bookkeeping_p = 1;
6890 pipelining_p = (bookkeeping_p
6891 && (flag_sel_sched_pipelining != 0)
6892 && current_loop_nest != NULL
6893 && loop_has_exit_edges (current_loop_nest));
6894 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6895 max_ws = MAX_WS;
6898 /* Return true if all basic blocks of current region are empty. */
6899 static bool
6900 current_region_empty_p (void)
6902 int i;
6903 for (i = 0; i < current_nr_blocks; i++)
6904 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6905 return false;
6907 return true;
6910 /* Prepare and verify loop nest for pipelining. */
6911 static void
6912 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6914 current_loop_nest = get_loop_nest_for_rgn (rgn);
6916 if (!current_loop_nest)
6917 return;
6919 /* If this loop has any saved loop preheaders from nested loops,
6920 add these basic blocks to the current region. */
6921 sel_add_loop_preheaders (bbs);
6923 /* Check that we're starting with a valid information. */
6924 gcc_assert (loop_latch_edge (current_loop_nest));
6925 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6928 /* Compute instruction priorities for current region. */
6929 static void
6930 sel_compute_priorities (int rgn)
6932 sched_rgn_compute_dependencies (rgn);
6934 /* Compute insn priorities in haifa style. Then free haifa style
6935 dependencies that we've calculated for this. */
6936 compute_priorities ();
6938 if (sched_verbose >= 5)
6939 debug_rgn_dependencies (0);
6941 free_rgn_deps ();
6944 /* Init scheduling data for RGN. Returns true when this region should not
6945 be scheduled. */
6946 static bool
6947 sel_region_init (int rgn)
6949 int i;
6950 bb_vec_t bbs;
6952 rgn_setup_region (rgn);
6954 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6955 do region initialization here so the region can be bundled correctly,
6956 but we'll skip the scheduling in sel_sched_region (). */
6957 if (current_region_empty_p ())
6958 return true;
6960 bbs.create (current_nr_blocks);
6962 for (i = 0; i < current_nr_blocks; i++)
6963 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6965 sel_init_bbs (bbs);
6967 if (flag_sel_sched_pipelining)
6968 setup_current_loop_nest (rgn, &bbs);
6970 sel_setup_region_sched_flags ();
6972 /* Initialize luids and dependence analysis which both sel-sched and haifa
6973 need. */
6974 sched_init_luids (bbs);
6975 sched_deps_init (false);
6977 /* Initialize haifa data. */
6978 rgn_setup_sched_infos ();
6979 sel_set_sched_flags ();
6980 haifa_init_h_i_d (bbs);
6982 sel_compute_priorities (rgn);
6983 init_deps_global ();
6985 /* Main initialization. */
6986 sel_setup_sched_infos ();
6987 sel_init_global_and_expr (bbs);
6989 bbs.release ();
6991 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6993 /* Init correct liveness sets on each instruction of a single-block loop.
6994 This is the only situation when we can't update liveness when calling
6995 compute_live for the first insn of the loop. */
6996 if (current_loop_nest)
6998 int header =
6999 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
7001 : 0);
7003 if (current_nr_blocks == header + 1)
7004 update_liveness_on_insn
7005 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
7008 /* Set hooks so that no newly generated insn will go out unnoticed. */
7009 sel_register_cfg_hooks ();
7011 /* !!! We call target.sched.init () for the whole region, but we invoke
7012 targetm.sched.finish () for every ebb. */
7013 if (targetm.sched.init)
7014 /* None of the arguments are actually used in any target. */
7015 targetm.sched.init (sched_dump, sched_verbose, -1);
7017 first_emitted_uid = get_max_uid () + 1;
7018 preheader_removed = false;
7020 /* Reset register allocation ticks array. */
7021 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
7022 reg_rename_this_tick = 0;
7024 bitmap_initialize (forced_ebb_heads, 0);
7025 bitmap_clear (forced_ebb_heads);
7027 setup_nop_vinsn ();
7028 current_copies = BITMAP_ALLOC (NULL);
7029 current_originators = BITMAP_ALLOC (NULL);
7030 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
7032 return false;
7035 /* Simplify insns after the scheduling. */
7036 static void
7037 simplify_changed_insns (void)
7039 int i;
7041 for (i = 0; i < current_nr_blocks; i++)
7043 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
7044 rtx insn;
7046 FOR_BB_INSNS (bb, insn)
7047 if (INSN_P (insn))
7049 expr_t expr = INSN_EXPR (insn);
7051 if (EXPR_WAS_SUBSTITUTED (expr))
7052 validate_simplify_insn (insn);
7057 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7058 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7059 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7060 static void
7061 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7063 insn_t head, tail;
7064 basic_block bb1 = bb;
7065 if (sched_verbose >= 2)
7066 sel_print ("Finishing schedule in bbs: ");
7070 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7072 if (sched_verbose >= 2)
7073 sel_print ("%d; ", bb1->index);
7075 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7077 if (sched_verbose >= 2)
7078 sel_print ("\n");
7080 get_ebb_head_tail (bb, bb1, &head, &tail);
7082 current_sched_info->head = head;
7083 current_sched_info->tail = tail;
7084 current_sched_info->prev_head = PREV_INSN (head);
7085 current_sched_info->next_tail = NEXT_INSN (tail);
7088 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7089 static void
7090 reset_sched_cycles_in_current_ebb (void)
7092 int last_clock = 0;
7093 int haifa_last_clock = -1;
7094 int haifa_clock = 0;
7095 int issued_insns = 0;
7096 insn_t insn;
7098 if (targetm.sched.init)
7100 /* None of the arguments are actually used in any target.
7101 NB: We should have md_reset () hook for cases like this. */
7102 targetm.sched.init (sched_dump, sched_verbose, -1);
7105 state_reset (curr_state);
7106 advance_state (curr_state);
7108 for (insn = current_sched_info->head;
7109 insn != current_sched_info->next_tail;
7110 insn = NEXT_INSN (insn))
7112 int cost, haifa_cost;
7113 int sort_p;
7114 bool asm_p, real_insn, after_stall, all_issued;
7115 int clock;
7117 if (!INSN_P (insn))
7118 continue;
7120 asm_p = false;
7121 real_insn = recog_memoized (insn) >= 0;
7122 clock = INSN_SCHED_CYCLE (insn);
7124 cost = clock - last_clock;
7126 /* Initialize HAIFA_COST. */
7127 if (! real_insn)
7129 asm_p = INSN_ASM_P (insn);
7131 if (asm_p)
7132 /* This is asm insn which *had* to be scheduled first
7133 on the cycle. */
7134 haifa_cost = 1;
7135 else
7136 /* This is a use/clobber insn. It should not change
7137 cost. */
7138 haifa_cost = 0;
7140 else
7141 haifa_cost = estimate_insn_cost (insn, curr_state);
7143 /* Stall for whatever cycles we've stalled before. */
7144 after_stall = 0;
7145 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7147 haifa_cost = cost;
7148 after_stall = 1;
7150 all_issued = issued_insns == issue_rate;
7151 if (haifa_cost == 0 && all_issued)
7152 haifa_cost = 1;
7153 if (haifa_cost > 0)
7155 int i = 0;
7157 while (haifa_cost--)
7159 advance_state (curr_state);
7160 issued_insns = 0;
7161 i++;
7163 if (sched_verbose >= 2)
7165 sel_print ("advance_state (state_transition)\n");
7166 debug_state (curr_state);
7169 /* The DFA may report that e.g. insn requires 2 cycles to be
7170 issued, but on the next cycle it says that insn is ready
7171 to go. Check this here. */
7172 if (!after_stall
7173 && real_insn
7174 && haifa_cost > 0
7175 && estimate_insn_cost (insn, curr_state) == 0)
7176 break;
7178 /* When the data dependency stall is longer than the DFA stall,
7179 and when we have issued exactly issue_rate insns and stalled,
7180 it could be that after this longer stall the insn will again
7181 become unavailable to the DFA restrictions. Looks strange
7182 but happens e.g. on x86-64. So recheck DFA on the last
7183 iteration. */
7184 if ((after_stall || all_issued)
7185 && real_insn
7186 && haifa_cost == 0)
7187 haifa_cost = estimate_insn_cost (insn, curr_state);
7190 haifa_clock += i;
7191 if (sched_verbose >= 2)
7192 sel_print ("haifa clock: %d\n", haifa_clock);
7194 else
7195 gcc_assert (haifa_cost == 0);
7197 if (sched_verbose >= 2)
7198 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7200 if (targetm.sched.dfa_new_cycle)
7201 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7202 haifa_last_clock, haifa_clock,
7203 &sort_p))
7205 advance_state (curr_state);
7206 issued_insns = 0;
7207 haifa_clock++;
7208 if (sched_verbose >= 2)
7210 sel_print ("advance_state (dfa_new_cycle)\n");
7211 debug_state (curr_state);
7212 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7216 if (real_insn)
7218 static state_t temp = NULL;
7220 if (!temp)
7221 temp = xmalloc (dfa_state_size);
7222 memcpy (temp, curr_state, dfa_state_size);
7224 cost = state_transition (curr_state, insn);
7225 if (memcmp (temp, curr_state, dfa_state_size))
7226 issued_insns++;
7228 if (sched_verbose >= 2)
7230 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7231 haifa_clock + 1);
7232 debug_state (curr_state);
7234 gcc_assert (cost < 0);
7237 if (targetm.sched.variable_issue)
7238 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7240 INSN_SCHED_CYCLE (insn) = haifa_clock;
7242 last_clock = clock;
7243 haifa_last_clock = haifa_clock;
7247 /* Put TImode markers on insns starting a new issue group. */
7248 static void
7249 put_TImodes (void)
7251 int last_clock = -1;
7252 insn_t insn;
7254 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7255 insn = NEXT_INSN (insn))
7257 int cost, clock;
7259 if (!INSN_P (insn))
7260 continue;
7262 clock = INSN_SCHED_CYCLE (insn);
7263 cost = (last_clock == -1) ? 1 : clock - last_clock;
7265 gcc_assert (cost >= 0);
7267 if (issue_rate > 1
7268 && GET_CODE (PATTERN (insn)) != USE
7269 && GET_CODE (PATTERN (insn)) != CLOBBER)
7271 if (reload_completed && cost > 0)
7272 PUT_MODE (insn, TImode);
7274 last_clock = clock;
7277 if (sched_verbose >= 2)
7278 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7282 /* Perform MD_FINISH on EBBs comprising current region. When
7283 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7284 to produce correct sched cycles on insns. */
7285 static void
7286 sel_region_target_finish (bool reset_sched_cycles_p)
7288 int i;
7289 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7291 for (i = 0; i < current_nr_blocks; i++)
7293 if (bitmap_bit_p (scheduled_blocks, i))
7294 continue;
7296 /* While pipelining outer loops, skip bundling for loop
7297 preheaders. Those will be rescheduled in the outer loop. */
7298 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7299 continue;
7301 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7303 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7304 continue;
7306 if (reset_sched_cycles_p)
7307 reset_sched_cycles_in_current_ebb ();
7309 if (targetm.sched.init)
7310 targetm.sched.init (sched_dump, sched_verbose, -1);
7312 put_TImodes ();
7314 if (targetm.sched.finish)
7316 targetm.sched.finish (sched_dump, sched_verbose);
7318 /* Extend luids so that insns generated by the target will
7319 get zero luid. */
7320 sched_extend_luids ();
7324 BITMAP_FREE (scheduled_blocks);
7327 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7328 is true, make an additional pass emulating scheduler to get correct insn
7329 cycles for md_finish calls. */
7330 static void
7331 sel_region_finish (bool reset_sched_cycles_p)
7333 simplify_changed_insns ();
7334 sched_finish_ready_list ();
7335 free_nop_pool ();
7337 /* Free the vectors. */
7338 vec_av_set.release ();
7339 BITMAP_FREE (current_copies);
7340 BITMAP_FREE (current_originators);
7341 BITMAP_FREE (code_motion_visited_blocks);
7342 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7343 vinsn_vec_free (vec_target_unavailable_vinsns);
7345 /* If LV_SET of the region head should be updated, do it now because
7346 there will be no other chance. */
7348 succ_iterator si;
7349 insn_t insn;
7351 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7352 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7354 basic_block bb = BLOCK_FOR_INSN (insn);
7356 if (!BB_LV_SET_VALID_P (bb))
7357 compute_live (insn);
7361 /* Emulate the Haifa scheduler for bundling. */
7362 if (reload_completed)
7363 sel_region_target_finish (reset_sched_cycles_p);
7365 sel_finish_global_and_expr ();
7367 bitmap_clear (forced_ebb_heads);
7369 free_nop_vinsn ();
7371 finish_deps_global ();
7372 sched_finish_luids ();
7373 h_d_i_d.release ();
7375 sel_finish_bbs ();
7376 BITMAP_FREE (blocks_to_reschedule);
7378 sel_unregister_cfg_hooks ();
7380 max_issue_size = 0;
7384 /* Functions that implement the scheduler driver. */
7386 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7387 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7388 of insns scheduled -- these would be postprocessed later. */
7389 static void
7390 schedule_on_fences (flist_t fences, int max_seqno,
7391 ilist_t **scheduled_insns_tailpp)
7393 flist_t old_fences = fences;
7395 if (sched_verbose >= 1)
7397 sel_print ("\nScheduling on fences: ");
7398 dump_flist (fences);
7399 sel_print ("\n");
7402 scheduled_something_on_previous_fence = false;
7403 for (; fences; fences = FLIST_NEXT (fences))
7405 fence_t fence = NULL;
7406 int seqno = 0;
7407 flist_t fences2;
7408 bool first_p = true;
7410 /* Choose the next fence group to schedule.
7411 The fact that insn can be scheduled only once
7412 on the cycle is guaranteed by two properties:
7413 1. seqnos of parallel groups decrease with each iteration.
7414 2. If is_ineligible_successor () sees the larger seqno, it
7415 checks if candidate insn is_in_current_fence_p (). */
7416 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7418 fence_t f = FLIST_FENCE (fences2);
7420 if (!FENCE_PROCESSED_P (f))
7422 int i = INSN_SEQNO (FENCE_INSN (f));
7424 if (first_p || i > seqno)
7426 seqno = i;
7427 fence = f;
7428 first_p = false;
7430 else
7431 /* ??? Seqnos of different groups should be different. */
7432 gcc_assert (1 || i != seqno);
7436 gcc_assert (fence);
7438 /* As FENCE is nonnull, SEQNO is initialized. */
7439 seqno -= max_seqno + 1;
7440 fill_insns (fence, seqno, scheduled_insns_tailpp);
7441 FENCE_PROCESSED_P (fence) = true;
7444 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7445 don't need to keep bookkeeping-invalidated and target-unavailable
7446 vinsns any more. */
7447 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7448 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7451 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7452 static void
7453 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7455 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7457 /* The first element is already processed. */
7458 while ((fences = FLIST_NEXT (fences)))
7460 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7462 if (*min_seqno > seqno)
7463 *min_seqno = seqno;
7464 else if (*max_seqno < seqno)
7465 *max_seqno = seqno;
7469 /* Calculate new fences from FENCES. */
7470 static flist_t
7471 calculate_new_fences (flist_t fences, int orig_max_seqno)
7473 flist_t old_fences = fences;
7474 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7476 flist_tail_init (new_fences);
7477 for (; fences; fences = FLIST_NEXT (fences))
7479 fence_t fence = FLIST_FENCE (fences);
7480 insn_t insn;
7482 if (!FENCE_BNDS (fence))
7484 /* This fence doesn't have any successors. */
7485 if (!FENCE_SCHEDULED_P (fence))
7487 /* Nothing was scheduled on this fence. */
7488 int seqno;
7490 insn = FENCE_INSN (fence);
7491 seqno = INSN_SEQNO (insn);
7492 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7494 if (sched_verbose >= 1)
7495 sel_print ("Fence %d[%d] has not changed\n",
7496 INSN_UID (insn),
7497 BLOCK_NUM (insn));
7498 move_fence_to_fences (fences, new_fences);
7501 else
7502 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7505 flist_clear (&old_fences);
7506 return FLIST_TAIL_HEAD (new_fences);
7509 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7510 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7511 the highest seqno used in a region. Return the updated highest seqno. */
7512 static int
7513 update_seqnos_and_stage (int min_seqno, int max_seqno,
7514 int highest_seqno_in_use,
7515 ilist_t *pscheduled_insns)
7517 int new_hs;
7518 ilist_iterator ii;
7519 insn_t insn;
7521 /* Actually, new_hs is the seqno of the instruction, that was
7522 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7523 if (*pscheduled_insns)
7525 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7526 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7527 gcc_assert (new_hs > highest_seqno_in_use);
7529 else
7530 new_hs = highest_seqno_in_use;
7532 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7534 gcc_assert (INSN_SEQNO (insn) < 0);
7535 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7536 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7538 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7539 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7540 require > 1GB of memory e.g. on limit-fnargs.c. */
7541 if (! pipelining_p)
7542 free_data_for_scheduled_insn (insn);
7545 ilist_clear (pscheduled_insns);
7546 global_level++;
7548 return new_hs;
7551 /* The main driver for scheduling a region. This function is responsible
7552 for correct propagation of fences (i.e. scheduling points) and creating
7553 a group of parallel insns at each of them. It also supports
7554 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7555 of scheduling. */
7556 static void
7557 sel_sched_region_2 (int orig_max_seqno)
7559 int highest_seqno_in_use = orig_max_seqno;
7561 stat_bookkeeping_copies = 0;
7562 stat_insns_needed_bookkeeping = 0;
7563 stat_renamed_scheduled = 0;
7564 stat_substitutions_total = 0;
7565 num_insns_scheduled = 0;
7567 while (fences)
7569 int min_seqno, max_seqno;
7570 ilist_t scheduled_insns = NULL;
7571 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7573 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7574 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7575 fences = calculate_new_fences (fences, orig_max_seqno);
7576 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7577 highest_seqno_in_use,
7578 &scheduled_insns);
7581 if (sched_verbose >= 1)
7582 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7583 "bookkeeping, %d insns renamed, %d insns substituted\n",
7584 stat_bookkeeping_copies,
7585 stat_insns_needed_bookkeeping,
7586 stat_renamed_scheduled,
7587 stat_substitutions_total);
7590 /* Schedule a region. When pipelining, search for possibly never scheduled
7591 bookkeeping code and schedule it. Reschedule pipelined code without
7592 pipelining after. */
7593 static void
7594 sel_sched_region_1 (void)
7596 int orig_max_seqno;
7598 /* Remove empty blocks that might be in the region from the beginning. */
7599 purge_empty_blocks ();
7601 orig_max_seqno = init_seqno (NULL, NULL);
7602 gcc_assert (orig_max_seqno >= 1);
7604 /* When pipelining outer loops, create fences on the loop header,
7605 not preheader. */
7606 fences = NULL;
7607 if (current_loop_nest)
7608 init_fences (BB_END (EBB_FIRST_BB (0)));
7609 else
7610 init_fences (bb_note (EBB_FIRST_BB (0)));
7611 global_level = 1;
7613 sel_sched_region_2 (orig_max_seqno);
7615 gcc_assert (fences == NULL);
7617 if (pipelining_p)
7619 int i;
7620 basic_block bb;
7621 struct flist_tail_def _new_fences;
7622 flist_tail_t new_fences = &_new_fences;
7623 bool do_p = true;
7625 pipelining_p = false;
7626 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7627 bookkeeping_p = false;
7628 enable_schedule_as_rhs_p = false;
7630 /* Schedule newly created code, that has not been scheduled yet. */
7631 do_p = true;
7633 while (do_p)
7635 do_p = false;
7637 for (i = 0; i < current_nr_blocks; i++)
7639 basic_block bb = EBB_FIRST_BB (i);
7641 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7643 if (! bb_ends_ebb_p (bb))
7644 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7645 if (sel_bb_empty_p (bb))
7647 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7648 continue;
7650 clear_outdated_rtx_info (bb);
7651 if (sel_insn_is_speculation_check (BB_END (bb))
7652 && JUMP_P (BB_END (bb)))
7653 bitmap_set_bit (blocks_to_reschedule,
7654 BRANCH_EDGE (bb)->dest->index);
7656 else if (! sel_bb_empty_p (bb)
7657 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7658 bitmap_set_bit (blocks_to_reschedule, bb->index);
7661 for (i = 0; i < current_nr_blocks; i++)
7663 bb = EBB_FIRST_BB (i);
7665 /* While pipelining outer loops, skip bundling for loop
7666 preheaders. Those will be rescheduled in the outer
7667 loop. */
7668 if (sel_is_loop_preheader_p (bb))
7670 clear_outdated_rtx_info (bb);
7671 continue;
7674 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7676 flist_tail_init (new_fences);
7678 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7680 /* Mark BB as head of the new ebb. */
7681 bitmap_set_bit (forced_ebb_heads, bb->index);
7683 gcc_assert (fences == NULL);
7685 init_fences (bb_note (bb));
7687 sel_sched_region_2 (orig_max_seqno);
7689 do_p = true;
7690 break;
7697 /* Schedule the RGN region. */
7698 void
7699 sel_sched_region (int rgn)
7701 bool schedule_p;
7702 bool reset_sched_cycles_p;
7704 if (sel_region_init (rgn))
7705 return;
7707 if (sched_verbose >= 1)
7708 sel_print ("Scheduling region %d\n", rgn);
7710 schedule_p = (!sched_is_disabled_for_current_region_p ()
7711 && dbg_cnt (sel_sched_region_cnt));
7712 reset_sched_cycles_p = pipelining_p;
7713 if (schedule_p)
7714 sel_sched_region_1 ();
7715 else
7716 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7717 reset_sched_cycles_p = true;
7719 sel_region_finish (reset_sched_cycles_p);
7722 /* Perform global init for the scheduler. */
7723 static void
7724 sel_global_init (void)
7726 calculate_dominance_info (CDI_DOMINATORS);
7727 alloc_sched_pools ();
7729 /* Setup the infos for sched_init. */
7730 sel_setup_sched_infos ();
7731 setup_sched_dump ();
7733 sched_rgn_init (false);
7734 sched_init ();
7736 sched_init_bbs ();
7737 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7738 after_recovery = 0;
7739 can_issue_more = issue_rate;
7741 sched_extend_target ();
7742 sched_deps_init (true);
7743 setup_nop_and_exit_insns ();
7744 sel_extend_global_bb_info ();
7745 init_lv_sets ();
7746 init_hard_regs_data ();
7749 /* Free the global data of the scheduler. */
7750 static void
7751 sel_global_finish (void)
7753 free_bb_note_pool ();
7754 free_lv_sets ();
7755 sel_finish_global_bb_info ();
7757 free_regset_pool ();
7758 free_nop_and_exit_insns ();
7760 sched_rgn_finish ();
7761 sched_deps_finish ();
7762 sched_finish ();
7764 if (current_loops)
7765 sel_finish_pipelining ();
7767 free_sched_pools ();
7768 free_dominance_info (CDI_DOMINATORS);
7771 /* Return true when we need to skip selective scheduling. Used for debugging. */
7772 bool
7773 maybe_skip_selective_scheduling (void)
7775 return ! dbg_cnt (sel_sched_cnt);
7778 /* The entry point. */
7779 void
7780 run_selective_scheduling (void)
7782 int rgn;
7784 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7785 return;
7787 sel_global_init ();
7789 for (rgn = 0; rgn < nr_regions; rgn++)
7790 sel_sched_region (rgn);
7792 sel_global_finish ();
7795 #endif