* lto-partition.c (add_symbol_to_partition_1,
[official-gcc.git] / gcc / ipa-inline.c
blobf6f97f87ebe417af459a45778bc65688926280d5
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
36 inlining heuristics
38 The inliner itself is split into two passes:
40 pass_early_inlining
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
68 pass_ipa_inline
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "tm.h"
96 #include "tree.h"
97 #include "trans-mem.h"
98 #include "calls.h"
99 #include "tree-inline.h"
100 #include "langhooks.h"
101 #include "flags.h"
102 #include "diagnostic.h"
103 #include "gimple-pretty-print.h"
104 #include "params.h"
105 #include "fibheap.h"
106 #include "intl.h"
107 #include "tree-pass.h"
108 #include "coverage.h"
109 #include "rtl.h"
110 #include "bitmap.h"
111 #include "basic-block.h"
112 #include "tree-ssa-alias.h"
113 #include "internal-fn.h"
114 #include "gimple-expr.h"
115 #include "is-a.h"
116 #include "gimple.h"
117 #include "gimple-ssa.h"
118 #include "ipa-prop.h"
119 #include "except.h"
120 #include "target.h"
121 #include "ipa-inline.h"
122 #include "ipa-utils.h"
123 #include "sreal.h"
124 #include "cilk.h"
126 /* Statistics we collect about inlining algorithm. */
127 static int overall_size;
128 static gcov_type max_count;
129 static sreal max_count_real, max_relbenefit_real, half_int_min_real;
131 /* Return false when inlining edge E would lead to violating
132 limits on function unit growth or stack usage growth.
134 The relative function body growth limit is present generally
135 to avoid problems with non-linear behavior of the compiler.
136 To allow inlining huge functions into tiny wrapper, the limit
137 is always based on the bigger of the two functions considered.
139 For stack growth limits we always base the growth in stack usage
140 of the callers. We want to prevent applications from segfaulting
141 on stack overflow when functions with huge stack frames gets
142 inlined. */
144 static bool
145 caller_growth_limits (struct cgraph_edge *e)
147 struct cgraph_node *to = e->caller;
148 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
149 int newsize;
150 int limit = 0;
151 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
152 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
154 /* Look for function e->caller is inlined to. While doing
155 so work out the largest function body on the way. As
156 described above, we want to base our function growth
157 limits based on that. Not on the self size of the
158 outer function, not on the self size of inline code
159 we immediately inline to. This is the most relaxed
160 interpretation of the rule "do not grow large functions
161 too much in order to prevent compiler from exploding". */
162 while (true)
164 info = inline_summary (to);
165 if (limit < info->self_size)
166 limit = info->self_size;
167 if (stack_size_limit < info->estimated_self_stack_size)
168 stack_size_limit = info->estimated_self_stack_size;
169 if (to->global.inlined_to)
170 to = to->callers->caller;
171 else
172 break;
175 what_info = inline_summary (what);
177 if (limit < what_info->self_size)
178 limit = what_info->self_size;
180 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
182 /* Check the size after inlining against the function limits. But allow
183 the function to shrink if it went over the limits by forced inlining. */
184 newsize = estimate_size_after_inlining (to, e);
185 if (newsize >= info->size
186 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
187 && newsize > limit)
189 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
190 return false;
193 if (!what_info->estimated_stack_size)
194 return true;
196 /* FIXME: Stack size limit often prevents inlining in Fortran programs
197 due to large i/o datastructures used by the Fortran front-end.
198 We ought to ignore this limit when we know that the edge is executed
199 on every invocation of the caller (i.e. its call statement dominates
200 exit block). We do not track this information, yet. */
201 stack_size_limit += ((gcov_type)stack_size_limit
202 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
204 inlined_stack = (outer_info->stack_frame_offset
205 + outer_info->estimated_self_stack_size
206 + what_info->estimated_stack_size);
207 /* Check new stack consumption with stack consumption at the place
208 stack is used. */
209 if (inlined_stack > stack_size_limit
210 /* If function already has large stack usage from sibling
211 inline call, we can inline, too.
212 This bit overoptimistically assume that we are good at stack
213 packing. */
214 && inlined_stack > info->estimated_stack_size
215 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
217 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
218 return false;
220 return true;
223 /* Dump info about why inlining has failed. */
225 static void
226 report_inline_failed_reason (struct cgraph_edge *e)
228 if (dump_file)
230 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
231 xstrdup (e->caller->name ()), e->caller->order,
232 xstrdup (e->callee->name ()), e->callee->order,
233 cgraph_inline_failed_string (e->inline_failed));
237 /* Decide whether sanitizer-related attributes allow inlining. */
239 static bool
240 sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
242 /* Don't care if sanitizer is disabled */
243 if (!(flag_sanitize & SANITIZE_ADDRESS))
244 return true;
246 if (!caller || !callee)
247 return true;
249 return !!lookup_attribute ("no_sanitize_address",
250 DECL_ATTRIBUTES (caller)) ==
251 !!lookup_attribute ("no_sanitize_address",
252 DECL_ATTRIBUTES (callee));
255 /* Decide if we can inline the edge and possibly update
256 inline_failed reason.
257 We check whether inlining is possible at all and whether
258 caller growth limits allow doing so.
260 if REPORT is true, output reason to the dump file.
262 if DISREGARD_LIMITS is true, ignore size limits.*/
264 static bool
265 can_inline_edge_p (struct cgraph_edge *e, bool report,
266 bool disregard_limits = false)
268 bool inlinable = true;
269 enum availability avail;
270 struct cgraph_node *callee
271 = cgraph_function_or_thunk_node (e->callee, &avail);
272 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->decl);
273 tree callee_tree
274 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
275 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->decl);
276 struct function *callee_cfun
277 = callee ? DECL_STRUCT_FUNCTION (callee->decl) : NULL;
279 if (!caller_cfun && e->caller->clone_of)
280 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->decl);
282 if (!callee_cfun && callee && callee->clone_of)
283 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->decl);
285 gcc_assert (e->inline_failed);
287 if (!callee || !callee->definition)
289 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
290 inlinable = false;
292 else if (callee->calls_comdat_local)
294 e->inline_failed = CIF_USES_COMDAT_LOCAL;
295 inlinable = false;
297 else if (!inline_summary (callee)->inlinable
298 || (caller_cfun && fn_contains_cilk_spawn_p (caller_cfun)))
300 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
301 inlinable = false;
303 else if (avail <= AVAIL_OVERWRITABLE)
305 e->inline_failed = CIF_OVERWRITABLE;
306 inlinable = false;
308 else if (e->call_stmt_cannot_inline_p)
310 if (e->inline_failed != CIF_FUNCTION_NOT_OPTIMIZED)
311 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
312 inlinable = false;
314 /* Don't inline if the functions have different EH personalities. */
315 else if (DECL_FUNCTION_PERSONALITY (e->caller->decl)
316 && DECL_FUNCTION_PERSONALITY (callee->decl)
317 && (DECL_FUNCTION_PERSONALITY (e->caller->decl)
318 != DECL_FUNCTION_PERSONALITY (callee->decl)))
320 e->inline_failed = CIF_EH_PERSONALITY;
321 inlinable = false;
323 /* TM pure functions should not be inlined into non-TM_pure
324 functions. */
325 else if (is_tm_pure (callee->decl)
326 && !is_tm_pure (e->caller->decl))
328 e->inline_failed = CIF_UNSPECIFIED;
329 inlinable = false;
331 /* Don't inline if the callee can throw non-call exceptions but the
332 caller cannot.
333 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
334 Move the flag into cgraph node or mirror it in the inline summary. */
335 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
336 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
338 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
339 inlinable = false;
341 /* Check compatibility of target optimization options. */
342 else if (!targetm.target_option.can_inline_p (e->caller->decl,
343 callee->decl))
345 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
346 inlinable = false;
348 /* Don't inline a function with mismatched sanitization attributes. */
349 else if (!sanitize_attrs_match_for_inline_p (e->caller->decl, callee->decl))
351 e->inline_failed = CIF_ATTRIBUTE_MISMATCH;
352 inlinable = false;
354 /* Check if caller growth allows the inlining. */
355 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
356 && !disregard_limits
357 && !lookup_attribute ("flatten",
358 DECL_ATTRIBUTES
359 (e->caller->global.inlined_to
360 ? e->caller->global.inlined_to->decl
361 : e->caller->decl))
362 && !caller_growth_limits (e))
363 inlinable = false;
364 /* Don't inline a function with a higher optimization level than the
365 caller. FIXME: this is really just tip of iceberg of handling
366 optimization attribute. */
367 else if (caller_tree != callee_tree)
369 struct cl_optimization *caller_opt
370 = TREE_OPTIMIZATION ((caller_tree)
371 ? caller_tree
372 : optimization_default_node);
374 struct cl_optimization *callee_opt
375 = TREE_OPTIMIZATION ((callee_tree)
376 ? callee_tree
377 : optimization_default_node);
379 if (((caller_opt->x_optimize > callee_opt->x_optimize)
380 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
381 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
382 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->decl))
384 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
385 inlinable = false;
389 if (!inlinable && report)
390 report_inline_failed_reason (e);
391 return inlinable;
395 /* Return true if the edge E is inlinable during early inlining. */
397 static bool
398 can_early_inline_edge_p (struct cgraph_edge *e)
400 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
401 NULL);
402 /* Early inliner might get called at WPA stage when IPA pass adds new
403 function. In this case we can not really do any of early inlining
404 because function bodies are missing. */
405 if (!gimple_has_body_p (callee->decl))
407 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
408 return false;
410 /* In early inliner some of callees may not be in SSA form yet
411 (i.e. the callgraph is cyclic and we did not process
412 the callee by early inliner, yet). We don't have CIF code for this
413 case; later we will re-do the decision in the real inliner. */
414 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
415 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
417 if (dump_file)
418 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
419 return false;
421 if (!can_inline_edge_p (e, true))
422 return false;
423 return true;
427 /* Return number of calls in N. Ignore cheap builtins. */
429 static int
430 num_calls (struct cgraph_node *n)
432 struct cgraph_edge *e;
433 int num = 0;
435 for (e = n->callees; e; e = e->next_callee)
436 if (!is_inexpensive_builtin (e->callee->decl))
437 num++;
438 return num;
442 /* Return true if we are interested in inlining small function. */
444 static bool
445 want_early_inline_function_p (struct cgraph_edge *e)
447 bool want_inline = true;
448 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
450 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
452 else if (!DECL_DECLARED_INLINE_P (callee->decl)
453 && !flag_inline_small_functions)
455 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
456 report_inline_failed_reason (e);
457 want_inline = false;
459 else
461 int growth = estimate_edge_growth (e);
462 int n;
464 if (growth <= 0)
466 else if (!cgraph_maybe_hot_edge_p (e)
467 && growth > 0)
469 if (dump_file)
470 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
471 "call is cold and code would grow by %i\n",
472 xstrdup (e->caller->name ()),
473 e->caller->order,
474 xstrdup (callee->name ()), callee->order,
475 growth);
476 want_inline = false;
478 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
480 if (dump_file)
481 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
482 "growth %i exceeds --param early-inlining-insns\n",
483 xstrdup (e->caller->name ()),
484 e->caller->order,
485 xstrdup (callee->name ()), callee->order,
486 growth);
487 want_inline = false;
489 else if ((n = num_calls (callee)) != 0
490 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
492 if (dump_file)
493 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
494 "growth %i exceeds --param early-inlining-insns "
495 "divided by number of calls\n",
496 xstrdup (e->caller->name ()),
497 e->caller->order,
498 xstrdup (callee->name ()), callee->order,
499 growth);
500 want_inline = false;
503 return want_inline;
506 /* Compute time of the edge->caller + edge->callee execution when inlining
507 does not happen. */
509 inline gcov_type
510 compute_uninlined_call_time (struct inline_summary *callee_info,
511 struct cgraph_edge *edge)
513 gcov_type uninlined_call_time =
514 RDIV ((gcov_type)callee_info->time * MAX (edge->frequency, 1),
515 CGRAPH_FREQ_BASE);
516 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
517 ? edge->caller->global.inlined_to
518 : edge->caller)->time;
519 return uninlined_call_time + caller_time;
522 /* Same as compute_uinlined_call_time but compute time when inlining
523 does happen. */
525 inline gcov_type
526 compute_inlined_call_time (struct cgraph_edge *edge,
527 int edge_time)
529 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
530 ? edge->caller->global.inlined_to
531 : edge->caller)->time;
532 gcov_type time = (caller_time
533 + RDIV (((gcov_type) edge_time
534 - inline_edge_summary (edge)->call_stmt_time)
535 * MAX (edge->frequency, 1), CGRAPH_FREQ_BASE));
536 /* Possible one roundoff error, but watch for overflows. */
537 gcc_checking_assert (time >= INT_MIN / 2);
538 if (time < 0)
539 time = 0;
540 return time;
543 /* Return true if the speedup for inlining E is bigger than
544 PARAM_MAX_INLINE_MIN_SPEEDUP. */
546 static bool
547 big_speedup_p (struct cgraph_edge *e)
549 gcov_type time = compute_uninlined_call_time (inline_summary (e->callee),
551 gcov_type inlined_time = compute_inlined_call_time (e,
552 estimate_edge_time (e));
553 if (time - inlined_time
554 > RDIV (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP), 100))
555 return true;
556 return false;
559 /* Return true if we are interested in inlining small function.
560 When REPORT is true, report reason to dump file. */
562 static bool
563 want_inline_small_function_p (struct cgraph_edge *e, bool report)
565 bool want_inline = true;
566 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
568 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
570 else if (!DECL_DECLARED_INLINE_P (callee->decl)
571 && !flag_inline_small_functions)
573 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
574 want_inline = false;
576 else
578 int growth = estimate_edge_growth (e);
579 inline_hints hints = estimate_edge_hints (e);
580 bool big_speedup = big_speedup_p (e);
582 if (growth <= 0)
584 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
585 hints suggests that inlining given function is very profitable. */
586 else if (DECL_DECLARED_INLINE_P (callee->decl)
587 && growth >= MAX_INLINE_INSNS_SINGLE
588 && !big_speedup
589 && !(hints & (INLINE_HINT_indirect_call
590 | INLINE_HINT_loop_iterations
591 | INLINE_HINT_array_index
592 | INLINE_HINT_loop_stride)))
594 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
595 want_inline = false;
597 /* Before giving up based on fact that caller size will grow, allow
598 functions that are called few times and eliminating the offline
599 copy will lead to overall code size reduction.
600 Not all of these will be handled by subsequent inlining of functions
601 called once: in particular weak functions are not handled or funcitons
602 that inline to multiple calls but a lot of bodies is optimized out.
603 Finally we want to inline earlier to allow inlining of callbacks.
605 This is slightly wrong on aggressive side: it is entirely possible
606 that function is called many times with a context where inlining
607 reduces code size and few times with a context where inlining increase
608 code size. Resoluting growth estimate will be negative even if it
609 would make more sense to keep offline copy and do not inline into the
610 call sites that makes the code size grow.
612 When badness orders the calls in a way that code reducing calls come
613 first, this situation is not a problem at all: after inlining all
614 "good" calls, we will realize that keeping the function around is
615 better. */
616 else if (growth <= MAX_INLINE_INSNS_SINGLE
617 /* Unlike for functions called once, we play unsafe with
618 COMDATs. We can allow that since we know functions
619 in consideration are small (and thus risk is small) and
620 moreover grow estimates already accounts that COMDAT
621 functions may or may not disappear when eliminated from
622 current unit. With good probability making aggressive
623 choice in all units is going to make overall program
624 smaller.
626 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
627 instead of
628 cgraph_will_be_removed_from_program_if_no_direct_calls */
629 && !DECL_EXTERNAL (callee->decl)
630 && cgraph_can_remove_if_no_direct_calls_p (callee)
631 && estimate_growth (callee) <= 0)
633 else if (!DECL_DECLARED_INLINE_P (callee->decl)
634 && !flag_inline_functions)
636 e->inline_failed = CIF_NOT_DECLARED_INLINED;
637 want_inline = false;
639 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
640 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
641 inlining given function is very profitable. */
642 else if (!DECL_DECLARED_INLINE_P (callee->decl)
643 && !big_speedup
644 && growth >= ((hints & (INLINE_HINT_indirect_call
645 | INLINE_HINT_loop_iterations
646 | INLINE_HINT_array_index
647 | INLINE_HINT_loop_stride))
648 ? MAX (MAX_INLINE_INSNS_AUTO,
649 MAX_INLINE_INSNS_SINGLE)
650 : MAX_INLINE_INSNS_AUTO))
652 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
653 want_inline = false;
655 /* If call is cold, do not inline when function body would grow. */
656 else if (!cgraph_maybe_hot_edge_p (e))
658 e->inline_failed = CIF_UNLIKELY_CALL;
659 want_inline = false;
662 if (!want_inline && report)
663 report_inline_failed_reason (e);
664 return want_inline;
667 /* EDGE is self recursive edge.
668 We hand two cases - when function A is inlining into itself
669 or when function A is being inlined into another inliner copy of function
670 A within function B.
672 In first case OUTER_NODE points to the toplevel copy of A, while
673 in the second case OUTER_NODE points to the outermost copy of A in B.
675 In both cases we want to be extra selective since
676 inlining the call will just introduce new recursive calls to appear. */
678 static bool
679 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
680 struct cgraph_node *outer_node,
681 bool peeling,
682 int depth)
684 char const *reason = NULL;
685 bool want_inline = true;
686 int caller_freq = CGRAPH_FREQ_BASE;
687 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
689 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
690 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
692 if (!cgraph_maybe_hot_edge_p (edge))
694 reason = "recursive call is cold";
695 want_inline = false;
697 else if (max_count && !outer_node->count)
699 reason = "not executed in profile";
700 want_inline = false;
702 else if (depth > max_depth)
704 reason = "--param max-inline-recursive-depth exceeded.";
705 want_inline = false;
708 if (outer_node->global.inlined_to)
709 caller_freq = outer_node->callers->frequency;
711 if (!caller_freq)
713 reason = "function is inlined and unlikely";
714 want_inline = false;
717 if (!want_inline)
719 /* Inlining of self recursive function into copy of itself within other function
720 is transformation similar to loop peeling.
722 Peeling is profitable if we can inline enough copies to make probability
723 of actual call to the self recursive function very small. Be sure that
724 the probability of recursion is small.
726 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
727 This way the expected number of recision is at most max_depth. */
728 else if (peeling)
730 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
731 / max_depth);
732 int i;
733 for (i = 1; i < depth; i++)
734 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
735 if (max_count
736 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
737 >= max_prob))
739 reason = "profile of recursive call is too large";
740 want_inline = false;
742 if (!max_count
743 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
744 >= max_prob))
746 reason = "frequency of recursive call is too large";
747 want_inline = false;
750 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
751 depth is large. We reduce function call overhead and increase chances that
752 things fit in hardware return predictor.
754 Recursive inlining might however increase cost of stack frame setup
755 actually slowing down functions whose recursion tree is wide rather than
756 deep.
758 Deciding reliably on when to do recursive inlining without profile feedback
759 is tricky. For now we disable recursive inlining when probability of self
760 recursion is low.
762 Recursive inlining of self recursive call within loop also results in large loop
763 depths that generally optimize badly. We may want to throttle down inlining
764 in those cases. In particular this seems to happen in one of libstdc++ rb tree
765 methods. */
766 else
768 if (max_count
769 && (edge->count * 100 / outer_node->count
770 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
772 reason = "profile of recursive call is too small";
773 want_inline = false;
775 else if (!max_count
776 && (edge->frequency * 100 / caller_freq
777 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
779 reason = "frequency of recursive call is too small";
780 want_inline = false;
783 if (!want_inline && dump_file)
784 fprintf (dump_file, " not inlining recursively: %s\n", reason);
785 return want_inline;
788 /* Return true when NODE has uninlinable caller;
789 set HAS_HOT_CALL if it has hot call.
790 Worker for cgraph_for_node_and_aliases. */
792 static bool
793 check_callers (struct cgraph_node *node, void *has_hot_call)
795 struct cgraph_edge *e;
796 for (e = node->callers; e; e = e->next_caller)
798 if (!can_inline_edge_p (e, true))
799 return true;
800 if (!(*(bool *)has_hot_call) && cgraph_maybe_hot_edge_p (e))
801 *(bool *)has_hot_call = true;
803 return false;
806 /* If NODE has a caller, return true. */
808 static bool
809 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
811 if (node->callers)
812 return true;
813 return false;
816 /* Decide if inlining NODE would reduce unit size by eliminating
817 the offline copy of function.
818 When COLD is true the cold calls are considered, too. */
820 static bool
821 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
823 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
824 bool has_hot_call = false;
826 /* Does it have callers? */
827 if (!cgraph_for_node_and_aliases (node, has_caller_p, NULL, true))
828 return false;
829 /* Already inlined? */
830 if (function->global.inlined_to)
831 return false;
832 if (cgraph_function_or_thunk_node (node, NULL) != node)
833 return false;
834 /* Inlining into all callers would increase size? */
835 if (estimate_growth (node) > 0)
836 return false;
837 /* All inlines must be possible. */
838 if (cgraph_for_node_and_aliases (node, check_callers, &has_hot_call, true))
839 return false;
840 if (!cold && !has_hot_call)
841 return false;
842 return true;
845 #define RELATIVE_TIME_BENEFIT_RANGE (INT_MAX / 64)
847 /* Return relative time improvement for inlining EDGE in range
848 1...RELATIVE_TIME_BENEFIT_RANGE */
850 static inline int
851 relative_time_benefit (struct inline_summary *callee_info,
852 struct cgraph_edge *edge,
853 int edge_time)
855 gcov_type relbenefit;
856 gcov_type uninlined_call_time = compute_uninlined_call_time (callee_info, edge);
857 gcov_type inlined_call_time = compute_inlined_call_time (edge, edge_time);
859 /* Inlining into extern inline function is not a win. */
860 if (DECL_EXTERNAL (edge->caller->global.inlined_to
861 ? edge->caller->global.inlined_to->decl
862 : edge->caller->decl))
863 return 1;
865 /* Watch overflows. */
866 gcc_checking_assert (uninlined_call_time >= 0);
867 gcc_checking_assert (inlined_call_time >= 0);
868 gcc_checking_assert (uninlined_call_time >= inlined_call_time);
870 /* Compute relative time benefit, i.e. how much the call becomes faster.
871 ??? perhaps computing how much the caller+calle together become faster
872 would lead to more realistic results. */
873 if (!uninlined_call_time)
874 uninlined_call_time = 1;
875 relbenefit =
876 RDIV (((gcov_type)uninlined_call_time - inlined_call_time) * RELATIVE_TIME_BENEFIT_RANGE,
877 uninlined_call_time);
878 relbenefit = MIN (relbenefit, RELATIVE_TIME_BENEFIT_RANGE);
879 gcc_checking_assert (relbenefit >= 0);
880 relbenefit = MAX (relbenefit, 1);
881 return relbenefit;
885 /* A cost model driving the inlining heuristics in a way so the edges with
886 smallest badness are inlined first. After each inlining is performed
887 the costs of all caller edges of nodes affected are recomputed so the
888 metrics may accurately depend on values such as number of inlinable callers
889 of the function or function body size. */
891 static int
892 edge_badness (struct cgraph_edge *edge, bool dump)
894 gcov_type badness;
895 int growth, edge_time;
896 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
897 NULL);
898 struct inline_summary *callee_info = inline_summary (callee);
899 inline_hints hints;
901 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
902 return INT_MIN;
904 growth = estimate_edge_growth (edge);
905 edge_time = estimate_edge_time (edge);
906 hints = estimate_edge_hints (edge);
907 gcc_checking_assert (edge_time >= 0);
908 gcc_checking_assert (edge_time <= callee_info->time);
909 gcc_checking_assert (growth <= callee_info->size);
911 if (dump)
913 fprintf (dump_file, " Badness calculation for %s/%i -> %s/%i\n",
914 xstrdup (edge->caller->name ()),
915 edge->caller->order,
916 xstrdup (callee->name ()),
917 edge->callee->order);
918 fprintf (dump_file, " size growth %i, time %i ",
919 growth,
920 edge_time);
921 dump_inline_hints (dump_file, hints);
922 if (big_speedup_p (edge))
923 fprintf (dump_file, " big_speedup");
924 fprintf (dump_file, "\n");
927 /* Always prefer inlining saving code size. */
928 if (growth <= 0)
930 badness = INT_MIN / 2 + growth;
931 if (dump)
932 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
933 growth);
936 /* When profiling is available, compute badness as:
938 relative_edge_count * relative_time_benefit
939 goodness = -------------------------------------------
940 growth_f_caller
941 badness = -goodness
943 The fraction is upside down, because on edge counts and time beneits
944 the bounds are known. Edge growth is essentially unlimited. */
946 else if (max_count)
948 sreal tmp, relbenefit_real, growth_real;
949 int relbenefit = relative_time_benefit (callee_info, edge, edge_time);
950 /* Capping edge->count to max_count. edge->count can be larger than
951 max_count if an inline adds new edges which increase max_count
952 after max_count is computed. */
953 gcov_type edge_count = edge->count > max_count ? max_count : edge->count;
955 sreal_init (&relbenefit_real, relbenefit, 0);
956 sreal_init (&growth_real, growth, 0);
958 /* relative_edge_count. */
959 sreal_init (&tmp, edge_count, 0);
960 sreal_div (&tmp, &tmp, &max_count_real);
962 /* relative_time_benefit. */
963 sreal_mul (&tmp, &tmp, &relbenefit_real);
964 sreal_div (&tmp, &tmp, &max_relbenefit_real);
966 /* growth_f_caller. */
967 sreal_mul (&tmp, &tmp, &half_int_min_real);
968 sreal_div (&tmp, &tmp, &growth_real);
970 badness = -1 * sreal_to_int (&tmp);
972 if (dump)
974 fprintf (dump_file,
975 " %i (relative %f): profile info. Relative count %f%s"
976 " * Relative benefit %f\n",
977 (int) badness, (double) badness / INT_MIN,
978 (double) edge_count / max_count,
979 edge->count > max_count ? " (capped to max_count)" : "",
980 relbenefit * 100.0 / RELATIVE_TIME_BENEFIT_RANGE);
984 /* When function local profile is available. Compute badness as:
986 relative_time_benefit
987 goodness = ---------------------------------
988 growth_of_caller * overall_growth
990 badness = - goodness
992 compensated by the inline hints.
994 else if (flag_guess_branch_prob)
996 badness = (relative_time_benefit (callee_info, edge, edge_time)
997 * (INT_MIN / 16 / RELATIVE_TIME_BENEFIT_RANGE));
998 badness /= (MIN (65536/2, growth) * MIN (65536/2, MAX (1, callee_info->growth)));
999 gcc_checking_assert (badness <=0 && badness >= INT_MIN / 16);
1000 if ((hints & (INLINE_HINT_indirect_call
1001 | INLINE_HINT_loop_iterations
1002 | INLINE_HINT_array_index
1003 | INLINE_HINT_loop_stride))
1004 || callee_info->growth <= 0)
1005 badness *= 8;
1006 if (hints & (INLINE_HINT_same_scc))
1007 badness /= 16;
1008 else if (hints & (INLINE_HINT_in_scc))
1009 badness /= 8;
1010 else if (hints & (INLINE_HINT_cross_module))
1011 badness /= 2;
1012 gcc_checking_assert (badness <= 0 && badness >= INT_MIN / 2);
1013 if ((hints & INLINE_HINT_declared_inline) && badness >= INT_MIN / 32)
1014 badness *= 16;
1015 if (dump)
1017 fprintf (dump_file,
1018 " %i: guessed profile. frequency %f,"
1019 " benefit %f%%, time w/o inlining %i, time w inlining %i"
1020 " overall growth %i (current) %i (original)\n",
1021 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE,
1022 relative_time_benefit (callee_info, edge, edge_time) * 100.0
1023 / RELATIVE_TIME_BENEFIT_RANGE,
1024 (int)compute_uninlined_call_time (callee_info, edge),
1025 (int)compute_inlined_call_time (edge, edge_time),
1026 estimate_growth (callee),
1027 callee_info->growth);
1030 /* When function local profile is not available or it does not give
1031 useful information (ie frequency is zero), base the cost on
1032 loop nest and overall size growth, so we optimize for overall number
1033 of functions fully inlined in program. */
1034 else
1036 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
1037 badness = growth * 256;
1039 /* Decrease badness if call is nested. */
1040 if (badness > 0)
1041 badness >>= nest;
1042 else
1044 badness <<= nest;
1046 if (dump)
1047 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
1048 nest);
1051 /* Ensure that we did not overflow in all the fixed point math above. */
1052 gcc_assert (badness >= INT_MIN);
1053 gcc_assert (badness <= INT_MAX - 1);
1054 /* Make recursive inlining happen always after other inlining is done. */
1055 if (cgraph_edge_recursive_p (edge))
1056 return badness + 1;
1057 else
1058 return badness;
1061 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1062 static inline void
1063 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
1065 int badness = edge_badness (edge, false);
1066 if (edge->aux)
1068 fibnode_t n = (fibnode_t) edge->aux;
1069 gcc_checking_assert (n->data == edge);
1071 /* fibheap_replace_key only decrease the keys.
1072 When we increase the key we do not update heap
1073 and instead re-insert the element once it becomes
1074 a minimum of heap. */
1075 if (badness < n->key)
1077 if (dump_file && (dump_flags & TDF_DETAILS))
1079 fprintf (dump_file,
1080 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
1081 xstrdup (edge->caller->name ()),
1082 edge->caller->order,
1083 xstrdup (edge->callee->name ()),
1084 edge->callee->order,
1085 (int)n->key,
1086 badness);
1088 fibheap_replace_key (heap, n, badness);
1089 gcc_checking_assert (n->key == badness);
1092 else
1094 if (dump_file && (dump_flags & TDF_DETAILS))
1096 fprintf (dump_file,
1097 " enqueuing call %s/%i -> %s/%i, badness %i\n",
1098 xstrdup (edge->caller->name ()),
1099 edge->caller->order,
1100 xstrdup (edge->callee->name ()),
1101 edge->callee->order,
1102 badness);
1104 edge->aux = fibheap_insert (heap, badness, edge);
1109 /* NODE was inlined.
1110 All caller edges needs to be resetted because
1111 size estimates change. Similarly callees needs reset
1112 because better context may be known. */
1114 static void
1115 reset_edge_caches (struct cgraph_node *node)
1117 struct cgraph_edge *edge;
1118 struct cgraph_edge *e = node->callees;
1119 struct cgraph_node *where = node;
1120 int i;
1121 struct ipa_ref *ref;
1123 if (where->global.inlined_to)
1124 where = where->global.inlined_to;
1126 /* WHERE body size has changed, the cached growth is invalid. */
1127 reset_node_growth_cache (where);
1129 for (edge = where->callers; edge; edge = edge->next_caller)
1130 if (edge->inline_failed)
1131 reset_edge_growth_cache (edge);
1132 for (i = 0; ipa_ref_list_referring_iterate (&where->ref_list,
1133 i, ref); i++)
1134 if (ref->use == IPA_REF_ALIAS)
1135 reset_edge_caches (ipa_ref_referring_node (ref));
1137 if (!e)
1138 return;
1140 while (true)
1141 if (!e->inline_failed && e->callee->callees)
1142 e = e->callee->callees;
1143 else
1145 if (e->inline_failed)
1146 reset_edge_growth_cache (e);
1147 if (e->next_callee)
1148 e = e->next_callee;
1149 else
1153 if (e->caller == node)
1154 return;
1155 e = e->caller->callers;
1157 while (!e->next_callee);
1158 e = e->next_callee;
1163 /* Recompute HEAP nodes for each of caller of NODE.
1164 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1165 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1166 it is inlinable. Otherwise check all edges. */
1168 static void
1169 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
1170 bitmap updated_nodes,
1171 struct cgraph_edge *check_inlinablity_for)
1173 struct cgraph_edge *edge;
1174 int i;
1175 struct ipa_ref *ref;
1177 if ((!node->alias && !inline_summary (node)->inlinable)
1178 || node->global.inlined_to)
1179 return;
1180 if (!bitmap_set_bit (updated_nodes, node->uid))
1181 return;
1183 for (i = 0; ipa_ref_list_referring_iterate (&node->ref_list,
1184 i, ref); i++)
1185 if (ref->use == IPA_REF_ALIAS)
1187 struct cgraph_node *alias = ipa_ref_referring_node (ref);
1188 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1191 for (edge = node->callers; edge; edge = edge->next_caller)
1192 if (edge->inline_failed)
1194 if (!check_inlinablity_for
1195 || check_inlinablity_for == edge)
1197 if (can_inline_edge_p (edge, false)
1198 && want_inline_small_function_p (edge, false))
1199 update_edge_key (heap, edge);
1200 else if (edge->aux)
1202 report_inline_failed_reason (edge);
1203 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1204 edge->aux = NULL;
1207 else if (edge->aux)
1208 update_edge_key (heap, edge);
1212 /* Recompute HEAP nodes for each uninlined call in NODE.
1213 This is used when we know that edge badnesses are going only to increase
1214 (we introduced new call site) and thus all we need is to insert newly
1215 created edges into heap. */
1217 static void
1218 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1219 bitmap updated_nodes)
1221 struct cgraph_edge *e = node->callees;
1223 if (!e)
1224 return;
1225 while (true)
1226 if (!e->inline_failed && e->callee->callees)
1227 e = e->callee->callees;
1228 else
1230 enum availability avail;
1231 struct cgraph_node *callee;
1232 /* We do not reset callee growth cache here. Since we added a new call,
1233 growth chould have just increased and consequentely badness metric
1234 don't need updating. */
1235 if (e->inline_failed
1236 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1237 && inline_summary (callee)->inlinable
1238 && avail >= AVAIL_AVAILABLE
1239 && !bitmap_bit_p (updated_nodes, callee->uid))
1241 if (can_inline_edge_p (e, false)
1242 && want_inline_small_function_p (e, false))
1243 update_edge_key (heap, e);
1244 else if (e->aux)
1246 report_inline_failed_reason (e);
1247 fibheap_delete_node (heap, (fibnode_t) e->aux);
1248 e->aux = NULL;
1251 if (e->next_callee)
1252 e = e->next_callee;
1253 else
1257 if (e->caller == node)
1258 return;
1259 e = e->caller->callers;
1261 while (!e->next_callee);
1262 e = e->next_callee;
1267 /* Enqueue all recursive calls from NODE into priority queue depending on
1268 how likely we want to recursively inline the call. */
1270 static void
1271 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1272 fibheap_t heap)
1274 struct cgraph_edge *e;
1275 enum availability avail;
1277 for (e = where->callees; e; e = e->next_callee)
1278 if (e->callee == node
1279 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1280 && avail > AVAIL_OVERWRITABLE))
1282 /* When profile feedback is available, prioritize by expected number
1283 of calls. */
1284 fibheap_insert (heap,
1285 !max_count ? -e->frequency
1286 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1289 for (e = where->callees; e; e = e->next_callee)
1290 if (!e->inline_failed)
1291 lookup_recursive_calls (node, e->callee, heap);
1294 /* Decide on recursive inlining: in the case function has recursive calls,
1295 inline until body size reaches given argument. If any new indirect edges
1296 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1297 is NULL. */
1299 static bool
1300 recursive_inlining (struct cgraph_edge *edge,
1301 vec<cgraph_edge_p> *new_edges)
1303 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1304 fibheap_t heap;
1305 struct cgraph_node *node;
1306 struct cgraph_edge *e;
1307 struct cgraph_node *master_clone = NULL, *next;
1308 int depth = 0;
1309 int n = 0;
1311 node = edge->caller;
1312 if (node->global.inlined_to)
1313 node = node->global.inlined_to;
1315 if (DECL_DECLARED_INLINE_P (node->decl))
1316 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1318 /* Make sure that function is small enough to be considered for inlining. */
1319 if (estimate_size_after_inlining (node, edge) >= limit)
1320 return false;
1321 heap = fibheap_new ();
1322 lookup_recursive_calls (node, node, heap);
1323 if (fibheap_empty (heap))
1325 fibheap_delete (heap);
1326 return false;
1329 if (dump_file)
1330 fprintf (dump_file,
1331 " Performing recursive inlining on %s\n",
1332 node->name ());
1334 /* Do the inlining and update list of recursive call during process. */
1335 while (!fibheap_empty (heap))
1337 struct cgraph_edge *curr
1338 = (struct cgraph_edge *) fibheap_extract_min (heap);
1339 struct cgraph_node *cnode, *dest = curr->callee;
1341 if (!can_inline_edge_p (curr, true))
1342 continue;
1344 /* MASTER_CLONE is produced in the case we already started modified
1345 the function. Be sure to redirect edge to the original body before
1346 estimating growths otherwise we will be seeing growths after inlining
1347 the already modified body. */
1348 if (master_clone)
1350 cgraph_redirect_edge_callee (curr, master_clone);
1351 reset_edge_growth_cache (curr);
1354 if (estimate_size_after_inlining (node, curr) > limit)
1356 cgraph_redirect_edge_callee (curr, dest);
1357 reset_edge_growth_cache (curr);
1358 break;
1361 depth = 1;
1362 for (cnode = curr->caller;
1363 cnode->global.inlined_to; cnode = cnode->callers->caller)
1364 if (node->decl
1365 == cgraph_function_or_thunk_node (curr->callee, NULL)->decl)
1366 depth++;
1368 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1370 cgraph_redirect_edge_callee (curr, dest);
1371 reset_edge_growth_cache (curr);
1372 continue;
1375 if (dump_file)
1377 fprintf (dump_file,
1378 " Inlining call of depth %i", depth);
1379 if (node->count)
1381 fprintf (dump_file, " called approx. %.2f times per call",
1382 (double)curr->count / node->count);
1384 fprintf (dump_file, "\n");
1386 if (!master_clone)
1388 /* We need original clone to copy around. */
1389 master_clone = cgraph_clone_node (node, node->decl,
1390 node->count, CGRAPH_FREQ_BASE,
1391 false, vNULL, true, NULL);
1392 for (e = master_clone->callees; e; e = e->next_callee)
1393 if (!e->inline_failed)
1394 clone_inlined_nodes (e, true, false, NULL, CGRAPH_FREQ_BASE);
1395 cgraph_redirect_edge_callee (curr, master_clone);
1396 reset_edge_growth_cache (curr);
1399 inline_call (curr, false, new_edges, &overall_size, true);
1400 lookup_recursive_calls (node, curr->callee, heap);
1401 n++;
1404 if (!fibheap_empty (heap) && dump_file)
1405 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1406 fibheap_delete (heap);
1408 if (!master_clone)
1409 return false;
1411 if (dump_file)
1412 fprintf (dump_file,
1413 "\n Inlined %i times, "
1414 "body grown from size %i to %i, time %i to %i\n", n,
1415 inline_summary (master_clone)->size, inline_summary (node)->size,
1416 inline_summary (master_clone)->time, inline_summary (node)->time);
1418 /* Remove master clone we used for inlining. We rely that clones inlined
1419 into master clone gets queued just before master clone so we don't
1420 need recursion. */
1421 for (node = cgraph_first_function (); node != master_clone;
1422 node = next)
1424 next = cgraph_next_function (node);
1425 if (node->global.inlined_to == master_clone)
1426 cgraph_remove_node (node);
1428 cgraph_remove_node (master_clone);
1429 return true;
1433 /* Given whole compilation unit estimate of INSNS, compute how large we can
1434 allow the unit to grow. */
1436 static int
1437 compute_max_insns (int insns)
1439 int max_insns = insns;
1440 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1441 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1443 return ((HOST_WIDEST_INT) max_insns
1444 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1448 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1450 static void
1451 add_new_edges_to_heap (fibheap_t heap, vec<cgraph_edge_p> new_edges)
1453 while (new_edges.length () > 0)
1455 struct cgraph_edge *edge = new_edges.pop ();
1457 gcc_assert (!edge->aux);
1458 if (edge->inline_failed
1459 && can_inline_edge_p (edge, true)
1460 && want_inline_small_function_p (edge, true))
1461 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1465 /* Remove EDGE from the fibheap. */
1467 static void
1468 heap_edge_removal_hook (struct cgraph_edge *e, void *data)
1470 if (e->callee)
1471 reset_node_growth_cache (e->callee);
1472 if (e->aux)
1474 fibheap_delete_node ((fibheap_t)data, (fibnode_t)e->aux);
1475 e->aux = NULL;
1479 /* Return true if speculation of edge E seems useful.
1480 If ANTICIPATE_INLINING is true, be conservative and hope that E
1481 may get inlined. */
1483 bool
1484 speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
1486 enum availability avail;
1487 struct cgraph_node *target = cgraph_function_or_thunk_node (e->callee, &avail);
1488 struct cgraph_edge *direct, *indirect;
1489 struct ipa_ref *ref;
1491 gcc_assert (e->speculative && !e->indirect_unknown_callee);
1493 if (!cgraph_maybe_hot_edge_p (e))
1494 return false;
1496 /* See if IP optimizations found something potentially useful about the
1497 function. For now we look only for CONST/PURE flags. Almost everything
1498 else we propagate is useless. */
1499 if (avail >= AVAIL_AVAILABLE)
1501 int ecf_flags = flags_from_decl_or_type (target->decl);
1502 if (ecf_flags & ECF_CONST)
1504 cgraph_speculative_call_info (e, direct, indirect, ref);
1505 if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
1506 return true;
1508 else if (ecf_flags & ECF_PURE)
1510 cgraph_speculative_call_info (e, direct, indirect, ref);
1511 if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
1512 return true;
1515 /* If we did not managed to inline the function nor redirect
1516 to an ipa-cp clone (that are seen by having local flag set),
1517 it is probably pointless to inline it unless hardware is missing
1518 indirect call predictor. */
1519 if (!anticipate_inlining && e->inline_failed && !target->local.local)
1520 return false;
1521 /* For overwritable targets there is not much to do. */
1522 if (e->inline_failed && !can_inline_edge_p (e, false, true))
1523 return false;
1524 /* OK, speculation seems interesting. */
1525 return true;
1528 /* We know that EDGE is not going to be inlined.
1529 See if we can remove speculation. */
1531 static void
1532 resolve_noninline_speculation (fibheap_t edge_heap, struct cgraph_edge *edge)
1534 if (edge->speculative && !speculation_useful_p (edge, false))
1536 struct cgraph_node *node = edge->caller;
1537 struct cgraph_node *where = node->global.inlined_to
1538 ? node->global.inlined_to : node;
1539 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1541 cgraph_resolve_speculation (edge, NULL);
1542 reset_edge_caches (where);
1543 inline_update_overall_summary (where);
1544 update_caller_keys (edge_heap, where,
1545 updated_nodes, NULL);
1546 update_callee_keys (edge_heap, where,
1547 updated_nodes);
1548 BITMAP_FREE (updated_nodes);
1552 /* We use greedy algorithm for inlining of small functions:
1553 All inline candidates are put into prioritized heap ordered in
1554 increasing badness.
1556 The inlining of small functions is bounded by unit growth parameters. */
1558 static void
1559 inline_small_functions (void)
1561 struct cgraph_node *node;
1562 struct cgraph_edge *edge;
1563 fibheap_t edge_heap = fibheap_new ();
1564 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1565 int min_size, max_size;
1566 auto_vec<cgraph_edge_p> new_indirect_edges;
1567 int initial_size = 0;
1568 struct cgraph_node **order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1569 struct cgraph_edge_hook_list *edge_removal_hook_holder;
1571 if (flag_indirect_inlining)
1572 new_indirect_edges.create (8);
1574 edge_removal_hook_holder
1575 = cgraph_add_edge_removal_hook (&heap_edge_removal_hook, edge_heap);
1577 /* Compute overall unit size and other global parameters used by badness
1578 metrics. */
1580 max_count = 0;
1581 ipa_reduced_postorder (order, true, true, NULL);
1582 free (order);
1584 FOR_EACH_DEFINED_FUNCTION (node)
1585 if (!node->global.inlined_to)
1587 if (cgraph_function_with_gimple_body_p (node)
1588 || node->thunk.thunk_p)
1590 struct inline_summary *info = inline_summary (node);
1591 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
1593 if (!DECL_EXTERNAL (node->decl))
1594 initial_size += info->size;
1595 info->growth = estimate_growth (node);
1596 if (dfs && dfs->next_cycle)
1598 struct cgraph_node *n2;
1599 int id = dfs->scc_no + 1;
1600 for (n2 = node; n2;
1601 n2 = ((struct ipa_dfs_info *) node->aux)->next_cycle)
1603 struct inline_summary *info2 = inline_summary (n2);
1604 if (info2->scc_no)
1605 break;
1606 info2->scc_no = id;
1611 for (edge = node->callers; edge; edge = edge->next_caller)
1612 if (max_count < edge->count)
1613 max_count = edge->count;
1615 sreal_init (&max_count_real, max_count, 0);
1616 sreal_init (&max_relbenefit_real, RELATIVE_TIME_BENEFIT_RANGE, 0);
1617 sreal_init (&half_int_min_real, INT_MAX / 2, 0);
1618 ipa_free_postorder_info ();
1619 initialize_growth_caches ();
1621 if (dump_file)
1622 fprintf (dump_file,
1623 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1624 initial_size);
1626 overall_size = initial_size;
1627 max_size = compute_max_insns (overall_size);
1628 min_size = overall_size;
1630 /* Populate the heap with all edges we might inline. */
1632 FOR_EACH_DEFINED_FUNCTION (node)
1634 bool update = false;
1635 struct cgraph_edge *next;
1637 if (dump_file)
1638 fprintf (dump_file, "Enqueueing calls in %s/%i.\n",
1639 node->name (), node->order);
1641 for (edge = node->callees; edge; edge = next)
1643 next = edge->next_callee;
1644 if (edge->inline_failed
1645 && !edge->aux
1646 && can_inline_edge_p (edge, true)
1647 && want_inline_small_function_p (edge, true)
1648 && edge->inline_failed)
1650 gcc_assert (!edge->aux);
1651 update_edge_key (edge_heap, edge);
1653 if (edge->speculative && !speculation_useful_p (edge, edge->aux != NULL))
1655 cgraph_resolve_speculation (edge, NULL);
1656 update = true;
1659 if (update)
1661 struct cgraph_node *where = node->global.inlined_to
1662 ? node->global.inlined_to : node;
1663 inline_update_overall_summary (where);
1664 reset_node_growth_cache (where);
1665 reset_edge_caches (where);
1666 update_caller_keys (edge_heap, where,
1667 updated_nodes, NULL);
1668 bitmap_clear (updated_nodes);
1672 gcc_assert (in_lto_p
1673 || !max_count
1674 || (profile_info && flag_branch_probabilities));
1676 while (!fibheap_empty (edge_heap))
1678 int old_size = overall_size;
1679 struct cgraph_node *where, *callee;
1680 int badness = fibheap_min_key (edge_heap);
1681 int current_badness;
1682 int cached_badness;
1683 int growth;
1685 edge = (struct cgraph_edge *) fibheap_extract_min (edge_heap);
1686 gcc_assert (edge->aux);
1687 edge->aux = NULL;
1688 if (!edge->inline_failed)
1689 continue;
1691 /* Be sure that caches are maintained consistent.
1692 We can not make this ENABLE_CHECKING only because it cause different
1693 updates of the fibheap queue. */
1694 cached_badness = edge_badness (edge, false);
1695 reset_edge_growth_cache (edge);
1696 reset_node_growth_cache (edge->callee);
1698 /* When updating the edge costs, we only decrease badness in the keys.
1699 Increases of badness are handled lazilly; when we see key with out
1700 of date value on it, we re-insert it now. */
1701 current_badness = edge_badness (edge, false);
1702 gcc_assert (cached_badness == current_badness);
1703 gcc_assert (current_badness >= badness);
1704 if (current_badness != badness)
1706 edge->aux = fibheap_insert (edge_heap, current_badness, edge);
1707 continue;
1710 if (!can_inline_edge_p (edge, true))
1712 resolve_noninline_speculation (edge_heap, edge);
1713 continue;
1716 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1717 growth = estimate_edge_growth (edge);
1718 if (dump_file)
1720 fprintf (dump_file,
1721 "\nConsidering %s/%i with %i size\n",
1722 callee->name (), callee->order,
1723 inline_summary (callee)->size);
1724 fprintf (dump_file,
1725 " to be inlined into %s/%i in %s:%i\n"
1726 " Estimated growth after inlined into all is %+i insns.\n"
1727 " Estimated badness is %i, frequency %.2f.\n",
1728 edge->caller->name (), edge->caller->order,
1729 flag_wpa ? "unknown"
1730 : gimple_filename ((const_gimple) edge->call_stmt),
1731 flag_wpa ? -1
1732 : gimple_lineno ((const_gimple) edge->call_stmt),
1733 estimate_growth (callee),
1734 badness,
1735 edge->frequency / (double)CGRAPH_FREQ_BASE);
1736 if (edge->count)
1737 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1738 edge->count);
1739 if (dump_flags & TDF_DETAILS)
1740 edge_badness (edge, true);
1743 if (overall_size + growth > max_size
1744 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1746 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1747 report_inline_failed_reason (edge);
1748 resolve_noninline_speculation (edge_heap, edge);
1749 continue;
1752 if (!want_inline_small_function_p (edge, true))
1754 resolve_noninline_speculation (edge_heap, edge);
1755 continue;
1758 /* Heuristics for inlining small functions work poorly for
1759 recursive calls where we do effects similar to loop unrolling.
1760 When inlining such edge seems profitable, leave decision on
1761 specific inliner. */
1762 if (cgraph_edge_recursive_p (edge))
1764 where = edge->caller;
1765 if (where->global.inlined_to)
1766 where = where->global.inlined_to;
1767 if (!recursive_inlining (edge,
1768 flag_indirect_inlining
1769 ? &new_indirect_edges : NULL))
1771 edge->inline_failed = CIF_RECURSIVE_INLINING;
1772 resolve_noninline_speculation (edge_heap, edge);
1773 continue;
1775 reset_edge_caches (where);
1776 /* Recursive inliner inlines all recursive calls of the function
1777 at once. Consequently we need to update all callee keys. */
1778 if (flag_indirect_inlining)
1779 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1780 update_callee_keys (edge_heap, where, updated_nodes);
1781 bitmap_clear (updated_nodes);
1783 else
1785 struct cgraph_node *outer_node = NULL;
1786 int depth = 0;
1788 /* Consider the case where self recursive function A is inlined
1789 into B. This is desired optimization in some cases, since it
1790 leads to effect similar of loop peeling and we might completely
1791 optimize out the recursive call. However we must be extra
1792 selective. */
1794 where = edge->caller;
1795 while (where->global.inlined_to)
1797 if (where->decl == callee->decl)
1798 outer_node = where, depth++;
1799 where = where->callers->caller;
1801 if (outer_node
1802 && !want_inline_self_recursive_call_p (edge, outer_node,
1803 true, depth))
1805 edge->inline_failed
1806 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
1807 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1808 resolve_noninline_speculation (edge_heap, edge);
1809 continue;
1811 else if (depth && dump_file)
1812 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1814 gcc_checking_assert (!callee->global.inlined_to);
1815 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
1816 if (flag_indirect_inlining)
1817 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1819 reset_edge_caches (edge->callee);
1820 reset_node_growth_cache (callee);
1822 update_callee_keys (edge_heap, where, updated_nodes);
1824 where = edge->caller;
1825 if (where->global.inlined_to)
1826 where = where->global.inlined_to;
1828 /* Our profitability metric can depend on local properties
1829 such as number of inlinable calls and size of the function body.
1830 After inlining these properties might change for the function we
1831 inlined into (since it's body size changed) and for the functions
1832 called by function we inlined (since number of it inlinable callers
1833 might change). */
1834 update_caller_keys (edge_heap, where, updated_nodes, NULL);
1835 bitmap_clear (updated_nodes);
1837 if (dump_file)
1839 fprintf (dump_file,
1840 " Inlined into %s which now has time %i and size %i,"
1841 "net change of %+i.\n",
1842 edge->caller->name (),
1843 inline_summary (edge->caller)->time,
1844 inline_summary (edge->caller)->size,
1845 overall_size - old_size);
1847 if (min_size > overall_size)
1849 min_size = overall_size;
1850 max_size = compute_max_insns (min_size);
1852 if (dump_file)
1853 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1857 free_growth_caches ();
1858 fibheap_delete (edge_heap);
1859 if (dump_file)
1860 fprintf (dump_file,
1861 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1862 initial_size, overall_size,
1863 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1864 BITMAP_FREE (updated_nodes);
1865 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
1868 /* Flatten NODE. Performed both during early inlining and
1869 at IPA inlining time. */
1871 static void
1872 flatten_function (struct cgraph_node *node, bool early)
1874 struct cgraph_edge *e;
1876 /* We shouldn't be called recursively when we are being processed. */
1877 gcc_assert (node->aux == NULL);
1879 node->aux = (void *) node;
1881 for (e = node->callees; e; e = e->next_callee)
1883 struct cgraph_node *orig_callee;
1884 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1886 /* We've hit cycle? It is time to give up. */
1887 if (callee->aux)
1889 if (dump_file)
1890 fprintf (dump_file,
1891 "Not inlining %s into %s to avoid cycle.\n",
1892 xstrdup (callee->name ()),
1893 xstrdup (e->caller->name ()));
1894 e->inline_failed = CIF_RECURSIVE_INLINING;
1895 continue;
1898 /* When the edge is already inlined, we just need to recurse into
1899 it in order to fully flatten the leaves. */
1900 if (!e->inline_failed)
1902 flatten_function (callee, early);
1903 continue;
1906 /* Flatten attribute needs to be processed during late inlining. For
1907 extra code quality we however do flattening during early optimization,
1908 too. */
1909 if (!early
1910 ? !can_inline_edge_p (e, true)
1911 : !can_early_inline_edge_p (e))
1912 continue;
1914 if (cgraph_edge_recursive_p (e))
1916 if (dump_file)
1917 fprintf (dump_file, "Not inlining: recursive call.\n");
1918 continue;
1921 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
1922 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
1924 if (dump_file)
1925 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1926 continue;
1929 /* Inline the edge and flatten the inline clone. Avoid
1930 recursing through the original node if the node was cloned. */
1931 if (dump_file)
1932 fprintf (dump_file, " Inlining %s into %s.\n",
1933 xstrdup (callee->name ()),
1934 xstrdup (e->caller->name ()));
1935 orig_callee = callee;
1936 inline_call (e, true, NULL, NULL, false);
1937 if (e->callee != orig_callee)
1938 orig_callee->aux = (void *) node;
1939 flatten_function (e->callee, early);
1940 if (e->callee != orig_callee)
1941 orig_callee->aux = NULL;
1944 node->aux = NULL;
1945 if (!node->global.inlined_to)
1946 inline_update_overall_summary (node);
1949 /* Count number of callers of NODE and store it into DATA (that
1950 points to int. Worker for cgraph_for_node_and_aliases. */
1952 static bool
1953 sum_callers (struct cgraph_node *node, void *data)
1955 struct cgraph_edge *e;
1956 int *num_calls = (int *)data;
1958 for (e = node->callers; e; e = e->next_caller)
1959 (*num_calls)++;
1960 return false;
1963 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
1964 DATA points to number of calls originally found so we avoid infinite
1965 recursion. */
1967 static bool
1968 inline_to_all_callers (struct cgraph_node *node, void *data)
1970 int *num_calls = (int *)data;
1971 while (node->callers && !node->global.inlined_to)
1973 struct cgraph_node *caller = node->callers->caller;
1975 if (dump_file)
1977 fprintf (dump_file,
1978 "\nInlining %s size %i.\n",
1979 node->name (),
1980 inline_summary (node)->size);
1981 fprintf (dump_file,
1982 " Called once from %s %i insns.\n",
1983 node->callers->caller->name (),
1984 inline_summary (node->callers->caller)->size);
1987 inline_call (node->callers, true, NULL, NULL, true);
1988 if (dump_file)
1989 fprintf (dump_file,
1990 " Inlined into %s which now has %i size\n",
1991 caller->name (),
1992 inline_summary (caller)->size);
1993 if (!(*num_calls)--)
1995 if (dump_file)
1996 fprintf (dump_file, "New calls found; giving up.\n");
1997 return true;
2000 return false;
2003 /* Decide on the inlining. We do so in the topological order to avoid
2004 expenses on updating data structures. */
2006 static unsigned int
2007 ipa_inline (void)
2009 struct cgraph_node *node;
2010 int nnodes;
2011 struct cgraph_node **order;
2012 int i;
2013 int cold;
2014 bool remove_functions = false;
2016 if (!optimize)
2017 return 0;
2019 order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
2021 if (in_lto_p && optimize)
2022 ipa_update_after_lto_read ();
2024 if (dump_file)
2025 dump_inline_summaries (dump_file);
2027 nnodes = ipa_reverse_postorder (order);
2029 FOR_EACH_FUNCTION (node)
2030 node->aux = 0;
2032 if (dump_file)
2033 fprintf (dump_file, "\nFlattening functions:\n");
2035 /* In the first pass handle functions to be flattened. Do this with
2036 a priority so none of our later choices will make this impossible. */
2037 for (i = nnodes - 1; i >= 0; i--)
2039 node = order[i];
2041 /* Handle nodes to be flattened.
2042 Ideally when processing callees we stop inlining at the
2043 entry of cycles, possibly cloning that entry point and
2044 try to flatten itself turning it into a self-recursive
2045 function. */
2046 if (lookup_attribute ("flatten",
2047 DECL_ATTRIBUTES (node->decl)) != NULL)
2049 if (dump_file)
2050 fprintf (dump_file,
2051 "Flattening %s\n", node->name ());
2052 flatten_function (node, false);
2056 inline_small_functions ();
2058 /* Do first after-inlining removal. We want to remove all "stale" extern inline
2059 functions and virtual functions so we really know what is called once. */
2060 symtab_remove_unreachable_nodes (false, dump_file);
2061 free (order);
2063 /* Inline functions with a property that after inlining into all callers the
2064 code size will shrink because the out-of-line copy is eliminated.
2065 We do this regardless on the callee size as long as function growth limits
2066 are met. */
2067 if (dump_file)
2068 fprintf (dump_file,
2069 "\nDeciding on functions to be inlined into all callers and removing useless speculations:\n");
2071 /* Inlining one function called once has good chance of preventing
2072 inlining other function into the same callee. Ideally we should
2073 work in priority order, but probably inlining hot functions first
2074 is good cut without the extra pain of maintaining the queue.
2076 ??? this is not really fitting the bill perfectly: inlining function
2077 into callee often leads to better optimization of callee due to
2078 increased context for optimization.
2079 For example if main() function calls a function that outputs help
2080 and then function that does the main optmization, we should inline
2081 the second with priority even if both calls are cold by themselves.
2083 We probably want to implement new predicate replacing our use of
2084 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2085 to be hot. */
2086 for (cold = 0; cold <= 1; cold ++)
2088 FOR_EACH_DEFINED_FUNCTION (node)
2090 struct cgraph_edge *edge, *next;
2091 bool update=false;
2093 for (edge = node->callees; edge; edge = next)
2095 next = edge->next_callee;
2096 if (edge->speculative && !speculation_useful_p (edge, false))
2098 cgraph_resolve_speculation (edge, NULL);
2099 update = true;
2100 remove_functions = true;
2103 if (update)
2105 struct cgraph_node *where = node->global.inlined_to
2106 ? node->global.inlined_to : node;
2107 reset_node_growth_cache (where);
2108 reset_edge_caches (where);
2109 inline_update_overall_summary (where);
2111 if (flag_inline_functions_called_once
2112 && want_inline_function_to_all_callers_p (node, cold))
2114 int num_calls = 0;
2115 cgraph_for_node_and_aliases (node, sum_callers,
2116 &num_calls, true);
2117 cgraph_for_node_and_aliases (node, inline_to_all_callers,
2118 &num_calls, true);
2119 remove_functions = true;
2124 /* Free ipa-prop structures if they are no longer needed. */
2125 if (optimize)
2126 ipa_free_all_structures_after_iinln ();
2128 if (dump_file)
2129 fprintf (dump_file,
2130 "\nInlined %i calls, eliminated %i functions\n\n",
2131 ncalls_inlined, nfunctions_inlined);
2133 if (dump_file)
2134 dump_inline_summaries (dump_file);
2135 /* In WPA we use inline summaries for partitioning process. */
2136 if (!flag_wpa)
2137 inline_free_summary ();
2138 return remove_functions ? TODO_remove_functions : 0;
2141 /* Inline always-inline function calls in NODE. */
2143 static bool
2144 inline_always_inline_functions (struct cgraph_node *node)
2146 struct cgraph_edge *e;
2147 bool inlined = false;
2149 for (e = node->callees; e; e = e->next_callee)
2151 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
2152 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2153 continue;
2155 if (cgraph_edge_recursive_p (e))
2157 if (dump_file)
2158 fprintf (dump_file, " Not inlining recursive call to %s.\n",
2159 e->callee->name ());
2160 e->inline_failed = CIF_RECURSIVE_INLINING;
2161 continue;
2164 if (!can_early_inline_edge_p (e))
2166 /* Set inlined to true if the callee is marked "always_inline" but
2167 is not inlinable. This will allow flagging an error later in
2168 expand_call_inline in tree-inline.c. */
2169 if (lookup_attribute ("always_inline",
2170 DECL_ATTRIBUTES (callee->decl)) != NULL)
2171 inlined = true;
2172 continue;
2175 if (dump_file)
2176 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
2177 xstrdup (e->callee->name ()),
2178 xstrdup (e->caller->name ()));
2179 inline_call (e, true, NULL, NULL, false);
2180 inlined = true;
2182 if (inlined)
2183 inline_update_overall_summary (node);
2185 return inlined;
2188 /* Decide on the inlining. We do so in the topological order to avoid
2189 expenses on updating data structures. */
2191 static bool
2192 early_inline_small_functions (struct cgraph_node *node)
2194 struct cgraph_edge *e;
2195 bool inlined = false;
2197 for (e = node->callees; e; e = e->next_callee)
2199 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
2200 if (!inline_summary (callee)->inlinable
2201 || !e->inline_failed)
2202 continue;
2204 /* Do not consider functions not declared inline. */
2205 if (!DECL_DECLARED_INLINE_P (callee->decl)
2206 && !flag_inline_small_functions
2207 && !flag_inline_functions)
2208 continue;
2210 if (dump_file)
2211 fprintf (dump_file, "Considering inline candidate %s.\n",
2212 callee->name ());
2214 if (!can_early_inline_edge_p (e))
2215 continue;
2217 if (cgraph_edge_recursive_p (e))
2219 if (dump_file)
2220 fprintf (dump_file, " Not inlining: recursive call.\n");
2221 continue;
2224 if (!want_early_inline_function_p (e))
2225 continue;
2227 if (dump_file)
2228 fprintf (dump_file, " Inlining %s into %s.\n",
2229 xstrdup (callee->name ()),
2230 xstrdup (e->caller->name ()));
2231 inline_call (e, true, NULL, NULL, true);
2232 inlined = true;
2235 return inlined;
2238 /* Do inlining of small functions. Doing so early helps profiling and other
2239 passes to be somewhat more effective and avoids some code duplication in
2240 later real inlining pass for testcases with very many function calls. */
2241 static unsigned int
2242 early_inliner (void)
2244 struct cgraph_node *node = cgraph_get_node (current_function_decl);
2245 struct cgraph_edge *edge;
2246 unsigned int todo = 0;
2247 int iterations = 0;
2248 bool inlined = false;
2250 if (seen_error ())
2251 return 0;
2253 /* Do nothing if datastructures for ipa-inliner are already computed. This
2254 happens when some pass decides to construct new function and
2255 cgraph_add_new_function calls lowering passes and early optimization on
2256 it. This may confuse ourself when early inliner decide to inline call to
2257 function clone, because function clones don't have parameter list in
2258 ipa-prop matching their signature. */
2259 if (ipa_node_params_vector.exists ())
2260 return 0;
2262 #ifdef ENABLE_CHECKING
2263 verify_cgraph_node (node);
2264 #endif
2265 ipa_remove_all_references (&node->ref_list);
2267 /* Even when not optimizing or not inlining inline always-inline
2268 functions. */
2269 inlined = inline_always_inline_functions (node);
2271 if (!optimize
2272 || flag_no_inline
2273 || !flag_early_inlining
2274 /* Never inline regular functions into always-inline functions
2275 during incremental inlining. This sucks as functions calling
2276 always inline functions will get less optimized, but at the
2277 same time inlining of functions calling always inline
2278 function into an always inline function might introduce
2279 cycles of edges to be always inlined in the callgraph.
2281 We might want to be smarter and just avoid this type of inlining. */
2282 || DECL_DISREGARD_INLINE_LIMITS (node->decl))
2284 else if (lookup_attribute ("flatten",
2285 DECL_ATTRIBUTES (node->decl)) != NULL)
2287 /* When the function is marked to be flattened, recursively inline
2288 all calls in it. */
2289 if (dump_file)
2290 fprintf (dump_file,
2291 "Flattening %s\n", node->name ());
2292 flatten_function (node, true);
2293 inlined = true;
2295 else
2297 /* We iterate incremental inlining to get trivial cases of indirect
2298 inlining. */
2299 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2300 && early_inline_small_functions (node))
2302 timevar_push (TV_INTEGRATION);
2303 todo |= optimize_inline_calls (current_function_decl);
2305 /* Technically we ought to recompute inline parameters so the new
2306 iteration of early inliner works as expected. We however have
2307 values approximately right and thus we only need to update edge
2308 info that might be cleared out for newly discovered edges. */
2309 for (edge = node->callees; edge; edge = edge->next_callee)
2311 struct inline_edge_summary *es = inline_edge_summary (edge);
2312 es->call_stmt_size
2313 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2314 es->call_stmt_time
2315 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2316 if (edge->callee->decl
2317 && !gimple_check_call_matching_types (
2318 edge->call_stmt, edge->callee->decl, false))
2319 edge->call_stmt_cannot_inline_p = true;
2321 timevar_pop (TV_INTEGRATION);
2322 iterations++;
2323 inlined = false;
2325 if (dump_file)
2326 fprintf (dump_file, "Iterations: %i\n", iterations);
2329 if (inlined)
2331 timevar_push (TV_INTEGRATION);
2332 todo |= optimize_inline_calls (current_function_decl);
2333 timevar_pop (TV_INTEGRATION);
2336 cfun->always_inline_functions_inlined = true;
2338 return todo;
2341 namespace {
2343 const pass_data pass_data_early_inline =
2345 GIMPLE_PASS, /* type */
2346 "einline", /* name */
2347 OPTGROUP_INLINE, /* optinfo_flags */
2348 false, /* has_gate */
2349 true, /* has_execute */
2350 TV_EARLY_INLINING, /* tv_id */
2351 PROP_ssa, /* properties_required */
2352 0, /* properties_provided */
2353 0, /* properties_destroyed */
2354 0, /* todo_flags_start */
2355 0, /* todo_flags_finish */
2358 class pass_early_inline : public gimple_opt_pass
2360 public:
2361 pass_early_inline (gcc::context *ctxt)
2362 : gimple_opt_pass (pass_data_early_inline, ctxt)
2365 /* opt_pass methods: */
2366 unsigned int execute () { return early_inliner (); }
2368 }; // class pass_early_inline
2370 } // anon namespace
2372 gimple_opt_pass *
2373 make_pass_early_inline (gcc::context *ctxt)
2375 return new pass_early_inline (ctxt);
2378 namespace {
2380 const pass_data pass_data_ipa_inline =
2382 IPA_PASS, /* type */
2383 "inline", /* name */
2384 OPTGROUP_INLINE, /* optinfo_flags */
2385 false, /* has_gate */
2386 true, /* has_execute */
2387 TV_IPA_INLINING, /* tv_id */
2388 0, /* properties_required */
2389 0, /* properties_provided */
2390 0, /* properties_destroyed */
2391 TODO_remove_functions, /* todo_flags_start */
2392 ( TODO_dump_symtab ), /* todo_flags_finish */
2395 class pass_ipa_inline : public ipa_opt_pass_d
2397 public:
2398 pass_ipa_inline (gcc::context *ctxt)
2399 : ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
2400 inline_generate_summary, /* generate_summary */
2401 inline_write_summary, /* write_summary */
2402 inline_read_summary, /* read_summary */
2403 NULL, /* write_optimization_summary */
2404 NULL, /* read_optimization_summary */
2405 NULL, /* stmt_fixup */
2406 0, /* function_transform_todo_flags_start */
2407 inline_transform, /* function_transform */
2408 NULL) /* variable_transform */
2411 /* opt_pass methods: */
2412 unsigned int execute () { return ipa_inline (); }
2414 }; // class pass_ipa_inline
2416 } // anon namespace
2418 ipa_opt_pass_d *
2419 make_pass_ipa_inline (gcc::context *ctxt)
2421 return new pass_ipa_inline (ctxt);