Remove assert in get_def_bb_for_const
[official-gcc.git] / gcc / optabs.c
blob2bd81db5166201f68c2fbf40e6a2a2e0e7442785
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "optabs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 #include "diagnostic-core.h"
36 /* Include insn-config.h before expr.h so that HAVE_conditional_move
37 is properly defined. */
38 #include "stor-layout.h"
39 #include "except.h"
40 #include "dojump.h"
41 #include "explow.h"
42 #include "expr.h"
43 #include "optabs-tree.h"
44 #include "libfuncs.h"
46 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
47 machine_mode *);
48 static rtx expand_unop_direct (machine_mode, optab, rtx, rtx, int);
49 static void emit_libcall_block_1 (rtx_insn *, rtx, rtx, rtx, bool);
51 /* Debug facility for use in GDB. */
52 void debug_optab_libfuncs (void);
54 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
55 the result of operation CODE applied to OP0 (and OP1 if it is a binary
56 operation).
58 If the last insn does not set TARGET, don't do anything, but return 1.
60 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
61 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
62 try again, ensuring that TARGET is not one of the operands. */
64 static int
65 add_equal_note (rtx_insn *insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
67 rtx_insn *last_insn;
68 rtx set;
69 rtx note;
71 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
73 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
74 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
75 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
76 && GET_RTX_CLASS (code) != RTX_COMPARE
77 && GET_RTX_CLASS (code) != RTX_UNARY)
78 return 1;
80 if (GET_CODE (target) == ZERO_EXTRACT)
81 return 1;
83 for (last_insn = insns;
84 NEXT_INSN (last_insn) != NULL_RTX;
85 last_insn = NEXT_INSN (last_insn))
88 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
89 a value changing in the insn, so the note would be invalid for CSE. */
90 if (reg_overlap_mentioned_p (target, op0)
91 || (op1 && reg_overlap_mentioned_p (target, op1)))
93 if (MEM_P (target)
94 && (rtx_equal_p (target, op0)
95 || (op1 && rtx_equal_p (target, op1))))
97 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
98 over expanding it as temp = MEM op X, MEM = temp. If the target
99 supports MEM = MEM op X instructions, it is sometimes too hard
100 to reconstruct that form later, especially if X is also a memory,
101 and due to multiple occurrences of addresses the address might
102 be forced into register unnecessarily.
103 Note that not emitting the REG_EQUIV note might inhibit
104 CSE in some cases. */
105 set = single_set (last_insn);
106 if (set
107 && GET_CODE (SET_SRC (set)) == code
108 && MEM_P (SET_DEST (set))
109 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
110 || (op1 && rtx_equal_p (SET_DEST (set),
111 XEXP (SET_SRC (set), 1)))))
112 return 1;
114 return 0;
117 set = set_for_reg_notes (last_insn);
118 if (set == NULL_RTX)
119 return 1;
121 if (! rtx_equal_p (SET_DEST (set), target)
122 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
123 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
124 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
125 return 1;
127 if (GET_RTX_CLASS (code) == RTX_UNARY)
128 switch (code)
130 case FFS:
131 case CLZ:
132 case CTZ:
133 case CLRSB:
134 case POPCOUNT:
135 case PARITY:
136 case BSWAP:
137 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
139 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
140 if (GET_MODE_SIZE (GET_MODE (op0))
141 > GET_MODE_SIZE (GET_MODE (target)))
142 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
143 note, GET_MODE (op0));
144 else
145 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
146 note, GET_MODE (op0));
147 break;
149 /* FALLTHRU */
150 default:
151 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
152 break;
154 else
155 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
157 set_unique_reg_note (last_insn, REG_EQUAL, note);
159 return 1;
162 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
163 for a widening operation would be. In most cases this would be OP0, but if
164 that's a constant it'll be VOIDmode, which isn't useful. */
166 static machine_mode
167 widened_mode (machine_mode to_mode, rtx op0, rtx op1)
169 machine_mode m0 = GET_MODE (op0);
170 machine_mode m1 = GET_MODE (op1);
171 machine_mode result;
173 if (m0 == VOIDmode && m1 == VOIDmode)
174 return to_mode;
175 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
176 result = m1;
177 else
178 result = m0;
180 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
181 return to_mode;
183 return result;
186 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
187 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
188 not actually do a sign-extend or zero-extend, but can leave the
189 higher-order bits of the result rtx undefined, for example, in the case
190 of logical operations, but not right shifts. */
192 static rtx
193 widen_operand (rtx op, machine_mode mode, machine_mode oldmode,
194 int unsignedp, int no_extend)
196 rtx result;
198 /* If we don't have to extend and this is a constant, return it. */
199 if (no_extend && GET_MODE (op) == VOIDmode)
200 return op;
202 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
203 extend since it will be more efficient to do so unless the signedness of
204 a promoted object differs from our extension. */
205 if (! no_extend
206 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
207 && SUBREG_CHECK_PROMOTED_SIGN (op, unsignedp)))
208 return convert_modes (mode, oldmode, op, unsignedp);
210 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
211 SUBREG. */
212 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
213 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
215 /* Otherwise, get an object of MODE, clobber it, and set the low-order
216 part to OP. */
218 result = gen_reg_rtx (mode);
219 emit_clobber (result);
220 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
221 return result;
224 /* Expand vector widening operations.
226 There are two different classes of operations handled here:
227 1) Operations whose result is wider than all the arguments to the operation.
228 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
229 In this case OP0 and optionally OP1 would be initialized,
230 but WIDE_OP wouldn't (not relevant for this case).
231 2) Operations whose result is of the same size as the last argument to the
232 operation, but wider than all the other arguments to the operation.
233 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
234 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
236 E.g, when called to expand the following operations, this is how
237 the arguments will be initialized:
238 nops OP0 OP1 WIDE_OP
239 widening-sum 2 oprnd0 - oprnd1
240 widening-dot-product 3 oprnd0 oprnd1 oprnd2
241 widening-mult 2 oprnd0 oprnd1 -
242 type-promotion (vec-unpack) 1 oprnd0 - - */
245 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
246 rtx target, int unsignedp)
248 struct expand_operand eops[4];
249 tree oprnd0, oprnd1, oprnd2;
250 machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
251 optab widen_pattern_optab;
252 enum insn_code icode;
253 int nops = TREE_CODE_LENGTH (ops->code);
254 int op;
256 oprnd0 = ops->op0;
257 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
258 widen_pattern_optab =
259 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
260 if (ops->code == WIDEN_MULT_PLUS_EXPR
261 || ops->code == WIDEN_MULT_MINUS_EXPR)
262 icode = find_widening_optab_handler (widen_pattern_optab,
263 TYPE_MODE (TREE_TYPE (ops->op2)),
264 tmode0, 0);
265 else
266 icode = optab_handler (widen_pattern_optab, tmode0);
267 gcc_assert (icode != CODE_FOR_nothing);
269 if (nops >= 2)
271 oprnd1 = ops->op1;
272 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
275 /* The last operand is of a wider mode than the rest of the operands. */
276 if (nops == 2)
277 wmode = tmode1;
278 else if (nops == 3)
280 gcc_assert (tmode1 == tmode0);
281 gcc_assert (op1);
282 oprnd2 = ops->op2;
283 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
286 op = 0;
287 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
288 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
289 if (op1)
290 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
291 if (wide_op)
292 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
293 expand_insn (icode, op, eops);
294 return eops[0].value;
297 /* Generate code to perform an operation specified by TERNARY_OPTAB
298 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
300 UNSIGNEDP is for the case where we have to widen the operands
301 to perform the operation. It says to use zero-extension.
303 If TARGET is nonzero, the value
304 is generated there, if it is convenient to do so.
305 In all cases an rtx is returned for the locus of the value;
306 this may or may not be TARGET. */
309 expand_ternary_op (machine_mode mode, optab ternary_optab, rtx op0,
310 rtx op1, rtx op2, rtx target, int unsignedp)
312 struct expand_operand ops[4];
313 enum insn_code icode = optab_handler (ternary_optab, mode);
315 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
317 create_output_operand (&ops[0], target, mode);
318 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
319 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
320 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
321 expand_insn (icode, 4, ops);
322 return ops[0].value;
326 /* Like expand_binop, but return a constant rtx if the result can be
327 calculated at compile time. The arguments and return value are
328 otherwise the same as for expand_binop. */
331 simplify_expand_binop (machine_mode mode, optab binoptab,
332 rtx op0, rtx op1, rtx target, int unsignedp,
333 enum optab_methods methods)
335 if (CONSTANT_P (op0) && CONSTANT_P (op1))
337 rtx x = simplify_binary_operation (optab_to_code (binoptab),
338 mode, op0, op1);
339 if (x)
340 return x;
343 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
346 /* Like simplify_expand_binop, but always put the result in TARGET.
347 Return true if the expansion succeeded. */
349 bool
350 force_expand_binop (machine_mode mode, optab binoptab,
351 rtx op0, rtx op1, rtx target, int unsignedp,
352 enum optab_methods methods)
354 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
355 target, unsignedp, methods);
356 if (x == 0)
357 return false;
358 if (x != target)
359 emit_move_insn (target, x);
360 return true;
363 /* Create a new vector value in VMODE with all elements set to OP. The
364 mode of OP must be the element mode of VMODE. If OP is a constant,
365 then the return value will be a constant. */
367 static rtx
368 expand_vector_broadcast (machine_mode vmode, rtx op)
370 enum insn_code icode;
371 rtvec vec;
372 rtx ret;
373 int i, n;
375 gcc_checking_assert (VECTOR_MODE_P (vmode));
377 n = GET_MODE_NUNITS (vmode);
378 vec = rtvec_alloc (n);
379 for (i = 0; i < n; ++i)
380 RTVEC_ELT (vec, i) = op;
382 if (CONSTANT_P (op))
383 return gen_rtx_CONST_VECTOR (vmode, vec);
385 /* ??? If the target doesn't have a vec_init, then we have no easy way
386 of performing this operation. Most of this sort of generic support
387 is hidden away in the vector lowering support in gimple. */
388 icode = optab_handler (vec_init_optab, vmode);
389 if (icode == CODE_FOR_nothing)
390 return NULL;
392 ret = gen_reg_rtx (vmode);
393 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
395 return ret;
398 /* This subroutine of expand_doubleword_shift handles the cases in which
399 the effective shift value is >= BITS_PER_WORD. The arguments and return
400 value are the same as for the parent routine, except that SUPERWORD_OP1
401 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
402 INTO_TARGET may be null if the caller has decided to calculate it. */
404 static bool
405 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
406 rtx outof_target, rtx into_target,
407 int unsignedp, enum optab_methods methods)
409 if (into_target != 0)
410 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
411 into_target, unsignedp, methods))
412 return false;
414 if (outof_target != 0)
416 /* For a signed right shift, we must fill OUTOF_TARGET with copies
417 of the sign bit, otherwise we must fill it with zeros. */
418 if (binoptab != ashr_optab)
419 emit_move_insn (outof_target, CONST0_RTX (word_mode));
420 else
421 if (!force_expand_binop (word_mode, binoptab,
422 outof_input, GEN_INT (BITS_PER_WORD - 1),
423 outof_target, unsignedp, methods))
424 return false;
426 return true;
429 /* This subroutine of expand_doubleword_shift handles the cases in which
430 the effective shift value is < BITS_PER_WORD. The arguments and return
431 value are the same as for the parent routine. */
433 static bool
434 expand_subword_shift (machine_mode op1_mode, optab binoptab,
435 rtx outof_input, rtx into_input, rtx op1,
436 rtx outof_target, rtx into_target,
437 int unsignedp, enum optab_methods methods,
438 unsigned HOST_WIDE_INT shift_mask)
440 optab reverse_unsigned_shift, unsigned_shift;
441 rtx tmp, carries;
443 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
444 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
446 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
447 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
448 the opposite direction to BINOPTAB. */
449 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
451 carries = outof_input;
452 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
453 op1_mode), op1_mode);
454 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
455 0, true, methods);
457 else
459 /* We must avoid shifting by BITS_PER_WORD bits since that is either
460 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
461 has unknown behavior. Do a single shift first, then shift by the
462 remainder. It's OK to use ~OP1 as the remainder if shift counts
463 are truncated to the mode size. */
464 carries = expand_binop (word_mode, reverse_unsigned_shift,
465 outof_input, const1_rtx, 0, unsignedp, methods);
466 if (shift_mask == BITS_PER_WORD - 1)
468 tmp = immed_wide_int_const
469 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
470 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
471 0, true, methods);
473 else
475 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
476 op1_mode), op1_mode);
477 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
478 0, true, methods);
481 if (tmp == 0 || carries == 0)
482 return false;
483 carries = expand_binop (word_mode, reverse_unsigned_shift,
484 carries, tmp, 0, unsignedp, methods);
485 if (carries == 0)
486 return false;
488 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
489 so the result can go directly into INTO_TARGET if convenient. */
490 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
491 into_target, unsignedp, methods);
492 if (tmp == 0)
493 return false;
495 /* Now OR in the bits carried over from OUTOF_INPUT. */
496 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
497 into_target, unsignedp, methods))
498 return false;
500 /* Use a standard word_mode shift for the out-of half. */
501 if (outof_target != 0)
502 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
503 outof_target, unsignedp, methods))
504 return false;
506 return true;
510 /* Try implementing expand_doubleword_shift using conditional moves.
511 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
512 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
513 are the shift counts to use in the former and latter case. All other
514 arguments are the same as the parent routine. */
516 static bool
517 expand_doubleword_shift_condmove (machine_mode op1_mode, optab binoptab,
518 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
519 rtx outof_input, rtx into_input,
520 rtx subword_op1, rtx superword_op1,
521 rtx outof_target, rtx into_target,
522 int unsignedp, enum optab_methods methods,
523 unsigned HOST_WIDE_INT shift_mask)
525 rtx outof_superword, into_superword;
527 /* Put the superword version of the output into OUTOF_SUPERWORD and
528 INTO_SUPERWORD. */
529 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
530 if (outof_target != 0 && subword_op1 == superword_op1)
532 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
533 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
534 into_superword = outof_target;
535 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
536 outof_superword, 0, unsignedp, methods))
537 return false;
539 else
541 into_superword = gen_reg_rtx (word_mode);
542 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
543 outof_superword, into_superword,
544 unsignedp, methods))
545 return false;
548 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
549 if (!expand_subword_shift (op1_mode, binoptab,
550 outof_input, into_input, subword_op1,
551 outof_target, into_target,
552 unsignedp, methods, shift_mask))
553 return false;
555 /* Select between them. Do the INTO half first because INTO_SUPERWORD
556 might be the current value of OUTOF_TARGET. */
557 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
558 into_target, into_superword, word_mode, false))
559 return false;
561 if (outof_target != 0)
562 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
563 outof_target, outof_superword,
564 word_mode, false))
565 return false;
567 return true;
570 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
571 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
572 input operand; the shift moves bits in the direction OUTOF_INPUT->
573 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
574 of the target. OP1 is the shift count and OP1_MODE is its mode.
575 If OP1 is constant, it will have been truncated as appropriate
576 and is known to be nonzero.
578 If SHIFT_MASK is zero, the result of word shifts is undefined when the
579 shift count is outside the range [0, BITS_PER_WORD). This routine must
580 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
582 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
583 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
584 fill with zeros or sign bits as appropriate.
586 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
587 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
588 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
589 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
590 are undefined.
592 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
593 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
594 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
595 function wants to calculate it itself.
597 Return true if the shift could be successfully synthesized. */
599 static bool
600 expand_doubleword_shift (machine_mode op1_mode, optab binoptab,
601 rtx outof_input, rtx into_input, rtx op1,
602 rtx outof_target, rtx into_target,
603 int unsignedp, enum optab_methods methods,
604 unsigned HOST_WIDE_INT shift_mask)
606 rtx superword_op1, tmp, cmp1, cmp2;
607 enum rtx_code cmp_code;
609 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
610 fill the result with sign or zero bits as appropriate. If so, the value
611 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
612 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
613 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
615 This isn't worthwhile for constant shifts since the optimizers will
616 cope better with in-range shift counts. */
617 if (shift_mask >= BITS_PER_WORD
618 && outof_target != 0
619 && !CONSTANT_P (op1))
621 if (!expand_doubleword_shift (op1_mode, binoptab,
622 outof_input, into_input, op1,
623 0, into_target,
624 unsignedp, methods, shift_mask))
625 return false;
626 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
627 outof_target, unsignedp, methods))
628 return false;
629 return true;
632 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
633 is true when the effective shift value is less than BITS_PER_WORD.
634 Set SUPERWORD_OP1 to the shift count that should be used to shift
635 OUTOF_INPUT into INTO_TARGET when the condition is false. */
636 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
637 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
639 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
640 is a subword shift count. */
641 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
642 0, true, methods);
643 cmp2 = CONST0_RTX (op1_mode);
644 cmp_code = EQ;
645 superword_op1 = op1;
647 else
649 /* Set CMP1 to OP1 - BITS_PER_WORD. */
650 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
651 0, true, methods);
652 cmp2 = CONST0_RTX (op1_mode);
653 cmp_code = LT;
654 superword_op1 = cmp1;
656 if (cmp1 == 0)
657 return false;
659 /* If we can compute the condition at compile time, pick the
660 appropriate subroutine. */
661 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
662 if (tmp != 0 && CONST_INT_P (tmp))
664 if (tmp == const0_rtx)
665 return expand_superword_shift (binoptab, outof_input, superword_op1,
666 outof_target, into_target,
667 unsignedp, methods);
668 else
669 return expand_subword_shift (op1_mode, binoptab,
670 outof_input, into_input, op1,
671 outof_target, into_target,
672 unsignedp, methods, shift_mask);
675 /* Try using conditional moves to generate straight-line code. */
676 if (HAVE_conditional_move)
678 rtx_insn *start = get_last_insn ();
679 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
680 cmp_code, cmp1, cmp2,
681 outof_input, into_input,
682 op1, superword_op1,
683 outof_target, into_target,
684 unsignedp, methods, shift_mask))
685 return true;
686 delete_insns_since (start);
689 /* As a last resort, use branches to select the correct alternative. */
690 rtx_code_label *subword_label = gen_label_rtx ();
691 rtx_code_label *done_label = gen_label_rtx ();
693 NO_DEFER_POP;
694 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
695 0, 0, subword_label, -1);
696 OK_DEFER_POP;
698 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
699 outof_target, into_target,
700 unsignedp, methods))
701 return false;
703 emit_jump_insn (targetm.gen_jump (done_label));
704 emit_barrier ();
705 emit_label (subword_label);
707 if (!expand_subword_shift (op1_mode, binoptab,
708 outof_input, into_input, op1,
709 outof_target, into_target,
710 unsignedp, methods, shift_mask))
711 return false;
713 emit_label (done_label);
714 return true;
717 /* Subroutine of expand_binop. Perform a double word multiplication of
718 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
719 as the target's word_mode. This function return NULL_RTX if anything
720 goes wrong, in which case it may have already emitted instructions
721 which need to be deleted.
723 If we want to multiply two two-word values and have normal and widening
724 multiplies of single-word values, we can do this with three smaller
725 multiplications.
727 The multiplication proceeds as follows:
728 _______________________
729 [__op0_high_|__op0_low__]
730 _______________________
731 * [__op1_high_|__op1_low__]
732 _______________________________________________
733 _______________________
734 (1) [__op0_low__*__op1_low__]
735 _______________________
736 (2a) [__op0_low__*__op1_high_]
737 _______________________
738 (2b) [__op0_high_*__op1_low__]
739 _______________________
740 (3) [__op0_high_*__op1_high_]
743 This gives a 4-word result. Since we are only interested in the
744 lower 2 words, partial result (3) and the upper words of (2a) and
745 (2b) don't need to be calculated. Hence (2a) and (2b) can be
746 calculated using non-widening multiplication.
748 (1), however, needs to be calculated with an unsigned widening
749 multiplication. If this operation is not directly supported we
750 try using a signed widening multiplication and adjust the result.
751 This adjustment works as follows:
753 If both operands are positive then no adjustment is needed.
755 If the operands have different signs, for example op0_low < 0 and
756 op1_low >= 0, the instruction treats the most significant bit of
757 op0_low as a sign bit instead of a bit with significance
758 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
759 with 2**BITS_PER_WORD - op0_low, and two's complements the
760 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
761 the result.
763 Similarly, if both operands are negative, we need to add
764 (op0_low + op1_low) * 2**BITS_PER_WORD.
766 We use a trick to adjust quickly. We logically shift op0_low right
767 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
768 op0_high (op1_high) before it is used to calculate 2b (2a). If no
769 logical shift exists, we do an arithmetic right shift and subtract
770 the 0 or -1. */
772 static rtx
773 expand_doubleword_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
774 bool umulp, enum optab_methods methods)
776 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
777 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
778 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
779 rtx product, adjust, product_high, temp;
781 rtx op0_high = operand_subword_force (op0, high, mode);
782 rtx op0_low = operand_subword_force (op0, low, mode);
783 rtx op1_high = operand_subword_force (op1, high, mode);
784 rtx op1_low = operand_subword_force (op1, low, mode);
786 /* If we're using an unsigned multiply to directly compute the product
787 of the low-order words of the operands and perform any required
788 adjustments of the operands, we begin by trying two more multiplications
789 and then computing the appropriate sum.
791 We have checked above that the required addition is provided.
792 Full-word addition will normally always succeed, especially if
793 it is provided at all, so we don't worry about its failure. The
794 multiplication may well fail, however, so we do handle that. */
796 if (!umulp)
798 /* ??? This could be done with emit_store_flag where available. */
799 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
800 NULL_RTX, 1, methods);
801 if (temp)
802 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
803 NULL_RTX, 0, OPTAB_DIRECT);
804 else
806 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
807 NULL_RTX, 0, methods);
808 if (!temp)
809 return NULL_RTX;
810 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
811 NULL_RTX, 0, OPTAB_DIRECT);
814 if (!op0_high)
815 return NULL_RTX;
818 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
819 NULL_RTX, 0, OPTAB_DIRECT);
820 if (!adjust)
821 return NULL_RTX;
823 /* OP0_HIGH should now be dead. */
825 if (!umulp)
827 /* ??? This could be done with emit_store_flag where available. */
828 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
829 NULL_RTX, 1, methods);
830 if (temp)
831 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
832 NULL_RTX, 0, OPTAB_DIRECT);
833 else
835 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
836 NULL_RTX, 0, methods);
837 if (!temp)
838 return NULL_RTX;
839 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
840 NULL_RTX, 0, OPTAB_DIRECT);
843 if (!op1_high)
844 return NULL_RTX;
847 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
848 NULL_RTX, 0, OPTAB_DIRECT);
849 if (!temp)
850 return NULL_RTX;
852 /* OP1_HIGH should now be dead. */
854 adjust = expand_binop (word_mode, add_optab, adjust, temp,
855 NULL_RTX, 0, OPTAB_DIRECT);
857 if (target && !REG_P (target))
858 target = NULL_RTX;
860 if (umulp)
861 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
862 target, 1, OPTAB_DIRECT);
863 else
864 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
865 target, 1, OPTAB_DIRECT);
867 if (!product)
868 return NULL_RTX;
870 product_high = operand_subword (product, high, 1, mode);
871 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
872 NULL_RTX, 0, OPTAB_DIRECT);
873 emit_move_insn (product_high, adjust);
874 return product;
877 /* Wrapper around expand_binop which takes an rtx code to specify
878 the operation to perform, not an optab pointer. All other
879 arguments are the same. */
881 expand_simple_binop (machine_mode mode, enum rtx_code code, rtx op0,
882 rtx op1, rtx target, int unsignedp,
883 enum optab_methods methods)
885 optab binop = code_to_optab (code);
886 gcc_assert (binop);
888 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
891 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
892 binop. Order them according to commutative_operand_precedence and, if
893 possible, try to put TARGET or a pseudo first. */
894 static bool
895 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
897 int op0_prec = commutative_operand_precedence (op0);
898 int op1_prec = commutative_operand_precedence (op1);
900 if (op0_prec < op1_prec)
901 return true;
903 if (op0_prec > op1_prec)
904 return false;
906 /* With equal precedence, both orders are ok, but it is better if the
907 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
908 if (target == 0 || REG_P (target))
909 return (REG_P (op1) && !REG_P (op0)) || target == op1;
910 else
911 return rtx_equal_p (op1, target);
914 /* Return true if BINOPTAB implements a shift operation. */
916 static bool
917 shift_optab_p (optab binoptab)
919 switch (optab_to_code (binoptab))
921 case ASHIFT:
922 case SS_ASHIFT:
923 case US_ASHIFT:
924 case ASHIFTRT:
925 case LSHIFTRT:
926 case ROTATE:
927 case ROTATERT:
928 return true;
930 default:
931 return false;
935 /* Return true if BINOPTAB implements a commutative binary operation. */
937 static bool
938 commutative_optab_p (optab binoptab)
940 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
941 || binoptab == smul_widen_optab
942 || binoptab == umul_widen_optab
943 || binoptab == smul_highpart_optab
944 || binoptab == umul_highpart_optab);
947 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
948 optimizing, and if the operand is a constant that costs more than
949 1 instruction, force the constant into a register and return that
950 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
952 static rtx
953 avoid_expensive_constant (machine_mode mode, optab binoptab,
954 int opn, rtx x, bool unsignedp)
956 bool speed = optimize_insn_for_speed_p ();
958 if (mode != VOIDmode
959 && optimize
960 && CONSTANT_P (x)
961 && (rtx_cost (x, mode, optab_to_code (binoptab), opn, speed)
962 > set_src_cost (x, mode, speed)))
964 if (CONST_INT_P (x))
966 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
967 if (intval != INTVAL (x))
968 x = GEN_INT (intval);
970 else
971 x = convert_modes (mode, VOIDmode, x, unsignedp);
972 x = force_reg (mode, x);
974 return x;
977 /* Helper function for expand_binop: handle the case where there
978 is an insn that directly implements the indicated operation.
979 Returns null if this is not possible. */
980 static rtx
981 expand_binop_directly (machine_mode mode, optab binoptab,
982 rtx op0, rtx op1,
983 rtx target, int unsignedp, enum optab_methods methods,
984 rtx_insn *last)
986 machine_mode from_mode = widened_mode (mode, op0, op1);
987 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
988 from_mode, 1);
989 machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
990 machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
991 machine_mode mode0, mode1, tmp_mode;
992 struct expand_operand ops[3];
993 bool commutative_p;
994 rtx_insn *pat;
995 rtx xop0 = op0, xop1 = op1;
996 bool canonicalize_op1 = false;
998 /* If it is a commutative operator and the modes would match
999 if we would swap the operands, we can save the conversions. */
1000 commutative_p = commutative_optab_p (binoptab);
1001 if (commutative_p
1002 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1003 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1004 std::swap (xop0, xop1);
1006 /* If we are optimizing, force expensive constants into a register. */
1007 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1008 if (!shift_optab_p (binoptab))
1009 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1010 else
1011 /* Shifts and rotates often use a different mode for op1 from op0;
1012 for VOIDmode constants we don't know the mode, so force it
1013 to be canonicalized using convert_modes. */
1014 canonicalize_op1 = true;
1016 /* In case the insn wants input operands in modes different from
1017 those of the actual operands, convert the operands. It would
1018 seem that we don't need to convert CONST_INTs, but we do, so
1019 that they're properly zero-extended, sign-extended or truncated
1020 for their mode. */
1022 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1023 if (xmode0 != VOIDmode && xmode0 != mode0)
1025 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1026 mode0 = xmode0;
1029 mode1 = ((GET_MODE (xop1) != VOIDmode || canonicalize_op1)
1030 ? GET_MODE (xop1) : mode);
1031 if (xmode1 != VOIDmode && xmode1 != mode1)
1033 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1034 mode1 = xmode1;
1037 /* If operation is commutative,
1038 try to make the first operand a register.
1039 Even better, try to make it the same as the target.
1040 Also try to make the last operand a constant. */
1041 if (commutative_p
1042 && swap_commutative_operands_with_target (target, xop0, xop1))
1043 std::swap (xop0, xop1);
1045 /* Now, if insn's predicates don't allow our operands, put them into
1046 pseudo regs. */
1048 if (binoptab == vec_pack_trunc_optab
1049 || binoptab == vec_pack_usat_optab
1050 || binoptab == vec_pack_ssat_optab
1051 || binoptab == vec_pack_ufix_trunc_optab
1052 || binoptab == vec_pack_sfix_trunc_optab)
1054 /* The mode of the result is different then the mode of the
1055 arguments. */
1056 tmp_mode = insn_data[(int) icode].operand[0].mode;
1057 if (VECTOR_MODE_P (mode)
1058 && GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1060 delete_insns_since (last);
1061 return NULL_RTX;
1064 else
1065 tmp_mode = mode;
1067 create_output_operand (&ops[0], target, tmp_mode);
1068 create_input_operand (&ops[1], xop0, mode0);
1069 create_input_operand (&ops[2], xop1, mode1);
1070 pat = maybe_gen_insn (icode, 3, ops);
1071 if (pat)
1073 /* If PAT is composed of more than one insn, try to add an appropriate
1074 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1075 operand, call expand_binop again, this time without a target. */
1076 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1077 && ! add_equal_note (pat, ops[0].value,
1078 optab_to_code (binoptab),
1079 ops[1].value, ops[2].value))
1081 delete_insns_since (last);
1082 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1083 unsignedp, methods);
1086 emit_insn (pat);
1087 return ops[0].value;
1089 delete_insns_since (last);
1090 return NULL_RTX;
1093 /* Generate code to perform an operation specified by BINOPTAB
1094 on operands OP0 and OP1, with result having machine-mode MODE.
1096 UNSIGNEDP is for the case where we have to widen the operands
1097 to perform the operation. It says to use zero-extension.
1099 If TARGET is nonzero, the value
1100 is generated there, if it is convenient to do so.
1101 In all cases an rtx is returned for the locus of the value;
1102 this may or may not be TARGET. */
1105 expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1,
1106 rtx target, int unsignedp, enum optab_methods methods)
1108 enum optab_methods next_methods
1109 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1110 ? OPTAB_WIDEN : methods);
1111 enum mode_class mclass;
1112 machine_mode wider_mode;
1113 rtx libfunc;
1114 rtx temp;
1115 rtx_insn *entry_last = get_last_insn ();
1116 rtx_insn *last;
1118 mclass = GET_MODE_CLASS (mode);
1120 /* If subtracting an integer constant, convert this into an addition of
1121 the negated constant. */
1123 if (binoptab == sub_optab && CONST_INT_P (op1))
1125 op1 = negate_rtx (mode, op1);
1126 binoptab = add_optab;
1128 /* For shifts, constant invalid op1 might be expanded from different
1129 mode than MODE. As those are invalid, force them to a register
1130 to avoid further problems during expansion. */
1131 else if (CONST_INT_P (op1)
1132 && shift_optab_p (binoptab)
1133 && UINTVAL (op1) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode)))
1135 op1 = gen_int_mode (INTVAL (op1), GET_MODE_INNER (mode));
1136 op1 = force_reg (GET_MODE_INNER (mode), op1);
1139 /* Record where to delete back to if we backtrack. */
1140 last = get_last_insn ();
1142 /* If we can do it with a three-operand insn, do so. */
1144 if (methods != OPTAB_MUST_WIDEN
1145 && find_widening_optab_handler (binoptab, mode,
1146 widened_mode (mode, op0, op1), 1)
1147 != CODE_FOR_nothing)
1149 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1150 unsignedp, methods, last);
1151 if (temp)
1152 return temp;
1155 /* If we were trying to rotate, and that didn't work, try rotating
1156 the other direction before falling back to shifts and bitwise-or. */
1157 if (((binoptab == rotl_optab
1158 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1159 || (binoptab == rotr_optab
1160 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1161 && mclass == MODE_INT)
1163 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1164 rtx newop1;
1165 unsigned int bits = GET_MODE_PRECISION (mode);
1167 if (CONST_INT_P (op1))
1168 newop1 = GEN_INT (bits - INTVAL (op1));
1169 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1170 newop1 = negate_rtx (GET_MODE (op1), op1);
1171 else
1172 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1173 gen_int_mode (bits, GET_MODE (op1)), op1,
1174 NULL_RTX, unsignedp, OPTAB_DIRECT);
1176 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1177 target, unsignedp, methods, last);
1178 if (temp)
1179 return temp;
1182 /* If this is a multiply, see if we can do a widening operation that
1183 takes operands of this mode and makes a wider mode. */
1185 if (binoptab == smul_optab
1186 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1187 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1188 : smul_widen_optab),
1189 GET_MODE_2XWIDER_MODE (mode), mode)
1190 != CODE_FOR_nothing))
1192 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1193 unsignedp ? umul_widen_optab : smul_widen_optab,
1194 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1196 if (temp != 0)
1198 if (GET_MODE_CLASS (mode) == MODE_INT
1199 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1200 return gen_lowpart (mode, temp);
1201 else
1202 return convert_to_mode (mode, temp, unsignedp);
1206 /* If this is a vector shift by a scalar, see if we can do a vector
1207 shift by a vector. If so, broadcast the scalar into a vector. */
1208 if (mclass == MODE_VECTOR_INT)
1210 optab otheroptab = unknown_optab;
1212 if (binoptab == ashl_optab)
1213 otheroptab = vashl_optab;
1214 else if (binoptab == ashr_optab)
1215 otheroptab = vashr_optab;
1216 else if (binoptab == lshr_optab)
1217 otheroptab = vlshr_optab;
1218 else if (binoptab == rotl_optab)
1219 otheroptab = vrotl_optab;
1220 else if (binoptab == rotr_optab)
1221 otheroptab = vrotr_optab;
1223 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1225 /* The scalar may have been extended to be too wide. Truncate
1226 it back to the proper size to fit in the broadcast vector. */
1227 machine_mode inner_mode = GET_MODE_INNER (mode);
1228 if (!CONST_INT_P (op1)
1229 && (GET_MODE_BITSIZE (inner_mode)
1230 < GET_MODE_BITSIZE (GET_MODE (op1))))
1231 op1 = force_reg (inner_mode,
1232 simplify_gen_unary (TRUNCATE, inner_mode, op1,
1233 GET_MODE (op1)));
1234 rtx vop1 = expand_vector_broadcast (mode, op1);
1235 if (vop1)
1237 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1238 target, unsignedp, methods, last);
1239 if (temp)
1240 return temp;
1245 /* Look for a wider mode of the same class for which we think we
1246 can open-code the operation. Check for a widening multiply at the
1247 wider mode as well. */
1249 if (CLASS_HAS_WIDER_MODES_P (mclass)
1250 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1251 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1252 wider_mode != VOIDmode;
1253 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1255 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1256 || (binoptab == smul_optab
1257 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1258 && (find_widening_optab_handler ((unsignedp
1259 ? umul_widen_optab
1260 : smul_widen_optab),
1261 GET_MODE_WIDER_MODE (wider_mode),
1262 mode, 0)
1263 != CODE_FOR_nothing)))
1265 rtx xop0 = op0, xop1 = op1;
1266 int no_extend = 0;
1268 /* For certain integer operations, we need not actually extend
1269 the narrow operands, as long as we will truncate
1270 the results to the same narrowness. */
1272 if ((binoptab == ior_optab || binoptab == and_optab
1273 || binoptab == xor_optab
1274 || binoptab == add_optab || binoptab == sub_optab
1275 || binoptab == smul_optab || binoptab == ashl_optab)
1276 && mclass == MODE_INT)
1278 no_extend = 1;
1279 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1280 xop0, unsignedp);
1281 if (binoptab != ashl_optab)
1282 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1283 xop1, unsignedp);
1286 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1288 /* The second operand of a shift must always be extended. */
1289 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1290 no_extend && binoptab != ashl_optab);
1292 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1293 unsignedp, OPTAB_DIRECT);
1294 if (temp)
1296 if (mclass != MODE_INT
1297 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1299 if (target == 0)
1300 target = gen_reg_rtx (mode);
1301 convert_move (target, temp, 0);
1302 return target;
1304 else
1305 return gen_lowpart (mode, temp);
1307 else
1308 delete_insns_since (last);
1312 /* If operation is commutative,
1313 try to make the first operand a register.
1314 Even better, try to make it the same as the target.
1315 Also try to make the last operand a constant. */
1316 if (commutative_optab_p (binoptab)
1317 && swap_commutative_operands_with_target (target, op0, op1))
1318 std::swap (op0, op1);
1320 /* These can be done a word at a time. */
1321 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1322 && mclass == MODE_INT
1323 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1324 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1326 int i;
1327 rtx_insn *insns;
1329 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1330 won't be accurate, so use a new target. */
1331 if (target == 0
1332 || target == op0
1333 || target == op1
1334 || !valid_multiword_target_p (target))
1335 target = gen_reg_rtx (mode);
1337 start_sequence ();
1339 /* Do the actual arithmetic. */
1340 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1342 rtx target_piece = operand_subword (target, i, 1, mode);
1343 rtx x = expand_binop (word_mode, binoptab,
1344 operand_subword_force (op0, i, mode),
1345 operand_subword_force (op1, i, mode),
1346 target_piece, unsignedp, next_methods);
1348 if (x == 0)
1349 break;
1351 if (target_piece != x)
1352 emit_move_insn (target_piece, x);
1355 insns = get_insns ();
1356 end_sequence ();
1358 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1360 emit_insn (insns);
1361 return target;
1365 /* Synthesize double word shifts from single word shifts. */
1366 if ((binoptab == lshr_optab || binoptab == ashl_optab
1367 || binoptab == ashr_optab)
1368 && mclass == MODE_INT
1369 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1370 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1371 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1372 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1373 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1374 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1376 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1377 machine_mode op1_mode;
1379 double_shift_mask = targetm.shift_truncation_mask (mode);
1380 shift_mask = targetm.shift_truncation_mask (word_mode);
1381 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1383 /* Apply the truncation to constant shifts. */
1384 if (double_shift_mask > 0 && CONST_INT_P (op1))
1385 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1387 if (op1 == CONST0_RTX (op1_mode))
1388 return op0;
1390 /* Make sure that this is a combination that expand_doubleword_shift
1391 can handle. See the comments there for details. */
1392 if (double_shift_mask == 0
1393 || (shift_mask == BITS_PER_WORD - 1
1394 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1396 rtx_insn *insns;
1397 rtx into_target, outof_target;
1398 rtx into_input, outof_input;
1399 int left_shift, outof_word;
1401 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1402 won't be accurate, so use a new target. */
1403 if (target == 0
1404 || target == op0
1405 || target == op1
1406 || !valid_multiword_target_p (target))
1407 target = gen_reg_rtx (mode);
1409 start_sequence ();
1411 /* OUTOF_* is the word we are shifting bits away from, and
1412 INTO_* is the word that we are shifting bits towards, thus
1413 they differ depending on the direction of the shift and
1414 WORDS_BIG_ENDIAN. */
1416 left_shift = binoptab == ashl_optab;
1417 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1419 outof_target = operand_subword (target, outof_word, 1, mode);
1420 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1422 outof_input = operand_subword_force (op0, outof_word, mode);
1423 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1425 if (expand_doubleword_shift (op1_mode, binoptab,
1426 outof_input, into_input, op1,
1427 outof_target, into_target,
1428 unsignedp, next_methods, shift_mask))
1430 insns = get_insns ();
1431 end_sequence ();
1433 emit_insn (insns);
1434 return target;
1436 end_sequence ();
1440 /* Synthesize double word rotates from single word shifts. */
1441 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1442 && mclass == MODE_INT
1443 && CONST_INT_P (op1)
1444 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1445 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1446 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1448 rtx_insn *insns;
1449 rtx into_target, outof_target;
1450 rtx into_input, outof_input;
1451 rtx inter;
1452 int shift_count, left_shift, outof_word;
1454 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1455 won't be accurate, so use a new target. Do this also if target is not
1456 a REG, first because having a register instead may open optimization
1457 opportunities, and second because if target and op0 happen to be MEMs
1458 designating the same location, we would risk clobbering it too early
1459 in the code sequence we generate below. */
1460 if (target == 0
1461 || target == op0
1462 || target == op1
1463 || !REG_P (target)
1464 || !valid_multiword_target_p (target))
1465 target = gen_reg_rtx (mode);
1467 start_sequence ();
1469 shift_count = INTVAL (op1);
1471 /* OUTOF_* is the word we are shifting bits away from, and
1472 INTO_* is the word that we are shifting bits towards, thus
1473 they differ depending on the direction of the shift and
1474 WORDS_BIG_ENDIAN. */
1476 left_shift = (binoptab == rotl_optab);
1477 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1479 outof_target = operand_subword (target, outof_word, 1, mode);
1480 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1482 outof_input = operand_subword_force (op0, outof_word, mode);
1483 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1485 if (shift_count == BITS_PER_WORD)
1487 /* This is just a word swap. */
1488 emit_move_insn (outof_target, into_input);
1489 emit_move_insn (into_target, outof_input);
1490 inter = const0_rtx;
1492 else
1494 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1495 rtx first_shift_count, second_shift_count;
1496 optab reverse_unsigned_shift, unsigned_shift;
1498 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1499 ? lshr_optab : ashl_optab);
1501 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1502 ? ashl_optab : lshr_optab);
1504 if (shift_count > BITS_PER_WORD)
1506 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1507 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1509 else
1511 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1512 second_shift_count = GEN_INT (shift_count);
1515 into_temp1 = expand_binop (word_mode, unsigned_shift,
1516 outof_input, first_shift_count,
1517 NULL_RTX, unsignedp, next_methods);
1518 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1519 into_input, second_shift_count,
1520 NULL_RTX, unsignedp, next_methods);
1522 if (into_temp1 != 0 && into_temp2 != 0)
1523 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1524 into_target, unsignedp, next_methods);
1525 else
1526 inter = 0;
1528 if (inter != 0 && inter != into_target)
1529 emit_move_insn (into_target, inter);
1531 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1532 into_input, first_shift_count,
1533 NULL_RTX, unsignedp, next_methods);
1534 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1535 outof_input, second_shift_count,
1536 NULL_RTX, unsignedp, next_methods);
1538 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1539 inter = expand_binop (word_mode, ior_optab,
1540 outof_temp1, outof_temp2,
1541 outof_target, unsignedp, next_methods);
1543 if (inter != 0 && inter != outof_target)
1544 emit_move_insn (outof_target, inter);
1547 insns = get_insns ();
1548 end_sequence ();
1550 if (inter != 0)
1552 emit_insn (insns);
1553 return target;
1557 /* These can be done a word at a time by propagating carries. */
1558 if ((binoptab == add_optab || binoptab == sub_optab)
1559 && mclass == MODE_INT
1560 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1561 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1563 unsigned int i;
1564 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1565 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1566 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1567 rtx xop0, xop1, xtarget;
1569 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1570 value is one of those, use it. Otherwise, use 1 since it is the
1571 one easiest to get. */
1572 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1573 int normalizep = STORE_FLAG_VALUE;
1574 #else
1575 int normalizep = 1;
1576 #endif
1578 /* Prepare the operands. */
1579 xop0 = force_reg (mode, op0);
1580 xop1 = force_reg (mode, op1);
1582 xtarget = gen_reg_rtx (mode);
1584 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1585 target = xtarget;
1587 /* Indicate for flow that the entire target reg is being set. */
1588 if (REG_P (target))
1589 emit_clobber (xtarget);
1591 /* Do the actual arithmetic. */
1592 for (i = 0; i < nwords; i++)
1594 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1595 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1596 rtx op0_piece = operand_subword_force (xop0, index, mode);
1597 rtx op1_piece = operand_subword_force (xop1, index, mode);
1598 rtx x;
1600 /* Main add/subtract of the input operands. */
1601 x = expand_binop (word_mode, binoptab,
1602 op0_piece, op1_piece,
1603 target_piece, unsignedp, next_methods);
1604 if (x == 0)
1605 break;
1607 if (i + 1 < nwords)
1609 /* Store carry from main add/subtract. */
1610 carry_out = gen_reg_rtx (word_mode);
1611 carry_out = emit_store_flag_force (carry_out,
1612 (binoptab == add_optab
1613 ? LT : GT),
1614 x, op0_piece,
1615 word_mode, 1, normalizep);
1618 if (i > 0)
1620 rtx newx;
1622 /* Add/subtract previous carry to main result. */
1623 newx = expand_binop (word_mode,
1624 normalizep == 1 ? binoptab : otheroptab,
1625 x, carry_in,
1626 NULL_RTX, 1, next_methods);
1628 if (i + 1 < nwords)
1630 /* Get out carry from adding/subtracting carry in. */
1631 rtx carry_tmp = gen_reg_rtx (word_mode);
1632 carry_tmp = emit_store_flag_force (carry_tmp,
1633 (binoptab == add_optab
1634 ? LT : GT),
1635 newx, x,
1636 word_mode, 1, normalizep);
1638 /* Logical-ior the two poss. carry together. */
1639 carry_out = expand_binop (word_mode, ior_optab,
1640 carry_out, carry_tmp,
1641 carry_out, 0, next_methods);
1642 if (carry_out == 0)
1643 break;
1645 emit_move_insn (target_piece, newx);
1647 else
1649 if (x != target_piece)
1650 emit_move_insn (target_piece, x);
1653 carry_in = carry_out;
1656 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1658 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
1659 || ! rtx_equal_p (target, xtarget))
1661 rtx_insn *temp = emit_move_insn (target, xtarget);
1663 set_dst_reg_note (temp, REG_EQUAL,
1664 gen_rtx_fmt_ee (optab_to_code (binoptab),
1665 mode, copy_rtx (xop0),
1666 copy_rtx (xop1)),
1667 target);
1669 else
1670 target = xtarget;
1672 return target;
1675 else
1676 delete_insns_since (last);
1679 /* Attempt to synthesize double word multiplies using a sequence of word
1680 mode multiplications. We first attempt to generate a sequence using a
1681 more efficient unsigned widening multiply, and if that fails we then
1682 try using a signed widening multiply. */
1684 if (binoptab == smul_optab
1685 && mclass == MODE_INT
1686 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1687 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
1688 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
1690 rtx product = NULL_RTX;
1691 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
1692 != CODE_FOR_nothing)
1694 product = expand_doubleword_mult (mode, op0, op1, target,
1695 true, methods);
1696 if (!product)
1697 delete_insns_since (last);
1700 if (product == NULL_RTX
1701 && widening_optab_handler (smul_widen_optab, mode, word_mode)
1702 != CODE_FOR_nothing)
1704 product = expand_doubleword_mult (mode, op0, op1, target,
1705 false, methods);
1706 if (!product)
1707 delete_insns_since (last);
1710 if (product != NULL_RTX)
1712 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
1714 temp = emit_move_insn (target ? target : product, product);
1715 set_dst_reg_note (temp,
1716 REG_EQUAL,
1717 gen_rtx_fmt_ee (MULT, mode,
1718 copy_rtx (op0),
1719 copy_rtx (op1)),
1720 target ? target : product);
1722 return product;
1726 /* It can't be open-coded in this mode.
1727 Use a library call if one is available and caller says that's ok. */
1729 libfunc = optab_libfunc (binoptab, mode);
1730 if (libfunc
1731 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1733 rtx_insn *insns;
1734 rtx op1x = op1;
1735 machine_mode op1_mode = mode;
1736 rtx value;
1738 start_sequence ();
1740 if (shift_optab_p (binoptab))
1742 op1_mode = targetm.libgcc_shift_count_mode ();
1743 /* Specify unsigned here,
1744 since negative shift counts are meaningless. */
1745 op1x = convert_to_mode (op1_mode, op1, 1);
1748 if (GET_MODE (op0) != VOIDmode
1749 && GET_MODE (op0) != mode)
1750 op0 = convert_to_mode (mode, op0, unsignedp);
1752 /* Pass 1 for NO_QUEUE so we don't lose any increments
1753 if the libcall is cse'd or moved. */
1754 value = emit_library_call_value (libfunc,
1755 NULL_RTX, LCT_CONST, mode, 2,
1756 op0, mode, op1x, op1_mode);
1758 insns = get_insns ();
1759 end_sequence ();
1761 bool trapv = trapv_binoptab_p (binoptab);
1762 target = gen_reg_rtx (mode);
1763 emit_libcall_block_1 (insns, target, value,
1764 trapv ? NULL_RTX
1765 : gen_rtx_fmt_ee (optab_to_code (binoptab),
1766 mode, op0, op1), trapv);
1768 return target;
1771 delete_insns_since (last);
1773 /* It can't be done in this mode. Can we do it in a wider mode? */
1775 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1776 || methods == OPTAB_MUST_WIDEN))
1778 /* Caller says, don't even try. */
1779 delete_insns_since (entry_last);
1780 return 0;
1783 /* Compute the value of METHODS to pass to recursive calls.
1784 Don't allow widening to be tried recursively. */
1786 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1788 /* Look for a wider mode of the same class for which it appears we can do
1789 the operation. */
1791 if (CLASS_HAS_WIDER_MODES_P (mclass))
1793 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1794 wider_mode != VOIDmode;
1795 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1797 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
1798 != CODE_FOR_nothing
1799 || (methods == OPTAB_LIB
1800 && optab_libfunc (binoptab, wider_mode)))
1802 rtx xop0 = op0, xop1 = op1;
1803 int no_extend = 0;
1805 /* For certain integer operations, we need not actually extend
1806 the narrow operands, as long as we will truncate
1807 the results to the same narrowness. */
1809 if ((binoptab == ior_optab || binoptab == and_optab
1810 || binoptab == xor_optab
1811 || binoptab == add_optab || binoptab == sub_optab
1812 || binoptab == smul_optab || binoptab == ashl_optab)
1813 && mclass == MODE_INT)
1814 no_extend = 1;
1816 xop0 = widen_operand (xop0, wider_mode, mode,
1817 unsignedp, no_extend);
1819 /* The second operand of a shift must always be extended. */
1820 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1821 no_extend && binoptab != ashl_optab);
1823 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1824 unsignedp, methods);
1825 if (temp)
1827 if (mclass != MODE_INT
1828 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1830 if (target == 0)
1831 target = gen_reg_rtx (mode);
1832 convert_move (target, temp, 0);
1833 return target;
1835 else
1836 return gen_lowpart (mode, temp);
1838 else
1839 delete_insns_since (last);
1844 delete_insns_since (entry_last);
1845 return 0;
1848 /* Expand a binary operator which has both signed and unsigned forms.
1849 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1850 signed operations.
1852 If we widen unsigned operands, we may use a signed wider operation instead
1853 of an unsigned wider operation, since the result would be the same. */
1856 sign_expand_binop (machine_mode mode, optab uoptab, optab soptab,
1857 rtx op0, rtx op1, rtx target, int unsignedp,
1858 enum optab_methods methods)
1860 rtx temp;
1861 optab direct_optab = unsignedp ? uoptab : soptab;
1862 bool save_enable;
1864 /* Do it without widening, if possible. */
1865 temp = expand_binop (mode, direct_optab, op0, op1, target,
1866 unsignedp, OPTAB_DIRECT);
1867 if (temp || methods == OPTAB_DIRECT)
1868 return temp;
1870 /* Try widening to a signed int. Disable any direct use of any
1871 signed insn in the current mode. */
1872 save_enable = swap_optab_enable (soptab, mode, false);
1874 temp = expand_binop (mode, soptab, op0, op1, target,
1875 unsignedp, OPTAB_WIDEN);
1877 /* For unsigned operands, try widening to an unsigned int. */
1878 if (!temp && unsignedp)
1879 temp = expand_binop (mode, uoptab, op0, op1, target,
1880 unsignedp, OPTAB_WIDEN);
1881 if (temp || methods == OPTAB_WIDEN)
1882 goto egress;
1884 /* Use the right width libcall if that exists. */
1885 temp = expand_binop (mode, direct_optab, op0, op1, target,
1886 unsignedp, OPTAB_LIB);
1887 if (temp || methods == OPTAB_LIB)
1888 goto egress;
1890 /* Must widen and use a libcall, use either signed or unsigned. */
1891 temp = expand_binop (mode, soptab, op0, op1, target,
1892 unsignedp, methods);
1893 if (!temp && unsignedp)
1894 temp = expand_binop (mode, uoptab, op0, op1, target,
1895 unsignedp, methods);
1897 egress:
1898 /* Undo the fiddling above. */
1899 if (save_enable)
1900 swap_optab_enable (soptab, mode, true);
1901 return temp;
1904 /* Generate code to perform an operation specified by UNOPPTAB
1905 on operand OP0, with two results to TARG0 and TARG1.
1906 We assume that the order of the operands for the instruction
1907 is TARG0, TARG1, OP0.
1909 Either TARG0 or TARG1 may be zero, but what that means is that
1910 the result is not actually wanted. We will generate it into
1911 a dummy pseudo-reg and discard it. They may not both be zero.
1913 Returns 1 if this operation can be performed; 0 if not. */
1916 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
1917 int unsignedp)
1919 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1920 enum mode_class mclass;
1921 machine_mode wider_mode;
1922 rtx_insn *entry_last = get_last_insn ();
1923 rtx_insn *last;
1925 mclass = GET_MODE_CLASS (mode);
1927 if (!targ0)
1928 targ0 = gen_reg_rtx (mode);
1929 if (!targ1)
1930 targ1 = gen_reg_rtx (mode);
1932 /* Record where to go back to if we fail. */
1933 last = get_last_insn ();
1935 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
1937 struct expand_operand ops[3];
1938 enum insn_code icode = optab_handler (unoptab, mode);
1940 create_fixed_operand (&ops[0], targ0);
1941 create_fixed_operand (&ops[1], targ1);
1942 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
1943 if (maybe_expand_insn (icode, 3, ops))
1944 return 1;
1947 /* It can't be done in this mode. Can we do it in a wider mode? */
1949 if (CLASS_HAS_WIDER_MODES_P (mclass))
1951 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1952 wider_mode != VOIDmode;
1953 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1955 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
1957 rtx t0 = gen_reg_rtx (wider_mode);
1958 rtx t1 = gen_reg_rtx (wider_mode);
1959 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
1961 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
1963 convert_move (targ0, t0, unsignedp);
1964 convert_move (targ1, t1, unsignedp);
1965 return 1;
1967 else
1968 delete_insns_since (last);
1973 delete_insns_since (entry_last);
1974 return 0;
1977 /* Generate code to perform an operation specified by BINOPTAB
1978 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1979 We assume that the order of the operands for the instruction
1980 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1981 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1983 Either TARG0 or TARG1 may be zero, but what that means is that
1984 the result is not actually wanted. We will generate it into
1985 a dummy pseudo-reg and discard it. They may not both be zero.
1987 Returns 1 if this operation can be performed; 0 if not. */
1990 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
1991 int unsignedp)
1993 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1994 enum mode_class mclass;
1995 machine_mode wider_mode;
1996 rtx_insn *entry_last = get_last_insn ();
1997 rtx_insn *last;
1999 mclass = GET_MODE_CLASS (mode);
2001 if (!targ0)
2002 targ0 = gen_reg_rtx (mode);
2003 if (!targ1)
2004 targ1 = gen_reg_rtx (mode);
2006 /* Record where to go back to if we fail. */
2007 last = get_last_insn ();
2009 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2011 struct expand_operand ops[4];
2012 enum insn_code icode = optab_handler (binoptab, mode);
2013 machine_mode mode0 = insn_data[icode].operand[1].mode;
2014 machine_mode mode1 = insn_data[icode].operand[2].mode;
2015 rtx xop0 = op0, xop1 = op1;
2017 /* If we are optimizing, force expensive constants into a register. */
2018 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2019 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2021 create_fixed_operand (&ops[0], targ0);
2022 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2023 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2024 create_fixed_operand (&ops[3], targ1);
2025 if (maybe_expand_insn (icode, 4, ops))
2026 return 1;
2027 delete_insns_since (last);
2030 /* It can't be done in this mode. Can we do it in a wider mode? */
2032 if (CLASS_HAS_WIDER_MODES_P (mclass))
2034 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2035 wider_mode != VOIDmode;
2036 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2038 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2040 rtx t0 = gen_reg_rtx (wider_mode);
2041 rtx t1 = gen_reg_rtx (wider_mode);
2042 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2043 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2045 if (expand_twoval_binop (binoptab, cop0, cop1,
2046 t0, t1, unsignedp))
2048 convert_move (targ0, t0, unsignedp);
2049 convert_move (targ1, t1, unsignedp);
2050 return 1;
2052 else
2053 delete_insns_since (last);
2058 delete_insns_since (entry_last);
2059 return 0;
2062 /* Expand the two-valued library call indicated by BINOPTAB, but
2063 preserve only one of the values. If TARG0 is non-NULL, the first
2064 value is placed into TARG0; otherwise the second value is placed
2065 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2066 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2067 This routine assumes that the value returned by the library call is
2068 as if the return value was of an integral mode twice as wide as the
2069 mode of OP0. Returns 1 if the call was successful. */
2071 bool
2072 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2073 rtx targ0, rtx targ1, enum rtx_code code)
2075 machine_mode mode;
2076 machine_mode libval_mode;
2077 rtx libval;
2078 rtx_insn *insns;
2079 rtx libfunc;
2081 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2082 gcc_assert (!targ0 != !targ1);
2084 mode = GET_MODE (op0);
2085 libfunc = optab_libfunc (binoptab, mode);
2086 if (!libfunc)
2087 return false;
2089 /* The value returned by the library function will have twice as
2090 many bits as the nominal MODE. */
2091 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2092 MODE_INT);
2093 start_sequence ();
2094 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2095 libval_mode, 2,
2096 op0, mode,
2097 op1, mode);
2098 /* Get the part of VAL containing the value that we want. */
2099 libval = simplify_gen_subreg (mode, libval, libval_mode,
2100 targ0 ? 0 : GET_MODE_SIZE (mode));
2101 insns = get_insns ();
2102 end_sequence ();
2103 /* Move the into the desired location. */
2104 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2105 gen_rtx_fmt_ee (code, mode, op0, op1));
2107 return true;
2111 /* Wrapper around expand_unop which takes an rtx code to specify
2112 the operation to perform, not an optab pointer. All other
2113 arguments are the same. */
2115 expand_simple_unop (machine_mode mode, enum rtx_code code, rtx op0,
2116 rtx target, int unsignedp)
2118 optab unop = code_to_optab (code);
2119 gcc_assert (unop);
2121 return expand_unop (mode, unop, op0, target, unsignedp);
2124 /* Try calculating
2125 (clz:narrow x)
2127 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2129 A similar operation can be used for clrsb. UNOPTAB says which operation
2130 we are trying to expand. */
2131 static rtx
2132 widen_leading (machine_mode mode, rtx op0, rtx target, optab unoptab)
2134 enum mode_class mclass = GET_MODE_CLASS (mode);
2135 if (CLASS_HAS_WIDER_MODES_P (mclass))
2137 machine_mode wider_mode;
2138 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2139 wider_mode != VOIDmode;
2140 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2142 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2144 rtx xop0, temp;
2145 rtx_insn *last;
2147 last = get_last_insn ();
2149 if (target == 0)
2150 target = gen_reg_rtx (mode);
2151 xop0 = widen_operand (op0, wider_mode, mode,
2152 unoptab != clrsb_optab, false);
2153 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2154 unoptab != clrsb_optab);
2155 if (temp != 0)
2156 temp = expand_binop
2157 (wider_mode, sub_optab, temp,
2158 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2159 - GET_MODE_PRECISION (mode),
2160 wider_mode),
2161 target, true, OPTAB_DIRECT);
2162 if (temp == 0)
2163 delete_insns_since (last);
2165 return temp;
2169 return 0;
2172 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2173 quantities, choosing which based on whether the high word is nonzero. */
2174 static rtx
2175 expand_doubleword_clz (machine_mode mode, rtx op0, rtx target)
2177 rtx xop0 = force_reg (mode, op0);
2178 rtx subhi = gen_highpart (word_mode, xop0);
2179 rtx sublo = gen_lowpart (word_mode, xop0);
2180 rtx_code_label *hi0_label = gen_label_rtx ();
2181 rtx_code_label *after_label = gen_label_rtx ();
2182 rtx_insn *seq;
2183 rtx temp, result;
2185 /* If we were not given a target, use a word_mode register, not a
2186 'mode' register. The result will fit, and nobody is expecting
2187 anything bigger (the return type of __builtin_clz* is int). */
2188 if (!target)
2189 target = gen_reg_rtx (word_mode);
2191 /* In any case, write to a word_mode scratch in both branches of the
2192 conditional, so we can ensure there is a single move insn setting
2193 'target' to tag a REG_EQUAL note on. */
2194 result = gen_reg_rtx (word_mode);
2196 start_sequence ();
2198 /* If the high word is not equal to zero,
2199 then clz of the full value is clz of the high word. */
2200 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2201 word_mode, true, hi0_label);
2203 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2204 if (!temp)
2205 goto fail;
2207 if (temp != result)
2208 convert_move (result, temp, true);
2210 emit_jump_insn (targetm.gen_jump (after_label));
2211 emit_barrier ();
2213 /* Else clz of the full value is clz of the low word plus the number
2214 of bits in the high word. */
2215 emit_label (hi0_label);
2217 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2218 if (!temp)
2219 goto fail;
2220 temp = expand_binop (word_mode, add_optab, temp,
2221 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2222 result, true, OPTAB_DIRECT);
2223 if (!temp)
2224 goto fail;
2225 if (temp != result)
2226 convert_move (result, temp, true);
2228 emit_label (after_label);
2229 convert_move (target, result, true);
2231 seq = get_insns ();
2232 end_sequence ();
2234 add_equal_note (seq, target, CLZ, xop0, 0);
2235 emit_insn (seq);
2236 return target;
2238 fail:
2239 end_sequence ();
2240 return 0;
2243 /* Try calculating popcount of a double-word quantity as two popcount's of
2244 word-sized quantities and summing up the results. */
2245 static rtx
2246 expand_doubleword_popcount (machine_mode mode, rtx op0, rtx target)
2248 rtx t0, t1, t;
2249 rtx_insn *seq;
2251 start_sequence ();
2253 t0 = expand_unop_direct (word_mode, popcount_optab,
2254 operand_subword_force (op0, 0, mode), NULL_RTX,
2255 true);
2256 t1 = expand_unop_direct (word_mode, popcount_optab,
2257 operand_subword_force (op0, 1, mode), NULL_RTX,
2258 true);
2259 if (!t0 || !t1)
2261 end_sequence ();
2262 return NULL_RTX;
2265 /* If we were not given a target, use a word_mode register, not a
2266 'mode' register. The result will fit, and nobody is expecting
2267 anything bigger (the return type of __builtin_popcount* is int). */
2268 if (!target)
2269 target = gen_reg_rtx (word_mode);
2271 t = expand_binop (word_mode, add_optab, t0, t1, target, 0, OPTAB_DIRECT);
2273 seq = get_insns ();
2274 end_sequence ();
2276 add_equal_note (seq, t, POPCOUNT, op0, 0);
2277 emit_insn (seq);
2278 return t;
2281 /* Try calculating
2282 (parity:wide x)
2284 (parity:narrow (low (x) ^ high (x))) */
2285 static rtx
2286 expand_doubleword_parity (machine_mode mode, rtx op0, rtx target)
2288 rtx t = expand_binop (word_mode, xor_optab,
2289 operand_subword_force (op0, 0, mode),
2290 operand_subword_force (op0, 1, mode),
2291 NULL_RTX, 0, OPTAB_DIRECT);
2292 return expand_unop (word_mode, parity_optab, t, target, true);
2295 /* Try calculating
2296 (bswap:narrow x)
2298 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2299 static rtx
2300 widen_bswap (machine_mode mode, rtx op0, rtx target)
2302 enum mode_class mclass = GET_MODE_CLASS (mode);
2303 machine_mode wider_mode;
2304 rtx x;
2305 rtx_insn *last;
2307 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2308 return NULL_RTX;
2310 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2311 wider_mode != VOIDmode;
2312 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2313 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2314 goto found;
2315 return NULL_RTX;
2317 found:
2318 last = get_last_insn ();
2320 x = widen_operand (op0, wider_mode, mode, true, true);
2321 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2323 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2324 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2325 if (x != 0)
2326 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2327 GET_MODE_BITSIZE (wider_mode)
2328 - GET_MODE_BITSIZE (mode),
2329 NULL_RTX, true);
2331 if (x != 0)
2333 if (target == 0)
2334 target = gen_reg_rtx (mode);
2335 emit_move_insn (target, gen_lowpart (mode, x));
2337 else
2338 delete_insns_since (last);
2340 return target;
2343 /* Try calculating bswap as two bswaps of two word-sized operands. */
2345 static rtx
2346 expand_doubleword_bswap (machine_mode mode, rtx op, rtx target)
2348 rtx t0, t1;
2350 t1 = expand_unop (word_mode, bswap_optab,
2351 operand_subword_force (op, 0, mode), NULL_RTX, true);
2352 t0 = expand_unop (word_mode, bswap_optab,
2353 operand_subword_force (op, 1, mode), NULL_RTX, true);
2355 if (target == 0 || !valid_multiword_target_p (target))
2356 target = gen_reg_rtx (mode);
2357 if (REG_P (target))
2358 emit_clobber (target);
2359 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2360 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2362 return target;
2365 /* Try calculating (parity x) as (and (popcount x) 1), where
2366 popcount can also be done in a wider mode. */
2367 static rtx
2368 expand_parity (machine_mode mode, rtx op0, rtx target)
2370 enum mode_class mclass = GET_MODE_CLASS (mode);
2371 if (CLASS_HAS_WIDER_MODES_P (mclass))
2373 machine_mode wider_mode;
2374 for (wider_mode = mode; wider_mode != VOIDmode;
2375 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2377 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2379 rtx xop0, temp;
2380 rtx_insn *last;
2382 last = get_last_insn ();
2384 if (target == 0)
2385 target = gen_reg_rtx (mode);
2386 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2387 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2388 true);
2389 if (temp != 0)
2390 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2391 target, true, OPTAB_DIRECT);
2392 if (temp == 0)
2393 delete_insns_since (last);
2395 return temp;
2399 return 0;
2402 /* Try calculating ctz(x) as K - clz(x & -x) ,
2403 where K is GET_MODE_PRECISION(mode) - 1.
2405 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2406 don't have to worry about what the hardware does in that case. (If
2407 the clz instruction produces the usual value at 0, which is K, the
2408 result of this code sequence will be -1; expand_ffs, below, relies
2409 on this. It might be nice to have it be K instead, for consistency
2410 with the (very few) processors that provide a ctz with a defined
2411 value, but that would take one more instruction, and it would be
2412 less convenient for expand_ffs anyway. */
2414 static rtx
2415 expand_ctz (machine_mode mode, rtx op0, rtx target)
2417 rtx_insn *seq;
2418 rtx temp;
2420 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2421 return 0;
2423 start_sequence ();
2425 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2426 if (temp)
2427 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2428 true, OPTAB_DIRECT);
2429 if (temp)
2430 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2431 if (temp)
2432 temp = expand_binop (mode, sub_optab,
2433 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2434 temp, target,
2435 true, OPTAB_DIRECT);
2436 if (temp == 0)
2438 end_sequence ();
2439 return 0;
2442 seq = get_insns ();
2443 end_sequence ();
2445 add_equal_note (seq, temp, CTZ, op0, 0);
2446 emit_insn (seq);
2447 return temp;
2451 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2452 else with the sequence used by expand_clz.
2454 The ffs builtin promises to return zero for a zero value and ctz/clz
2455 may have an undefined value in that case. If they do not give us a
2456 convenient value, we have to generate a test and branch. */
2457 static rtx
2458 expand_ffs (machine_mode mode, rtx op0, rtx target)
2460 HOST_WIDE_INT val = 0;
2461 bool defined_at_zero = false;
2462 rtx temp;
2463 rtx_insn *seq;
2465 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2467 start_sequence ();
2469 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2470 if (!temp)
2471 goto fail;
2473 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2475 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2477 start_sequence ();
2478 temp = expand_ctz (mode, op0, 0);
2479 if (!temp)
2480 goto fail;
2482 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2484 defined_at_zero = true;
2485 val = (GET_MODE_PRECISION (mode) - 1) - val;
2488 else
2489 return 0;
2491 if (defined_at_zero && val == -1)
2492 /* No correction needed at zero. */;
2493 else
2495 /* We don't try to do anything clever with the situation found
2496 on some processors (eg Alpha) where ctz(0:mode) ==
2497 bitsize(mode). If someone can think of a way to send N to -1
2498 and leave alone all values in the range 0..N-1 (where N is a
2499 power of two), cheaper than this test-and-branch, please add it.
2501 The test-and-branch is done after the operation itself, in case
2502 the operation sets condition codes that can be recycled for this.
2503 (This is true on i386, for instance.) */
2505 rtx_code_label *nonzero_label = gen_label_rtx ();
2506 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2507 mode, true, nonzero_label);
2509 convert_move (temp, GEN_INT (-1), false);
2510 emit_label (nonzero_label);
2513 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2514 to produce a value in the range 0..bitsize. */
2515 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2516 target, false, OPTAB_DIRECT);
2517 if (!temp)
2518 goto fail;
2520 seq = get_insns ();
2521 end_sequence ();
2523 add_equal_note (seq, temp, FFS, op0, 0);
2524 emit_insn (seq);
2525 return temp;
2527 fail:
2528 end_sequence ();
2529 return 0;
2532 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2533 conditions, VAL may already be a SUBREG against which we cannot generate
2534 a further SUBREG. In this case, we expect forcing the value into a
2535 register will work around the situation. */
2537 static rtx
2538 lowpart_subreg_maybe_copy (machine_mode omode, rtx val,
2539 machine_mode imode)
2541 rtx ret;
2542 ret = lowpart_subreg (omode, val, imode);
2543 if (ret == NULL)
2545 val = force_reg (imode, val);
2546 ret = lowpart_subreg (omode, val, imode);
2547 gcc_assert (ret != NULL);
2549 return ret;
2552 /* Expand a floating point absolute value or negation operation via a
2553 logical operation on the sign bit. */
2555 static rtx
2556 expand_absneg_bit (enum rtx_code code, machine_mode mode,
2557 rtx op0, rtx target)
2559 const struct real_format *fmt;
2560 int bitpos, word, nwords, i;
2561 machine_mode imode;
2562 rtx temp;
2563 rtx_insn *insns;
2565 /* The format has to have a simple sign bit. */
2566 fmt = REAL_MODE_FORMAT (mode);
2567 if (fmt == NULL)
2568 return NULL_RTX;
2570 bitpos = fmt->signbit_rw;
2571 if (bitpos < 0)
2572 return NULL_RTX;
2574 /* Don't create negative zeros if the format doesn't support them. */
2575 if (code == NEG && !fmt->has_signed_zero)
2576 return NULL_RTX;
2578 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2580 imode = int_mode_for_mode (mode);
2581 if (imode == BLKmode)
2582 return NULL_RTX;
2583 word = 0;
2584 nwords = 1;
2586 else
2588 imode = word_mode;
2590 if (FLOAT_WORDS_BIG_ENDIAN)
2591 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2592 else
2593 word = bitpos / BITS_PER_WORD;
2594 bitpos = bitpos % BITS_PER_WORD;
2595 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2598 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2599 if (code == ABS)
2600 mask = ~mask;
2602 if (target == 0
2603 || target == op0
2604 || (nwords > 1 && !valid_multiword_target_p (target)))
2605 target = gen_reg_rtx (mode);
2607 if (nwords > 1)
2609 start_sequence ();
2611 for (i = 0; i < nwords; ++i)
2613 rtx targ_piece = operand_subword (target, i, 1, mode);
2614 rtx op0_piece = operand_subword_force (op0, i, mode);
2616 if (i == word)
2618 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2619 op0_piece,
2620 immed_wide_int_const (mask, imode),
2621 targ_piece, 1, OPTAB_LIB_WIDEN);
2622 if (temp != targ_piece)
2623 emit_move_insn (targ_piece, temp);
2625 else
2626 emit_move_insn (targ_piece, op0_piece);
2629 insns = get_insns ();
2630 end_sequence ();
2632 emit_insn (insns);
2634 else
2636 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2637 gen_lowpart (imode, op0),
2638 immed_wide_int_const (mask, imode),
2639 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2640 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2642 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2643 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2644 target);
2647 return target;
2650 /* As expand_unop, but will fail rather than attempt the operation in a
2651 different mode or with a libcall. */
2652 static rtx
2653 expand_unop_direct (machine_mode mode, optab unoptab, rtx op0, rtx target,
2654 int unsignedp)
2656 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2658 struct expand_operand ops[2];
2659 enum insn_code icode = optab_handler (unoptab, mode);
2660 rtx_insn *last = get_last_insn ();
2661 rtx_insn *pat;
2663 create_output_operand (&ops[0], target, mode);
2664 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2665 pat = maybe_gen_insn (icode, 2, ops);
2666 if (pat)
2668 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2669 && ! add_equal_note (pat, ops[0].value,
2670 optab_to_code (unoptab),
2671 ops[1].value, NULL_RTX))
2673 delete_insns_since (last);
2674 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2677 emit_insn (pat);
2679 return ops[0].value;
2682 return 0;
2685 /* Generate code to perform an operation specified by UNOPTAB
2686 on operand OP0, with result having machine-mode MODE.
2688 UNSIGNEDP is for the case where we have to widen the operands
2689 to perform the operation. It says to use zero-extension.
2691 If TARGET is nonzero, the value
2692 is generated there, if it is convenient to do so.
2693 In all cases an rtx is returned for the locus of the value;
2694 this may or may not be TARGET. */
2697 expand_unop (machine_mode mode, optab unoptab, rtx op0, rtx target,
2698 int unsignedp)
2700 enum mode_class mclass = GET_MODE_CLASS (mode);
2701 machine_mode wider_mode;
2702 rtx temp;
2703 rtx libfunc;
2705 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
2706 if (temp)
2707 return temp;
2709 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2711 /* Widening (or narrowing) clz needs special treatment. */
2712 if (unoptab == clz_optab)
2714 temp = widen_leading (mode, op0, target, unoptab);
2715 if (temp)
2716 return temp;
2718 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2719 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2721 temp = expand_doubleword_clz (mode, op0, target);
2722 if (temp)
2723 return temp;
2726 goto try_libcall;
2729 if (unoptab == clrsb_optab)
2731 temp = widen_leading (mode, op0, target, unoptab);
2732 if (temp)
2733 return temp;
2734 goto try_libcall;
2737 if (unoptab == popcount_optab
2738 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2739 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2740 && optimize_insn_for_speed_p ())
2742 temp = expand_doubleword_popcount (mode, op0, target);
2743 if (temp)
2744 return temp;
2747 if (unoptab == parity_optab
2748 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2749 && (optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2750 || optab_handler (popcount_optab, word_mode) != CODE_FOR_nothing)
2751 && optimize_insn_for_speed_p ())
2753 temp = expand_doubleword_parity (mode, op0, target);
2754 if (temp)
2755 return temp;
2758 /* Widening (or narrowing) bswap needs special treatment. */
2759 if (unoptab == bswap_optab)
2761 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
2762 or ROTATERT. First try these directly; if this fails, then try the
2763 obvious pair of shifts with allowed widening, as this will probably
2764 be always more efficient than the other fallback methods. */
2765 if (mode == HImode)
2767 rtx_insn *last;
2768 rtx temp1, temp2;
2770 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
2772 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
2773 unsignedp, OPTAB_DIRECT);
2774 if (temp)
2775 return temp;
2778 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
2780 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
2781 unsignedp, OPTAB_DIRECT);
2782 if (temp)
2783 return temp;
2786 last = get_last_insn ();
2788 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
2789 unsignedp, OPTAB_WIDEN);
2790 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
2791 unsignedp, OPTAB_WIDEN);
2792 if (temp1 && temp2)
2794 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
2795 unsignedp, OPTAB_WIDEN);
2796 if (temp)
2797 return temp;
2800 delete_insns_since (last);
2803 temp = widen_bswap (mode, op0, target);
2804 if (temp)
2805 return temp;
2807 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2808 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2810 temp = expand_doubleword_bswap (mode, op0, target);
2811 if (temp)
2812 return temp;
2815 goto try_libcall;
2818 if (CLASS_HAS_WIDER_MODES_P (mclass))
2819 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2820 wider_mode != VOIDmode;
2821 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2823 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2825 rtx xop0 = op0;
2826 rtx_insn *last = get_last_insn ();
2828 /* For certain operations, we need not actually extend
2829 the narrow operand, as long as we will truncate the
2830 results to the same narrowness. */
2832 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2833 (unoptab == neg_optab
2834 || unoptab == one_cmpl_optab)
2835 && mclass == MODE_INT);
2837 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2838 unsignedp);
2840 if (temp)
2842 if (mclass != MODE_INT
2843 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2845 if (target == 0)
2846 target = gen_reg_rtx (mode);
2847 convert_move (target, temp, 0);
2848 return target;
2850 else
2851 return gen_lowpart (mode, temp);
2853 else
2854 delete_insns_since (last);
2858 /* These can be done a word at a time. */
2859 if (unoptab == one_cmpl_optab
2860 && mclass == MODE_INT
2861 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2862 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2864 int i;
2865 rtx_insn *insns;
2867 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
2868 target = gen_reg_rtx (mode);
2870 start_sequence ();
2872 /* Do the actual arithmetic. */
2873 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2875 rtx target_piece = operand_subword (target, i, 1, mode);
2876 rtx x = expand_unop (word_mode, unoptab,
2877 operand_subword_force (op0, i, mode),
2878 target_piece, unsignedp);
2880 if (target_piece != x)
2881 emit_move_insn (target_piece, x);
2884 insns = get_insns ();
2885 end_sequence ();
2887 emit_insn (insns);
2888 return target;
2891 if (optab_to_code (unoptab) == NEG)
2893 /* Try negating floating point values by flipping the sign bit. */
2894 if (SCALAR_FLOAT_MODE_P (mode))
2896 temp = expand_absneg_bit (NEG, mode, op0, target);
2897 if (temp)
2898 return temp;
2901 /* If there is no negation pattern, and we have no negative zero,
2902 try subtracting from zero. */
2903 if (!HONOR_SIGNED_ZEROS (mode))
2905 temp = expand_binop (mode, (unoptab == negv_optab
2906 ? subv_optab : sub_optab),
2907 CONST0_RTX (mode), op0, target,
2908 unsignedp, OPTAB_DIRECT);
2909 if (temp)
2910 return temp;
2914 /* Try calculating parity (x) as popcount (x) % 2. */
2915 if (unoptab == parity_optab)
2917 temp = expand_parity (mode, op0, target);
2918 if (temp)
2919 return temp;
2922 /* Try implementing ffs (x) in terms of clz (x). */
2923 if (unoptab == ffs_optab)
2925 temp = expand_ffs (mode, op0, target);
2926 if (temp)
2927 return temp;
2930 /* Try implementing ctz (x) in terms of clz (x). */
2931 if (unoptab == ctz_optab)
2933 temp = expand_ctz (mode, op0, target);
2934 if (temp)
2935 return temp;
2938 try_libcall:
2939 /* Now try a library call in this mode. */
2940 libfunc = optab_libfunc (unoptab, mode);
2941 if (libfunc)
2943 rtx_insn *insns;
2944 rtx value;
2945 rtx eq_value;
2946 machine_mode outmode = mode;
2948 /* All of these functions return small values. Thus we choose to
2949 have them return something that isn't a double-word. */
2950 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2951 || unoptab == clrsb_optab || unoptab == popcount_optab
2952 || unoptab == parity_optab)
2953 outmode
2954 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
2955 optab_libfunc (unoptab, mode)));
2957 start_sequence ();
2959 /* Pass 1 for NO_QUEUE so we don't lose any increments
2960 if the libcall is cse'd or moved. */
2961 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
2962 1, op0, mode);
2963 insns = get_insns ();
2964 end_sequence ();
2966 target = gen_reg_rtx (outmode);
2967 bool trapv = trapv_unoptab_p (unoptab);
2968 if (trapv)
2969 eq_value = NULL_RTX;
2970 else
2972 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
2973 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
2974 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
2975 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
2976 eq_value = simplify_gen_unary (ZERO_EXTEND,
2977 outmode, eq_value, mode);
2979 emit_libcall_block_1 (insns, target, value, eq_value, trapv);
2981 return target;
2984 /* It can't be done in this mode. Can we do it in a wider mode? */
2986 if (CLASS_HAS_WIDER_MODES_P (mclass))
2988 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2989 wider_mode != VOIDmode;
2990 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2992 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
2993 || optab_libfunc (unoptab, wider_mode))
2995 rtx xop0 = op0;
2996 rtx_insn *last = get_last_insn ();
2998 /* For certain operations, we need not actually extend
2999 the narrow operand, as long as we will truncate the
3000 results to the same narrowness. */
3001 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3002 (unoptab == neg_optab
3003 || unoptab == one_cmpl_optab
3004 || unoptab == bswap_optab)
3005 && mclass == MODE_INT);
3007 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3008 unsignedp);
3010 /* If we are generating clz using wider mode, adjust the
3011 result. Similarly for clrsb. */
3012 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3013 && temp != 0)
3014 temp = expand_binop
3015 (wider_mode, sub_optab, temp,
3016 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3017 - GET_MODE_PRECISION (mode),
3018 wider_mode),
3019 target, true, OPTAB_DIRECT);
3021 /* Likewise for bswap. */
3022 if (unoptab == bswap_optab && temp != 0)
3024 gcc_assert (GET_MODE_PRECISION (wider_mode)
3025 == GET_MODE_BITSIZE (wider_mode)
3026 && GET_MODE_PRECISION (mode)
3027 == GET_MODE_BITSIZE (mode));
3029 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3030 GET_MODE_BITSIZE (wider_mode)
3031 - GET_MODE_BITSIZE (mode),
3032 NULL_RTX, true);
3035 if (temp)
3037 if (mclass != MODE_INT)
3039 if (target == 0)
3040 target = gen_reg_rtx (mode);
3041 convert_move (target, temp, 0);
3042 return target;
3044 else
3045 return gen_lowpart (mode, temp);
3047 else
3048 delete_insns_since (last);
3053 /* One final attempt at implementing negation via subtraction,
3054 this time allowing widening of the operand. */
3055 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3057 rtx temp;
3058 temp = expand_binop (mode,
3059 unoptab == negv_optab ? subv_optab : sub_optab,
3060 CONST0_RTX (mode), op0,
3061 target, unsignedp, OPTAB_LIB_WIDEN);
3062 if (temp)
3063 return temp;
3066 return 0;
3069 /* Emit code to compute the absolute value of OP0, with result to
3070 TARGET if convenient. (TARGET may be 0.) The return value says
3071 where the result actually is to be found.
3073 MODE is the mode of the operand; the mode of the result is
3074 different but can be deduced from MODE.
3079 expand_abs_nojump (machine_mode mode, rtx op0, rtx target,
3080 int result_unsignedp)
3082 rtx temp;
3084 if (GET_MODE_CLASS (mode) != MODE_INT
3085 || ! flag_trapv)
3086 result_unsignedp = 1;
3088 /* First try to do it with a special abs instruction. */
3089 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3090 op0, target, 0);
3091 if (temp != 0)
3092 return temp;
3094 /* For floating point modes, try clearing the sign bit. */
3095 if (SCALAR_FLOAT_MODE_P (mode))
3097 temp = expand_absneg_bit (ABS, mode, op0, target);
3098 if (temp)
3099 return temp;
3102 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3103 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3104 && !HONOR_SIGNED_ZEROS (mode))
3106 rtx_insn *last = get_last_insn ();
3108 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3109 op0, NULL_RTX, 0);
3110 if (temp != 0)
3111 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3112 OPTAB_WIDEN);
3114 if (temp != 0)
3115 return temp;
3117 delete_insns_since (last);
3120 /* If this machine has expensive jumps, we can do integer absolute
3121 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3122 where W is the width of MODE. */
3124 if (GET_MODE_CLASS (mode) == MODE_INT
3125 && BRANCH_COST (optimize_insn_for_speed_p (),
3126 false) >= 2)
3128 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3129 GET_MODE_PRECISION (mode) - 1,
3130 NULL_RTX, 0);
3132 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3133 OPTAB_LIB_WIDEN);
3134 if (temp != 0)
3135 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3136 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3138 if (temp != 0)
3139 return temp;
3142 return NULL_RTX;
3146 expand_abs (machine_mode mode, rtx op0, rtx target,
3147 int result_unsignedp, int safe)
3149 rtx temp;
3150 rtx_code_label *op1;
3152 if (GET_MODE_CLASS (mode) != MODE_INT
3153 || ! flag_trapv)
3154 result_unsignedp = 1;
3156 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3157 if (temp != 0)
3158 return temp;
3160 /* If that does not win, use conditional jump and negate. */
3162 /* It is safe to use the target if it is the same
3163 as the source if this is also a pseudo register */
3164 if (op0 == target && REG_P (op0)
3165 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3166 safe = 1;
3168 op1 = gen_label_rtx ();
3169 if (target == 0 || ! safe
3170 || GET_MODE (target) != mode
3171 || (MEM_P (target) && MEM_VOLATILE_P (target))
3172 || (REG_P (target)
3173 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3174 target = gen_reg_rtx (mode);
3176 emit_move_insn (target, op0);
3177 NO_DEFER_POP;
3179 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3180 NULL_RTX, NULL, op1, -1);
3182 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3183 target, target, 0);
3184 if (op0 != target)
3185 emit_move_insn (target, op0);
3186 emit_label (op1);
3187 OK_DEFER_POP;
3188 return target;
3191 /* Emit code to compute the one's complement absolute value of OP0
3192 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3193 (TARGET may be NULL_RTX.) The return value says where the result
3194 actually is to be found.
3196 MODE is the mode of the operand; the mode of the result is
3197 different but can be deduced from MODE. */
3200 expand_one_cmpl_abs_nojump (machine_mode mode, rtx op0, rtx target)
3202 rtx temp;
3204 /* Not applicable for floating point modes. */
3205 if (FLOAT_MODE_P (mode))
3206 return NULL_RTX;
3208 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3209 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3211 rtx_insn *last = get_last_insn ();
3213 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3214 if (temp != 0)
3215 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3216 OPTAB_WIDEN);
3218 if (temp != 0)
3219 return temp;
3221 delete_insns_since (last);
3224 /* If this machine has expensive jumps, we can do one's complement
3225 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3227 if (GET_MODE_CLASS (mode) == MODE_INT
3228 && BRANCH_COST (optimize_insn_for_speed_p (),
3229 false) >= 2)
3231 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3232 GET_MODE_PRECISION (mode) - 1,
3233 NULL_RTX, 0);
3235 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3236 OPTAB_LIB_WIDEN);
3238 if (temp != 0)
3239 return temp;
3242 return NULL_RTX;
3245 /* A subroutine of expand_copysign, perform the copysign operation using the
3246 abs and neg primitives advertised to exist on the target. The assumption
3247 is that we have a split register file, and leaving op0 in fp registers,
3248 and not playing with subregs so much, will help the register allocator. */
3250 static rtx
3251 expand_copysign_absneg (machine_mode mode, rtx op0, rtx op1, rtx target,
3252 int bitpos, bool op0_is_abs)
3254 machine_mode imode;
3255 enum insn_code icode;
3256 rtx sign;
3257 rtx_code_label *label;
3259 if (target == op1)
3260 target = NULL_RTX;
3262 /* Check if the back end provides an insn that handles signbit for the
3263 argument's mode. */
3264 icode = optab_handler (signbit_optab, mode);
3265 if (icode != CODE_FOR_nothing)
3267 imode = insn_data[(int) icode].operand[0].mode;
3268 sign = gen_reg_rtx (imode);
3269 emit_unop_insn (icode, sign, op1, UNKNOWN);
3271 else
3273 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3275 imode = int_mode_for_mode (mode);
3276 if (imode == BLKmode)
3277 return NULL_RTX;
3278 op1 = gen_lowpart (imode, op1);
3280 else
3282 int word;
3284 imode = word_mode;
3285 if (FLOAT_WORDS_BIG_ENDIAN)
3286 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3287 else
3288 word = bitpos / BITS_PER_WORD;
3289 bitpos = bitpos % BITS_PER_WORD;
3290 op1 = operand_subword_force (op1, word, mode);
3293 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3294 sign = expand_binop (imode, and_optab, op1,
3295 immed_wide_int_const (mask, imode),
3296 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3299 if (!op0_is_abs)
3301 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3302 if (op0 == NULL)
3303 return NULL_RTX;
3304 target = op0;
3306 else
3308 if (target == NULL_RTX)
3309 target = copy_to_reg (op0);
3310 else
3311 emit_move_insn (target, op0);
3314 label = gen_label_rtx ();
3315 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3317 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3318 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3319 else
3320 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3321 if (op0 != target)
3322 emit_move_insn (target, op0);
3324 emit_label (label);
3326 return target;
3330 /* A subroutine of expand_copysign, perform the entire copysign operation
3331 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3332 is true if op0 is known to have its sign bit clear. */
3334 static rtx
3335 expand_copysign_bit (machine_mode mode, rtx op0, rtx op1, rtx target,
3336 int bitpos, bool op0_is_abs)
3338 machine_mode imode;
3339 int word, nwords, i;
3340 rtx temp;
3341 rtx_insn *insns;
3343 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3345 imode = int_mode_for_mode (mode);
3346 if (imode == BLKmode)
3347 return NULL_RTX;
3348 word = 0;
3349 nwords = 1;
3351 else
3353 imode = word_mode;
3355 if (FLOAT_WORDS_BIG_ENDIAN)
3356 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3357 else
3358 word = bitpos / BITS_PER_WORD;
3359 bitpos = bitpos % BITS_PER_WORD;
3360 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3363 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3365 if (target == 0
3366 || target == op0
3367 || target == op1
3368 || (nwords > 1 && !valid_multiword_target_p (target)))
3369 target = gen_reg_rtx (mode);
3371 if (nwords > 1)
3373 start_sequence ();
3375 for (i = 0; i < nwords; ++i)
3377 rtx targ_piece = operand_subword (target, i, 1, mode);
3378 rtx op0_piece = operand_subword_force (op0, i, mode);
3380 if (i == word)
3382 if (!op0_is_abs)
3383 op0_piece
3384 = expand_binop (imode, and_optab, op0_piece,
3385 immed_wide_int_const (~mask, imode),
3386 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3387 op1 = expand_binop (imode, and_optab,
3388 operand_subword_force (op1, i, mode),
3389 immed_wide_int_const (mask, imode),
3390 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3392 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3393 targ_piece, 1, OPTAB_LIB_WIDEN);
3394 if (temp != targ_piece)
3395 emit_move_insn (targ_piece, temp);
3397 else
3398 emit_move_insn (targ_piece, op0_piece);
3401 insns = get_insns ();
3402 end_sequence ();
3404 emit_insn (insns);
3406 else
3408 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3409 immed_wide_int_const (mask, imode),
3410 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3412 op0 = gen_lowpart (imode, op0);
3413 if (!op0_is_abs)
3414 op0 = expand_binop (imode, and_optab, op0,
3415 immed_wide_int_const (~mask, imode),
3416 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3418 temp = expand_binop (imode, ior_optab, op0, op1,
3419 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3420 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3423 return target;
3426 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3427 scalar floating point mode. Return NULL if we do not know how to
3428 expand the operation inline. */
3431 expand_copysign (rtx op0, rtx op1, rtx target)
3433 machine_mode mode = GET_MODE (op0);
3434 const struct real_format *fmt;
3435 bool op0_is_abs;
3436 rtx temp;
3438 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3439 gcc_assert (GET_MODE (op1) == mode);
3441 /* First try to do it with a special instruction. */
3442 temp = expand_binop (mode, copysign_optab, op0, op1,
3443 target, 0, OPTAB_DIRECT);
3444 if (temp)
3445 return temp;
3447 fmt = REAL_MODE_FORMAT (mode);
3448 if (fmt == NULL || !fmt->has_signed_zero)
3449 return NULL_RTX;
3451 op0_is_abs = false;
3452 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3454 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3455 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3456 op0_is_abs = true;
3459 if (fmt->signbit_ro >= 0
3460 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3461 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3462 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3464 temp = expand_copysign_absneg (mode, op0, op1, target,
3465 fmt->signbit_ro, op0_is_abs);
3466 if (temp)
3467 return temp;
3470 if (fmt->signbit_rw < 0)
3471 return NULL_RTX;
3472 return expand_copysign_bit (mode, op0, op1, target,
3473 fmt->signbit_rw, op0_is_abs);
3476 /* Generate an instruction whose insn-code is INSN_CODE,
3477 with two operands: an output TARGET and an input OP0.
3478 TARGET *must* be nonzero, and the output is always stored there.
3479 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3480 the value that is stored into TARGET.
3482 Return false if expansion failed. */
3484 bool
3485 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3486 enum rtx_code code)
3488 struct expand_operand ops[2];
3489 rtx_insn *pat;
3491 create_output_operand (&ops[0], target, GET_MODE (target));
3492 create_input_operand (&ops[1], op0, GET_MODE (op0));
3493 pat = maybe_gen_insn (icode, 2, ops);
3494 if (!pat)
3495 return false;
3497 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3498 && code != UNKNOWN)
3499 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3501 emit_insn (pat);
3503 if (ops[0].value != target)
3504 emit_move_insn (target, ops[0].value);
3505 return true;
3507 /* Generate an instruction whose insn-code is INSN_CODE,
3508 with two operands: an output TARGET and an input OP0.
3509 TARGET *must* be nonzero, and the output is always stored there.
3510 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3511 the value that is stored into TARGET. */
3513 void
3514 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3516 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3517 gcc_assert (ok);
3520 struct no_conflict_data
3522 rtx target;
3523 rtx_insn *first, *insn;
3524 bool must_stay;
3527 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3528 the currently examined clobber / store has to stay in the list of
3529 insns that constitute the actual libcall block. */
3530 static void
3531 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3533 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3535 /* If this inns directly contributes to setting the target, it must stay. */
3536 if (reg_overlap_mentioned_p (p->target, dest))
3537 p->must_stay = true;
3538 /* If we haven't committed to keeping any other insns in the list yet,
3539 there is nothing more to check. */
3540 else if (p->insn == p->first)
3541 return;
3542 /* If this insn sets / clobbers a register that feeds one of the insns
3543 already in the list, this insn has to stay too. */
3544 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3545 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3546 || reg_used_between_p (dest, p->first, p->insn)
3547 /* Likewise if this insn depends on a register set by a previous
3548 insn in the list, or if it sets a result (presumably a hard
3549 register) that is set or clobbered by a previous insn.
3550 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3551 SET_DEST perform the former check on the address, and the latter
3552 check on the MEM. */
3553 || (GET_CODE (set) == SET
3554 && (modified_in_p (SET_SRC (set), p->first)
3555 || modified_in_p (SET_DEST (set), p->first)
3556 || modified_between_p (SET_SRC (set), p->first, p->insn)
3557 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3558 p->must_stay = true;
3562 /* Emit code to make a call to a constant function or a library call.
3564 INSNS is a list containing all insns emitted in the call.
3565 These insns leave the result in RESULT. Our block is to copy RESULT
3566 to TARGET, which is logically equivalent to EQUIV.
3568 We first emit any insns that set a pseudo on the assumption that these are
3569 loading constants into registers; doing so allows them to be safely cse'ed
3570 between blocks. Then we emit all the other insns in the block, followed by
3571 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3572 note with an operand of EQUIV. */
3574 static void
3575 emit_libcall_block_1 (rtx_insn *insns, rtx target, rtx result, rtx equiv,
3576 bool equiv_may_trap)
3578 rtx final_dest = target;
3579 rtx_insn *next, *last, *insn;
3581 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3582 into a MEM later. Protect the libcall block from this change. */
3583 if (! REG_P (target) || REG_USERVAR_P (target))
3584 target = gen_reg_rtx (GET_MODE (target));
3586 /* If we're using non-call exceptions, a libcall corresponding to an
3587 operation that may trap may also trap. */
3588 /* ??? See the comment in front of make_reg_eh_region_note. */
3589 if (cfun->can_throw_non_call_exceptions
3590 && (equiv_may_trap || may_trap_p (equiv)))
3592 for (insn = insns; insn; insn = NEXT_INSN (insn))
3593 if (CALL_P (insn))
3595 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3596 if (note)
3598 int lp_nr = INTVAL (XEXP (note, 0));
3599 if (lp_nr == 0 || lp_nr == INT_MIN)
3600 remove_note (insn, note);
3604 else
3606 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3607 reg note to indicate that this call cannot throw or execute a nonlocal
3608 goto (unless there is already a REG_EH_REGION note, in which case
3609 we update it). */
3610 for (insn = insns; insn; insn = NEXT_INSN (insn))
3611 if (CALL_P (insn))
3612 make_reg_eh_region_note_nothrow_nononlocal (insn);
3615 /* First emit all insns that set pseudos. Remove them from the list as
3616 we go. Avoid insns that set pseudos which were referenced in previous
3617 insns. These can be generated by move_by_pieces, for example,
3618 to update an address. Similarly, avoid insns that reference things
3619 set in previous insns. */
3621 for (insn = insns; insn; insn = next)
3623 rtx set = single_set (insn);
3625 next = NEXT_INSN (insn);
3627 if (set != 0 && REG_P (SET_DEST (set))
3628 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3630 struct no_conflict_data data;
3632 data.target = const0_rtx;
3633 data.first = insns;
3634 data.insn = insn;
3635 data.must_stay = 0;
3636 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3637 if (! data.must_stay)
3639 if (PREV_INSN (insn))
3640 SET_NEXT_INSN (PREV_INSN (insn)) = next;
3641 else
3642 insns = next;
3644 if (next)
3645 SET_PREV_INSN (next) = PREV_INSN (insn);
3647 add_insn (insn);
3651 /* Some ports use a loop to copy large arguments onto the stack.
3652 Don't move anything outside such a loop. */
3653 if (LABEL_P (insn))
3654 break;
3657 /* Write the remaining insns followed by the final copy. */
3658 for (insn = insns; insn; insn = next)
3660 next = NEXT_INSN (insn);
3662 add_insn (insn);
3665 last = emit_move_insn (target, result);
3666 if (equiv)
3667 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3669 if (final_dest != target)
3670 emit_move_insn (final_dest, target);
3673 void
3674 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3676 emit_libcall_block_1 (safe_as_a <rtx_insn *> (insns),
3677 target, result, equiv, false);
3680 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3681 PURPOSE describes how this comparison will be used. CODE is the rtx
3682 comparison code we will be using.
3684 ??? Actually, CODE is slightly weaker than that. A target is still
3685 required to implement all of the normal bcc operations, but not
3686 required to implement all (or any) of the unordered bcc operations. */
3689 can_compare_p (enum rtx_code code, machine_mode mode,
3690 enum can_compare_purpose purpose)
3692 rtx test;
3693 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3696 enum insn_code icode;
3698 if (purpose == ccp_jump
3699 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3700 && insn_operand_matches (icode, 0, test))
3701 return 1;
3702 if (purpose == ccp_store_flag
3703 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3704 && insn_operand_matches (icode, 1, test))
3705 return 1;
3706 if (purpose == ccp_cmov
3707 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
3708 return 1;
3710 mode = GET_MODE_WIDER_MODE (mode);
3711 PUT_MODE (test, mode);
3713 while (mode != VOIDmode);
3715 return 0;
3718 /* This function is called when we are going to emit a compare instruction that
3719 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3721 *PMODE is the mode of the inputs (in case they are const_int).
3722 *PUNSIGNEDP nonzero says that the operands are unsigned;
3723 this matters if they need to be widened (as given by METHODS).
3725 If they have mode BLKmode, then SIZE specifies the size of both operands.
3727 This function performs all the setup necessary so that the caller only has
3728 to emit a single comparison insn. This setup can involve doing a BLKmode
3729 comparison or emitting a library call to perform the comparison if no insn
3730 is available to handle it.
3731 The values which are passed in through pointers can be modified; the caller
3732 should perform the comparison on the modified values. Constant
3733 comparisons must have already been folded. */
3735 static void
3736 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3737 int unsignedp, enum optab_methods methods,
3738 rtx *ptest, machine_mode *pmode)
3740 machine_mode mode = *pmode;
3741 rtx libfunc, test;
3742 machine_mode cmp_mode;
3743 enum mode_class mclass;
3745 /* The other methods are not needed. */
3746 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
3747 || methods == OPTAB_LIB_WIDEN);
3749 /* If we are optimizing, force expensive constants into a register. */
3750 if (CONSTANT_P (x) && optimize
3751 && (rtx_cost (x, mode, COMPARE, 0, optimize_insn_for_speed_p ())
3752 > COSTS_N_INSNS (1)))
3753 x = force_reg (mode, x);
3755 if (CONSTANT_P (y) && optimize
3756 && (rtx_cost (y, mode, COMPARE, 1, optimize_insn_for_speed_p ())
3757 > COSTS_N_INSNS (1)))
3758 y = force_reg (mode, y);
3760 #if HAVE_cc0
3761 /* Make sure if we have a canonical comparison. The RTL
3762 documentation states that canonical comparisons are required only
3763 for targets which have cc0. */
3764 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
3765 #endif
3767 /* Don't let both operands fail to indicate the mode. */
3768 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3769 x = force_reg (mode, x);
3770 if (mode == VOIDmode)
3771 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
3773 /* Handle all BLKmode compares. */
3775 if (mode == BLKmode)
3777 machine_mode result_mode;
3778 enum insn_code cmp_code;
3779 rtx result;
3780 rtx opalign
3781 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3783 gcc_assert (size);
3785 /* Try to use a memory block compare insn - either cmpstr
3786 or cmpmem will do. */
3787 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3788 cmp_mode != VOIDmode;
3789 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
3791 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
3792 if (cmp_code == CODE_FOR_nothing)
3793 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
3794 if (cmp_code == CODE_FOR_nothing)
3795 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
3796 if (cmp_code == CODE_FOR_nothing)
3797 continue;
3799 /* Must make sure the size fits the insn's mode. */
3800 if ((CONST_INT_P (size)
3801 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
3802 || (GET_MODE_BITSIZE (GET_MODE (size))
3803 > GET_MODE_BITSIZE (cmp_mode)))
3804 continue;
3806 result_mode = insn_data[cmp_code].operand[0].mode;
3807 result = gen_reg_rtx (result_mode);
3808 size = convert_to_mode (cmp_mode, size, 1);
3809 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3811 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
3812 *pmode = result_mode;
3813 return;
3816 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
3817 goto fail;
3819 /* Otherwise call a library function. */
3820 result = emit_block_comp_via_libcall (XEXP (x, 0), XEXP (y, 0), size);
3822 x = result;
3823 y = const0_rtx;
3824 mode = TYPE_MODE (integer_type_node);
3825 methods = OPTAB_LIB_WIDEN;
3826 unsignedp = false;
3829 /* Don't allow operands to the compare to trap, as that can put the
3830 compare and branch in different basic blocks. */
3831 if (cfun->can_throw_non_call_exceptions)
3833 if (may_trap_p (x))
3834 x = force_reg (mode, x);
3835 if (may_trap_p (y))
3836 y = force_reg (mode, y);
3839 if (GET_MODE_CLASS (mode) == MODE_CC)
3841 enum insn_code icode = optab_handler (cbranch_optab, CCmode);
3842 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3843 gcc_assert (icode != CODE_FOR_nothing
3844 && insn_operand_matches (icode, 0, test));
3845 *ptest = test;
3846 return;
3849 mclass = GET_MODE_CLASS (mode);
3850 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3851 cmp_mode = mode;
3854 enum insn_code icode;
3855 icode = optab_handler (cbranch_optab, cmp_mode);
3856 if (icode != CODE_FOR_nothing
3857 && insn_operand_matches (icode, 0, test))
3859 rtx_insn *last = get_last_insn ();
3860 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
3861 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
3862 if (op0 && op1
3863 && insn_operand_matches (icode, 1, op0)
3864 && insn_operand_matches (icode, 2, op1))
3866 XEXP (test, 0) = op0;
3867 XEXP (test, 1) = op1;
3868 *ptest = test;
3869 *pmode = cmp_mode;
3870 return;
3872 delete_insns_since (last);
3875 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
3876 break;
3877 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
3879 while (cmp_mode != VOIDmode);
3881 if (methods != OPTAB_LIB_WIDEN)
3882 goto fail;
3884 if (!SCALAR_FLOAT_MODE_P (mode))
3886 rtx result;
3887 machine_mode ret_mode;
3889 /* Handle a libcall just for the mode we are using. */
3890 libfunc = optab_libfunc (cmp_optab, mode);
3891 gcc_assert (libfunc);
3893 /* If we want unsigned, and this mode has a distinct unsigned
3894 comparison routine, use that. */
3895 if (unsignedp)
3897 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
3898 if (ulibfunc)
3899 libfunc = ulibfunc;
3902 ret_mode = targetm.libgcc_cmp_return_mode ();
3903 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
3904 ret_mode, 2, x, mode, y, mode);
3906 /* There are two kinds of comparison routines. Biased routines
3907 return 0/1/2, and unbiased routines return -1/0/1. Other parts
3908 of gcc expect that the comparison operation is equivalent
3909 to the modified comparison. For signed comparisons compare the
3910 result against 1 in the biased case, and zero in the unbiased
3911 case. For unsigned comparisons always compare against 1 after
3912 biasing the unbiased result by adding 1. This gives us a way to
3913 represent LTU.
3914 The comparisons in the fixed-point helper library are always
3915 biased. */
3916 x = result;
3917 y = const1_rtx;
3919 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
3921 if (unsignedp)
3922 x = plus_constant (ret_mode, result, 1);
3923 else
3924 y = const0_rtx;
3927 *pmode = ret_mode;
3928 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
3929 ptest, pmode);
3931 else
3932 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
3934 return;
3936 fail:
3937 *ptest = NULL_RTX;
3940 /* Before emitting an insn with code ICODE, make sure that X, which is going
3941 to be used for operand OPNUM of the insn, is converted from mode MODE to
3942 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3943 that it is accepted by the operand predicate. Return the new value. */
3946 prepare_operand (enum insn_code icode, rtx x, int opnum, machine_mode mode,
3947 machine_mode wider_mode, int unsignedp)
3949 if (mode != wider_mode)
3950 x = convert_modes (wider_mode, mode, x, unsignedp);
3952 if (!insn_operand_matches (icode, opnum, x))
3954 machine_mode op_mode = insn_data[(int) icode].operand[opnum].mode;
3955 if (reload_completed)
3956 return NULL_RTX;
3957 if (GET_MODE (x) != op_mode && GET_MODE (x) != VOIDmode)
3958 return NULL_RTX;
3959 x = copy_to_mode_reg (op_mode, x);
3962 return x;
3965 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3966 we can do the branch. */
3968 static void
3969 emit_cmp_and_jump_insn_1 (rtx test, machine_mode mode, rtx label, int prob)
3971 machine_mode optab_mode;
3972 enum mode_class mclass;
3973 enum insn_code icode;
3974 rtx_insn *insn;
3976 mclass = GET_MODE_CLASS (mode);
3977 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
3978 icode = optab_handler (cbranch_optab, optab_mode);
3980 gcc_assert (icode != CODE_FOR_nothing);
3981 gcc_assert (insn_operand_matches (icode, 0, test));
3982 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
3983 XEXP (test, 1), label));
3984 if (prob != -1
3985 && profile_status_for_fn (cfun) != PROFILE_ABSENT
3986 && insn
3987 && JUMP_P (insn)
3988 && any_condjump_p (insn)
3989 && !find_reg_note (insn, REG_BR_PROB, 0))
3990 add_int_reg_note (insn, REG_BR_PROB, prob);
3993 /* Generate code to compare X with Y so that the condition codes are
3994 set and to jump to LABEL if the condition is true. If X is a
3995 constant and Y is not a constant, then the comparison is swapped to
3996 ensure that the comparison RTL has the canonical form.
3998 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3999 need to be widened. UNSIGNEDP is also used to select the proper
4000 branch condition code.
4002 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4004 MODE is the mode of the inputs (in case they are const_int).
4006 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4007 It will be potentially converted into an unsigned variant based on
4008 UNSIGNEDP to select a proper jump instruction.
4010 PROB is the probability of jumping to LABEL. */
4012 void
4013 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4014 machine_mode mode, int unsignedp, rtx label,
4015 int prob)
4017 rtx op0 = x, op1 = y;
4018 rtx test;
4020 /* Swap operands and condition to ensure canonical RTL. */
4021 if (swap_commutative_operands_p (x, y)
4022 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4024 op0 = y, op1 = x;
4025 comparison = swap_condition (comparison);
4028 /* If OP0 is still a constant, then both X and Y must be constants
4029 or the opposite comparison is not supported. Force X into a register
4030 to create canonical RTL. */
4031 if (CONSTANT_P (op0))
4032 op0 = force_reg (mode, op0);
4034 if (unsignedp)
4035 comparison = unsigned_condition (comparison);
4037 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4038 &test, &mode);
4039 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4043 /* Emit a library call comparison between floating point X and Y.
4044 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4046 static void
4047 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4048 rtx *ptest, machine_mode *pmode)
4050 enum rtx_code swapped = swap_condition (comparison);
4051 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4052 machine_mode orig_mode = GET_MODE (x);
4053 machine_mode mode, cmp_mode;
4054 rtx true_rtx, false_rtx;
4055 rtx value, target, equiv;
4056 rtx_insn *insns;
4057 rtx libfunc = 0;
4058 bool reversed_p = false;
4059 cmp_mode = targetm.libgcc_cmp_return_mode ();
4061 for (mode = orig_mode;
4062 mode != VOIDmode;
4063 mode = GET_MODE_WIDER_MODE (mode))
4065 if (code_to_optab (comparison)
4066 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4067 break;
4069 if (code_to_optab (swapped)
4070 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4072 std::swap (x, y);
4073 comparison = swapped;
4074 break;
4077 if (code_to_optab (reversed)
4078 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4080 comparison = reversed;
4081 reversed_p = true;
4082 break;
4086 gcc_assert (mode != VOIDmode);
4088 if (mode != orig_mode)
4090 x = convert_to_mode (mode, x, 0);
4091 y = convert_to_mode (mode, y, 0);
4094 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4095 the RTL. The allows the RTL optimizers to delete the libcall if the
4096 condition can be determined at compile-time. */
4097 if (comparison == UNORDERED
4098 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4100 true_rtx = const_true_rtx;
4101 false_rtx = const0_rtx;
4103 else
4105 switch (comparison)
4107 case EQ:
4108 true_rtx = const0_rtx;
4109 false_rtx = const_true_rtx;
4110 break;
4112 case NE:
4113 true_rtx = const_true_rtx;
4114 false_rtx = const0_rtx;
4115 break;
4117 case GT:
4118 true_rtx = const1_rtx;
4119 false_rtx = const0_rtx;
4120 break;
4122 case GE:
4123 true_rtx = const0_rtx;
4124 false_rtx = constm1_rtx;
4125 break;
4127 case LT:
4128 true_rtx = constm1_rtx;
4129 false_rtx = const0_rtx;
4130 break;
4132 case LE:
4133 true_rtx = const0_rtx;
4134 false_rtx = const1_rtx;
4135 break;
4137 default:
4138 gcc_unreachable ();
4142 if (comparison == UNORDERED)
4144 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4145 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4146 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4147 temp, const_true_rtx, equiv);
4149 else
4151 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4152 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4153 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4154 equiv, true_rtx, false_rtx);
4157 start_sequence ();
4158 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4159 cmp_mode, 2, x, mode, y, mode);
4160 insns = get_insns ();
4161 end_sequence ();
4163 target = gen_reg_rtx (cmp_mode);
4164 emit_libcall_block (insns, target, value, equiv);
4166 if (comparison == UNORDERED
4167 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4168 || reversed_p)
4169 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4170 else
4171 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4173 *pmode = cmp_mode;
4176 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4178 void
4179 emit_indirect_jump (rtx loc)
4181 if (!targetm.have_indirect_jump ())
4182 sorry ("indirect jumps are not available on this target");
4183 else
4185 struct expand_operand ops[1];
4186 create_address_operand (&ops[0], loc);
4187 expand_jump_insn (targetm.code_for_indirect_jump, 1, ops);
4188 emit_barrier ();
4193 /* Emit a conditional move instruction if the machine supports one for that
4194 condition and machine mode.
4196 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4197 the mode to use should they be constants. If it is VOIDmode, they cannot
4198 both be constants.
4200 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4201 should be stored there. MODE is the mode to use should they be constants.
4202 If it is VOIDmode, they cannot both be constants.
4204 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4205 is not supported. */
4208 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4209 machine_mode cmode, rtx op2, rtx op3,
4210 machine_mode mode, int unsignedp)
4212 rtx comparison;
4213 rtx_insn *last;
4214 enum insn_code icode;
4215 enum rtx_code reversed;
4217 /* If one operand is constant, make it the second one. Only do this
4218 if the other operand is not constant as well. */
4220 if (swap_commutative_operands_p (op0, op1))
4222 std::swap (op0, op1);
4223 code = swap_condition (code);
4226 /* get_condition will prefer to generate LT and GT even if the old
4227 comparison was against zero, so undo that canonicalization here since
4228 comparisons against zero are cheaper. */
4229 if (code == LT && op1 == const1_rtx)
4230 code = LE, op1 = const0_rtx;
4231 else if (code == GT && op1 == constm1_rtx)
4232 code = GE, op1 = const0_rtx;
4234 if (cmode == VOIDmode)
4235 cmode = GET_MODE (op0);
4237 if (swap_commutative_operands_p (op2, op3)
4238 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4239 != UNKNOWN))
4241 std::swap (op2, op3);
4242 code = reversed;
4245 if (mode == VOIDmode)
4246 mode = GET_MODE (op2);
4248 icode = direct_optab_handler (movcc_optab, mode);
4250 if (icode == CODE_FOR_nothing)
4251 return 0;
4253 if (!target)
4254 target = gen_reg_rtx (mode);
4256 code = unsignedp ? unsigned_condition (code) : code;
4257 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4259 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4260 return NULL and let the caller figure out how best to deal with this
4261 situation. */
4262 if (!COMPARISON_P (comparison))
4263 return NULL_RTX;
4265 saved_pending_stack_adjust save;
4266 save_pending_stack_adjust (&save);
4267 last = get_last_insn ();
4268 do_pending_stack_adjust ();
4269 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4270 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4271 &comparison, &cmode);
4272 if (comparison)
4274 struct expand_operand ops[4];
4276 create_output_operand (&ops[0], target, mode);
4277 create_fixed_operand (&ops[1], comparison);
4278 create_input_operand (&ops[2], op2, mode);
4279 create_input_operand (&ops[3], op3, mode);
4280 if (maybe_expand_insn (icode, 4, ops))
4282 if (ops[0].value != target)
4283 convert_move (target, ops[0].value, false);
4284 return target;
4287 delete_insns_since (last);
4288 restore_pending_stack_adjust (&save);
4289 return NULL_RTX;
4293 /* Emit a conditional negate or bitwise complement using the
4294 negcc or notcc optabs if available. Return NULL_RTX if such operations
4295 are not available. Otherwise return the RTX holding the result.
4296 TARGET is the desired destination of the result. COMP is the comparison
4297 on which to negate. If COND is true move into TARGET the negation
4298 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
4299 CODE is either NEG or NOT. MODE is the machine mode in which the
4300 operation is performed. */
4303 emit_conditional_neg_or_complement (rtx target, rtx_code code,
4304 machine_mode mode, rtx cond, rtx op1,
4305 rtx op2)
4307 optab op = unknown_optab;
4308 if (code == NEG)
4309 op = negcc_optab;
4310 else if (code == NOT)
4311 op = notcc_optab;
4312 else
4313 gcc_unreachable ();
4315 insn_code icode = direct_optab_handler (op, mode);
4317 if (icode == CODE_FOR_nothing)
4318 return NULL_RTX;
4320 if (!target)
4321 target = gen_reg_rtx (mode);
4323 rtx_insn *last = get_last_insn ();
4324 struct expand_operand ops[4];
4326 create_output_operand (&ops[0], target, mode);
4327 create_fixed_operand (&ops[1], cond);
4328 create_input_operand (&ops[2], op1, mode);
4329 create_input_operand (&ops[3], op2, mode);
4331 if (maybe_expand_insn (icode, 4, ops))
4333 if (ops[0].value != target)
4334 convert_move (target, ops[0].value, false);
4336 return target;
4338 delete_insns_since (last);
4339 return NULL_RTX;
4342 /* Emit a conditional addition instruction if the machine supports one for that
4343 condition and machine mode.
4345 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4346 the mode to use should they be constants. If it is VOIDmode, they cannot
4347 both be constants.
4349 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4350 should be stored there. MODE is the mode to use should they be constants.
4351 If it is VOIDmode, they cannot both be constants.
4353 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4354 is not supported. */
4357 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4358 machine_mode cmode, rtx op2, rtx op3,
4359 machine_mode mode, int unsignedp)
4361 rtx comparison;
4362 rtx_insn *last;
4363 enum insn_code icode;
4365 /* If one operand is constant, make it the second one. Only do this
4366 if the other operand is not constant as well. */
4368 if (swap_commutative_operands_p (op0, op1))
4370 std::swap (op0, op1);
4371 code = swap_condition (code);
4374 /* get_condition will prefer to generate LT and GT even if the old
4375 comparison was against zero, so undo that canonicalization here since
4376 comparisons against zero are cheaper. */
4377 if (code == LT && op1 == const1_rtx)
4378 code = LE, op1 = const0_rtx;
4379 else if (code == GT && op1 == constm1_rtx)
4380 code = GE, op1 = const0_rtx;
4382 if (cmode == VOIDmode)
4383 cmode = GET_MODE (op0);
4385 if (mode == VOIDmode)
4386 mode = GET_MODE (op2);
4388 icode = optab_handler (addcc_optab, mode);
4390 if (icode == CODE_FOR_nothing)
4391 return 0;
4393 if (!target)
4394 target = gen_reg_rtx (mode);
4396 code = unsignedp ? unsigned_condition (code) : code;
4397 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4399 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4400 return NULL and let the caller figure out how best to deal with this
4401 situation. */
4402 if (!COMPARISON_P (comparison))
4403 return NULL_RTX;
4405 do_pending_stack_adjust ();
4406 last = get_last_insn ();
4407 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4408 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4409 &comparison, &cmode);
4410 if (comparison)
4412 struct expand_operand ops[4];
4414 create_output_operand (&ops[0], target, mode);
4415 create_fixed_operand (&ops[1], comparison);
4416 create_input_operand (&ops[2], op2, mode);
4417 create_input_operand (&ops[3], op3, mode);
4418 if (maybe_expand_insn (icode, 4, ops))
4420 if (ops[0].value != target)
4421 convert_move (target, ops[0].value, false);
4422 return target;
4425 delete_insns_since (last);
4426 return NULL_RTX;
4429 /* These functions attempt to generate an insn body, rather than
4430 emitting the insn, but if the gen function already emits them, we
4431 make no attempt to turn them back into naked patterns. */
4433 /* Generate and return an insn body to add Y to X. */
4435 rtx_insn *
4436 gen_add2_insn (rtx x, rtx y)
4438 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4440 gcc_assert (insn_operand_matches (icode, 0, x));
4441 gcc_assert (insn_operand_matches (icode, 1, x));
4442 gcc_assert (insn_operand_matches (icode, 2, y));
4444 return GEN_FCN (icode) (x, x, y);
4447 /* Generate and return an insn body to add r1 and c,
4448 storing the result in r0. */
4450 rtx_insn *
4451 gen_add3_insn (rtx r0, rtx r1, rtx c)
4453 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4455 if (icode == CODE_FOR_nothing
4456 || !insn_operand_matches (icode, 0, r0)
4457 || !insn_operand_matches (icode, 1, r1)
4458 || !insn_operand_matches (icode, 2, c))
4459 return NULL;
4461 return GEN_FCN (icode) (r0, r1, c);
4465 have_add2_insn (rtx x, rtx y)
4467 enum insn_code icode;
4469 gcc_assert (GET_MODE (x) != VOIDmode);
4471 icode = optab_handler (add_optab, GET_MODE (x));
4473 if (icode == CODE_FOR_nothing)
4474 return 0;
4476 if (!insn_operand_matches (icode, 0, x)
4477 || !insn_operand_matches (icode, 1, x)
4478 || !insn_operand_matches (icode, 2, y))
4479 return 0;
4481 return 1;
4484 /* Generate and return an insn body to add Y to X. */
4486 rtx_insn *
4487 gen_addptr3_insn (rtx x, rtx y, rtx z)
4489 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4491 gcc_assert (insn_operand_matches (icode, 0, x));
4492 gcc_assert (insn_operand_matches (icode, 1, y));
4493 gcc_assert (insn_operand_matches (icode, 2, z));
4495 return GEN_FCN (icode) (x, y, z);
4498 /* Return true if the target implements an addptr pattern and X, Y,
4499 and Z are valid for the pattern predicates. */
4502 have_addptr3_insn (rtx x, rtx y, rtx z)
4504 enum insn_code icode;
4506 gcc_assert (GET_MODE (x) != VOIDmode);
4508 icode = optab_handler (addptr3_optab, GET_MODE (x));
4510 if (icode == CODE_FOR_nothing)
4511 return 0;
4513 if (!insn_operand_matches (icode, 0, x)
4514 || !insn_operand_matches (icode, 1, y)
4515 || !insn_operand_matches (icode, 2, z))
4516 return 0;
4518 return 1;
4521 /* Generate and return an insn body to subtract Y from X. */
4523 rtx_insn *
4524 gen_sub2_insn (rtx x, rtx y)
4526 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4528 gcc_assert (insn_operand_matches (icode, 0, x));
4529 gcc_assert (insn_operand_matches (icode, 1, x));
4530 gcc_assert (insn_operand_matches (icode, 2, y));
4532 return GEN_FCN (icode) (x, x, y);
4535 /* Generate and return an insn body to subtract r1 and c,
4536 storing the result in r0. */
4538 rtx_insn *
4539 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4541 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4543 if (icode == CODE_FOR_nothing
4544 || !insn_operand_matches (icode, 0, r0)
4545 || !insn_operand_matches (icode, 1, r1)
4546 || !insn_operand_matches (icode, 2, c))
4547 return NULL;
4549 return GEN_FCN (icode) (r0, r1, c);
4553 have_sub2_insn (rtx x, rtx y)
4555 enum insn_code icode;
4557 gcc_assert (GET_MODE (x) != VOIDmode);
4559 icode = optab_handler (sub_optab, GET_MODE (x));
4561 if (icode == CODE_FOR_nothing)
4562 return 0;
4564 if (!insn_operand_matches (icode, 0, x)
4565 || !insn_operand_matches (icode, 1, x)
4566 || !insn_operand_matches (icode, 2, y))
4567 return 0;
4569 return 1;
4572 /* Generate the body of an insn to extend Y (with mode MFROM)
4573 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4575 rtx_insn *
4576 gen_extend_insn (rtx x, rtx y, machine_mode mto,
4577 machine_mode mfrom, int unsignedp)
4579 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4580 return GEN_FCN (icode) (x, y);
4583 /* Generate code to convert FROM to floating point
4584 and store in TO. FROM must be fixed point and not VOIDmode.
4585 UNSIGNEDP nonzero means regard FROM as unsigned.
4586 Normally this is done by correcting the final value
4587 if it is negative. */
4589 void
4590 expand_float (rtx to, rtx from, int unsignedp)
4592 enum insn_code icode;
4593 rtx target = to;
4594 machine_mode fmode, imode;
4595 bool can_do_signed = false;
4597 /* Crash now, because we won't be able to decide which mode to use. */
4598 gcc_assert (GET_MODE (from) != VOIDmode);
4600 /* Look for an insn to do the conversion. Do it in the specified
4601 modes if possible; otherwise convert either input, output or both to
4602 wider mode. If the integer mode is wider than the mode of FROM,
4603 we can do the conversion signed even if the input is unsigned. */
4605 for (fmode = GET_MODE (to); fmode != VOIDmode;
4606 fmode = GET_MODE_WIDER_MODE (fmode))
4607 for (imode = GET_MODE (from); imode != VOIDmode;
4608 imode = GET_MODE_WIDER_MODE (imode))
4610 int doing_unsigned = unsignedp;
4612 if (fmode != GET_MODE (to)
4613 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
4614 continue;
4616 icode = can_float_p (fmode, imode, unsignedp);
4617 if (icode == CODE_FOR_nothing && unsignedp)
4619 enum insn_code scode = can_float_p (fmode, imode, 0);
4620 if (scode != CODE_FOR_nothing)
4621 can_do_signed = true;
4622 if (imode != GET_MODE (from))
4623 icode = scode, doing_unsigned = 0;
4626 if (icode != CODE_FOR_nothing)
4628 if (imode != GET_MODE (from))
4629 from = convert_to_mode (imode, from, unsignedp);
4631 if (fmode != GET_MODE (to))
4632 target = gen_reg_rtx (fmode);
4634 emit_unop_insn (icode, target, from,
4635 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4637 if (target != to)
4638 convert_move (to, target, 0);
4639 return;
4643 /* Unsigned integer, and no way to convert directly. Convert as signed,
4644 then unconditionally adjust the result. */
4645 if (unsignedp && can_do_signed)
4647 rtx_code_label *label = gen_label_rtx ();
4648 rtx temp;
4649 REAL_VALUE_TYPE offset;
4651 /* Look for a usable floating mode FMODE wider than the source and at
4652 least as wide as the target. Using FMODE will avoid rounding woes
4653 with unsigned values greater than the signed maximum value. */
4655 for (fmode = GET_MODE (to); fmode != VOIDmode;
4656 fmode = GET_MODE_WIDER_MODE (fmode))
4657 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4658 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4659 break;
4661 if (fmode == VOIDmode)
4663 /* There is no such mode. Pretend the target is wide enough. */
4664 fmode = GET_MODE (to);
4666 /* Avoid double-rounding when TO is narrower than FROM. */
4667 if ((significand_size (fmode) + 1)
4668 < GET_MODE_PRECISION (GET_MODE (from)))
4670 rtx temp1;
4671 rtx_code_label *neglabel = gen_label_rtx ();
4673 /* Don't use TARGET if it isn't a register, is a hard register,
4674 or is the wrong mode. */
4675 if (!REG_P (target)
4676 || REGNO (target) < FIRST_PSEUDO_REGISTER
4677 || GET_MODE (target) != fmode)
4678 target = gen_reg_rtx (fmode);
4680 imode = GET_MODE (from);
4681 do_pending_stack_adjust ();
4683 /* Test whether the sign bit is set. */
4684 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4685 0, neglabel);
4687 /* The sign bit is not set. Convert as signed. */
4688 expand_float (target, from, 0);
4689 emit_jump_insn (targetm.gen_jump (label));
4690 emit_barrier ();
4692 /* The sign bit is set.
4693 Convert to a usable (positive signed) value by shifting right
4694 one bit, while remembering if a nonzero bit was shifted
4695 out; i.e., compute (from & 1) | (from >> 1). */
4697 emit_label (neglabel);
4698 temp = expand_binop (imode, and_optab, from, const1_rtx,
4699 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4700 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
4701 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4702 OPTAB_LIB_WIDEN);
4703 expand_float (target, temp, 0);
4705 /* Multiply by 2 to undo the shift above. */
4706 temp = expand_binop (fmode, add_optab, target, target,
4707 target, 0, OPTAB_LIB_WIDEN);
4708 if (temp != target)
4709 emit_move_insn (target, temp);
4711 do_pending_stack_adjust ();
4712 emit_label (label);
4713 goto done;
4717 /* If we are about to do some arithmetic to correct for an
4718 unsigned operand, do it in a pseudo-register. */
4720 if (GET_MODE (to) != fmode
4721 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4722 target = gen_reg_rtx (fmode);
4724 /* Convert as signed integer to floating. */
4725 expand_float (target, from, 0);
4727 /* If FROM is negative (and therefore TO is negative),
4728 correct its value by 2**bitwidth. */
4730 do_pending_stack_adjust ();
4731 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4732 0, label);
4735 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
4736 temp = expand_binop (fmode, add_optab, target,
4737 const_double_from_real_value (offset, fmode),
4738 target, 0, OPTAB_LIB_WIDEN);
4739 if (temp != target)
4740 emit_move_insn (target, temp);
4742 do_pending_stack_adjust ();
4743 emit_label (label);
4744 goto done;
4747 /* No hardware instruction available; call a library routine. */
4749 rtx libfunc;
4750 rtx_insn *insns;
4751 rtx value;
4752 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4754 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_PRECISION (SImode))
4755 from = convert_to_mode (SImode, from, unsignedp);
4757 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
4758 gcc_assert (libfunc);
4760 start_sequence ();
4762 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4763 GET_MODE (to), 1, from,
4764 GET_MODE (from));
4765 insns = get_insns ();
4766 end_sequence ();
4768 emit_libcall_block (insns, target, value,
4769 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
4770 GET_MODE (to), from));
4773 done:
4775 /* Copy result to requested destination
4776 if we have been computing in a temp location. */
4778 if (target != to)
4780 if (GET_MODE (target) == GET_MODE (to))
4781 emit_move_insn (to, target);
4782 else
4783 convert_move (to, target, 0);
4787 /* Generate code to convert FROM to fixed point and store in TO. FROM
4788 must be floating point. */
4790 void
4791 expand_fix (rtx to, rtx from, int unsignedp)
4793 enum insn_code icode;
4794 rtx target = to;
4795 machine_mode fmode, imode;
4796 bool must_trunc = false;
4798 /* We first try to find a pair of modes, one real and one integer, at
4799 least as wide as FROM and TO, respectively, in which we can open-code
4800 this conversion. If the integer mode is wider than the mode of TO,
4801 we can do the conversion either signed or unsigned. */
4803 for (fmode = GET_MODE (from); fmode != VOIDmode;
4804 fmode = GET_MODE_WIDER_MODE (fmode))
4805 for (imode = GET_MODE (to); imode != VOIDmode;
4806 imode = GET_MODE_WIDER_MODE (imode))
4808 int doing_unsigned = unsignedp;
4810 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4811 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4812 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4814 if (icode != CODE_FOR_nothing)
4816 rtx_insn *last = get_last_insn ();
4817 if (fmode != GET_MODE (from))
4818 from = convert_to_mode (fmode, from, 0);
4820 if (must_trunc)
4822 rtx temp = gen_reg_rtx (GET_MODE (from));
4823 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4824 temp, 0);
4827 if (imode != GET_MODE (to))
4828 target = gen_reg_rtx (imode);
4830 if (maybe_emit_unop_insn (icode, target, from,
4831 doing_unsigned ? UNSIGNED_FIX : FIX))
4833 if (target != to)
4834 convert_move (to, target, unsignedp);
4835 return;
4837 delete_insns_since (last);
4841 /* For an unsigned conversion, there is one more way to do it.
4842 If we have a signed conversion, we generate code that compares
4843 the real value to the largest representable positive number. If if
4844 is smaller, the conversion is done normally. Otherwise, subtract
4845 one plus the highest signed number, convert, and add it back.
4847 We only need to check all real modes, since we know we didn't find
4848 anything with a wider integer mode.
4850 This code used to extend FP value into mode wider than the destination.
4851 This is needed for decimal float modes which cannot accurately
4852 represent one plus the highest signed number of the same size, but
4853 not for binary modes. Consider, for instance conversion from SFmode
4854 into DImode.
4856 The hot path through the code is dealing with inputs smaller than 2^63
4857 and doing just the conversion, so there is no bits to lose.
4859 In the other path we know the value is positive in the range 2^63..2^64-1
4860 inclusive. (as for other input overflow happens and result is undefined)
4861 So we know that the most important bit set in mantissa corresponds to
4862 2^63. The subtraction of 2^63 should not generate any rounding as it
4863 simply clears out that bit. The rest is trivial. */
4865 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4866 for (fmode = GET_MODE (from); fmode != VOIDmode;
4867 fmode = GET_MODE_WIDER_MODE (fmode))
4868 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
4869 && (!DECIMAL_FLOAT_MODE_P (fmode)
4870 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
4872 int bitsize;
4873 REAL_VALUE_TYPE offset;
4874 rtx limit;
4875 rtx_code_label *lab1, *lab2;
4876 rtx_insn *insn;
4878 bitsize = GET_MODE_PRECISION (GET_MODE (to));
4879 real_2expN (&offset, bitsize - 1, fmode);
4880 limit = const_double_from_real_value (offset, fmode);
4881 lab1 = gen_label_rtx ();
4882 lab2 = gen_label_rtx ();
4884 if (fmode != GET_MODE (from))
4885 from = convert_to_mode (fmode, from, 0);
4887 /* See if we need to do the subtraction. */
4888 do_pending_stack_adjust ();
4889 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4890 0, lab1);
4892 /* If not, do the signed "fix" and branch around fixup code. */
4893 expand_fix (to, from, 0);
4894 emit_jump_insn (targetm.gen_jump (lab2));
4895 emit_barrier ();
4897 /* Otherwise, subtract 2**(N-1), convert to signed number,
4898 then add 2**(N-1). Do the addition using XOR since this
4899 will often generate better code. */
4900 emit_label (lab1);
4901 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4902 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4903 expand_fix (to, target, 0);
4904 target = expand_binop (GET_MODE (to), xor_optab, to,
4905 gen_int_mode
4906 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4907 GET_MODE (to)),
4908 to, 1, OPTAB_LIB_WIDEN);
4910 if (target != to)
4911 emit_move_insn (to, target);
4913 emit_label (lab2);
4915 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
4917 /* Make a place for a REG_NOTE and add it. */
4918 insn = emit_move_insn (to, to);
4919 set_dst_reg_note (insn, REG_EQUAL,
4920 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
4921 copy_rtx (from)),
4922 to);
4925 return;
4928 /* We can't do it with an insn, so use a library call. But first ensure
4929 that the mode of TO is at least as wide as SImode, since those are the
4930 only library calls we know about. */
4932 if (GET_MODE_PRECISION (GET_MODE (to)) < GET_MODE_PRECISION (SImode))
4934 target = gen_reg_rtx (SImode);
4936 expand_fix (target, from, unsignedp);
4938 else
4940 rtx_insn *insns;
4941 rtx value;
4942 rtx libfunc;
4944 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
4945 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
4946 gcc_assert (libfunc);
4948 start_sequence ();
4950 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4951 GET_MODE (to), 1, from,
4952 GET_MODE (from));
4953 insns = get_insns ();
4954 end_sequence ();
4956 emit_libcall_block (insns, target, value,
4957 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4958 GET_MODE (to), from));
4961 if (target != to)
4963 if (GET_MODE (to) == GET_MODE (target))
4964 emit_move_insn (to, target);
4965 else
4966 convert_move (to, target, 0);
4971 /* Promote integer arguments for a libcall if necessary.
4972 emit_library_call_value cannot do the promotion because it does not
4973 know if it should do a signed or unsigned promotion. This is because
4974 there are no tree types defined for libcalls. */
4976 static rtx
4977 prepare_libcall_arg (rtx arg, int uintp)
4979 machine_mode mode = GET_MODE (arg);
4980 machine_mode arg_mode;
4981 if (SCALAR_INT_MODE_P (mode))
4983 /* If we need to promote the integer function argument we need to do
4984 it here instead of inside emit_library_call_value because in
4985 emit_library_call_value we don't know if we should do a signed or
4986 unsigned promotion. */
4988 int unsigned_p = 0;
4989 arg_mode = promote_function_mode (NULL_TREE, mode,
4990 &unsigned_p, NULL_TREE, 0);
4991 if (arg_mode != mode)
4992 return convert_to_mode (arg_mode, arg, uintp);
4994 return arg;
4997 /* Generate code to convert FROM or TO a fixed-point.
4998 If UINTP is true, either TO or FROM is an unsigned integer.
4999 If SATP is true, we need to saturate the result. */
5001 void
5002 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5004 machine_mode to_mode = GET_MODE (to);
5005 machine_mode from_mode = GET_MODE (from);
5006 convert_optab tab;
5007 enum rtx_code this_code;
5008 enum insn_code code;
5009 rtx_insn *insns;
5010 rtx value;
5011 rtx libfunc;
5013 if (to_mode == from_mode)
5015 emit_move_insn (to, from);
5016 return;
5019 if (uintp)
5021 tab = satp ? satfractuns_optab : fractuns_optab;
5022 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5024 else
5026 tab = satp ? satfract_optab : fract_optab;
5027 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5029 code = convert_optab_handler (tab, to_mode, from_mode);
5030 if (code != CODE_FOR_nothing)
5032 emit_unop_insn (code, to, from, this_code);
5033 return;
5036 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5037 gcc_assert (libfunc);
5039 from = prepare_libcall_arg (from, uintp);
5040 from_mode = GET_MODE (from);
5042 start_sequence ();
5043 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5044 1, from, from_mode);
5045 insns = get_insns ();
5046 end_sequence ();
5048 emit_libcall_block (insns, to, value,
5049 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5052 /* Generate code to convert FROM to fixed point and store in TO. FROM
5053 must be floating point, TO must be signed. Use the conversion optab
5054 TAB to do the conversion. */
5056 bool
5057 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5059 enum insn_code icode;
5060 rtx target = to;
5061 machine_mode fmode, imode;
5063 /* We first try to find a pair of modes, one real and one integer, at
5064 least as wide as FROM and TO, respectively, in which we can open-code
5065 this conversion. If the integer mode is wider than the mode of TO,
5066 we can do the conversion either signed or unsigned. */
5068 for (fmode = GET_MODE (from); fmode != VOIDmode;
5069 fmode = GET_MODE_WIDER_MODE (fmode))
5070 for (imode = GET_MODE (to); imode != VOIDmode;
5071 imode = GET_MODE_WIDER_MODE (imode))
5073 icode = convert_optab_handler (tab, imode, fmode);
5074 if (icode != CODE_FOR_nothing)
5076 rtx_insn *last = get_last_insn ();
5077 if (fmode != GET_MODE (from))
5078 from = convert_to_mode (fmode, from, 0);
5080 if (imode != GET_MODE (to))
5081 target = gen_reg_rtx (imode);
5083 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5085 delete_insns_since (last);
5086 continue;
5088 if (target != to)
5089 convert_move (to, target, 0);
5090 return true;
5094 return false;
5097 /* Report whether we have an instruction to perform the operation
5098 specified by CODE on operands of mode MODE. */
5100 have_insn_for (enum rtx_code code, machine_mode mode)
5102 return (code_to_optab (code)
5103 && (optab_handler (code_to_optab (code), mode)
5104 != CODE_FOR_nothing));
5107 /* Print information about the current contents of the optabs on
5108 STDERR. */
5110 DEBUG_FUNCTION void
5111 debug_optab_libfuncs (void)
5113 int i, j, k;
5115 /* Dump the arithmetic optabs. */
5116 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
5117 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5119 rtx l = optab_libfunc ((optab) i, (machine_mode) j);
5120 if (l)
5122 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5123 fprintf (stderr, "%s\t%s:\t%s\n",
5124 GET_RTX_NAME (optab_to_code ((optab) i)),
5125 GET_MODE_NAME (j),
5126 XSTR (l, 0));
5130 /* Dump the conversion optabs. */
5131 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
5132 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5133 for (k = 0; k < NUM_MACHINE_MODES; ++k)
5135 rtx l = convert_optab_libfunc ((optab) i, (machine_mode) j,
5136 (machine_mode) k);
5137 if (l)
5139 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5140 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
5141 GET_RTX_NAME (optab_to_code ((optab) i)),
5142 GET_MODE_NAME (j),
5143 GET_MODE_NAME (k),
5144 XSTR (l, 0));
5149 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5150 CODE. Return 0 on failure. */
5152 rtx_insn *
5153 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
5155 machine_mode mode = GET_MODE (op1);
5156 enum insn_code icode;
5157 rtx_insn *insn;
5158 rtx trap_rtx;
5160 if (mode == VOIDmode)
5161 return 0;
5163 icode = optab_handler (ctrap_optab, mode);
5164 if (icode == CODE_FOR_nothing)
5165 return 0;
5167 /* Some targets only accept a zero trap code. */
5168 if (!insn_operand_matches (icode, 3, tcode))
5169 return 0;
5171 do_pending_stack_adjust ();
5172 start_sequence ();
5173 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
5174 &trap_rtx, &mode);
5175 if (!trap_rtx)
5176 insn = NULL;
5177 else
5178 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
5179 tcode);
5181 /* If that failed, then give up. */
5182 if (insn == 0)
5184 end_sequence ();
5185 return 0;
5188 emit_insn (insn);
5189 insn = get_insns ();
5190 end_sequence ();
5191 return insn;
5194 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
5195 or unsigned operation code. */
5197 enum rtx_code
5198 get_rtx_code (enum tree_code tcode, bool unsignedp)
5200 enum rtx_code code;
5201 switch (tcode)
5203 case EQ_EXPR:
5204 code = EQ;
5205 break;
5206 case NE_EXPR:
5207 code = NE;
5208 break;
5209 case LT_EXPR:
5210 code = unsignedp ? LTU : LT;
5211 break;
5212 case LE_EXPR:
5213 code = unsignedp ? LEU : LE;
5214 break;
5215 case GT_EXPR:
5216 code = unsignedp ? GTU : GT;
5217 break;
5218 case GE_EXPR:
5219 code = unsignedp ? GEU : GE;
5220 break;
5222 case UNORDERED_EXPR:
5223 code = UNORDERED;
5224 break;
5225 case ORDERED_EXPR:
5226 code = ORDERED;
5227 break;
5228 case UNLT_EXPR:
5229 code = UNLT;
5230 break;
5231 case UNLE_EXPR:
5232 code = UNLE;
5233 break;
5234 case UNGT_EXPR:
5235 code = UNGT;
5236 break;
5237 case UNGE_EXPR:
5238 code = UNGE;
5239 break;
5240 case UNEQ_EXPR:
5241 code = UNEQ;
5242 break;
5243 case LTGT_EXPR:
5244 code = LTGT;
5245 break;
5247 case BIT_AND_EXPR:
5248 code = AND;
5249 break;
5251 case BIT_IOR_EXPR:
5252 code = IOR;
5253 break;
5255 default:
5256 gcc_unreachable ();
5258 return code;
5261 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
5262 unsigned operators. OPNO holds an index of the first comparison
5263 operand in insn with code ICODE. Do not generate compare instruction. */
5265 static rtx
5266 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
5267 bool unsignedp, enum insn_code icode,
5268 unsigned int opno)
5270 struct expand_operand ops[2];
5271 rtx rtx_op0, rtx_op1;
5272 machine_mode m0, m1;
5273 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
5275 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
5277 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
5278 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
5279 cases, use the original mode. */
5280 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
5281 EXPAND_STACK_PARM);
5282 m0 = GET_MODE (rtx_op0);
5283 if (m0 == VOIDmode)
5284 m0 = TYPE_MODE (TREE_TYPE (t_op0));
5286 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
5287 EXPAND_STACK_PARM);
5288 m1 = GET_MODE (rtx_op1);
5289 if (m1 == VOIDmode)
5290 m1 = TYPE_MODE (TREE_TYPE (t_op1));
5292 create_input_operand (&ops[0], rtx_op0, m0);
5293 create_input_operand (&ops[1], rtx_op1, m1);
5294 if (!maybe_legitimize_operands (icode, opno, 2, ops))
5295 gcc_unreachable ();
5296 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
5299 /* Checks if vec_perm mask SEL is a constant equivalent to a shift of the first
5300 vec_perm operand, assuming the second operand is a constant vector of zeroes.
5301 Return the shift distance in bits if so, or NULL_RTX if the vec_perm is not a
5302 shift. */
5303 static rtx
5304 shift_amt_for_vec_perm_mask (rtx sel)
5306 unsigned int i, first, nelt = GET_MODE_NUNITS (GET_MODE (sel));
5307 unsigned int bitsize = GET_MODE_UNIT_BITSIZE (GET_MODE (sel));
5309 if (GET_CODE (sel) != CONST_VECTOR)
5310 return NULL_RTX;
5312 first = INTVAL (CONST_VECTOR_ELT (sel, 0));
5313 if (first >= nelt)
5314 return NULL_RTX;
5315 for (i = 1; i < nelt; i++)
5317 int idx = INTVAL (CONST_VECTOR_ELT (sel, i));
5318 unsigned int expected = i + first;
5319 /* Indices into the second vector are all equivalent. */
5320 if (idx < 0 || (MIN (nelt, (unsigned) idx) != MIN (nelt, expected)))
5321 return NULL_RTX;
5324 return GEN_INT (first * bitsize);
5327 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
5329 static rtx
5330 expand_vec_perm_1 (enum insn_code icode, rtx target,
5331 rtx v0, rtx v1, rtx sel)
5333 machine_mode tmode = GET_MODE (target);
5334 machine_mode smode = GET_MODE (sel);
5335 struct expand_operand ops[4];
5337 create_output_operand (&ops[0], target, tmode);
5338 create_input_operand (&ops[3], sel, smode);
5340 /* Make an effort to preserve v0 == v1. The target expander is able to
5341 rely on this to determine if we're permuting a single input operand. */
5342 if (rtx_equal_p (v0, v1))
5344 if (!insn_operand_matches (icode, 1, v0))
5345 v0 = force_reg (tmode, v0);
5346 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
5347 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
5349 create_fixed_operand (&ops[1], v0);
5350 create_fixed_operand (&ops[2], v0);
5352 else
5354 create_input_operand (&ops[1], v0, tmode);
5355 create_input_operand (&ops[2], v1, tmode);
5358 if (maybe_expand_insn (icode, 4, ops))
5359 return ops[0].value;
5360 return NULL_RTX;
5363 /* Generate instructions for vec_perm optab given its mode
5364 and three operands. */
5367 expand_vec_perm (machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
5369 enum insn_code icode;
5370 machine_mode qimode;
5371 unsigned int i, w, e, u;
5372 rtx tmp, sel_qi = NULL;
5373 rtvec vec;
5375 if (!target || GET_MODE (target) != mode)
5376 target = gen_reg_rtx (mode);
5378 w = GET_MODE_SIZE (mode);
5379 e = GET_MODE_NUNITS (mode);
5380 u = GET_MODE_UNIT_SIZE (mode);
5382 /* Set QIMODE to a different vector mode with byte elements.
5383 If no such mode, or if MODE already has byte elements, use VOIDmode. */
5384 qimode = VOIDmode;
5385 if (GET_MODE_INNER (mode) != QImode)
5387 qimode = mode_for_vector (QImode, w);
5388 if (!VECTOR_MODE_P (qimode))
5389 qimode = VOIDmode;
5392 /* If the input is a constant, expand it specially. */
5393 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
5394 if (GET_CODE (sel) == CONST_VECTOR)
5396 /* See if this can be handled with a vec_shr. We only do this if the
5397 second vector is all zeroes. */
5398 enum insn_code shift_code = optab_handler (vec_shr_optab, mode);
5399 enum insn_code shift_code_qi = ((qimode != VOIDmode && qimode != mode)
5400 ? optab_handler (vec_shr_optab, qimode)
5401 : CODE_FOR_nothing);
5402 rtx shift_amt = NULL_RTX;
5403 if (v1 == CONST0_RTX (GET_MODE (v1))
5404 && (shift_code != CODE_FOR_nothing
5405 || shift_code_qi != CODE_FOR_nothing))
5407 shift_amt = shift_amt_for_vec_perm_mask (sel);
5408 if (shift_amt)
5410 struct expand_operand ops[3];
5411 if (shift_code != CODE_FOR_nothing)
5413 create_output_operand (&ops[0], target, mode);
5414 create_input_operand (&ops[1], v0, mode);
5415 create_convert_operand_from_type (&ops[2], shift_amt,
5416 sizetype);
5417 if (maybe_expand_insn (shift_code, 3, ops))
5418 return ops[0].value;
5420 if (shift_code_qi != CODE_FOR_nothing)
5422 tmp = gen_reg_rtx (qimode);
5423 create_output_operand (&ops[0], tmp, qimode);
5424 create_input_operand (&ops[1], gen_lowpart (qimode, v0),
5425 qimode);
5426 create_convert_operand_from_type (&ops[2], shift_amt,
5427 sizetype);
5428 if (maybe_expand_insn (shift_code_qi, 3, ops))
5429 return gen_lowpart (mode, ops[0].value);
5434 icode = direct_optab_handler (vec_perm_const_optab, mode);
5435 if (icode != CODE_FOR_nothing)
5437 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
5438 if (tmp)
5439 return tmp;
5442 /* Fall back to a constant byte-based permutation. */
5443 if (qimode != VOIDmode)
5445 vec = rtvec_alloc (w);
5446 for (i = 0; i < e; ++i)
5448 unsigned int j, this_e;
5450 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
5451 this_e &= 2 * e - 1;
5452 this_e *= u;
5454 for (j = 0; j < u; ++j)
5455 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
5457 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
5459 icode = direct_optab_handler (vec_perm_const_optab, qimode);
5460 if (icode != CODE_FOR_nothing)
5462 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
5463 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
5464 gen_lowpart (qimode, v1), sel_qi);
5465 if (tmp)
5466 return gen_lowpart (mode, tmp);
5471 /* Otherwise expand as a fully variable permuation. */
5472 icode = direct_optab_handler (vec_perm_optab, mode);
5473 if (icode != CODE_FOR_nothing)
5475 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
5476 if (tmp)
5477 return tmp;
5480 /* As a special case to aid several targets, lower the element-based
5481 permutation to a byte-based permutation and try again. */
5482 if (qimode == VOIDmode)
5483 return NULL_RTX;
5484 icode = direct_optab_handler (vec_perm_optab, qimode);
5485 if (icode == CODE_FOR_nothing)
5486 return NULL_RTX;
5488 if (sel_qi == NULL)
5490 /* Multiply each element by its byte size. */
5491 machine_mode selmode = GET_MODE (sel);
5492 if (u == 2)
5493 sel = expand_simple_binop (selmode, PLUS, sel, sel,
5494 NULL, 0, OPTAB_DIRECT);
5495 else
5496 sel = expand_simple_binop (selmode, ASHIFT, sel,
5497 GEN_INT (exact_log2 (u)),
5498 NULL, 0, OPTAB_DIRECT);
5499 gcc_assert (sel != NULL);
5501 /* Broadcast the low byte each element into each of its bytes. */
5502 vec = rtvec_alloc (w);
5503 for (i = 0; i < w; ++i)
5505 int this_e = i / u * u;
5506 if (BYTES_BIG_ENDIAN)
5507 this_e += u - 1;
5508 RTVEC_ELT (vec, i) = GEN_INT (this_e);
5510 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
5511 sel = gen_lowpart (qimode, sel);
5512 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
5513 gcc_assert (sel != NULL);
5515 /* Add the byte offset to each byte element. */
5516 /* Note that the definition of the indicies here is memory ordering,
5517 so there should be no difference between big and little endian. */
5518 vec = rtvec_alloc (w);
5519 for (i = 0; i < w; ++i)
5520 RTVEC_ELT (vec, i) = GEN_INT (i % u);
5521 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
5522 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
5523 sel, 0, OPTAB_DIRECT);
5524 gcc_assert (sel_qi != NULL);
5527 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
5528 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
5529 gen_lowpart (qimode, v1), sel_qi);
5530 if (tmp)
5531 tmp = gen_lowpart (mode, tmp);
5532 return tmp;
5535 /* Generate insns for a VEC_COND_EXPR with mask, given its TYPE and its
5536 three operands. */
5539 expand_vec_cond_mask_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
5540 rtx target)
5542 struct expand_operand ops[4];
5543 machine_mode mode = TYPE_MODE (vec_cond_type);
5544 machine_mode mask_mode = TYPE_MODE (TREE_TYPE (op0));
5545 enum insn_code icode = get_vcond_mask_icode (mode, mask_mode);
5546 rtx mask, rtx_op1, rtx_op2;
5548 if (icode == CODE_FOR_nothing)
5549 return 0;
5551 mask = expand_normal (op0);
5552 rtx_op1 = expand_normal (op1);
5553 rtx_op2 = expand_normal (op2);
5555 mask = force_reg (mask_mode, mask);
5556 rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
5558 create_output_operand (&ops[0], target, mode);
5559 create_input_operand (&ops[1], rtx_op1, mode);
5560 create_input_operand (&ops[2], rtx_op2, mode);
5561 create_input_operand (&ops[3], mask, mask_mode);
5562 expand_insn (icode, 4, ops);
5564 return ops[0].value;
5567 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
5568 three operands. */
5571 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
5572 rtx target)
5574 struct expand_operand ops[6];
5575 enum insn_code icode;
5576 rtx comparison, rtx_op1, rtx_op2;
5577 machine_mode mode = TYPE_MODE (vec_cond_type);
5578 machine_mode cmp_op_mode;
5579 bool unsignedp;
5580 tree op0a, op0b;
5581 enum tree_code tcode;
5583 if (COMPARISON_CLASS_P (op0))
5585 op0a = TREE_OPERAND (op0, 0);
5586 op0b = TREE_OPERAND (op0, 1);
5587 tcode = TREE_CODE (op0);
5589 else
5591 gcc_assert (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (op0)));
5592 if (get_vcond_mask_icode (mode, TYPE_MODE (TREE_TYPE (op0)))
5593 != CODE_FOR_nothing)
5594 return expand_vec_cond_mask_expr (vec_cond_type, op0, op1,
5595 op2, target);
5596 /* Fake op0 < 0. */
5597 else
5599 gcc_assert (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (op0)))
5600 == MODE_VECTOR_INT);
5601 op0a = op0;
5602 op0b = build_zero_cst (TREE_TYPE (op0));
5603 tcode = LT_EXPR;
5606 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
5607 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
5610 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
5611 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
5613 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
5614 if (icode == CODE_FOR_nothing)
5615 return 0;
5617 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode, 4);
5618 rtx_op1 = expand_normal (op1);
5619 rtx_op2 = expand_normal (op2);
5621 create_output_operand (&ops[0], target, mode);
5622 create_input_operand (&ops[1], rtx_op1, mode);
5623 create_input_operand (&ops[2], rtx_op2, mode);
5624 create_fixed_operand (&ops[3], comparison);
5625 create_fixed_operand (&ops[4], XEXP (comparison, 0));
5626 create_fixed_operand (&ops[5], XEXP (comparison, 1));
5627 expand_insn (icode, 6, ops);
5628 return ops[0].value;
5631 /* Generate insns for a vector comparison into a mask. */
5634 expand_vec_cmp_expr (tree type, tree exp, rtx target)
5636 struct expand_operand ops[4];
5637 enum insn_code icode;
5638 rtx comparison;
5639 machine_mode mask_mode = TYPE_MODE (type);
5640 machine_mode vmode;
5641 bool unsignedp;
5642 tree op0a, op0b;
5643 enum tree_code tcode;
5645 op0a = TREE_OPERAND (exp, 0);
5646 op0b = TREE_OPERAND (exp, 1);
5647 tcode = TREE_CODE (exp);
5649 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
5650 vmode = TYPE_MODE (TREE_TYPE (op0a));
5652 icode = get_vec_cmp_icode (vmode, mask_mode, unsignedp);
5653 if (icode == CODE_FOR_nothing)
5654 return 0;
5656 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode, 2);
5657 create_output_operand (&ops[0], target, mask_mode);
5658 create_fixed_operand (&ops[1], comparison);
5659 create_fixed_operand (&ops[2], XEXP (comparison, 0));
5660 create_fixed_operand (&ops[3], XEXP (comparison, 1));
5661 expand_insn (icode, 4, ops);
5662 return ops[0].value;
5665 /* Expand a highpart multiply. */
5668 expand_mult_highpart (machine_mode mode, rtx op0, rtx op1,
5669 rtx target, bool uns_p)
5671 struct expand_operand eops[3];
5672 enum insn_code icode;
5673 int method, i, nunits;
5674 machine_mode wmode;
5675 rtx m1, m2, perm;
5676 optab tab1, tab2;
5677 rtvec v;
5679 method = can_mult_highpart_p (mode, uns_p);
5680 switch (method)
5682 case 0:
5683 return NULL_RTX;
5684 case 1:
5685 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
5686 return expand_binop (mode, tab1, op0, op1, target, uns_p,
5687 OPTAB_LIB_WIDEN);
5688 case 2:
5689 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
5690 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
5691 break;
5692 case 3:
5693 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
5694 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
5695 if (BYTES_BIG_ENDIAN)
5696 std::swap (tab1, tab2);
5697 break;
5698 default:
5699 gcc_unreachable ();
5702 icode = optab_handler (tab1, mode);
5703 nunits = GET_MODE_NUNITS (mode);
5704 wmode = insn_data[icode].operand[0].mode;
5705 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
5706 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
5708 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
5709 create_input_operand (&eops[1], op0, mode);
5710 create_input_operand (&eops[2], op1, mode);
5711 expand_insn (icode, 3, eops);
5712 m1 = gen_lowpart (mode, eops[0].value);
5714 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
5715 create_input_operand (&eops[1], op0, mode);
5716 create_input_operand (&eops[2], op1, mode);
5717 expand_insn (optab_handler (tab2, mode), 3, eops);
5718 m2 = gen_lowpart (mode, eops[0].value);
5720 v = rtvec_alloc (nunits);
5721 if (method == 2)
5723 for (i = 0; i < nunits; ++i)
5724 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
5725 + ((i & 1) ? nunits : 0));
5727 else
5729 for (i = 0; i < nunits; ++i)
5730 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
5732 perm = gen_rtx_CONST_VECTOR (mode, v);
5734 return expand_vec_perm (mode, m1, m2, perm, target);
5737 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
5738 pattern. */
5740 static void
5741 find_cc_set (rtx x, const_rtx pat, void *data)
5743 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
5744 && GET_CODE (pat) == SET)
5746 rtx *p_cc_reg = (rtx *) data;
5747 gcc_assert (!*p_cc_reg);
5748 *p_cc_reg = x;
5752 /* This is a helper function for the other atomic operations. This function
5753 emits a loop that contains SEQ that iterates until a compare-and-swap
5754 operation at the end succeeds. MEM is the memory to be modified. SEQ is
5755 a set of instructions that takes a value from OLD_REG as an input and
5756 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
5757 set to the current contents of MEM. After SEQ, a compare-and-swap will
5758 attempt to update MEM with NEW_REG. The function returns true when the
5759 loop was generated successfully. */
5761 static bool
5762 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
5764 machine_mode mode = GET_MODE (mem);
5765 rtx_code_label *label;
5766 rtx cmp_reg, success, oldval;
5768 /* The loop we want to generate looks like
5770 cmp_reg = mem;
5771 label:
5772 old_reg = cmp_reg;
5773 seq;
5774 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
5775 if (success)
5776 goto label;
5778 Note that we only do the plain load from memory once. Subsequent
5779 iterations use the value loaded by the compare-and-swap pattern. */
5781 label = gen_label_rtx ();
5782 cmp_reg = gen_reg_rtx (mode);
5784 emit_move_insn (cmp_reg, mem);
5785 emit_label (label);
5786 emit_move_insn (old_reg, cmp_reg);
5787 if (seq)
5788 emit_insn (seq);
5790 success = NULL_RTX;
5791 oldval = cmp_reg;
5792 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
5793 new_reg, false, MEMMODEL_SYNC_SEQ_CST,
5794 MEMMODEL_RELAXED))
5795 return false;
5797 if (oldval != cmp_reg)
5798 emit_move_insn (cmp_reg, oldval);
5800 /* Mark this jump predicted not taken. */
5801 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
5802 GET_MODE (success), 1, label, 0);
5803 return true;
5807 /* This function tries to emit an atomic_exchange intruction. VAL is written
5808 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
5809 using TARGET if possible. */
5811 static rtx
5812 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
5814 machine_mode mode = GET_MODE (mem);
5815 enum insn_code icode;
5817 /* If the target supports the exchange directly, great. */
5818 icode = direct_optab_handler (atomic_exchange_optab, mode);
5819 if (icode != CODE_FOR_nothing)
5821 struct expand_operand ops[4];
5823 create_output_operand (&ops[0], target, mode);
5824 create_fixed_operand (&ops[1], mem);
5825 create_input_operand (&ops[2], val, mode);
5826 create_integer_operand (&ops[3], model);
5827 if (maybe_expand_insn (icode, 4, ops))
5828 return ops[0].value;
5831 return NULL_RTX;
5834 /* This function tries to implement an atomic exchange operation using
5835 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
5836 The previous contents of *MEM are returned, using TARGET if possible.
5837 Since this instructionn is an acquire barrier only, stronger memory
5838 models may require additional barriers to be emitted. */
5840 static rtx
5841 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
5842 enum memmodel model)
5844 machine_mode mode = GET_MODE (mem);
5845 enum insn_code icode;
5846 rtx_insn *last_insn = get_last_insn ();
5848 icode = optab_handler (sync_lock_test_and_set_optab, mode);
5850 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
5851 exists, and the memory model is stronger than acquire, add a release
5852 barrier before the instruction. */
5854 if (is_mm_seq_cst (model) || is_mm_release (model) || is_mm_acq_rel (model))
5855 expand_mem_thread_fence (model);
5857 if (icode != CODE_FOR_nothing)
5859 struct expand_operand ops[3];
5860 create_output_operand (&ops[0], target, mode);
5861 create_fixed_operand (&ops[1], mem);
5862 create_input_operand (&ops[2], val, mode);
5863 if (maybe_expand_insn (icode, 3, ops))
5864 return ops[0].value;
5867 /* If an external test-and-set libcall is provided, use that instead of
5868 any external compare-and-swap that we might get from the compare-and-
5869 swap-loop expansion later. */
5870 if (!can_compare_and_swap_p (mode, false))
5872 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
5873 if (libfunc != NULL)
5875 rtx addr;
5877 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
5878 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
5879 mode, 2, addr, ptr_mode,
5880 val, mode);
5884 /* If the test_and_set can't be emitted, eliminate any barrier that might
5885 have been emitted. */
5886 delete_insns_since (last_insn);
5887 return NULL_RTX;
5890 /* This function tries to implement an atomic exchange operation using a
5891 compare_and_swap loop. VAL is written to *MEM. The previous contents of
5892 *MEM are returned, using TARGET if possible. No memory model is required
5893 since a compare_and_swap loop is seq-cst. */
5895 static rtx
5896 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
5898 machine_mode mode = GET_MODE (mem);
5900 if (can_compare_and_swap_p (mode, true))
5902 if (!target || !register_operand (target, mode))
5903 target = gen_reg_rtx (mode);
5904 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
5905 return target;
5908 return NULL_RTX;
5911 /* This function tries to implement an atomic test-and-set operation
5912 using the atomic_test_and_set instruction pattern. A boolean value
5913 is returned from the operation, using TARGET if possible. */
5915 static rtx
5916 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
5918 machine_mode pat_bool_mode;
5919 struct expand_operand ops[3];
5921 if (!targetm.have_atomic_test_and_set ())
5922 return NULL_RTX;
5924 /* While we always get QImode from __atomic_test_and_set, we get
5925 other memory modes from __sync_lock_test_and_set. Note that we
5926 use no endian adjustment here. This matches the 4.6 behavior
5927 in the Sparc backend. */
5928 enum insn_code icode = targetm.code_for_atomic_test_and_set;
5929 gcc_checking_assert (insn_data[icode].operand[1].mode == QImode);
5930 if (GET_MODE (mem) != QImode)
5931 mem = adjust_address_nv (mem, QImode, 0);
5933 pat_bool_mode = insn_data[icode].operand[0].mode;
5934 create_output_operand (&ops[0], target, pat_bool_mode);
5935 create_fixed_operand (&ops[1], mem);
5936 create_integer_operand (&ops[2], model);
5938 if (maybe_expand_insn (icode, 3, ops))
5939 return ops[0].value;
5940 return NULL_RTX;
5943 /* This function expands the legacy _sync_lock test_and_set operation which is
5944 generally an atomic exchange. Some limited targets only allow the
5945 constant 1 to be stored. This is an ACQUIRE operation.
5947 TARGET is an optional place to stick the return value.
5948 MEM is where VAL is stored. */
5951 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
5953 rtx ret;
5955 /* Try an atomic_exchange first. */
5956 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_SYNC_ACQUIRE);
5957 if (ret)
5958 return ret;
5960 ret = maybe_emit_sync_lock_test_and_set (target, mem, val,
5961 MEMMODEL_SYNC_ACQUIRE);
5962 if (ret)
5963 return ret;
5965 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
5966 if (ret)
5967 return ret;
5969 /* If there are no other options, try atomic_test_and_set if the value
5970 being stored is 1. */
5971 if (val == const1_rtx)
5972 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_SYNC_ACQUIRE);
5974 return ret;
5977 /* This function expands the atomic test_and_set operation:
5978 atomically store a boolean TRUE into MEM and return the previous value.
5980 MEMMODEL is the memory model variant to use.
5981 TARGET is an optional place to stick the return value. */
5984 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
5986 machine_mode mode = GET_MODE (mem);
5987 rtx ret, trueval, subtarget;
5989 ret = maybe_emit_atomic_test_and_set (target, mem, model);
5990 if (ret)
5991 return ret;
5993 /* Be binary compatible with non-default settings of trueval, and different
5994 cpu revisions. E.g. one revision may have atomic-test-and-set, but
5995 another only has atomic-exchange. */
5996 if (targetm.atomic_test_and_set_trueval == 1)
5998 trueval = const1_rtx;
5999 subtarget = target ? target : gen_reg_rtx (mode);
6001 else
6003 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
6004 subtarget = gen_reg_rtx (mode);
6007 /* Try the atomic-exchange optab... */
6008 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
6010 /* ... then an atomic-compare-and-swap loop ... */
6011 if (!ret)
6012 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
6014 /* ... before trying the vaguely defined legacy lock_test_and_set. */
6015 if (!ret)
6016 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
6018 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
6019 things with the value 1. Thus we try again without trueval. */
6020 if (!ret && targetm.atomic_test_and_set_trueval != 1)
6021 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
6023 /* Failing all else, assume a single threaded environment and simply
6024 perform the operation. */
6025 if (!ret)
6027 /* If the result is ignored skip the move to target. */
6028 if (subtarget != const0_rtx)
6029 emit_move_insn (subtarget, mem);
6031 emit_move_insn (mem, trueval);
6032 ret = subtarget;
6035 /* Recall that have to return a boolean value; rectify if trueval
6036 is not exactly one. */
6037 if (targetm.atomic_test_and_set_trueval != 1)
6038 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
6040 return ret;
6043 /* This function expands the atomic exchange operation:
6044 atomically store VAL in MEM and return the previous value in MEM.
6046 MEMMODEL is the memory model variant to use.
6047 TARGET is an optional place to stick the return value. */
6050 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6052 rtx ret;
6054 ret = maybe_emit_atomic_exchange (target, mem, val, model);
6056 /* Next try a compare-and-swap loop for the exchange. */
6057 if (!ret)
6058 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
6060 return ret;
6063 /* This function expands the atomic compare exchange operation:
6065 *PTARGET_BOOL is an optional place to store the boolean success/failure.
6066 *PTARGET_OVAL is an optional place to store the old value from memory.
6067 Both target parameters may be NULL or const0_rtx to indicate that we do
6068 not care about that return value. Both target parameters are updated on
6069 success to the actual location of the corresponding result.
6071 MEMMODEL is the memory model variant to use.
6073 The return value of the function is true for success. */
6075 bool
6076 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
6077 rtx mem, rtx expected, rtx desired,
6078 bool is_weak, enum memmodel succ_model,
6079 enum memmodel fail_model)
6081 machine_mode mode = GET_MODE (mem);
6082 struct expand_operand ops[8];
6083 enum insn_code icode;
6084 rtx target_oval, target_bool = NULL_RTX;
6085 rtx libfunc;
6087 /* Load expected into a register for the compare and swap. */
6088 if (MEM_P (expected))
6089 expected = copy_to_reg (expected);
6091 /* Make sure we always have some place to put the return oldval.
6092 Further, make sure that place is distinct from the input expected,
6093 just in case we need that path down below. */
6094 if (ptarget_oval && *ptarget_oval == const0_rtx)
6095 ptarget_oval = NULL;
6097 if (ptarget_oval == NULL
6098 || (target_oval = *ptarget_oval) == NULL
6099 || reg_overlap_mentioned_p (expected, target_oval))
6100 target_oval = gen_reg_rtx (mode);
6102 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6103 if (icode != CODE_FOR_nothing)
6105 machine_mode bool_mode = insn_data[icode].operand[0].mode;
6107 if (ptarget_bool && *ptarget_bool == const0_rtx)
6108 ptarget_bool = NULL;
6110 /* Make sure we always have a place for the bool operand. */
6111 if (ptarget_bool == NULL
6112 || (target_bool = *ptarget_bool) == NULL
6113 || GET_MODE (target_bool) != bool_mode)
6114 target_bool = gen_reg_rtx (bool_mode);
6116 /* Emit the compare_and_swap. */
6117 create_output_operand (&ops[0], target_bool, bool_mode);
6118 create_output_operand (&ops[1], target_oval, mode);
6119 create_fixed_operand (&ops[2], mem);
6120 create_input_operand (&ops[3], expected, mode);
6121 create_input_operand (&ops[4], desired, mode);
6122 create_integer_operand (&ops[5], is_weak);
6123 create_integer_operand (&ops[6], succ_model);
6124 create_integer_operand (&ops[7], fail_model);
6125 if (maybe_expand_insn (icode, 8, ops))
6127 /* Return success/failure. */
6128 target_bool = ops[0].value;
6129 target_oval = ops[1].value;
6130 goto success;
6134 /* Otherwise fall back to the original __sync_val_compare_and_swap
6135 which is always seq-cst. */
6136 icode = optab_handler (sync_compare_and_swap_optab, mode);
6137 if (icode != CODE_FOR_nothing)
6139 rtx cc_reg;
6141 create_output_operand (&ops[0], target_oval, mode);
6142 create_fixed_operand (&ops[1], mem);
6143 create_input_operand (&ops[2], expected, mode);
6144 create_input_operand (&ops[3], desired, mode);
6145 if (!maybe_expand_insn (icode, 4, ops))
6146 return false;
6148 target_oval = ops[0].value;
6150 /* If the caller isn't interested in the boolean return value,
6151 skip the computation of it. */
6152 if (ptarget_bool == NULL)
6153 goto success;
6155 /* Otherwise, work out if the compare-and-swap succeeded. */
6156 cc_reg = NULL_RTX;
6157 if (have_insn_for (COMPARE, CCmode))
6158 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
6159 if (cc_reg)
6161 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
6162 const0_rtx, VOIDmode, 0, 1);
6163 goto success;
6165 goto success_bool_from_val;
6168 /* Also check for library support for __sync_val_compare_and_swap. */
6169 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
6170 if (libfunc != NULL)
6172 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6173 rtx target = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
6174 mode, 3, addr, ptr_mode,
6175 expected, mode, desired, mode);
6176 emit_move_insn (target_oval, target);
6178 /* Compute the boolean return value only if requested. */
6179 if (ptarget_bool)
6180 goto success_bool_from_val;
6181 else
6182 goto success;
6185 /* Failure. */
6186 return false;
6188 success_bool_from_val:
6189 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
6190 expected, VOIDmode, 1, 1);
6191 success:
6192 /* Make sure that the oval output winds up where the caller asked. */
6193 if (ptarget_oval)
6194 *ptarget_oval = target_oval;
6195 if (ptarget_bool)
6196 *ptarget_bool = target_bool;
6197 return true;
6200 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
6202 static void
6203 expand_asm_memory_barrier (void)
6205 rtx asm_op, clob;
6207 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
6208 rtvec_alloc (0), rtvec_alloc (0),
6209 rtvec_alloc (0), UNKNOWN_LOCATION);
6210 MEM_VOLATILE_P (asm_op) = 1;
6212 clob = gen_rtx_SCRATCH (VOIDmode);
6213 clob = gen_rtx_MEM (BLKmode, clob);
6214 clob = gen_rtx_CLOBBER (VOIDmode, clob);
6216 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
6219 /* This routine will either emit the mem_thread_fence pattern or issue a
6220 sync_synchronize to generate a fence for memory model MEMMODEL. */
6222 void
6223 expand_mem_thread_fence (enum memmodel model)
6225 if (targetm.have_mem_thread_fence ())
6226 emit_insn (targetm.gen_mem_thread_fence (GEN_INT (model)));
6227 else if (!is_mm_relaxed (model))
6229 if (targetm.have_memory_barrier ())
6230 emit_insn (targetm.gen_memory_barrier ());
6231 else if (synchronize_libfunc != NULL_RTX)
6232 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
6233 else
6234 expand_asm_memory_barrier ();
6238 /* This routine will either emit the mem_signal_fence pattern or issue a
6239 sync_synchronize to generate a fence for memory model MEMMODEL. */
6241 void
6242 expand_mem_signal_fence (enum memmodel model)
6244 if (targetm.have_mem_signal_fence ())
6245 emit_insn (targetm.gen_mem_signal_fence (GEN_INT (model)));
6246 else if (!is_mm_relaxed (model))
6248 /* By default targets are coherent between a thread and the signal
6249 handler running on the same thread. Thus this really becomes a
6250 compiler barrier, in that stores must not be sunk past
6251 (or raised above) a given point. */
6252 expand_asm_memory_barrier ();
6256 /* This function expands the atomic load operation:
6257 return the atomically loaded value in MEM.
6259 MEMMODEL is the memory model variant to use.
6260 TARGET is an option place to stick the return value. */
6263 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
6265 machine_mode mode = GET_MODE (mem);
6266 enum insn_code icode;
6268 /* If the target supports the load directly, great. */
6269 icode = direct_optab_handler (atomic_load_optab, mode);
6270 if (icode != CODE_FOR_nothing)
6272 struct expand_operand ops[3];
6274 create_output_operand (&ops[0], target, mode);
6275 create_fixed_operand (&ops[1], mem);
6276 create_integer_operand (&ops[2], model);
6277 if (maybe_expand_insn (icode, 3, ops))
6278 return ops[0].value;
6281 /* If the size of the object is greater than word size on this target,
6282 then we assume that a load will not be atomic. */
6283 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
6285 /* Issue val = compare_and_swap (mem, 0, 0).
6286 This may cause the occasional harmless store of 0 when the value is
6287 already 0, but it seems to be OK according to the standards guys. */
6288 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
6289 const0_rtx, false, model, model))
6290 return target;
6291 else
6292 /* Otherwise there is no atomic load, leave the library call. */
6293 return NULL_RTX;
6296 /* Otherwise assume loads are atomic, and emit the proper barriers. */
6297 if (!target || target == const0_rtx)
6298 target = gen_reg_rtx (mode);
6300 /* For SEQ_CST, emit a barrier before the load. */
6301 if (is_mm_seq_cst (model))
6302 expand_mem_thread_fence (model);
6304 emit_move_insn (target, mem);
6306 /* Emit the appropriate barrier after the load. */
6307 expand_mem_thread_fence (model);
6309 return target;
6312 /* This function expands the atomic store operation:
6313 Atomically store VAL in MEM.
6314 MEMMODEL is the memory model variant to use.
6315 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
6316 function returns const0_rtx if a pattern was emitted. */
6319 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
6321 machine_mode mode = GET_MODE (mem);
6322 enum insn_code icode;
6323 struct expand_operand ops[3];
6325 /* If the target supports the store directly, great. */
6326 icode = direct_optab_handler (atomic_store_optab, mode);
6327 if (icode != CODE_FOR_nothing)
6329 create_fixed_operand (&ops[0], mem);
6330 create_input_operand (&ops[1], val, mode);
6331 create_integer_operand (&ops[2], model);
6332 if (maybe_expand_insn (icode, 3, ops))
6333 return const0_rtx;
6336 /* If using __sync_lock_release is a viable alternative, try it. */
6337 if (use_release)
6339 icode = direct_optab_handler (sync_lock_release_optab, mode);
6340 if (icode != CODE_FOR_nothing)
6342 create_fixed_operand (&ops[0], mem);
6343 create_input_operand (&ops[1], const0_rtx, mode);
6344 if (maybe_expand_insn (icode, 2, ops))
6346 /* lock_release is only a release barrier. */
6347 if (is_mm_seq_cst (model))
6348 expand_mem_thread_fence (model);
6349 return const0_rtx;
6354 /* If the size of the object is greater than word size on this target,
6355 a default store will not be atomic, Try a mem_exchange and throw away
6356 the result. If that doesn't work, don't do anything. */
6357 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
6359 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
6360 if (!target)
6361 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
6362 if (target)
6363 return const0_rtx;
6364 else
6365 return NULL_RTX;
6368 /* Otherwise assume stores are atomic, and emit the proper barriers. */
6369 expand_mem_thread_fence (model);
6371 emit_move_insn (mem, val);
6373 /* For SEQ_CST, also emit a barrier after the store. */
6374 if (is_mm_seq_cst (model))
6375 expand_mem_thread_fence (model);
6377 return const0_rtx;
6381 /* Structure containing the pointers and values required to process the
6382 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
6384 struct atomic_op_functions
6386 direct_optab mem_fetch_before;
6387 direct_optab mem_fetch_after;
6388 direct_optab mem_no_result;
6389 optab fetch_before;
6390 optab fetch_after;
6391 direct_optab no_result;
6392 enum rtx_code reverse_code;
6396 /* Fill in structure pointed to by OP with the various optab entries for an
6397 operation of type CODE. */
6399 static void
6400 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
6402 gcc_assert (op!= NULL);
6404 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
6405 in the source code during compilation, and the optab entries are not
6406 computable until runtime. Fill in the values at runtime. */
6407 switch (code)
6409 case PLUS:
6410 op->mem_fetch_before = atomic_fetch_add_optab;
6411 op->mem_fetch_after = atomic_add_fetch_optab;
6412 op->mem_no_result = atomic_add_optab;
6413 op->fetch_before = sync_old_add_optab;
6414 op->fetch_after = sync_new_add_optab;
6415 op->no_result = sync_add_optab;
6416 op->reverse_code = MINUS;
6417 break;
6418 case MINUS:
6419 op->mem_fetch_before = atomic_fetch_sub_optab;
6420 op->mem_fetch_after = atomic_sub_fetch_optab;
6421 op->mem_no_result = atomic_sub_optab;
6422 op->fetch_before = sync_old_sub_optab;
6423 op->fetch_after = sync_new_sub_optab;
6424 op->no_result = sync_sub_optab;
6425 op->reverse_code = PLUS;
6426 break;
6427 case XOR:
6428 op->mem_fetch_before = atomic_fetch_xor_optab;
6429 op->mem_fetch_after = atomic_xor_fetch_optab;
6430 op->mem_no_result = atomic_xor_optab;
6431 op->fetch_before = sync_old_xor_optab;
6432 op->fetch_after = sync_new_xor_optab;
6433 op->no_result = sync_xor_optab;
6434 op->reverse_code = XOR;
6435 break;
6436 case AND:
6437 op->mem_fetch_before = atomic_fetch_and_optab;
6438 op->mem_fetch_after = atomic_and_fetch_optab;
6439 op->mem_no_result = atomic_and_optab;
6440 op->fetch_before = sync_old_and_optab;
6441 op->fetch_after = sync_new_and_optab;
6442 op->no_result = sync_and_optab;
6443 op->reverse_code = UNKNOWN;
6444 break;
6445 case IOR:
6446 op->mem_fetch_before = atomic_fetch_or_optab;
6447 op->mem_fetch_after = atomic_or_fetch_optab;
6448 op->mem_no_result = atomic_or_optab;
6449 op->fetch_before = sync_old_ior_optab;
6450 op->fetch_after = sync_new_ior_optab;
6451 op->no_result = sync_ior_optab;
6452 op->reverse_code = UNKNOWN;
6453 break;
6454 case NOT:
6455 op->mem_fetch_before = atomic_fetch_nand_optab;
6456 op->mem_fetch_after = atomic_nand_fetch_optab;
6457 op->mem_no_result = atomic_nand_optab;
6458 op->fetch_before = sync_old_nand_optab;
6459 op->fetch_after = sync_new_nand_optab;
6460 op->no_result = sync_nand_optab;
6461 op->reverse_code = UNKNOWN;
6462 break;
6463 default:
6464 gcc_unreachable ();
6468 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
6469 using memory order MODEL. If AFTER is true the operation needs to return
6470 the value of *MEM after the operation, otherwise the previous value.
6471 TARGET is an optional place to place the result. The result is unused if
6472 it is const0_rtx.
6473 Return the result if there is a better sequence, otherwise NULL_RTX. */
6475 static rtx
6476 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
6477 enum memmodel model, bool after)
6479 /* If the value is prefetched, or not used, it may be possible to replace
6480 the sequence with a native exchange operation. */
6481 if (!after || target == const0_rtx)
6483 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
6484 if (code == AND && val == const0_rtx)
6486 if (target == const0_rtx)
6487 target = gen_reg_rtx (GET_MODE (mem));
6488 return maybe_emit_atomic_exchange (target, mem, val, model);
6491 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
6492 if (code == IOR && val == constm1_rtx)
6494 if (target == const0_rtx)
6495 target = gen_reg_rtx (GET_MODE (mem));
6496 return maybe_emit_atomic_exchange (target, mem, val, model);
6500 return NULL_RTX;
6503 /* Try to emit an instruction for a specific operation varaition.
6504 OPTAB contains the OP functions.
6505 TARGET is an optional place to return the result. const0_rtx means unused.
6506 MEM is the memory location to operate on.
6507 VAL is the value to use in the operation.
6508 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
6509 MODEL is the memory model, if used.
6510 AFTER is true if the returned result is the value after the operation. */
6512 static rtx
6513 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
6514 rtx val, bool use_memmodel, enum memmodel model, bool after)
6516 machine_mode mode = GET_MODE (mem);
6517 struct expand_operand ops[4];
6518 enum insn_code icode;
6519 int op_counter = 0;
6520 int num_ops;
6522 /* Check to see if there is a result returned. */
6523 if (target == const0_rtx)
6525 if (use_memmodel)
6527 icode = direct_optab_handler (optab->mem_no_result, mode);
6528 create_integer_operand (&ops[2], model);
6529 num_ops = 3;
6531 else
6533 icode = direct_optab_handler (optab->no_result, mode);
6534 num_ops = 2;
6537 /* Otherwise, we need to generate a result. */
6538 else
6540 if (use_memmodel)
6542 icode = direct_optab_handler (after ? optab->mem_fetch_after
6543 : optab->mem_fetch_before, mode);
6544 create_integer_operand (&ops[3], model);
6545 num_ops = 4;
6547 else
6549 icode = optab_handler (after ? optab->fetch_after
6550 : optab->fetch_before, mode);
6551 num_ops = 3;
6553 create_output_operand (&ops[op_counter++], target, mode);
6555 if (icode == CODE_FOR_nothing)
6556 return NULL_RTX;
6558 create_fixed_operand (&ops[op_counter++], mem);
6559 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6560 create_convert_operand_to (&ops[op_counter++], val, mode, true);
6562 if (maybe_expand_insn (icode, num_ops, ops))
6563 return (target == const0_rtx ? const0_rtx : ops[0].value);
6565 return NULL_RTX;
6569 /* This function expands an atomic fetch_OP or OP_fetch operation:
6570 TARGET is an option place to stick the return value. const0_rtx indicates
6571 the result is unused.
6572 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6573 CODE is the operation being performed (OP)
6574 MEMMODEL is the memory model variant to use.
6575 AFTER is true to return the result of the operation (OP_fetch).
6576 AFTER is false to return the value before the operation (fetch_OP).
6578 This function will *only* generate instructions if there is a direct
6579 optab. No compare and swap loops or libcalls will be generated. */
6581 static rtx
6582 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
6583 enum rtx_code code, enum memmodel model,
6584 bool after)
6586 machine_mode mode = GET_MODE (mem);
6587 struct atomic_op_functions optab;
6588 rtx result;
6589 bool unused_result = (target == const0_rtx);
6591 get_atomic_op_for_code (&optab, code);
6593 /* Check to see if there are any better instructions. */
6594 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
6595 if (result)
6596 return result;
6598 /* Check for the case where the result isn't used and try those patterns. */
6599 if (unused_result)
6601 /* Try the memory model variant first. */
6602 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
6603 if (result)
6604 return result;
6606 /* Next try the old style withuot a memory model. */
6607 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
6608 if (result)
6609 return result;
6611 /* There is no no-result pattern, so try patterns with a result. */
6612 target = NULL_RTX;
6615 /* Try the __atomic version. */
6616 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
6617 if (result)
6618 return result;
6620 /* Try the older __sync version. */
6621 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
6622 if (result)
6623 return result;
6625 /* If the fetch value can be calculated from the other variation of fetch,
6626 try that operation. */
6627 if (after || unused_result || optab.reverse_code != UNKNOWN)
6629 /* Try the __atomic version, then the older __sync version. */
6630 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
6631 if (!result)
6632 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
6634 if (result)
6636 /* If the result isn't used, no need to do compensation code. */
6637 if (unused_result)
6638 return result;
6640 /* Issue compensation code. Fetch_after == fetch_before OP val.
6641 Fetch_before == after REVERSE_OP val. */
6642 if (!after)
6643 code = optab.reverse_code;
6644 if (code == NOT)
6646 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
6647 true, OPTAB_LIB_WIDEN);
6648 result = expand_simple_unop (mode, NOT, result, target, true);
6650 else
6651 result = expand_simple_binop (mode, code, result, val, target,
6652 true, OPTAB_LIB_WIDEN);
6653 return result;
6657 /* No direct opcode can be generated. */
6658 return NULL_RTX;
6663 /* This function expands an atomic fetch_OP or OP_fetch operation:
6664 TARGET is an option place to stick the return value. const0_rtx indicates
6665 the result is unused.
6666 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6667 CODE is the operation being performed (OP)
6668 MEMMODEL is the memory model variant to use.
6669 AFTER is true to return the result of the operation (OP_fetch).
6670 AFTER is false to return the value before the operation (fetch_OP). */
6672 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
6673 enum memmodel model, bool after)
6675 machine_mode mode = GET_MODE (mem);
6676 rtx result;
6677 bool unused_result = (target == const0_rtx);
6679 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
6680 after);
6682 if (result)
6683 return result;
6685 /* Add/sub can be implemented by doing the reverse operation with -(val). */
6686 if (code == PLUS || code == MINUS)
6688 rtx tmp;
6689 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
6691 start_sequence ();
6692 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
6693 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
6694 model, after);
6695 if (result)
6697 /* PLUS worked so emit the insns and return. */
6698 tmp = get_insns ();
6699 end_sequence ();
6700 emit_insn (tmp);
6701 return result;
6704 /* PLUS did not work, so throw away the negation code and continue. */
6705 end_sequence ();
6708 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
6709 if (!can_compare_and_swap_p (mode, false))
6711 rtx libfunc;
6712 bool fixup = false;
6713 enum rtx_code orig_code = code;
6714 struct atomic_op_functions optab;
6716 get_atomic_op_for_code (&optab, code);
6717 libfunc = optab_libfunc (after ? optab.fetch_after
6718 : optab.fetch_before, mode);
6719 if (libfunc == NULL
6720 && (after || unused_result || optab.reverse_code != UNKNOWN))
6722 fixup = true;
6723 if (!after)
6724 code = optab.reverse_code;
6725 libfunc = optab_libfunc (after ? optab.fetch_before
6726 : optab.fetch_after, mode);
6728 if (libfunc != NULL)
6730 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6731 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
6732 2, addr, ptr_mode, val, mode);
6734 if (!unused_result && fixup)
6735 result = expand_simple_binop (mode, code, result, val, target,
6736 true, OPTAB_LIB_WIDEN);
6737 return result;
6740 /* We need the original code for any further attempts. */
6741 code = orig_code;
6744 /* If nothing else has succeeded, default to a compare and swap loop. */
6745 if (can_compare_and_swap_p (mode, true))
6747 rtx_insn *insn;
6748 rtx t0 = gen_reg_rtx (mode), t1;
6750 start_sequence ();
6752 /* If the result is used, get a register for it. */
6753 if (!unused_result)
6755 if (!target || !register_operand (target, mode))
6756 target = gen_reg_rtx (mode);
6757 /* If fetch_before, copy the value now. */
6758 if (!after)
6759 emit_move_insn (target, t0);
6761 else
6762 target = const0_rtx;
6764 t1 = t0;
6765 if (code == NOT)
6767 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
6768 true, OPTAB_LIB_WIDEN);
6769 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
6771 else
6772 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
6773 OPTAB_LIB_WIDEN);
6775 /* For after, copy the value now. */
6776 if (!unused_result && after)
6777 emit_move_insn (target, t1);
6778 insn = get_insns ();
6779 end_sequence ();
6781 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
6782 return target;
6785 return NULL_RTX;
6788 /* Return true if OPERAND is suitable for operand number OPNO of
6789 instruction ICODE. */
6791 bool
6792 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
6794 return (!insn_data[(int) icode].operand[opno].predicate
6795 || (insn_data[(int) icode].operand[opno].predicate
6796 (operand, insn_data[(int) icode].operand[opno].mode)));
6799 /* TARGET is a target of a multiword operation that we are going to
6800 implement as a series of word-mode operations. Return true if
6801 TARGET is suitable for this purpose. */
6803 bool
6804 valid_multiword_target_p (rtx target)
6806 machine_mode mode;
6807 int i;
6809 mode = GET_MODE (target);
6810 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
6811 if (!validate_subreg (word_mode, mode, target, i))
6812 return false;
6813 return true;
6816 /* Like maybe_legitimize_operand, but do not change the code of the
6817 current rtx value. */
6819 static bool
6820 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
6821 struct expand_operand *op)
6823 /* See if the operand matches in its current form. */
6824 if (insn_operand_matches (icode, opno, op->value))
6825 return true;
6827 /* If the operand is a memory whose address has no side effects,
6828 try forcing the address into a non-virtual pseudo register.
6829 The check for side effects is important because copy_to_mode_reg
6830 cannot handle things like auto-modified addresses. */
6831 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
6833 rtx addr, mem;
6835 mem = op->value;
6836 addr = XEXP (mem, 0);
6837 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
6838 && !side_effects_p (addr))
6840 rtx_insn *last;
6841 machine_mode mode;
6843 last = get_last_insn ();
6844 mode = get_address_mode (mem);
6845 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
6846 if (insn_operand_matches (icode, opno, mem))
6848 op->value = mem;
6849 return true;
6851 delete_insns_since (last);
6855 return false;
6858 /* Try to make OP match operand OPNO of instruction ICODE. Return true
6859 on success, storing the new operand value back in OP. */
6861 static bool
6862 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
6863 struct expand_operand *op)
6865 machine_mode mode, imode;
6866 bool old_volatile_ok, result;
6868 mode = op->mode;
6869 switch (op->type)
6871 case EXPAND_FIXED:
6872 old_volatile_ok = volatile_ok;
6873 volatile_ok = true;
6874 result = maybe_legitimize_operand_same_code (icode, opno, op);
6875 volatile_ok = old_volatile_ok;
6876 return result;
6878 case EXPAND_OUTPUT:
6879 gcc_assert (mode != VOIDmode);
6880 if (op->value
6881 && op->value != const0_rtx
6882 && GET_MODE (op->value) == mode
6883 && maybe_legitimize_operand_same_code (icode, opno, op))
6884 return true;
6886 op->value = gen_reg_rtx (mode);
6887 break;
6889 case EXPAND_INPUT:
6890 input:
6891 gcc_assert (mode != VOIDmode);
6892 gcc_assert (GET_MODE (op->value) == VOIDmode
6893 || GET_MODE (op->value) == mode);
6894 if (maybe_legitimize_operand_same_code (icode, opno, op))
6895 return true;
6897 op->value = copy_to_mode_reg (mode, op->value);
6898 break;
6900 case EXPAND_CONVERT_TO:
6901 gcc_assert (mode != VOIDmode);
6902 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
6903 goto input;
6905 case EXPAND_CONVERT_FROM:
6906 if (GET_MODE (op->value) != VOIDmode)
6907 mode = GET_MODE (op->value);
6908 else
6909 /* The caller must tell us what mode this value has. */
6910 gcc_assert (mode != VOIDmode);
6912 imode = insn_data[(int) icode].operand[opno].mode;
6913 if (imode != VOIDmode && imode != mode)
6915 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
6916 mode = imode;
6918 goto input;
6920 case EXPAND_ADDRESS:
6921 gcc_assert (mode != VOIDmode);
6922 op->value = convert_memory_address (mode, op->value);
6923 goto input;
6925 case EXPAND_INTEGER:
6926 mode = insn_data[(int) icode].operand[opno].mode;
6927 if (mode != VOIDmode && const_int_operand (op->value, mode))
6928 goto input;
6929 break;
6931 return insn_operand_matches (icode, opno, op->value);
6934 /* Make OP describe an input operand that should have the same value
6935 as VALUE, after any mode conversion that the target might request.
6936 TYPE is the type of VALUE. */
6938 void
6939 create_convert_operand_from_type (struct expand_operand *op,
6940 rtx value, tree type)
6942 create_convert_operand_from (op, value, TYPE_MODE (type),
6943 TYPE_UNSIGNED (type));
6946 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
6947 of instruction ICODE. Return true on success, leaving the new operand
6948 values in the OPS themselves. Emit no code on failure. */
6950 bool
6951 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
6952 unsigned int nops, struct expand_operand *ops)
6954 rtx_insn *last;
6955 unsigned int i;
6957 last = get_last_insn ();
6958 for (i = 0; i < nops; i++)
6959 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
6961 delete_insns_since (last);
6962 return false;
6964 return true;
6967 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
6968 as its operands. Return the instruction pattern on success,
6969 and emit any necessary set-up code. Return null and emit no
6970 code on failure. */
6972 rtx_insn *
6973 maybe_gen_insn (enum insn_code icode, unsigned int nops,
6974 struct expand_operand *ops)
6976 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
6977 if (!maybe_legitimize_operands (icode, 0, nops, ops))
6978 return NULL;
6980 switch (nops)
6982 case 1:
6983 return GEN_FCN (icode) (ops[0].value);
6984 case 2:
6985 return GEN_FCN (icode) (ops[0].value, ops[1].value);
6986 case 3:
6987 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
6988 case 4:
6989 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
6990 ops[3].value);
6991 case 5:
6992 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
6993 ops[3].value, ops[4].value);
6994 case 6:
6995 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
6996 ops[3].value, ops[4].value, ops[5].value);
6997 case 7:
6998 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
6999 ops[3].value, ops[4].value, ops[5].value,
7000 ops[6].value);
7001 case 8:
7002 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7003 ops[3].value, ops[4].value, ops[5].value,
7004 ops[6].value, ops[7].value);
7005 case 9:
7006 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7007 ops[3].value, ops[4].value, ops[5].value,
7008 ops[6].value, ops[7].value, ops[8].value);
7010 gcc_unreachable ();
7013 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7014 as its operands. Return true on success and emit no code on failure. */
7016 bool
7017 maybe_expand_insn (enum insn_code icode, unsigned int nops,
7018 struct expand_operand *ops)
7020 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7021 if (pat)
7023 emit_insn (pat);
7024 return true;
7026 return false;
7029 /* Like maybe_expand_insn, but for jumps. */
7031 bool
7032 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
7033 struct expand_operand *ops)
7035 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7036 if (pat)
7038 emit_jump_insn (pat);
7039 return true;
7041 return false;
7044 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7045 as its operands. */
7047 void
7048 expand_insn (enum insn_code icode, unsigned int nops,
7049 struct expand_operand *ops)
7051 if (!maybe_expand_insn (icode, nops, ops))
7052 gcc_unreachable ();
7055 /* Like expand_insn, but for jumps. */
7057 void
7058 expand_jump_insn (enum insn_code icode, unsigned int nops,
7059 struct expand_operand *ops)
7061 if (!maybe_expand_jump_insn (icode, nops, ops))
7062 gcc_unreachable ();