Remove assert in get_def_bb_for_const
[official-gcc.git] / gcc / fold-const-call.c
blob923a5d45bd9fc5f1ef8242946469d53222e1b0c7
1 /* Constant folding for calls to built-in and internal functions.
2 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "realmpfr.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "options.h"
27 #include "fold-const.h"
28 #include "fold-const-call.h"
29 #include "case-cfn-macros.h"
30 #include "tm.h" /* For C[LT]Z_DEFINED_AT_ZERO. */
32 /* Functions that test for certain constant types, abstracting away the
33 decision about whether to check for overflow. */
35 static inline bool
36 integer_cst_p (tree t)
38 return TREE_CODE (t) == INTEGER_CST && !TREE_OVERFLOW (t);
41 static inline bool
42 real_cst_p (tree t)
44 return TREE_CODE (t) == REAL_CST && !TREE_OVERFLOW (t);
47 static inline bool
48 complex_cst_p (tree t)
50 return TREE_CODE (t) == COMPLEX_CST;
53 /* Return true if ARG is a constant in the range of the host size_t.
54 Store it in *SIZE_OUT if so. */
56 static inline bool
57 host_size_t_cst_p (tree t, size_t *size_out)
59 if (integer_cst_p (t)
60 && wi::min_precision (t, UNSIGNED) <= sizeof (size_t) * CHAR_BIT)
62 *size_out = tree_to_uhwi (t);
63 return true;
65 return false;
68 /* RES is the result of a comparison in which < 0 means "less", 0 means
69 "equal" and > 0 means "more". Canonicalize it to -1, 0 or 1 and
70 return it in type TYPE. */
72 static inline tree
73 build_cmp_result (tree type, int res)
75 return build_int_cst (type, res < 0 ? -1 : res > 0 ? 1 : 0);
78 /* M is the result of trying to constant-fold an expression (starting
79 with clear MPFR flags) and INEXACT says whether the result in M is
80 exact or inexact. Return true if M can be used as a constant-folded
81 result in format FORMAT, storing the value in *RESULT if so. */
83 static bool
84 do_mpfr_ckconv (real_value *result, mpfr_srcptr m, bool inexact,
85 const real_format *format)
87 /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
88 overflow/underflow occurred. If -frounding-math, proceed iff the
89 result of calling FUNC was exact. */
90 if (!mpfr_number_p (m)
91 || mpfr_overflow_p ()
92 || mpfr_underflow_p ()
93 || (flag_rounding_math && inexact))
94 return false;
96 REAL_VALUE_TYPE tmp;
97 real_from_mpfr (&tmp, m, format, GMP_RNDN);
99 /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
100 If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
101 underflowed in the conversion. */
102 if (!real_isfinite (&tmp)
103 || ((tmp.cl == rvc_zero) != (mpfr_zero_p (m) != 0)))
104 return false;
106 real_convert (result, format, &tmp);
107 return real_identical (result, &tmp);
110 /* Try to evaluate:
112 *RESULT = f (*ARG)
114 in format FORMAT, given that FUNC is the MPFR implementation of f.
115 Return true on success. */
117 static bool
118 do_mpfr_arg1 (real_value *result,
119 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t),
120 const real_value *arg, const real_format *format)
122 /* To proceed, MPFR must exactly represent the target floating point
123 format, which only happens when the target base equals two. */
124 if (format->b != 2 || !real_isfinite (arg))
125 return false;
127 int prec = format->p;
128 mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
129 mpfr_t m;
131 mpfr_init2 (m, prec);
132 mpfr_from_real (m, arg, GMP_RNDN);
133 mpfr_clear_flags ();
134 bool inexact = func (m, m, rnd);
135 bool ok = do_mpfr_ckconv (result, m, inexact, format);
136 mpfr_clear (m);
138 return ok;
141 /* Try to evaluate:
143 *RESULT_SIN = sin (*ARG);
144 *RESULT_COS = cos (*ARG);
146 for format FORMAT. Return true on success. */
148 static bool
149 do_mpfr_sincos (real_value *result_sin, real_value *result_cos,
150 const real_value *arg, const real_format *format)
152 /* To proceed, MPFR must exactly represent the target floating point
153 format, which only happens when the target base equals two. */
154 if (format->b != 2 || !real_isfinite (arg))
155 return false;
157 int prec = format->p;
158 mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
159 mpfr_t m, ms, mc;
161 mpfr_inits2 (prec, m, ms, mc, NULL);
162 mpfr_from_real (m, arg, GMP_RNDN);
163 mpfr_clear_flags ();
164 bool inexact = mpfr_sin_cos (ms, mc, m, rnd);
165 bool ok = (do_mpfr_ckconv (result_sin, ms, inexact, format)
166 && do_mpfr_ckconv (result_cos, mc, inexact, format));
167 mpfr_clears (m, ms, mc, NULL);
169 return ok;
172 /* Try to evaluate:
174 *RESULT = f (*ARG0, *ARG1)
176 in format FORMAT, given that FUNC is the MPFR implementation of f.
177 Return true on success. */
179 static bool
180 do_mpfr_arg2 (real_value *result,
181 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t),
182 const real_value *arg0, const real_value *arg1,
183 const real_format *format)
185 /* To proceed, MPFR must exactly represent the target floating point
186 format, which only happens when the target base equals two. */
187 if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1))
188 return false;
190 int prec = format->p;
191 mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
192 mpfr_t m0, m1;
194 mpfr_inits2 (prec, m0, m1, NULL);
195 mpfr_from_real (m0, arg0, GMP_RNDN);
196 mpfr_from_real (m1, arg1, GMP_RNDN);
197 mpfr_clear_flags ();
198 bool inexact = func (m0, m0, m1, rnd);
199 bool ok = do_mpfr_ckconv (result, m0, inexact, format);
200 mpfr_clears (m0, m1, NULL);
202 return ok;
205 /* Try to evaluate:
207 *RESULT = f (ARG0, *ARG1)
209 in format FORMAT, given that FUNC is the MPFR implementation of f.
210 Return true on success. */
212 static bool
213 do_mpfr_arg2 (real_value *result,
214 int (*func) (mpfr_ptr, long, mpfr_srcptr, mp_rnd_t),
215 const wide_int_ref &arg0, const real_value *arg1,
216 const real_format *format)
218 if (format->b != 2 || !real_isfinite (arg1))
219 return false;
221 int prec = format->p;
222 mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
223 mpfr_t m;
225 mpfr_init2 (m, prec);
226 mpfr_from_real (m, arg1, GMP_RNDN);
227 mpfr_clear_flags ();
228 bool inexact = func (m, arg0.to_shwi (), m, rnd);
229 bool ok = do_mpfr_ckconv (result, m, inexact, format);
230 mpfr_clear (m);
232 return ok;
235 /* Try to evaluate:
237 *RESULT = f (*ARG0, *ARG1, *ARG2)
239 in format FORMAT, given that FUNC is the MPFR implementation of f.
240 Return true on success. */
242 static bool
243 do_mpfr_arg3 (real_value *result,
244 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr,
245 mpfr_srcptr, mpfr_rnd_t),
246 const real_value *arg0, const real_value *arg1,
247 const real_value *arg2, const real_format *format)
249 /* To proceed, MPFR must exactly represent the target floating point
250 format, which only happens when the target base equals two. */
251 if (format->b != 2
252 || !real_isfinite (arg0)
253 || !real_isfinite (arg1)
254 || !real_isfinite (arg2))
255 return false;
257 int prec = format->p;
258 mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
259 mpfr_t m0, m1, m2;
261 mpfr_inits2 (prec, m0, m1, m2, NULL);
262 mpfr_from_real (m0, arg0, GMP_RNDN);
263 mpfr_from_real (m1, arg1, GMP_RNDN);
264 mpfr_from_real (m2, arg2, GMP_RNDN);
265 mpfr_clear_flags ();
266 bool inexact = func (m0, m0, m1, m2, rnd);
267 bool ok = do_mpfr_ckconv (result, m0, inexact, format);
268 mpfr_clears (m0, m1, m2, NULL);
270 return ok;
273 /* M is the result of trying to constant-fold an expression (starting
274 with clear MPFR flags) and INEXACT says whether the result in M is
275 exact or inexact. Return true if M can be used as a constant-folded
276 result in which the real and imaginary parts have format FORMAT.
277 Store those parts in *RESULT_REAL and *RESULT_IMAG if so. */
279 static bool
280 do_mpc_ckconv (real_value *result_real, real_value *result_imag,
281 mpc_srcptr m, bool inexact, const real_format *format)
283 /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
284 overflow/underflow occurred. If -frounding-math, proceed iff the
285 result of calling FUNC was exact. */
286 if (!mpfr_number_p (mpc_realref (m))
287 || !mpfr_number_p (mpc_imagref (m))
288 || mpfr_overflow_p ()
289 || mpfr_underflow_p ()
290 || (flag_rounding_math && inexact))
291 return false;
293 REAL_VALUE_TYPE tmp_real, tmp_imag;
294 real_from_mpfr (&tmp_real, mpc_realref (m), format, GMP_RNDN);
295 real_from_mpfr (&tmp_imag, mpc_imagref (m), format, GMP_RNDN);
297 /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
298 If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
299 underflowed in the conversion. */
300 if (!real_isfinite (&tmp_real)
301 || !real_isfinite (&tmp_imag)
302 || (tmp_real.cl == rvc_zero) != (mpfr_zero_p (mpc_realref (m)) != 0)
303 || (tmp_imag.cl == rvc_zero) != (mpfr_zero_p (mpc_imagref (m)) != 0))
304 return false;
306 real_convert (result_real, format, &tmp_real);
307 real_convert (result_imag, format, &tmp_imag);
309 return (real_identical (result_real, &tmp_real)
310 && real_identical (result_imag, &tmp_imag));
313 /* Try to evaluate:
315 RESULT = f (ARG)
317 in format FORMAT, given that FUNC is the mpc implementation of f.
318 Return true on success. Both RESULT and ARG are represented as
319 real and imaginary pairs. */
321 static bool
322 do_mpc_arg1 (real_value *result_real, real_value *result_imag,
323 int (*func) (mpc_ptr, mpc_srcptr, mpc_rnd_t),
324 const real_value *arg_real, const real_value *arg_imag,
325 const real_format *format)
327 /* To proceed, MPFR must exactly represent the target floating point
328 format, which only happens when the target base equals two. */
329 if (format->b != 2
330 || !real_isfinite (arg_real)
331 || !real_isfinite (arg_imag))
332 return false;
334 int prec = format->p;
335 mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
336 mpc_t m;
338 mpc_init2 (m, prec);
339 mpfr_from_real (mpc_realref (m), arg_real, GMP_RNDN);
340 mpfr_from_real (mpc_imagref (m), arg_imag, GMP_RNDN);
341 mpfr_clear_flags ();
342 bool inexact = func (m, m, crnd);
343 bool ok = do_mpc_ckconv (result_real, result_imag, m, inexact, format);
344 mpc_clear (m);
346 return ok;
349 /* Try to evaluate:
351 RESULT = f (ARG0, ARG1)
353 in format FORMAT, given that FUNC is the mpc implementation of f.
354 Return true on success. RESULT, ARG0 and ARG1 are represented as
355 real and imaginary pairs. */
357 static bool
358 do_mpc_arg2 (real_value *result_real, real_value *result_imag,
359 int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t),
360 const real_value *arg0_real, const real_value *arg0_imag,
361 const real_value *arg1_real, const real_value *arg1_imag,
362 const real_format *format)
364 if (!real_isfinite (arg0_real)
365 || !real_isfinite (arg0_imag)
366 || !real_isfinite (arg1_real)
367 || !real_isfinite (arg1_imag))
368 return false;
370 int prec = format->p;
371 mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
372 mpc_t m0, m1;
374 mpc_init2 (m0, prec);
375 mpc_init2 (m1, prec);
376 mpfr_from_real (mpc_realref (m0), arg0_real, GMP_RNDN);
377 mpfr_from_real (mpc_imagref (m0), arg0_imag, GMP_RNDN);
378 mpfr_from_real (mpc_realref (m1), arg1_real, GMP_RNDN);
379 mpfr_from_real (mpc_imagref (m1), arg1_imag, GMP_RNDN);
380 mpfr_clear_flags ();
381 bool inexact = func (m0, m0, m1, crnd);
382 bool ok = do_mpc_ckconv (result_real, result_imag, m0, inexact, format);
383 mpc_clear (m0);
384 mpc_clear (m1);
386 return ok;
389 /* Try to evaluate:
391 *RESULT = logb (*ARG)
393 in format FORMAT. Return true on success. */
395 static bool
396 fold_const_logb (real_value *result, const real_value *arg,
397 const real_format *format)
399 switch (arg->cl)
401 case rvc_nan:
402 /* If arg is +-NaN, then return it. */
403 *result = *arg;
404 return true;
406 case rvc_inf:
407 /* If arg is +-Inf, then return +Inf. */
408 *result = *arg;
409 result->sign = 0;
410 return true;
412 case rvc_zero:
413 /* Zero may set errno and/or raise an exception. */
414 return false;
416 case rvc_normal:
417 /* For normal numbers, proceed iff radix == 2. In GCC,
418 normalized significands are in the range [0.5, 1.0). We
419 want the exponent as if they were [1.0, 2.0) so get the
420 exponent and subtract 1. */
421 if (format->b == 2)
423 real_from_integer (result, format, REAL_EXP (arg) - 1, SIGNED);
424 return true;
426 return false;
428 gcc_unreachable ();
431 /* Try to evaluate:
433 *RESULT = significand (*ARG)
435 in format FORMAT. Return true on success. */
437 static bool
438 fold_const_significand (real_value *result, const real_value *arg,
439 const real_format *format)
441 switch (arg->cl)
443 case rvc_zero:
444 case rvc_nan:
445 case rvc_inf:
446 /* If arg is +-0, +-Inf or +-NaN, then return it. */
447 *result = *arg;
448 return true;
450 case rvc_normal:
451 /* For normal numbers, proceed iff radix == 2. */
452 if (format->b == 2)
454 *result = *arg;
455 /* In GCC, normalized significands are in the range [0.5, 1.0).
456 We want them to be [1.0, 2.0) so set the exponent to 1. */
457 SET_REAL_EXP (result, 1);
458 return true;
460 return false;
462 gcc_unreachable ();
465 /* Try to evaluate:
467 *RESULT = f (*ARG)
469 where FORMAT is the format of *ARG and PRECISION is the number of
470 significant bits in the result. Return true on success. */
472 static bool
473 fold_const_conversion (wide_int *result,
474 void (*fn) (real_value *, format_helper,
475 const real_value *),
476 const real_value *arg, unsigned int precision,
477 const real_format *format)
479 if (!real_isfinite (arg))
480 return false;
482 real_value rounded;
483 fn (&rounded, format, arg);
485 bool fail = false;
486 *result = real_to_integer (&rounded, &fail, precision);
487 return !fail;
490 /* Try to evaluate:
492 *RESULT = pow (*ARG0, *ARG1)
494 in format FORMAT. Return true on success. */
496 static bool
497 fold_const_pow (real_value *result, const real_value *arg0,
498 const real_value *arg1, const real_format *format)
500 if (do_mpfr_arg2 (result, mpfr_pow, arg0, arg1, format))
501 return true;
503 /* Check for an integer exponent. */
504 REAL_VALUE_TYPE cint1;
505 HOST_WIDE_INT n1 = real_to_integer (arg1);
506 real_from_integer (&cint1, VOIDmode, n1, SIGNED);
507 /* Attempt to evaluate pow at compile-time, unless this should
508 raise an exception. */
509 if (real_identical (arg1, &cint1)
510 && (n1 > 0
511 || (!flag_trapping_math && !flag_errno_math)
512 || !real_equal (arg0, &dconst0)))
514 bool inexact = real_powi (result, format, arg0, n1);
515 /* Avoid the folding if flag_signaling_nans is on. */
516 if (flag_unsafe_math_optimizations
517 || (!inexact
518 && !(flag_signaling_nans
519 && REAL_VALUE_ISSIGNALING_NAN (*arg0))))
520 return true;
523 return false;
526 /* Try to evaluate:
528 *RESULT = ldexp (*ARG0, ARG1)
530 in format FORMAT. Return true on success. */
532 static bool
533 fold_const_builtin_load_exponent (real_value *result, const real_value *arg0,
534 const wide_int_ref &arg1,
535 const real_format *format)
537 /* Bound the maximum adjustment to twice the range of the
538 mode's valid exponents. Use abs to ensure the range is
539 positive as a sanity check. */
540 int max_exp_adj = 2 * labs (format->emax - format->emin);
542 /* The requested adjustment must be inside this range. This
543 is a preliminary cap to avoid things like overflow, we
544 may still fail to compute the result for other reasons. */
545 if (wi::les_p (arg1, -max_exp_adj) || wi::ges_p (arg1, max_exp_adj))
546 return false;
548 /* Don't perform operation if we honor signaling NaNs and
549 operand is a signaling NaN. */
550 if (!flag_unsafe_math_optimizations
551 && flag_signaling_nans
552 && REAL_VALUE_ISSIGNALING_NAN (*arg0))
553 return false;
555 REAL_VALUE_TYPE initial_result;
556 real_ldexp (&initial_result, arg0, arg1.to_shwi ());
558 /* Ensure we didn't overflow. */
559 if (real_isinf (&initial_result))
560 return false;
562 /* Only proceed if the target mode can hold the
563 resulting value. */
564 *result = real_value_truncate (format, initial_result);
565 return real_equal (&initial_result, result);
568 /* Fold a call to __builtin_nan or __builtin_nans with argument ARG and
569 return type TYPE. QUIET is true if a quiet rather than signalling
570 NaN is required. */
572 static tree
573 fold_const_builtin_nan (tree type, tree arg, bool quiet)
575 REAL_VALUE_TYPE real;
576 const char *str = c_getstr (arg);
577 if (str && real_nan (&real, str, quiet, TYPE_MODE (type)))
578 return build_real (type, real);
579 return NULL_TREE;
582 /* Try to evaluate:
584 *RESULT = FN (*ARG)
586 in format FORMAT. Return true on success. */
588 static bool
589 fold_const_call_ss (real_value *result, combined_fn fn,
590 const real_value *arg, const real_format *format)
592 switch (fn)
594 CASE_CFN_SQRT:
595 return (real_compare (GE_EXPR, arg, &dconst0)
596 && do_mpfr_arg1 (result, mpfr_sqrt, arg, format));
598 CASE_CFN_CBRT:
599 return do_mpfr_arg1 (result, mpfr_cbrt, arg, format);
601 CASE_CFN_ASIN:
602 return (real_compare (GE_EXPR, arg, &dconstm1)
603 && real_compare (LE_EXPR, arg, &dconst1)
604 && do_mpfr_arg1 (result, mpfr_asin, arg, format));
606 CASE_CFN_ACOS:
607 return (real_compare (GE_EXPR, arg, &dconstm1)
608 && real_compare (LE_EXPR, arg, &dconst1)
609 && do_mpfr_arg1 (result, mpfr_acos, arg, format));
611 CASE_CFN_ATAN:
612 return do_mpfr_arg1 (result, mpfr_atan, arg, format);
614 CASE_CFN_ASINH:
615 return do_mpfr_arg1 (result, mpfr_asinh, arg, format);
617 CASE_CFN_ACOSH:
618 return (real_compare (GE_EXPR, arg, &dconst1)
619 && do_mpfr_arg1 (result, mpfr_acosh, arg, format));
621 CASE_CFN_ATANH:
622 return (real_compare (GE_EXPR, arg, &dconstm1)
623 && real_compare (LE_EXPR, arg, &dconst1)
624 && do_mpfr_arg1 (result, mpfr_atanh, arg, format));
626 CASE_CFN_SIN:
627 return do_mpfr_arg1 (result, mpfr_sin, arg, format);
629 CASE_CFN_COS:
630 return do_mpfr_arg1 (result, mpfr_cos, arg, format);
632 CASE_CFN_TAN:
633 return do_mpfr_arg1 (result, mpfr_tan, arg, format);
635 CASE_CFN_SINH:
636 return do_mpfr_arg1 (result, mpfr_sinh, arg, format);
638 CASE_CFN_COSH:
639 return do_mpfr_arg1 (result, mpfr_cosh, arg, format);
641 CASE_CFN_TANH:
642 return do_mpfr_arg1 (result, mpfr_tanh, arg, format);
644 CASE_CFN_ERF:
645 return do_mpfr_arg1 (result, mpfr_erf, arg, format);
647 CASE_CFN_ERFC:
648 return do_mpfr_arg1 (result, mpfr_erfc, arg, format);
650 CASE_CFN_TGAMMA:
651 return do_mpfr_arg1 (result, mpfr_gamma, arg, format);
653 CASE_CFN_EXP:
654 return do_mpfr_arg1 (result, mpfr_exp, arg, format);
656 CASE_CFN_EXP2:
657 return do_mpfr_arg1 (result, mpfr_exp2, arg, format);
659 CASE_CFN_EXP10:
660 CASE_CFN_POW10:
661 return do_mpfr_arg1 (result, mpfr_exp10, arg, format);
663 CASE_CFN_EXPM1:
664 return do_mpfr_arg1 (result, mpfr_expm1, arg, format);
666 CASE_CFN_LOG:
667 return (real_compare (GT_EXPR, arg, &dconst0)
668 && do_mpfr_arg1 (result, mpfr_log, arg, format));
670 CASE_CFN_LOG2:
671 return (real_compare (GT_EXPR, arg, &dconst0)
672 && do_mpfr_arg1 (result, mpfr_log2, arg, format));
674 CASE_CFN_LOG10:
675 return (real_compare (GT_EXPR, arg, &dconst0)
676 && do_mpfr_arg1 (result, mpfr_log10, arg, format));
678 CASE_CFN_LOG1P:
679 return (real_compare (GT_EXPR, arg, &dconstm1)
680 && do_mpfr_arg1 (result, mpfr_log1p, arg, format));
682 CASE_CFN_J0:
683 return do_mpfr_arg1 (result, mpfr_j0, arg, format);
685 CASE_CFN_J1:
686 return do_mpfr_arg1 (result, mpfr_j1, arg, format);
688 CASE_CFN_Y0:
689 return (real_compare (GT_EXPR, arg, &dconst0)
690 && do_mpfr_arg1 (result, mpfr_y0, arg, format));
692 CASE_CFN_Y1:
693 return (real_compare (GT_EXPR, arg, &dconst0)
694 && do_mpfr_arg1 (result, mpfr_y1, arg, format));
696 CASE_CFN_FLOOR:
697 if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
699 real_floor (result, format, arg);
700 return true;
702 return false;
704 CASE_CFN_CEIL:
705 if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
707 real_ceil (result, format, arg);
708 return true;
710 return false;
712 CASE_CFN_TRUNC:
713 real_trunc (result, format, arg);
714 return true;
716 CASE_CFN_ROUND:
717 if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
719 real_round (result, format, arg);
720 return true;
722 return false;
724 CASE_CFN_LOGB:
725 return fold_const_logb (result, arg, format);
727 CASE_CFN_SIGNIFICAND:
728 return fold_const_significand (result, arg, format);
730 default:
731 return false;
735 /* Try to evaluate:
737 *RESULT = FN (*ARG)
739 where FORMAT is the format of ARG and PRECISION is the number of
740 significant bits in the result. Return true on success. */
742 static bool
743 fold_const_call_ss (wide_int *result, combined_fn fn,
744 const real_value *arg, unsigned int precision,
745 const real_format *format)
747 switch (fn)
749 CASE_CFN_SIGNBIT:
750 if (real_isneg (arg))
751 *result = wi::one (precision);
752 else
753 *result = wi::zero (precision);
754 return true;
756 CASE_CFN_ILOGB:
757 /* For ilogb we don't know FP_ILOGB0, so only handle normal values.
758 Proceed iff radix == 2. In GCC, normalized significands are in
759 the range [0.5, 1.0). We want the exponent as if they were
760 [1.0, 2.0) so get the exponent and subtract 1. */
761 if (arg->cl == rvc_normal && format->b == 2)
763 *result = wi::shwi (REAL_EXP (arg) - 1, precision);
764 return true;
766 return false;
768 CASE_CFN_ICEIL:
769 CASE_CFN_LCEIL:
770 CASE_CFN_LLCEIL:
771 return fold_const_conversion (result, real_ceil, arg,
772 precision, format);
774 CASE_CFN_LFLOOR:
775 CASE_CFN_IFLOOR:
776 CASE_CFN_LLFLOOR:
777 return fold_const_conversion (result, real_floor, arg,
778 precision, format);
780 CASE_CFN_IROUND:
781 CASE_CFN_LROUND:
782 CASE_CFN_LLROUND:
783 return fold_const_conversion (result, real_round, arg,
784 precision, format);
786 CASE_CFN_IRINT:
787 CASE_CFN_LRINT:
788 CASE_CFN_LLRINT:
789 /* Not yet folded to a constant. */
790 return false;
792 CASE_CFN_FINITE:
793 case CFN_BUILT_IN_FINITED32:
794 case CFN_BUILT_IN_FINITED64:
795 case CFN_BUILT_IN_FINITED128:
796 case CFN_BUILT_IN_ISFINITE:
797 *result = wi::shwi (real_isfinite (arg) ? 1 : 0, precision);
798 return true;
800 CASE_CFN_ISINF:
801 case CFN_BUILT_IN_ISINFD32:
802 case CFN_BUILT_IN_ISINFD64:
803 case CFN_BUILT_IN_ISINFD128:
804 if (real_isinf (arg))
805 *result = wi::shwi (arg->sign ? -1 : 1, precision);
806 else
807 *result = wi::shwi (0, precision);
808 return true;
810 CASE_CFN_ISNAN:
811 case CFN_BUILT_IN_ISNAND32:
812 case CFN_BUILT_IN_ISNAND64:
813 case CFN_BUILT_IN_ISNAND128:
814 *result = wi::shwi (real_isnan (arg) ? 1 : 0, precision);
815 return true;
817 default:
818 return false;
822 /* Try to evaluate:
824 *RESULT = FN (ARG)
826 where ARG_TYPE is the type of ARG and PRECISION is the number of bits
827 in the result. Return true on success. */
829 static bool
830 fold_const_call_ss (wide_int *result, combined_fn fn, const wide_int_ref &arg,
831 unsigned int precision, tree arg_type)
833 switch (fn)
835 CASE_CFN_FFS:
836 *result = wi::shwi (wi::ffs (arg), precision);
837 return true;
839 CASE_CFN_CLZ:
841 int tmp;
842 if (wi::ne_p (arg, 0))
843 tmp = wi::clz (arg);
844 else if (! CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (arg_type), tmp))
845 tmp = TYPE_PRECISION (arg_type);
846 *result = wi::shwi (tmp, precision);
847 return true;
850 CASE_CFN_CTZ:
852 int tmp;
853 if (wi::ne_p (arg, 0))
854 tmp = wi::ctz (arg);
855 else if (! CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (arg_type), tmp))
856 tmp = TYPE_PRECISION (arg_type);
857 *result = wi::shwi (tmp, precision);
858 return true;
861 CASE_CFN_CLRSB:
862 *result = wi::shwi (wi::clrsb (arg), precision);
863 return true;
865 CASE_CFN_POPCOUNT:
866 *result = wi::shwi (wi::popcount (arg), precision);
867 return true;
869 CASE_CFN_PARITY:
870 *result = wi::shwi (wi::parity (arg), precision);
871 return true;
873 case CFN_BUILT_IN_BSWAP16:
874 case CFN_BUILT_IN_BSWAP32:
875 case CFN_BUILT_IN_BSWAP64:
876 *result = wide_int::from (arg, precision, TYPE_SIGN (arg_type)).bswap ();
877 return true;
879 default:
880 return false;
884 /* Try to evaluate:
886 RESULT = FN (*ARG)
888 where FORMAT is the format of ARG and of the real and imaginary parts
889 of RESULT, passed as RESULT_REAL and RESULT_IMAG respectively. Return
890 true on success. */
892 static bool
893 fold_const_call_cs (real_value *result_real, real_value *result_imag,
894 combined_fn fn, const real_value *arg,
895 const real_format *format)
897 switch (fn)
899 CASE_CFN_CEXPI:
900 /* cexpi(x+yi) = cos(x)+sin(y)*i. */
901 return do_mpfr_sincos (result_imag, result_real, arg, format);
903 default:
904 return false;
908 /* Try to evaluate:
910 *RESULT = fn (ARG)
912 where FORMAT is the format of RESULT and of the real and imaginary parts
913 of ARG, passed as ARG_REAL and ARG_IMAG respectively. Return true on
914 success. */
916 static bool
917 fold_const_call_sc (real_value *result, combined_fn fn,
918 const real_value *arg_real, const real_value *arg_imag,
919 const real_format *format)
921 switch (fn)
923 CASE_CFN_CABS:
924 return do_mpfr_arg2 (result, mpfr_hypot, arg_real, arg_imag, format);
926 default:
927 return false;
931 /* Try to evaluate:
933 RESULT = fn (ARG)
935 where FORMAT is the format of the real and imaginary parts of RESULT
936 (RESULT_REAL and RESULT_IMAG) and of ARG (ARG_REAL and ARG_IMAG).
937 Return true on success. */
939 static bool
940 fold_const_call_cc (real_value *result_real, real_value *result_imag,
941 combined_fn fn, const real_value *arg_real,
942 const real_value *arg_imag, const real_format *format)
944 switch (fn)
946 CASE_CFN_CCOS:
947 return do_mpc_arg1 (result_real, result_imag, mpc_cos,
948 arg_real, arg_imag, format);
950 CASE_CFN_CCOSH:
951 return do_mpc_arg1 (result_real, result_imag, mpc_cosh,
952 arg_real, arg_imag, format);
954 CASE_CFN_CPROJ:
955 if (real_isinf (arg_real) || real_isinf (arg_imag))
957 real_inf (result_real);
958 *result_imag = dconst0;
959 result_imag->sign = arg_imag->sign;
961 else
963 *result_real = *arg_real;
964 *result_imag = *arg_imag;
966 return true;
968 CASE_CFN_CSIN:
969 return do_mpc_arg1 (result_real, result_imag, mpc_sin,
970 arg_real, arg_imag, format);
972 CASE_CFN_CSINH:
973 return do_mpc_arg1 (result_real, result_imag, mpc_sinh,
974 arg_real, arg_imag, format);
976 CASE_CFN_CTAN:
977 return do_mpc_arg1 (result_real, result_imag, mpc_tan,
978 arg_real, arg_imag, format);
980 CASE_CFN_CTANH:
981 return do_mpc_arg1 (result_real, result_imag, mpc_tanh,
982 arg_real, arg_imag, format);
984 CASE_CFN_CLOG:
985 return do_mpc_arg1 (result_real, result_imag, mpc_log,
986 arg_real, arg_imag, format);
988 CASE_CFN_CSQRT:
989 return do_mpc_arg1 (result_real, result_imag, mpc_sqrt,
990 arg_real, arg_imag, format);
992 CASE_CFN_CASIN:
993 return do_mpc_arg1 (result_real, result_imag, mpc_asin,
994 arg_real, arg_imag, format);
996 CASE_CFN_CACOS:
997 return do_mpc_arg1 (result_real, result_imag, mpc_acos,
998 arg_real, arg_imag, format);
1000 CASE_CFN_CATAN:
1001 return do_mpc_arg1 (result_real, result_imag, mpc_atan,
1002 arg_real, arg_imag, format);
1004 CASE_CFN_CASINH:
1005 return do_mpc_arg1 (result_real, result_imag, mpc_asinh,
1006 arg_real, arg_imag, format);
1008 CASE_CFN_CACOSH:
1009 return do_mpc_arg1 (result_real, result_imag, mpc_acosh,
1010 arg_real, arg_imag, format);
1012 CASE_CFN_CATANH:
1013 return do_mpc_arg1 (result_real, result_imag, mpc_atanh,
1014 arg_real, arg_imag, format);
1016 CASE_CFN_CEXP:
1017 return do_mpc_arg1 (result_real, result_imag, mpc_exp,
1018 arg_real, arg_imag, format);
1020 default:
1021 return false;
1025 /* Subroutine of fold_const_call, with the same interface. Handle cases
1026 where the arguments and result are numerical. */
1028 static tree
1029 fold_const_call_1 (combined_fn fn, tree type, tree arg)
1031 machine_mode mode = TYPE_MODE (type);
1032 machine_mode arg_mode = TYPE_MODE (TREE_TYPE (arg));
1034 if (integer_cst_p (arg))
1036 if (SCALAR_INT_MODE_P (mode))
1038 wide_int result;
1039 if (fold_const_call_ss (&result, fn, arg, TYPE_PRECISION (type),
1040 TREE_TYPE (arg)))
1041 return wide_int_to_tree (type, result);
1043 return NULL_TREE;
1046 if (real_cst_p (arg))
1048 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg_mode));
1049 if (mode == arg_mode)
1051 /* real -> real. */
1052 REAL_VALUE_TYPE result;
1053 if (fold_const_call_ss (&result, fn, TREE_REAL_CST_PTR (arg),
1054 REAL_MODE_FORMAT (mode)))
1055 return build_real (type, result);
1057 else if (COMPLEX_MODE_P (mode)
1058 && GET_MODE_INNER (mode) == arg_mode)
1060 /* real -> complex real. */
1061 REAL_VALUE_TYPE result_real, result_imag;
1062 if (fold_const_call_cs (&result_real, &result_imag, fn,
1063 TREE_REAL_CST_PTR (arg),
1064 REAL_MODE_FORMAT (arg_mode)))
1065 return build_complex (type,
1066 build_real (TREE_TYPE (type), result_real),
1067 build_real (TREE_TYPE (type), result_imag));
1069 else if (INTEGRAL_TYPE_P (type))
1071 /* real -> int. */
1072 wide_int result;
1073 if (fold_const_call_ss (&result, fn,
1074 TREE_REAL_CST_PTR (arg),
1075 TYPE_PRECISION (type),
1076 REAL_MODE_FORMAT (arg_mode)))
1077 return wide_int_to_tree (type, result);
1079 return NULL_TREE;
1082 if (complex_cst_p (arg))
1084 gcc_checking_assert (COMPLEX_MODE_P (arg_mode));
1085 machine_mode inner_mode = GET_MODE_INNER (arg_mode);
1086 tree argr = TREE_REALPART (arg);
1087 tree argi = TREE_IMAGPART (arg);
1088 if (mode == arg_mode
1089 && real_cst_p (argr)
1090 && real_cst_p (argi))
1092 /* complex real -> complex real. */
1093 REAL_VALUE_TYPE result_real, result_imag;
1094 if (fold_const_call_cc (&result_real, &result_imag, fn,
1095 TREE_REAL_CST_PTR (argr),
1096 TREE_REAL_CST_PTR (argi),
1097 REAL_MODE_FORMAT (inner_mode)))
1098 return build_complex (type,
1099 build_real (TREE_TYPE (type), result_real),
1100 build_real (TREE_TYPE (type), result_imag));
1102 if (mode == inner_mode
1103 && real_cst_p (argr)
1104 && real_cst_p (argi))
1106 /* complex real -> real. */
1107 REAL_VALUE_TYPE result;
1108 if (fold_const_call_sc (&result, fn,
1109 TREE_REAL_CST_PTR (argr),
1110 TREE_REAL_CST_PTR (argi),
1111 REAL_MODE_FORMAT (inner_mode)))
1112 return build_real (type, result);
1114 return NULL_TREE;
1117 return NULL_TREE;
1120 /* Try to fold FN (ARG) to a constant. Return the constant on success,
1121 otherwise return null. TYPE is the type of the return value. */
1123 tree
1124 fold_const_call (combined_fn fn, tree type, tree arg)
1126 switch (fn)
1128 case CFN_BUILT_IN_STRLEN:
1129 if (const char *str = c_getstr (arg))
1130 return build_int_cst (type, strlen (str));
1131 return NULL_TREE;
1133 CASE_CFN_NAN:
1134 case CFN_BUILT_IN_NAND32:
1135 case CFN_BUILT_IN_NAND64:
1136 case CFN_BUILT_IN_NAND128:
1137 return fold_const_builtin_nan (type, arg, true);
1139 CASE_CFN_NANS:
1140 return fold_const_builtin_nan (type, arg, false);
1142 default:
1143 return fold_const_call_1 (fn, type, arg);
1147 /* Try to evaluate:
1149 *RESULT = FN (*ARG0, *ARG1)
1151 in format FORMAT. Return true on success. */
1153 static bool
1154 fold_const_call_sss (real_value *result, combined_fn fn,
1155 const real_value *arg0, const real_value *arg1,
1156 const real_format *format)
1158 switch (fn)
1160 CASE_CFN_DREM:
1161 CASE_CFN_REMAINDER:
1162 return do_mpfr_arg2 (result, mpfr_remainder, arg0, arg1, format);
1164 CASE_CFN_ATAN2:
1165 return do_mpfr_arg2 (result, mpfr_atan2, arg0, arg1, format);
1167 CASE_CFN_FDIM:
1168 return do_mpfr_arg2 (result, mpfr_dim, arg0, arg1, format);
1170 CASE_CFN_HYPOT:
1171 return do_mpfr_arg2 (result, mpfr_hypot, arg0, arg1, format);
1173 CASE_CFN_COPYSIGN:
1174 *result = *arg0;
1175 real_copysign (result, arg1);
1176 return true;
1178 CASE_CFN_FMIN:
1179 return do_mpfr_arg2 (result, mpfr_min, arg0, arg1, format);
1181 CASE_CFN_FMAX:
1182 return do_mpfr_arg2 (result, mpfr_max, arg0, arg1, format);
1184 CASE_CFN_POW:
1185 return fold_const_pow (result, arg0, arg1, format);
1187 default:
1188 return false;
1192 /* Try to evaluate:
1194 *RESULT = FN (*ARG0, ARG1)
1196 where FORMAT is the format of *RESULT and *ARG0. Return true on
1197 success. */
1199 static bool
1200 fold_const_call_sss (real_value *result, combined_fn fn,
1201 const real_value *arg0, const wide_int_ref &arg1,
1202 const real_format *format)
1204 switch (fn)
1206 CASE_CFN_LDEXP:
1207 return fold_const_builtin_load_exponent (result, arg0, arg1, format);
1209 CASE_CFN_SCALBN:
1210 CASE_CFN_SCALBLN:
1211 return (format->b == 2
1212 && fold_const_builtin_load_exponent (result, arg0, arg1,
1213 format));
1215 CASE_CFN_POWI:
1216 /* Avoid the folding if flag_signaling_nans is on and
1217 operand is a signaling NaN. */
1218 if (!flag_unsafe_math_optimizations
1219 && flag_signaling_nans
1220 && REAL_VALUE_ISSIGNALING_NAN (*arg0))
1221 return false;
1223 real_powi (result, format, arg0, arg1.to_shwi ());
1224 return true;
1226 default:
1227 return false;
1231 /* Try to evaluate:
1233 *RESULT = FN (ARG0, *ARG1)
1235 where FORMAT is the format of *RESULT and *ARG1. Return true on
1236 success. */
1238 static bool
1239 fold_const_call_sss (real_value *result, combined_fn fn,
1240 const wide_int_ref &arg0, const real_value *arg1,
1241 const real_format *format)
1243 switch (fn)
1245 CASE_CFN_JN:
1246 return do_mpfr_arg2 (result, mpfr_jn, arg0, arg1, format);
1248 CASE_CFN_YN:
1249 return (real_compare (GT_EXPR, arg1, &dconst0)
1250 && do_mpfr_arg2 (result, mpfr_yn, arg0, arg1, format));
1252 default:
1253 return false;
1257 /* Try to evaluate:
1259 RESULT = fn (ARG0, ARG1)
1261 where FORMAT is the format of the real and imaginary parts of RESULT
1262 (RESULT_REAL and RESULT_IMAG), of ARG0 (ARG0_REAL and ARG0_IMAG)
1263 and of ARG1 (ARG1_REAL and ARG1_IMAG). Return true on success. */
1265 static bool
1266 fold_const_call_ccc (real_value *result_real, real_value *result_imag,
1267 combined_fn fn, const real_value *arg0_real,
1268 const real_value *arg0_imag, const real_value *arg1_real,
1269 const real_value *arg1_imag, const real_format *format)
1271 switch (fn)
1273 CASE_CFN_CPOW:
1274 return do_mpc_arg2 (result_real, result_imag, mpc_pow,
1275 arg0_real, arg0_imag, arg1_real, arg1_imag, format);
1277 default:
1278 return false;
1282 /* Subroutine of fold_const_call, with the same interface. Handle cases
1283 where the arguments and result are numerical. */
1285 static tree
1286 fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1)
1288 machine_mode mode = TYPE_MODE (type);
1289 machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
1290 machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
1292 if (arg0_mode == arg1_mode
1293 && real_cst_p (arg0)
1294 && real_cst_p (arg1))
1296 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1297 if (mode == arg0_mode)
1299 /* real, real -> real. */
1300 REAL_VALUE_TYPE result;
1301 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1302 TREE_REAL_CST_PTR (arg1),
1303 REAL_MODE_FORMAT (mode)))
1304 return build_real (type, result);
1306 return NULL_TREE;
1309 if (real_cst_p (arg0)
1310 && integer_cst_p (arg1))
1312 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1313 if (mode == arg0_mode)
1315 /* real, int -> real. */
1316 REAL_VALUE_TYPE result;
1317 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1318 arg1, REAL_MODE_FORMAT (mode)))
1319 return build_real (type, result);
1321 return NULL_TREE;
1324 if (integer_cst_p (arg0)
1325 && real_cst_p (arg1))
1327 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg1_mode));
1328 if (mode == arg1_mode)
1330 /* int, real -> real. */
1331 REAL_VALUE_TYPE result;
1332 if (fold_const_call_sss (&result, fn, arg0,
1333 TREE_REAL_CST_PTR (arg1),
1334 REAL_MODE_FORMAT (mode)))
1335 return build_real (type, result);
1337 return NULL_TREE;
1340 if (arg0_mode == arg1_mode
1341 && complex_cst_p (arg0)
1342 && complex_cst_p (arg1))
1344 gcc_checking_assert (COMPLEX_MODE_P (arg0_mode));
1345 machine_mode inner_mode = GET_MODE_INNER (arg0_mode);
1346 tree arg0r = TREE_REALPART (arg0);
1347 tree arg0i = TREE_IMAGPART (arg0);
1348 tree arg1r = TREE_REALPART (arg1);
1349 tree arg1i = TREE_IMAGPART (arg1);
1350 if (mode == arg0_mode
1351 && real_cst_p (arg0r)
1352 && real_cst_p (arg0i)
1353 && real_cst_p (arg1r)
1354 && real_cst_p (arg1i))
1356 /* complex real, complex real -> complex real. */
1357 REAL_VALUE_TYPE result_real, result_imag;
1358 if (fold_const_call_ccc (&result_real, &result_imag, fn,
1359 TREE_REAL_CST_PTR (arg0r),
1360 TREE_REAL_CST_PTR (arg0i),
1361 TREE_REAL_CST_PTR (arg1r),
1362 TREE_REAL_CST_PTR (arg1i),
1363 REAL_MODE_FORMAT (inner_mode)))
1364 return build_complex (type,
1365 build_real (TREE_TYPE (type), result_real),
1366 build_real (TREE_TYPE (type), result_imag));
1368 return NULL_TREE;
1371 return NULL_TREE;
1374 /* Try to fold FN (ARG0, ARG1) to a constant. Return the constant on success,
1375 otherwise return null. TYPE is the type of the return value. */
1377 tree
1378 fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1)
1380 const char *p0, *p1;
1381 switch (fn)
1383 case CFN_BUILT_IN_STRSPN:
1384 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1385 return build_int_cst (type, strspn (p0, p1));
1386 return NULL_TREE;
1388 case CFN_BUILT_IN_STRCSPN:
1389 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1390 return build_int_cst (type, strcspn (p0, p1));
1391 return NULL_TREE;
1393 case CFN_BUILT_IN_STRCMP:
1394 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1395 return build_cmp_result (type, strcmp (p0, p1));
1396 return NULL_TREE;
1398 default:
1399 return fold_const_call_1 (fn, type, arg0, arg1);
1403 /* Try to evaluate:
1405 *RESULT = FN (*ARG0, *ARG1, *ARG2)
1407 in format FORMAT. Return true on success. */
1409 static bool
1410 fold_const_call_ssss (real_value *result, combined_fn fn,
1411 const real_value *arg0, const real_value *arg1,
1412 const real_value *arg2, const real_format *format)
1414 switch (fn)
1416 CASE_CFN_FMA:
1417 return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, arg2, format);
1419 default:
1420 return false;
1424 /* Subroutine of fold_const_call, with the same interface. Handle cases
1425 where the arguments and result are numerical. */
1427 static tree
1428 fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
1430 machine_mode mode = TYPE_MODE (type);
1431 machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
1432 machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
1433 machine_mode arg2_mode = TYPE_MODE (TREE_TYPE (arg2));
1435 if (arg0_mode == arg1_mode
1436 && arg0_mode == arg2_mode
1437 && real_cst_p (arg0)
1438 && real_cst_p (arg1)
1439 && real_cst_p (arg2))
1441 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1442 if (mode == arg0_mode)
1444 /* real, real, real -> real. */
1445 REAL_VALUE_TYPE result;
1446 if (fold_const_call_ssss (&result, fn, TREE_REAL_CST_PTR (arg0),
1447 TREE_REAL_CST_PTR (arg1),
1448 TREE_REAL_CST_PTR (arg2),
1449 REAL_MODE_FORMAT (mode)))
1450 return build_real (type, result);
1452 return NULL_TREE;
1455 return NULL_TREE;
1458 /* Try to fold FN (ARG0, ARG1, ARG2) to a constant. Return the constant on
1459 success, otherwise return null. TYPE is the type of the return value. */
1461 tree
1462 fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
1464 const char *p0, *p1;
1465 size_t s2;
1466 switch (fn)
1468 case CFN_BUILT_IN_STRNCMP:
1469 if ((p0 = c_getstr (arg0))
1470 && (p1 = c_getstr (arg1))
1471 && host_size_t_cst_p (arg2, &s2))
1472 return build_int_cst (type, strncmp (p0, p1, s2));
1473 return NULL_TREE;
1475 case CFN_BUILT_IN_BCMP:
1476 case CFN_BUILT_IN_MEMCMP:
1477 if ((p0 = c_getstr (arg0))
1478 && (p1 = c_getstr (arg1))
1479 && host_size_t_cst_p (arg2, &s2)
1480 && s2 <= strlen (p0)
1481 && s2 <= strlen (p1))
1482 return build_cmp_result (type, memcmp (p0, p1, s2));
1483 return NULL_TREE;
1485 default:
1486 return fold_const_call_1 (fn, type, arg0, arg1, arg2);
1490 /* Fold a fma operation with arguments ARG[012]. */
1492 tree
1493 fold_fma (location_t, tree type, tree arg0, tree arg1, tree arg2)
1495 REAL_VALUE_TYPE result;
1496 if (real_cst_p (arg0)
1497 && real_cst_p (arg1)
1498 && real_cst_p (arg2)
1499 && do_mpfr_arg3 (&result, mpfr_fma, TREE_REAL_CST_PTR (arg0),
1500 TREE_REAL_CST_PTR (arg1), TREE_REAL_CST_PTR (arg2),
1501 REAL_MODE_FORMAT (TYPE_MODE (type))))
1502 return build_real (type, result);
1504 return NULL_TREE;