Remove assert in get_def_bb_for_const
[official-gcc.git] / gcc / final.c
blob55cf509611f7bc61246c63a6e997bd7402dd8428
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "tm_p.h"
56 #include "insn-config.h"
57 #include "regs.h"
58 #include "emit-rtl.h"
59 #include "recog.h"
60 #include "cgraph.h"
61 #include "tree-pretty-print.h" /* for dump_function_header */
62 #include "varasm.h"
63 #include "insn-attr.h"
64 #include "conditions.h"
65 #include "flags.h"
66 #include "output.h"
67 #include "except.h"
68 #include "rtl-error.h"
69 #include "toplev.h" /* exact_log2, floor_log2 */
70 #include "reload.h"
71 #include "intl.h"
72 #include "cfgrtl.h"
73 #include "debug.h"
74 #include "tree-pass.h"
75 #include "tree-ssa.h"
76 #include "cfgloop.h"
77 #include "params.h"
78 #include "asan.h"
79 #include "rtl-iter.h"
80 #include "print-rtl.h"
82 #ifdef XCOFF_DEBUGGING_INFO
83 #include "xcoffout.h" /* Needed for external data declarations. */
84 #endif
86 #include "dwarf2out.h"
88 #ifdef DBX_DEBUGGING_INFO
89 #include "dbxout.h"
90 #endif
92 #include "sdbout.h"
94 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
95 So define a null default for it to save conditionalization later. */
96 #ifndef CC_STATUS_INIT
97 #define CC_STATUS_INIT
98 #endif
100 /* Is the given character a logical line separator for the assembler? */
101 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
102 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
103 #endif
105 #ifndef JUMP_TABLES_IN_TEXT_SECTION
106 #define JUMP_TABLES_IN_TEXT_SECTION 0
107 #endif
109 /* Bitflags used by final_scan_insn. */
110 #define SEEN_NOTE 1
111 #define SEEN_EMITTED 2
113 /* Last insn processed by final_scan_insn. */
114 static rtx_insn *debug_insn;
115 rtx_insn *current_output_insn;
117 /* Line number of last NOTE. */
118 static int last_linenum;
120 /* Last discriminator written to assembly. */
121 static int last_discriminator;
123 /* Discriminator of current block. */
124 static int discriminator;
126 /* Highest line number in current block. */
127 static int high_block_linenum;
129 /* Likewise for function. */
130 static int high_function_linenum;
132 /* Filename of last NOTE. */
133 static const char *last_filename;
135 /* Override filename and line number. */
136 static const char *override_filename;
137 static int override_linenum;
139 /* Whether to force emission of a line note before the next insn. */
140 static bool force_source_line = false;
142 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
144 /* Nonzero while outputting an `asm' with operands.
145 This means that inconsistencies are the user's fault, so don't die.
146 The precise value is the insn being output, to pass to error_for_asm. */
147 const rtx_insn *this_is_asm_operands;
149 /* Number of operands of this insn, for an `asm' with operands. */
150 static unsigned int insn_noperands;
152 /* Compare optimization flag. */
154 static rtx last_ignored_compare = 0;
156 /* Assign a unique number to each insn that is output.
157 This can be used to generate unique local labels. */
159 static int insn_counter = 0;
161 /* This variable contains machine-dependent flags (defined in tm.h)
162 set and examined by output routines
163 that describe how to interpret the condition codes properly. */
165 CC_STATUS cc_status;
167 /* During output of an insn, this contains a copy of cc_status
168 from before the insn. */
170 CC_STATUS cc_prev_status;
172 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
174 static int block_depth;
176 /* Nonzero if have enabled APP processing of our assembler output. */
178 static int app_on;
180 /* If we are outputting an insn sequence, this contains the sequence rtx.
181 Zero otherwise. */
183 rtx_sequence *final_sequence;
185 #ifdef ASSEMBLER_DIALECT
187 /* Number of the assembler dialect to use, starting at 0. */
188 static int dialect_number;
189 #endif
191 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
192 rtx current_insn_predicate;
194 /* True if printing into -fdump-final-insns= dump. */
195 bool final_insns_dump_p;
197 /* True if profile_function should be called, but hasn't been called yet. */
198 static bool need_profile_function;
200 static int asm_insn_count (rtx);
201 static void profile_function (FILE *);
202 static void profile_after_prologue (FILE *);
203 static bool notice_source_line (rtx_insn *, bool *);
204 static rtx walk_alter_subreg (rtx *, bool *);
205 static void output_asm_name (void);
206 static void output_alternate_entry_point (FILE *, rtx_insn *);
207 static tree get_mem_expr_from_op (rtx, int *);
208 static void output_asm_operand_names (rtx *, int *, int);
209 #ifdef LEAF_REGISTERS
210 static void leaf_renumber_regs (rtx_insn *);
211 #endif
212 #if HAVE_cc0
213 static int alter_cond (rtx);
214 #endif
215 #ifndef ADDR_VEC_ALIGN
216 static int final_addr_vec_align (rtx);
217 #endif
218 static int align_fuzz (rtx, rtx, int, unsigned);
219 static void collect_fn_hard_reg_usage (void);
220 static tree get_call_fndecl (rtx_insn *);
222 /* Initialize data in final at the beginning of a compilation. */
224 void
225 init_final (const char *filename ATTRIBUTE_UNUSED)
227 app_on = 0;
228 final_sequence = 0;
230 #ifdef ASSEMBLER_DIALECT
231 dialect_number = ASSEMBLER_DIALECT;
232 #endif
235 /* Default target function prologue and epilogue assembler output.
237 If not overridden for epilogue code, then the function body itself
238 contains return instructions wherever needed. */
239 void
240 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
241 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
245 void
246 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
247 tree decl ATTRIBUTE_UNUSED,
248 bool new_is_cold ATTRIBUTE_UNUSED)
252 /* Default target hook that outputs nothing to a stream. */
253 void
254 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
258 /* Enable APP processing of subsequent output.
259 Used before the output from an `asm' statement. */
261 void
262 app_enable (void)
264 if (! app_on)
266 fputs (ASM_APP_ON, asm_out_file);
267 app_on = 1;
271 /* Disable APP processing of subsequent output.
272 Called from varasm.c before most kinds of output. */
274 void
275 app_disable (void)
277 if (app_on)
279 fputs (ASM_APP_OFF, asm_out_file);
280 app_on = 0;
284 /* Return the number of slots filled in the current
285 delayed branch sequence (we don't count the insn needing the
286 delay slot). Zero if not in a delayed branch sequence. */
289 dbr_sequence_length (void)
291 if (final_sequence != 0)
292 return XVECLEN (final_sequence, 0) - 1;
293 else
294 return 0;
297 /* The next two pages contain routines used to compute the length of an insn
298 and to shorten branches. */
300 /* Arrays for insn lengths, and addresses. The latter is referenced by
301 `insn_current_length'. */
303 static int *insn_lengths;
305 vec<int> insn_addresses_;
307 /* Max uid for which the above arrays are valid. */
308 static int insn_lengths_max_uid;
310 /* Address of insn being processed. Used by `insn_current_length'. */
311 int insn_current_address;
313 /* Address of insn being processed in previous iteration. */
314 int insn_last_address;
316 /* known invariant alignment of insn being processed. */
317 int insn_current_align;
319 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
320 gives the next following alignment insn that increases the known
321 alignment, or NULL_RTX if there is no such insn.
322 For any alignment obtained this way, we can again index uid_align with
323 its uid to obtain the next following align that in turn increases the
324 alignment, till we reach NULL_RTX; the sequence obtained this way
325 for each insn we'll call the alignment chain of this insn in the following
326 comments. */
328 struct label_alignment
330 short alignment;
331 short max_skip;
334 static rtx *uid_align;
335 static int *uid_shuid;
336 static struct label_alignment *label_align;
338 /* Indicate that branch shortening hasn't yet been done. */
340 void
341 init_insn_lengths (void)
343 if (uid_shuid)
345 free (uid_shuid);
346 uid_shuid = 0;
348 if (insn_lengths)
350 free (insn_lengths);
351 insn_lengths = 0;
352 insn_lengths_max_uid = 0;
354 if (HAVE_ATTR_length)
355 INSN_ADDRESSES_FREE ();
356 if (uid_align)
358 free (uid_align);
359 uid_align = 0;
363 /* Obtain the current length of an insn. If branch shortening has been done,
364 get its actual length. Otherwise, use FALLBACK_FN to calculate the
365 length. */
366 static int
367 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
369 rtx body;
370 int i;
371 int length = 0;
373 if (!HAVE_ATTR_length)
374 return 0;
376 if (insn_lengths_max_uid > INSN_UID (insn))
377 return insn_lengths[INSN_UID (insn)];
378 else
379 switch (GET_CODE (insn))
381 case NOTE:
382 case BARRIER:
383 case CODE_LABEL:
384 case DEBUG_INSN:
385 return 0;
387 case CALL_INSN:
388 case JUMP_INSN:
389 length = fallback_fn (insn);
390 break;
392 case INSN:
393 body = PATTERN (insn);
394 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
395 return 0;
397 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
398 length = asm_insn_count (body) * fallback_fn (insn);
399 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
400 for (i = 0; i < seq->len (); i++)
401 length += get_attr_length_1 (seq->insn (i), fallback_fn);
402 else
403 length = fallback_fn (insn);
404 break;
406 default:
407 break;
410 #ifdef ADJUST_INSN_LENGTH
411 ADJUST_INSN_LENGTH (insn, length);
412 #endif
413 return length;
416 /* Obtain the current length of an insn. If branch shortening has been done,
417 get its actual length. Otherwise, get its maximum length. */
419 get_attr_length (rtx_insn *insn)
421 return get_attr_length_1 (insn, insn_default_length);
424 /* Obtain the current length of an insn. If branch shortening has been done,
425 get its actual length. Otherwise, get its minimum length. */
427 get_attr_min_length (rtx_insn *insn)
429 return get_attr_length_1 (insn, insn_min_length);
432 /* Code to handle alignment inside shorten_branches. */
434 /* Here is an explanation how the algorithm in align_fuzz can give
435 proper results:
437 Call a sequence of instructions beginning with alignment point X
438 and continuing until the next alignment point `block X'. When `X'
439 is used in an expression, it means the alignment value of the
440 alignment point.
442 Call the distance between the start of the first insn of block X, and
443 the end of the last insn of block X `IX', for the `inner size of X'.
444 This is clearly the sum of the instruction lengths.
446 Likewise with the next alignment-delimited block following X, which we
447 shall call block Y.
449 Call the distance between the start of the first insn of block X, and
450 the start of the first insn of block Y `OX', for the `outer size of X'.
452 The estimated padding is then OX - IX.
454 OX can be safely estimated as
456 if (X >= Y)
457 OX = round_up(IX, Y)
458 else
459 OX = round_up(IX, X) + Y - X
461 Clearly est(IX) >= real(IX), because that only depends on the
462 instruction lengths, and those being overestimated is a given.
464 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
465 we needn't worry about that when thinking about OX.
467 When X >= Y, the alignment provided by Y adds no uncertainty factor
468 for branch ranges starting before X, so we can just round what we have.
469 But when X < Y, we don't know anything about the, so to speak,
470 `middle bits', so we have to assume the worst when aligning up from an
471 address mod X to one mod Y, which is Y - X. */
473 #ifndef LABEL_ALIGN
474 #define LABEL_ALIGN(LABEL) align_labels_log
475 #endif
477 #ifndef LOOP_ALIGN
478 #define LOOP_ALIGN(LABEL) align_loops_log
479 #endif
481 #ifndef LABEL_ALIGN_AFTER_BARRIER
482 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
483 #endif
485 #ifndef JUMP_ALIGN
486 #define JUMP_ALIGN(LABEL) align_jumps_log
487 #endif
490 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
492 return 0;
496 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
498 return align_loops_max_skip;
502 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
504 return align_labels_max_skip;
508 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
510 return align_jumps_max_skip;
513 #ifndef ADDR_VEC_ALIGN
514 static int
515 final_addr_vec_align (rtx addr_vec)
517 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
519 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
520 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
521 return exact_log2 (align);
525 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
526 #endif
528 #ifndef INSN_LENGTH_ALIGNMENT
529 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
530 #endif
532 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
534 static int min_labelno, max_labelno;
536 #define LABEL_TO_ALIGNMENT(LABEL) \
537 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
539 #define LABEL_TO_MAX_SKIP(LABEL) \
540 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
542 /* For the benefit of port specific code do this also as a function. */
545 label_to_alignment (rtx label)
547 if (CODE_LABEL_NUMBER (label) <= max_labelno)
548 return LABEL_TO_ALIGNMENT (label);
549 return 0;
553 label_to_max_skip (rtx label)
555 if (CODE_LABEL_NUMBER (label) <= max_labelno)
556 return LABEL_TO_MAX_SKIP (label);
557 return 0;
560 /* The differences in addresses
561 between a branch and its target might grow or shrink depending on
562 the alignment the start insn of the range (the branch for a forward
563 branch or the label for a backward branch) starts out on; if these
564 differences are used naively, they can even oscillate infinitely.
565 We therefore want to compute a 'worst case' address difference that
566 is independent of the alignment the start insn of the range end
567 up on, and that is at least as large as the actual difference.
568 The function align_fuzz calculates the amount we have to add to the
569 naively computed difference, by traversing the part of the alignment
570 chain of the start insn of the range that is in front of the end insn
571 of the range, and considering for each alignment the maximum amount
572 that it might contribute to a size increase.
574 For casesi tables, we also want to know worst case minimum amounts of
575 address difference, in case a machine description wants to introduce
576 some common offset that is added to all offsets in a table.
577 For this purpose, align_fuzz with a growth argument of 0 computes the
578 appropriate adjustment. */
580 /* Compute the maximum delta by which the difference of the addresses of
581 START and END might grow / shrink due to a different address for start
582 which changes the size of alignment insns between START and END.
583 KNOWN_ALIGN_LOG is the alignment known for START.
584 GROWTH should be ~0 if the objective is to compute potential code size
585 increase, and 0 if the objective is to compute potential shrink.
586 The return value is undefined for any other value of GROWTH. */
588 static int
589 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
591 int uid = INSN_UID (start);
592 rtx align_label;
593 int known_align = 1 << known_align_log;
594 int end_shuid = INSN_SHUID (end);
595 int fuzz = 0;
597 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
599 int align_addr, new_align;
601 uid = INSN_UID (align_label);
602 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
603 if (uid_shuid[uid] > end_shuid)
604 break;
605 known_align_log = LABEL_TO_ALIGNMENT (align_label);
606 new_align = 1 << known_align_log;
607 if (new_align < known_align)
608 continue;
609 fuzz += (-align_addr ^ growth) & (new_align - known_align);
610 known_align = new_align;
612 return fuzz;
615 /* Compute a worst-case reference address of a branch so that it
616 can be safely used in the presence of aligned labels. Since the
617 size of the branch itself is unknown, the size of the branch is
618 not included in the range. I.e. for a forward branch, the reference
619 address is the end address of the branch as known from the previous
620 branch shortening pass, minus a value to account for possible size
621 increase due to alignment. For a backward branch, it is the start
622 address of the branch as known from the current pass, plus a value
623 to account for possible size increase due to alignment.
624 NB.: Therefore, the maximum offset allowed for backward branches needs
625 to exclude the branch size. */
628 insn_current_reference_address (rtx_insn *branch)
630 rtx dest;
631 int seq_uid;
633 if (! INSN_ADDRESSES_SET_P ())
634 return 0;
636 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
637 seq_uid = INSN_UID (seq);
638 if (!JUMP_P (branch))
639 /* This can happen for example on the PA; the objective is to know the
640 offset to address something in front of the start of the function.
641 Thus, we can treat it like a backward branch.
642 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
643 any alignment we'd encounter, so we skip the call to align_fuzz. */
644 return insn_current_address;
645 dest = JUMP_LABEL (branch);
647 /* BRANCH has no proper alignment chain set, so use SEQ.
648 BRANCH also has no INSN_SHUID. */
649 if (INSN_SHUID (seq) < INSN_SHUID (dest))
651 /* Forward branch. */
652 return (insn_last_address + insn_lengths[seq_uid]
653 - align_fuzz (seq, dest, length_unit_log, ~0));
655 else
657 /* Backward branch. */
658 return (insn_current_address
659 + align_fuzz (dest, seq, length_unit_log, ~0));
663 /* Compute branch alignments based on frequency information in the
664 CFG. */
666 unsigned int
667 compute_alignments (void)
669 int log, max_skip, max_log;
670 basic_block bb;
671 int freq_max = 0;
672 int freq_threshold = 0;
674 if (label_align)
676 free (label_align);
677 label_align = 0;
680 max_labelno = max_label_num ();
681 min_labelno = get_first_label_num ();
682 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
684 /* If not optimizing or optimizing for size, don't assign any alignments. */
685 if (! optimize || optimize_function_for_size_p (cfun))
686 return 0;
688 if (dump_file)
690 dump_reg_info (dump_file);
691 dump_flow_info (dump_file, TDF_DETAILS);
692 flow_loops_dump (dump_file, NULL, 1);
694 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
695 FOR_EACH_BB_FN (bb, cfun)
696 if (bb->frequency > freq_max)
697 freq_max = bb->frequency;
698 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
700 if (dump_file)
701 fprintf (dump_file, "freq_max: %i\n",freq_max);
702 FOR_EACH_BB_FN (bb, cfun)
704 rtx_insn *label = BB_HEAD (bb);
705 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
706 edge e;
707 edge_iterator ei;
709 if (!LABEL_P (label)
710 || optimize_bb_for_size_p (bb))
712 if (dump_file)
713 fprintf (dump_file,
714 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
715 bb->index, bb->frequency, bb->loop_father->num,
716 bb_loop_depth (bb));
717 continue;
719 max_log = LABEL_ALIGN (label);
720 max_skip = targetm.asm_out.label_align_max_skip (label);
722 FOR_EACH_EDGE (e, ei, bb->preds)
724 if (e->flags & EDGE_FALLTHRU)
725 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
726 else
727 branch_frequency += EDGE_FREQUENCY (e);
729 if (dump_file)
731 fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
732 " %2i fall %4i branch %4i",
733 bb->index, bb->frequency, bb->loop_father->num,
734 bb_loop_depth (bb),
735 fallthru_frequency, branch_frequency);
736 if (!bb->loop_father->inner && bb->loop_father->num)
737 fprintf (dump_file, " inner_loop");
738 if (bb->loop_father->header == bb)
739 fprintf (dump_file, " loop_header");
740 fprintf (dump_file, "\n");
743 /* There are two purposes to align block with no fallthru incoming edge:
744 1) to avoid fetch stalls when branch destination is near cache boundary
745 2) to improve cache efficiency in case the previous block is not executed
746 (so it does not need to be in the cache).
748 We to catch first case, we align frequently executed blocks.
749 To catch the second, we align blocks that are executed more frequently
750 than the predecessor and the predecessor is likely to not be executed
751 when function is called. */
753 if (!has_fallthru
754 && (branch_frequency > freq_threshold
755 || (bb->frequency > bb->prev_bb->frequency * 10
756 && (bb->prev_bb->frequency
757 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
759 log = JUMP_ALIGN (label);
760 if (dump_file)
761 fprintf (dump_file, " jump alignment added.\n");
762 if (max_log < log)
764 max_log = log;
765 max_skip = targetm.asm_out.jump_align_max_skip (label);
768 /* In case block is frequent and reached mostly by non-fallthru edge,
769 align it. It is most likely a first block of loop. */
770 if (has_fallthru
771 && !(single_succ_p (bb)
772 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
773 && optimize_bb_for_speed_p (bb)
774 && branch_frequency + fallthru_frequency > freq_threshold
775 && (branch_frequency
776 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
778 log = LOOP_ALIGN (label);
779 if (dump_file)
780 fprintf (dump_file, " internal loop alignment added.\n");
781 if (max_log < log)
783 max_log = log;
784 max_skip = targetm.asm_out.loop_align_max_skip (label);
787 LABEL_TO_ALIGNMENT (label) = max_log;
788 LABEL_TO_MAX_SKIP (label) = max_skip;
791 loop_optimizer_finalize ();
792 free_dominance_info (CDI_DOMINATORS);
793 return 0;
796 /* Grow the LABEL_ALIGN array after new labels are created. */
798 static void
799 grow_label_align (void)
801 int old = max_labelno;
802 int n_labels;
803 int n_old_labels;
805 max_labelno = max_label_num ();
807 n_labels = max_labelno - min_labelno + 1;
808 n_old_labels = old - min_labelno + 1;
810 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
812 /* Range of labels grows monotonically in the function. Failing here
813 means that the initialization of array got lost. */
814 gcc_assert (n_old_labels <= n_labels);
816 memset (label_align + n_old_labels, 0,
817 (n_labels - n_old_labels) * sizeof (struct label_alignment));
820 /* Update the already computed alignment information. LABEL_PAIRS is a vector
821 made up of pairs of labels for which the alignment information of the first
822 element will be copied from that of the second element. */
824 void
825 update_alignments (vec<rtx> &label_pairs)
827 unsigned int i = 0;
828 rtx iter, label = NULL_RTX;
830 if (max_labelno != max_label_num ())
831 grow_label_align ();
833 FOR_EACH_VEC_ELT (label_pairs, i, iter)
834 if (i & 1)
836 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
837 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
839 else
840 label = iter;
843 namespace {
845 const pass_data pass_data_compute_alignments =
847 RTL_PASS, /* type */
848 "alignments", /* name */
849 OPTGROUP_NONE, /* optinfo_flags */
850 TV_NONE, /* tv_id */
851 0, /* properties_required */
852 0, /* properties_provided */
853 0, /* properties_destroyed */
854 0, /* todo_flags_start */
855 0, /* todo_flags_finish */
858 class pass_compute_alignments : public rtl_opt_pass
860 public:
861 pass_compute_alignments (gcc::context *ctxt)
862 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
865 /* opt_pass methods: */
866 virtual unsigned int execute (function *) { return compute_alignments (); }
868 }; // class pass_compute_alignments
870 } // anon namespace
872 rtl_opt_pass *
873 make_pass_compute_alignments (gcc::context *ctxt)
875 return new pass_compute_alignments (ctxt);
879 /* Make a pass over all insns and compute their actual lengths by shortening
880 any branches of variable length if possible. */
882 /* shorten_branches might be called multiple times: for example, the SH
883 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
884 In order to do this, it needs proper length information, which it obtains
885 by calling shorten_branches. This cannot be collapsed with
886 shorten_branches itself into a single pass unless we also want to integrate
887 reorg.c, since the branch splitting exposes new instructions with delay
888 slots. */
890 void
891 shorten_branches (rtx_insn *first)
893 rtx_insn *insn;
894 int max_uid;
895 int i;
896 int max_log;
897 int max_skip;
898 #define MAX_CODE_ALIGN 16
899 rtx_insn *seq;
900 int something_changed = 1;
901 char *varying_length;
902 rtx body;
903 int uid;
904 rtx align_tab[MAX_CODE_ALIGN];
906 /* Compute maximum UID and allocate label_align / uid_shuid. */
907 max_uid = get_max_uid ();
909 /* Free uid_shuid before reallocating it. */
910 free (uid_shuid);
912 uid_shuid = XNEWVEC (int, max_uid);
914 if (max_labelno != max_label_num ())
915 grow_label_align ();
917 /* Initialize label_align and set up uid_shuid to be strictly
918 monotonically rising with insn order. */
919 /* We use max_log here to keep track of the maximum alignment we want to
920 impose on the next CODE_LABEL (or the current one if we are processing
921 the CODE_LABEL itself). */
923 max_log = 0;
924 max_skip = 0;
926 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
928 int log;
930 INSN_SHUID (insn) = i++;
931 if (INSN_P (insn))
932 continue;
934 if (LABEL_P (insn))
936 rtx_insn *next;
937 bool next_is_jumptable;
939 /* Merge in alignments computed by compute_alignments. */
940 log = LABEL_TO_ALIGNMENT (insn);
941 if (max_log < log)
943 max_log = log;
944 max_skip = LABEL_TO_MAX_SKIP (insn);
947 next = next_nonnote_insn (insn);
948 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
949 if (!next_is_jumptable)
951 log = LABEL_ALIGN (insn);
952 if (max_log < log)
954 max_log = log;
955 max_skip = targetm.asm_out.label_align_max_skip (insn);
958 /* ADDR_VECs only take room if read-only data goes into the text
959 section. */
960 if ((JUMP_TABLES_IN_TEXT_SECTION
961 || readonly_data_section == text_section)
962 && next_is_jumptable)
964 log = ADDR_VEC_ALIGN (next);
965 if (max_log < log)
967 max_log = log;
968 max_skip = targetm.asm_out.label_align_max_skip (insn);
971 LABEL_TO_ALIGNMENT (insn) = max_log;
972 LABEL_TO_MAX_SKIP (insn) = max_skip;
973 max_log = 0;
974 max_skip = 0;
976 else if (BARRIER_P (insn))
978 rtx_insn *label;
980 for (label = insn; label && ! INSN_P (label);
981 label = NEXT_INSN (label))
982 if (LABEL_P (label))
984 log = LABEL_ALIGN_AFTER_BARRIER (insn);
985 if (max_log < log)
987 max_log = log;
988 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
990 break;
994 if (!HAVE_ATTR_length)
995 return;
997 /* Allocate the rest of the arrays. */
998 insn_lengths = XNEWVEC (int, max_uid);
999 insn_lengths_max_uid = max_uid;
1000 /* Syntax errors can lead to labels being outside of the main insn stream.
1001 Initialize insn_addresses, so that we get reproducible results. */
1002 INSN_ADDRESSES_ALLOC (max_uid);
1004 varying_length = XCNEWVEC (char, max_uid);
1006 /* Initialize uid_align. We scan instructions
1007 from end to start, and keep in align_tab[n] the last seen insn
1008 that does an alignment of at least n+1, i.e. the successor
1009 in the alignment chain for an insn that does / has a known
1010 alignment of n. */
1011 uid_align = XCNEWVEC (rtx, max_uid);
1013 for (i = MAX_CODE_ALIGN; --i >= 0;)
1014 align_tab[i] = NULL_RTX;
1015 seq = get_last_insn ();
1016 for (; seq; seq = PREV_INSN (seq))
1018 int uid = INSN_UID (seq);
1019 int log;
1020 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1021 uid_align[uid] = align_tab[0];
1022 if (log)
1024 /* Found an alignment label. */
1025 uid_align[uid] = align_tab[log];
1026 for (i = log - 1; i >= 0; i--)
1027 align_tab[i] = seq;
1031 /* When optimizing, we start assuming minimum length, and keep increasing
1032 lengths as we find the need for this, till nothing changes.
1033 When not optimizing, we start assuming maximum lengths, and
1034 do a single pass to update the lengths. */
1035 bool increasing = optimize != 0;
1037 #ifdef CASE_VECTOR_SHORTEN_MODE
1038 if (optimize)
1040 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1041 label fields. */
1043 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1044 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1045 int rel;
1047 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1049 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1050 int len, i, min, max, insn_shuid;
1051 int min_align;
1052 addr_diff_vec_flags flags;
1054 if (! JUMP_TABLE_DATA_P (insn)
1055 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1056 continue;
1057 pat = PATTERN (insn);
1058 len = XVECLEN (pat, 1);
1059 gcc_assert (len > 0);
1060 min_align = MAX_CODE_ALIGN;
1061 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1063 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1064 int shuid = INSN_SHUID (lab);
1065 if (shuid < min)
1067 min = shuid;
1068 min_lab = lab;
1070 if (shuid > max)
1072 max = shuid;
1073 max_lab = lab;
1075 if (min_align > LABEL_TO_ALIGNMENT (lab))
1076 min_align = LABEL_TO_ALIGNMENT (lab);
1078 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1079 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1080 insn_shuid = INSN_SHUID (insn);
1081 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1082 memset (&flags, 0, sizeof (flags));
1083 flags.min_align = min_align;
1084 flags.base_after_vec = rel > insn_shuid;
1085 flags.min_after_vec = min > insn_shuid;
1086 flags.max_after_vec = max > insn_shuid;
1087 flags.min_after_base = min > rel;
1088 flags.max_after_base = max > rel;
1089 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1091 if (increasing)
1092 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1095 #endif /* CASE_VECTOR_SHORTEN_MODE */
1097 /* Compute initial lengths, addresses, and varying flags for each insn. */
1098 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1100 for (insn_current_address = 0, insn = first;
1101 insn != 0;
1102 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1104 uid = INSN_UID (insn);
1106 insn_lengths[uid] = 0;
1108 if (LABEL_P (insn))
1110 int log = LABEL_TO_ALIGNMENT (insn);
1111 if (log)
1113 int align = 1 << log;
1114 int new_address = (insn_current_address + align - 1) & -align;
1115 insn_lengths[uid] = new_address - insn_current_address;
1119 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1121 if (NOTE_P (insn) || BARRIER_P (insn)
1122 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1123 continue;
1124 if (insn->deleted ())
1125 continue;
1127 body = PATTERN (insn);
1128 if (JUMP_TABLE_DATA_P (insn))
1130 /* This only takes room if read-only data goes into the text
1131 section. */
1132 if (JUMP_TABLES_IN_TEXT_SECTION
1133 || readonly_data_section == text_section)
1134 insn_lengths[uid] = (XVECLEN (body,
1135 GET_CODE (body) == ADDR_DIFF_VEC)
1136 * GET_MODE_SIZE (GET_MODE (body)));
1137 /* Alignment is handled by ADDR_VEC_ALIGN. */
1139 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1140 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1141 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1143 int i;
1144 int const_delay_slots;
1145 if (DELAY_SLOTS)
1146 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1147 else
1148 const_delay_slots = 0;
1150 int (*inner_length_fun) (rtx_insn *)
1151 = const_delay_slots ? length_fun : insn_default_length;
1152 /* Inside a delay slot sequence, we do not do any branch shortening
1153 if the shortening could change the number of delay slots
1154 of the branch. */
1155 for (i = 0; i < body_seq->len (); i++)
1157 rtx_insn *inner_insn = body_seq->insn (i);
1158 int inner_uid = INSN_UID (inner_insn);
1159 int inner_length;
1161 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1162 || asm_noperands (PATTERN (inner_insn)) >= 0)
1163 inner_length = (asm_insn_count (PATTERN (inner_insn))
1164 * insn_default_length (inner_insn));
1165 else
1166 inner_length = inner_length_fun (inner_insn);
1168 insn_lengths[inner_uid] = inner_length;
1169 if (const_delay_slots)
1171 if ((varying_length[inner_uid]
1172 = insn_variable_length_p (inner_insn)) != 0)
1173 varying_length[uid] = 1;
1174 INSN_ADDRESSES (inner_uid) = (insn_current_address
1175 + insn_lengths[uid]);
1177 else
1178 varying_length[inner_uid] = 0;
1179 insn_lengths[uid] += inner_length;
1182 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1184 insn_lengths[uid] = length_fun (insn);
1185 varying_length[uid] = insn_variable_length_p (insn);
1188 /* If needed, do any adjustment. */
1189 #ifdef ADJUST_INSN_LENGTH
1190 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1191 if (insn_lengths[uid] < 0)
1192 fatal_insn ("negative insn length", insn);
1193 #endif
1196 /* Now loop over all the insns finding varying length insns. For each,
1197 get the current insn length. If it has changed, reflect the change.
1198 When nothing changes for a full pass, we are done. */
1200 while (something_changed)
1202 something_changed = 0;
1203 insn_current_align = MAX_CODE_ALIGN - 1;
1204 for (insn_current_address = 0, insn = first;
1205 insn != 0;
1206 insn = NEXT_INSN (insn))
1208 int new_length;
1209 #ifdef ADJUST_INSN_LENGTH
1210 int tmp_length;
1211 #endif
1212 int length_align;
1214 uid = INSN_UID (insn);
1216 if (LABEL_P (insn))
1218 int log = LABEL_TO_ALIGNMENT (insn);
1220 #ifdef CASE_VECTOR_SHORTEN_MODE
1221 /* If the mode of a following jump table was changed, we
1222 may need to update the alignment of this label. */
1223 rtx_insn *next;
1224 bool next_is_jumptable;
1226 next = next_nonnote_insn (insn);
1227 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1228 if ((JUMP_TABLES_IN_TEXT_SECTION
1229 || readonly_data_section == text_section)
1230 && next_is_jumptable)
1232 int newlog = ADDR_VEC_ALIGN (next);
1233 if (newlog != log)
1235 log = newlog;
1236 LABEL_TO_ALIGNMENT (insn) = log;
1237 something_changed = 1;
1240 #endif
1242 if (log > insn_current_align)
1244 int align = 1 << log;
1245 int new_address= (insn_current_address + align - 1) & -align;
1246 insn_lengths[uid] = new_address - insn_current_address;
1247 insn_current_align = log;
1248 insn_current_address = new_address;
1250 else
1251 insn_lengths[uid] = 0;
1252 INSN_ADDRESSES (uid) = insn_current_address;
1253 continue;
1256 length_align = INSN_LENGTH_ALIGNMENT (insn);
1257 if (length_align < insn_current_align)
1258 insn_current_align = length_align;
1260 insn_last_address = INSN_ADDRESSES (uid);
1261 INSN_ADDRESSES (uid) = insn_current_address;
1263 #ifdef CASE_VECTOR_SHORTEN_MODE
1264 if (optimize
1265 && JUMP_TABLE_DATA_P (insn)
1266 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1268 rtx body = PATTERN (insn);
1269 int old_length = insn_lengths[uid];
1270 rtx_insn *rel_lab =
1271 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1272 rtx min_lab = XEXP (XEXP (body, 2), 0);
1273 rtx max_lab = XEXP (XEXP (body, 3), 0);
1274 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1275 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1276 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1277 rtx_insn *prev;
1278 int rel_align = 0;
1279 addr_diff_vec_flags flags;
1280 machine_mode vec_mode;
1282 /* Avoid automatic aggregate initialization. */
1283 flags = ADDR_DIFF_VEC_FLAGS (body);
1285 /* Try to find a known alignment for rel_lab. */
1286 for (prev = rel_lab;
1287 prev
1288 && ! insn_lengths[INSN_UID (prev)]
1289 && ! (varying_length[INSN_UID (prev)] & 1);
1290 prev = PREV_INSN (prev))
1291 if (varying_length[INSN_UID (prev)] & 2)
1293 rel_align = LABEL_TO_ALIGNMENT (prev);
1294 break;
1297 /* See the comment on addr_diff_vec_flags in rtl.h for the
1298 meaning of the flags values. base: REL_LAB vec: INSN */
1299 /* Anything after INSN has still addresses from the last
1300 pass; adjust these so that they reflect our current
1301 estimate for this pass. */
1302 if (flags.base_after_vec)
1303 rel_addr += insn_current_address - insn_last_address;
1304 if (flags.min_after_vec)
1305 min_addr += insn_current_address - insn_last_address;
1306 if (flags.max_after_vec)
1307 max_addr += insn_current_address - insn_last_address;
1308 /* We want to know the worst case, i.e. lowest possible value
1309 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1310 its offset is positive, and we have to be wary of code shrink;
1311 otherwise, it is negative, and we have to be vary of code
1312 size increase. */
1313 if (flags.min_after_base)
1315 /* If INSN is between REL_LAB and MIN_LAB, the size
1316 changes we are about to make can change the alignment
1317 within the observed offset, therefore we have to break
1318 it up into two parts that are independent. */
1319 if (! flags.base_after_vec && flags.min_after_vec)
1321 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1322 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1324 else
1325 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1327 else
1329 if (flags.base_after_vec && ! flags.min_after_vec)
1331 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1332 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1334 else
1335 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1337 /* Likewise, determine the highest lowest possible value
1338 for the offset of MAX_LAB. */
1339 if (flags.max_after_base)
1341 if (! flags.base_after_vec && flags.max_after_vec)
1343 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1344 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1346 else
1347 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1349 else
1351 if (flags.base_after_vec && ! flags.max_after_vec)
1353 max_addr += align_fuzz (max_lab, insn, 0, 0);
1354 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1356 else
1357 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1359 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1360 max_addr - rel_addr, body);
1361 if (!increasing
1362 || (GET_MODE_SIZE (vec_mode)
1363 >= GET_MODE_SIZE (GET_MODE (body))))
1364 PUT_MODE (body, vec_mode);
1365 if (JUMP_TABLES_IN_TEXT_SECTION
1366 || readonly_data_section == text_section)
1368 insn_lengths[uid]
1369 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1370 insn_current_address += insn_lengths[uid];
1371 if (insn_lengths[uid] != old_length)
1372 something_changed = 1;
1375 continue;
1377 #endif /* CASE_VECTOR_SHORTEN_MODE */
1379 if (! (varying_length[uid]))
1381 if (NONJUMP_INSN_P (insn)
1382 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1384 int i;
1386 body = PATTERN (insn);
1387 for (i = 0; i < XVECLEN (body, 0); i++)
1389 rtx inner_insn = XVECEXP (body, 0, i);
1390 int inner_uid = INSN_UID (inner_insn);
1392 INSN_ADDRESSES (inner_uid) = insn_current_address;
1394 insn_current_address += insn_lengths[inner_uid];
1397 else
1398 insn_current_address += insn_lengths[uid];
1400 continue;
1403 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1405 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1406 int i;
1408 body = PATTERN (insn);
1409 new_length = 0;
1410 for (i = 0; i < seqn->len (); i++)
1412 rtx_insn *inner_insn = seqn->insn (i);
1413 int inner_uid = INSN_UID (inner_insn);
1414 int inner_length;
1416 INSN_ADDRESSES (inner_uid) = insn_current_address;
1418 /* insn_current_length returns 0 for insns with a
1419 non-varying length. */
1420 if (! varying_length[inner_uid])
1421 inner_length = insn_lengths[inner_uid];
1422 else
1423 inner_length = insn_current_length (inner_insn);
1425 if (inner_length != insn_lengths[inner_uid])
1427 if (!increasing || inner_length > insn_lengths[inner_uid])
1429 insn_lengths[inner_uid] = inner_length;
1430 something_changed = 1;
1432 else
1433 inner_length = insn_lengths[inner_uid];
1435 insn_current_address += inner_length;
1436 new_length += inner_length;
1439 else
1441 new_length = insn_current_length (insn);
1442 insn_current_address += new_length;
1445 #ifdef ADJUST_INSN_LENGTH
1446 /* If needed, do any adjustment. */
1447 tmp_length = new_length;
1448 ADJUST_INSN_LENGTH (insn, new_length);
1449 insn_current_address += (new_length - tmp_length);
1450 #endif
1452 if (new_length != insn_lengths[uid]
1453 && (!increasing || new_length > insn_lengths[uid]))
1455 insn_lengths[uid] = new_length;
1456 something_changed = 1;
1458 else
1459 insn_current_address += insn_lengths[uid] - new_length;
1461 /* For a non-optimizing compile, do only a single pass. */
1462 if (!increasing)
1463 break;
1466 free (varying_length);
1469 /* Given the body of an INSN known to be generated by an ASM statement, return
1470 the number of machine instructions likely to be generated for this insn.
1471 This is used to compute its length. */
1473 static int
1474 asm_insn_count (rtx body)
1476 const char *templ;
1478 if (GET_CODE (body) == ASM_INPUT)
1479 templ = XSTR (body, 0);
1480 else
1481 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1483 return asm_str_count (templ);
1486 /* Return the number of machine instructions likely to be generated for the
1487 inline-asm template. */
1489 asm_str_count (const char *templ)
1491 int count = 1;
1493 if (!*templ)
1494 return 0;
1496 for (; *templ; templ++)
1497 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1498 || *templ == '\n')
1499 count++;
1501 return count;
1504 /* ??? This is probably the wrong place for these. */
1505 /* Structure recording the mapping from source file and directory
1506 names at compile time to those to be embedded in debug
1507 information. */
1508 struct debug_prefix_map
1510 const char *old_prefix;
1511 const char *new_prefix;
1512 size_t old_len;
1513 size_t new_len;
1514 struct debug_prefix_map *next;
1517 /* Linked list of such structures. */
1518 static debug_prefix_map *debug_prefix_maps;
1521 /* Record a debug file prefix mapping. ARG is the argument to
1522 -fdebug-prefix-map and must be of the form OLD=NEW. */
1524 void
1525 add_debug_prefix_map (const char *arg)
1527 debug_prefix_map *map;
1528 const char *p;
1530 p = strchr (arg, '=');
1531 if (!p)
1533 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1534 return;
1536 map = XNEW (debug_prefix_map);
1537 map->old_prefix = xstrndup (arg, p - arg);
1538 map->old_len = p - arg;
1539 p++;
1540 map->new_prefix = xstrdup (p);
1541 map->new_len = strlen (p);
1542 map->next = debug_prefix_maps;
1543 debug_prefix_maps = map;
1546 /* Perform user-specified mapping of debug filename prefixes. Return
1547 the new name corresponding to FILENAME. */
1549 const char *
1550 remap_debug_filename (const char *filename)
1552 debug_prefix_map *map;
1553 char *s;
1554 const char *name;
1555 size_t name_len;
1557 for (map = debug_prefix_maps; map; map = map->next)
1558 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1559 break;
1560 if (!map)
1561 return filename;
1562 name = filename + map->old_len;
1563 name_len = strlen (name) + 1;
1564 s = (char *) alloca (name_len + map->new_len);
1565 memcpy (s, map->new_prefix, map->new_len);
1566 memcpy (s + map->new_len, name, name_len);
1567 return ggc_strdup (s);
1570 /* Return true if DWARF2 debug info can be emitted for DECL. */
1572 static bool
1573 dwarf2_debug_info_emitted_p (tree decl)
1575 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1576 return false;
1578 if (DECL_IGNORED_P (decl))
1579 return false;
1581 return true;
1584 /* Return scope resulting from combination of S1 and S2. */
1585 static tree
1586 choose_inner_scope (tree s1, tree s2)
1588 if (!s1)
1589 return s2;
1590 if (!s2)
1591 return s1;
1592 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1593 return s1;
1594 return s2;
1597 /* Emit lexical block notes needed to change scope from S1 to S2. */
1599 static void
1600 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1602 rtx_insn *insn = orig_insn;
1603 tree com = NULL_TREE;
1604 tree ts1 = s1, ts2 = s2;
1605 tree s;
1607 while (ts1 != ts2)
1609 gcc_assert (ts1 && ts2);
1610 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1611 ts1 = BLOCK_SUPERCONTEXT (ts1);
1612 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1613 ts2 = BLOCK_SUPERCONTEXT (ts2);
1614 else
1616 ts1 = BLOCK_SUPERCONTEXT (ts1);
1617 ts2 = BLOCK_SUPERCONTEXT (ts2);
1620 com = ts1;
1622 /* Close scopes. */
1623 s = s1;
1624 while (s != com)
1626 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1627 NOTE_BLOCK (note) = s;
1628 s = BLOCK_SUPERCONTEXT (s);
1631 /* Open scopes. */
1632 s = s2;
1633 while (s != com)
1635 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1636 NOTE_BLOCK (insn) = s;
1637 s = BLOCK_SUPERCONTEXT (s);
1641 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1642 on the scope tree and the newly reordered instructions. */
1644 static void
1645 reemit_insn_block_notes (void)
1647 tree cur_block = DECL_INITIAL (cfun->decl);
1648 rtx_insn *insn;
1649 rtx_note *note;
1651 insn = get_insns ();
1652 for (; insn; insn = NEXT_INSN (insn))
1654 tree this_block;
1656 /* Prevent lexical blocks from straddling section boundaries. */
1657 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1659 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1660 s = BLOCK_SUPERCONTEXT (s))
1662 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1663 NOTE_BLOCK (note) = s;
1664 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1665 NOTE_BLOCK (note) = s;
1669 if (!active_insn_p (insn))
1670 continue;
1672 /* Avoid putting scope notes between jump table and its label. */
1673 if (JUMP_TABLE_DATA_P (insn))
1674 continue;
1676 this_block = insn_scope (insn);
1677 /* For sequences compute scope resulting from merging all scopes
1678 of instructions nested inside. */
1679 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1681 int i;
1683 this_block = NULL;
1684 for (i = 0; i < body->len (); i++)
1685 this_block = choose_inner_scope (this_block,
1686 insn_scope (body->insn (i)));
1688 if (! this_block)
1690 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1691 continue;
1692 else
1693 this_block = DECL_INITIAL (cfun->decl);
1696 if (this_block != cur_block)
1698 change_scope (insn, cur_block, this_block);
1699 cur_block = this_block;
1703 /* change_scope emits before the insn, not after. */
1704 note = emit_note (NOTE_INSN_DELETED);
1705 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1706 delete_insn (note);
1708 reorder_blocks ();
1711 static const char *some_local_dynamic_name;
1713 /* Locate some local-dynamic symbol still in use by this function
1714 so that we can print its name in local-dynamic base patterns.
1715 Return null if there are no local-dynamic references. */
1717 const char *
1718 get_some_local_dynamic_name ()
1720 subrtx_iterator::array_type array;
1721 rtx_insn *insn;
1723 if (some_local_dynamic_name)
1724 return some_local_dynamic_name;
1726 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1727 if (NONDEBUG_INSN_P (insn))
1728 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1730 const_rtx x = *iter;
1731 if (GET_CODE (x) == SYMBOL_REF)
1733 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1734 return some_local_dynamic_name = XSTR (x, 0);
1735 if (CONSTANT_POOL_ADDRESS_P (x))
1736 iter.substitute (get_pool_constant (x));
1740 return 0;
1743 /* Output assembler code for the start of a function,
1744 and initialize some of the variables in this file
1745 for the new function. The label for the function and associated
1746 assembler pseudo-ops have already been output in `assemble_start_function'.
1748 FIRST is the first insn of the rtl for the function being compiled.
1749 FILE is the file to write assembler code to.
1750 OPTIMIZE_P is nonzero if we should eliminate redundant
1751 test and compare insns. */
1753 void
1754 final_start_function (rtx_insn *first, FILE *file,
1755 int optimize_p ATTRIBUTE_UNUSED)
1757 block_depth = 0;
1759 this_is_asm_operands = 0;
1761 need_profile_function = false;
1763 last_filename = LOCATION_FILE (prologue_location);
1764 last_linenum = LOCATION_LINE (prologue_location);
1765 last_discriminator = discriminator = 0;
1767 high_block_linenum = high_function_linenum = last_linenum;
1769 if (flag_sanitize & SANITIZE_ADDRESS)
1770 asan_function_start ();
1772 if (!DECL_IGNORED_P (current_function_decl))
1773 debug_hooks->begin_prologue (last_linenum, last_filename);
1775 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1776 dwarf2out_begin_prologue (0, NULL);
1778 #ifdef LEAF_REG_REMAP
1779 if (crtl->uses_only_leaf_regs)
1780 leaf_renumber_regs (first);
1781 #endif
1783 /* The Sun386i and perhaps other machines don't work right
1784 if the profiling code comes after the prologue. */
1785 if (targetm.profile_before_prologue () && crtl->profile)
1787 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1788 && targetm.have_prologue ())
1790 rtx_insn *insn;
1791 for (insn = first; insn; insn = NEXT_INSN (insn))
1792 if (!NOTE_P (insn))
1794 insn = NULL;
1795 break;
1797 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1798 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1799 break;
1800 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1801 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1802 continue;
1803 else
1805 insn = NULL;
1806 break;
1809 if (insn)
1810 need_profile_function = true;
1811 else
1812 profile_function (file);
1814 else
1815 profile_function (file);
1818 /* If debugging, assign block numbers to all of the blocks in this
1819 function. */
1820 if (write_symbols)
1822 reemit_insn_block_notes ();
1823 number_blocks (current_function_decl);
1824 /* We never actually put out begin/end notes for the top-level
1825 block in the function. But, conceptually, that block is
1826 always needed. */
1827 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1830 if (warn_frame_larger_than
1831 && get_frame_size () > frame_larger_than_size)
1833 /* Issue a warning */
1834 warning (OPT_Wframe_larger_than_,
1835 "the frame size of %wd bytes is larger than %wd bytes",
1836 get_frame_size (), frame_larger_than_size);
1839 /* First output the function prologue: code to set up the stack frame. */
1840 targetm.asm_out.function_prologue (file, get_frame_size ());
1842 /* If the machine represents the prologue as RTL, the profiling code must
1843 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1844 if (! targetm.have_prologue ())
1845 profile_after_prologue (file);
1848 static void
1849 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1851 if (!targetm.profile_before_prologue () && crtl->profile)
1852 profile_function (file);
1855 static void
1856 profile_function (FILE *file ATTRIBUTE_UNUSED)
1858 #ifndef NO_PROFILE_COUNTERS
1859 # define NO_PROFILE_COUNTERS 0
1860 #endif
1861 #ifdef ASM_OUTPUT_REG_PUSH
1862 rtx sval = NULL, chain = NULL;
1864 if (cfun->returns_struct)
1865 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1866 true);
1867 if (cfun->static_chain_decl)
1868 chain = targetm.calls.static_chain (current_function_decl, true);
1869 #endif /* ASM_OUTPUT_REG_PUSH */
1871 if (! NO_PROFILE_COUNTERS)
1873 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1874 switch_to_section (data_section);
1875 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1876 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1877 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1880 switch_to_section (current_function_section ());
1882 #ifdef ASM_OUTPUT_REG_PUSH
1883 if (sval && REG_P (sval))
1884 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1885 if (chain && REG_P (chain))
1886 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1887 #endif
1889 FUNCTION_PROFILER (file, current_function_funcdef_no);
1891 #ifdef ASM_OUTPUT_REG_PUSH
1892 if (chain && REG_P (chain))
1893 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1894 if (sval && REG_P (sval))
1895 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1896 #endif
1899 /* Output assembler code for the end of a function.
1900 For clarity, args are same as those of `final_start_function'
1901 even though not all of them are needed. */
1903 void
1904 final_end_function (void)
1906 app_disable ();
1908 if (!DECL_IGNORED_P (current_function_decl))
1909 debug_hooks->end_function (high_function_linenum);
1911 /* Finally, output the function epilogue:
1912 code to restore the stack frame and return to the caller. */
1913 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1915 /* And debug output. */
1916 if (!DECL_IGNORED_P (current_function_decl))
1917 debug_hooks->end_epilogue (last_linenum, last_filename);
1919 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1920 && dwarf2out_do_frame ())
1921 dwarf2out_end_epilogue (last_linenum, last_filename);
1923 some_local_dynamic_name = 0;
1927 /* Dumper helper for basic block information. FILE is the assembly
1928 output file, and INSN is the instruction being emitted. */
1930 static void
1931 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1932 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1934 basic_block bb;
1936 if (!flag_debug_asm)
1937 return;
1939 if (INSN_UID (insn) < bb_map_size
1940 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1942 edge e;
1943 edge_iterator ei;
1945 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1946 if (bb->frequency)
1947 fprintf (file, " freq:%d", bb->frequency);
1948 if (bb->count)
1949 fprintf (file, " count:%" PRId64,
1950 bb->count);
1951 fprintf (file, " seq:%d", (*bb_seqn)++);
1952 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1953 FOR_EACH_EDGE (e, ei, bb->preds)
1955 dump_edge_info (file, e, TDF_DETAILS, 0);
1957 fprintf (file, "\n");
1959 if (INSN_UID (insn) < bb_map_size
1960 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1962 edge e;
1963 edge_iterator ei;
1965 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1966 FOR_EACH_EDGE (e, ei, bb->succs)
1968 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1970 fprintf (file, "\n");
1974 /* Output assembler code for some insns: all or part of a function.
1975 For description of args, see `final_start_function', above. */
1977 void
1978 final (rtx_insn *first, FILE *file, int optimize_p)
1980 rtx_insn *insn, *next;
1981 int seen = 0;
1983 /* Used for -dA dump. */
1984 basic_block *start_to_bb = NULL;
1985 basic_block *end_to_bb = NULL;
1986 int bb_map_size = 0;
1987 int bb_seqn = 0;
1989 last_ignored_compare = 0;
1991 if (HAVE_cc0)
1992 for (insn = first; insn; insn = NEXT_INSN (insn))
1994 /* If CC tracking across branches is enabled, record the insn which
1995 jumps to each branch only reached from one place. */
1996 if (optimize_p && JUMP_P (insn))
1998 rtx lab = JUMP_LABEL (insn);
1999 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2001 LABEL_REFS (lab) = insn;
2006 init_recog ();
2008 CC_STATUS_INIT;
2010 if (flag_debug_asm)
2012 basic_block bb;
2014 bb_map_size = get_max_uid () + 1;
2015 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2016 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2018 /* There is no cfg for a thunk. */
2019 if (!cfun->is_thunk)
2020 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2022 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2023 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2027 /* Output the insns. */
2028 for (insn = first; insn;)
2030 if (HAVE_ATTR_length)
2032 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2034 /* This can be triggered by bugs elsewhere in the compiler if
2035 new insns are created after init_insn_lengths is called. */
2036 gcc_assert (NOTE_P (insn));
2037 insn_current_address = -1;
2039 else
2040 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2043 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2044 bb_map_size, &bb_seqn);
2045 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2048 if (flag_debug_asm)
2050 free (start_to_bb);
2051 free (end_to_bb);
2054 /* Remove CFI notes, to avoid compare-debug failures. */
2055 for (insn = first; insn; insn = next)
2057 next = NEXT_INSN (insn);
2058 if (NOTE_P (insn)
2059 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2060 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2061 delete_insn (insn);
2065 const char *
2066 get_insn_template (int code, rtx insn)
2068 switch (insn_data[code].output_format)
2070 case INSN_OUTPUT_FORMAT_SINGLE:
2071 return insn_data[code].output.single;
2072 case INSN_OUTPUT_FORMAT_MULTI:
2073 return insn_data[code].output.multi[which_alternative];
2074 case INSN_OUTPUT_FORMAT_FUNCTION:
2075 gcc_assert (insn);
2076 return (*insn_data[code].output.function) (recog_data.operand,
2077 as_a <rtx_insn *> (insn));
2079 default:
2080 gcc_unreachable ();
2084 /* Emit the appropriate declaration for an alternate-entry-point
2085 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2086 LABEL_KIND != LABEL_NORMAL.
2088 The case fall-through in this function is intentional. */
2089 static void
2090 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2092 const char *name = LABEL_NAME (insn);
2094 switch (LABEL_KIND (insn))
2096 case LABEL_WEAK_ENTRY:
2097 #ifdef ASM_WEAKEN_LABEL
2098 ASM_WEAKEN_LABEL (file, name);
2099 #endif
2100 case LABEL_GLOBAL_ENTRY:
2101 targetm.asm_out.globalize_label (file, name);
2102 case LABEL_STATIC_ENTRY:
2103 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2104 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2105 #endif
2106 ASM_OUTPUT_LABEL (file, name);
2107 break;
2109 case LABEL_NORMAL:
2110 default:
2111 gcc_unreachable ();
2115 /* Given a CALL_INSN, find and return the nested CALL. */
2116 static rtx
2117 call_from_call_insn (rtx_call_insn *insn)
2119 rtx x;
2120 gcc_assert (CALL_P (insn));
2121 x = PATTERN (insn);
2123 while (GET_CODE (x) != CALL)
2125 switch (GET_CODE (x))
2127 default:
2128 gcc_unreachable ();
2129 case COND_EXEC:
2130 x = COND_EXEC_CODE (x);
2131 break;
2132 case PARALLEL:
2133 x = XVECEXP (x, 0, 0);
2134 break;
2135 case SET:
2136 x = XEXP (x, 1);
2137 break;
2140 return x;
2143 /* The final scan for one insn, INSN.
2144 Args are same as in `final', except that INSN
2145 is the insn being scanned.
2146 Value returned is the next insn to be scanned.
2148 NOPEEPHOLES is the flag to disallow peephole processing (currently
2149 used for within delayed branch sequence output).
2151 SEEN is used to track the end of the prologue, for emitting
2152 debug information. We force the emission of a line note after
2153 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2155 rtx_insn *
2156 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2157 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2159 #if HAVE_cc0
2160 rtx set;
2161 #endif
2162 rtx_insn *next;
2164 insn_counter++;
2166 /* Ignore deleted insns. These can occur when we split insns (due to a
2167 template of "#") while not optimizing. */
2168 if (insn->deleted ())
2169 return NEXT_INSN (insn);
2171 switch (GET_CODE (insn))
2173 case NOTE:
2174 switch (NOTE_KIND (insn))
2176 case NOTE_INSN_DELETED:
2177 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2178 break;
2180 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2181 in_cold_section_p = !in_cold_section_p;
2183 if (dwarf2out_do_frame ())
2184 dwarf2out_switch_text_section ();
2185 else if (!DECL_IGNORED_P (current_function_decl))
2186 debug_hooks->switch_text_section ();
2188 switch_to_section (current_function_section ());
2189 targetm.asm_out.function_switched_text_sections (asm_out_file,
2190 current_function_decl,
2191 in_cold_section_p);
2192 /* Emit a label for the split cold section. Form label name by
2193 suffixing "cold" to the original function's name. */
2194 if (in_cold_section_p)
2196 cold_function_name
2197 = clone_function_name (current_function_decl, "cold");
2198 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2199 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2200 IDENTIFIER_POINTER
2201 (cold_function_name),
2202 current_function_decl);
2203 #else
2204 ASM_OUTPUT_LABEL (asm_out_file,
2205 IDENTIFIER_POINTER (cold_function_name));
2206 #endif
2208 break;
2210 case NOTE_INSN_BASIC_BLOCK:
2211 if (need_profile_function)
2213 profile_function (asm_out_file);
2214 need_profile_function = false;
2217 if (targetm.asm_out.unwind_emit)
2218 targetm.asm_out.unwind_emit (asm_out_file, insn);
2220 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2222 break;
2224 case NOTE_INSN_EH_REGION_BEG:
2225 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2226 NOTE_EH_HANDLER (insn));
2227 break;
2229 case NOTE_INSN_EH_REGION_END:
2230 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2231 NOTE_EH_HANDLER (insn));
2232 break;
2234 case NOTE_INSN_PROLOGUE_END:
2235 targetm.asm_out.function_end_prologue (file);
2236 profile_after_prologue (file);
2238 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2240 *seen |= SEEN_EMITTED;
2241 force_source_line = true;
2243 else
2244 *seen |= SEEN_NOTE;
2246 break;
2248 case NOTE_INSN_EPILOGUE_BEG:
2249 if (!DECL_IGNORED_P (current_function_decl))
2250 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2251 targetm.asm_out.function_begin_epilogue (file);
2252 break;
2254 case NOTE_INSN_CFI:
2255 dwarf2out_emit_cfi (NOTE_CFI (insn));
2256 break;
2258 case NOTE_INSN_CFI_LABEL:
2259 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2260 NOTE_LABEL_NUMBER (insn));
2261 break;
2263 case NOTE_INSN_FUNCTION_BEG:
2264 if (need_profile_function)
2266 profile_function (asm_out_file);
2267 need_profile_function = false;
2270 app_disable ();
2271 if (!DECL_IGNORED_P (current_function_decl))
2272 debug_hooks->end_prologue (last_linenum, last_filename);
2274 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2276 *seen |= SEEN_EMITTED;
2277 force_source_line = true;
2279 else
2280 *seen |= SEEN_NOTE;
2282 break;
2284 case NOTE_INSN_BLOCK_BEG:
2285 if (debug_info_level == DINFO_LEVEL_NORMAL
2286 || debug_info_level == DINFO_LEVEL_VERBOSE
2287 || write_symbols == DWARF2_DEBUG
2288 || write_symbols == VMS_AND_DWARF2_DEBUG
2289 || write_symbols == VMS_DEBUG)
2291 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2293 app_disable ();
2294 ++block_depth;
2295 high_block_linenum = last_linenum;
2297 /* Output debugging info about the symbol-block beginning. */
2298 if (!DECL_IGNORED_P (current_function_decl))
2299 debug_hooks->begin_block (last_linenum, n);
2301 /* Mark this block as output. */
2302 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2304 if (write_symbols == DBX_DEBUG
2305 || write_symbols == SDB_DEBUG)
2307 location_t *locus_ptr
2308 = block_nonartificial_location (NOTE_BLOCK (insn));
2310 if (locus_ptr != NULL)
2312 override_filename = LOCATION_FILE (*locus_ptr);
2313 override_linenum = LOCATION_LINE (*locus_ptr);
2316 break;
2318 case NOTE_INSN_BLOCK_END:
2319 if (debug_info_level == DINFO_LEVEL_NORMAL
2320 || debug_info_level == DINFO_LEVEL_VERBOSE
2321 || write_symbols == DWARF2_DEBUG
2322 || write_symbols == VMS_AND_DWARF2_DEBUG
2323 || write_symbols == VMS_DEBUG)
2325 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2327 app_disable ();
2329 /* End of a symbol-block. */
2330 --block_depth;
2331 gcc_assert (block_depth >= 0);
2333 if (!DECL_IGNORED_P (current_function_decl))
2334 debug_hooks->end_block (high_block_linenum, n);
2336 if (write_symbols == DBX_DEBUG
2337 || write_symbols == SDB_DEBUG)
2339 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2340 location_t *locus_ptr
2341 = block_nonartificial_location (outer_block);
2343 if (locus_ptr != NULL)
2345 override_filename = LOCATION_FILE (*locus_ptr);
2346 override_linenum = LOCATION_LINE (*locus_ptr);
2348 else
2350 override_filename = NULL;
2351 override_linenum = 0;
2354 break;
2356 case NOTE_INSN_DELETED_LABEL:
2357 /* Emit the label. We may have deleted the CODE_LABEL because
2358 the label could be proved to be unreachable, though still
2359 referenced (in the form of having its address taken. */
2360 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2361 break;
2363 case NOTE_INSN_DELETED_DEBUG_LABEL:
2364 /* Similarly, but need to use different namespace for it. */
2365 if (CODE_LABEL_NUMBER (insn) != -1)
2366 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2367 break;
2369 case NOTE_INSN_VAR_LOCATION:
2370 case NOTE_INSN_CALL_ARG_LOCATION:
2371 if (!DECL_IGNORED_P (current_function_decl))
2372 debug_hooks->var_location (insn);
2373 break;
2375 default:
2376 gcc_unreachable ();
2377 break;
2379 break;
2381 case BARRIER:
2382 break;
2384 case CODE_LABEL:
2385 /* The target port might emit labels in the output function for
2386 some insn, e.g. sh.c output_branchy_insn. */
2387 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2389 int align = LABEL_TO_ALIGNMENT (insn);
2390 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2391 int max_skip = LABEL_TO_MAX_SKIP (insn);
2392 #endif
2394 if (align && NEXT_INSN (insn))
2396 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2397 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2398 #else
2399 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2400 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2401 #else
2402 ASM_OUTPUT_ALIGN (file, align);
2403 #endif
2404 #endif
2407 CC_STATUS_INIT;
2409 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2410 debug_hooks->label (as_a <rtx_code_label *> (insn));
2412 app_disable ();
2414 next = next_nonnote_insn (insn);
2415 /* If this label is followed by a jump-table, make sure we put
2416 the label in the read-only section. Also possibly write the
2417 label and jump table together. */
2418 if (next != 0 && JUMP_TABLE_DATA_P (next))
2420 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2421 /* In this case, the case vector is being moved by the
2422 target, so don't output the label at all. Leave that
2423 to the back end macros. */
2424 #else
2425 if (! JUMP_TABLES_IN_TEXT_SECTION)
2427 int log_align;
2429 switch_to_section (targetm.asm_out.function_rodata_section
2430 (current_function_decl));
2432 #ifdef ADDR_VEC_ALIGN
2433 log_align = ADDR_VEC_ALIGN (next);
2434 #else
2435 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2436 #endif
2437 ASM_OUTPUT_ALIGN (file, log_align);
2439 else
2440 switch_to_section (current_function_section ());
2442 #ifdef ASM_OUTPUT_CASE_LABEL
2443 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2444 next);
2445 #else
2446 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2447 #endif
2448 #endif
2449 break;
2451 if (LABEL_ALT_ENTRY_P (insn))
2452 output_alternate_entry_point (file, insn);
2453 else
2454 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2455 break;
2457 default:
2459 rtx body = PATTERN (insn);
2460 int insn_code_number;
2461 const char *templ;
2462 bool is_stmt;
2464 /* Reset this early so it is correct for ASM statements. */
2465 current_insn_predicate = NULL_RTX;
2467 /* An INSN, JUMP_INSN or CALL_INSN.
2468 First check for special kinds that recog doesn't recognize. */
2470 if (GET_CODE (body) == USE /* These are just declarations. */
2471 || GET_CODE (body) == CLOBBER)
2472 break;
2474 #if HAVE_cc0
2476 /* If there is a REG_CC_SETTER note on this insn, it means that
2477 the setting of the condition code was done in the delay slot
2478 of the insn that branched here. So recover the cc status
2479 from the insn that set it. */
2481 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2482 if (note)
2484 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2485 NOTICE_UPDATE_CC (PATTERN (other), other);
2486 cc_prev_status = cc_status;
2489 #endif
2491 /* Detect insns that are really jump-tables
2492 and output them as such. */
2494 if (JUMP_TABLE_DATA_P (insn))
2496 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2497 int vlen, idx;
2498 #endif
2500 if (! JUMP_TABLES_IN_TEXT_SECTION)
2501 switch_to_section (targetm.asm_out.function_rodata_section
2502 (current_function_decl));
2503 else
2504 switch_to_section (current_function_section ());
2506 app_disable ();
2508 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2509 if (GET_CODE (body) == ADDR_VEC)
2511 #ifdef ASM_OUTPUT_ADDR_VEC
2512 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2513 #else
2514 gcc_unreachable ();
2515 #endif
2517 else
2519 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2520 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2521 #else
2522 gcc_unreachable ();
2523 #endif
2525 #else
2526 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2527 for (idx = 0; idx < vlen; idx++)
2529 if (GET_CODE (body) == ADDR_VEC)
2531 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2532 ASM_OUTPUT_ADDR_VEC_ELT
2533 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2534 #else
2535 gcc_unreachable ();
2536 #endif
2538 else
2540 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2541 ASM_OUTPUT_ADDR_DIFF_ELT
2542 (file,
2543 body,
2544 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2545 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2546 #else
2547 gcc_unreachable ();
2548 #endif
2551 #ifdef ASM_OUTPUT_CASE_END
2552 ASM_OUTPUT_CASE_END (file,
2553 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2554 insn);
2555 #endif
2556 #endif
2558 switch_to_section (current_function_section ());
2560 break;
2562 /* Output this line note if it is the first or the last line
2563 note in a row. */
2564 if (!DECL_IGNORED_P (current_function_decl)
2565 && notice_source_line (insn, &is_stmt))
2566 (*debug_hooks->source_line) (last_linenum, last_filename,
2567 last_discriminator, is_stmt);
2569 if (GET_CODE (body) == ASM_INPUT)
2571 const char *string = XSTR (body, 0);
2573 /* There's no telling what that did to the condition codes. */
2574 CC_STATUS_INIT;
2576 if (string[0])
2578 expanded_location loc;
2580 app_enable ();
2581 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2582 if (*loc.file && loc.line)
2583 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2584 ASM_COMMENT_START, loc.line, loc.file);
2585 fprintf (asm_out_file, "\t%s\n", string);
2586 #if HAVE_AS_LINE_ZERO
2587 if (*loc.file && loc.line)
2588 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2589 #endif
2591 break;
2594 /* Detect `asm' construct with operands. */
2595 if (asm_noperands (body) >= 0)
2597 unsigned int noperands = asm_noperands (body);
2598 rtx *ops = XALLOCAVEC (rtx, noperands);
2599 const char *string;
2600 location_t loc;
2601 expanded_location expanded;
2603 /* There's no telling what that did to the condition codes. */
2604 CC_STATUS_INIT;
2606 /* Get out the operand values. */
2607 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2608 /* Inhibit dying on what would otherwise be compiler bugs. */
2609 insn_noperands = noperands;
2610 this_is_asm_operands = insn;
2611 expanded = expand_location (loc);
2613 #ifdef FINAL_PRESCAN_INSN
2614 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2615 #endif
2617 /* Output the insn using them. */
2618 if (string[0])
2620 app_enable ();
2621 if (expanded.file && expanded.line)
2622 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2623 ASM_COMMENT_START, expanded.line, expanded.file);
2624 output_asm_insn (string, ops);
2625 #if HAVE_AS_LINE_ZERO
2626 if (expanded.file && expanded.line)
2627 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2628 #endif
2631 if (targetm.asm_out.final_postscan_insn)
2632 targetm.asm_out.final_postscan_insn (file, insn, ops,
2633 insn_noperands);
2635 this_is_asm_operands = 0;
2636 break;
2639 app_disable ();
2641 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2643 /* A delayed-branch sequence */
2644 int i;
2646 final_sequence = seq;
2648 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2649 force the restoration of a comparison that was previously
2650 thought unnecessary. If that happens, cancel this sequence
2651 and cause that insn to be restored. */
2653 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2654 if (next != seq->insn (1))
2656 final_sequence = 0;
2657 return next;
2660 for (i = 1; i < seq->len (); i++)
2662 rtx_insn *insn = seq->insn (i);
2663 rtx_insn *next = NEXT_INSN (insn);
2664 /* We loop in case any instruction in a delay slot gets
2665 split. */
2667 insn = final_scan_insn (insn, file, 0, 1, seen);
2668 while (insn != next);
2670 #ifdef DBR_OUTPUT_SEQEND
2671 DBR_OUTPUT_SEQEND (file);
2672 #endif
2673 final_sequence = 0;
2675 /* If the insn requiring the delay slot was a CALL_INSN, the
2676 insns in the delay slot are actually executed before the
2677 called function. Hence we don't preserve any CC-setting
2678 actions in these insns and the CC must be marked as being
2679 clobbered by the function. */
2680 if (CALL_P (seq->insn (0)))
2682 CC_STATUS_INIT;
2684 break;
2687 /* We have a real machine instruction as rtl. */
2689 body = PATTERN (insn);
2691 #if HAVE_cc0
2692 set = single_set (insn);
2694 /* Check for redundant test and compare instructions
2695 (when the condition codes are already set up as desired).
2696 This is done only when optimizing; if not optimizing,
2697 it should be possible for the user to alter a variable
2698 with the debugger in between statements
2699 and the next statement should reexamine the variable
2700 to compute the condition codes. */
2702 if (optimize_p)
2704 if (set
2705 && GET_CODE (SET_DEST (set)) == CC0
2706 && insn != last_ignored_compare)
2708 rtx src1, src2;
2709 if (GET_CODE (SET_SRC (set)) == SUBREG)
2710 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2712 src1 = SET_SRC (set);
2713 src2 = NULL_RTX;
2714 if (GET_CODE (SET_SRC (set)) == COMPARE)
2716 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2717 XEXP (SET_SRC (set), 0)
2718 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2719 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2720 XEXP (SET_SRC (set), 1)
2721 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2722 if (XEXP (SET_SRC (set), 1)
2723 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2724 src2 = XEXP (SET_SRC (set), 0);
2726 if ((cc_status.value1 != 0
2727 && rtx_equal_p (src1, cc_status.value1))
2728 || (cc_status.value2 != 0
2729 && rtx_equal_p (src1, cc_status.value2))
2730 || (src2 != 0 && cc_status.value1 != 0
2731 && rtx_equal_p (src2, cc_status.value1))
2732 || (src2 != 0 && cc_status.value2 != 0
2733 && rtx_equal_p (src2, cc_status.value2)))
2735 /* Don't delete insn if it has an addressing side-effect. */
2736 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2737 /* or if anything in it is volatile. */
2738 && ! volatile_refs_p (PATTERN (insn)))
2740 /* We don't really delete the insn; just ignore it. */
2741 last_ignored_compare = insn;
2742 break;
2748 /* If this is a conditional branch, maybe modify it
2749 if the cc's are in a nonstandard state
2750 so that it accomplishes the same thing that it would
2751 do straightforwardly if the cc's were set up normally. */
2753 if (cc_status.flags != 0
2754 && JUMP_P (insn)
2755 && GET_CODE (body) == SET
2756 && SET_DEST (body) == pc_rtx
2757 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2758 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2759 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2761 /* This function may alter the contents of its argument
2762 and clear some of the cc_status.flags bits.
2763 It may also return 1 meaning condition now always true
2764 or -1 meaning condition now always false
2765 or 2 meaning condition nontrivial but altered. */
2766 int result = alter_cond (XEXP (SET_SRC (body), 0));
2767 /* If condition now has fixed value, replace the IF_THEN_ELSE
2768 with its then-operand or its else-operand. */
2769 if (result == 1)
2770 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2771 if (result == -1)
2772 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2774 /* The jump is now either unconditional or a no-op.
2775 If it has become a no-op, don't try to output it.
2776 (It would not be recognized.) */
2777 if (SET_SRC (body) == pc_rtx)
2779 delete_insn (insn);
2780 break;
2782 else if (ANY_RETURN_P (SET_SRC (body)))
2783 /* Replace (set (pc) (return)) with (return). */
2784 PATTERN (insn) = body = SET_SRC (body);
2786 /* Rerecognize the instruction if it has changed. */
2787 if (result != 0)
2788 INSN_CODE (insn) = -1;
2791 /* If this is a conditional trap, maybe modify it if the cc's
2792 are in a nonstandard state so that it accomplishes the same
2793 thing that it would do straightforwardly if the cc's were
2794 set up normally. */
2795 if (cc_status.flags != 0
2796 && NONJUMP_INSN_P (insn)
2797 && GET_CODE (body) == TRAP_IF
2798 && COMPARISON_P (TRAP_CONDITION (body))
2799 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2801 /* This function may alter the contents of its argument
2802 and clear some of the cc_status.flags bits.
2803 It may also return 1 meaning condition now always true
2804 or -1 meaning condition now always false
2805 or 2 meaning condition nontrivial but altered. */
2806 int result = alter_cond (TRAP_CONDITION (body));
2808 /* If TRAP_CONDITION has become always false, delete the
2809 instruction. */
2810 if (result == -1)
2812 delete_insn (insn);
2813 break;
2816 /* If TRAP_CONDITION has become always true, replace
2817 TRAP_CONDITION with const_true_rtx. */
2818 if (result == 1)
2819 TRAP_CONDITION (body) = const_true_rtx;
2821 /* Rerecognize the instruction if it has changed. */
2822 if (result != 0)
2823 INSN_CODE (insn) = -1;
2826 /* Make same adjustments to instructions that examine the
2827 condition codes without jumping and instructions that
2828 handle conditional moves (if this machine has either one). */
2830 if (cc_status.flags != 0
2831 && set != 0)
2833 rtx cond_rtx, then_rtx, else_rtx;
2835 if (!JUMP_P (insn)
2836 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2838 cond_rtx = XEXP (SET_SRC (set), 0);
2839 then_rtx = XEXP (SET_SRC (set), 1);
2840 else_rtx = XEXP (SET_SRC (set), 2);
2842 else
2844 cond_rtx = SET_SRC (set);
2845 then_rtx = const_true_rtx;
2846 else_rtx = const0_rtx;
2849 if (COMPARISON_P (cond_rtx)
2850 && XEXP (cond_rtx, 0) == cc0_rtx)
2852 int result;
2853 result = alter_cond (cond_rtx);
2854 if (result == 1)
2855 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2856 else if (result == -1)
2857 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2858 else if (result == 2)
2859 INSN_CODE (insn) = -1;
2860 if (SET_DEST (set) == SET_SRC (set))
2861 delete_insn (insn);
2865 #endif
2867 /* Do machine-specific peephole optimizations if desired. */
2869 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2871 rtx_insn *next = peephole (insn);
2872 /* When peepholing, if there were notes within the peephole,
2873 emit them before the peephole. */
2874 if (next != 0 && next != NEXT_INSN (insn))
2876 rtx_insn *note, *prev = PREV_INSN (insn);
2878 for (note = NEXT_INSN (insn); note != next;
2879 note = NEXT_INSN (note))
2880 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2882 /* Put the notes in the proper position for a later
2883 rescan. For example, the SH target can do this
2884 when generating a far jump in a delayed branch
2885 sequence. */
2886 note = NEXT_INSN (insn);
2887 SET_PREV_INSN (note) = prev;
2888 SET_NEXT_INSN (prev) = note;
2889 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2890 SET_PREV_INSN (insn) = PREV_INSN (next);
2891 SET_NEXT_INSN (insn) = next;
2892 SET_PREV_INSN (next) = insn;
2895 /* PEEPHOLE might have changed this. */
2896 body = PATTERN (insn);
2899 /* Try to recognize the instruction.
2900 If successful, verify that the operands satisfy the
2901 constraints for the instruction. Crash if they don't,
2902 since `reload' should have changed them so that they do. */
2904 insn_code_number = recog_memoized (insn);
2905 cleanup_subreg_operands (insn);
2907 /* Dump the insn in the assembly for debugging (-dAP).
2908 If the final dump is requested as slim RTL, dump slim
2909 RTL to the assembly file also. */
2910 if (flag_dump_rtl_in_asm)
2912 print_rtx_head = ASM_COMMENT_START;
2913 if (! (dump_flags & TDF_SLIM))
2914 print_rtl_single (asm_out_file, insn);
2915 else
2916 dump_insn_slim (asm_out_file, insn);
2917 print_rtx_head = "";
2920 if (! constrain_operands_cached (insn, 1))
2921 fatal_insn_not_found (insn);
2923 /* Some target machines need to prescan each insn before
2924 it is output. */
2926 #ifdef FINAL_PRESCAN_INSN
2927 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2928 #endif
2930 if (targetm.have_conditional_execution ()
2931 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2932 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2934 #if HAVE_cc0
2935 cc_prev_status = cc_status;
2937 /* Update `cc_status' for this instruction.
2938 The instruction's output routine may change it further.
2939 If the output routine for a jump insn needs to depend
2940 on the cc status, it should look at cc_prev_status. */
2942 NOTICE_UPDATE_CC (body, insn);
2943 #endif
2945 current_output_insn = debug_insn = insn;
2947 /* Find the proper template for this insn. */
2948 templ = get_insn_template (insn_code_number, insn);
2950 /* If the C code returns 0, it means that it is a jump insn
2951 which follows a deleted test insn, and that test insn
2952 needs to be reinserted. */
2953 if (templ == 0)
2955 rtx_insn *prev;
2957 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2959 /* We have already processed the notes between the setter and
2960 the user. Make sure we don't process them again, this is
2961 particularly important if one of the notes is a block
2962 scope note or an EH note. */
2963 for (prev = insn;
2964 prev != last_ignored_compare;
2965 prev = PREV_INSN (prev))
2967 if (NOTE_P (prev))
2968 delete_insn (prev); /* Use delete_note. */
2971 return prev;
2974 /* If the template is the string "#", it means that this insn must
2975 be split. */
2976 if (templ[0] == '#' && templ[1] == '\0')
2978 rtx_insn *new_rtx = try_split (body, insn, 0);
2980 /* If we didn't split the insn, go away. */
2981 if (new_rtx == insn && PATTERN (new_rtx) == body)
2982 fatal_insn ("could not split insn", insn);
2984 /* If we have a length attribute, this instruction should have
2985 been split in shorten_branches, to ensure that we would have
2986 valid length info for the splitees. */
2987 gcc_assert (!HAVE_ATTR_length);
2989 return new_rtx;
2992 /* ??? This will put the directives in the wrong place if
2993 get_insn_template outputs assembly directly. However calling it
2994 before get_insn_template breaks if the insns is split. */
2995 if (targetm.asm_out.unwind_emit_before_insn
2996 && targetm.asm_out.unwind_emit)
2997 targetm.asm_out.unwind_emit (asm_out_file, insn);
2999 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3000 if (call_insn != NULL)
3002 rtx x = call_from_call_insn (call_insn);
3003 x = XEXP (x, 0);
3004 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3006 tree t;
3007 x = XEXP (x, 0);
3008 t = SYMBOL_REF_DECL (x);
3009 if (t)
3010 assemble_external (t);
3014 /* Output assembler code from the template. */
3015 output_asm_insn (templ, recog_data.operand);
3017 /* Some target machines need to postscan each insn after
3018 it is output. */
3019 if (targetm.asm_out.final_postscan_insn)
3020 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3021 recog_data.n_operands);
3023 if (!targetm.asm_out.unwind_emit_before_insn
3024 && targetm.asm_out.unwind_emit)
3025 targetm.asm_out.unwind_emit (asm_out_file, insn);
3027 /* Let the debug info back-end know about this call. We do this only
3028 after the instruction has been emitted because labels that may be
3029 created to reference the call instruction must appear after it. */
3030 if (call_insn != NULL && !DECL_IGNORED_P (current_function_decl))
3031 debug_hooks->var_location (insn);
3033 current_output_insn = debug_insn = 0;
3036 return NEXT_INSN (insn);
3039 /* Return whether a source line note needs to be emitted before INSN.
3040 Sets IS_STMT to TRUE if the line should be marked as a possible
3041 breakpoint location. */
3043 static bool
3044 notice_source_line (rtx_insn *insn, bool *is_stmt)
3046 const char *filename;
3047 int linenum;
3049 if (override_filename)
3051 filename = override_filename;
3052 linenum = override_linenum;
3054 else if (INSN_HAS_LOCATION (insn))
3056 expanded_location xloc = insn_location (insn);
3057 filename = xloc.file;
3058 linenum = xloc.line;
3060 else
3062 filename = NULL;
3063 linenum = 0;
3066 if (filename == NULL)
3067 return false;
3069 if (force_source_line
3070 || filename != last_filename
3071 || last_linenum != linenum)
3073 force_source_line = false;
3074 last_filename = filename;
3075 last_linenum = linenum;
3076 last_discriminator = discriminator;
3077 *is_stmt = true;
3078 high_block_linenum = MAX (last_linenum, high_block_linenum);
3079 high_function_linenum = MAX (last_linenum, high_function_linenum);
3080 return true;
3083 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3085 /* If the discriminator changed, but the line number did not,
3086 output the line table entry with is_stmt false so the
3087 debugger does not treat this as a breakpoint location. */
3088 last_discriminator = discriminator;
3089 *is_stmt = false;
3090 return true;
3093 return false;
3096 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3097 directly to the desired hard register. */
3099 void
3100 cleanup_subreg_operands (rtx_insn *insn)
3102 int i;
3103 bool changed = false;
3104 extract_insn_cached (insn);
3105 for (i = 0; i < recog_data.n_operands; i++)
3107 /* The following test cannot use recog_data.operand when testing
3108 for a SUBREG: the underlying object might have been changed
3109 already if we are inside a match_operator expression that
3110 matches the else clause. Instead we test the underlying
3111 expression directly. */
3112 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3114 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3115 changed = true;
3117 else if (GET_CODE (recog_data.operand[i]) == PLUS
3118 || GET_CODE (recog_data.operand[i]) == MULT
3119 || MEM_P (recog_data.operand[i]))
3120 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3123 for (i = 0; i < recog_data.n_dups; i++)
3125 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3127 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3128 changed = true;
3130 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3131 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3132 || MEM_P (*recog_data.dup_loc[i]))
3133 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3135 if (changed)
3136 df_insn_rescan (insn);
3139 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3140 the thing it is a subreg of. Do it anyway if FINAL_P. */
3143 alter_subreg (rtx *xp, bool final_p)
3145 rtx x = *xp;
3146 rtx y = SUBREG_REG (x);
3148 /* simplify_subreg does not remove subreg from volatile references.
3149 We are required to. */
3150 if (MEM_P (y))
3152 int offset = SUBREG_BYTE (x);
3154 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3155 contains 0 instead of the proper offset. See simplify_subreg. */
3156 if (offset == 0
3157 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3159 int difference = GET_MODE_SIZE (GET_MODE (y))
3160 - GET_MODE_SIZE (GET_MODE (x));
3161 if (WORDS_BIG_ENDIAN)
3162 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3163 if (BYTES_BIG_ENDIAN)
3164 offset += difference % UNITS_PER_WORD;
3167 if (final_p)
3168 *xp = adjust_address (y, GET_MODE (x), offset);
3169 else
3170 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3172 else if (REG_P (y) && HARD_REGISTER_P (y))
3174 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3175 SUBREG_BYTE (x));
3177 if (new_rtx != 0)
3178 *xp = new_rtx;
3179 else if (final_p && REG_P (y))
3181 /* Simplify_subreg can't handle some REG cases, but we have to. */
3182 unsigned int regno;
3183 HOST_WIDE_INT offset;
3185 regno = subreg_regno (x);
3186 if (subreg_lowpart_p (x))
3187 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3188 else
3189 offset = SUBREG_BYTE (x);
3190 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3194 return *xp;
3197 /* Do alter_subreg on all the SUBREGs contained in X. */
3199 static rtx
3200 walk_alter_subreg (rtx *xp, bool *changed)
3202 rtx x = *xp;
3203 switch (GET_CODE (x))
3205 case PLUS:
3206 case MULT:
3207 case AND:
3208 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3209 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3210 break;
3212 case MEM:
3213 case ZERO_EXTEND:
3214 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3215 break;
3217 case SUBREG:
3218 *changed = true;
3219 return alter_subreg (xp, true);
3221 default:
3222 break;
3225 return *xp;
3228 #if HAVE_cc0
3230 /* Given BODY, the body of a jump instruction, alter the jump condition
3231 as required by the bits that are set in cc_status.flags.
3232 Not all of the bits there can be handled at this level in all cases.
3234 The value is normally 0.
3235 1 means that the condition has become always true.
3236 -1 means that the condition has become always false.
3237 2 means that COND has been altered. */
3239 static int
3240 alter_cond (rtx cond)
3242 int value = 0;
3244 if (cc_status.flags & CC_REVERSED)
3246 value = 2;
3247 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3250 if (cc_status.flags & CC_INVERTED)
3252 value = 2;
3253 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3256 if (cc_status.flags & CC_NOT_POSITIVE)
3257 switch (GET_CODE (cond))
3259 case LE:
3260 case LEU:
3261 case GEU:
3262 /* Jump becomes unconditional. */
3263 return 1;
3265 case GT:
3266 case GTU:
3267 case LTU:
3268 /* Jump becomes no-op. */
3269 return -1;
3271 case GE:
3272 PUT_CODE (cond, EQ);
3273 value = 2;
3274 break;
3276 case LT:
3277 PUT_CODE (cond, NE);
3278 value = 2;
3279 break;
3281 default:
3282 break;
3285 if (cc_status.flags & CC_NOT_NEGATIVE)
3286 switch (GET_CODE (cond))
3288 case GE:
3289 case GEU:
3290 /* Jump becomes unconditional. */
3291 return 1;
3293 case LT:
3294 case LTU:
3295 /* Jump becomes no-op. */
3296 return -1;
3298 case LE:
3299 case LEU:
3300 PUT_CODE (cond, EQ);
3301 value = 2;
3302 break;
3304 case GT:
3305 case GTU:
3306 PUT_CODE (cond, NE);
3307 value = 2;
3308 break;
3310 default:
3311 break;
3314 if (cc_status.flags & CC_NO_OVERFLOW)
3315 switch (GET_CODE (cond))
3317 case GEU:
3318 /* Jump becomes unconditional. */
3319 return 1;
3321 case LEU:
3322 PUT_CODE (cond, EQ);
3323 value = 2;
3324 break;
3326 case GTU:
3327 PUT_CODE (cond, NE);
3328 value = 2;
3329 break;
3331 case LTU:
3332 /* Jump becomes no-op. */
3333 return -1;
3335 default:
3336 break;
3339 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3340 switch (GET_CODE (cond))
3342 default:
3343 gcc_unreachable ();
3345 case NE:
3346 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3347 value = 2;
3348 break;
3350 case EQ:
3351 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3352 value = 2;
3353 break;
3356 if (cc_status.flags & CC_NOT_SIGNED)
3357 /* The flags are valid if signed condition operators are converted
3358 to unsigned. */
3359 switch (GET_CODE (cond))
3361 case LE:
3362 PUT_CODE (cond, LEU);
3363 value = 2;
3364 break;
3366 case LT:
3367 PUT_CODE (cond, LTU);
3368 value = 2;
3369 break;
3371 case GT:
3372 PUT_CODE (cond, GTU);
3373 value = 2;
3374 break;
3376 case GE:
3377 PUT_CODE (cond, GEU);
3378 value = 2;
3379 break;
3381 default:
3382 break;
3385 return value;
3387 #endif
3389 /* Report inconsistency between the assembler template and the operands.
3390 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3392 void
3393 output_operand_lossage (const char *cmsgid, ...)
3395 char *fmt_string;
3396 char *new_message;
3397 const char *pfx_str;
3398 va_list ap;
3400 va_start (ap, cmsgid);
3402 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3403 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3404 new_message = xvasprintf (fmt_string, ap);
3406 if (this_is_asm_operands)
3407 error_for_asm (this_is_asm_operands, "%s", new_message);
3408 else
3409 internal_error ("%s", new_message);
3411 free (fmt_string);
3412 free (new_message);
3413 va_end (ap);
3416 /* Output of assembler code from a template, and its subroutines. */
3418 /* Annotate the assembly with a comment describing the pattern and
3419 alternative used. */
3421 static void
3422 output_asm_name (void)
3424 if (debug_insn)
3426 int num = INSN_CODE (debug_insn);
3427 fprintf (asm_out_file, "\t%s %d\t%s",
3428 ASM_COMMENT_START, INSN_UID (debug_insn),
3429 insn_data[num].name);
3430 if (insn_data[num].n_alternatives > 1)
3431 fprintf (asm_out_file, "/%d", which_alternative + 1);
3433 if (HAVE_ATTR_length)
3434 fprintf (asm_out_file, "\t[length = %d]",
3435 get_attr_length (debug_insn));
3437 /* Clear this so only the first assembler insn
3438 of any rtl insn will get the special comment for -dp. */
3439 debug_insn = 0;
3443 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3444 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3445 corresponds to the address of the object and 0 if to the object. */
3447 static tree
3448 get_mem_expr_from_op (rtx op, int *paddressp)
3450 tree expr;
3451 int inner_addressp;
3453 *paddressp = 0;
3455 if (REG_P (op))
3456 return REG_EXPR (op);
3457 else if (!MEM_P (op))
3458 return 0;
3460 if (MEM_EXPR (op) != 0)
3461 return MEM_EXPR (op);
3463 /* Otherwise we have an address, so indicate it and look at the address. */
3464 *paddressp = 1;
3465 op = XEXP (op, 0);
3467 /* First check if we have a decl for the address, then look at the right side
3468 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3469 But don't allow the address to itself be indirect. */
3470 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3471 return expr;
3472 else if (GET_CODE (op) == PLUS
3473 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3474 return expr;
3476 while (UNARY_P (op)
3477 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3478 op = XEXP (op, 0);
3480 expr = get_mem_expr_from_op (op, &inner_addressp);
3481 return inner_addressp ? 0 : expr;
3484 /* Output operand names for assembler instructions. OPERANDS is the
3485 operand vector, OPORDER is the order to write the operands, and NOPS
3486 is the number of operands to write. */
3488 static void
3489 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3491 int wrote = 0;
3492 int i;
3494 for (i = 0; i < nops; i++)
3496 int addressp;
3497 rtx op = operands[oporder[i]];
3498 tree expr = get_mem_expr_from_op (op, &addressp);
3500 fprintf (asm_out_file, "%c%s",
3501 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3502 wrote = 1;
3503 if (expr)
3505 fprintf (asm_out_file, "%s",
3506 addressp ? "*" : "");
3507 print_mem_expr (asm_out_file, expr);
3508 wrote = 1;
3510 else if (REG_P (op) && ORIGINAL_REGNO (op)
3511 && ORIGINAL_REGNO (op) != REGNO (op))
3512 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3516 #ifdef ASSEMBLER_DIALECT
3517 /* Helper function to parse assembler dialects in the asm string.
3518 This is called from output_asm_insn and asm_fprintf. */
3519 static const char *
3520 do_assembler_dialects (const char *p, int *dialect)
3522 char c = *(p - 1);
3524 switch (c)
3526 case '{':
3528 int i;
3530 if (*dialect)
3531 output_operand_lossage ("nested assembly dialect alternatives");
3532 else
3533 *dialect = 1;
3535 /* If we want the first dialect, do nothing. Otherwise, skip
3536 DIALECT_NUMBER of strings ending with '|'. */
3537 for (i = 0; i < dialect_number; i++)
3539 while (*p && *p != '}')
3541 if (*p == '|')
3543 p++;
3544 break;
3547 /* Skip over any character after a percent sign. */
3548 if (*p == '%')
3549 p++;
3550 if (*p)
3551 p++;
3554 if (*p == '}')
3555 break;
3558 if (*p == '\0')
3559 output_operand_lossage ("unterminated assembly dialect alternative");
3561 break;
3563 case '|':
3564 if (*dialect)
3566 /* Skip to close brace. */
3569 if (*p == '\0')
3571 output_operand_lossage ("unterminated assembly dialect alternative");
3572 break;
3575 /* Skip over any character after a percent sign. */
3576 if (*p == '%' && p[1])
3578 p += 2;
3579 continue;
3582 if (*p++ == '}')
3583 break;
3585 while (1);
3587 *dialect = 0;
3589 else
3590 putc (c, asm_out_file);
3591 break;
3593 case '}':
3594 if (! *dialect)
3595 putc (c, asm_out_file);
3596 *dialect = 0;
3597 break;
3598 default:
3599 gcc_unreachable ();
3602 return p;
3604 #endif
3606 /* Output text from TEMPLATE to the assembler output file,
3607 obeying %-directions to substitute operands taken from
3608 the vector OPERANDS.
3610 %N (for N a digit) means print operand N in usual manner.
3611 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3612 and print the label name with no punctuation.
3613 %cN means require operand N to be a constant
3614 and print the constant expression with no punctuation.
3615 %aN means expect operand N to be a memory address
3616 (not a memory reference!) and print a reference
3617 to that address.
3618 %nN means expect operand N to be a constant
3619 and print a constant expression for minus the value
3620 of the operand, with no other punctuation. */
3622 void
3623 output_asm_insn (const char *templ, rtx *operands)
3625 const char *p;
3626 int c;
3627 #ifdef ASSEMBLER_DIALECT
3628 int dialect = 0;
3629 #endif
3630 int oporder[MAX_RECOG_OPERANDS];
3631 char opoutput[MAX_RECOG_OPERANDS];
3632 int ops = 0;
3634 /* An insn may return a null string template
3635 in a case where no assembler code is needed. */
3636 if (*templ == 0)
3637 return;
3639 memset (opoutput, 0, sizeof opoutput);
3640 p = templ;
3641 putc ('\t', asm_out_file);
3643 #ifdef ASM_OUTPUT_OPCODE
3644 ASM_OUTPUT_OPCODE (asm_out_file, p);
3645 #endif
3647 while ((c = *p++))
3648 switch (c)
3650 case '\n':
3651 if (flag_verbose_asm)
3652 output_asm_operand_names (operands, oporder, ops);
3653 if (flag_print_asm_name)
3654 output_asm_name ();
3656 ops = 0;
3657 memset (opoutput, 0, sizeof opoutput);
3659 putc (c, asm_out_file);
3660 #ifdef ASM_OUTPUT_OPCODE
3661 while ((c = *p) == '\t')
3663 putc (c, asm_out_file);
3664 p++;
3666 ASM_OUTPUT_OPCODE (asm_out_file, p);
3667 #endif
3668 break;
3670 #ifdef ASSEMBLER_DIALECT
3671 case '{':
3672 case '}':
3673 case '|':
3674 p = do_assembler_dialects (p, &dialect);
3675 break;
3676 #endif
3678 case '%':
3679 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3680 if ASSEMBLER_DIALECT defined and these characters have a special
3681 meaning as dialect delimiters.*/
3682 if (*p == '%'
3683 #ifdef ASSEMBLER_DIALECT
3684 || *p == '{' || *p == '}' || *p == '|'
3685 #endif
3688 putc (*p, asm_out_file);
3689 p++;
3691 /* %= outputs a number which is unique to each insn in the entire
3692 compilation. This is useful for making local labels that are
3693 referred to more than once in a given insn. */
3694 else if (*p == '=')
3696 p++;
3697 fprintf (asm_out_file, "%d", insn_counter);
3699 /* % followed by a letter and some digits
3700 outputs an operand in a special way depending on the letter.
3701 Letters `acln' are implemented directly.
3702 Other letters are passed to `output_operand' so that
3703 the TARGET_PRINT_OPERAND hook can define them. */
3704 else if (ISALPHA (*p))
3706 int letter = *p++;
3707 unsigned long opnum;
3708 char *endptr;
3710 opnum = strtoul (p, &endptr, 10);
3712 if (endptr == p)
3713 output_operand_lossage ("operand number missing "
3714 "after %%-letter");
3715 else if (this_is_asm_operands && opnum >= insn_noperands)
3716 output_operand_lossage ("operand number out of range");
3717 else if (letter == 'l')
3718 output_asm_label (operands[opnum]);
3719 else if (letter == 'a')
3720 output_address (VOIDmode, operands[opnum]);
3721 else if (letter == 'c')
3723 if (CONSTANT_ADDRESS_P (operands[opnum]))
3724 output_addr_const (asm_out_file, operands[opnum]);
3725 else
3726 output_operand (operands[opnum], 'c');
3728 else if (letter == 'n')
3730 if (CONST_INT_P (operands[opnum]))
3731 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3732 - INTVAL (operands[opnum]));
3733 else
3735 putc ('-', asm_out_file);
3736 output_addr_const (asm_out_file, operands[opnum]);
3739 else
3740 output_operand (operands[opnum], letter);
3742 if (!opoutput[opnum])
3743 oporder[ops++] = opnum;
3744 opoutput[opnum] = 1;
3746 p = endptr;
3747 c = *p;
3749 /* % followed by a digit outputs an operand the default way. */
3750 else if (ISDIGIT (*p))
3752 unsigned long opnum;
3753 char *endptr;
3755 opnum = strtoul (p, &endptr, 10);
3756 if (this_is_asm_operands && opnum >= insn_noperands)
3757 output_operand_lossage ("operand number out of range");
3758 else
3759 output_operand (operands[opnum], 0);
3761 if (!opoutput[opnum])
3762 oporder[ops++] = opnum;
3763 opoutput[opnum] = 1;
3765 p = endptr;
3766 c = *p;
3768 /* % followed by punctuation: output something for that
3769 punctuation character alone, with no operand. The
3770 TARGET_PRINT_OPERAND hook decides what is actually done. */
3771 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3772 output_operand (NULL_RTX, *p++);
3773 else
3774 output_operand_lossage ("invalid %%-code");
3775 break;
3777 default:
3778 putc (c, asm_out_file);
3781 /* Write out the variable names for operands, if we know them. */
3782 if (flag_verbose_asm)
3783 output_asm_operand_names (operands, oporder, ops);
3784 if (flag_print_asm_name)
3785 output_asm_name ();
3787 putc ('\n', asm_out_file);
3790 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3792 void
3793 output_asm_label (rtx x)
3795 char buf[256];
3797 if (GET_CODE (x) == LABEL_REF)
3798 x = LABEL_REF_LABEL (x);
3799 if (LABEL_P (x)
3800 || (NOTE_P (x)
3801 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3802 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3803 else
3804 output_operand_lossage ("'%%l' operand isn't a label");
3806 assemble_name (asm_out_file, buf);
3809 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3811 void
3812 mark_symbol_refs_as_used (rtx x)
3814 subrtx_iterator::array_type array;
3815 FOR_EACH_SUBRTX (iter, array, x, ALL)
3817 const_rtx x = *iter;
3818 if (GET_CODE (x) == SYMBOL_REF)
3819 if (tree t = SYMBOL_REF_DECL (x))
3820 assemble_external (t);
3824 /* Print operand X using machine-dependent assembler syntax.
3825 CODE is a non-digit that preceded the operand-number in the % spec,
3826 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3827 between the % and the digits.
3828 When CODE is a non-letter, X is 0.
3830 The meanings of the letters are machine-dependent and controlled
3831 by TARGET_PRINT_OPERAND. */
3833 void
3834 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3836 if (x && GET_CODE (x) == SUBREG)
3837 x = alter_subreg (&x, true);
3839 /* X must not be a pseudo reg. */
3840 if (!targetm.no_register_allocation)
3841 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3843 targetm.asm_out.print_operand (asm_out_file, x, code);
3845 if (x == NULL_RTX)
3846 return;
3848 mark_symbol_refs_as_used (x);
3851 /* Print a memory reference operand for address X using
3852 machine-dependent assembler syntax. */
3854 void
3855 output_address (machine_mode mode, rtx x)
3857 bool changed = false;
3858 walk_alter_subreg (&x, &changed);
3859 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
3862 /* Print an integer constant expression in assembler syntax.
3863 Addition and subtraction are the only arithmetic
3864 that may appear in these expressions. */
3866 void
3867 output_addr_const (FILE *file, rtx x)
3869 char buf[256];
3871 restart:
3872 switch (GET_CODE (x))
3874 case PC:
3875 putc ('.', file);
3876 break;
3878 case SYMBOL_REF:
3879 if (SYMBOL_REF_DECL (x))
3880 assemble_external (SYMBOL_REF_DECL (x));
3881 #ifdef ASM_OUTPUT_SYMBOL_REF
3882 ASM_OUTPUT_SYMBOL_REF (file, x);
3883 #else
3884 assemble_name (file, XSTR (x, 0));
3885 #endif
3886 break;
3888 case LABEL_REF:
3889 x = LABEL_REF_LABEL (x);
3890 /* Fall through. */
3891 case CODE_LABEL:
3892 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3893 #ifdef ASM_OUTPUT_LABEL_REF
3894 ASM_OUTPUT_LABEL_REF (file, buf);
3895 #else
3896 assemble_name (file, buf);
3897 #endif
3898 break;
3900 case CONST_INT:
3901 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3902 break;
3904 case CONST:
3905 /* This used to output parentheses around the expression,
3906 but that does not work on the 386 (either ATT or BSD assembler). */
3907 output_addr_const (file, XEXP (x, 0));
3908 break;
3910 case CONST_WIDE_INT:
3911 /* We do not know the mode here so we have to use a round about
3912 way to build a wide-int to get it printed properly. */
3914 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3915 CONST_WIDE_INT_NUNITS (x),
3916 CONST_WIDE_INT_NUNITS (x)
3917 * HOST_BITS_PER_WIDE_INT,
3918 false);
3919 print_decs (w, file);
3921 break;
3923 case CONST_DOUBLE:
3924 if (CONST_DOUBLE_AS_INT_P (x))
3926 /* We can use %d if the number is one word and positive. */
3927 if (CONST_DOUBLE_HIGH (x))
3928 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3929 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3930 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3931 else if (CONST_DOUBLE_LOW (x) < 0)
3932 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3933 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3934 else
3935 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3937 else
3938 /* We can't handle floating point constants;
3939 PRINT_OPERAND must handle them. */
3940 output_operand_lossage ("floating constant misused");
3941 break;
3943 case CONST_FIXED:
3944 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3945 break;
3947 case PLUS:
3948 /* Some assemblers need integer constants to appear last (eg masm). */
3949 if (CONST_INT_P (XEXP (x, 0)))
3951 output_addr_const (file, XEXP (x, 1));
3952 if (INTVAL (XEXP (x, 0)) >= 0)
3953 fprintf (file, "+");
3954 output_addr_const (file, XEXP (x, 0));
3956 else
3958 output_addr_const (file, XEXP (x, 0));
3959 if (!CONST_INT_P (XEXP (x, 1))
3960 || INTVAL (XEXP (x, 1)) >= 0)
3961 fprintf (file, "+");
3962 output_addr_const (file, XEXP (x, 1));
3964 break;
3966 case MINUS:
3967 /* Avoid outputting things like x-x or x+5-x,
3968 since some assemblers can't handle that. */
3969 x = simplify_subtraction (x);
3970 if (GET_CODE (x) != MINUS)
3971 goto restart;
3973 output_addr_const (file, XEXP (x, 0));
3974 fprintf (file, "-");
3975 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3976 || GET_CODE (XEXP (x, 1)) == PC
3977 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3978 output_addr_const (file, XEXP (x, 1));
3979 else
3981 fputs (targetm.asm_out.open_paren, file);
3982 output_addr_const (file, XEXP (x, 1));
3983 fputs (targetm.asm_out.close_paren, file);
3985 break;
3987 case ZERO_EXTEND:
3988 case SIGN_EXTEND:
3989 case SUBREG:
3990 case TRUNCATE:
3991 output_addr_const (file, XEXP (x, 0));
3992 break;
3994 default:
3995 if (targetm.asm_out.output_addr_const_extra (file, x))
3996 break;
3998 output_operand_lossage ("invalid expression as operand");
4002 /* Output a quoted string. */
4004 void
4005 output_quoted_string (FILE *asm_file, const char *string)
4007 #ifdef OUTPUT_QUOTED_STRING
4008 OUTPUT_QUOTED_STRING (asm_file, string);
4009 #else
4010 char c;
4012 putc ('\"', asm_file);
4013 while ((c = *string++) != 0)
4015 if (ISPRINT (c))
4017 if (c == '\"' || c == '\\')
4018 putc ('\\', asm_file);
4019 putc (c, asm_file);
4021 else
4022 fprintf (asm_file, "\\%03o", (unsigned char) c);
4024 putc ('\"', asm_file);
4025 #endif
4028 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4030 void
4031 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4033 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4034 if (value == 0)
4035 putc ('0', f);
4036 else
4038 char *p = buf + sizeof (buf);
4040 *--p = "0123456789abcdef"[value % 16];
4041 while ((value /= 16) != 0);
4042 *--p = 'x';
4043 *--p = '0';
4044 fwrite (p, 1, buf + sizeof (buf) - p, f);
4048 /* Internal function that prints an unsigned long in decimal in reverse.
4049 The output string IS NOT null-terminated. */
4051 static int
4052 sprint_ul_rev (char *s, unsigned long value)
4054 int i = 0;
4057 s[i] = "0123456789"[value % 10];
4058 value /= 10;
4059 i++;
4060 /* alternate version, without modulo */
4061 /* oldval = value; */
4062 /* value /= 10; */
4063 /* s[i] = "0123456789" [oldval - 10*value]; */
4064 /* i++ */
4066 while (value != 0);
4067 return i;
4070 /* Write an unsigned long as decimal to a file, fast. */
4072 void
4073 fprint_ul (FILE *f, unsigned long value)
4075 /* python says: len(str(2**64)) == 20 */
4076 char s[20];
4077 int i;
4079 i = sprint_ul_rev (s, value);
4081 /* It's probably too small to bother with string reversal and fputs. */
4084 i--;
4085 putc (s[i], f);
4087 while (i != 0);
4090 /* Write an unsigned long as decimal to a string, fast.
4091 s must be wide enough to not overflow, at least 21 chars.
4092 Returns the length of the string (without terminating '\0'). */
4095 sprint_ul (char *s, unsigned long value)
4097 int len = sprint_ul_rev (s, value);
4098 s[len] = '\0';
4100 std::reverse (s, s + len);
4101 return len;
4104 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4105 %R prints the value of REGISTER_PREFIX.
4106 %L prints the value of LOCAL_LABEL_PREFIX.
4107 %U prints the value of USER_LABEL_PREFIX.
4108 %I prints the value of IMMEDIATE_PREFIX.
4109 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4110 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4112 We handle alternate assembler dialects here, just like output_asm_insn. */
4114 void
4115 asm_fprintf (FILE *file, const char *p, ...)
4117 char buf[10];
4118 char *q, c;
4119 #ifdef ASSEMBLER_DIALECT
4120 int dialect = 0;
4121 #endif
4122 va_list argptr;
4124 va_start (argptr, p);
4126 buf[0] = '%';
4128 while ((c = *p++))
4129 switch (c)
4131 #ifdef ASSEMBLER_DIALECT
4132 case '{':
4133 case '}':
4134 case '|':
4135 p = do_assembler_dialects (p, &dialect);
4136 break;
4137 #endif
4139 case '%':
4140 c = *p++;
4141 q = &buf[1];
4142 while (strchr ("-+ #0", c))
4144 *q++ = c;
4145 c = *p++;
4147 while (ISDIGIT (c) || c == '.')
4149 *q++ = c;
4150 c = *p++;
4152 switch (c)
4154 case '%':
4155 putc ('%', file);
4156 break;
4158 case 'd': case 'i': case 'u':
4159 case 'x': case 'X': case 'o':
4160 case 'c':
4161 *q++ = c;
4162 *q = 0;
4163 fprintf (file, buf, va_arg (argptr, int));
4164 break;
4166 case 'w':
4167 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4168 'o' cases, but we do not check for those cases. It
4169 means that the value is a HOST_WIDE_INT, which may be
4170 either `long' or `long long'. */
4171 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4172 q += strlen (HOST_WIDE_INT_PRINT);
4173 *q++ = *p++;
4174 *q = 0;
4175 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4176 break;
4178 case 'l':
4179 *q++ = c;
4180 #ifdef HAVE_LONG_LONG
4181 if (*p == 'l')
4183 *q++ = *p++;
4184 *q++ = *p++;
4185 *q = 0;
4186 fprintf (file, buf, va_arg (argptr, long long));
4188 else
4189 #endif
4191 *q++ = *p++;
4192 *q = 0;
4193 fprintf (file, buf, va_arg (argptr, long));
4196 break;
4198 case 's':
4199 *q++ = c;
4200 *q = 0;
4201 fprintf (file, buf, va_arg (argptr, char *));
4202 break;
4204 case 'O':
4205 #ifdef ASM_OUTPUT_OPCODE
4206 ASM_OUTPUT_OPCODE (asm_out_file, p);
4207 #endif
4208 break;
4210 case 'R':
4211 #ifdef REGISTER_PREFIX
4212 fprintf (file, "%s", REGISTER_PREFIX);
4213 #endif
4214 break;
4216 case 'I':
4217 #ifdef IMMEDIATE_PREFIX
4218 fprintf (file, "%s", IMMEDIATE_PREFIX);
4219 #endif
4220 break;
4222 case 'L':
4223 #ifdef LOCAL_LABEL_PREFIX
4224 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4225 #endif
4226 break;
4228 case 'U':
4229 fputs (user_label_prefix, file);
4230 break;
4232 #ifdef ASM_FPRINTF_EXTENSIONS
4233 /* Uppercase letters are reserved for general use by asm_fprintf
4234 and so are not available to target specific code. In order to
4235 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4236 they are defined here. As they get turned into real extensions
4237 to asm_fprintf they should be removed from this list. */
4238 case 'A': case 'B': case 'C': case 'D': case 'E':
4239 case 'F': case 'G': case 'H': case 'J': case 'K':
4240 case 'M': case 'N': case 'P': case 'Q': case 'S':
4241 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4242 break;
4244 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4245 #endif
4246 default:
4247 gcc_unreachable ();
4249 break;
4251 default:
4252 putc (c, file);
4254 va_end (argptr);
4257 /* Return nonzero if this function has no function calls. */
4260 leaf_function_p (void)
4262 rtx_insn *insn;
4264 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4265 functions even if they call mcount. */
4266 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4267 return 0;
4269 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4271 if (CALL_P (insn)
4272 && ! SIBLING_CALL_P (insn))
4273 return 0;
4274 if (NONJUMP_INSN_P (insn)
4275 && GET_CODE (PATTERN (insn)) == SEQUENCE
4276 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4277 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4278 return 0;
4281 return 1;
4284 /* Return 1 if branch is a forward branch.
4285 Uses insn_shuid array, so it works only in the final pass. May be used by
4286 output templates to customary add branch prediction hints.
4289 final_forward_branch_p (rtx_insn *insn)
4291 int insn_id, label_id;
4293 gcc_assert (uid_shuid);
4294 insn_id = INSN_SHUID (insn);
4295 label_id = INSN_SHUID (JUMP_LABEL (insn));
4296 /* We've hit some insns that does not have id information available. */
4297 gcc_assert (insn_id && label_id);
4298 return insn_id < label_id;
4301 /* On some machines, a function with no call insns
4302 can run faster if it doesn't create its own register window.
4303 When output, the leaf function should use only the "output"
4304 registers. Ordinarily, the function would be compiled to use
4305 the "input" registers to find its arguments; it is a candidate
4306 for leaf treatment if it uses only the "input" registers.
4307 Leaf function treatment means renumbering so the function
4308 uses the "output" registers instead. */
4310 #ifdef LEAF_REGISTERS
4312 /* Return 1 if this function uses only the registers that can be
4313 safely renumbered. */
4316 only_leaf_regs_used (void)
4318 int i;
4319 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4321 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4322 if ((df_regs_ever_live_p (i) || global_regs[i])
4323 && ! permitted_reg_in_leaf_functions[i])
4324 return 0;
4326 if (crtl->uses_pic_offset_table
4327 && pic_offset_table_rtx != 0
4328 && REG_P (pic_offset_table_rtx)
4329 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4330 return 0;
4332 return 1;
4335 /* Scan all instructions and renumber all registers into those
4336 available in leaf functions. */
4338 static void
4339 leaf_renumber_regs (rtx_insn *first)
4341 rtx_insn *insn;
4343 /* Renumber only the actual patterns.
4344 The reg-notes can contain frame pointer refs,
4345 and renumbering them could crash, and should not be needed. */
4346 for (insn = first; insn; insn = NEXT_INSN (insn))
4347 if (INSN_P (insn))
4348 leaf_renumber_regs_insn (PATTERN (insn));
4351 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4352 available in leaf functions. */
4354 void
4355 leaf_renumber_regs_insn (rtx in_rtx)
4357 int i, j;
4358 const char *format_ptr;
4360 if (in_rtx == 0)
4361 return;
4363 /* Renumber all input-registers into output-registers.
4364 renumbered_regs would be 1 for an output-register;
4365 they */
4367 if (REG_P (in_rtx))
4369 int newreg;
4371 /* Don't renumber the same reg twice. */
4372 if (in_rtx->used)
4373 return;
4375 newreg = REGNO (in_rtx);
4376 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4377 to reach here as part of a REG_NOTE. */
4378 if (newreg >= FIRST_PSEUDO_REGISTER)
4380 in_rtx->used = 1;
4381 return;
4383 newreg = LEAF_REG_REMAP (newreg);
4384 gcc_assert (newreg >= 0);
4385 df_set_regs_ever_live (REGNO (in_rtx), false);
4386 df_set_regs_ever_live (newreg, true);
4387 SET_REGNO (in_rtx, newreg);
4388 in_rtx->used = 1;
4389 return;
4392 if (INSN_P (in_rtx))
4394 /* Inside a SEQUENCE, we find insns.
4395 Renumber just the patterns of these insns,
4396 just as we do for the top-level insns. */
4397 leaf_renumber_regs_insn (PATTERN (in_rtx));
4398 return;
4401 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4403 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4404 switch (*format_ptr++)
4406 case 'e':
4407 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4408 break;
4410 case 'E':
4411 if (NULL != XVEC (in_rtx, i))
4413 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4414 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4416 break;
4418 case 'S':
4419 case 's':
4420 case '0':
4421 case 'i':
4422 case 'w':
4423 case 'n':
4424 case 'u':
4425 break;
4427 default:
4428 gcc_unreachable ();
4431 #endif
4433 /* Turn the RTL into assembly. */
4434 static unsigned int
4435 rest_of_handle_final (void)
4437 const char *fnname = get_fnname_from_decl (current_function_decl);
4439 assemble_start_function (current_function_decl, fnname);
4440 final_start_function (get_insns (), asm_out_file, optimize);
4441 final (get_insns (), asm_out_file, optimize);
4442 if (flag_ipa_ra)
4443 collect_fn_hard_reg_usage ();
4444 final_end_function ();
4446 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4447 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4448 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4449 output_function_exception_table (fnname);
4451 assemble_end_function (current_function_decl, fnname);
4453 user_defined_section_attribute = false;
4455 /* Free up reg info memory. */
4456 free_reg_info ();
4458 if (! quiet_flag)
4459 fflush (asm_out_file);
4461 /* Write DBX symbols if requested. */
4463 /* Note that for those inline functions where we don't initially
4464 know for certain that we will be generating an out-of-line copy,
4465 the first invocation of this routine (rest_of_compilation) will
4466 skip over this code by doing a `goto exit_rest_of_compilation;'.
4467 Later on, wrapup_global_declarations will (indirectly) call
4468 rest_of_compilation again for those inline functions that need
4469 to have out-of-line copies generated. During that call, we
4470 *will* be routed past here. */
4472 timevar_push (TV_SYMOUT);
4473 if (!DECL_IGNORED_P (current_function_decl))
4474 debug_hooks->function_decl (current_function_decl);
4475 timevar_pop (TV_SYMOUT);
4477 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4478 DECL_INITIAL (current_function_decl) = error_mark_node;
4480 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4481 && targetm.have_ctors_dtors)
4482 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4483 decl_init_priority_lookup
4484 (current_function_decl));
4485 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4486 && targetm.have_ctors_dtors)
4487 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4488 decl_fini_priority_lookup
4489 (current_function_decl));
4490 return 0;
4493 namespace {
4495 const pass_data pass_data_final =
4497 RTL_PASS, /* type */
4498 "final", /* name */
4499 OPTGROUP_NONE, /* optinfo_flags */
4500 TV_FINAL, /* tv_id */
4501 0, /* properties_required */
4502 0, /* properties_provided */
4503 0, /* properties_destroyed */
4504 0, /* todo_flags_start */
4505 0, /* todo_flags_finish */
4508 class pass_final : public rtl_opt_pass
4510 public:
4511 pass_final (gcc::context *ctxt)
4512 : rtl_opt_pass (pass_data_final, ctxt)
4515 /* opt_pass methods: */
4516 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4518 }; // class pass_final
4520 } // anon namespace
4522 rtl_opt_pass *
4523 make_pass_final (gcc::context *ctxt)
4525 return new pass_final (ctxt);
4529 static unsigned int
4530 rest_of_handle_shorten_branches (void)
4532 /* Shorten branches. */
4533 shorten_branches (get_insns ());
4534 return 0;
4537 namespace {
4539 const pass_data pass_data_shorten_branches =
4541 RTL_PASS, /* type */
4542 "shorten", /* name */
4543 OPTGROUP_NONE, /* optinfo_flags */
4544 TV_SHORTEN_BRANCH, /* tv_id */
4545 0, /* properties_required */
4546 0, /* properties_provided */
4547 0, /* properties_destroyed */
4548 0, /* todo_flags_start */
4549 0, /* todo_flags_finish */
4552 class pass_shorten_branches : public rtl_opt_pass
4554 public:
4555 pass_shorten_branches (gcc::context *ctxt)
4556 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4559 /* opt_pass methods: */
4560 virtual unsigned int execute (function *)
4562 return rest_of_handle_shorten_branches ();
4565 }; // class pass_shorten_branches
4567 } // anon namespace
4569 rtl_opt_pass *
4570 make_pass_shorten_branches (gcc::context *ctxt)
4572 return new pass_shorten_branches (ctxt);
4576 static unsigned int
4577 rest_of_clean_state (void)
4579 rtx_insn *insn, *next;
4580 FILE *final_output = NULL;
4581 int save_unnumbered = flag_dump_unnumbered;
4582 int save_noaddr = flag_dump_noaddr;
4584 if (flag_dump_final_insns)
4586 final_output = fopen (flag_dump_final_insns, "a");
4587 if (!final_output)
4589 error ("could not open final insn dump file %qs: %m",
4590 flag_dump_final_insns);
4591 flag_dump_final_insns = NULL;
4593 else
4595 flag_dump_noaddr = flag_dump_unnumbered = 1;
4596 if (flag_compare_debug_opt || flag_compare_debug)
4597 dump_flags |= TDF_NOUID;
4598 dump_function_header (final_output, current_function_decl,
4599 dump_flags);
4600 final_insns_dump_p = true;
4602 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4603 if (LABEL_P (insn))
4604 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4605 else
4607 if (NOTE_P (insn))
4608 set_block_for_insn (insn, NULL);
4609 INSN_UID (insn) = 0;
4614 /* It is very important to decompose the RTL instruction chain here:
4615 debug information keeps pointing into CODE_LABEL insns inside the function
4616 body. If these remain pointing to the other insns, we end up preserving
4617 whole RTL chain and attached detailed debug info in memory. */
4618 for (insn = get_insns (); insn; insn = next)
4620 next = NEXT_INSN (insn);
4621 SET_NEXT_INSN (insn) = NULL;
4622 SET_PREV_INSN (insn) = NULL;
4624 if (final_output
4625 && (!NOTE_P (insn) ||
4626 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4627 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4628 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4629 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4630 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4631 print_rtl_single (final_output, insn);
4634 if (final_output)
4636 flag_dump_noaddr = save_noaddr;
4637 flag_dump_unnumbered = save_unnumbered;
4638 final_insns_dump_p = false;
4640 if (fclose (final_output))
4642 error ("could not close final insn dump file %qs: %m",
4643 flag_dump_final_insns);
4644 flag_dump_final_insns = NULL;
4648 /* In case the function was not output,
4649 don't leave any temporary anonymous types
4650 queued up for sdb output. */
4651 if (SDB_DEBUGGING_INFO && write_symbols == SDB_DEBUG)
4652 sdbout_types (NULL_TREE);
4654 flag_rerun_cse_after_global_opts = 0;
4655 reload_completed = 0;
4656 epilogue_completed = 0;
4657 #ifdef STACK_REGS
4658 regstack_completed = 0;
4659 #endif
4661 /* Clear out the insn_length contents now that they are no
4662 longer valid. */
4663 init_insn_lengths ();
4665 /* Show no temporary slots allocated. */
4666 init_temp_slots ();
4668 free_bb_for_insn ();
4670 delete_tree_ssa (cfun);
4672 /* We can reduce stack alignment on call site only when we are sure that
4673 the function body just produced will be actually used in the final
4674 executable. */
4675 if (decl_binds_to_current_def_p (current_function_decl))
4677 unsigned int pref = crtl->preferred_stack_boundary;
4678 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4679 pref = crtl->stack_alignment_needed;
4680 cgraph_node::rtl_info (current_function_decl)
4681 ->preferred_incoming_stack_boundary = pref;
4684 /* Make sure volatile mem refs aren't considered valid operands for
4685 arithmetic insns. We must call this here if this is a nested inline
4686 function, since the above code leaves us in the init_recog state,
4687 and the function context push/pop code does not save/restore volatile_ok.
4689 ??? Maybe it isn't necessary for expand_start_function to call this
4690 anymore if we do it here? */
4692 init_recog_no_volatile ();
4694 /* We're done with this function. Free up memory if we can. */
4695 free_after_parsing (cfun);
4696 free_after_compilation (cfun);
4697 return 0;
4700 namespace {
4702 const pass_data pass_data_clean_state =
4704 RTL_PASS, /* type */
4705 "*clean_state", /* name */
4706 OPTGROUP_NONE, /* optinfo_flags */
4707 TV_FINAL, /* tv_id */
4708 0, /* properties_required */
4709 0, /* properties_provided */
4710 PROP_rtl, /* properties_destroyed */
4711 0, /* todo_flags_start */
4712 0, /* todo_flags_finish */
4715 class pass_clean_state : public rtl_opt_pass
4717 public:
4718 pass_clean_state (gcc::context *ctxt)
4719 : rtl_opt_pass (pass_data_clean_state, ctxt)
4722 /* opt_pass methods: */
4723 virtual unsigned int execute (function *)
4725 return rest_of_clean_state ();
4728 }; // class pass_clean_state
4730 } // anon namespace
4732 rtl_opt_pass *
4733 make_pass_clean_state (gcc::context *ctxt)
4735 return new pass_clean_state (ctxt);
4738 /* Return true if INSN is a call to the current function. */
4740 static bool
4741 self_recursive_call_p (rtx_insn *insn)
4743 tree fndecl = get_call_fndecl (insn);
4744 return (fndecl == current_function_decl
4745 && decl_binds_to_current_def_p (fndecl));
4748 /* Collect hard register usage for the current function. */
4750 static void
4751 collect_fn_hard_reg_usage (void)
4753 rtx_insn *insn;
4754 #ifdef STACK_REGS
4755 int i;
4756 #endif
4757 struct cgraph_rtl_info *node;
4758 HARD_REG_SET function_used_regs;
4760 /* ??? To be removed when all the ports have been fixed. */
4761 if (!targetm.call_fusage_contains_non_callee_clobbers)
4762 return;
4764 CLEAR_HARD_REG_SET (function_used_regs);
4766 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4768 HARD_REG_SET insn_used_regs;
4770 if (!NONDEBUG_INSN_P (insn))
4771 continue;
4773 if (CALL_P (insn)
4774 && !self_recursive_call_p (insn))
4776 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4777 call_used_reg_set))
4778 return;
4780 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4783 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4784 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4787 /* Be conservative - mark fixed and global registers as used. */
4788 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4790 #ifdef STACK_REGS
4791 /* Handle STACK_REGS conservatively, since the df-framework does not
4792 provide accurate information for them. */
4794 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4795 SET_HARD_REG_BIT (function_used_regs, i);
4796 #endif
4798 /* The information we have gathered is only interesting if it exposes a
4799 register from the call_used_regs that is not used in this function. */
4800 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4801 return;
4803 node = cgraph_node::rtl_info (current_function_decl);
4804 gcc_assert (node != NULL);
4806 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4807 node->function_used_regs_valid = 1;
4810 /* Get the declaration of the function called by INSN. */
4812 static tree
4813 get_call_fndecl (rtx_insn *insn)
4815 rtx note, datum;
4817 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4818 if (note == NULL_RTX)
4819 return NULL_TREE;
4821 datum = XEXP (note, 0);
4822 if (datum != NULL_RTX)
4823 return SYMBOL_REF_DECL (datum);
4825 return NULL_TREE;
4828 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4829 call targets that can be overwritten. */
4831 static struct cgraph_rtl_info *
4832 get_call_cgraph_rtl_info (rtx_insn *insn)
4834 tree fndecl;
4836 if (insn == NULL_RTX)
4837 return NULL;
4839 fndecl = get_call_fndecl (insn);
4840 if (fndecl == NULL_TREE
4841 || !decl_binds_to_current_def_p (fndecl))
4842 return NULL;
4844 return cgraph_node::rtl_info (fndecl);
4847 /* Find hard registers used by function call instruction INSN, and return them
4848 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4850 bool
4851 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
4852 HARD_REG_SET default_set)
4854 if (flag_ipa_ra)
4856 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4857 if (node != NULL
4858 && node->function_used_regs_valid)
4860 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4861 AND_HARD_REG_SET (*reg_set, default_set);
4862 return true;
4866 COPY_HARD_REG_SET (*reg_set, default_set);
4867 return false;