2017-04-10 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / lra-constraints.c
blob82b1ed0d403122dc58898d0e6ac678ff9ea4b725
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "target.h"
114 #include "rtl.h"
115 #include "tree.h"
116 #include "predict.h"
117 #include "df.h"
118 #include "memmodel.h"
119 #include "tm_p.h"
120 #include "expmed.h"
121 #include "optabs.h"
122 #include "regs.h"
123 #include "ira.h"
124 #include "recog.h"
125 #include "output.h"
126 #include "addresses.h"
127 #include "expr.h"
128 #include "cfgrtl.h"
129 #include "rtl-error.h"
130 #include "params.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
137 reload insns. */
138 static int bb_reload_num;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn *curr_insn;
144 static rtx curr_insn_set;
145 static basic_block curr_bb;
146 static lra_insn_recog_data_t curr_id;
147 static struct lra_static_insn_data *curr_static_id;
148 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
156 /* Start numbers for new registers and insns at the current constraints
157 pass start. */
158 static int new_regno_start;
159 static int new_insn_uid_start;
161 /* If LOC is nonnull, strip any outer subreg from it. */
162 static inline rtx *
163 strip_subreg (rtx *loc)
165 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
170 static int
171 get_try_hard_regno (int regno)
173 int hard_regno;
174 enum reg_class rclass;
176 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
177 hard_regno = lra_get_regno_hard_regno (regno);
178 if (hard_regno >= 0)
179 return hard_regno;
180 rclass = lra_get_allocno_class (regno);
181 if (rclass == NO_REGS)
182 return -1;
183 return ira_class_hard_regs[rclass][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
190 static int
191 get_hard_regno (rtx x, bool final_p)
193 rtx reg;
194 int hard_regno;
196 reg = x;
197 if (SUBREG_P (x))
198 reg = SUBREG_REG (x);
199 if (! REG_P (reg))
200 return -1;
201 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
202 hard_regno = lra_get_regno_hard_regno (hard_regno);
203 if (hard_regno < 0)
204 return -1;
205 if (final_p)
206 hard_regno = lra_get_elimination_hard_regno (hard_regno);
207 if (SUBREG_P (x))
208 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
209 SUBREG_BYTE (x), GET_MODE (x));
210 return hard_regno;
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno)
220 int hard_regno;
222 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
223 hard_regno = lra_get_regno_hard_regno (regno);
224 if (hard_regno >= 0)
226 hard_regno = lra_get_elimination_hard_regno (hard_regno);
227 return REGNO_REG_CLASS (hard_regno);
229 if (regno >= new_regno_start)
230 return lra_get_allocno_class (regno);
231 return NO_REGS;
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
242 static bool
243 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
245 enum reg_class rclass, common_class;
246 machine_mode reg_mode;
247 int class_size, hard_regno, nregs, i, j;
248 int regno = REGNO (reg);
250 if (new_class != NULL)
251 *new_class = NO_REGS;
252 if (regno < FIRST_PSEUDO_REGISTER)
254 rtx final_reg = reg;
255 rtx *final_loc = &final_reg;
257 lra_eliminate_reg_if_possible (final_loc);
258 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
260 reg_mode = GET_MODE (reg);
261 rclass = get_reg_class (regno);
262 if (regno < new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn) >= new_insn_uid_start
269 && curr_insn_set != NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
272 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno >= new_regno_start && rclass == ALL_REGS)
278 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
279 && ! hard_reg_set_subset_p (reg_class_contents[cl],
280 lra_no_alloc_regs)));
281 else
283 common_class = ira_reg_class_subset[rclass][cl];
284 if (new_class != NULL)
285 *new_class = common_class;
286 if (hard_reg_set_subset_p (reg_class_contents[common_class],
287 lra_no_alloc_regs))
288 return false;
289 /* Check that there are enough allocatable regs. */
290 class_size = ira_class_hard_regs_num[common_class];
291 for (i = 0; i < class_size; i++)
293 hard_regno = ira_class_hard_regs[common_class][i];
294 nregs = hard_regno_nregs[hard_regno][reg_mode];
295 if (nregs == 1)
296 return true;
297 for (j = 0; j < nregs; j++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
299 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
300 hard_regno + j))
301 break;
302 if (j >= nregs)
303 return true;
305 return false;
309 /* Return true if REGNO satisfies a memory constraint. */
310 static bool
311 in_mem_p (int regno)
313 return get_reg_class (regno) == NO_REGS;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
318 reg. */
319 static int
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
321 rtx addr, addr_space_t as)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as));
325 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
326 return 0;
328 win:
329 return 1;
330 #else
331 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
332 #endif
335 namespace {
336 /* Temporarily eliminates registers in an address (for the lifetime of
337 the object). */
338 class address_eliminator {
339 public:
340 address_eliminator (struct address_info *ad);
341 ~address_eliminator ();
343 private:
344 struct address_info *m_ad;
345 rtx *m_base_loc;
346 rtx m_base_reg;
347 rtx *m_index_loc;
348 rtx m_index_reg;
352 address_eliminator::address_eliminator (struct address_info *ad)
353 : m_ad (ad),
354 m_base_loc (strip_subreg (ad->base_term)),
355 m_base_reg (NULL_RTX),
356 m_index_loc (strip_subreg (ad->index_term)),
357 m_index_reg (NULL_RTX)
359 if (m_base_loc != NULL)
361 m_base_reg = *m_base_loc;
362 lra_eliminate_reg_if_possible (m_base_loc);
363 if (m_ad->base_term2 != NULL)
364 *m_ad->base_term2 = *m_ad->base_term;
366 if (m_index_loc != NULL)
368 m_index_reg = *m_index_loc;
369 lra_eliminate_reg_if_possible (m_index_loc);
373 address_eliminator::~address_eliminator ()
375 if (m_base_loc && *m_base_loc != m_base_reg)
377 *m_base_loc = m_base_reg;
378 if (m_ad->base_term2 != NULL)
379 *m_ad->base_term2 = *m_ad->base_term;
381 if (m_index_loc && *m_index_loc != m_index_reg)
382 *m_index_loc = m_index_reg;
385 /* Return true if the eliminated form of AD is a legitimate target address. */
386 static bool
387 valid_address_p (struct address_info *ad)
389 address_eliminator eliminator (ad);
390 return valid_address_p (ad->mode, *ad->outer, ad->as);
393 /* Return true if the eliminated form of memory reference OP satisfies
394 extra (special) memory constraint CONSTRAINT. */
395 static bool
396 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
398 struct address_info ad;
400 decompose_mem_address (&ad, op);
401 address_eliminator eliminator (&ad);
402 return constraint_satisfied_p (op, constraint);
405 /* Return true if the eliminated form of address AD satisfies extra
406 address constraint CONSTRAINT. */
407 static bool
408 satisfies_address_constraint_p (struct address_info *ad,
409 enum constraint_num constraint)
411 address_eliminator eliminator (ad);
412 return constraint_satisfied_p (*ad->outer, constraint);
415 /* Return true if the eliminated form of address OP satisfies extra
416 address constraint CONSTRAINT. */
417 static bool
418 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
420 struct address_info ad;
422 decompose_lea_address (&ad, &op);
423 return satisfies_address_constraint_p (&ad, constraint);
426 /* Initiate equivalences for LRA. As we keep original equivalences
427 before any elimination, we need to make copies otherwise any change
428 in insns might change the equivalences. */
429 void
430 lra_init_equiv (void)
432 ira_expand_reg_equiv ();
433 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
435 rtx res;
437 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
438 ira_reg_equiv[i].memory = copy_rtx (res);
439 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
440 ira_reg_equiv[i].invariant = copy_rtx (res);
444 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
446 /* Update equivalence for REGNO. We need to this as the equivalence
447 might contain other pseudos which are changed by their
448 equivalences. */
449 static void
450 update_equiv (int regno)
452 rtx x;
454 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
455 ira_reg_equiv[regno].memory
456 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
457 NULL_RTX);
458 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
459 ira_reg_equiv[regno].invariant
460 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
461 NULL_RTX);
464 /* If we have decided to substitute X with another value, return that
465 value, otherwise return X. */
466 static rtx
467 get_equiv (rtx x)
469 int regno;
470 rtx res;
472 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
473 || ! ira_reg_equiv[regno].defined_p
474 || ! ira_reg_equiv[regno].profitable_p
475 || lra_get_regno_hard_regno (regno) >= 0)
476 return x;
477 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
479 if (targetm.cannot_substitute_mem_equiv_p (res))
480 return x;
481 return res;
483 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
484 return res;
485 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
486 return res;
487 gcc_unreachable ();
490 /* If we have decided to substitute X with the equivalent value,
491 return that value after elimination for INSN, otherwise return
492 X. */
493 static rtx
494 get_equiv_with_elimination (rtx x, rtx_insn *insn)
496 rtx res = get_equiv (x);
498 if (x == res || CONSTANT_P (res))
499 return res;
500 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
501 false, false, 0, true);
504 /* Set up curr_operand_mode. */
505 static void
506 init_curr_operand_mode (void)
508 int nop = curr_static_id->n_operands;
509 for (int i = 0; i < nop; i++)
511 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
512 if (mode == VOIDmode)
514 /* The .md mode for address operands is the mode of the
515 addressed value rather than the mode of the address itself. */
516 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
517 mode = Pmode;
518 else
519 mode = curr_static_id->operand[i].mode;
521 curr_operand_mode[i] = mode;
527 /* The page contains code to reuse input reloads. */
529 /* Structure describes input reload of the current insns. */
530 struct input_reload
532 /* True for input reload of matched operands. */
533 bool match_p;
534 /* Reloaded value. */
535 rtx input;
536 /* Reload pseudo used. */
537 rtx reg;
540 /* The number of elements in the following array. */
541 static int curr_insn_input_reloads_num;
542 /* Array containing info about input reloads. It is used to find the
543 same input reload and reuse the reload pseudo in this case. */
544 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
546 /* Initiate data concerning reuse of input reloads for the current
547 insn. */
548 static void
549 init_curr_insn_input_reloads (void)
551 curr_insn_input_reloads_num = 0;
554 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
555 created input reload pseudo (only if TYPE is not OP_OUT). Don't
556 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
557 wrapped up in SUBREG. The result pseudo is returned through
558 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
559 reused the already created input reload pseudo. Use TITLE to
560 describe new registers for debug purposes. */
561 static bool
562 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
563 enum reg_class rclass, bool in_subreg_p,
564 const char *title, rtx *result_reg)
566 int i, regno;
567 enum reg_class new_class;
568 bool unique_p = false;
570 if (type == OP_OUT)
572 *result_reg
573 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
574 return true;
576 /* Prevent reuse value of expression with side effects,
577 e.g. volatile memory. */
578 if (! side_effects_p (original))
579 for (i = 0; i < curr_insn_input_reloads_num; i++)
581 if (! curr_insn_input_reloads[i].match_p
582 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
583 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
585 rtx reg = curr_insn_input_reloads[i].reg;
586 regno = REGNO (reg);
587 /* If input is equal to original and both are VOIDmode,
588 GET_MODE (reg) might be still different from mode.
589 Ensure we don't return *result_reg with wrong mode. */
590 if (GET_MODE (reg) != mode)
592 if (in_subreg_p)
593 continue;
594 if (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (mode))
595 continue;
596 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
597 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
598 continue;
600 *result_reg = reg;
601 if (lra_dump_file != NULL)
603 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
604 dump_value_slim (lra_dump_file, original, 1);
606 if (new_class != lra_get_allocno_class (regno))
607 lra_change_class (regno, new_class, ", change to", false);
608 if (lra_dump_file != NULL)
609 fprintf (lra_dump_file, "\n");
610 return false;
612 /* If we have an input reload with a different mode, make sure it
613 will get a different hard reg. */
614 else if (REG_P (original)
615 && REG_P (curr_insn_input_reloads[i].input)
616 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
617 && (GET_MODE (original)
618 != GET_MODE (curr_insn_input_reloads[i].input)))
619 unique_p = true;
621 *result_reg = (unique_p
622 ? lra_create_new_reg_with_unique_value
623 : lra_create_new_reg) (mode, original, rclass, title);
624 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
625 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
626 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
627 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
628 return true;
633 /* The page contains code to extract memory address parts. */
635 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
636 static inline bool
637 ok_for_index_p_nonstrict (rtx reg)
639 unsigned regno = REGNO (reg);
641 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
644 /* A version of regno_ok_for_base_p for use here, when all pseudos
645 should count as OK. Arguments as for regno_ok_for_base_p. */
646 static inline bool
647 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
648 enum rtx_code outer_code, enum rtx_code index_code)
650 unsigned regno = REGNO (reg);
652 if (regno >= FIRST_PSEUDO_REGISTER)
653 return true;
654 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
659 /* The page contains major code to choose the current insn alternative
660 and generate reloads for it. */
662 /* Return the offset from REGNO of the least significant register
663 in (reg:MODE REGNO).
665 This function is used to tell whether two registers satisfy
666 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
668 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
669 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
671 lra_constraint_offset (int regno, machine_mode mode)
673 lra_assert (regno < FIRST_PSEUDO_REGISTER);
674 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (mode) > UNITS_PER_WORD
675 && SCALAR_INT_MODE_P (mode))
676 return hard_regno_nregs[regno][mode] - 1;
677 return 0;
680 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
681 if they are the same hard reg, and has special hacks for
682 auto-increment and auto-decrement. This is specifically intended for
683 process_alt_operands to use in determining whether two operands
684 match. X is the operand whose number is the lower of the two.
686 It is supposed that X is the output operand and Y is the input
687 operand. Y_HARD_REGNO is the final hard regno of register Y or
688 register in subreg Y as we know it now. Otherwise, it is a
689 negative value. */
690 static bool
691 operands_match_p (rtx x, rtx y, int y_hard_regno)
693 int i;
694 RTX_CODE code = GET_CODE (x);
695 const char *fmt;
697 if (x == y)
698 return true;
699 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
700 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
702 int j;
704 i = get_hard_regno (x, false);
705 if (i < 0)
706 goto slow;
708 if ((j = y_hard_regno) < 0)
709 goto slow;
711 i += lra_constraint_offset (i, GET_MODE (x));
712 j += lra_constraint_offset (j, GET_MODE (y));
714 return i == j;
717 /* If two operands must match, because they are really a single
718 operand of an assembler insn, then two post-increments are invalid
719 because the assembler insn would increment only once. On the
720 other hand, a post-increment matches ordinary indexing if the
721 post-increment is the output operand. */
722 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
723 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
725 /* Two pre-increments are invalid because the assembler insn would
726 increment only once. On the other hand, a pre-increment matches
727 ordinary indexing if the pre-increment is the input operand. */
728 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
729 || GET_CODE (y) == PRE_MODIFY)
730 return operands_match_p (x, XEXP (y, 0), -1);
732 slow:
734 if (code == REG && REG_P (y))
735 return REGNO (x) == REGNO (y);
737 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
738 && x == SUBREG_REG (y))
739 return true;
740 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
741 && SUBREG_REG (x) == y)
742 return true;
744 /* Now we have disposed of all the cases in which different rtx
745 codes can match. */
746 if (code != GET_CODE (y))
747 return false;
749 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
750 if (GET_MODE (x) != GET_MODE (y))
751 return false;
753 switch (code)
755 CASE_CONST_UNIQUE:
756 return false;
758 case LABEL_REF:
759 return label_ref_label (x) == label_ref_label (y);
760 case SYMBOL_REF:
761 return XSTR (x, 0) == XSTR (y, 0);
763 default:
764 break;
767 /* Compare the elements. If any pair of corresponding elements fail
768 to match, return false for the whole things. */
770 fmt = GET_RTX_FORMAT (code);
771 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
773 int val, j;
774 switch (fmt[i])
776 case 'w':
777 if (XWINT (x, i) != XWINT (y, i))
778 return false;
779 break;
781 case 'i':
782 if (XINT (x, i) != XINT (y, i))
783 return false;
784 break;
786 case 'e':
787 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
788 if (val == 0)
789 return false;
790 break;
792 case '0':
793 break;
795 case 'E':
796 if (XVECLEN (x, i) != XVECLEN (y, i))
797 return false;
798 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
800 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
801 if (val == 0)
802 return false;
804 break;
806 /* It is believed that rtx's at this level will never
807 contain anything but integers and other rtx's, except for
808 within LABEL_REFs and SYMBOL_REFs. */
809 default:
810 gcc_unreachable ();
813 return true;
816 /* True if X is a constant that can be forced into the constant pool.
817 MODE is the mode of the operand, or VOIDmode if not known. */
818 #define CONST_POOL_OK_P(MODE, X) \
819 ((MODE) != VOIDmode \
820 && CONSTANT_P (X) \
821 && GET_CODE (X) != HIGH \
822 && !targetm.cannot_force_const_mem (MODE, X))
824 /* True if C is a non-empty register class that has too few registers
825 to be safely used as a reload target class. */
826 #define SMALL_REGISTER_CLASS_P(C) \
827 (ira_class_hard_regs_num [(C)] == 1 \
828 || (ira_class_hard_regs_num [(C)] >= 1 \
829 && targetm.class_likely_spilled_p (C)))
831 /* If REG is a reload pseudo, try to make its class satisfying CL. */
832 static void
833 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
835 enum reg_class rclass;
837 /* Do not make more accurate class from reloads generated. They are
838 mostly moves with a lot of constraints. Making more accurate
839 class may results in very narrow class and impossibility of find
840 registers for several reloads of one insn. */
841 if (INSN_UID (curr_insn) >= new_insn_uid_start)
842 return;
843 if (GET_CODE (reg) == SUBREG)
844 reg = SUBREG_REG (reg);
845 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
846 return;
847 if (in_class_p (reg, cl, &rclass) && rclass != cl)
848 lra_change_class (REGNO (reg), rclass, " Change to", true);
851 /* Searches X for any reference to a reg with the same value as REGNO,
852 returning the rtx of the reference found if any. Otherwise,
853 returns NULL_RTX. */
854 static rtx
855 regno_val_use_in (unsigned int regno, rtx x)
857 const char *fmt;
858 int i, j;
859 rtx tem;
861 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
862 return x;
864 fmt = GET_RTX_FORMAT (GET_CODE (x));
865 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
867 if (fmt[i] == 'e')
869 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
870 return tem;
872 else if (fmt[i] == 'E')
873 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
874 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
875 return tem;
878 return NULL_RTX;
881 /* Return true if all current insn non-output operands except INS (it
882 has a negaitve end marker) do not use pseudos with the same value
883 as REGNO. */
884 static bool
885 check_conflict_input_operands (int regno, signed char *ins)
887 int in;
888 int n_operands = curr_static_id->n_operands;
890 for (int nop = 0; nop < n_operands; nop++)
891 if (! curr_static_id->operand[nop].is_operator
892 && curr_static_id->operand[nop].type != OP_OUT)
894 for (int i = 0; (in = ins[i]) >= 0; i++)
895 if (in == nop)
896 break;
897 if (in < 0
898 && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
899 return false;
901 return true;
904 /* Generate reloads for matching OUT and INS (array of input operand
905 numbers with end marker -1) with reg class GOAL_CLASS, considering
906 output operands OUTS (similar array to INS) needing to be in different
907 registers. Add input and output reloads correspondingly to the lists
908 *BEFORE and *AFTER. OUT might be negative. In this case we generate
909 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
910 that the output operand is early clobbered for chosen alternative. */
911 static void
912 match_reload (signed char out, signed char *ins, signed char *outs,
913 enum reg_class goal_class, rtx_insn **before,
914 rtx_insn **after, bool early_clobber_p)
916 bool out_conflict;
917 int i, in;
918 rtx new_in_reg, new_out_reg, reg;
919 machine_mode inmode, outmode;
920 rtx in_rtx = *curr_id->operand_loc[ins[0]];
921 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
923 inmode = curr_operand_mode[ins[0]];
924 outmode = out < 0 ? inmode : curr_operand_mode[out];
925 push_to_sequence (*before);
926 if (inmode != outmode)
928 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
930 reg = new_in_reg
931 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
932 goal_class, "");
933 if (SCALAR_INT_MODE_P (inmode))
934 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
935 else
936 new_out_reg = gen_rtx_SUBREG (outmode, reg, 0);
937 LRA_SUBREG_P (new_out_reg) = 1;
938 /* If the input reg is dying here, we can use the same hard
939 register for REG and IN_RTX. We do it only for original
940 pseudos as reload pseudos can die although original
941 pseudos still live where reload pseudos dies. */
942 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
943 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
944 && (!early_clobber_p
945 || check_conflict_input_operands(REGNO (in_rtx), ins)))
946 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
948 else
950 reg = new_out_reg
951 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
952 goal_class, "");
953 if (SCALAR_INT_MODE_P (outmode))
954 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
955 else
956 new_in_reg = gen_rtx_SUBREG (inmode, reg, 0);
957 /* NEW_IN_REG is non-paradoxical subreg. We don't want
958 NEW_OUT_REG living above. We add clobber clause for
959 this. This is just a temporary clobber. We can remove
960 it at the end of LRA work. */
961 rtx_insn *clobber = emit_clobber (new_out_reg);
962 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
963 LRA_SUBREG_P (new_in_reg) = 1;
964 if (GET_CODE (in_rtx) == SUBREG)
966 rtx subreg_reg = SUBREG_REG (in_rtx);
968 /* If SUBREG_REG is dying here and sub-registers IN_RTX
969 and NEW_IN_REG are similar, we can use the same hard
970 register for REG and SUBREG_REG. */
971 if (REG_P (subreg_reg)
972 && (int) REGNO (subreg_reg) < lra_new_regno_start
973 && GET_MODE (subreg_reg) == outmode
974 && SUBREG_BYTE (in_rtx) == SUBREG_BYTE (new_in_reg)
975 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
976 && (! early_clobber_p
977 || check_conflict_input_operands (REGNO (subreg_reg),
978 ins)))
979 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
983 else
985 /* Pseudos have values -- see comments for lra_reg_info.
986 Different pseudos with the same value do not conflict even if
987 they live in the same place. When we create a pseudo we
988 assign value of original pseudo (if any) from which we
989 created the new pseudo. If we create the pseudo from the
990 input pseudo, the new pseudo will have no conflict with the
991 input pseudo which is wrong when the input pseudo lives after
992 the insn and as the new pseudo value is changed by the insn
993 output. Therefore we create the new pseudo from the output
994 except the case when we have single matched dying input
995 pseudo.
997 We cannot reuse the current output register because we might
998 have a situation like "a <- a op b", where the constraints
999 force the second input operand ("b") to match the output
1000 operand ("a"). "b" must then be copied into a new register
1001 so that it doesn't clobber the current value of "a".
1003 We can not use the same value if the output pseudo is
1004 early clobbered or the input pseudo is mentioned in the
1005 output, e.g. as an address part in memory, because
1006 output reload will actually extend the pseudo liveness.
1007 We don't care about eliminable hard regs here as we are
1008 interesting only in pseudos. */
1010 /* Matching input's register value is the same as one of the other
1011 output operand. Output operands in a parallel insn must be in
1012 different registers. */
1013 out_conflict = false;
1014 if (REG_P (in_rtx))
1016 for (i = 0; outs[i] >= 0; i++)
1018 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1019 if (REG_P (other_out_rtx)
1020 && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1021 != NULL_RTX))
1023 out_conflict = true;
1024 break;
1029 new_in_reg = new_out_reg
1030 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1031 && (int) REGNO (in_rtx) < lra_new_regno_start
1032 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1033 && (! early_clobber_p
1034 || check_conflict_input_operands (REGNO (in_rtx), ins))
1035 && (out < 0
1036 || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1037 && !out_conflict
1038 ? lra_create_new_reg (inmode, in_rtx, goal_class, "")
1039 : lra_create_new_reg_with_unique_value (outmode, out_rtx,
1040 goal_class, ""));
1042 /* In operand can be got from transformations before processing insn
1043 constraints. One example of such transformations is subreg
1044 reloading (see function simplify_operand_subreg). The new
1045 pseudos created by the transformations might have inaccurate
1046 class (ALL_REGS) and we should make their classes more
1047 accurate. */
1048 narrow_reload_pseudo_class (in_rtx, goal_class);
1049 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1050 *before = get_insns ();
1051 end_sequence ();
1052 /* Add the new pseudo to consider values of subsequent input reload
1053 pseudos. */
1054 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1055 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1056 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1057 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1058 for (i = 0; (in = ins[i]) >= 0; i++)
1060 lra_assert
1061 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1062 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
1063 *curr_id->operand_loc[in] = new_in_reg;
1065 lra_update_dups (curr_id, ins);
1066 if (out < 0)
1067 return;
1068 /* See a comment for the input operand above. */
1069 narrow_reload_pseudo_class (out_rtx, goal_class);
1070 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1072 start_sequence ();
1073 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1074 emit_insn (*after);
1075 *after = get_insns ();
1076 end_sequence ();
1078 *curr_id->operand_loc[out] = new_out_reg;
1079 lra_update_dup (curr_id, out);
1082 /* Return register class which is union of all reg classes in insn
1083 constraint alternative string starting with P. */
1084 static enum reg_class
1085 reg_class_from_constraints (const char *p)
1087 int c, len;
1088 enum reg_class op_class = NO_REGS;
1091 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1093 case '#':
1094 case ',':
1095 return op_class;
1097 case 'g':
1098 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1099 break;
1101 default:
1102 enum constraint_num cn = lookup_constraint (p);
1103 enum reg_class cl = reg_class_for_constraint (cn);
1104 if (cl == NO_REGS)
1106 if (insn_extra_address_constraint (cn))
1107 op_class
1108 = (reg_class_subunion
1109 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1110 ADDRESS, SCRATCH)]);
1111 break;
1114 op_class = reg_class_subunion[op_class][cl];
1115 break;
1117 while ((p += len), c);
1118 return op_class;
1121 /* If OP is a register, return the class of the register as per
1122 get_reg_class, otherwise return NO_REGS. */
1123 static inline enum reg_class
1124 get_op_class (rtx op)
1126 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1129 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1130 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1131 SUBREG for VAL to make them equal. */
1132 static rtx_insn *
1133 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1135 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1137 /* Usually size of mem_pseudo is greater than val size but in
1138 rare cases it can be less as it can be defined by target
1139 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1140 if (! MEM_P (val))
1142 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1143 GET_CODE (val) == SUBREG
1144 ? SUBREG_REG (val) : val);
1145 LRA_SUBREG_P (val) = 1;
1147 else
1149 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1150 LRA_SUBREG_P (mem_pseudo) = 1;
1153 return to_p ? gen_move_insn (mem_pseudo, val)
1154 : gen_move_insn (val, mem_pseudo);
1157 /* Process a special case insn (register move), return true if we
1158 don't need to process it anymore. INSN should be a single set
1159 insn. Set up that RTL was changed through CHANGE_P and macro
1160 SECONDARY_MEMORY_NEEDED says to use secondary memory through
1161 SEC_MEM_P. */
1162 static bool
1163 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1165 int sregno, dregno;
1166 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1167 rtx_insn *before;
1168 enum reg_class dclass, sclass, secondary_class;
1169 secondary_reload_info sri;
1171 lra_assert (curr_insn_set != NULL_RTX);
1172 dreg = dest = SET_DEST (curr_insn_set);
1173 sreg = src = SET_SRC (curr_insn_set);
1174 if (GET_CODE (dest) == SUBREG)
1175 dreg = SUBREG_REG (dest);
1176 if (GET_CODE (src) == SUBREG)
1177 sreg = SUBREG_REG (src);
1178 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1179 return false;
1180 sclass = dclass = NO_REGS;
1181 if (REG_P (dreg))
1182 dclass = get_reg_class (REGNO (dreg));
1183 gcc_assert (dclass < LIM_REG_CLASSES);
1184 if (dclass == ALL_REGS)
1185 /* ALL_REGS is used for new pseudos created by transformations
1186 like reload of SUBREG_REG (see function
1187 simplify_operand_subreg). We don't know their class yet. We
1188 should figure out the class from processing the insn
1189 constraints not in this fast path function. Even if ALL_REGS
1190 were a right class for the pseudo, secondary_... hooks usually
1191 are not define for ALL_REGS. */
1192 return false;
1193 if (REG_P (sreg))
1194 sclass = get_reg_class (REGNO (sreg));
1195 gcc_assert (sclass < LIM_REG_CLASSES);
1196 if (sclass == ALL_REGS)
1197 /* See comments above. */
1198 return false;
1199 if (sclass == NO_REGS && dclass == NO_REGS)
1200 return false;
1201 #ifdef SECONDARY_MEMORY_NEEDED
1202 if (SECONDARY_MEMORY_NEEDED (sclass, dclass, GET_MODE (src))
1203 #ifdef SECONDARY_MEMORY_NEEDED_MODE
1204 && ((sclass != NO_REGS && dclass != NO_REGS)
1205 || GET_MODE (src) != SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (src)))
1206 #endif
1209 *sec_mem_p = true;
1210 return false;
1212 #endif
1213 if (! REG_P (dreg) || ! REG_P (sreg))
1214 return false;
1215 sri.prev_sri = NULL;
1216 sri.icode = CODE_FOR_nothing;
1217 sri.extra_cost = 0;
1218 secondary_class = NO_REGS;
1219 /* Set up hard register for a reload pseudo for hook
1220 secondary_reload because some targets just ignore unassigned
1221 pseudos in the hook. */
1222 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1224 dregno = REGNO (dreg);
1225 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1227 else
1228 dregno = -1;
1229 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1231 sregno = REGNO (sreg);
1232 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1234 else
1235 sregno = -1;
1236 if (sclass != NO_REGS)
1237 secondary_class
1238 = (enum reg_class) targetm.secondary_reload (false, dest,
1239 (reg_class_t) sclass,
1240 GET_MODE (src), &sri);
1241 if (sclass == NO_REGS
1242 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1243 && dclass != NO_REGS))
1245 enum reg_class old_sclass = secondary_class;
1246 secondary_reload_info old_sri = sri;
1248 sri.prev_sri = NULL;
1249 sri.icode = CODE_FOR_nothing;
1250 sri.extra_cost = 0;
1251 secondary_class
1252 = (enum reg_class) targetm.secondary_reload (true, src,
1253 (reg_class_t) dclass,
1254 GET_MODE (src), &sri);
1255 /* Check the target hook consistency. */
1256 lra_assert
1257 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1258 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1259 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1261 if (sregno >= 0)
1262 reg_renumber [sregno] = -1;
1263 if (dregno >= 0)
1264 reg_renumber [dregno] = -1;
1265 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1266 return false;
1267 *change_p = true;
1268 new_reg = NULL_RTX;
1269 if (secondary_class != NO_REGS)
1270 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1271 secondary_class,
1272 "secondary");
1273 start_sequence ();
1274 if (sri.icode == CODE_FOR_nothing)
1275 lra_emit_move (new_reg, src);
1276 else
1278 enum reg_class scratch_class;
1280 scratch_class = (reg_class_from_constraints
1281 (insn_data[sri.icode].operand[2].constraint));
1282 scratch_reg = (lra_create_new_reg_with_unique_value
1283 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1284 scratch_class, "scratch"));
1285 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1286 src, scratch_reg));
1288 before = get_insns ();
1289 end_sequence ();
1290 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1291 if (new_reg != NULL_RTX)
1292 SET_SRC (curr_insn_set) = new_reg;
1293 else
1295 if (lra_dump_file != NULL)
1297 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1298 dump_insn_slim (lra_dump_file, curr_insn);
1300 lra_set_insn_deleted (curr_insn);
1301 return true;
1303 return false;
1306 /* The following data describe the result of process_alt_operands.
1307 The data are used in curr_insn_transform to generate reloads. */
1309 /* The chosen reg classes which should be used for the corresponding
1310 operands. */
1311 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1312 /* True if the operand should be the same as another operand and that
1313 other operand does not need a reload. */
1314 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1315 /* True if the operand does not need a reload. */
1316 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1317 /* True if the operand can be offsetable memory. */
1318 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1319 /* The number of an operand to which given operand can be matched to. */
1320 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1321 /* The number of elements in the following array. */
1322 static int goal_alt_dont_inherit_ops_num;
1323 /* Numbers of operands whose reload pseudos should not be inherited. */
1324 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1325 /* True if the insn commutative operands should be swapped. */
1326 static bool goal_alt_swapped;
1327 /* The chosen insn alternative. */
1328 static int goal_alt_number;
1330 /* True if the corresponding operand is the result of an equivalence
1331 substitution. */
1332 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1334 /* The following five variables are used to choose the best insn
1335 alternative. They reflect final characteristics of the best
1336 alternative. */
1338 /* Number of necessary reloads and overall cost reflecting the
1339 previous value and other unpleasantness of the best alternative. */
1340 static int best_losers, best_overall;
1341 /* Overall number hard registers used for reloads. For example, on
1342 some targets we need 2 general registers to reload DFmode and only
1343 one floating point register. */
1344 static int best_reload_nregs;
1345 /* Overall number reflecting distances of previous reloading the same
1346 value. The distances are counted from the current BB start. It is
1347 used to improve inheritance chances. */
1348 static int best_reload_sum;
1350 /* True if the current insn should have no correspondingly input or
1351 output reloads. */
1352 static bool no_input_reloads_p, no_output_reloads_p;
1354 /* True if we swapped the commutative operands in the current
1355 insn. */
1356 static int curr_swapped;
1358 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1359 register of class CL. Add any input reloads to list BEFORE. AFTER
1360 is nonnull if *LOC is an automodified value; handle that case by
1361 adding the required output reloads to list AFTER. Return true if
1362 the RTL was changed.
1364 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1365 register. Return false if the address register is correct. */
1366 static bool
1367 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1368 enum reg_class cl)
1370 int regno;
1371 enum reg_class rclass, new_class;
1372 rtx reg;
1373 rtx new_reg;
1374 machine_mode mode;
1375 bool subreg_p, before_p = false;
1377 subreg_p = GET_CODE (*loc) == SUBREG;
1378 if (subreg_p)
1380 reg = SUBREG_REG (*loc);
1381 mode = GET_MODE (reg);
1383 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1384 between two registers with different classes, but there normally will
1385 be "mov" which transfers element of vector register into the general
1386 register, and this normally will be a subreg which should be reloaded
1387 as a whole. This is particularly likely to be triggered when
1388 -fno-split-wide-types specified. */
1389 if (!REG_P (reg)
1390 || in_class_p (reg, cl, &new_class)
1391 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (ptr_mode))
1392 loc = &SUBREG_REG (*loc);
1395 reg = *loc;
1396 mode = GET_MODE (reg);
1397 if (! REG_P (reg))
1399 if (check_only_p)
1400 return true;
1401 /* Always reload memory in an address even if the target supports
1402 such addresses. */
1403 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1404 before_p = true;
1406 else
1408 regno = REGNO (reg);
1409 rclass = get_reg_class (regno);
1410 if (! check_only_p
1411 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1413 if (lra_dump_file != NULL)
1415 fprintf (lra_dump_file,
1416 "Changing pseudo %d in address of insn %u on equiv ",
1417 REGNO (reg), INSN_UID (curr_insn));
1418 dump_value_slim (lra_dump_file, *loc, 1);
1419 fprintf (lra_dump_file, "\n");
1421 *loc = copy_rtx (*loc);
1423 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1425 if (check_only_p)
1426 return true;
1427 reg = *loc;
1428 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1429 mode, reg, cl, subreg_p, "address", &new_reg))
1430 before_p = true;
1432 else if (new_class != NO_REGS && rclass != new_class)
1434 if (check_only_p)
1435 return true;
1436 lra_change_class (regno, new_class, " Change to", true);
1437 return false;
1439 else
1440 return false;
1442 if (before_p)
1444 push_to_sequence (*before);
1445 lra_emit_move (new_reg, reg);
1446 *before = get_insns ();
1447 end_sequence ();
1449 *loc = new_reg;
1450 if (after != NULL)
1452 start_sequence ();
1453 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1454 emit_insn (*after);
1455 *after = get_insns ();
1456 end_sequence ();
1458 return true;
1461 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1462 the insn to be inserted before curr insn. AFTER returns the
1463 the insn to be inserted after curr insn. ORIGREG and NEWREG
1464 are the original reg and new reg for reload. */
1465 static void
1466 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1467 rtx newreg)
1469 if (before)
1471 push_to_sequence (*before);
1472 lra_emit_move (newreg, origreg);
1473 *before = get_insns ();
1474 end_sequence ();
1476 if (after)
1478 start_sequence ();
1479 lra_emit_move (origreg, newreg);
1480 emit_insn (*after);
1481 *after = get_insns ();
1482 end_sequence ();
1486 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1487 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1489 /* Make reloads for subreg in operand NOP with internal subreg mode
1490 REG_MODE, add new reloads for further processing. Return true if
1491 any change was done. */
1492 static bool
1493 simplify_operand_subreg (int nop, machine_mode reg_mode)
1495 int hard_regno;
1496 rtx_insn *before, *after;
1497 machine_mode mode, innermode;
1498 rtx reg, new_reg;
1499 rtx operand = *curr_id->operand_loc[nop];
1500 enum reg_class regclass;
1501 enum op_type type;
1503 before = after = NULL;
1505 if (GET_CODE (operand) != SUBREG)
1506 return false;
1508 mode = GET_MODE (operand);
1509 reg = SUBREG_REG (operand);
1510 innermode = GET_MODE (reg);
1511 type = curr_static_id->operand[nop].type;
1512 if (MEM_P (reg))
1514 const bool addr_was_valid
1515 = valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1516 alter_subreg (curr_id->operand_loc[nop], false);
1517 rtx subst = *curr_id->operand_loc[nop];
1518 lra_assert (MEM_P (subst));
1520 if (!addr_was_valid
1521 || valid_address_p (GET_MODE (subst), XEXP (subst, 0),
1522 MEM_ADDR_SPACE (subst))
1523 || ((get_constraint_type (lookup_constraint
1524 (curr_static_id->operand[nop].constraint))
1525 != CT_SPECIAL_MEMORY)
1526 /* We still can reload address and if the address is
1527 valid, we can remove subreg without reloading its
1528 inner memory. */
1529 && valid_address_p (GET_MODE (subst),
1530 regno_reg_rtx
1531 [ira_class_hard_regs
1532 [base_reg_class (GET_MODE (subst),
1533 MEM_ADDR_SPACE (subst),
1534 ADDRESS, SCRATCH)][0]],
1535 MEM_ADDR_SPACE (subst))))
1537 /* If we change the address for a paradoxical subreg of memory, the
1538 new address might violate the necessary alignment or the access
1539 might be slow; take this into consideration. We need not worry
1540 about accesses beyond allocated memory for paradoxical memory
1541 subregs as we don't substitute such equiv memory (see processing
1542 equivalences in function lra_constraints) and because for spilled
1543 pseudos we allocate stack memory enough for the biggest
1544 corresponding paradoxical subreg.
1546 However, do not blindly simplify a (subreg (mem ...)) for
1547 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1548 data into a register when the inner is narrower than outer or
1549 missing important data from memory when the inner is wider than
1550 outer. This rule only applies to modes that are no wider than
1551 a word. */
1552 if (!(GET_MODE_PRECISION (mode) != GET_MODE_PRECISION (innermode)
1553 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
1554 && GET_MODE_SIZE (innermode) <= UNITS_PER_WORD
1555 && WORD_REGISTER_OPERATIONS)
1556 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1557 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (subst)))
1558 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1559 && SLOW_UNALIGNED_ACCESS (innermode, MEM_ALIGN (reg)))))
1560 return true;
1562 *curr_id->operand_loc[nop] = operand;
1564 /* But if the address was not valid, we cannot reload the MEM without
1565 reloading the address first. */
1566 if (!addr_was_valid)
1567 process_address (nop, false, &before, &after);
1569 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1570 enum reg_class rclass
1571 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1572 if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1573 reg, rclass, TRUE, "slow mem", &new_reg))
1575 bool insert_before, insert_after;
1576 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1578 insert_before = (type != OP_OUT
1579 || GET_MODE_SIZE (innermode)
1580 > GET_MODE_SIZE (mode));
1581 insert_after = type != OP_IN;
1582 insert_move_for_subreg (insert_before ? &before : NULL,
1583 insert_after ? &after : NULL,
1584 reg, new_reg);
1586 SUBREG_REG (operand) = new_reg;
1588 /* Convert to MODE. */
1589 reg = operand;
1590 rclass
1591 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1592 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1593 rclass, TRUE, "slow mem", &new_reg))
1595 bool insert_before, insert_after;
1596 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1598 insert_before = type != OP_OUT;
1599 insert_after = type != OP_IN;
1600 insert_move_for_subreg (insert_before ? &before : NULL,
1601 insert_after ? &after : NULL,
1602 reg, new_reg);
1604 *curr_id->operand_loc[nop] = new_reg;
1605 lra_process_new_insns (curr_insn, before, after,
1606 "Inserting slow mem reload");
1607 return true;
1610 /* If the address was valid and became invalid, prefer to reload
1611 the memory. Typical case is when the index scale should
1612 correspond the memory. */
1613 *curr_id->operand_loc[nop] = operand;
1614 /* Do not return false here as the MEM_P (reg) will be processed
1615 later in this function. */
1617 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1619 alter_subreg (curr_id->operand_loc[nop], false);
1620 return true;
1622 else if (CONSTANT_P (reg))
1624 /* Try to simplify subreg of constant. It is usually result of
1625 equivalence substitution. */
1626 if (innermode == VOIDmode
1627 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1628 innermode = curr_static_id->operand[nop].mode;
1629 if ((new_reg = simplify_subreg (mode, reg, innermode,
1630 SUBREG_BYTE (operand))) != NULL_RTX)
1632 *curr_id->operand_loc[nop] = new_reg;
1633 return true;
1636 /* Put constant into memory when we have mixed modes. It generates
1637 a better code in most cases as it does not need a secondary
1638 reload memory. It also prevents LRA looping when LRA is using
1639 secondary reload memory again and again. */
1640 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1641 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1643 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1644 alter_subreg (curr_id->operand_loc[nop], false);
1645 return true;
1647 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1648 if there may be a problem accessing OPERAND in the outer
1649 mode. */
1650 if ((REG_P (reg)
1651 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1652 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1653 /* Don't reload paradoxical subregs because we could be looping
1654 having repeatedly final regno out of hard regs range. */
1655 && (hard_regno_nregs[hard_regno][innermode]
1656 >= hard_regno_nregs[hard_regno][mode])
1657 && simplify_subreg_regno (hard_regno, innermode,
1658 SUBREG_BYTE (operand), mode) < 0
1659 /* Don't reload subreg for matching reload. It is actually
1660 valid subreg in LRA. */
1661 && ! LRA_SUBREG_P (operand))
1662 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1664 enum reg_class rclass;
1666 if (REG_P (reg))
1667 /* There is a big probability that we will get the same class
1668 for the new pseudo and we will get the same insn which
1669 means infinite looping. So spill the new pseudo. */
1670 rclass = NO_REGS;
1671 else
1672 /* The class will be defined later in curr_insn_transform. */
1673 rclass
1674 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1676 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1677 rclass, TRUE, "subreg reg", &new_reg))
1679 bool insert_before, insert_after;
1680 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1682 insert_before = (type != OP_OUT
1683 || GET_MODE_SIZE (innermode) > GET_MODE_SIZE (mode));
1684 insert_after = (type != OP_IN);
1685 insert_move_for_subreg (insert_before ? &before : NULL,
1686 insert_after ? &after : NULL,
1687 reg, new_reg);
1689 SUBREG_REG (operand) = new_reg;
1690 lra_process_new_insns (curr_insn, before, after,
1691 "Inserting subreg reload");
1692 return true;
1694 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1695 IRA allocates hardreg to the inner pseudo reg according to its mode
1696 instead of the outermode, so the size of the hardreg may not be enough
1697 to contain the outermode operand, in that case we may need to insert
1698 reload for the reg. For the following two types of paradoxical subreg,
1699 we need to insert reload:
1700 1. If the op_type is OP_IN, and the hardreg could not be paired with
1701 other hardreg to contain the outermode operand
1702 (checked by in_hard_reg_set_p), we need to insert the reload.
1703 2. If the op_type is OP_OUT or OP_INOUT.
1705 Here is a paradoxical subreg example showing how the reload is generated:
1707 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1708 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1710 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1711 here, if reg107 is assigned to hardreg R15, because R15 is the last
1712 hardreg, compiler cannot find another hardreg to pair with R15 to
1713 contain TImode data. So we insert a TImode reload reg180 for it.
1714 After reload is inserted:
1716 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1717 (reg:DI 107 [ __comp ])) -1
1718 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1719 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1721 Two reload hard registers will be allocated to reg180 to save TImode data
1722 in LRA_assign. */
1723 else if (REG_P (reg)
1724 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1725 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1726 && (hard_regno_nregs[hard_regno][innermode]
1727 < hard_regno_nregs[hard_regno][mode])
1728 && (regclass = lra_get_allocno_class (REGNO (reg)))
1729 && (type != OP_IN
1730 || !in_hard_reg_set_p (reg_class_contents[regclass],
1731 mode, hard_regno)))
1733 /* The class will be defined later in curr_insn_transform. */
1734 enum reg_class rclass
1735 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1737 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1738 rclass, TRUE, "paradoxical subreg", &new_reg))
1740 rtx subreg;
1741 bool insert_before, insert_after;
1743 PUT_MODE (new_reg, mode);
1744 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1745 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1747 insert_before = (type != OP_OUT);
1748 insert_after = (type != OP_IN);
1749 insert_move_for_subreg (insert_before ? &before : NULL,
1750 insert_after ? &after : NULL,
1751 reg, subreg);
1753 SUBREG_REG (operand) = new_reg;
1754 lra_process_new_insns (curr_insn, before, after,
1755 "Inserting paradoxical subreg reload");
1756 return true;
1758 return false;
1761 /* Return TRUE if X refers for a hard register from SET. */
1762 static bool
1763 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1765 int i, j, x_hard_regno;
1766 machine_mode mode;
1767 const char *fmt;
1768 enum rtx_code code;
1770 if (x == NULL_RTX)
1771 return false;
1772 code = GET_CODE (x);
1773 mode = GET_MODE (x);
1774 if (code == SUBREG)
1776 x = SUBREG_REG (x);
1777 code = GET_CODE (x);
1778 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
1779 mode = GET_MODE (x);
1782 if (REG_P (x))
1784 x_hard_regno = get_hard_regno (x, true);
1785 return (x_hard_regno >= 0
1786 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1788 if (MEM_P (x))
1790 struct address_info ad;
1792 decompose_mem_address (&ad, x);
1793 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1794 return true;
1795 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1796 return true;
1798 fmt = GET_RTX_FORMAT (code);
1799 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1801 if (fmt[i] == 'e')
1803 if (uses_hard_regs_p (XEXP (x, i), set))
1804 return true;
1806 else if (fmt[i] == 'E')
1808 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1809 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1810 return true;
1813 return false;
1816 /* Return true if OP is a spilled pseudo. */
1817 static inline bool
1818 spilled_pseudo_p (rtx op)
1820 return (REG_P (op)
1821 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1824 /* Return true if X is a general constant. */
1825 static inline bool
1826 general_constant_p (rtx x)
1828 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1831 static bool
1832 reg_in_class_p (rtx reg, enum reg_class cl)
1834 if (cl == NO_REGS)
1835 return get_reg_class (REGNO (reg)) == NO_REGS;
1836 return in_class_p (reg, cl, NULL);
1839 /* Return true if SET of RCLASS contains no hard regs which can be
1840 used in MODE. */
1841 static bool
1842 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1843 HARD_REG_SET &set,
1844 enum machine_mode mode)
1846 HARD_REG_SET temp;
1848 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1849 COPY_HARD_REG_SET (temp, set);
1850 AND_COMPL_HARD_REG_SET (temp, lra_no_alloc_regs);
1851 return (hard_reg_set_subset_p
1852 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1856 /* Used to check validity info about small class input operands. It
1857 should be incremented at start of processing an insn
1858 alternative. */
1859 static unsigned int curr_small_class_check = 0;
1861 /* Update number of used inputs of class OP_CLASS for operand NOP.
1862 Return true if we have more such class operands than the number of
1863 available regs. */
1864 static bool
1865 update_and_check_small_class_inputs (int nop, enum reg_class op_class)
1867 static unsigned int small_class_check[LIM_REG_CLASSES];
1868 static int small_class_input_nums[LIM_REG_CLASSES];
1870 if (SMALL_REGISTER_CLASS_P (op_class)
1871 /* We are interesting in classes became small because of fixing
1872 some hard regs, e.g. by an user through GCC options. */
1873 && hard_reg_set_intersect_p (reg_class_contents[op_class],
1874 ira_no_alloc_regs)
1875 && (curr_static_id->operand[nop].type != OP_OUT
1876 || curr_static_id->operand[nop].early_clobber))
1878 if (small_class_check[op_class] == curr_small_class_check)
1879 small_class_input_nums[op_class]++;
1880 else
1882 small_class_check[op_class] = curr_small_class_check;
1883 small_class_input_nums[op_class] = 1;
1885 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
1886 return true;
1888 return false;
1891 /* Major function to choose the current insn alternative and what
1892 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1893 negative we should consider only this alternative. Return false if
1894 we can not choose the alternative or find how to reload the
1895 operands. */
1896 static bool
1897 process_alt_operands (int only_alternative)
1899 bool ok_p = false;
1900 int nop, overall, nalt;
1901 int n_alternatives = curr_static_id->n_alternatives;
1902 int n_operands = curr_static_id->n_operands;
1903 /* LOSERS counts the operands that don't fit this alternative and
1904 would require loading. */
1905 int losers;
1906 int addr_losers;
1907 /* REJECT is a count of how undesirable this alternative says it is
1908 if any reloading is required. If the alternative matches exactly
1909 then REJECT is ignored, but otherwise it gets this much counted
1910 against it in addition to the reloading needed. */
1911 int reject;
1912 /* This is defined by '!' or '?' alternative constraint and added to
1913 reject. But in some cases it can be ignored. */
1914 int static_reject;
1915 int op_reject;
1916 /* The number of elements in the following array. */
1917 int early_clobbered_regs_num;
1918 /* Numbers of operands which are early clobber registers. */
1919 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1920 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1921 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1922 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1923 bool curr_alt_win[MAX_RECOG_OPERANDS];
1924 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1925 int curr_alt_matches[MAX_RECOG_OPERANDS];
1926 /* The number of elements in the following array. */
1927 int curr_alt_dont_inherit_ops_num;
1928 /* Numbers of operands whose reload pseudos should not be inherited. */
1929 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1930 rtx op;
1931 /* The register when the operand is a subreg of register, otherwise the
1932 operand itself. */
1933 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1934 /* The register if the operand is a register or subreg of register,
1935 otherwise NULL. */
1936 rtx operand_reg[MAX_RECOG_OPERANDS];
1937 int hard_regno[MAX_RECOG_OPERANDS];
1938 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1939 int reload_nregs, reload_sum;
1940 bool costly_p;
1941 enum reg_class cl;
1943 /* Calculate some data common for all alternatives to speed up the
1944 function. */
1945 for (nop = 0; nop < n_operands; nop++)
1947 rtx reg;
1949 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1950 /* The real hard regno of the operand after the allocation. */
1951 hard_regno[nop] = get_hard_regno (op, true);
1953 operand_reg[nop] = reg = op;
1954 biggest_mode[nop] = GET_MODE (op);
1955 if (GET_CODE (op) == SUBREG)
1957 operand_reg[nop] = reg = SUBREG_REG (op);
1958 if (GET_MODE_SIZE (biggest_mode[nop])
1959 < GET_MODE_SIZE (GET_MODE (reg)))
1960 biggest_mode[nop] = GET_MODE (reg);
1962 if (! REG_P (reg))
1963 operand_reg[nop] = NULL_RTX;
1964 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1965 || ((int) REGNO (reg)
1966 == lra_get_elimination_hard_regno (REGNO (reg))))
1967 no_subreg_reg_operand[nop] = reg;
1968 else
1969 operand_reg[nop] = no_subreg_reg_operand[nop]
1970 /* Just use natural mode for elimination result. It should
1971 be enough for extra constraints hooks. */
1972 = regno_reg_rtx[hard_regno[nop]];
1975 /* The constraints are made of several alternatives. Each operand's
1976 constraint looks like foo,bar,... with commas separating the
1977 alternatives. The first alternatives for all operands go
1978 together, the second alternatives go together, etc.
1980 First loop over alternatives. */
1981 alternative_mask preferred = curr_id->preferred_alternatives;
1982 if (only_alternative >= 0)
1983 preferred &= ALTERNATIVE_BIT (only_alternative);
1985 for (nalt = 0; nalt < n_alternatives; nalt++)
1987 /* Loop over operands for one constraint alternative. */
1988 if (!TEST_BIT (preferred, nalt))
1989 continue;
1991 curr_small_class_check++;
1992 overall = losers = addr_losers = 0;
1993 static_reject = reject = reload_nregs = reload_sum = 0;
1994 for (nop = 0; nop < n_operands; nop++)
1996 int inc = (curr_static_id
1997 ->operand_alternative[nalt * n_operands + nop].reject);
1998 if (lra_dump_file != NULL && inc != 0)
1999 fprintf (lra_dump_file,
2000 " Staticly defined alt reject+=%d\n", inc);
2001 static_reject += inc;
2003 reject += static_reject;
2004 early_clobbered_regs_num = 0;
2006 for (nop = 0; nop < n_operands; nop++)
2008 const char *p;
2009 char *end;
2010 int len, c, m, i, opalt_num, this_alternative_matches;
2011 bool win, did_match, offmemok, early_clobber_p;
2012 /* false => this operand can be reloaded somehow for this
2013 alternative. */
2014 bool badop;
2015 /* true => this operand can be reloaded if the alternative
2016 allows regs. */
2017 bool winreg;
2018 /* True if a constant forced into memory would be OK for
2019 this operand. */
2020 bool constmemok;
2021 enum reg_class this_alternative, this_costly_alternative;
2022 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2023 bool this_alternative_match_win, this_alternative_win;
2024 bool this_alternative_offmemok;
2025 bool scratch_p;
2026 machine_mode mode;
2027 enum constraint_num cn;
2029 opalt_num = nalt * n_operands + nop;
2030 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2032 /* Fast track for no constraints at all. */
2033 curr_alt[nop] = NO_REGS;
2034 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2035 curr_alt_win[nop] = true;
2036 curr_alt_match_win[nop] = false;
2037 curr_alt_offmemok[nop] = false;
2038 curr_alt_matches[nop] = -1;
2039 continue;
2042 op = no_subreg_reg_operand[nop];
2043 mode = curr_operand_mode[nop];
2045 win = did_match = winreg = offmemok = constmemok = false;
2046 badop = true;
2048 early_clobber_p = false;
2049 p = curr_static_id->operand_alternative[opalt_num].constraint;
2051 this_costly_alternative = this_alternative = NO_REGS;
2052 /* We update set of possible hard regs besides its class
2053 because reg class might be inaccurate. For example,
2054 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2055 is translated in HI_REGS because classes are merged by
2056 pairs and there is no accurate intermediate class. */
2057 CLEAR_HARD_REG_SET (this_alternative_set);
2058 CLEAR_HARD_REG_SET (this_costly_alternative_set);
2059 this_alternative_win = false;
2060 this_alternative_match_win = false;
2061 this_alternative_offmemok = false;
2062 this_alternative_matches = -1;
2064 /* An empty constraint should be excluded by the fast
2065 track. */
2066 lra_assert (*p != 0 && *p != ',');
2068 op_reject = 0;
2069 /* Scan this alternative's specs for this operand; set WIN
2070 if the operand fits any letter in this alternative.
2071 Otherwise, clear BADOP if this operand could fit some
2072 letter after reloads, or set WINREG if this operand could
2073 fit after reloads provided the constraint allows some
2074 registers. */
2075 costly_p = false;
2078 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2080 case '\0':
2081 len = 0;
2082 break;
2083 case ',':
2084 c = '\0';
2085 break;
2087 case '&':
2088 early_clobber_p = true;
2089 break;
2091 case '$':
2092 op_reject += LRA_MAX_REJECT;
2093 break;
2094 case '^':
2095 op_reject += LRA_LOSER_COST_FACTOR;
2096 break;
2098 case '#':
2099 /* Ignore rest of this alternative. */
2100 c = '\0';
2101 break;
2103 case '0': case '1': case '2': case '3': case '4':
2104 case '5': case '6': case '7': case '8': case '9':
2106 int m_hregno;
2107 bool match_p;
2109 m = strtoul (p, &end, 10);
2110 p = end;
2111 len = 0;
2112 lra_assert (nop > m);
2114 this_alternative_matches = m;
2115 m_hregno = get_hard_regno (*curr_id->operand_loc[m], false);
2116 /* We are supposed to match a previous operand.
2117 If we do, we win if that one did. If we do
2118 not, count both of the operands as losers.
2119 (This is too conservative, since most of the
2120 time only a single reload insn will be needed
2121 to make the two operands win. As a result,
2122 this alternative may be rejected when it is
2123 actually desirable.) */
2124 match_p = false;
2125 if (operands_match_p (*curr_id->operand_loc[nop],
2126 *curr_id->operand_loc[m], m_hregno))
2128 /* We should reject matching of an early
2129 clobber operand if the matching operand is
2130 not dying in the insn. */
2131 if (! curr_static_id->operand[m].early_clobber
2132 || operand_reg[nop] == NULL_RTX
2133 || (find_regno_note (curr_insn, REG_DEAD,
2134 REGNO (op))
2135 || REGNO (op) == REGNO (operand_reg[m])))
2136 match_p = true;
2138 if (match_p)
2140 /* If we are matching a non-offsettable
2141 address where an offsettable address was
2142 expected, then we must reject this
2143 combination, because we can't reload
2144 it. */
2145 if (curr_alt_offmemok[m]
2146 && MEM_P (*curr_id->operand_loc[m])
2147 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2148 continue;
2150 else
2152 /* Operands don't match. Both operands must
2153 allow a reload register, otherwise we
2154 cannot make them match. */
2155 if (curr_alt[m] == NO_REGS)
2156 break;
2157 /* Retroactively mark the operand we had to
2158 match as a loser, if it wasn't already and
2159 it wasn't matched to a register constraint
2160 (e.g it might be matched by memory). */
2161 if (curr_alt_win[m]
2162 && (operand_reg[m] == NULL_RTX
2163 || hard_regno[m] < 0))
2165 losers++;
2166 reload_nregs
2167 += (ira_reg_class_max_nregs[curr_alt[m]]
2168 [GET_MODE (*curr_id->operand_loc[m])]);
2171 /* Prefer matching earlyclobber alternative as
2172 it results in less hard regs required for
2173 the insn than a non-matching earlyclobber
2174 alternative. */
2175 if (curr_static_id->operand[m].early_clobber)
2177 if (lra_dump_file != NULL)
2178 fprintf
2179 (lra_dump_file,
2180 " %d Matching earlyclobber alt:"
2181 " reject--\n",
2182 nop);
2183 reject--;
2185 /* Otherwise we prefer no matching
2186 alternatives because it gives more freedom
2187 in RA. */
2188 else if (operand_reg[nop] == NULL_RTX
2189 || (find_regno_note (curr_insn, REG_DEAD,
2190 REGNO (operand_reg[nop]))
2191 == NULL_RTX))
2193 if (lra_dump_file != NULL)
2194 fprintf
2195 (lra_dump_file,
2196 " %d Matching alt: reject+=2\n",
2197 nop);
2198 reject += 2;
2201 /* If we have to reload this operand and some
2202 previous operand also had to match the same
2203 thing as this operand, we don't know how to do
2204 that. */
2205 if (!match_p || !curr_alt_win[m])
2207 for (i = 0; i < nop; i++)
2208 if (curr_alt_matches[i] == m)
2209 break;
2210 if (i < nop)
2211 break;
2213 else
2214 did_match = true;
2216 /* This can be fixed with reloads if the operand
2217 we are supposed to match can be fixed with
2218 reloads. */
2219 badop = false;
2220 this_alternative = curr_alt[m];
2221 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
2222 winreg = this_alternative != NO_REGS;
2223 break;
2226 case 'g':
2227 if (MEM_P (op)
2228 || general_constant_p (op)
2229 || spilled_pseudo_p (op))
2230 win = true;
2231 cl = GENERAL_REGS;
2232 goto reg;
2234 default:
2235 cn = lookup_constraint (p);
2236 switch (get_constraint_type (cn))
2238 case CT_REGISTER:
2239 cl = reg_class_for_constraint (cn);
2240 if (cl != NO_REGS)
2241 goto reg;
2242 break;
2244 case CT_CONST_INT:
2245 if (CONST_INT_P (op)
2246 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2247 win = true;
2248 break;
2250 case CT_MEMORY:
2251 if (MEM_P (op)
2252 && satisfies_memory_constraint_p (op, cn))
2253 win = true;
2254 else if (spilled_pseudo_p (op))
2255 win = true;
2257 /* If we didn't already win, we can reload constants
2258 via force_const_mem or put the pseudo value into
2259 memory, or make other memory by reloading the
2260 address like for 'o'. */
2261 if (CONST_POOL_OK_P (mode, op)
2262 || MEM_P (op) || REG_P (op)
2263 /* We can restore the equiv insn by a
2264 reload. */
2265 || equiv_substition_p[nop])
2266 badop = false;
2267 constmemok = true;
2268 offmemok = true;
2269 break;
2271 case CT_ADDRESS:
2272 /* If we didn't already win, we can reload the address
2273 into a base register. */
2274 if (satisfies_address_constraint_p (op, cn))
2275 win = true;
2276 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2277 ADDRESS, SCRATCH);
2278 badop = false;
2279 goto reg;
2281 case CT_FIXED_FORM:
2282 if (constraint_satisfied_p (op, cn))
2283 win = true;
2284 break;
2286 case CT_SPECIAL_MEMORY:
2287 if (MEM_P (op)
2288 && satisfies_memory_constraint_p (op, cn))
2289 win = true;
2290 else if (spilled_pseudo_p (op))
2291 win = true;
2292 break;
2294 break;
2296 reg:
2297 this_alternative = reg_class_subunion[this_alternative][cl];
2298 IOR_HARD_REG_SET (this_alternative_set,
2299 reg_class_contents[cl]);
2300 if (costly_p)
2302 this_costly_alternative
2303 = reg_class_subunion[this_costly_alternative][cl];
2304 IOR_HARD_REG_SET (this_costly_alternative_set,
2305 reg_class_contents[cl]);
2307 if (mode == BLKmode)
2308 break;
2309 winreg = true;
2310 if (REG_P (op))
2312 if (hard_regno[nop] >= 0
2313 && in_hard_reg_set_p (this_alternative_set,
2314 mode, hard_regno[nop]))
2315 win = true;
2316 else if (hard_regno[nop] < 0
2317 && in_class_p (op, this_alternative, NULL))
2318 win = true;
2320 break;
2322 if (c != ' ' && c != '\t')
2323 costly_p = c == '*';
2325 while ((p += len), c);
2327 scratch_p = (operand_reg[nop] != NULL_RTX
2328 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2329 /* Record which operands fit this alternative. */
2330 if (win)
2332 this_alternative_win = true;
2333 if (operand_reg[nop] != NULL_RTX)
2335 if (hard_regno[nop] >= 0)
2337 if (in_hard_reg_set_p (this_costly_alternative_set,
2338 mode, hard_regno[nop]))
2340 if (lra_dump_file != NULL)
2341 fprintf (lra_dump_file,
2342 " %d Costly set: reject++\n",
2343 nop);
2344 reject++;
2347 else
2349 /* Prefer won reg to spilled pseudo under other
2350 equal conditions for possibe inheritance. */
2351 if (! scratch_p)
2353 if (lra_dump_file != NULL)
2354 fprintf
2355 (lra_dump_file,
2356 " %d Non pseudo reload: reject++\n",
2357 nop);
2358 reject++;
2360 if (in_class_p (operand_reg[nop],
2361 this_costly_alternative, NULL))
2363 if (lra_dump_file != NULL)
2364 fprintf
2365 (lra_dump_file,
2366 " %d Non pseudo costly reload:"
2367 " reject++\n",
2368 nop);
2369 reject++;
2372 /* We simulate the behavior of old reload here.
2373 Although scratches need hard registers and it
2374 might result in spilling other pseudos, no reload
2375 insns are generated for the scratches. So it
2376 might cost something but probably less than old
2377 reload pass believes. */
2378 if (scratch_p)
2380 if (lra_dump_file != NULL)
2381 fprintf (lra_dump_file,
2382 " %d Scratch win: reject+=2\n",
2383 nop);
2384 reject += 2;
2388 else if (did_match)
2389 this_alternative_match_win = true;
2390 else
2392 int const_to_mem = 0;
2393 bool no_regs_p;
2395 reject += op_reject;
2396 /* Never do output reload of stack pointer. It makes
2397 impossible to do elimination when SP is changed in
2398 RTL. */
2399 if (op == stack_pointer_rtx && ! frame_pointer_needed
2400 && curr_static_id->operand[nop].type != OP_IN)
2401 goto fail;
2403 /* If this alternative asks for a specific reg class, see if there
2404 is at least one allocatable register in that class. */
2405 no_regs_p
2406 = (this_alternative == NO_REGS
2407 || (hard_reg_set_subset_p
2408 (reg_class_contents[this_alternative],
2409 lra_no_alloc_regs)));
2411 /* For asms, verify that the class for this alternative is possible
2412 for the mode that is specified. */
2413 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2415 int i;
2416 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2417 if (HARD_REGNO_MODE_OK (i, mode)
2418 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2419 mode, i))
2420 break;
2421 if (i == FIRST_PSEUDO_REGISTER)
2422 winreg = false;
2425 /* If this operand accepts a register, and if the
2426 register class has at least one allocatable register,
2427 then this operand can be reloaded. */
2428 if (winreg && !no_regs_p)
2429 badop = false;
2431 if (badop)
2433 if (lra_dump_file != NULL)
2434 fprintf (lra_dump_file,
2435 " alt=%d: Bad operand -- refuse\n",
2436 nalt);
2437 goto fail;
2440 if (this_alternative != NO_REGS)
2442 HARD_REG_SET available_regs;
2444 COPY_HARD_REG_SET (available_regs,
2445 reg_class_contents[this_alternative]);
2446 AND_COMPL_HARD_REG_SET
2447 (available_regs,
2448 ira_prohibited_class_mode_regs[this_alternative][mode]);
2449 AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
2450 if (hard_reg_set_empty_p (available_regs))
2452 /* There are no hard regs holding a value of given
2453 mode. */
2454 if (offmemok)
2456 this_alternative = NO_REGS;
2457 if (lra_dump_file != NULL)
2458 fprintf (lra_dump_file,
2459 " %d Using memory because of"
2460 " a bad mode: reject+=2\n",
2461 nop);
2462 reject += 2;
2464 else
2466 if (lra_dump_file != NULL)
2467 fprintf (lra_dump_file,
2468 " alt=%d: Wrong mode -- refuse\n",
2469 nalt);
2470 goto fail;
2475 /* If not assigned pseudo has a class which a subset of
2476 required reg class, it is a less costly alternative
2477 as the pseudo still can get a hard reg of necessary
2478 class. */
2479 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2480 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2481 && ira_class_subset_p[this_alternative][cl])
2483 if (lra_dump_file != NULL)
2484 fprintf
2485 (lra_dump_file,
2486 " %d Super set class reg: reject-=3\n", nop);
2487 reject -= 3;
2490 this_alternative_offmemok = offmemok;
2491 if (this_costly_alternative != NO_REGS)
2493 if (lra_dump_file != NULL)
2494 fprintf (lra_dump_file,
2495 " %d Costly loser: reject++\n", nop);
2496 reject++;
2498 /* If the operand is dying, has a matching constraint,
2499 and satisfies constraints of the matched operand
2500 which failed to satisfy the own constraints, most probably
2501 the reload for this operand will be gone. */
2502 if (this_alternative_matches >= 0
2503 && !curr_alt_win[this_alternative_matches]
2504 && REG_P (op)
2505 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2506 && (hard_regno[nop] >= 0
2507 ? in_hard_reg_set_p (this_alternative_set,
2508 mode, hard_regno[nop])
2509 : in_class_p (op, this_alternative, NULL)))
2511 if (lra_dump_file != NULL)
2512 fprintf
2513 (lra_dump_file,
2514 " %d Dying matched operand reload: reject++\n",
2515 nop);
2516 reject++;
2518 else
2520 /* Strict_low_part requires to reload the register
2521 not the sub-register. In this case we should
2522 check that a final reload hard reg can hold the
2523 value mode. */
2524 if (curr_static_id->operand[nop].strict_low
2525 && REG_P (op)
2526 && hard_regno[nop] < 0
2527 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2528 && ira_class_hard_regs_num[this_alternative] > 0
2529 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2530 [this_alternative][0],
2531 GET_MODE
2532 (*curr_id->operand_loc[nop])))
2534 if (lra_dump_file != NULL)
2535 fprintf
2536 (lra_dump_file,
2537 " alt=%d: Strict low subreg reload -- refuse\n",
2538 nalt);
2539 goto fail;
2541 losers++;
2543 if (operand_reg[nop] != NULL_RTX
2544 /* Output operands and matched input operands are
2545 not inherited. The following conditions do not
2546 exactly describe the previous statement but they
2547 are pretty close. */
2548 && curr_static_id->operand[nop].type != OP_OUT
2549 && (this_alternative_matches < 0
2550 || curr_static_id->operand[nop].type != OP_IN))
2552 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2553 (operand_reg[nop])]
2554 .last_reload);
2556 /* The value of reload_sum has sense only if we
2557 process insns in their order. It happens only on
2558 the first constraints sub-pass when we do most of
2559 reload work. */
2560 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2561 reload_sum += last_reload - bb_reload_num;
2563 /* If this is a constant that is reloaded into the
2564 desired class by copying it to memory first, count
2565 that as another reload. This is consistent with
2566 other code and is required to avoid choosing another
2567 alternative when the constant is moved into memory.
2568 Note that the test here is precisely the same as in
2569 the code below that calls force_const_mem. */
2570 if (CONST_POOL_OK_P (mode, op)
2571 && ((targetm.preferred_reload_class
2572 (op, this_alternative) == NO_REGS)
2573 || no_input_reloads_p))
2575 const_to_mem = 1;
2576 if (! no_regs_p)
2577 losers++;
2580 /* Alternative loses if it requires a type of reload not
2581 permitted for this insn. We can always reload
2582 objects with a REG_UNUSED note. */
2583 if ((curr_static_id->operand[nop].type != OP_IN
2584 && no_output_reloads_p
2585 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2586 || (curr_static_id->operand[nop].type != OP_OUT
2587 && no_input_reloads_p && ! const_to_mem)
2588 || (this_alternative_matches >= 0
2589 && (no_input_reloads_p
2590 || (no_output_reloads_p
2591 && (curr_static_id->operand
2592 [this_alternative_matches].type != OP_IN)
2593 && ! find_reg_note (curr_insn, REG_UNUSED,
2594 no_subreg_reg_operand
2595 [this_alternative_matches])))))
2597 if (lra_dump_file != NULL)
2598 fprintf
2599 (lra_dump_file,
2600 " alt=%d: No input/otput reload -- refuse\n",
2601 nalt);
2602 goto fail;
2605 /* Alternative loses if it required class pseudo can not
2606 hold value of required mode. Such insns can be
2607 described by insn definitions with mode iterators. */
2608 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2609 && ! hard_reg_set_empty_p (this_alternative_set)
2610 /* It is common practice for constraints to use a
2611 class which does not have actually enough regs to
2612 hold the value (e.g. x86 AREG for mode requiring
2613 more one general reg). Therefore we have 2
2614 conditions to check that the reload pseudo can
2615 not hold the mode value. */
2616 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2617 [this_alternative][0],
2618 GET_MODE (*curr_id->operand_loc[nop]))
2619 /* The above condition is not enough as the first
2620 reg in ira_class_hard_regs can be not aligned for
2621 multi-words mode values. */
2622 && (prohibited_class_reg_set_mode_p
2623 (this_alternative, this_alternative_set,
2624 GET_MODE (*curr_id->operand_loc[nop]))))
2626 if (lra_dump_file != NULL)
2627 fprintf (lra_dump_file,
2628 " alt=%d: reload pseudo for op %d "
2629 " can not hold the mode value -- refuse\n",
2630 nalt, nop);
2631 goto fail;
2634 /* Check strong discouragement of reload of non-constant
2635 into class THIS_ALTERNATIVE. */
2636 if (! CONSTANT_P (op) && ! no_regs_p
2637 && (targetm.preferred_reload_class
2638 (op, this_alternative) == NO_REGS
2639 || (curr_static_id->operand[nop].type == OP_OUT
2640 && (targetm.preferred_output_reload_class
2641 (op, this_alternative) == NO_REGS))))
2643 if (lra_dump_file != NULL)
2644 fprintf (lra_dump_file,
2645 " %d Non-prefered reload: reject+=%d\n",
2646 nop, LRA_MAX_REJECT);
2647 reject += LRA_MAX_REJECT;
2650 if (! (MEM_P (op) && offmemok)
2651 && ! (const_to_mem && constmemok))
2653 /* We prefer to reload pseudos over reloading other
2654 things, since such reloads may be able to be
2655 eliminated later. So bump REJECT in other cases.
2656 Don't do this in the case where we are forcing a
2657 constant into memory and it will then win since
2658 we don't want to have a different alternative
2659 match then. */
2660 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2662 if (lra_dump_file != NULL)
2663 fprintf
2664 (lra_dump_file,
2665 " %d Non-pseudo reload: reject+=2\n",
2666 nop);
2667 reject += 2;
2670 if (! no_regs_p)
2671 reload_nregs
2672 += ira_reg_class_max_nregs[this_alternative][mode];
2674 if (SMALL_REGISTER_CLASS_P (this_alternative))
2676 if (lra_dump_file != NULL)
2677 fprintf
2678 (lra_dump_file,
2679 " %d Small class reload: reject+=%d\n",
2680 nop, LRA_LOSER_COST_FACTOR / 2);
2681 reject += LRA_LOSER_COST_FACTOR / 2;
2685 /* We are trying to spill pseudo into memory. It is
2686 usually more costly than moving to a hard register
2687 although it might takes the same number of
2688 reloads.
2690 Non-pseudo spill may happen also. Suppose a target allows both
2691 register and memory in the operand constraint alternatives,
2692 then it's typical that an eliminable register has a substition
2693 of "base + offset" which can either be reloaded by a simple
2694 "new_reg <= base + offset" which will match the register
2695 constraint, or a similar reg addition followed by further spill
2696 to and reload from memory which will match the memory
2697 constraint, but this memory spill will be much more costly
2698 usually.
2700 Code below increases the reject for both pseudo and non-pseudo
2701 spill. */
2702 if (no_regs_p
2703 && !(MEM_P (op) && offmemok)
2704 && !(REG_P (op) && hard_regno[nop] < 0))
2706 if (lra_dump_file != NULL)
2707 fprintf
2708 (lra_dump_file,
2709 " %d Spill %spseudo into memory: reject+=3\n",
2710 nop, REG_P (op) ? "" : "Non-");
2711 reject += 3;
2712 if (VECTOR_MODE_P (mode))
2714 /* Spilling vectors into memory is usually more
2715 costly as they contain big values. */
2716 if (lra_dump_file != NULL)
2717 fprintf
2718 (lra_dump_file,
2719 " %d Spill vector pseudo: reject+=2\n",
2720 nop);
2721 reject += 2;
2725 /* When we use memory operand, the insn should read the
2726 value from memory and even if we just wrote a value
2727 into the memory it is costly in comparison with an
2728 insn alternative which does not use memory
2729 (e.g. register or immediate operand). */
2730 if (no_regs_p && offmemok)
2732 if (lra_dump_file != NULL)
2733 fprintf
2734 (lra_dump_file,
2735 " Using memory insn operand %d: reject+=3\n",
2736 nop);
2737 reject += 3;
2740 #ifdef SECONDARY_MEMORY_NEEDED
2741 /* If reload requires moving value through secondary
2742 memory, it will need one more insn at least. */
2743 if (this_alternative != NO_REGS
2744 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2745 && ((curr_static_id->operand[nop].type != OP_OUT
2746 && SECONDARY_MEMORY_NEEDED (cl, this_alternative,
2747 GET_MODE (op)))
2748 || (curr_static_id->operand[nop].type != OP_IN
2749 && SECONDARY_MEMORY_NEEDED (this_alternative, cl,
2750 GET_MODE (op)))))
2751 losers++;
2752 #endif
2753 /* Input reloads can be inherited more often than output
2754 reloads can be removed, so penalize output
2755 reloads. */
2756 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2758 if (lra_dump_file != NULL)
2759 fprintf
2760 (lra_dump_file,
2761 " %d Non input pseudo reload: reject++\n",
2762 nop);
2763 reject++;
2766 if (MEM_P (op) && offmemok)
2767 addr_losers++;
2768 else if (curr_static_id->operand[nop].type == OP_INOUT)
2770 if (lra_dump_file != NULL)
2771 fprintf
2772 (lra_dump_file,
2773 " %d Input/Output reload: reject+=%d\n",
2774 nop, LRA_LOSER_COST_FACTOR);
2775 reject += LRA_LOSER_COST_FACTOR;
2779 if (early_clobber_p && ! scratch_p)
2781 if (lra_dump_file != NULL)
2782 fprintf (lra_dump_file,
2783 " %d Early clobber: reject++\n", nop);
2784 reject++;
2786 /* ??? We check early clobbers after processing all operands
2787 (see loop below) and there we update the costs more.
2788 Should we update the cost (may be approximately) here
2789 because of early clobber register reloads or it is a rare
2790 or non-important thing to be worth to do it. */
2791 overall = (losers * LRA_LOSER_COST_FACTOR + reject
2792 - (addr_losers == losers ? static_reject : 0));
2793 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2795 if (lra_dump_file != NULL)
2796 fprintf (lra_dump_file,
2797 " alt=%d,overall=%d,losers=%d -- refuse\n",
2798 nalt, overall, losers);
2799 goto fail;
2802 if (update_and_check_small_class_inputs (nop, this_alternative))
2804 if (lra_dump_file != NULL)
2805 fprintf (lra_dump_file,
2806 " alt=%d, not enough small class regs -- refuse\n",
2807 nalt);
2808 goto fail;
2810 curr_alt[nop] = this_alternative;
2811 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2812 curr_alt_win[nop] = this_alternative_win;
2813 curr_alt_match_win[nop] = this_alternative_match_win;
2814 curr_alt_offmemok[nop] = this_alternative_offmemok;
2815 curr_alt_matches[nop] = this_alternative_matches;
2817 if (this_alternative_matches >= 0
2818 && !did_match && !this_alternative_win)
2819 curr_alt_win[this_alternative_matches] = false;
2821 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2822 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2825 if (curr_insn_set != NULL_RTX && n_operands == 2
2826 /* Prevent processing non-move insns. */
2827 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2828 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2829 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2830 && REG_P (no_subreg_reg_operand[0])
2831 && REG_P (no_subreg_reg_operand[1])
2832 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2833 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2834 || (! curr_alt_win[0] && curr_alt_win[1]
2835 && REG_P (no_subreg_reg_operand[1])
2836 /* Check that we reload memory not the memory
2837 address. */
2838 && ! (curr_alt_offmemok[0]
2839 && MEM_P (no_subreg_reg_operand[0]))
2840 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2841 || (curr_alt_win[0] && ! curr_alt_win[1]
2842 && REG_P (no_subreg_reg_operand[0])
2843 /* Check that we reload memory not the memory
2844 address. */
2845 && ! (curr_alt_offmemok[1]
2846 && MEM_P (no_subreg_reg_operand[1]))
2847 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2848 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2849 no_subreg_reg_operand[1])
2850 || (targetm.preferred_reload_class
2851 (no_subreg_reg_operand[1],
2852 (enum reg_class) curr_alt[1]) != NO_REGS))
2853 /* If it is a result of recent elimination in move
2854 insn we can transform it into an add still by
2855 using this alternative. */
2856 && GET_CODE (no_subreg_reg_operand[1]) != PLUS)))
2858 /* We have a move insn and a new reload insn will be similar
2859 to the current insn. We should avoid such situation as
2860 it results in LRA cycling. */
2861 if (lra_dump_file != NULL)
2862 fprintf (lra_dump_file,
2863 " Cycle danger: overall += LRA_MAX_REJECT\n");
2864 overall += LRA_MAX_REJECT;
2866 ok_p = true;
2867 curr_alt_dont_inherit_ops_num = 0;
2868 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2870 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2871 HARD_REG_SET temp_set;
2873 i = early_clobbered_nops[nop];
2874 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2875 || hard_regno[i] < 0)
2876 continue;
2877 lra_assert (operand_reg[i] != NULL_RTX);
2878 clobbered_hard_regno = hard_regno[i];
2879 CLEAR_HARD_REG_SET (temp_set);
2880 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2881 first_conflict_j = last_conflict_j = -1;
2882 for (j = 0; j < n_operands; j++)
2883 if (j == i
2884 /* We don't want process insides of match_operator and
2885 match_parallel because otherwise we would process
2886 their operands once again generating a wrong
2887 code. */
2888 || curr_static_id->operand[j].is_operator)
2889 continue;
2890 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2891 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2892 continue;
2893 /* If we don't reload j-th operand, check conflicts. */
2894 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2895 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2897 if (first_conflict_j < 0)
2898 first_conflict_j = j;
2899 last_conflict_j = j;
2901 if (last_conflict_j < 0)
2902 continue;
2903 /* If earlyclobber operand conflicts with another
2904 non-matching operand which is actually the same register
2905 as the earlyclobber operand, it is better to reload the
2906 another operand as an operand matching the earlyclobber
2907 operand can be also the same. */
2908 if (first_conflict_j == last_conflict_j
2909 && operand_reg[last_conflict_j] != NULL_RTX
2910 && ! curr_alt_match_win[last_conflict_j]
2911 && REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j]))
2913 curr_alt_win[last_conflict_j] = false;
2914 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2915 = last_conflict_j;
2916 losers++;
2917 /* Early clobber was already reflected in REJECT. */
2918 lra_assert (reject > 0);
2919 if (lra_dump_file != NULL)
2920 fprintf
2921 (lra_dump_file,
2922 " %d Conflict early clobber reload: reject--\n",
2924 reject--;
2925 overall += LRA_LOSER_COST_FACTOR - 1;
2927 else
2929 /* We need to reload early clobbered register and the
2930 matched registers. */
2931 for (j = 0; j < n_operands; j++)
2932 if (curr_alt_matches[j] == i)
2934 curr_alt_match_win[j] = false;
2935 losers++;
2936 overall += LRA_LOSER_COST_FACTOR;
2938 if (! curr_alt_match_win[i])
2939 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
2940 else
2942 /* Remember pseudos used for match reloads are never
2943 inherited. */
2944 lra_assert (curr_alt_matches[i] >= 0);
2945 curr_alt_win[curr_alt_matches[i]] = false;
2947 curr_alt_win[i] = curr_alt_match_win[i] = false;
2948 losers++;
2949 /* Early clobber was already reflected in REJECT. */
2950 lra_assert (reject > 0);
2951 if (lra_dump_file != NULL)
2952 fprintf
2953 (lra_dump_file,
2954 " %d Matched conflict early clobber reloads: "
2955 "reject--\n",
2957 reject--;
2958 overall += LRA_LOSER_COST_FACTOR - 1;
2961 if (lra_dump_file != NULL)
2962 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2963 nalt, overall, losers, reload_nregs);
2965 /* If this alternative can be made to work by reloading, and it
2966 needs less reloading than the others checked so far, record
2967 it as the chosen goal for reloading. */
2968 if ((best_losers != 0 && losers == 0)
2969 || (((best_losers == 0 && losers == 0)
2970 || (best_losers != 0 && losers != 0))
2971 && (best_overall > overall
2972 || (best_overall == overall
2973 /* If the cost of the reloads is the same,
2974 prefer alternative which requires minimal
2975 number of reload regs. */
2976 && (reload_nregs < best_reload_nregs
2977 || (reload_nregs == best_reload_nregs
2978 && (best_reload_sum < reload_sum
2979 || (best_reload_sum == reload_sum
2980 && nalt < goal_alt_number))))))))
2982 for (nop = 0; nop < n_operands; nop++)
2984 goal_alt_win[nop] = curr_alt_win[nop];
2985 goal_alt_match_win[nop] = curr_alt_match_win[nop];
2986 goal_alt_matches[nop] = curr_alt_matches[nop];
2987 goal_alt[nop] = curr_alt[nop];
2988 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
2990 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
2991 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
2992 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
2993 goal_alt_swapped = curr_swapped;
2994 best_overall = overall;
2995 best_losers = losers;
2996 best_reload_nregs = reload_nregs;
2997 best_reload_sum = reload_sum;
2998 goal_alt_number = nalt;
3000 if (losers == 0)
3001 /* Everything is satisfied. Do not process alternatives
3002 anymore. */
3003 break;
3004 fail:
3007 return ok_p;
3010 /* Make reload base reg from address AD. */
3011 static rtx
3012 base_to_reg (struct address_info *ad)
3014 enum reg_class cl;
3015 int code = -1;
3016 rtx new_inner = NULL_RTX;
3017 rtx new_reg = NULL_RTX;
3018 rtx_insn *insn;
3019 rtx_insn *last_insn = get_last_insn();
3021 lra_assert (ad->disp == ad->disp_term);
3022 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3023 get_index_code (ad));
3024 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX,
3025 cl, "base");
3026 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3027 ad->disp_term == NULL
3028 ? const0_rtx
3029 : *ad->disp_term);
3030 if (!valid_address_p (ad->mode, new_inner, ad->as))
3031 return NULL_RTX;
3032 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3033 code = recog_memoized (insn);
3034 if (code < 0)
3036 delete_insns_since (last_insn);
3037 return NULL_RTX;
3040 return new_inner;
3043 /* Make reload base reg + disp from address AD. Return the new pseudo. */
3044 static rtx
3045 base_plus_disp_to_reg (struct address_info *ad)
3047 enum reg_class cl;
3048 rtx new_reg;
3050 lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term);
3051 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3052 get_index_code (ad));
3053 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
3054 cl, "base + disp");
3055 lra_emit_add (new_reg, *ad->base_term, *ad->disp_term);
3056 return new_reg;
3059 /* Make reload of index part of address AD. Return the new
3060 pseudo. */
3061 static rtx
3062 index_part_to_reg (struct address_info *ad)
3064 rtx new_reg;
3066 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3067 INDEX_REG_CLASS, "index term");
3068 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3069 GEN_INT (get_index_scale (ad)), new_reg, 1);
3070 return new_reg;
3073 /* Return true if we can add a displacement to address AD, even if that
3074 makes the address invalid. The fix-up code requires any new address
3075 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3076 static bool
3077 can_add_disp_p (struct address_info *ad)
3079 return (!ad->autoinc_p
3080 && ad->segment == NULL
3081 && ad->base == ad->base_term
3082 && ad->disp == ad->disp_term);
3085 /* Make equiv substitution in address AD. Return true if a substitution
3086 was made. */
3087 static bool
3088 equiv_address_substitution (struct address_info *ad)
3090 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3091 HOST_WIDE_INT disp, scale;
3092 bool change_p;
3094 base_term = strip_subreg (ad->base_term);
3095 if (base_term == NULL)
3096 base_reg = new_base_reg = NULL_RTX;
3097 else
3099 base_reg = *base_term;
3100 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3102 index_term = strip_subreg (ad->index_term);
3103 if (index_term == NULL)
3104 index_reg = new_index_reg = NULL_RTX;
3105 else
3107 index_reg = *index_term;
3108 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3110 if (base_reg == new_base_reg && index_reg == new_index_reg)
3111 return false;
3112 disp = 0;
3113 change_p = false;
3114 if (lra_dump_file != NULL)
3116 fprintf (lra_dump_file, "Changing address in insn %d ",
3117 INSN_UID (curr_insn));
3118 dump_value_slim (lra_dump_file, *ad->outer, 1);
3120 if (base_reg != new_base_reg)
3122 if (REG_P (new_base_reg))
3124 *base_term = new_base_reg;
3125 change_p = true;
3127 else if (GET_CODE (new_base_reg) == PLUS
3128 && REG_P (XEXP (new_base_reg, 0))
3129 && CONST_INT_P (XEXP (new_base_reg, 1))
3130 && can_add_disp_p (ad))
3132 disp += INTVAL (XEXP (new_base_reg, 1));
3133 *base_term = XEXP (new_base_reg, 0);
3134 change_p = true;
3136 if (ad->base_term2 != NULL)
3137 *ad->base_term2 = *ad->base_term;
3139 if (index_reg != new_index_reg)
3141 if (REG_P (new_index_reg))
3143 *index_term = new_index_reg;
3144 change_p = true;
3146 else if (GET_CODE (new_index_reg) == PLUS
3147 && REG_P (XEXP (new_index_reg, 0))
3148 && CONST_INT_P (XEXP (new_index_reg, 1))
3149 && can_add_disp_p (ad)
3150 && (scale = get_index_scale (ad)))
3152 disp += INTVAL (XEXP (new_index_reg, 1)) * scale;
3153 *index_term = XEXP (new_index_reg, 0);
3154 change_p = true;
3157 if (disp != 0)
3159 if (ad->disp != NULL)
3160 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3161 else
3163 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3164 update_address (ad);
3166 change_p = true;
3168 if (lra_dump_file != NULL)
3170 if (! change_p)
3171 fprintf (lra_dump_file, " -- no change\n");
3172 else
3174 fprintf (lra_dump_file, " on equiv ");
3175 dump_value_slim (lra_dump_file, *ad->outer, 1);
3176 fprintf (lra_dump_file, "\n");
3179 return change_p;
3182 /* Major function to make reloads for an address in operand NOP or
3183 check its correctness (If CHECK_ONLY_P is true). The supported
3184 cases are:
3186 1) an address that existed before LRA started, at which point it
3187 must have been valid. These addresses are subject to elimination
3188 and may have become invalid due to the elimination offset being out
3189 of range.
3191 2) an address created by forcing a constant to memory
3192 (force_const_to_mem). The initial form of these addresses might
3193 not be valid, and it is this function's job to make them valid.
3195 3) a frame address formed from a register and a (possibly zero)
3196 constant offset. As above, these addresses might not be valid and
3197 this function must make them so.
3199 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3200 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3201 address. Return true for any RTL change.
3203 The function is a helper function which does not produce all
3204 transformations (when CHECK_ONLY_P is false) which can be
3205 necessary. It does just basic steps. To do all necessary
3206 transformations use function process_address. */
3207 static bool
3208 process_address_1 (int nop, bool check_only_p,
3209 rtx_insn **before, rtx_insn **after)
3211 struct address_info ad;
3212 rtx new_reg;
3213 HOST_WIDE_INT scale;
3214 rtx op = *curr_id->operand_loc[nop];
3215 const char *constraint = curr_static_id->operand[nop].constraint;
3216 enum constraint_num cn = lookup_constraint (constraint);
3217 bool change_p = false;
3219 if (MEM_P (op)
3220 && GET_MODE (op) == BLKmode
3221 && GET_CODE (XEXP (op, 0)) == SCRATCH)
3222 return false;
3224 if (insn_extra_address_constraint (cn))
3225 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3226 /* Do not attempt to decompose arbitrary addresses generated by combine
3227 for asm operands with loose constraints, e.g 'X'. */
3228 else if (MEM_P (op)
3229 && !(get_constraint_type (cn) == CT_FIXED_FORM
3230 && constraint_satisfied_p (op, cn)))
3231 decompose_mem_address (&ad, op);
3232 else if (GET_CODE (op) == SUBREG
3233 && MEM_P (SUBREG_REG (op)))
3234 decompose_mem_address (&ad, SUBREG_REG (op));
3235 else
3236 return false;
3237 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3238 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3239 when INDEX_REG_CLASS is a single register class. */
3240 if (ad.base_term != NULL
3241 && ad.index_term != NULL
3242 && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
3243 && REG_P (*ad.base_term)
3244 && REG_P (*ad.index_term)
3245 && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
3246 && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
3248 std::swap (ad.base, ad.index);
3249 std::swap (ad.base_term, ad.index_term);
3251 if (! check_only_p)
3252 change_p = equiv_address_substitution (&ad);
3253 if (ad.base_term != NULL
3254 && (process_addr_reg
3255 (ad.base_term, check_only_p, before,
3256 (ad.autoinc_p
3257 && !(REG_P (*ad.base_term)
3258 && find_regno_note (curr_insn, REG_DEAD,
3259 REGNO (*ad.base_term)) != NULL_RTX)
3260 ? after : NULL),
3261 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3262 get_index_code (&ad)))))
3264 change_p = true;
3265 if (ad.base_term2 != NULL)
3266 *ad.base_term2 = *ad.base_term;
3268 if (ad.index_term != NULL
3269 && process_addr_reg (ad.index_term, check_only_p,
3270 before, NULL, INDEX_REG_CLASS))
3271 change_p = true;
3273 /* Target hooks sometimes don't treat extra-constraint addresses as
3274 legitimate address_operands, so handle them specially. */
3275 if (insn_extra_address_constraint (cn)
3276 && satisfies_address_constraint_p (&ad, cn))
3277 return change_p;
3279 if (check_only_p)
3280 return change_p;
3282 /* There are three cases where the shape of *AD.INNER may now be invalid:
3284 1) the original address was valid, but either elimination or
3285 equiv_address_substitution was applied and that made
3286 the address invalid.
3288 2) the address is an invalid symbolic address created by
3289 force_const_to_mem.
3291 3) the address is a frame address with an invalid offset.
3293 4) the address is a frame address with an invalid base.
3295 All these cases involve a non-autoinc address, so there is no
3296 point revalidating other types. */
3297 if (ad.autoinc_p || valid_address_p (&ad))
3298 return change_p;
3300 /* Any index existed before LRA started, so we can assume that the
3301 presence and shape of the index is valid. */
3302 push_to_sequence (*before);
3303 lra_assert (ad.disp == ad.disp_term);
3304 if (ad.base == NULL)
3306 if (ad.index == NULL)
3308 rtx_insn *insn;
3309 rtx_insn *last = get_last_insn ();
3310 int code = -1;
3311 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3312 SCRATCH, SCRATCH);
3313 rtx addr = *ad.inner;
3315 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3316 if (HAVE_lo_sum)
3318 /* addr => lo_sum (new_base, addr), case (2) above. */
3319 insn = emit_insn (gen_rtx_SET
3320 (new_reg,
3321 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3322 code = recog_memoized (insn);
3323 if (code >= 0)
3325 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3326 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3328 /* Try to put lo_sum into register. */
3329 insn = emit_insn (gen_rtx_SET
3330 (new_reg,
3331 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3332 code = recog_memoized (insn);
3333 if (code >= 0)
3335 *ad.inner = new_reg;
3336 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3338 *ad.inner = addr;
3339 code = -1;
3345 if (code < 0)
3346 delete_insns_since (last);
3349 if (code < 0)
3351 /* addr => new_base, case (2) above. */
3352 lra_emit_move (new_reg, addr);
3354 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3355 insn != NULL_RTX;
3356 insn = NEXT_INSN (insn))
3357 if (recog_memoized (insn) < 0)
3358 break;
3359 if (insn != NULL_RTX)
3361 /* Do nothing if we cannot generate right insns.
3362 This is analogous to reload pass behavior. */
3363 delete_insns_since (last);
3364 end_sequence ();
3365 return false;
3367 *ad.inner = new_reg;
3370 else
3372 /* index * scale + disp => new base + index * scale,
3373 case (1) above. */
3374 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3375 GET_CODE (*ad.index));
3377 lra_assert (INDEX_REG_CLASS != NO_REGS);
3378 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3379 lra_emit_move (new_reg, *ad.disp);
3380 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3381 new_reg, *ad.index);
3384 else if (ad.index == NULL)
3386 int regno;
3387 enum reg_class cl;
3388 rtx set;
3389 rtx_insn *insns, *last_insn;
3390 /* Try to reload base into register only if the base is invalid
3391 for the address but with valid offset, case (4) above. */
3392 start_sequence ();
3393 new_reg = base_to_reg (&ad);
3395 /* base + disp => new base, cases (1) and (3) above. */
3396 /* Another option would be to reload the displacement into an
3397 index register. However, postreload has code to optimize
3398 address reloads that have the same base and different
3399 displacements, so reloading into an index register would
3400 not necessarily be a win. */
3401 if (new_reg == NULL_RTX)
3402 new_reg = base_plus_disp_to_reg (&ad);
3403 insns = get_insns ();
3404 last_insn = get_last_insn ();
3405 /* If we generated at least two insns, try last insn source as
3406 an address. If we succeed, we generate one less insn. */
3407 if (last_insn != insns && (set = single_set (last_insn)) != NULL_RTX
3408 && GET_CODE (SET_SRC (set)) == PLUS
3409 && REG_P (XEXP (SET_SRC (set), 0))
3410 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3412 *ad.inner = SET_SRC (set);
3413 if (valid_address_p (ad.mode, *ad.outer, ad.as))
3415 *ad.base_term = XEXP (SET_SRC (set), 0);
3416 *ad.disp_term = XEXP (SET_SRC (set), 1);
3417 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3418 get_index_code (&ad));
3419 regno = REGNO (*ad.base_term);
3420 if (regno >= FIRST_PSEUDO_REGISTER
3421 && cl != lra_get_allocno_class (regno))
3422 lra_change_class (regno, cl, " Change to", true);
3423 new_reg = SET_SRC (set);
3424 delete_insns_since (PREV_INSN (last_insn));
3427 /* Try if target can split displacement into legitimite new disp
3428 and offset. If it's the case, we replace the last insn with
3429 insns for base + offset => new_reg and set new_reg + new disp
3430 to *ad.inner. */
3431 last_insn = get_last_insn ();
3432 if ((set = single_set (last_insn)) != NULL_RTX
3433 && GET_CODE (SET_SRC (set)) == PLUS
3434 && REG_P (XEXP (SET_SRC (set), 0))
3435 && REGNO (XEXP (SET_SRC (set), 0)) < FIRST_PSEUDO_REGISTER
3436 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3438 rtx addend, disp = XEXP (SET_SRC (set), 1);
3439 if (targetm.legitimize_address_displacement (&disp, &addend,
3440 ad.mode))
3442 rtx_insn *new_insns;
3443 start_sequence ();
3444 lra_emit_add (new_reg, XEXP (SET_SRC (set), 0), addend);
3445 new_insns = get_insns ();
3446 end_sequence ();
3447 new_reg = gen_rtx_PLUS (Pmode, new_reg, disp);
3448 delete_insns_since (PREV_INSN (last_insn));
3449 add_insn (new_insns);
3450 insns = get_insns ();
3453 end_sequence ();
3454 emit_insn (insns);
3455 *ad.inner = new_reg;
3457 else if (ad.disp_term != NULL)
3459 /* base + scale * index + disp => new base + scale * index,
3460 case (1) above. */
3461 new_reg = base_plus_disp_to_reg (&ad);
3462 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3463 new_reg, *ad.index);
3465 else if ((scale = get_index_scale (&ad)) == 1)
3467 /* The last transformation to one reg will be made in
3468 curr_insn_transform function. */
3469 end_sequence ();
3470 return false;
3472 else if (scale != 0)
3474 /* base + scale * index => base + new_reg,
3475 case (1) above.
3476 Index part of address may become invalid. For example, we
3477 changed pseudo on the equivalent memory and a subreg of the
3478 pseudo onto the memory of different mode for which the scale is
3479 prohibitted. */
3480 new_reg = index_part_to_reg (&ad);
3481 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3482 *ad.base_term, new_reg);
3484 else
3486 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3487 SCRATCH, SCRATCH);
3488 rtx addr = *ad.inner;
3490 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3491 /* addr => new_base. */
3492 lra_emit_move (new_reg, addr);
3493 *ad.inner = new_reg;
3495 *before = get_insns ();
3496 end_sequence ();
3497 return true;
3500 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3501 Use process_address_1 as a helper function. Return true for any
3502 RTL changes.
3504 If CHECK_ONLY_P is true, just check address correctness. Return
3505 false if the address correct. */
3506 static bool
3507 process_address (int nop, bool check_only_p,
3508 rtx_insn **before, rtx_insn **after)
3510 bool res = false;
3512 while (process_address_1 (nop, check_only_p, before, after))
3514 if (check_only_p)
3515 return true;
3516 res = true;
3518 return res;
3521 /* Emit insns to reload VALUE into a new register. VALUE is an
3522 auto-increment or auto-decrement RTX whose operand is a register or
3523 memory location; so reloading involves incrementing that location.
3524 IN is either identical to VALUE, or some cheaper place to reload
3525 value being incremented/decremented from.
3527 INC_AMOUNT is the number to increment or decrement by (always
3528 positive and ignored for POST_MODIFY/PRE_MODIFY).
3530 Return pseudo containing the result. */
3531 static rtx
3532 emit_inc (enum reg_class new_rclass, rtx in, rtx value, int inc_amount)
3534 /* REG or MEM to be copied and incremented. */
3535 rtx incloc = XEXP (value, 0);
3536 /* Nonzero if increment after copying. */
3537 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3538 || GET_CODE (value) == POST_MODIFY);
3539 rtx_insn *last;
3540 rtx inc;
3541 rtx_insn *add_insn;
3542 int code;
3543 rtx real_in = in == value ? incloc : in;
3544 rtx result;
3545 bool plus_p = true;
3547 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3549 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3550 || GET_CODE (XEXP (value, 1)) == MINUS);
3551 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3552 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3553 inc = XEXP (XEXP (value, 1), 1);
3555 else
3557 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3558 inc_amount = -inc_amount;
3560 inc = GEN_INT (inc_amount);
3563 if (! post && REG_P (incloc))
3564 result = incloc;
3565 else
3566 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3567 "INC/DEC result");
3569 if (real_in != result)
3571 /* First copy the location to the result register. */
3572 lra_assert (REG_P (result));
3573 emit_insn (gen_move_insn (result, real_in));
3576 /* We suppose that there are insns to add/sub with the constant
3577 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3578 old reload worked with this assumption. If the assumption
3579 becomes wrong, we should use approach in function
3580 base_plus_disp_to_reg. */
3581 if (in == value)
3583 /* See if we can directly increment INCLOC. */
3584 last = get_last_insn ();
3585 add_insn = emit_insn (plus_p
3586 ? gen_add2_insn (incloc, inc)
3587 : gen_sub2_insn (incloc, inc));
3589 code = recog_memoized (add_insn);
3590 if (code >= 0)
3592 if (! post && result != incloc)
3593 emit_insn (gen_move_insn (result, incloc));
3594 return result;
3596 delete_insns_since (last);
3599 /* If couldn't do the increment directly, must increment in RESULT.
3600 The way we do this depends on whether this is pre- or
3601 post-increment. For pre-increment, copy INCLOC to the reload
3602 register, increment it there, then save back. */
3603 if (! post)
3605 if (real_in != result)
3606 emit_insn (gen_move_insn (result, real_in));
3607 if (plus_p)
3608 emit_insn (gen_add2_insn (result, inc));
3609 else
3610 emit_insn (gen_sub2_insn (result, inc));
3611 if (result != incloc)
3612 emit_insn (gen_move_insn (incloc, result));
3614 else
3616 /* Post-increment.
3618 Because this might be a jump insn or a compare, and because
3619 RESULT may not be available after the insn in an input
3620 reload, we must do the incrementing before the insn being
3621 reloaded for.
3623 We have already copied IN to RESULT. Increment the copy in
3624 RESULT, save that back, then decrement RESULT so it has
3625 the original value. */
3626 if (plus_p)
3627 emit_insn (gen_add2_insn (result, inc));
3628 else
3629 emit_insn (gen_sub2_insn (result, inc));
3630 emit_insn (gen_move_insn (incloc, result));
3631 /* Restore non-modified value for the result. We prefer this
3632 way because it does not require an additional hard
3633 register. */
3634 if (plus_p)
3636 if (CONST_INT_P (inc))
3637 emit_insn (gen_add2_insn (result,
3638 gen_int_mode (-INTVAL (inc),
3639 GET_MODE (result))));
3640 else
3641 emit_insn (gen_sub2_insn (result, inc));
3643 else
3644 emit_insn (gen_add2_insn (result, inc));
3646 return result;
3649 /* Return true if the current move insn does not need processing as we
3650 already know that it satisfies its constraints. */
3651 static bool
3652 simple_move_p (void)
3654 rtx dest, src;
3655 enum reg_class dclass, sclass;
3657 lra_assert (curr_insn_set != NULL_RTX);
3658 dest = SET_DEST (curr_insn_set);
3659 src = SET_SRC (curr_insn_set);
3661 /* If the instruction has multiple sets we need to process it even if it
3662 is single_set. This can happen if one or more of the SETs are dead.
3663 See PR73650. */
3664 if (multiple_sets (curr_insn))
3665 return false;
3667 return ((dclass = get_op_class (dest)) != NO_REGS
3668 && (sclass = get_op_class (src)) != NO_REGS
3669 /* The backend guarantees that register moves of cost 2
3670 never need reloads. */
3671 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3674 /* Swap operands NOP and NOP + 1. */
3675 static inline void
3676 swap_operands (int nop)
3678 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3679 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3680 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3681 std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
3682 /* Swap the duplicates too. */
3683 lra_update_dup (curr_id, nop);
3684 lra_update_dup (curr_id, nop + 1);
3687 /* Main entry point of the constraint code: search the body of the
3688 current insn to choose the best alternative. It is mimicking insn
3689 alternative cost calculation model of former reload pass. That is
3690 because machine descriptions were written to use this model. This
3691 model can be changed in future. Make commutative operand exchange
3692 if it is chosen.
3694 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3695 constraints. Return true if any change happened during function
3696 call.
3698 If CHECK_ONLY_P is true then don't do any transformation. Just
3699 check that the insn satisfies all constraints. If the insn does
3700 not satisfy any constraint, return true. */
3701 static bool
3702 curr_insn_transform (bool check_only_p)
3704 int i, j, k;
3705 int n_operands;
3706 int n_alternatives;
3707 int n_outputs;
3708 int commutative;
3709 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3710 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3711 signed char outputs[MAX_RECOG_OPERANDS + 1];
3712 rtx_insn *before, *after;
3713 bool alt_p = false;
3714 /* Flag that the insn has been changed through a transformation. */
3715 bool change_p;
3716 bool sec_mem_p;
3717 #ifdef SECONDARY_MEMORY_NEEDED
3718 bool use_sec_mem_p;
3719 #endif
3720 int max_regno_before;
3721 int reused_alternative_num;
3723 curr_insn_set = single_set (curr_insn);
3724 if (curr_insn_set != NULL_RTX && simple_move_p ())
3725 return false;
3727 no_input_reloads_p = no_output_reloads_p = false;
3728 goal_alt_number = -1;
3729 change_p = sec_mem_p = false;
3730 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3731 reloads; neither are insns that SET cc0. Insns that use CC0 are
3732 not allowed to have any input reloads. */
3733 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3734 no_output_reloads_p = true;
3736 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3737 no_input_reloads_p = true;
3738 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3739 no_output_reloads_p = true;
3741 n_operands = curr_static_id->n_operands;
3742 n_alternatives = curr_static_id->n_alternatives;
3744 /* Just return "no reloads" if insn has no operands with
3745 constraints. */
3746 if (n_operands == 0 || n_alternatives == 0)
3747 return false;
3749 max_regno_before = max_reg_num ();
3751 for (i = 0; i < n_operands; i++)
3753 goal_alt_matched[i][0] = -1;
3754 goal_alt_matches[i] = -1;
3757 commutative = curr_static_id->commutative;
3759 /* Now see what we need for pseudos that didn't get hard regs or got
3760 the wrong kind of hard reg. For this, we must consider all the
3761 operands together against the register constraints. */
3763 best_losers = best_overall = INT_MAX;
3764 best_reload_sum = 0;
3766 curr_swapped = false;
3767 goal_alt_swapped = false;
3769 if (! check_only_p)
3770 /* Make equivalence substitution and memory subreg elimination
3771 before address processing because an address legitimacy can
3772 depend on memory mode. */
3773 for (i = 0; i < n_operands; i++)
3775 rtx op, subst, old;
3776 bool op_change_p = false;
3778 if (curr_static_id->operand[i].is_operator)
3779 continue;
3781 old = op = *curr_id->operand_loc[i];
3782 if (GET_CODE (old) == SUBREG)
3783 old = SUBREG_REG (old);
3784 subst = get_equiv_with_elimination (old, curr_insn);
3785 original_subreg_reg_mode[i] = VOIDmode;
3786 equiv_substition_p[i] = false;
3787 if (subst != old)
3789 equiv_substition_p[i] = true;
3790 subst = copy_rtx (subst);
3791 lra_assert (REG_P (old));
3792 if (GET_CODE (op) != SUBREG)
3793 *curr_id->operand_loc[i] = subst;
3794 else
3796 SUBREG_REG (op) = subst;
3797 if (GET_MODE (subst) == VOIDmode)
3798 original_subreg_reg_mode[i] = GET_MODE (old);
3800 if (lra_dump_file != NULL)
3802 fprintf (lra_dump_file,
3803 "Changing pseudo %d in operand %i of insn %u on equiv ",
3804 REGNO (old), i, INSN_UID (curr_insn));
3805 dump_value_slim (lra_dump_file, subst, 1);
3806 fprintf (lra_dump_file, "\n");
3808 op_change_p = change_p = true;
3810 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3812 change_p = true;
3813 lra_update_dup (curr_id, i);
3817 /* Reload address registers and displacements. We do it before
3818 finding an alternative because of memory constraints. */
3819 before = after = NULL;
3820 for (i = 0; i < n_operands; i++)
3821 if (! curr_static_id->operand[i].is_operator
3822 && process_address (i, check_only_p, &before, &after))
3824 if (check_only_p)
3825 return true;
3826 change_p = true;
3827 lra_update_dup (curr_id, i);
3830 if (change_p)
3831 /* If we've changed the instruction then any alternative that
3832 we chose previously may no longer be valid. */
3833 lra_set_used_insn_alternative (curr_insn, -1);
3835 if (! check_only_p && curr_insn_set != NULL_RTX
3836 && check_and_process_move (&change_p, &sec_mem_p))
3837 return change_p;
3839 try_swapped:
3841 reused_alternative_num = check_only_p ? -1 : curr_id->used_insn_alternative;
3842 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3843 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3844 reused_alternative_num, INSN_UID (curr_insn));
3846 if (process_alt_operands (reused_alternative_num))
3847 alt_p = true;
3849 if (check_only_p)
3850 return ! alt_p || best_losers != 0;
3852 /* If insn is commutative (it's safe to exchange a certain pair of
3853 operands) then we need to try each alternative twice, the second
3854 time matching those two operands as if we had exchanged them. To
3855 do this, really exchange them in operands.
3857 If we have just tried the alternatives the second time, return
3858 operands to normal and drop through. */
3860 if (reused_alternative_num < 0 && commutative >= 0)
3862 curr_swapped = !curr_swapped;
3863 if (curr_swapped)
3865 swap_operands (commutative);
3866 goto try_swapped;
3868 else
3869 swap_operands (commutative);
3872 if (! alt_p && ! sec_mem_p)
3874 /* No alternative works with reloads?? */
3875 if (INSN_CODE (curr_insn) >= 0)
3876 fatal_insn ("unable to generate reloads for:", curr_insn);
3877 error_for_asm (curr_insn,
3878 "inconsistent operand constraints in an %<asm%>");
3879 /* Avoid further trouble with this insn. Don't generate use
3880 pattern here as we could use the insn SP offset. */
3881 lra_set_insn_deleted (curr_insn);
3882 return true;
3885 /* If the best alternative is with operands 1 and 2 swapped, swap
3886 them. Update the operand numbers of any reloads already
3887 pushed. */
3889 if (goal_alt_swapped)
3891 if (lra_dump_file != NULL)
3892 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
3893 INSN_UID (curr_insn));
3895 /* Swap the duplicates too. */
3896 swap_operands (commutative);
3897 change_p = true;
3900 #ifdef SECONDARY_MEMORY_NEEDED
3901 /* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3902 too conservatively. So we use the secondary memory only if there
3903 is no any alternative without reloads. */
3904 use_sec_mem_p = false;
3905 if (! alt_p)
3906 use_sec_mem_p = true;
3907 else if (sec_mem_p)
3909 for (i = 0; i < n_operands; i++)
3910 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3911 break;
3912 use_sec_mem_p = i < n_operands;
3915 if (use_sec_mem_p)
3917 int in = -1, out = -1;
3918 rtx new_reg, src, dest, rld;
3919 machine_mode sec_mode, rld_mode;
3921 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
3922 dest = SET_DEST (curr_insn_set);
3923 src = SET_SRC (curr_insn_set);
3924 for (i = 0; i < n_operands; i++)
3925 if (*curr_id->operand_loc[i] == dest)
3926 out = i;
3927 else if (*curr_id->operand_loc[i] == src)
3928 in = i;
3929 for (i = 0; i < curr_static_id->n_dups; i++)
3930 if (out < 0 && *curr_id->dup_loc[i] == dest)
3931 out = curr_static_id->dup_num[i];
3932 else if (in < 0 && *curr_id->dup_loc[i] == src)
3933 in = curr_static_id->dup_num[i];
3934 lra_assert (out >= 0 && in >= 0
3935 && curr_static_id->operand[out].type == OP_OUT
3936 && curr_static_id->operand[in].type == OP_IN);
3937 rld = (GET_MODE_SIZE (GET_MODE (dest)) <= GET_MODE_SIZE (GET_MODE (src))
3938 ? dest : src);
3939 rld_mode = GET_MODE (rld);
3940 #ifdef SECONDARY_MEMORY_NEEDED_MODE
3941 sec_mode = SECONDARY_MEMORY_NEEDED_MODE (rld_mode);
3942 #else
3943 sec_mode = rld_mode;
3944 #endif
3945 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
3946 NO_REGS, "secondary");
3947 /* If the mode is changed, it should be wider. */
3948 lra_assert (GET_MODE_SIZE (sec_mode) >= GET_MODE_SIZE (rld_mode));
3949 if (sec_mode != rld_mode)
3951 /* If the target says specifically to use another mode for
3952 secondary memory moves we can not reuse the original
3953 insn. */
3954 after = emit_spill_move (false, new_reg, dest);
3955 lra_process_new_insns (curr_insn, NULL, after,
3956 "Inserting the sec. move");
3957 /* We may have non null BEFORE here (e.g. after address
3958 processing. */
3959 push_to_sequence (before);
3960 before = emit_spill_move (true, new_reg, src);
3961 emit_insn (before);
3962 before = get_insns ();
3963 end_sequence ();
3964 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
3965 lra_set_insn_deleted (curr_insn);
3967 else if (dest == rld)
3969 *curr_id->operand_loc[out] = new_reg;
3970 lra_update_dup (curr_id, out);
3971 after = emit_spill_move (false, new_reg, dest);
3972 lra_process_new_insns (curr_insn, NULL, after,
3973 "Inserting the sec. move");
3975 else
3977 *curr_id->operand_loc[in] = new_reg;
3978 lra_update_dup (curr_id, in);
3979 /* See comments above. */
3980 push_to_sequence (before);
3981 before = emit_spill_move (true, new_reg, src);
3982 emit_insn (before);
3983 before = get_insns ();
3984 end_sequence ();
3985 lra_process_new_insns (curr_insn, before, NULL,
3986 "Inserting the sec. move");
3988 lra_update_insn_regno_info (curr_insn);
3989 return true;
3991 #endif
3993 lra_assert (goal_alt_number >= 0);
3994 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
3996 if (lra_dump_file != NULL)
3998 const char *p;
4000 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
4001 goal_alt_number, INSN_UID (curr_insn));
4002 for (i = 0; i < n_operands; i++)
4004 p = (curr_static_id->operand_alternative
4005 [goal_alt_number * n_operands + i].constraint);
4006 if (*p == '\0')
4007 continue;
4008 fprintf (lra_dump_file, " (%d) ", i);
4009 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
4010 fputc (*p, lra_dump_file);
4012 if (INSN_CODE (curr_insn) >= 0
4013 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4014 fprintf (lra_dump_file, " {%s}", p);
4015 if (curr_id->sp_offset != 0)
4016 fprintf (lra_dump_file, " (sp_off=%" HOST_WIDE_INT_PRINT "d)",
4017 curr_id->sp_offset);
4018 fprintf (lra_dump_file, "\n");
4021 /* Right now, for any pair of operands I and J that are required to
4022 match, with J < I, goal_alt_matches[I] is J. Add I to
4023 goal_alt_matched[J]. */
4025 for (i = 0; i < n_operands; i++)
4026 if ((j = goal_alt_matches[i]) >= 0)
4028 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4030 /* We allow matching one output operand and several input
4031 operands. */
4032 lra_assert (k == 0
4033 || (curr_static_id->operand[j].type == OP_OUT
4034 && curr_static_id->operand[i].type == OP_IN
4035 && (curr_static_id->operand
4036 [goal_alt_matched[j][0]].type == OP_IN)));
4037 goal_alt_matched[j][k] = i;
4038 goal_alt_matched[j][k + 1] = -1;
4041 for (i = 0; i < n_operands; i++)
4042 goal_alt_win[i] |= goal_alt_match_win[i];
4044 /* Any constants that aren't allowed and can't be reloaded into
4045 registers are here changed into memory references. */
4046 for (i = 0; i < n_operands; i++)
4047 if (goal_alt_win[i])
4049 int regno;
4050 enum reg_class new_class;
4051 rtx reg = *curr_id->operand_loc[i];
4053 if (GET_CODE (reg) == SUBREG)
4054 reg = SUBREG_REG (reg);
4056 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4058 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4060 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4062 lra_assert (ok_p);
4063 lra_change_class (regno, new_class, " Change to", true);
4067 else
4069 const char *constraint;
4070 char c;
4071 rtx op = *curr_id->operand_loc[i];
4072 rtx subreg = NULL_RTX;
4073 machine_mode mode = curr_operand_mode[i];
4075 if (GET_CODE (op) == SUBREG)
4077 subreg = op;
4078 op = SUBREG_REG (op);
4079 mode = GET_MODE (op);
4082 if (CONST_POOL_OK_P (mode, op)
4083 && ((targetm.preferred_reload_class
4084 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4085 || no_input_reloads_p))
4087 rtx tem = force_const_mem (mode, op);
4089 change_p = true;
4090 if (subreg != NULL_RTX)
4091 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4093 *curr_id->operand_loc[i] = tem;
4094 lra_update_dup (curr_id, i);
4095 process_address (i, false, &before, &after);
4097 /* If the alternative accepts constant pool refs directly
4098 there will be no reload needed at all. */
4099 if (subreg != NULL_RTX)
4100 continue;
4101 /* Skip alternatives before the one requested. */
4102 constraint = (curr_static_id->operand_alternative
4103 [goal_alt_number * n_operands + i].constraint);
4104 for (;
4105 (c = *constraint) && c != ',' && c != '#';
4106 constraint += CONSTRAINT_LEN (c, constraint))
4108 enum constraint_num cn = lookup_constraint (constraint);
4109 if ((insn_extra_memory_constraint (cn)
4110 || insn_extra_special_memory_constraint (cn))
4111 && satisfies_memory_constraint_p (tem, cn))
4112 break;
4114 if (c == '\0' || c == ',' || c == '#')
4115 continue;
4117 goal_alt_win[i] = true;
4121 n_outputs = 0;
4122 outputs[0] = -1;
4123 for (i = 0; i < n_operands; i++)
4125 int regno;
4126 bool optional_p = false;
4127 rtx old, new_reg;
4128 rtx op = *curr_id->operand_loc[i];
4130 if (goal_alt_win[i])
4132 if (goal_alt[i] == NO_REGS
4133 && REG_P (op)
4134 /* When we assign NO_REGS it means that we will not
4135 assign a hard register to the scratch pseudo by
4136 assigment pass and the scratch pseudo will be
4137 spilled. Spilled scratch pseudos are transformed
4138 back to scratches at the LRA end. */
4139 && lra_former_scratch_operand_p (curr_insn, i)
4140 && lra_former_scratch_p (REGNO (op)))
4142 int regno = REGNO (op);
4143 lra_change_class (regno, NO_REGS, " Change to", true);
4144 if (lra_get_regno_hard_regno (regno) >= 0)
4145 /* We don't have to mark all insn affected by the
4146 spilled pseudo as there is only one such insn, the
4147 current one. */
4148 reg_renumber[regno] = -1;
4149 lra_assert (bitmap_single_bit_set_p
4150 (&lra_reg_info[REGNO (op)].insn_bitmap));
4152 /* We can do an optional reload. If the pseudo got a hard
4153 reg, we might improve the code through inheritance. If
4154 it does not get a hard register we coalesce memory/memory
4155 moves later. Ignore move insns to avoid cycling. */
4156 if (! lra_simple_p
4157 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4158 && goal_alt[i] != NO_REGS && REG_P (op)
4159 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4160 && regno < new_regno_start
4161 && ! lra_former_scratch_p (regno)
4162 && reg_renumber[regno] < 0
4163 /* Check that the optional reload pseudo will be able to
4164 hold given mode value. */
4165 && ! (prohibited_class_reg_set_mode_p
4166 (goal_alt[i], reg_class_contents[goal_alt[i]],
4167 PSEUDO_REGNO_MODE (regno)))
4168 && (curr_insn_set == NULL_RTX
4169 || !((REG_P (SET_SRC (curr_insn_set))
4170 || MEM_P (SET_SRC (curr_insn_set))
4171 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4172 && (REG_P (SET_DEST (curr_insn_set))
4173 || MEM_P (SET_DEST (curr_insn_set))
4174 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4175 optional_p = true;
4176 else
4177 continue;
4180 /* Operands that match previous ones have already been handled. */
4181 if (goal_alt_matches[i] >= 0)
4182 continue;
4184 /* We should not have an operand with a non-offsettable address
4185 appearing where an offsettable address will do. It also may
4186 be a case when the address should be special in other words
4187 not a general one (e.g. it needs no index reg). */
4188 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4190 enum reg_class rclass;
4191 rtx *loc = &XEXP (op, 0);
4192 enum rtx_code code = GET_CODE (*loc);
4194 push_to_sequence (before);
4195 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4196 MEM, SCRATCH);
4197 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4198 new_reg = emit_inc (rclass, *loc, *loc,
4199 /* This value does not matter for MODIFY. */
4200 GET_MODE_SIZE (GET_MODE (op)));
4201 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
4202 "offsetable address", &new_reg))
4203 lra_emit_move (new_reg, *loc);
4204 before = get_insns ();
4205 end_sequence ();
4206 *loc = new_reg;
4207 lra_update_dup (curr_id, i);
4209 else if (goal_alt_matched[i][0] == -1)
4211 machine_mode mode;
4212 rtx reg, *loc;
4213 int hard_regno, byte;
4214 enum op_type type = curr_static_id->operand[i].type;
4216 loc = curr_id->operand_loc[i];
4217 mode = curr_operand_mode[i];
4218 if (GET_CODE (*loc) == SUBREG)
4220 reg = SUBREG_REG (*loc);
4221 byte = SUBREG_BYTE (*loc);
4222 if (REG_P (reg)
4223 /* Strict_low_part requires reload the register not
4224 the sub-register. */
4225 && (curr_static_id->operand[i].strict_low
4226 || (GET_MODE_SIZE (mode)
4227 <= GET_MODE_SIZE (GET_MODE (reg))
4228 && (hard_regno
4229 = get_try_hard_regno (REGNO (reg))) >= 0
4230 && (simplify_subreg_regno
4231 (hard_regno,
4232 GET_MODE (reg), byte, mode) < 0)
4233 && (goal_alt[i] == NO_REGS
4234 || (simplify_subreg_regno
4235 (ira_class_hard_regs[goal_alt[i]][0],
4236 GET_MODE (reg), byte, mode) >= 0)))))
4238 /* An OP_INOUT is required when reloading a subreg of a
4239 mode wider than a word to ensure that data beyond the
4240 word being reloaded is preserved. Also automatically
4241 ensure that strict_low_part reloads are made into
4242 OP_INOUT which should already be true from the backend
4243 constraints. */
4244 if (type == OP_OUT
4245 && (curr_static_id->operand[i].strict_low
4246 || (GET_MODE_SIZE (GET_MODE (reg)) > UNITS_PER_WORD
4247 && (GET_MODE_SIZE (mode)
4248 < GET_MODE_SIZE (GET_MODE (reg))))))
4249 type = OP_INOUT;
4250 loc = &SUBREG_REG (*loc);
4251 mode = GET_MODE (*loc);
4254 old = *loc;
4255 if (get_reload_reg (type, mode, old, goal_alt[i],
4256 loc != curr_id->operand_loc[i], "", &new_reg)
4257 && type != OP_OUT)
4259 push_to_sequence (before);
4260 lra_emit_move (new_reg, old);
4261 before = get_insns ();
4262 end_sequence ();
4264 *loc = new_reg;
4265 if (type != OP_IN
4266 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4268 start_sequence ();
4269 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4270 emit_insn (after);
4271 after = get_insns ();
4272 end_sequence ();
4273 *loc = new_reg;
4275 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4276 if (goal_alt_dont_inherit_ops[j] == i)
4278 lra_set_regno_unique_value (REGNO (new_reg));
4279 break;
4281 lra_update_dup (curr_id, i);
4283 else if (curr_static_id->operand[i].type == OP_IN
4284 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4285 == OP_OUT))
4287 /* generate reloads for input and matched outputs. */
4288 match_inputs[0] = i;
4289 match_inputs[1] = -1;
4290 match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4291 goal_alt[i], &before, &after,
4292 curr_static_id->operand_alternative
4293 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4294 .earlyclobber);
4296 else if (curr_static_id->operand[i].type == OP_OUT
4297 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4298 == OP_IN))
4299 /* Generate reloads for output and matched inputs. */
4300 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4301 &after, curr_static_id->operand_alternative
4302 [goal_alt_number * n_operands + i].earlyclobber);
4303 else if (curr_static_id->operand[i].type == OP_IN
4304 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4305 == OP_IN))
4307 /* Generate reloads for matched inputs. */
4308 match_inputs[0] = i;
4309 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4310 match_inputs[j + 1] = k;
4311 match_inputs[j + 1] = -1;
4312 match_reload (-1, match_inputs, outputs, goal_alt[i], &before,
4313 &after, false);
4315 else
4316 /* We must generate code in any case when function
4317 process_alt_operands decides that it is possible. */
4318 gcc_unreachable ();
4320 /* Memorise processed outputs so that output remaining to be processed
4321 can avoid using the same register value (see match_reload). */
4322 if (curr_static_id->operand[i].type == OP_OUT)
4324 outputs[n_outputs++] = i;
4325 outputs[n_outputs] = -1;
4328 if (optional_p)
4330 rtx reg = op;
4332 lra_assert (REG_P (reg));
4333 regno = REGNO (reg);
4334 op = *curr_id->operand_loc[i]; /* Substitution. */
4335 if (GET_CODE (op) == SUBREG)
4336 op = SUBREG_REG (op);
4337 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4338 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4339 lra_reg_info[REGNO (op)].restore_rtx = reg;
4340 if (lra_dump_file != NULL)
4341 fprintf (lra_dump_file,
4342 " Making reload reg %d for reg %d optional\n",
4343 REGNO (op), regno);
4346 if (before != NULL_RTX || after != NULL_RTX
4347 || max_regno_before != max_reg_num ())
4348 change_p = true;
4349 if (change_p)
4351 lra_update_operator_dups (curr_id);
4352 /* Something changes -- process the insn. */
4353 lra_update_insn_regno_info (curr_insn);
4355 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4356 return change_p;
4359 /* Return true if INSN satisfies all constraints. In other words, no
4360 reload insns are needed. */
4361 bool
4362 lra_constrain_insn (rtx_insn *insn)
4364 int saved_new_regno_start = new_regno_start;
4365 int saved_new_insn_uid_start = new_insn_uid_start;
4366 bool change_p;
4368 curr_insn = insn;
4369 curr_id = lra_get_insn_recog_data (curr_insn);
4370 curr_static_id = curr_id->insn_static_data;
4371 new_insn_uid_start = get_max_uid ();
4372 new_regno_start = max_reg_num ();
4373 change_p = curr_insn_transform (true);
4374 new_regno_start = saved_new_regno_start;
4375 new_insn_uid_start = saved_new_insn_uid_start;
4376 return ! change_p;
4379 /* Return true if X is in LIST. */
4380 static bool
4381 in_list_p (rtx x, rtx list)
4383 for (; list != NULL_RTX; list = XEXP (list, 1))
4384 if (XEXP (list, 0) == x)
4385 return true;
4386 return false;
4389 /* Return true if X contains an allocatable hard register (if
4390 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4391 static bool
4392 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4394 int i, j;
4395 const char *fmt;
4396 enum rtx_code code;
4398 code = GET_CODE (x);
4399 if (REG_P (x))
4401 int regno = REGNO (x);
4402 HARD_REG_SET alloc_regs;
4404 if (hard_reg_p)
4406 if (regno >= FIRST_PSEUDO_REGISTER)
4407 regno = lra_get_regno_hard_regno (regno);
4408 if (regno < 0)
4409 return false;
4410 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
4411 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4413 else
4415 if (regno < FIRST_PSEUDO_REGISTER)
4416 return false;
4417 if (! spilled_p)
4418 return true;
4419 return lra_get_regno_hard_regno (regno) < 0;
4422 fmt = GET_RTX_FORMAT (code);
4423 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4425 if (fmt[i] == 'e')
4427 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4428 return true;
4430 else if (fmt[i] == 'E')
4432 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4433 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4434 return true;
4437 return false;
4440 /* Process all regs in location *LOC and change them on equivalent
4441 substitution. Return true if any change was done. */
4442 static bool
4443 loc_equivalence_change_p (rtx *loc)
4445 rtx subst, reg, x = *loc;
4446 bool result = false;
4447 enum rtx_code code = GET_CODE (x);
4448 const char *fmt;
4449 int i, j;
4451 if (code == SUBREG)
4453 reg = SUBREG_REG (x);
4454 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4455 && GET_MODE (subst) == VOIDmode)
4457 /* We cannot reload debug location. Simplify subreg here
4458 while we know the inner mode. */
4459 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4460 GET_MODE (reg), SUBREG_BYTE (x));
4461 return true;
4464 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4466 *loc = subst;
4467 return true;
4470 /* Scan all the operand sub-expressions. */
4471 fmt = GET_RTX_FORMAT (code);
4472 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4474 if (fmt[i] == 'e')
4475 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4476 else if (fmt[i] == 'E')
4477 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4478 result
4479 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4481 return result;
4484 /* Similar to loc_equivalence_change_p, but for use as
4485 simplify_replace_fn_rtx callback. DATA is insn for which the
4486 elimination is done. If it null we don't do the elimination. */
4487 static rtx
4488 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4490 if (!REG_P (loc))
4491 return NULL_RTX;
4493 rtx subst = (data == NULL
4494 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4495 if (subst != loc)
4496 return subst;
4498 return NULL_RTX;
4501 /* Maximum number of generated reload insns per an insn. It is for
4502 preventing this pass cycling in a bug case. */
4503 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4505 /* The current iteration number of this LRA pass. */
4506 int lra_constraint_iter;
4508 /* True if we substituted equiv which needs checking register
4509 allocation correctness because the equivalent value contains
4510 allocatable hard registers or when we restore multi-register
4511 pseudo. */
4512 bool lra_risky_transformations_p;
4514 /* Return true if REGNO is referenced in more than one block. */
4515 static bool
4516 multi_block_pseudo_p (int regno)
4518 basic_block bb = NULL;
4519 unsigned int uid;
4520 bitmap_iterator bi;
4522 if (regno < FIRST_PSEUDO_REGISTER)
4523 return false;
4525 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4526 if (bb == NULL)
4527 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4528 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4529 return true;
4530 return false;
4533 /* Return true if LIST contains a deleted insn. */
4534 static bool
4535 contains_deleted_insn_p (rtx_insn_list *list)
4537 for (; list != NULL_RTX; list = list->next ())
4538 if (NOTE_P (list->insn ())
4539 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4540 return true;
4541 return false;
4544 /* Return true if X contains a pseudo dying in INSN. */
4545 static bool
4546 dead_pseudo_p (rtx x, rtx_insn *insn)
4548 int i, j;
4549 const char *fmt;
4550 enum rtx_code code;
4552 if (REG_P (x))
4553 return (insn != NULL_RTX
4554 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4555 code = GET_CODE (x);
4556 fmt = GET_RTX_FORMAT (code);
4557 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4559 if (fmt[i] == 'e')
4561 if (dead_pseudo_p (XEXP (x, i), insn))
4562 return true;
4564 else if (fmt[i] == 'E')
4566 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4567 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4568 return true;
4571 return false;
4574 /* Return true if INSN contains a dying pseudo in INSN right hand
4575 side. */
4576 static bool
4577 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4579 rtx set = single_set (insn);
4581 gcc_assert (set != NULL);
4582 return dead_pseudo_p (SET_SRC (set), insn);
4585 /* Return true if any init insn of REGNO contains a dying pseudo in
4586 insn right hand side. */
4587 static bool
4588 init_insn_rhs_dead_pseudo_p (int regno)
4590 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4592 if (insns == NULL)
4593 return false;
4594 for (; insns != NULL_RTX; insns = insns->next ())
4595 if (insn_rhs_dead_pseudo_p (insns->insn ()))
4596 return true;
4597 return false;
4600 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4601 reverse only if we have one init insn with given REGNO as a
4602 source. */
4603 static bool
4604 reverse_equiv_p (int regno)
4606 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4607 rtx set;
4609 if (insns == NULL)
4610 return false;
4611 if (! INSN_P (insns->insn ())
4612 || insns->next () != NULL)
4613 return false;
4614 if ((set = single_set (insns->insn ())) == NULL_RTX)
4615 return false;
4616 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4619 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4620 call this function only for non-reverse equivalence. */
4621 static bool
4622 contains_reloaded_insn_p (int regno)
4624 rtx set;
4625 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4627 for (; list != NULL; list = list->next ())
4628 if ((set = single_set (list->insn ())) == NULL_RTX
4629 || ! REG_P (SET_DEST (set))
4630 || (int) REGNO (SET_DEST (set)) != regno)
4631 return true;
4632 return false;
4635 /* Entry function of LRA constraint pass. Return true if the
4636 constraint pass did change the code. */
4637 bool
4638 lra_constraints (bool first_p)
4640 bool changed_p;
4641 int i, hard_regno, new_insns_num;
4642 unsigned int min_len, new_min_len, uid;
4643 rtx set, x, reg, dest_reg;
4644 basic_block last_bb;
4645 bitmap_head equiv_insn_bitmap;
4646 bitmap_iterator bi;
4648 lra_constraint_iter++;
4649 if (lra_dump_file != NULL)
4650 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4651 lra_constraint_iter);
4652 changed_p = false;
4653 if (pic_offset_table_rtx
4654 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4655 lra_risky_transformations_p = true;
4656 else
4657 /* On the first iteration we should check IRA assignment
4658 correctness. In rare cases, the assignments can be wrong as
4659 early clobbers operands are ignored in IRA. */
4660 lra_risky_transformations_p = first_p;
4661 new_insn_uid_start = get_max_uid ();
4662 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4663 /* Mark used hard regs for target stack size calulations. */
4664 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4665 if (lra_reg_info[i].nrefs != 0
4666 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4668 int j, nregs;
4670 nregs = hard_regno_nregs[hard_regno][lra_reg_info[i].biggest_mode];
4671 for (j = 0; j < nregs; j++)
4672 df_set_regs_ever_live (hard_regno + j, true);
4674 /* Do elimination before the equivalence processing as we can spill
4675 some pseudos during elimination. */
4676 lra_eliminate (false, first_p);
4677 bitmap_initialize (&equiv_insn_bitmap, &reg_obstack);
4678 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4679 if (lra_reg_info[i].nrefs != 0)
4681 ira_reg_equiv[i].profitable_p = true;
4682 reg = regno_reg_rtx[i];
4683 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4685 bool pseudo_p = contains_reg_p (x, false, false);
4687 /* After RTL transformation, we can not guarantee that
4688 pseudo in the substitution was not reloaded which might
4689 make equivalence invalid. For example, in reverse
4690 equiv of p0
4692 p0 <- ...
4694 equiv_mem <- p0
4696 the memory address register was reloaded before the 2nd
4697 insn. */
4698 if ((! first_p && pseudo_p)
4699 /* We don't use DF for compilation speed sake. So it
4700 is problematic to update live info when we use an
4701 equivalence containing pseudos in more than one
4702 BB. */
4703 || (pseudo_p && multi_block_pseudo_p (i))
4704 /* If an init insn was deleted for some reason, cancel
4705 the equiv. We could update the equiv insns after
4706 transformations including an equiv insn deletion
4707 but it is not worthy as such cases are extremely
4708 rare. */
4709 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4710 /* If it is not a reverse equivalence, we check that a
4711 pseudo in rhs of the init insn is not dying in the
4712 insn. Otherwise, the live info at the beginning of
4713 the corresponding BB might be wrong after we
4714 removed the insn. When the equiv can be a
4715 constant, the right hand side of the init insn can
4716 be a pseudo. */
4717 || (! reverse_equiv_p (i)
4718 && (init_insn_rhs_dead_pseudo_p (i)
4719 /* If we reloaded the pseudo in an equivalence
4720 init insn, we can not remove the equiv init
4721 insns and the init insns might write into
4722 const memory in this case. */
4723 || contains_reloaded_insn_p (i)))
4724 /* Prevent access beyond equivalent memory for
4725 paradoxical subregs. */
4726 || (MEM_P (x)
4727 && (GET_MODE_SIZE (lra_reg_info[i].biggest_mode)
4728 > GET_MODE_SIZE (GET_MODE (x))))
4729 || (pic_offset_table_rtx
4730 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4731 && (targetm.preferred_reload_class
4732 (x, lra_get_allocno_class (i)) == NO_REGS))
4733 || contains_symbol_ref_p (x))))
4734 ira_reg_equiv[i].defined_p = false;
4735 if (contains_reg_p (x, false, true))
4736 ira_reg_equiv[i].profitable_p = false;
4737 if (get_equiv (reg) != reg)
4738 bitmap_ior_into (&equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4741 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4742 update_equiv (i);
4743 /* We should add all insns containing pseudos which should be
4744 substituted by their equivalences. */
4745 EXECUTE_IF_SET_IN_BITMAP (&equiv_insn_bitmap, 0, uid, bi)
4746 lra_push_insn_by_uid (uid);
4747 min_len = lra_insn_stack_length ();
4748 new_insns_num = 0;
4749 last_bb = NULL;
4750 changed_p = false;
4751 while ((new_min_len = lra_insn_stack_length ()) != 0)
4753 curr_insn = lra_pop_insn ();
4754 --new_min_len;
4755 curr_bb = BLOCK_FOR_INSN (curr_insn);
4756 if (curr_bb != last_bb)
4758 last_bb = curr_bb;
4759 bb_reload_num = lra_curr_reload_num;
4761 if (min_len > new_min_len)
4763 min_len = new_min_len;
4764 new_insns_num = 0;
4766 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4767 internal_error
4768 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4769 MAX_RELOAD_INSNS_NUMBER);
4770 new_insns_num++;
4771 if (DEBUG_INSN_P (curr_insn))
4773 /* We need to check equivalence in debug insn and change
4774 pseudo to the equivalent value if necessary. */
4775 curr_id = lra_get_insn_recog_data (curr_insn);
4776 if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn)))
4778 rtx old = *curr_id->operand_loc[0];
4779 *curr_id->operand_loc[0]
4780 = simplify_replace_fn_rtx (old, NULL_RTX,
4781 loc_equivalence_callback, curr_insn);
4782 if (old != *curr_id->operand_loc[0])
4784 lra_update_insn_regno_info (curr_insn);
4785 changed_p = true;
4789 else if (INSN_P (curr_insn))
4791 if ((set = single_set (curr_insn)) != NULL_RTX)
4793 dest_reg = SET_DEST (set);
4794 /* The equivalence pseudo could be set up as SUBREG in a
4795 case when it is a call restore insn in a mode
4796 different from the pseudo mode. */
4797 if (GET_CODE (dest_reg) == SUBREG)
4798 dest_reg = SUBREG_REG (dest_reg);
4799 if ((REG_P (dest_reg)
4800 && (x = get_equiv (dest_reg)) != dest_reg
4801 /* Remove insns which set up a pseudo whose value
4802 can not be changed. Such insns might be not in
4803 init_insns because we don't update equiv data
4804 during insn transformations.
4806 As an example, let suppose that a pseudo got
4807 hard register and on the 1st pass was not
4808 changed to equivalent constant. We generate an
4809 additional insn setting up the pseudo because of
4810 secondary memory movement. Then the pseudo is
4811 spilled and we use the equiv constant. In this
4812 case we should remove the additional insn and
4813 this insn is not init_insns list. */
4814 && (! MEM_P (x) || MEM_READONLY_P (x)
4815 /* Check that this is actually an insn setting
4816 up the equivalence. */
4817 || in_list_p (curr_insn,
4818 ira_reg_equiv
4819 [REGNO (dest_reg)].init_insns)))
4820 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4821 && in_list_p (curr_insn,
4822 ira_reg_equiv
4823 [REGNO (SET_SRC (set))].init_insns)))
4825 /* This is equiv init insn of pseudo which did not get a
4826 hard register -- remove the insn. */
4827 if (lra_dump_file != NULL)
4829 fprintf (lra_dump_file,
4830 " Removing equiv init insn %i (freq=%d)\n",
4831 INSN_UID (curr_insn),
4832 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4833 dump_insn_slim (lra_dump_file, curr_insn);
4835 if (contains_reg_p (x, true, false))
4836 lra_risky_transformations_p = true;
4837 lra_set_insn_deleted (curr_insn);
4838 continue;
4841 curr_id = lra_get_insn_recog_data (curr_insn);
4842 curr_static_id = curr_id->insn_static_data;
4843 init_curr_insn_input_reloads ();
4844 init_curr_operand_mode ();
4845 if (curr_insn_transform (false))
4846 changed_p = true;
4847 /* Check non-transformed insns too for equiv change as USE
4848 or CLOBBER don't need reloads but can contain pseudos
4849 being changed on their equivalences. */
4850 else if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn))
4851 && loc_equivalence_change_p (&PATTERN (curr_insn)))
4853 lra_update_insn_regno_info (curr_insn);
4854 changed_p = true;
4858 bitmap_clear (&equiv_insn_bitmap);
4859 /* If we used a new hard regno, changed_p should be true because the
4860 hard reg is assigned to a new pseudo. */
4861 if (flag_checking && !changed_p)
4863 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4864 if (lra_reg_info[i].nrefs != 0
4865 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4867 int j, nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (i)];
4869 for (j = 0; j < nregs; j++)
4870 lra_assert (df_regs_ever_live_p (hard_regno + j));
4873 return changed_p;
4876 static void initiate_invariants (void);
4877 static void finish_invariants (void);
4879 /* Initiate the LRA constraint pass. It is done once per
4880 function. */
4881 void
4882 lra_constraints_init (void)
4884 initiate_invariants ();
4887 /* Finalize the LRA constraint pass. It is done once per
4888 function. */
4889 void
4890 lra_constraints_finish (void)
4892 finish_invariants ();
4897 /* Structure describes invariants for ineheritance. */
4898 struct lra_invariant
4900 /* The order number of the invariant. */
4901 int num;
4902 /* The invariant RTX. */
4903 rtx invariant_rtx;
4904 /* The origin insn of the invariant. */
4905 rtx_insn *insn;
4908 typedef lra_invariant invariant_t;
4909 typedef invariant_t *invariant_ptr_t;
4910 typedef const invariant_t *const_invariant_ptr_t;
4912 /* Pointer to the inheritance invariants. */
4913 static vec<invariant_ptr_t> invariants;
4915 /* Allocation pool for the invariants. */
4916 static object_allocator<lra_invariant> *invariants_pool;
4918 /* Hash table for the invariants. */
4919 static htab_t invariant_table;
4921 /* Hash function for INVARIANT. */
4922 static hashval_t
4923 invariant_hash (const void *invariant)
4925 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
4926 return lra_rtx_hash (inv);
4929 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
4930 static int
4931 invariant_eq_p (const void *invariant1, const void *invariant2)
4933 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
4934 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
4936 return rtx_equal_p (inv1, inv2);
4939 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
4940 invariant which is in the table. */
4941 static invariant_ptr_t
4942 insert_invariant (rtx invariant_rtx)
4944 void **entry_ptr;
4945 invariant_t invariant;
4946 invariant_ptr_t invariant_ptr;
4948 invariant.invariant_rtx = invariant_rtx;
4949 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
4950 if (*entry_ptr == NULL)
4952 invariant_ptr = invariants_pool->allocate ();
4953 invariant_ptr->invariant_rtx = invariant_rtx;
4954 invariant_ptr->insn = NULL;
4955 invariants.safe_push (invariant_ptr);
4956 *entry_ptr = (void *) invariant_ptr;
4958 return (invariant_ptr_t) *entry_ptr;
4961 /* Initiate the invariant table. */
4962 static void
4963 initiate_invariants (void)
4965 invariants.create (100);
4966 invariants_pool
4967 = new object_allocator<lra_invariant> ("Inheritance invariants");
4968 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
4971 /* Finish the invariant table. */
4972 static void
4973 finish_invariants (void)
4975 htab_delete (invariant_table);
4976 delete invariants_pool;
4977 invariants.release ();
4980 /* Make the invariant table empty. */
4981 static void
4982 clear_invariants (void)
4984 htab_empty (invariant_table);
4985 invariants_pool->release ();
4986 invariants.truncate (0);
4991 /* This page contains code to do inheritance/split
4992 transformations. */
4994 /* Number of reloads passed so far in current EBB. */
4995 static int reloads_num;
4997 /* Number of calls passed so far in current EBB. */
4998 static int calls_num;
5000 /* Current reload pseudo check for validity of elements in
5001 USAGE_INSNS. */
5002 static int curr_usage_insns_check;
5004 /* Info about last usage of registers in EBB to do inheritance/split
5005 transformation. Inheritance transformation is done from a spilled
5006 pseudo and split transformations from a hard register or a pseudo
5007 assigned to a hard register. */
5008 struct usage_insns
5010 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5011 value INSNS is valid. The insns is chain of optional debug insns
5012 and a finishing non-debug insn using the corresponding reg. The
5013 value is also used to mark the registers which are set up in the
5014 current insn. The negated insn uid is used for this. */
5015 int check;
5016 /* Value of global reloads_num at the last insn in INSNS. */
5017 int reloads_num;
5018 /* Value of global reloads_nums at the last insn in INSNS. */
5019 int calls_num;
5020 /* It can be true only for splitting. And it means that the restore
5021 insn should be put after insn given by the following member. */
5022 bool after_p;
5023 /* Next insns in the current EBB which use the original reg and the
5024 original reg value is not changed between the current insn and
5025 the next insns. In order words, e.g. for inheritance, if we need
5026 to use the original reg value again in the next insns we can try
5027 to use the value in a hard register from a reload insn of the
5028 current insn. */
5029 rtx insns;
5032 /* Map: regno -> corresponding pseudo usage insns. */
5033 static struct usage_insns *usage_insns;
5035 static void
5036 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5038 usage_insns[regno].check = curr_usage_insns_check;
5039 usage_insns[regno].insns = insn;
5040 usage_insns[regno].reloads_num = reloads_num;
5041 usage_insns[regno].calls_num = calls_num;
5042 usage_insns[regno].after_p = after_p;
5045 /* The function is used to form list REGNO usages which consists of
5046 optional debug insns finished by a non-debug insn using REGNO.
5047 RELOADS_NUM is current number of reload insns processed so far. */
5048 static void
5049 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5051 rtx next_usage_insns;
5053 if (usage_insns[regno].check == curr_usage_insns_check
5054 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5055 && DEBUG_INSN_P (insn))
5057 /* Check that we did not add the debug insn yet. */
5058 if (next_usage_insns != insn
5059 && (GET_CODE (next_usage_insns) != INSN_LIST
5060 || XEXP (next_usage_insns, 0) != insn))
5061 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5062 next_usage_insns);
5064 else if (NONDEBUG_INSN_P (insn))
5065 setup_next_usage_insn (regno, insn, reloads_num, false);
5066 else
5067 usage_insns[regno].check = 0;
5070 /* Return first non-debug insn in list USAGE_INSNS. */
5071 static rtx_insn *
5072 skip_usage_debug_insns (rtx usage_insns)
5074 rtx insn;
5076 /* Skip debug insns. */
5077 for (insn = usage_insns;
5078 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5079 insn = XEXP (insn, 1))
5081 return safe_as_a <rtx_insn *> (insn);
5084 /* Return true if we need secondary memory moves for insn in
5085 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5086 into the insn. */
5087 static bool
5088 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5089 rtx usage_insns ATTRIBUTE_UNUSED)
5091 #ifndef SECONDARY_MEMORY_NEEDED
5092 return false;
5093 #else
5094 rtx_insn *insn;
5095 rtx set, dest;
5096 enum reg_class cl;
5098 if (inher_cl == ALL_REGS
5099 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5100 return false;
5101 lra_assert (INSN_P (insn));
5102 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5103 return false;
5104 dest = SET_DEST (set);
5105 if (! REG_P (dest))
5106 return false;
5107 lra_assert (inher_cl != NO_REGS);
5108 cl = get_reg_class (REGNO (dest));
5109 return (cl != NO_REGS && cl != ALL_REGS
5110 && SECONDARY_MEMORY_NEEDED (inher_cl, cl, GET_MODE (dest)));
5111 #endif
5114 /* Registers involved in inheritance/split in the current EBB
5115 (inheritance/split pseudos and original registers). */
5116 static bitmap_head check_only_regs;
5118 /* Reload pseudos can not be involded in invariant inheritance in the
5119 current EBB. */
5120 static bitmap_head invalid_invariant_regs;
5122 /* Do inheritance transformations for insn INSN, which defines (if
5123 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5124 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5125 form as the "insns" field of usage_insns. Return true if we
5126 succeed in such transformation.
5128 The transformations look like:
5130 p <- ... i <- ...
5131 ... p <- i (new insn)
5132 ... =>
5133 <- ... p ... <- ... i ...
5135 ... i <- p (new insn)
5136 <- ... p ... <- ... i ...
5137 ... =>
5138 <- ... p ... <- ... i ...
5139 where p is a spilled original pseudo and i is a new inheritance pseudo.
5142 The inheritance pseudo has the smallest class of two classes CL and
5143 class of ORIGINAL REGNO. */
5144 static bool
5145 inherit_reload_reg (bool def_p, int original_regno,
5146 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5148 if (optimize_function_for_size_p (cfun))
5149 return false;
5151 enum reg_class rclass = lra_get_allocno_class (original_regno);
5152 rtx original_reg = regno_reg_rtx[original_regno];
5153 rtx new_reg, usage_insn;
5154 rtx_insn *new_insns;
5156 lra_assert (! usage_insns[original_regno].after_p);
5157 if (lra_dump_file != NULL)
5158 fprintf (lra_dump_file,
5159 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5160 if (! ira_reg_classes_intersect_p[cl][rclass])
5162 if (lra_dump_file != NULL)
5164 fprintf (lra_dump_file,
5165 " Rejecting inheritance for %d "
5166 "because of disjoint classes %s and %s\n",
5167 original_regno, reg_class_names[cl],
5168 reg_class_names[rclass]);
5169 fprintf (lra_dump_file,
5170 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5172 return false;
5174 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5175 /* We don't use a subset of two classes because it can be
5176 NO_REGS. This transformation is still profitable in most
5177 cases even if the classes are not intersected as register
5178 move is probably cheaper than a memory load. */
5179 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5181 if (lra_dump_file != NULL)
5182 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
5183 reg_class_names[cl], reg_class_names[rclass]);
5185 rclass = cl;
5187 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5189 /* Reject inheritance resulting in secondary memory moves.
5190 Otherwise, there is a danger in LRA cycling. Also such
5191 transformation will be unprofitable. */
5192 if (lra_dump_file != NULL)
5194 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5195 rtx set = single_set (insn);
5197 lra_assert (set != NULL_RTX);
5199 rtx dest = SET_DEST (set);
5201 lra_assert (REG_P (dest));
5202 fprintf (lra_dump_file,
5203 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5204 "as secondary mem is needed\n",
5205 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5206 original_regno, reg_class_names[rclass]);
5207 fprintf (lra_dump_file,
5208 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5210 return false;
5212 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5213 rclass, "inheritance");
5214 start_sequence ();
5215 if (def_p)
5216 lra_emit_move (original_reg, new_reg);
5217 else
5218 lra_emit_move (new_reg, original_reg);
5219 new_insns = get_insns ();
5220 end_sequence ();
5221 if (NEXT_INSN (new_insns) != NULL_RTX)
5223 if (lra_dump_file != NULL)
5225 fprintf (lra_dump_file,
5226 " Rejecting inheritance %d->%d "
5227 "as it results in 2 or more insns:\n",
5228 original_regno, REGNO (new_reg));
5229 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5230 fprintf (lra_dump_file,
5231 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5233 return false;
5235 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5236 lra_update_insn_regno_info (insn);
5237 if (! def_p)
5238 /* We now have a new usage insn for original regno. */
5239 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5240 if (lra_dump_file != NULL)
5241 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
5242 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5243 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5244 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5245 bitmap_set_bit (&check_only_regs, original_regno);
5246 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5247 if (def_p)
5248 lra_process_new_insns (insn, NULL, new_insns,
5249 "Add original<-inheritance");
5250 else
5251 lra_process_new_insns (insn, new_insns, NULL,
5252 "Add inheritance<-original");
5253 while (next_usage_insns != NULL_RTX)
5255 if (GET_CODE (next_usage_insns) != INSN_LIST)
5257 usage_insn = next_usage_insns;
5258 lra_assert (NONDEBUG_INSN_P (usage_insn));
5259 next_usage_insns = NULL;
5261 else
5263 usage_insn = XEXP (next_usage_insns, 0);
5264 lra_assert (DEBUG_INSN_P (usage_insn));
5265 next_usage_insns = XEXP (next_usage_insns, 1);
5267 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false);
5268 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5269 if (lra_dump_file != NULL)
5271 fprintf (lra_dump_file,
5272 " Inheritance reuse change %d->%d (bb%d):\n",
5273 original_regno, REGNO (new_reg),
5274 BLOCK_FOR_INSN (usage_insn)->index);
5275 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5278 if (lra_dump_file != NULL)
5279 fprintf (lra_dump_file,
5280 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5281 return true;
5284 /* Return true if we need a caller save/restore for pseudo REGNO which
5285 was assigned to a hard register. */
5286 static inline bool
5287 need_for_call_save_p (int regno)
5289 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5290 return (usage_insns[regno].calls_num < calls_num
5291 && (overlaps_hard_reg_set_p
5292 ((flag_ipa_ra &&
5293 ! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
5294 ? lra_reg_info[regno].actual_call_used_reg_set
5295 : call_used_reg_set,
5296 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
5297 || HARD_REGNO_CALL_PART_CLOBBERED (reg_renumber[regno],
5298 PSEUDO_REGNO_MODE (regno))));
5301 /* Global registers occurring in the current EBB. */
5302 static bitmap_head ebb_global_regs;
5304 /* Return true if we need a split for hard register REGNO or pseudo
5305 REGNO which was assigned to a hard register.
5306 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5307 used for reloads since the EBB end. It is an approximation of the
5308 used hard registers in the split range. The exact value would
5309 require expensive calculations. If we were aggressive with
5310 splitting because of the approximation, the split pseudo will save
5311 the same hard register assignment and will be removed in the undo
5312 pass. We still need the approximation because too aggressive
5313 splitting would result in too inaccurate cost calculation in the
5314 assignment pass because of too many generated moves which will be
5315 probably removed in the undo pass. */
5316 static inline bool
5317 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5319 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5321 lra_assert (hard_regno >= 0);
5322 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5323 /* Don't split eliminable hard registers, otherwise we can
5324 split hard registers like hard frame pointer, which
5325 lives on BB start/end according to DF-infrastructure,
5326 when there is a pseudo assigned to the register and
5327 living in the same BB. */
5328 && (regno >= FIRST_PSEUDO_REGISTER
5329 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5330 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5331 /* Don't split call clobbered hard regs living through
5332 calls, otherwise we might have a check problem in the
5333 assign sub-pass as in the most cases (exception is a
5334 situation when lra_risky_transformations_p value is
5335 true) the assign pass assumes that all pseudos living
5336 through calls are assigned to call saved hard regs. */
5337 && (regno >= FIRST_PSEUDO_REGISTER
5338 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
5339 || usage_insns[regno].calls_num == calls_num)
5340 /* We need at least 2 reloads to make pseudo splitting
5341 profitable. We should provide hard regno splitting in
5342 any case to solve 1st insn scheduling problem when
5343 moving hard register definition up might result in
5344 impossibility to find hard register for reload pseudo of
5345 small register class. */
5346 && (usage_insns[regno].reloads_num
5347 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5348 && (regno < FIRST_PSEUDO_REGISTER
5349 /* For short living pseudos, spilling + inheritance can
5350 be considered a substitution for splitting.
5351 Therefore we do not splitting for local pseudos. It
5352 decreases also aggressiveness of splitting. The
5353 minimal number of references is chosen taking into
5354 account that for 2 references splitting has no sense
5355 as we can just spill the pseudo. */
5356 || (regno >= FIRST_PSEUDO_REGISTER
5357 && lra_reg_info[regno].nrefs > 3
5358 && bitmap_bit_p (&ebb_global_regs, regno))))
5359 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5362 /* Return class for the split pseudo created from original pseudo with
5363 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5364 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5365 results in no secondary memory movements. */
5366 static enum reg_class
5367 choose_split_class (enum reg_class allocno_class,
5368 int hard_regno ATTRIBUTE_UNUSED,
5369 machine_mode mode ATTRIBUTE_UNUSED)
5371 #ifndef SECONDARY_MEMORY_NEEDED
5372 return allocno_class;
5373 #else
5374 int i;
5375 enum reg_class cl, best_cl = NO_REGS;
5376 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5377 = REGNO_REG_CLASS (hard_regno);
5379 if (! SECONDARY_MEMORY_NEEDED (allocno_class, allocno_class, mode)
5380 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5381 return allocno_class;
5382 for (i = 0;
5383 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5384 i++)
5385 if (! SECONDARY_MEMORY_NEEDED (cl, hard_reg_class, mode)
5386 && ! SECONDARY_MEMORY_NEEDED (hard_reg_class, cl, mode)
5387 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5388 && (best_cl == NO_REGS
5389 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
5390 best_cl = cl;
5391 return best_cl;
5392 #endif
5395 /* Do split transformations for insn INSN, which defines or uses
5396 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5397 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5398 "insns" field of usage_insns.
5400 The transformations look like:
5402 p <- ... p <- ...
5403 ... s <- p (new insn -- save)
5404 ... =>
5405 ... p <- s (new insn -- restore)
5406 <- ... p ... <- ... p ...
5408 <- ... p ... <- ... p ...
5409 ... s <- p (new insn -- save)
5410 ... =>
5411 ... p <- s (new insn -- restore)
5412 <- ... p ... <- ... p ...
5414 where p is an original pseudo got a hard register or a hard
5415 register and s is a new split pseudo. The save is put before INSN
5416 if BEFORE_P is true. Return true if we succeed in such
5417 transformation. */
5418 static bool
5419 split_reg (bool before_p, int original_regno, rtx_insn *insn,
5420 rtx next_usage_insns)
5422 enum reg_class rclass;
5423 rtx original_reg;
5424 int hard_regno, nregs;
5425 rtx new_reg, usage_insn;
5426 rtx_insn *restore, *save;
5427 bool after_p;
5428 bool call_save_p;
5429 machine_mode mode;
5431 if (original_regno < FIRST_PSEUDO_REGISTER)
5433 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
5434 hard_regno = original_regno;
5435 call_save_p = false;
5436 nregs = 1;
5437 mode = lra_reg_info[hard_regno].biggest_mode;
5438 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
5439 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5440 as part of a multi-word register. In that case, or if the biggest
5441 mode was larger than a register, just use the reg_rtx. Otherwise,
5442 limit the size to that of the biggest access in the function. */
5443 if (mode == VOIDmode
5444 || GET_MODE_SIZE (mode) > GET_MODE_SIZE (reg_rtx_mode))
5446 original_reg = regno_reg_rtx[hard_regno];
5447 mode = reg_rtx_mode;
5449 else
5450 original_reg = gen_rtx_REG (mode, hard_regno);
5452 else
5454 mode = PSEUDO_REGNO_MODE (original_regno);
5455 hard_regno = reg_renumber[original_regno];
5456 nregs = hard_regno_nregs[hard_regno][mode];
5457 rclass = lra_get_allocno_class (original_regno);
5458 original_reg = regno_reg_rtx[original_regno];
5459 call_save_p = need_for_call_save_p (original_regno);
5461 lra_assert (hard_regno >= 0);
5462 if (lra_dump_file != NULL)
5463 fprintf (lra_dump_file,
5464 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5466 if (call_save_p)
5468 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
5469 hard_regno_nregs[hard_regno][mode],
5470 mode);
5471 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
5473 else
5475 rclass = choose_split_class (rclass, hard_regno, mode);
5476 if (rclass == NO_REGS)
5478 if (lra_dump_file != NULL)
5480 fprintf (lra_dump_file,
5481 " Rejecting split of %d(%s): "
5482 "no good reg class for %d(%s)\n",
5483 original_regno,
5484 reg_class_names[lra_get_allocno_class (original_regno)],
5485 hard_regno,
5486 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
5487 fprintf
5488 (lra_dump_file,
5489 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5491 return false;
5493 /* Split_if_necessary can split hard registers used as part of a
5494 multi-register mode but splits each register individually. The
5495 mode used for each independent register may not be supported
5496 so reject the split. Splitting the wider mode should theoretically
5497 be possible but is not implemented. */
5498 if (! HARD_REGNO_MODE_OK (hard_regno, mode))
5500 if (lra_dump_file != NULL)
5502 fprintf (lra_dump_file,
5503 " Rejecting split of %d(%s): unsuitable mode %s\n",
5504 original_regno,
5505 reg_class_names[lra_get_allocno_class (original_regno)],
5506 GET_MODE_NAME (mode));
5507 fprintf
5508 (lra_dump_file,
5509 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5511 return false;
5513 new_reg = lra_create_new_reg (mode, original_reg, rclass, "split");
5514 reg_renumber[REGNO (new_reg)] = hard_regno;
5516 save = emit_spill_move (true, new_reg, original_reg);
5517 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
5519 if (lra_dump_file != NULL)
5521 fprintf
5522 (lra_dump_file,
5523 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5524 original_regno, REGNO (new_reg));
5525 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
5526 fprintf (lra_dump_file,
5527 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5529 return false;
5531 restore = emit_spill_move (false, new_reg, original_reg);
5532 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
5534 if (lra_dump_file != NULL)
5536 fprintf (lra_dump_file,
5537 " Rejecting split %d->%d "
5538 "resulting in > 2 restore insns:\n",
5539 original_regno, REGNO (new_reg));
5540 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
5541 fprintf (lra_dump_file,
5542 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5544 return false;
5546 after_p = usage_insns[original_regno].after_p;
5547 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5548 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5549 bitmap_set_bit (&check_only_regs, original_regno);
5550 bitmap_set_bit (&lra_split_regs, REGNO (new_reg));
5551 for (;;)
5553 if (GET_CODE (next_usage_insns) != INSN_LIST)
5555 usage_insn = next_usage_insns;
5556 break;
5558 usage_insn = XEXP (next_usage_insns, 0);
5559 lra_assert (DEBUG_INSN_P (usage_insn));
5560 next_usage_insns = XEXP (next_usage_insns, 1);
5561 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false);
5562 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5563 if (lra_dump_file != NULL)
5565 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
5566 original_regno, REGNO (new_reg));
5567 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5570 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5571 lra_assert (usage_insn != insn || (after_p && before_p));
5572 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5573 after_p ? NULL : restore,
5574 after_p ? restore : NULL,
5575 call_save_p
5576 ? "Add reg<-save" : "Add reg<-split");
5577 lra_process_new_insns (insn, before_p ? save : NULL,
5578 before_p ? NULL : save,
5579 call_save_p
5580 ? "Add save<-reg" : "Add split<-reg");
5581 if (nregs > 1)
5582 /* If we are trying to split multi-register. We should check
5583 conflicts on the next assignment sub-pass. IRA can allocate on
5584 sub-register levels, LRA do this on pseudos level right now and
5585 this discrepancy may create allocation conflicts after
5586 splitting. */
5587 lra_risky_transformations_p = true;
5588 if (lra_dump_file != NULL)
5589 fprintf (lra_dump_file,
5590 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5591 return true;
5594 /* Recognize that we need a split transformation for insn INSN, which
5595 defines or uses REGNO in its insn biggest MODE (we use it only if
5596 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5597 hard registers which might be used for reloads since the EBB end.
5598 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5599 uid before starting INSN processing. Return true if we succeed in
5600 such transformation. */
5601 static bool
5602 split_if_necessary (int regno, machine_mode mode,
5603 HARD_REG_SET potential_reload_hard_regs,
5604 bool before_p, rtx_insn *insn, int max_uid)
5606 bool res = false;
5607 int i, nregs = 1;
5608 rtx next_usage_insns;
5610 if (regno < FIRST_PSEUDO_REGISTER)
5611 nregs = hard_regno_nregs[regno][mode];
5612 for (i = 0; i < nregs; i++)
5613 if (usage_insns[regno + i].check == curr_usage_insns_check
5614 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5615 /* To avoid processing the register twice or more. */
5616 && ((GET_CODE (next_usage_insns) != INSN_LIST
5617 && INSN_UID (next_usage_insns) < max_uid)
5618 || (GET_CODE (next_usage_insns) == INSN_LIST
5619 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5620 && need_for_split_p (potential_reload_hard_regs, regno + i)
5621 && split_reg (before_p, regno + i, insn, next_usage_insns))
5622 res = true;
5623 return res;
5626 /* Return TRUE if rtx X is considered as an invariant for
5627 inheritance. */
5628 static bool
5629 invariant_p (const_rtx x)
5631 machine_mode mode;
5632 const char *fmt;
5633 enum rtx_code code;
5634 int i, j;
5636 code = GET_CODE (x);
5637 mode = GET_MODE (x);
5638 if (code == SUBREG)
5640 x = SUBREG_REG (x);
5641 code = GET_CODE (x);
5642 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
5643 mode = GET_MODE (x);
5646 if (MEM_P (x))
5647 return false;
5649 if (REG_P (x))
5651 int i, nregs, regno = REGNO (x);
5653 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
5654 || TEST_HARD_REG_BIT (eliminable_regset, regno)
5655 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
5656 return false;
5657 nregs = hard_regno_nregs[regno][mode];
5658 for (i = 0; i < nregs; i++)
5659 if (! fixed_regs[regno + i]
5660 /* A hard register may be clobbered in the current insn
5661 but we can ignore this case because if the hard
5662 register is used it should be set somewhere after the
5663 clobber. */
5664 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
5665 return false;
5667 fmt = GET_RTX_FORMAT (code);
5668 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5670 if (fmt[i] == 'e')
5672 if (! invariant_p (XEXP (x, i)))
5673 return false;
5675 else if (fmt[i] == 'E')
5677 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5678 if (! invariant_p (XVECEXP (x, i, j)))
5679 return false;
5682 return true;
5685 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5686 inheritance transformation (using dest_reg instead invariant in a
5687 subsequent insn). */
5688 static bool
5689 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
5691 invariant_ptr_t invariant_ptr;
5692 rtx_insn *insn, *new_insns;
5693 rtx insn_set, insn_reg, new_reg;
5694 int insn_regno;
5695 bool succ_p = false;
5696 int dst_regno = REGNO (dst_reg);
5697 enum machine_mode dst_mode = GET_MODE (dst_reg);
5698 enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
5700 invariant_ptr = insert_invariant (invariant_rtx);
5701 if ((insn = invariant_ptr->insn) != NULL_RTX)
5703 /* We have a subsequent insn using the invariant. */
5704 insn_set = single_set (insn);
5705 lra_assert (insn_set != NULL);
5706 insn_reg = SET_DEST (insn_set);
5707 lra_assert (REG_P (insn_reg));
5708 insn_regno = REGNO (insn_reg);
5709 insn_reg_cl = lra_get_allocno_class (insn_regno);
5711 if (dst_mode == GET_MODE (insn_reg)
5712 /* We should consider only result move reg insns which are
5713 cheap. */
5714 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
5715 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
5717 if (lra_dump_file != NULL)
5718 fprintf (lra_dump_file,
5719 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5720 new_reg = lra_create_new_reg (dst_mode, dst_reg,
5721 cl, "invariant inheritance");
5722 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5723 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5724 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
5725 start_sequence ();
5726 lra_emit_move (new_reg, dst_reg);
5727 new_insns = get_insns ();
5728 end_sequence ();
5729 lra_process_new_insns (curr_insn, NULL, new_insns,
5730 "Add invariant inheritance<-original");
5731 start_sequence ();
5732 lra_emit_move (SET_DEST (insn_set), new_reg);
5733 new_insns = get_insns ();
5734 end_sequence ();
5735 lra_process_new_insns (insn, NULL, new_insns,
5736 "Changing reload<-inheritance");
5737 lra_set_insn_deleted (insn);
5738 succ_p = true;
5739 if (lra_dump_file != NULL)
5741 fprintf (lra_dump_file,
5742 " Invariant inheritance reuse change %d (bb%d):\n",
5743 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5744 dump_insn_slim (lra_dump_file, insn);
5745 fprintf (lra_dump_file,
5746 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5750 invariant_ptr->insn = curr_insn;
5751 return succ_p;
5754 /* Check only registers living at the current program point in the
5755 current EBB. */
5756 static bitmap_head live_regs;
5758 /* Update live info in EBB given by its HEAD and TAIL insns after
5759 inheritance/split transformation. The function removes dead moves
5760 too. */
5761 static void
5762 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
5764 unsigned int j;
5765 int i, regno;
5766 bool live_p;
5767 rtx_insn *prev_insn;
5768 rtx set;
5769 bool remove_p;
5770 basic_block last_bb, prev_bb, curr_bb;
5771 bitmap_iterator bi;
5772 struct lra_insn_reg *reg;
5773 edge e;
5774 edge_iterator ei;
5776 last_bb = BLOCK_FOR_INSN (tail);
5777 prev_bb = NULL;
5778 for (curr_insn = tail;
5779 curr_insn != PREV_INSN (head);
5780 curr_insn = prev_insn)
5782 prev_insn = PREV_INSN (curr_insn);
5783 /* We need to process empty blocks too. They contain
5784 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5785 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
5786 continue;
5787 curr_bb = BLOCK_FOR_INSN (curr_insn);
5788 if (curr_bb != prev_bb)
5790 if (prev_bb != NULL)
5792 /* Update df_get_live_in (prev_bb): */
5793 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5794 if (bitmap_bit_p (&live_regs, j))
5795 bitmap_set_bit (df_get_live_in (prev_bb), j);
5796 else
5797 bitmap_clear_bit (df_get_live_in (prev_bb), j);
5799 if (curr_bb != last_bb)
5801 /* Update df_get_live_out (curr_bb): */
5802 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5804 live_p = bitmap_bit_p (&live_regs, j);
5805 if (! live_p)
5806 FOR_EACH_EDGE (e, ei, curr_bb->succs)
5807 if (bitmap_bit_p (df_get_live_in (e->dest), j))
5809 live_p = true;
5810 break;
5812 if (live_p)
5813 bitmap_set_bit (df_get_live_out (curr_bb), j);
5814 else
5815 bitmap_clear_bit (df_get_live_out (curr_bb), j);
5818 prev_bb = curr_bb;
5819 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
5821 if (! NONDEBUG_INSN_P (curr_insn))
5822 continue;
5823 curr_id = lra_get_insn_recog_data (curr_insn);
5824 curr_static_id = curr_id->insn_static_data;
5825 remove_p = false;
5826 if ((set = single_set (curr_insn)) != NULL_RTX
5827 && REG_P (SET_DEST (set))
5828 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
5829 && SET_DEST (set) != pic_offset_table_rtx
5830 && bitmap_bit_p (&check_only_regs, regno)
5831 && ! bitmap_bit_p (&live_regs, regno))
5832 remove_p = true;
5833 /* See which defined values die here. */
5834 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5835 if (reg->type == OP_OUT && ! reg->subreg_p)
5836 bitmap_clear_bit (&live_regs, reg->regno);
5837 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5838 if (reg->type == OP_OUT && ! reg->subreg_p)
5839 bitmap_clear_bit (&live_regs, reg->regno);
5840 if (curr_id->arg_hard_regs != NULL)
5841 /* Make clobbered argument hard registers die. */
5842 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5843 if (regno >= FIRST_PSEUDO_REGISTER)
5844 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
5845 /* Mark each used value as live. */
5846 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5847 if (reg->type != OP_OUT
5848 && bitmap_bit_p (&check_only_regs, reg->regno))
5849 bitmap_set_bit (&live_regs, reg->regno);
5850 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5851 if (reg->type != OP_OUT
5852 && bitmap_bit_p (&check_only_regs, reg->regno))
5853 bitmap_set_bit (&live_regs, reg->regno);
5854 if (curr_id->arg_hard_regs != NULL)
5855 /* Make used argument hard registers live. */
5856 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5857 if (regno < FIRST_PSEUDO_REGISTER
5858 && bitmap_bit_p (&check_only_regs, regno))
5859 bitmap_set_bit (&live_regs, regno);
5860 /* It is quite important to remove dead move insns because it
5861 means removing dead store. We don't need to process them for
5862 constraints. */
5863 if (remove_p)
5865 if (lra_dump_file != NULL)
5867 fprintf (lra_dump_file, " Removing dead insn:\n ");
5868 dump_insn_slim (lra_dump_file, curr_insn);
5870 lra_set_insn_deleted (curr_insn);
5875 /* The structure describes info to do an inheritance for the current
5876 insn. We need to collect such info first before doing the
5877 transformations because the transformations change the insn
5878 internal representation. */
5879 struct to_inherit
5881 /* Original regno. */
5882 int regno;
5883 /* Subsequent insns which can inherit original reg value. */
5884 rtx insns;
5887 /* Array containing all info for doing inheritance from the current
5888 insn. */
5889 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
5891 /* Number elements in the previous array. */
5892 static int to_inherit_num;
5894 /* Add inheritance info REGNO and INSNS. Their meaning is described in
5895 structure to_inherit. */
5896 static void
5897 add_to_inherit (int regno, rtx insns)
5899 int i;
5901 for (i = 0; i < to_inherit_num; i++)
5902 if (to_inherit[i].regno == regno)
5903 return;
5904 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
5905 to_inherit[to_inherit_num].regno = regno;
5906 to_inherit[to_inherit_num++].insns = insns;
5909 /* Return the last non-debug insn in basic block BB, or the block begin
5910 note if none. */
5911 static rtx_insn *
5912 get_last_insertion_point (basic_block bb)
5914 rtx_insn *insn;
5916 FOR_BB_INSNS_REVERSE (bb, insn)
5917 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
5918 return insn;
5919 gcc_unreachable ();
5922 /* Set up RES by registers living on edges FROM except the edge (FROM,
5923 TO) or by registers set up in a jump insn in BB FROM. */
5924 static void
5925 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
5927 rtx_insn *last;
5928 struct lra_insn_reg *reg;
5929 edge e;
5930 edge_iterator ei;
5932 lra_assert (to != NULL);
5933 bitmap_clear (res);
5934 FOR_EACH_EDGE (e, ei, from->succs)
5935 if (e->dest != to)
5936 bitmap_ior_into (res, df_get_live_in (e->dest));
5937 last = get_last_insertion_point (from);
5938 if (! JUMP_P (last))
5939 return;
5940 curr_id = lra_get_insn_recog_data (last);
5941 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5942 if (reg->type != OP_IN)
5943 bitmap_set_bit (res, reg->regno);
5946 /* Used as a temporary results of some bitmap calculations. */
5947 static bitmap_head temp_bitmap;
5949 /* We split for reloads of small class of hard regs. The following
5950 defines how many hard regs the class should have to be qualified as
5951 small. The code is mostly oriented to x86/x86-64 architecture
5952 where some insns need to use only specific register or pair of
5953 registers and these register can live in RTL explicitly, e.g. for
5954 parameter passing. */
5955 static const int max_small_class_regs_num = 2;
5957 /* Do inheritance/split transformations in EBB starting with HEAD and
5958 finishing on TAIL. We process EBB insns in the reverse order.
5959 Return true if we did any inheritance/split transformation in the
5960 EBB.
5962 We should avoid excessive splitting which results in worse code
5963 because of inaccurate cost calculations for spilling new split
5964 pseudos in such case. To achieve this we do splitting only if
5965 register pressure is high in given basic block and there are reload
5966 pseudos requiring hard registers. We could do more register
5967 pressure calculations at any given program point to avoid necessary
5968 splitting even more but it is to expensive and the current approach
5969 works well enough. */
5970 static bool
5971 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
5973 int i, src_regno, dst_regno, nregs;
5974 bool change_p, succ_p, update_reloads_num_p;
5975 rtx_insn *prev_insn, *last_insn;
5976 rtx next_usage_insns, curr_set;
5977 enum reg_class cl;
5978 struct lra_insn_reg *reg;
5979 basic_block last_processed_bb, curr_bb = NULL;
5980 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
5981 bitmap to_process;
5982 unsigned int j;
5983 bitmap_iterator bi;
5984 bool head_p, after_p;
5986 change_p = false;
5987 curr_usage_insns_check++;
5988 clear_invariants ();
5989 reloads_num = calls_num = 0;
5990 bitmap_clear (&check_only_regs);
5991 bitmap_clear (&invalid_invariant_regs);
5992 last_processed_bb = NULL;
5993 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
5994 COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
5995 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
5996 /* We don't process new insns generated in the loop. */
5997 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
5999 prev_insn = PREV_INSN (curr_insn);
6000 if (BLOCK_FOR_INSN (curr_insn) != NULL)
6001 curr_bb = BLOCK_FOR_INSN (curr_insn);
6002 if (last_processed_bb != curr_bb)
6004 /* We are at the end of BB. Add qualified living
6005 pseudos for potential splitting. */
6006 to_process = df_get_live_out (curr_bb);
6007 if (last_processed_bb != NULL)
6009 /* We are somewhere in the middle of EBB. */
6010 get_live_on_other_edges (curr_bb, last_processed_bb,
6011 &temp_bitmap);
6012 to_process = &temp_bitmap;
6014 last_processed_bb = curr_bb;
6015 last_insn = get_last_insertion_point (curr_bb);
6016 after_p = (! JUMP_P (last_insn)
6017 && (! CALL_P (last_insn)
6018 || (find_reg_note (last_insn,
6019 REG_NORETURN, NULL_RTX) == NULL_RTX
6020 && ! SIBLING_CALL_P (last_insn))));
6021 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6022 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6024 if ((int) j >= lra_constraint_new_regno_start)
6025 break;
6026 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6028 if (j < FIRST_PSEUDO_REGISTER)
6029 SET_HARD_REG_BIT (live_hard_regs, j);
6030 else
6031 add_to_hard_reg_set (&live_hard_regs,
6032 PSEUDO_REGNO_MODE (j),
6033 reg_renumber[j]);
6034 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6038 src_regno = dst_regno = -1;
6039 curr_set = single_set (curr_insn);
6040 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6041 dst_regno = REGNO (SET_DEST (curr_set));
6042 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6043 src_regno = REGNO (SET_SRC (curr_set));
6044 update_reloads_num_p = true;
6045 if (src_regno < lra_constraint_new_regno_start
6046 && src_regno >= FIRST_PSEUDO_REGISTER
6047 && reg_renumber[src_regno] < 0
6048 && dst_regno >= lra_constraint_new_regno_start
6049 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6051 /* 'reload_pseudo <- original_pseudo'. */
6052 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6053 reloads_num++;
6054 update_reloads_num_p = false;
6055 succ_p = false;
6056 if (usage_insns[src_regno].check == curr_usage_insns_check
6057 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6058 succ_p = inherit_reload_reg (false, src_regno, cl,
6059 curr_insn, next_usage_insns);
6060 if (succ_p)
6061 change_p = true;
6062 else
6063 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6064 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6065 IOR_HARD_REG_SET (potential_reload_hard_regs,
6066 reg_class_contents[cl]);
6068 else if (src_regno < 0
6069 && dst_regno >= lra_constraint_new_regno_start
6070 && invariant_p (SET_SRC (curr_set))
6071 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6072 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6073 && ! bitmap_bit_p (&invalid_invariant_regs,
6074 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6076 /* 'reload_pseudo <- invariant'. */
6077 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6078 reloads_num++;
6079 update_reloads_num_p = false;
6080 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6081 change_p = true;
6082 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6083 IOR_HARD_REG_SET (potential_reload_hard_regs,
6084 reg_class_contents[cl]);
6086 else if (src_regno >= lra_constraint_new_regno_start
6087 && dst_regno < lra_constraint_new_regno_start
6088 && dst_regno >= FIRST_PSEUDO_REGISTER
6089 && reg_renumber[dst_regno] < 0
6090 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6091 && usage_insns[dst_regno].check == curr_usage_insns_check
6092 && (next_usage_insns
6093 = usage_insns[dst_regno].insns) != NULL_RTX)
6095 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6096 reloads_num++;
6097 update_reloads_num_p = false;
6098 /* 'original_pseudo <- reload_pseudo'. */
6099 if (! JUMP_P (curr_insn)
6100 && inherit_reload_reg (true, dst_regno, cl,
6101 curr_insn, next_usage_insns))
6102 change_p = true;
6103 /* Invalidate. */
6104 usage_insns[dst_regno].check = 0;
6105 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6106 IOR_HARD_REG_SET (potential_reload_hard_regs,
6107 reg_class_contents[cl]);
6109 else if (INSN_P (curr_insn))
6111 int iter;
6112 int max_uid = get_max_uid ();
6114 curr_id = lra_get_insn_recog_data (curr_insn);
6115 curr_static_id = curr_id->insn_static_data;
6116 to_inherit_num = 0;
6117 /* Process insn definitions. */
6118 for (iter = 0; iter < 2; iter++)
6119 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6120 reg != NULL;
6121 reg = reg->next)
6122 if (reg->type != OP_IN
6123 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6125 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6126 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6127 && usage_insns[dst_regno].check == curr_usage_insns_check
6128 && (next_usage_insns
6129 = usage_insns[dst_regno].insns) != NULL_RTX)
6131 struct lra_insn_reg *r;
6133 for (r = curr_id->regs; r != NULL; r = r->next)
6134 if (r->type != OP_OUT && r->regno == dst_regno)
6135 break;
6136 /* Don't do inheritance if the pseudo is also
6137 used in the insn. */
6138 if (r == NULL)
6139 /* We can not do inheritance right now
6140 because the current insn reg info (chain
6141 regs) can change after that. */
6142 add_to_inherit (dst_regno, next_usage_insns);
6144 /* We can not process one reg twice here because of
6145 usage_insns invalidation. */
6146 if ((dst_regno < FIRST_PSEUDO_REGISTER
6147 || reg_renumber[dst_regno] >= 0)
6148 && ! reg->subreg_p && reg->type != OP_IN)
6150 HARD_REG_SET s;
6152 if (split_if_necessary (dst_regno, reg->biggest_mode,
6153 potential_reload_hard_regs,
6154 false, curr_insn, max_uid))
6155 change_p = true;
6156 CLEAR_HARD_REG_SET (s);
6157 if (dst_regno < FIRST_PSEUDO_REGISTER)
6158 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6159 else
6160 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6161 reg_renumber[dst_regno]);
6162 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
6164 /* We should invalidate potential inheritance or
6165 splitting for the current insn usages to the next
6166 usage insns (see code below) as the output pseudo
6167 prevents this. */
6168 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6169 && reg_renumber[dst_regno] < 0)
6170 || (reg->type == OP_OUT && ! reg->subreg_p
6171 && (dst_regno < FIRST_PSEUDO_REGISTER
6172 || reg_renumber[dst_regno] >= 0)))
6174 /* Invalidate and mark definitions. */
6175 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6176 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6177 else
6179 nregs = hard_regno_nregs[dst_regno][reg->biggest_mode];
6180 for (i = 0; i < nregs; i++)
6181 usage_insns[dst_regno + i].check
6182 = -(int) INSN_UID (curr_insn);
6186 /* Process clobbered call regs. */
6187 if (curr_id->arg_hard_regs != NULL)
6188 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6189 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6190 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6191 = -(int) INSN_UID (curr_insn);
6192 if (! JUMP_P (curr_insn))
6193 for (i = 0; i < to_inherit_num; i++)
6194 if (inherit_reload_reg (true, to_inherit[i].regno,
6195 ALL_REGS, curr_insn,
6196 to_inherit[i].insns))
6197 change_p = true;
6198 if (CALL_P (curr_insn))
6200 rtx cheap, pat, dest;
6201 rtx_insn *restore;
6202 int regno, hard_regno;
6204 calls_num++;
6205 if ((cheap = find_reg_note (curr_insn,
6206 REG_RETURNED, NULL_RTX)) != NULL_RTX
6207 && ((cheap = XEXP (cheap, 0)), true)
6208 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6209 && (hard_regno = reg_renumber[regno]) >= 0
6210 /* If there are pending saves/restores, the
6211 optimization is not worth. */
6212 && usage_insns[regno].calls_num == calls_num - 1
6213 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
6215 /* Restore the pseudo from the call result as
6216 REG_RETURNED note says that the pseudo value is
6217 in the call result and the pseudo is an argument
6218 of the call. */
6219 pat = PATTERN (curr_insn);
6220 if (GET_CODE (pat) == PARALLEL)
6221 pat = XVECEXP (pat, 0, 0);
6222 dest = SET_DEST (pat);
6223 /* For multiple return values dest is PARALLEL.
6224 Currently we handle only single return value case. */
6225 if (REG_P (dest))
6227 start_sequence ();
6228 emit_move_insn (cheap, copy_rtx (dest));
6229 restore = get_insns ();
6230 end_sequence ();
6231 lra_process_new_insns (curr_insn, NULL, restore,
6232 "Inserting call parameter restore");
6233 /* We don't need to save/restore of the pseudo from
6234 this call. */
6235 usage_insns[regno].calls_num = calls_num;
6236 bitmap_set_bit (&check_only_regs, regno);
6240 to_inherit_num = 0;
6241 /* Process insn usages. */
6242 for (iter = 0; iter < 2; iter++)
6243 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6244 reg != NULL;
6245 reg = reg->next)
6246 if ((reg->type != OP_OUT
6247 || (reg->type == OP_OUT && reg->subreg_p))
6248 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6250 if (src_regno >= FIRST_PSEUDO_REGISTER
6251 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6253 if (usage_insns[src_regno].check == curr_usage_insns_check
6254 && (next_usage_insns
6255 = usage_insns[src_regno].insns) != NULL_RTX
6256 && NONDEBUG_INSN_P (curr_insn))
6257 add_to_inherit (src_regno, next_usage_insns);
6258 else if (usage_insns[src_regno].check
6259 != -(int) INSN_UID (curr_insn))
6260 /* Add usages but only if the reg is not set up
6261 in the same insn. */
6262 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6264 else if (src_regno < FIRST_PSEUDO_REGISTER
6265 || reg_renumber[src_regno] >= 0)
6267 bool before_p;
6268 rtx_insn *use_insn = curr_insn;
6270 before_p = (JUMP_P (curr_insn)
6271 || (CALL_P (curr_insn) && reg->type == OP_IN));
6272 if (NONDEBUG_INSN_P (curr_insn)
6273 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
6274 && split_if_necessary (src_regno, reg->biggest_mode,
6275 potential_reload_hard_regs,
6276 before_p, curr_insn, max_uid))
6278 if (reg->subreg_p)
6279 lra_risky_transformations_p = true;
6280 change_p = true;
6281 /* Invalidate. */
6282 usage_insns[src_regno].check = 0;
6283 if (before_p)
6284 use_insn = PREV_INSN (curr_insn);
6286 if (NONDEBUG_INSN_P (curr_insn))
6288 if (src_regno < FIRST_PSEUDO_REGISTER)
6289 add_to_hard_reg_set (&live_hard_regs,
6290 reg->biggest_mode, src_regno);
6291 else
6292 add_to_hard_reg_set (&live_hard_regs,
6293 PSEUDO_REGNO_MODE (src_regno),
6294 reg_renumber[src_regno]);
6296 add_next_usage_insn (src_regno, use_insn, reloads_num);
6299 /* Process used call regs. */
6300 if (curr_id->arg_hard_regs != NULL)
6301 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6302 if (src_regno < FIRST_PSEUDO_REGISTER)
6304 SET_HARD_REG_BIT (live_hard_regs, src_regno);
6305 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6307 for (i = 0; i < to_inherit_num; i++)
6309 src_regno = to_inherit[i].regno;
6310 if (inherit_reload_reg (false, src_regno, ALL_REGS,
6311 curr_insn, to_inherit[i].insns))
6312 change_p = true;
6313 else
6314 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6317 if (update_reloads_num_p
6318 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
6320 int regno = -1;
6321 if ((REG_P (SET_DEST (curr_set))
6322 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
6323 && reg_renumber[regno] < 0
6324 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
6325 || (REG_P (SET_SRC (curr_set))
6326 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
6327 && reg_renumber[regno] < 0
6328 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
6330 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6331 reloads_num++;
6332 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6333 IOR_HARD_REG_SET (potential_reload_hard_regs,
6334 reg_class_contents[cl]);
6337 if (NONDEBUG_INSN_P (curr_insn))
6339 int regno;
6341 /* Invalidate invariants with changed regs. */
6342 curr_id = lra_get_insn_recog_data (curr_insn);
6343 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6344 if (reg->type != OP_IN)
6346 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6347 bitmap_set_bit (&invalid_invariant_regs,
6348 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
6350 curr_static_id = curr_id->insn_static_data;
6351 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6352 if (reg->type != OP_IN)
6353 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6354 if (curr_id->arg_hard_regs != NULL)
6355 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6356 if (regno >= FIRST_PSEUDO_REGISTER)
6357 bitmap_set_bit (&invalid_invariant_regs,
6358 regno - FIRST_PSEUDO_REGISTER);
6360 /* We reached the start of the current basic block. */
6361 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
6362 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
6364 /* We reached the beginning of the current block -- do
6365 rest of spliting in the current BB. */
6366 to_process = df_get_live_in (curr_bb);
6367 if (BLOCK_FOR_INSN (head) != curr_bb)
6369 /* We are somewhere in the middle of EBB. */
6370 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
6371 curr_bb, &temp_bitmap);
6372 to_process = &temp_bitmap;
6374 head_p = true;
6375 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6377 if ((int) j >= lra_constraint_new_regno_start)
6378 break;
6379 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6380 && usage_insns[j].check == curr_usage_insns_check
6381 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
6383 if (need_for_split_p (potential_reload_hard_regs, j))
6385 if (lra_dump_file != NULL && head_p)
6387 fprintf (lra_dump_file,
6388 " ----------------------------------\n");
6389 head_p = false;
6391 if (split_reg (false, j, bb_note (curr_bb),
6392 next_usage_insns))
6393 change_p = true;
6395 usage_insns[j].check = 0;
6400 return change_p;
6403 /* This value affects EBB forming. If probability of edge from EBB to
6404 a BB is not greater than the following value, we don't add the BB
6405 to EBB. */
6406 #define EBB_PROBABILITY_CUTOFF \
6407 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6409 /* Current number of inheritance/split iteration. */
6410 int lra_inheritance_iter;
6412 /* Entry function for inheritance/split pass. */
6413 void
6414 lra_inheritance (void)
6416 int i;
6417 basic_block bb, start_bb;
6418 edge e;
6420 lra_inheritance_iter++;
6421 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6422 return;
6423 timevar_push (TV_LRA_INHERITANCE);
6424 if (lra_dump_file != NULL)
6425 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
6426 lra_inheritance_iter);
6427 curr_usage_insns_check = 0;
6428 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
6429 for (i = 0; i < lra_constraint_new_regno_start; i++)
6430 usage_insns[i].check = 0;
6431 bitmap_initialize (&check_only_regs, &reg_obstack);
6432 bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
6433 bitmap_initialize (&live_regs, &reg_obstack);
6434 bitmap_initialize (&temp_bitmap, &reg_obstack);
6435 bitmap_initialize (&ebb_global_regs, &reg_obstack);
6436 FOR_EACH_BB_FN (bb, cfun)
6438 start_bb = bb;
6439 if (lra_dump_file != NULL)
6440 fprintf (lra_dump_file, "EBB");
6441 /* Form a EBB starting with BB. */
6442 bitmap_clear (&ebb_global_regs);
6443 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
6444 for (;;)
6446 if (lra_dump_file != NULL)
6447 fprintf (lra_dump_file, " %d", bb->index);
6448 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
6449 || LABEL_P (BB_HEAD (bb->next_bb)))
6450 break;
6451 e = find_fallthru_edge (bb->succs);
6452 if (! e)
6453 break;
6454 if (e->probability < EBB_PROBABILITY_CUTOFF)
6455 break;
6456 bb = bb->next_bb;
6458 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
6459 if (lra_dump_file != NULL)
6460 fprintf (lra_dump_file, "\n");
6461 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
6462 /* Remember that the EBB head and tail can change in
6463 inherit_in_ebb. */
6464 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
6466 bitmap_clear (&ebb_global_regs);
6467 bitmap_clear (&temp_bitmap);
6468 bitmap_clear (&live_regs);
6469 bitmap_clear (&invalid_invariant_regs);
6470 bitmap_clear (&check_only_regs);
6471 free (usage_insns);
6473 timevar_pop (TV_LRA_INHERITANCE);
6478 /* This page contains code to undo failed inheritance/split
6479 transformations. */
6481 /* Current number of iteration undoing inheritance/split. */
6482 int lra_undo_inheritance_iter;
6484 /* Fix BB live info LIVE after removing pseudos created on pass doing
6485 inheritance/split which are REMOVED_PSEUDOS. */
6486 static void
6487 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
6489 unsigned int regno;
6490 bitmap_iterator bi;
6492 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
6493 if (bitmap_clear_bit (live, regno)
6494 && REG_P (lra_reg_info[regno].restore_rtx))
6495 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
6498 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6499 number. */
6500 static int
6501 get_regno (rtx reg)
6503 if (GET_CODE (reg) == SUBREG)
6504 reg = SUBREG_REG (reg);
6505 if (REG_P (reg))
6506 return REGNO (reg);
6507 return -1;
6510 /* Delete a move INSN with destination reg DREGNO and a previous
6511 clobber insn with the same regno. The inheritance/split code can
6512 generate moves with preceding clobber and when we delete such moves
6513 we should delete the clobber insn too to keep the correct life
6514 info. */
6515 static void
6516 delete_move_and_clobber (rtx_insn *insn, int dregno)
6518 rtx_insn *prev_insn = PREV_INSN (insn);
6520 lra_set_insn_deleted (insn);
6521 lra_assert (dregno >= 0);
6522 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
6523 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
6524 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
6525 lra_set_insn_deleted (prev_insn);
6528 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6529 return true if we did any change. The undo transformations for
6530 inheritance looks like
6531 i <- i2
6532 p <- i => p <- i2
6533 or removing
6534 p <- i, i <- p, and i <- i3
6535 where p is original pseudo from which inheritance pseudo i was
6536 created, i and i3 are removed inheritance pseudos, i2 is another
6537 not removed inheritance pseudo. All split pseudos or other
6538 occurrences of removed inheritance pseudos are changed on the
6539 corresponding original pseudos.
6541 The function also schedules insns changed and created during
6542 inheritance/split pass for processing by the subsequent constraint
6543 pass. */
6544 static bool
6545 remove_inheritance_pseudos (bitmap remove_pseudos)
6547 basic_block bb;
6548 int regno, sregno, prev_sregno, dregno;
6549 rtx restore_rtx;
6550 rtx set, prev_set;
6551 rtx_insn *prev_insn;
6552 bool change_p, done_p;
6554 change_p = ! bitmap_empty_p (remove_pseudos);
6555 /* We can not finish the function right away if CHANGE_P is true
6556 because we need to marks insns affected by previous
6557 inheritance/split pass for processing by the subsequent
6558 constraint pass. */
6559 FOR_EACH_BB_FN (bb, cfun)
6561 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
6562 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
6563 FOR_BB_INSNS_REVERSE (bb, curr_insn)
6565 if (! INSN_P (curr_insn))
6566 continue;
6567 done_p = false;
6568 sregno = dregno = -1;
6569 if (change_p && NONDEBUG_INSN_P (curr_insn)
6570 && (set = single_set (curr_insn)) != NULL_RTX)
6572 dregno = get_regno (SET_DEST (set));
6573 sregno = get_regno (SET_SRC (set));
6576 if (sregno >= 0 && dregno >= 0)
6578 if (bitmap_bit_p (remove_pseudos, dregno)
6579 && ! REG_P (lra_reg_info[dregno].restore_rtx))
6581 /* invariant inheritance pseudo <- original pseudo */
6582 if (lra_dump_file != NULL)
6584 fprintf (lra_dump_file, " Removing invariant inheritance:\n");
6585 dump_insn_slim (lra_dump_file, curr_insn);
6586 fprintf (lra_dump_file, "\n");
6588 delete_move_and_clobber (curr_insn, dregno);
6589 done_p = true;
6591 else if (bitmap_bit_p (remove_pseudos, sregno)
6592 && ! REG_P (lra_reg_info[sregno].restore_rtx))
6594 /* reload pseudo <- invariant inheritance pseudo */
6595 start_sequence ();
6596 /* We can not just change the source. It might be
6597 an insn different from the move. */
6598 emit_insn (lra_reg_info[sregno].restore_rtx);
6599 rtx_insn *new_insns = get_insns ();
6600 end_sequence ();
6601 lra_assert (single_set (new_insns) != NULL
6602 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
6603 lra_process_new_insns (curr_insn, NULL, new_insns,
6604 "Changing reload<-invariant inheritance");
6605 delete_move_and_clobber (curr_insn, dregno);
6606 done_p = true;
6608 else if ((bitmap_bit_p (remove_pseudos, sregno)
6609 && (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
6610 || (bitmap_bit_p (remove_pseudos, dregno)
6611 && get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6612 && (get_regno (lra_reg_info[sregno].restore_rtx)
6613 == get_regno (lra_reg_info[dregno].restore_rtx)))))
6614 || (bitmap_bit_p (remove_pseudos, dregno)
6615 && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
6616 /* One of the following cases:
6617 original <- removed inheritance pseudo
6618 removed inherit pseudo <- another removed inherit pseudo
6619 removed inherit pseudo <- original pseudo
6621 removed_split_pseudo <- original_reg
6622 original_reg <- removed_split_pseudo */
6624 if (lra_dump_file != NULL)
6626 fprintf (lra_dump_file, " Removing %s:\n",
6627 bitmap_bit_p (&lra_split_regs, sregno)
6628 || bitmap_bit_p (&lra_split_regs, dregno)
6629 ? "split" : "inheritance");
6630 dump_insn_slim (lra_dump_file, curr_insn);
6632 delete_move_and_clobber (curr_insn, dregno);
6633 done_p = true;
6635 else if (bitmap_bit_p (remove_pseudos, sregno)
6636 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
6638 /* Search the following pattern:
6639 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6640 original_pseudo <- inherit_or_split_pseudo1
6641 where the 2nd insn is the current insn and
6642 inherit_or_split_pseudo2 is not removed. If it is found,
6643 change the current insn onto:
6644 original_pseudo <- inherit_or_split_pseudo2. */
6645 for (prev_insn = PREV_INSN (curr_insn);
6646 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
6647 prev_insn = PREV_INSN (prev_insn))
6649 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
6650 && (prev_set = single_set (prev_insn)) != NULL_RTX
6651 /* There should be no subregs in insn we are
6652 searching because only the original reg might
6653 be in subreg when we changed the mode of
6654 load/store for splitting. */
6655 && REG_P (SET_DEST (prev_set))
6656 && REG_P (SET_SRC (prev_set))
6657 && (int) REGNO (SET_DEST (prev_set)) == sregno
6658 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
6659 >= FIRST_PSEUDO_REGISTER)
6660 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
6662 /* As we consider chain of inheritance or
6663 splitting described in above comment we should
6664 check that sregno and prev_sregno were
6665 inheritance/split pseudos created from the
6666 same original regno. */
6667 (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6668 && (get_regno (lra_reg_info[sregno].restore_rtx)
6669 == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
6670 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
6672 lra_assert (GET_MODE (SET_SRC (prev_set))
6673 == GET_MODE (regno_reg_rtx[sregno]));
6674 if (GET_CODE (SET_SRC (set)) == SUBREG)
6675 SUBREG_REG (SET_SRC (set)) = SET_SRC (prev_set);
6676 else
6677 SET_SRC (set) = SET_SRC (prev_set);
6678 /* As we are finishing with processing the insn
6679 here, check the destination too as it might
6680 inheritance pseudo for another pseudo. */
6681 if (bitmap_bit_p (remove_pseudos, dregno)
6682 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
6683 && (restore_rtx
6684 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
6686 if (GET_CODE (SET_DEST (set)) == SUBREG)
6687 SUBREG_REG (SET_DEST (set)) = restore_rtx;
6688 else
6689 SET_DEST (set) = restore_rtx;
6691 lra_push_insn_and_update_insn_regno_info (curr_insn);
6692 lra_set_used_insn_alternative_by_uid
6693 (INSN_UID (curr_insn), -1);
6694 done_p = true;
6695 if (lra_dump_file != NULL)
6697 fprintf (lra_dump_file, " Change reload insn:\n");
6698 dump_insn_slim (lra_dump_file, curr_insn);
6703 if (! done_p)
6705 struct lra_insn_reg *reg;
6706 bool restored_regs_p = false;
6707 bool kept_regs_p = false;
6709 curr_id = lra_get_insn_recog_data (curr_insn);
6710 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6712 regno = reg->regno;
6713 restore_rtx = lra_reg_info[regno].restore_rtx;
6714 if (restore_rtx != NULL_RTX)
6716 if (change_p && bitmap_bit_p (remove_pseudos, regno))
6718 lra_substitute_pseudo_within_insn
6719 (curr_insn, regno, restore_rtx, false);
6720 restored_regs_p = true;
6722 else
6723 kept_regs_p = true;
6726 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
6728 /* The instruction has changed since the previous
6729 constraints pass. */
6730 lra_push_insn_and_update_insn_regno_info (curr_insn);
6731 lra_set_used_insn_alternative_by_uid
6732 (INSN_UID (curr_insn), -1);
6734 else if (restored_regs_p)
6735 /* The instruction has been restored to the form that
6736 it had during the previous constraints pass. */
6737 lra_update_insn_regno_info (curr_insn);
6738 if (restored_regs_p && lra_dump_file != NULL)
6740 fprintf (lra_dump_file, " Insn after restoring regs:\n");
6741 dump_insn_slim (lra_dump_file, curr_insn);
6746 return change_p;
6749 /* If optional reload pseudos failed to get a hard register or was not
6750 inherited, it is better to remove optional reloads. We do this
6751 transformation after undoing inheritance to figure out necessity to
6752 remove optional reloads easier. Return true if we do any
6753 change. */
6754 static bool
6755 undo_optional_reloads (void)
6757 bool change_p, keep_p;
6758 unsigned int regno, uid;
6759 bitmap_iterator bi, bi2;
6760 rtx_insn *insn;
6761 rtx set, src, dest;
6762 bitmap_head removed_optional_reload_pseudos, insn_bitmap;
6764 bitmap_initialize (&removed_optional_reload_pseudos, &reg_obstack);
6765 bitmap_copy (&removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
6766 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6768 keep_p = false;
6769 /* Keep optional reloads from previous subpasses. */
6770 if (lra_reg_info[regno].restore_rtx == NULL_RTX
6771 /* If the original pseudo changed its allocation, just
6772 removing the optional pseudo is dangerous as the original
6773 pseudo will have longer live range. */
6774 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
6775 keep_p = true;
6776 else if (reg_renumber[regno] >= 0)
6777 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
6779 insn = lra_insn_recog_data[uid]->insn;
6780 if ((set = single_set (insn)) == NULL_RTX)
6781 continue;
6782 src = SET_SRC (set);
6783 dest = SET_DEST (set);
6784 if (! REG_P (src) || ! REG_P (dest))
6785 continue;
6786 if (REGNO (dest) == regno
6787 /* Ignore insn for optional reloads itself. */
6788 && REGNO (lra_reg_info[regno].restore_rtx) != REGNO (src)
6789 /* Check only inheritance on last inheritance pass. */
6790 && (int) REGNO (src) >= new_regno_start
6791 /* Check that the optional reload was inherited. */
6792 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
6794 keep_p = true;
6795 break;
6798 if (keep_p)
6800 bitmap_clear_bit (&removed_optional_reload_pseudos, regno);
6801 if (lra_dump_file != NULL)
6802 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
6805 change_p = ! bitmap_empty_p (&removed_optional_reload_pseudos);
6806 bitmap_initialize (&insn_bitmap, &reg_obstack);
6807 EXECUTE_IF_SET_IN_BITMAP (&removed_optional_reload_pseudos, 0, regno, bi)
6809 if (lra_dump_file != NULL)
6810 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
6811 bitmap_copy (&insn_bitmap, &lra_reg_info[regno].insn_bitmap);
6812 EXECUTE_IF_SET_IN_BITMAP (&insn_bitmap, 0, uid, bi2)
6814 insn = lra_insn_recog_data[uid]->insn;
6815 if ((set = single_set (insn)) != NULL_RTX)
6817 src = SET_SRC (set);
6818 dest = SET_DEST (set);
6819 if (REG_P (src) && REG_P (dest)
6820 && ((REGNO (src) == regno
6821 && (REGNO (lra_reg_info[regno].restore_rtx)
6822 == REGNO (dest)))
6823 || (REGNO (dest) == regno
6824 && (REGNO (lra_reg_info[regno].restore_rtx)
6825 == REGNO (src)))))
6827 if (lra_dump_file != NULL)
6829 fprintf (lra_dump_file, " Deleting move %u\n",
6830 INSN_UID (insn));
6831 dump_insn_slim (lra_dump_file, insn);
6833 delete_move_and_clobber (insn, REGNO (dest));
6834 continue;
6836 /* We should not worry about generation memory-memory
6837 moves here as if the corresponding inheritance did
6838 not work (inheritance pseudo did not get a hard reg),
6839 we remove the inheritance pseudo and the optional
6840 reload. */
6842 lra_substitute_pseudo_within_insn
6843 (insn, regno, lra_reg_info[regno].restore_rtx, false);
6844 lra_update_insn_regno_info (insn);
6845 if (lra_dump_file != NULL)
6847 fprintf (lra_dump_file,
6848 " Restoring original insn:\n");
6849 dump_insn_slim (lra_dump_file, insn);
6853 /* Clear restore_regnos. */
6854 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6855 lra_reg_info[regno].restore_rtx = NULL_RTX;
6856 bitmap_clear (&insn_bitmap);
6857 bitmap_clear (&removed_optional_reload_pseudos);
6858 return change_p;
6861 /* Entry function for undoing inheritance/split transformation. Return true
6862 if we did any RTL change in this pass. */
6863 bool
6864 lra_undo_inheritance (void)
6866 unsigned int regno;
6867 int hard_regno;
6868 int n_all_inherit, n_inherit, n_all_split, n_split;
6869 rtx restore_rtx;
6870 bitmap_head remove_pseudos;
6871 bitmap_iterator bi;
6872 bool change_p;
6874 lra_undo_inheritance_iter++;
6875 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6876 return false;
6877 if (lra_dump_file != NULL)
6878 fprintf (lra_dump_file,
6879 "\n********** Undoing inheritance #%d: **********\n\n",
6880 lra_undo_inheritance_iter);
6881 bitmap_initialize (&remove_pseudos, &reg_obstack);
6882 n_inherit = n_all_inherit = 0;
6883 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6884 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
6886 n_all_inherit++;
6887 if (reg_renumber[regno] < 0
6888 /* If the original pseudo changed its allocation, just
6889 removing inheritance is dangerous as for changing
6890 allocation we used shorter live-ranges. */
6891 && (! REG_P (lra_reg_info[regno].restore_rtx)
6892 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
6893 bitmap_set_bit (&remove_pseudos, regno);
6894 else
6895 n_inherit++;
6897 if (lra_dump_file != NULL && n_all_inherit != 0)
6898 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
6899 n_inherit, n_all_inherit,
6900 (double) n_inherit / n_all_inherit * 100);
6901 n_split = n_all_split = 0;
6902 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6903 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
6905 int restore_regno = REGNO (restore_rtx);
6907 n_all_split++;
6908 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
6909 ? reg_renumber[restore_regno] : restore_regno);
6910 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
6911 bitmap_set_bit (&remove_pseudos, regno);
6912 else
6914 n_split++;
6915 if (lra_dump_file != NULL)
6916 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
6917 regno, restore_regno);
6920 if (lra_dump_file != NULL && n_all_split != 0)
6921 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
6922 n_split, n_all_split,
6923 (double) n_split / n_all_split * 100);
6924 change_p = remove_inheritance_pseudos (&remove_pseudos);
6925 bitmap_clear (&remove_pseudos);
6926 /* Clear restore_regnos. */
6927 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6928 lra_reg_info[regno].restore_rtx = NULL_RTX;
6929 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6930 lra_reg_info[regno].restore_rtx = NULL_RTX;
6931 change_p = undo_optional_reloads () || change_p;
6932 return change_p;