gcc/ChangeLog ---------------------------------------------------------
[official-gcc.git] / gcc / emit-rtl.c
blob9a5db43bc8efec769e98cf8475189c2db3c18b1e
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "toplev.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "real.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
61 /* Commonly used modes. */
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
72 static GTY(()) int label_num = 1;
74 /* Nonzero means do not generate NOTEs for source line numbers. */
76 static int no_line_numbers;
78 /* Commonly used rtx's, so that we only need space for one copy.
79 These are initialized once for the entire compilation.
80 All of these are unique; no other rtx-object will be equal to any
81 of these. */
83 rtx global_rtl[GR_MAX];
85 /* Commonly used RTL for hard registers. These objects are not necessarily
86 unique, so we allocate them separately from global_rtl. They are
87 initialized once per compilation unit, then copied into regno_reg_rtx
88 at the beginning of each function. */
89 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
91 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
92 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
93 record a copy of const[012]_rtx. */
95 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
97 rtx const_true_rtx;
99 REAL_VALUE_TYPE dconst0;
100 REAL_VALUE_TYPE dconst1;
101 REAL_VALUE_TYPE dconst2;
102 REAL_VALUE_TYPE dconst3;
103 REAL_VALUE_TYPE dconst10;
104 REAL_VALUE_TYPE dconstm1;
105 REAL_VALUE_TYPE dconstm2;
106 REAL_VALUE_TYPE dconsthalf;
107 REAL_VALUE_TYPE dconstthird;
108 REAL_VALUE_TYPE dconstsqrt2;
109 REAL_VALUE_TYPE dconste;
111 /* All references to the following fixed hard registers go through
112 these unique rtl objects. On machines where the frame-pointer and
113 arg-pointer are the same register, they use the same unique object.
115 After register allocation, other rtl objects which used to be pseudo-regs
116 may be clobbered to refer to the frame-pointer register.
117 But references that were originally to the frame-pointer can be
118 distinguished from the others because they contain frame_pointer_rtx.
120 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
121 tricky: until register elimination has taken place hard_frame_pointer_rtx
122 should be used if it is being set, and frame_pointer_rtx otherwise. After
123 register elimination hard_frame_pointer_rtx should always be used.
124 On machines where the two registers are same (most) then these are the
125 same.
127 In an inline procedure, the stack and frame pointer rtxs may not be
128 used for anything else. */
129 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
130 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
131 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
133 /* This is used to implement __builtin_return_address for some machines.
134 See for instance the MIPS port. */
135 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
137 /* We make one copy of (const_int C) where C is in
138 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
139 to save space during the compilation and simplify comparisons of
140 integers. */
142 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
144 /* A hash table storing CONST_INTs whose absolute value is greater
145 than MAX_SAVED_CONST_INT. */
147 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
148 htab_t const_int_htab;
150 /* A hash table storing memory attribute structures. */
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
152 htab_t mem_attrs_htab;
154 /* A hash table storing register attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
156 htab_t reg_attrs_htab;
158 /* A hash table storing all CONST_DOUBLEs. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
160 htab_t const_double_htab;
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_location (cfun->emit->x_last_location)
166 #define first_label_num (cfun->emit->x_first_label_num)
168 static rtx make_call_insn_raw (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
193 /* Returns a hash code for X (which is a really a CONST_INT). */
195 static hashval_t
196 const_int_htab_hash (const void *x)
198 return (hashval_t) INTVAL ((rtx) x);
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
205 static int
206 const_int_htab_eq (const void *x, const void *y)
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
215 rtx value = (rtx) x;
216 hashval_t h;
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
226 return h;
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
234 rtx a = (rtx)x, b = (rtx)y;
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
251 mem_attrs *p = (mem_attrs *) x;
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) iterative_hash_expr (p->expr, 0));
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
269 return (p->alias == q->alias && p->offset == q->offset
270 && p->size == q->size && p->align == q->align
271 && (p->expr == q->expr
272 || (p->expr != NULL_TREE && q->expr != NULL_TREE
273 && operand_equal_p (p->expr, q->expr, 0))));
276 /* Allocate a new mem_attrs structure and insert it into the hash table if
277 one identical to it is not already in the table. We are doing this for
278 MEM of mode MODE. */
280 static mem_attrs *
281 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
282 unsigned int align, enum machine_mode mode)
284 mem_attrs attrs;
285 void **slot;
287 /* If everything is the default, we can just return zero.
288 This must match what the corresponding MEM_* macros return when the
289 field is not present. */
290 if (alias == 0 && expr == 0 && offset == 0
291 && (size == 0
292 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
293 && (STRICT_ALIGNMENT && mode != BLKmode
294 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
295 return 0;
297 attrs.alias = alias;
298 attrs.expr = expr;
299 attrs.offset = offset;
300 attrs.size = size;
301 attrs.align = align;
303 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
304 if (*slot == 0)
306 *slot = ggc_alloc (sizeof (mem_attrs));
307 memcpy (*slot, &attrs, sizeof (mem_attrs));
310 return *slot;
313 /* Returns a hash code for X (which is a really a reg_attrs *). */
315 static hashval_t
316 reg_attrs_htab_hash (const void *x)
318 reg_attrs *p = (reg_attrs *) x;
320 return ((p->offset * 1000) ^ (long) p->decl);
323 /* Returns nonzero if the value represented by X (which is really a
324 reg_attrs *) is the same as that given by Y (which is also really a
325 reg_attrs *). */
327 static int
328 reg_attrs_htab_eq (const void *x, const void *y)
330 reg_attrs *p = (reg_attrs *) x;
331 reg_attrs *q = (reg_attrs *) y;
333 return (p->decl == q->decl && p->offset == q->offset);
335 /* Allocate a new reg_attrs structure and insert it into the hash table if
336 one identical to it is not already in the table. We are doing this for
337 MEM of mode MODE. */
339 static reg_attrs *
340 get_reg_attrs (tree decl, int offset)
342 reg_attrs attrs;
343 void **slot;
345 /* If everything is the default, we can just return zero. */
346 if (decl == 0 && offset == 0)
347 return 0;
349 attrs.decl = decl;
350 attrs.offset = offset;
352 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
353 if (*slot == 0)
355 *slot = ggc_alloc (sizeof (reg_attrs));
356 memcpy (*slot, &attrs, sizeof (reg_attrs));
359 return *slot;
362 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
363 don't attempt to share with the various global pieces of rtl (such as
364 frame_pointer_rtx). */
367 gen_raw_REG (enum machine_mode mode, int regno)
369 rtx x = gen_rtx_raw_REG (mode, regno);
370 ORIGINAL_REGNO (x) = regno;
371 return x;
374 /* There are some RTL codes that require special attention; the generation
375 functions do the raw handling. If you add to this list, modify
376 special_rtx in gengenrtl.c as well. */
379 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
381 void **slot;
383 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
384 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
386 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
387 if (const_true_rtx && arg == STORE_FLAG_VALUE)
388 return const_true_rtx;
389 #endif
391 /* Look up the CONST_INT in the hash table. */
392 slot = htab_find_slot_with_hash (const_int_htab, &arg,
393 (hashval_t) arg, INSERT);
394 if (*slot == 0)
395 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
397 return (rtx) *slot;
401 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
403 return GEN_INT (trunc_int_for_mode (c, mode));
406 /* CONST_DOUBLEs might be created from pairs of integers, or from
407 REAL_VALUE_TYPEs. Also, their length is known only at run time,
408 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
410 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
411 hash table. If so, return its counterpart; otherwise add it
412 to the hash table and return it. */
413 static rtx
414 lookup_const_double (rtx real)
416 void **slot = htab_find_slot (const_double_htab, real, INSERT);
417 if (*slot == 0)
418 *slot = real;
420 return (rtx) *slot;
423 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
424 VALUE in mode MODE. */
426 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
428 rtx real = rtx_alloc (CONST_DOUBLE);
429 PUT_MODE (real, mode);
431 real->u.rv = value;
433 return lookup_const_double (real);
436 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
437 of ints: I0 is the low-order word and I1 is the high-order word.
438 Do not use this routine for non-integer modes; convert to
439 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
442 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
444 rtx value;
445 unsigned int i;
447 /* There are the following cases (note that there are no modes with
448 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
450 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
451 gen_int_mode.
452 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
453 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
454 from copies of the sign bit, and sign of i0 and i1 are the same), then
455 we return a CONST_INT for i0.
456 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
457 if (mode != VOIDmode)
459 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
460 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
463 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
465 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
466 return gen_int_mode (i0, mode);
468 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
471 /* If this integer fits in one word, return a CONST_INT. */
472 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
473 return GEN_INT (i0);
475 /* We use VOIDmode for integers. */
476 value = rtx_alloc (CONST_DOUBLE);
477 PUT_MODE (value, VOIDmode);
479 CONST_DOUBLE_LOW (value) = i0;
480 CONST_DOUBLE_HIGH (value) = i1;
482 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
483 XWINT (value, i) = 0;
485 return lookup_const_double (value);
489 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
491 /* In case the MD file explicitly references the frame pointer, have
492 all such references point to the same frame pointer. This is
493 used during frame pointer elimination to distinguish the explicit
494 references to these registers from pseudos that happened to be
495 assigned to them.
497 If we have eliminated the frame pointer or arg pointer, we will
498 be using it as a normal register, for example as a spill
499 register. In such cases, we might be accessing it in a mode that
500 is not Pmode and therefore cannot use the pre-allocated rtx.
502 Also don't do this when we are making new REGs in reload, since
503 we don't want to get confused with the real pointers. */
505 if (mode == Pmode && !reload_in_progress)
507 if (regno == FRAME_POINTER_REGNUM
508 && (!reload_completed || frame_pointer_needed))
509 return frame_pointer_rtx;
510 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
511 if (regno == HARD_FRAME_POINTER_REGNUM
512 && (!reload_completed || frame_pointer_needed))
513 return hard_frame_pointer_rtx;
514 #endif
515 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
516 if (regno == ARG_POINTER_REGNUM)
517 return arg_pointer_rtx;
518 #endif
519 #ifdef RETURN_ADDRESS_POINTER_REGNUM
520 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
521 return return_address_pointer_rtx;
522 #endif
523 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
524 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
525 return pic_offset_table_rtx;
526 if (regno == STACK_POINTER_REGNUM)
527 return stack_pointer_rtx;
530 #if 0
531 /* If the per-function register table has been set up, try to re-use
532 an existing entry in that table to avoid useless generation of RTL.
534 This code is disabled for now until we can fix the various backends
535 which depend on having non-shared hard registers in some cases. Long
536 term we want to re-enable this code as it can significantly cut down
537 on the amount of useless RTL that gets generated.
539 We'll also need to fix some code that runs after reload that wants to
540 set ORIGINAL_REGNO. */
542 if (cfun
543 && cfun->emit
544 && regno_reg_rtx
545 && regno < FIRST_PSEUDO_REGISTER
546 && reg_raw_mode[regno] == mode)
547 return regno_reg_rtx[regno];
548 #endif
550 return gen_raw_REG (mode, regno);
554 gen_rtx_MEM (enum machine_mode mode, rtx addr)
556 rtx rt = gen_rtx_raw_MEM (mode, addr);
558 /* This field is not cleared by the mere allocation of the rtx, so
559 we clear it here. */
560 MEM_ATTRS (rt) = 0;
562 return rt;
565 /* Generate a memory referring to non-trapping constant memory. */
568 gen_const_mem (enum machine_mode mode, rtx addr)
570 rtx mem = gen_rtx_MEM (mode, addr);
571 MEM_READONLY_P (mem) = 1;
572 MEM_NOTRAP_P (mem) = 1;
573 return mem;
576 /* Generate a MEM referring to fixed portions of the frame, e.g., register
577 save areas. */
580 gen_frame_mem (enum machine_mode mode, rtx addr)
582 rtx mem = gen_rtx_MEM (mode, addr);
583 MEM_NOTRAP_P (mem) = 1;
584 set_mem_alias_set (mem, get_frame_alias_set ());
585 return mem;
588 /* Generate a MEM referring to a temporary use of the stack, not part
589 of the fixed stack frame. For example, something which is pushed
590 by a target splitter. */
592 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
594 rtx mem = gen_rtx_MEM (mode, addr);
595 MEM_NOTRAP_P (mem) = 1;
596 if (!current_function_calls_alloca)
597 set_mem_alias_set (mem, get_frame_alias_set ());
598 return mem;
601 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
602 this construct would be valid, and false otherwise. */
604 bool
605 validate_subreg (enum machine_mode omode, enum machine_mode imode,
606 rtx reg, unsigned int offset)
608 unsigned int isize = GET_MODE_SIZE (imode);
609 unsigned int osize = GET_MODE_SIZE (omode);
611 /* All subregs must be aligned. */
612 if (offset % osize != 0)
613 return false;
615 /* The subreg offset cannot be outside the inner object. */
616 if (offset >= isize)
617 return false;
619 /* ??? This should not be here. Temporarily continue to allow word_mode
620 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
621 Generally, backends are doing something sketchy but it'll take time to
622 fix them all. */
623 if (omode == word_mode)
625 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
626 is the culprit here, and not the backends. */
627 else if (osize >= UNITS_PER_WORD && isize >= osize)
629 /* Allow component subregs of complex and vector. Though given the below
630 extraction rules, it's not always clear what that means. */
631 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
632 && GET_MODE_INNER (imode) == omode)
634 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
635 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
636 represent this. It's questionable if this ought to be represented at
637 all -- why can't this all be hidden in post-reload splitters that make
638 arbitrarily mode changes to the registers themselves. */
639 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
641 /* Subregs involving floating point modes are not allowed to
642 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
643 (subreg:SI (reg:DF) 0) isn't. */
644 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
646 if (isize != osize)
647 return false;
650 /* Paradoxical subregs must have offset zero. */
651 if (osize > isize)
652 return offset == 0;
654 /* This is a normal subreg. Verify that the offset is representable. */
656 /* For hard registers, we already have most of these rules collected in
657 subreg_offset_representable_p. */
658 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
660 unsigned int regno = REGNO (reg);
662 #ifdef CANNOT_CHANGE_MODE_CLASS
663 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
664 && GET_MODE_INNER (imode) == omode)
666 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
667 return false;
668 #endif
670 return subreg_offset_representable_p (regno, imode, offset, omode);
673 /* For pseudo registers, we want most of the same checks. Namely:
674 If the register no larger than a word, the subreg must be lowpart.
675 If the register is larger than a word, the subreg must be the lowpart
676 of a subword. A subreg does *not* perform arbitrary bit extraction.
677 Given that we've already checked mode/offset alignment, we only have
678 to check subword subregs here. */
679 if (osize < UNITS_PER_WORD)
681 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
682 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
683 if (offset % UNITS_PER_WORD != low_off)
684 return false;
686 return true;
690 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
692 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
693 return gen_rtx_raw_SUBREG (mode, reg, offset);
696 /* Generate a SUBREG representing the least-significant part of REG if MODE
697 is smaller than mode of REG, otherwise paradoxical SUBREG. */
700 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
702 enum machine_mode inmode;
704 inmode = GET_MODE (reg);
705 if (inmode == VOIDmode)
706 inmode = mode;
707 return gen_rtx_SUBREG (mode, reg,
708 subreg_lowpart_offset (mode, inmode));
711 /* gen_rtvec (n, [rt1, ..., rtn])
713 ** This routine creates an rtvec and stores within it the
714 ** pointers to rtx's which are its arguments.
717 /*VARARGS1*/
718 rtvec
719 gen_rtvec (int n, ...)
721 int i, save_n;
722 rtx *vector;
723 va_list p;
725 va_start (p, n);
727 if (n == 0)
728 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
730 vector = alloca (n * sizeof (rtx));
732 for (i = 0; i < n; i++)
733 vector[i] = va_arg (p, rtx);
735 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
736 save_n = n;
737 va_end (p);
739 return gen_rtvec_v (save_n, vector);
742 rtvec
743 gen_rtvec_v (int n, rtx *argp)
745 int i;
746 rtvec rt_val;
748 if (n == 0)
749 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
751 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
753 for (i = 0; i < n; i++)
754 rt_val->elem[i] = *argp++;
756 return rt_val;
759 /* Generate a REG rtx for a new pseudo register of mode MODE.
760 This pseudo is assigned the next sequential register number. */
763 gen_reg_rtx (enum machine_mode mode)
765 struct function *f = cfun;
766 rtx val;
768 /* Don't let anything called after initial flow analysis create new
769 registers. */
770 gcc_assert (!no_new_pseudos);
772 if (generating_concat_p
773 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
774 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
776 /* For complex modes, don't make a single pseudo.
777 Instead, make a CONCAT of two pseudos.
778 This allows noncontiguous allocation of the real and imaginary parts,
779 which makes much better code. Besides, allocating DCmode
780 pseudos overstrains reload on some machines like the 386. */
781 rtx realpart, imagpart;
782 enum machine_mode partmode = GET_MODE_INNER (mode);
784 realpart = gen_reg_rtx (partmode);
785 imagpart = gen_reg_rtx (partmode);
786 return gen_rtx_CONCAT (mode, realpart, imagpart);
789 /* Make sure regno_pointer_align, and regno_reg_rtx are large
790 enough to have an element for this pseudo reg number. */
792 if (reg_rtx_no == f->emit->regno_pointer_align_length)
794 int old_size = f->emit->regno_pointer_align_length;
795 char *new;
796 rtx *new1;
798 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
799 memset (new + old_size, 0, old_size);
800 f->emit->regno_pointer_align = (unsigned char *) new;
802 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
803 old_size * 2 * sizeof (rtx));
804 memset (new1 + old_size, 0, old_size * sizeof (rtx));
805 regno_reg_rtx = new1;
807 f->emit->regno_pointer_align_length = old_size * 2;
810 val = gen_raw_REG (mode, reg_rtx_no);
811 regno_reg_rtx[reg_rtx_no++] = val;
812 return val;
815 /* Update NEW with the same attributes as REG, but offsetted by OFFSET.
816 Do the big endian correction if needed. */
818 static void
819 update_reg_offset (rtx new, rtx reg, int offset)
821 tree decl;
822 HOST_WIDE_INT var_size;
824 /* PR middle-end/14084
825 The problem appears when a variable is stored in a larger register
826 and later it is used in the original mode or some mode in between
827 or some part of variable is accessed.
829 On little endian machines there is no problem because
830 the REG_OFFSET of the start of the variable is the same when
831 accessed in any mode (it is 0).
833 However, this is not true on big endian machines.
834 The offset of the start of the variable is different when accessed
835 in different modes.
836 When we are taking a part of the REG we have to change the OFFSET
837 from offset WRT size of mode of REG to offset WRT size of variable.
839 If we would not do the big endian correction the resulting REG_OFFSET
840 would be larger than the size of the DECL.
842 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
844 REG.mode MODE DECL size old offset new offset description
845 DI SI 4 4 0 int32 in SImode
846 DI SI 1 4 0 char in SImode
847 DI QI 1 7 0 char in QImode
848 DI QI 4 5 1 1st element in QImode
849 of char[4]
850 DI HI 4 6 2 1st element in HImode
851 of int16[2]
853 If the size of DECL is equal or greater than the size of REG
854 we can't do this correction because the register holds the
855 whole variable or a part of the variable and thus the REG_OFFSET
856 is already correct. */
858 decl = REG_EXPR (reg);
859 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
860 && decl != NULL
861 && offset > 0
862 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (GET_MODE (new))
863 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
864 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
866 int offset_le;
868 /* Convert machine endian to little endian WRT size of mode of REG. */
869 if (WORDS_BIG_ENDIAN)
870 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
871 / UNITS_PER_WORD) * UNITS_PER_WORD;
872 else
873 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
875 if (BYTES_BIG_ENDIAN)
876 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
877 % UNITS_PER_WORD);
878 else
879 offset_le += offset % UNITS_PER_WORD;
881 if (offset_le >= var_size)
883 /* MODE is wider than the variable so the new reg will cover
884 the whole variable so the resulting OFFSET should be 0. */
885 offset = 0;
887 else
889 /* Convert little endian to machine endian WRT size of variable. */
890 if (WORDS_BIG_ENDIAN)
891 offset = ((var_size - 1 - offset_le)
892 / UNITS_PER_WORD) * UNITS_PER_WORD;
893 else
894 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
896 if (BYTES_BIG_ENDIAN)
897 offset += ((var_size - 1 - offset_le)
898 % UNITS_PER_WORD);
899 else
900 offset += offset_le % UNITS_PER_WORD;
904 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
905 REG_OFFSET (reg) + offset);
908 /* Generate a register with same attributes as REG, but offsetted by
909 OFFSET. */
912 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
913 int offset)
915 rtx new = gen_rtx_REG (mode, regno);
917 update_reg_offset (new, reg, offset);
918 return new;
921 /* Generate a new pseudo-register with the same attributes as REG, but
922 offsetted by OFFSET. */
925 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
927 rtx new = gen_reg_rtx (mode);
929 update_reg_offset (new, reg, offset);
930 return new;
933 /* Set the decl for MEM to DECL. */
935 void
936 set_reg_attrs_from_mem (rtx reg, rtx mem)
938 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
939 REG_ATTRS (reg)
940 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
943 /* Set the register attributes for registers contained in PARM_RTX.
944 Use needed values from memory attributes of MEM. */
946 void
947 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
949 if (REG_P (parm_rtx))
950 set_reg_attrs_from_mem (parm_rtx, mem);
951 else if (GET_CODE (parm_rtx) == PARALLEL)
953 /* Check for a NULL entry in the first slot, used to indicate that the
954 parameter goes both on the stack and in registers. */
955 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
956 for (; i < XVECLEN (parm_rtx, 0); i++)
958 rtx x = XVECEXP (parm_rtx, 0, i);
959 if (REG_P (XEXP (x, 0)))
960 REG_ATTRS (XEXP (x, 0))
961 = get_reg_attrs (MEM_EXPR (mem),
962 INTVAL (XEXP (x, 1)));
967 /* Assign the RTX X to declaration T. */
968 void
969 set_decl_rtl (tree t, rtx x)
971 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
973 if (!x)
974 return;
975 /* For register, we maintain the reverse information too. */
976 if (REG_P (x))
977 REG_ATTRS (x) = get_reg_attrs (t, 0);
978 else if (GET_CODE (x) == SUBREG)
979 REG_ATTRS (SUBREG_REG (x))
980 = get_reg_attrs (t, -SUBREG_BYTE (x));
981 if (GET_CODE (x) == CONCAT)
983 if (REG_P (XEXP (x, 0)))
984 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
985 if (REG_P (XEXP (x, 1)))
986 REG_ATTRS (XEXP (x, 1))
987 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
989 if (GET_CODE (x) == PARALLEL)
991 int i;
992 for (i = 0; i < XVECLEN (x, 0); i++)
994 rtx y = XVECEXP (x, 0, i);
995 if (REG_P (XEXP (y, 0)))
996 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1001 /* Assign the RTX X to parameter declaration T. */
1002 void
1003 set_decl_incoming_rtl (tree t, rtx x)
1005 DECL_INCOMING_RTL (t) = x;
1007 if (!x)
1008 return;
1009 /* For register, we maintain the reverse information too. */
1010 if (REG_P (x))
1011 REG_ATTRS (x) = get_reg_attrs (t, 0);
1012 else if (GET_CODE (x) == SUBREG)
1013 REG_ATTRS (SUBREG_REG (x))
1014 = get_reg_attrs (t, -SUBREG_BYTE (x));
1015 if (GET_CODE (x) == CONCAT)
1017 if (REG_P (XEXP (x, 0)))
1018 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1019 if (REG_P (XEXP (x, 1)))
1020 REG_ATTRS (XEXP (x, 1))
1021 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1023 if (GET_CODE (x) == PARALLEL)
1025 int i, start;
1027 /* Check for a NULL entry, used to indicate that the parameter goes
1028 both on the stack and in registers. */
1029 if (XEXP (XVECEXP (x, 0, 0), 0))
1030 start = 0;
1031 else
1032 start = 1;
1034 for (i = start; i < XVECLEN (x, 0); i++)
1036 rtx y = XVECEXP (x, 0, i);
1037 if (REG_P (XEXP (y, 0)))
1038 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1043 /* Identify REG (which may be a CONCAT) as a user register. */
1045 void
1046 mark_user_reg (rtx reg)
1048 if (GET_CODE (reg) == CONCAT)
1050 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1051 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1053 else
1055 gcc_assert (REG_P (reg));
1056 REG_USERVAR_P (reg) = 1;
1060 /* Identify REG as a probable pointer register and show its alignment
1061 as ALIGN, if nonzero. */
1063 void
1064 mark_reg_pointer (rtx reg, int align)
1066 if (! REG_POINTER (reg))
1068 REG_POINTER (reg) = 1;
1070 if (align)
1071 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1073 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1074 /* We can no-longer be sure just how aligned this pointer is. */
1075 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1078 /* Return 1 plus largest pseudo reg number used in the current function. */
1081 max_reg_num (void)
1083 return reg_rtx_no;
1086 /* Return 1 + the largest label number used so far in the current function. */
1089 max_label_num (void)
1091 return label_num;
1094 /* Return first label number used in this function (if any were used). */
1097 get_first_label_num (void)
1099 return first_label_num;
1102 /* If the rtx for label was created during the expansion of a nested
1103 function, then first_label_num won't include this label number.
1104 Fix this now so that array indicies work later. */
1106 void
1107 maybe_set_first_label_num (rtx x)
1109 if (CODE_LABEL_NUMBER (x) < first_label_num)
1110 first_label_num = CODE_LABEL_NUMBER (x);
1113 /* Return a value representing some low-order bits of X, where the number
1114 of low-order bits is given by MODE. Note that no conversion is done
1115 between floating-point and fixed-point values, rather, the bit
1116 representation is returned.
1118 This function handles the cases in common between gen_lowpart, below,
1119 and two variants in cse.c and combine.c. These are the cases that can
1120 be safely handled at all points in the compilation.
1122 If this is not a case we can handle, return 0. */
1125 gen_lowpart_common (enum machine_mode mode, rtx x)
1127 int msize = GET_MODE_SIZE (mode);
1128 int xsize;
1129 int offset = 0;
1130 enum machine_mode innermode;
1132 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1133 so we have to make one up. Yuk. */
1134 innermode = GET_MODE (x);
1135 if (GET_CODE (x) == CONST_INT
1136 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1137 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1138 else if (innermode == VOIDmode)
1139 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1141 xsize = GET_MODE_SIZE (innermode);
1143 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1145 if (innermode == mode)
1146 return x;
1148 /* MODE must occupy no more words than the mode of X. */
1149 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1150 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1151 return 0;
1153 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1154 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1155 return 0;
1157 offset = subreg_lowpart_offset (mode, innermode);
1159 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1160 && (GET_MODE_CLASS (mode) == MODE_INT
1161 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1163 /* If we are getting the low-order part of something that has been
1164 sign- or zero-extended, we can either just use the object being
1165 extended or make a narrower extension. If we want an even smaller
1166 piece than the size of the object being extended, call ourselves
1167 recursively.
1169 This case is used mostly by combine and cse. */
1171 if (GET_MODE (XEXP (x, 0)) == mode)
1172 return XEXP (x, 0);
1173 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1174 return gen_lowpart_common (mode, XEXP (x, 0));
1175 else if (msize < xsize)
1176 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1178 else if (GET_CODE (x) == SUBREG || REG_P (x)
1179 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1180 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1181 return simplify_gen_subreg (mode, x, innermode, offset);
1183 /* Otherwise, we can't do this. */
1184 return 0;
1188 gen_highpart (enum machine_mode mode, rtx x)
1190 unsigned int msize = GET_MODE_SIZE (mode);
1191 rtx result;
1193 /* This case loses if X is a subreg. To catch bugs early,
1194 complain if an invalid MODE is used even in other cases. */
1195 gcc_assert (msize <= UNITS_PER_WORD
1196 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1198 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1199 subreg_highpart_offset (mode, GET_MODE (x)));
1200 gcc_assert (result);
1202 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1203 the target if we have a MEM. gen_highpart must return a valid operand,
1204 emitting code if necessary to do so. */
1205 if (MEM_P (result))
1207 result = validize_mem (result);
1208 gcc_assert (result);
1211 return result;
1214 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1215 be VOIDmode constant. */
1217 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1219 if (GET_MODE (exp) != VOIDmode)
1221 gcc_assert (GET_MODE (exp) == innermode);
1222 return gen_highpart (outermode, exp);
1224 return simplify_gen_subreg (outermode, exp, innermode,
1225 subreg_highpart_offset (outermode, innermode));
1228 /* Return offset in bytes to get OUTERMODE low part
1229 of the value in mode INNERMODE stored in memory in target format. */
1231 unsigned int
1232 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1234 unsigned int offset = 0;
1235 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1237 if (difference > 0)
1239 if (WORDS_BIG_ENDIAN)
1240 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1241 if (BYTES_BIG_ENDIAN)
1242 offset += difference % UNITS_PER_WORD;
1245 return offset;
1248 /* Return offset in bytes to get OUTERMODE high part
1249 of the value in mode INNERMODE stored in memory in target format. */
1250 unsigned int
1251 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1253 unsigned int offset = 0;
1254 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1256 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1258 if (difference > 0)
1260 if (! WORDS_BIG_ENDIAN)
1261 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1262 if (! BYTES_BIG_ENDIAN)
1263 offset += difference % UNITS_PER_WORD;
1266 return offset;
1269 /* Return 1 iff X, assumed to be a SUBREG,
1270 refers to the least significant part of its containing reg.
1271 If X is not a SUBREG, always return 1 (it is its own low part!). */
1274 subreg_lowpart_p (rtx x)
1276 if (GET_CODE (x) != SUBREG)
1277 return 1;
1278 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1279 return 0;
1281 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1282 == SUBREG_BYTE (x));
1285 /* Return subword OFFSET of operand OP.
1286 The word number, OFFSET, is interpreted as the word number starting
1287 at the low-order address. OFFSET 0 is the low-order word if not
1288 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1290 If we cannot extract the required word, we return zero. Otherwise,
1291 an rtx corresponding to the requested word will be returned.
1293 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1294 reload has completed, a valid address will always be returned. After
1295 reload, if a valid address cannot be returned, we return zero.
1297 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1298 it is the responsibility of the caller.
1300 MODE is the mode of OP in case it is a CONST_INT.
1302 ??? This is still rather broken for some cases. The problem for the
1303 moment is that all callers of this thing provide no 'goal mode' to
1304 tell us to work with. This exists because all callers were written
1305 in a word based SUBREG world.
1306 Now use of this function can be deprecated by simplify_subreg in most
1307 cases.
1311 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1313 if (mode == VOIDmode)
1314 mode = GET_MODE (op);
1316 gcc_assert (mode != VOIDmode);
1318 /* If OP is narrower than a word, fail. */
1319 if (mode != BLKmode
1320 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1321 return 0;
1323 /* If we want a word outside OP, return zero. */
1324 if (mode != BLKmode
1325 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1326 return const0_rtx;
1328 /* Form a new MEM at the requested address. */
1329 if (MEM_P (op))
1331 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1333 if (! validate_address)
1334 return new;
1336 else if (reload_completed)
1338 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1339 return 0;
1341 else
1342 return replace_equiv_address (new, XEXP (new, 0));
1345 /* Rest can be handled by simplify_subreg. */
1346 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1349 /* Similar to `operand_subword', but never return 0. If we can't
1350 extract the required subword, put OP into a register and try again.
1351 The second attempt must succeed. We always validate the address in
1352 this case.
1354 MODE is the mode of OP, in case it is CONST_INT. */
1357 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1359 rtx result = operand_subword (op, offset, 1, mode);
1361 if (result)
1362 return result;
1364 if (mode != BLKmode && mode != VOIDmode)
1366 /* If this is a register which can not be accessed by words, copy it
1367 to a pseudo register. */
1368 if (REG_P (op))
1369 op = copy_to_reg (op);
1370 else
1371 op = force_reg (mode, op);
1374 result = operand_subword (op, offset, 1, mode);
1375 gcc_assert (result);
1377 return result;
1380 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1381 or (2) a component ref of something variable. Represent the later with
1382 a NULL expression. */
1384 static tree
1385 component_ref_for_mem_expr (tree ref)
1387 tree inner = TREE_OPERAND (ref, 0);
1389 if (TREE_CODE (inner) == COMPONENT_REF)
1390 inner = component_ref_for_mem_expr (inner);
1391 else
1393 /* Now remove any conversions: they don't change what the underlying
1394 object is. Likewise for SAVE_EXPR. */
1395 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1396 || TREE_CODE (inner) == NON_LVALUE_EXPR
1397 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1398 || TREE_CODE (inner) == SAVE_EXPR)
1399 inner = TREE_OPERAND (inner, 0);
1401 if (! DECL_P (inner))
1402 inner = NULL_TREE;
1405 if (inner == TREE_OPERAND (ref, 0))
1406 return ref;
1407 else
1408 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1409 TREE_OPERAND (ref, 1), NULL_TREE);
1412 /* Returns 1 if both MEM_EXPR can be considered equal
1413 and 0 otherwise. */
1416 mem_expr_equal_p (tree expr1, tree expr2)
1418 if (expr1 == expr2)
1419 return 1;
1421 if (! expr1 || ! expr2)
1422 return 0;
1424 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1425 return 0;
1427 if (TREE_CODE (expr1) == COMPONENT_REF)
1428 return
1429 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1430 TREE_OPERAND (expr2, 0))
1431 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1432 TREE_OPERAND (expr2, 1));
1434 if (INDIRECT_REF_P (expr1))
1435 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1436 TREE_OPERAND (expr2, 0));
1438 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1439 have been resolved here. */
1440 gcc_assert (DECL_P (expr1));
1442 /* Decls with different pointers can't be equal. */
1443 return 0;
1446 /* Given REF, a MEM, and T, either the type of X or the expression
1447 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1448 if we are making a new object of this type. BITPOS is nonzero if
1449 there is an offset outstanding on T that will be applied later. */
1451 void
1452 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1453 HOST_WIDE_INT bitpos)
1455 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1456 tree expr = MEM_EXPR (ref);
1457 rtx offset = MEM_OFFSET (ref);
1458 rtx size = MEM_SIZE (ref);
1459 unsigned int align = MEM_ALIGN (ref);
1460 HOST_WIDE_INT apply_bitpos = 0;
1461 tree type;
1463 /* It can happen that type_for_mode was given a mode for which there
1464 is no language-level type. In which case it returns NULL, which
1465 we can see here. */
1466 if (t == NULL_TREE)
1467 return;
1469 type = TYPE_P (t) ? t : TREE_TYPE (t);
1470 if (type == error_mark_node)
1471 return;
1473 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1474 wrong answer, as it assumes that DECL_RTL already has the right alias
1475 info. Callers should not set DECL_RTL until after the call to
1476 set_mem_attributes. */
1477 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1479 /* Get the alias set from the expression or type (perhaps using a
1480 front-end routine) and use it. */
1481 alias = get_alias_set (t);
1483 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1484 MEM_IN_STRUCT_P (ref)
1485 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1486 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1488 /* If we are making an object of this type, or if this is a DECL, we know
1489 that it is a scalar if the type is not an aggregate. */
1490 if ((objectp || DECL_P (t))
1491 && ! AGGREGATE_TYPE_P (type)
1492 && TREE_CODE (type) != COMPLEX_TYPE)
1493 MEM_SCALAR_P (ref) = 1;
1495 /* We can set the alignment from the type if we are making an object,
1496 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1497 if (objectp || TREE_CODE (t) == INDIRECT_REF
1498 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1499 || TYPE_ALIGN_OK (type))
1500 align = MAX (align, TYPE_ALIGN (type));
1501 else
1502 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1504 if (integer_zerop (TREE_OPERAND (t, 1)))
1505 /* We don't know anything about the alignment. */
1506 align = BITS_PER_UNIT;
1507 else
1508 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1511 /* If the size is known, we can set that. */
1512 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1513 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1515 /* If T is not a type, we may be able to deduce some more information about
1516 the expression. */
1517 if (! TYPE_P (t))
1519 tree base;
1521 if (TREE_THIS_VOLATILE (t))
1522 MEM_VOLATILE_P (ref) = 1;
1524 /* Now remove any conversions: they don't change what the underlying
1525 object is. Likewise for SAVE_EXPR. */
1526 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1527 || TREE_CODE (t) == NON_LVALUE_EXPR
1528 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1529 || TREE_CODE (t) == SAVE_EXPR)
1530 t = TREE_OPERAND (t, 0);
1532 /* We may look through structure-like accesses for the purposes of
1533 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1534 base = t;
1535 while (TREE_CODE (base) == COMPONENT_REF
1536 || TREE_CODE (base) == REALPART_EXPR
1537 || TREE_CODE (base) == IMAGPART_EXPR
1538 || TREE_CODE (base) == BIT_FIELD_REF)
1539 base = TREE_OPERAND (base, 0);
1541 if (DECL_P (base))
1543 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1544 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1545 else
1546 MEM_NOTRAP_P (ref) = 1;
1548 else
1549 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1551 base = get_base_address (base);
1552 if (base && DECL_P (base)
1553 && TREE_READONLY (base)
1554 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1556 tree base_type = TREE_TYPE (base);
1557 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1558 || DECL_ARTIFICIAL (base));
1559 MEM_READONLY_P (ref) = 1;
1562 /* If this expression uses it's parent's alias set, mark it such
1563 that we won't change it. */
1564 if (component_uses_parent_alias_set (t))
1565 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1567 /* If this is a decl, set the attributes of the MEM from it. */
1568 if (DECL_P (t))
1570 expr = t;
1571 offset = const0_rtx;
1572 apply_bitpos = bitpos;
1573 size = (DECL_SIZE_UNIT (t)
1574 && host_integerp (DECL_SIZE_UNIT (t), 1)
1575 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1576 align = DECL_ALIGN (t);
1579 /* If this is a constant, we know the alignment. */
1580 else if (CONSTANT_CLASS_P (t))
1582 align = TYPE_ALIGN (type);
1583 #ifdef CONSTANT_ALIGNMENT
1584 align = CONSTANT_ALIGNMENT (t, align);
1585 #endif
1588 /* If this is a field reference and not a bit-field, record it. */
1589 /* ??? There is some information that can be gleened from bit-fields,
1590 such as the word offset in the structure that might be modified.
1591 But skip it for now. */
1592 else if (TREE_CODE (t) == COMPONENT_REF
1593 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1595 expr = component_ref_for_mem_expr (t);
1596 offset = const0_rtx;
1597 apply_bitpos = bitpos;
1598 /* ??? Any reason the field size would be different than
1599 the size we got from the type? */
1602 /* If this is an array reference, look for an outer field reference. */
1603 else if (TREE_CODE (t) == ARRAY_REF)
1605 tree off_tree = size_zero_node;
1606 /* We can't modify t, because we use it at the end of the
1607 function. */
1608 tree t2 = t;
1612 tree index = TREE_OPERAND (t2, 1);
1613 tree low_bound = array_ref_low_bound (t2);
1614 tree unit_size = array_ref_element_size (t2);
1616 /* We assume all arrays have sizes that are a multiple of a byte.
1617 First subtract the lower bound, if any, in the type of the
1618 index, then convert to sizetype and multiply by the size of
1619 the array element. */
1620 if (! integer_zerop (low_bound))
1621 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1622 index, low_bound);
1624 off_tree = size_binop (PLUS_EXPR,
1625 size_binop (MULT_EXPR,
1626 fold_convert (sizetype,
1627 index),
1628 unit_size),
1629 off_tree);
1630 t2 = TREE_OPERAND (t2, 0);
1632 while (TREE_CODE (t2) == ARRAY_REF);
1634 if (DECL_P (t2))
1636 expr = t2;
1637 offset = NULL;
1638 if (host_integerp (off_tree, 1))
1640 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1641 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1642 align = DECL_ALIGN (t2);
1643 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1644 align = aoff;
1645 offset = GEN_INT (ioff);
1646 apply_bitpos = bitpos;
1649 else if (TREE_CODE (t2) == COMPONENT_REF)
1651 expr = component_ref_for_mem_expr (t2);
1652 if (host_integerp (off_tree, 1))
1654 offset = GEN_INT (tree_low_cst (off_tree, 1));
1655 apply_bitpos = bitpos;
1657 /* ??? Any reason the field size would be different than
1658 the size we got from the type? */
1660 else if (flag_argument_noalias > 1
1661 && (INDIRECT_REF_P (t2))
1662 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1664 expr = t2;
1665 offset = NULL;
1669 /* If this is a Fortran indirect argument reference, record the
1670 parameter decl. */
1671 else if (flag_argument_noalias > 1
1672 && (INDIRECT_REF_P (t))
1673 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1675 expr = t;
1676 offset = NULL;
1680 /* If we modified OFFSET based on T, then subtract the outstanding
1681 bit position offset. Similarly, increase the size of the accessed
1682 object to contain the negative offset. */
1683 if (apply_bitpos)
1685 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1686 if (size)
1687 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1690 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1692 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1693 we're overlapping. */
1694 offset = NULL;
1695 expr = NULL;
1698 /* Now set the attributes we computed above. */
1699 MEM_ATTRS (ref)
1700 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1702 /* If this is already known to be a scalar or aggregate, we are done. */
1703 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1704 return;
1706 /* If it is a reference into an aggregate, this is part of an aggregate.
1707 Otherwise we don't know. */
1708 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1709 || TREE_CODE (t) == ARRAY_RANGE_REF
1710 || TREE_CODE (t) == BIT_FIELD_REF)
1711 MEM_IN_STRUCT_P (ref) = 1;
1714 void
1715 set_mem_attributes (rtx ref, tree t, int objectp)
1717 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1720 /* Set the decl for MEM to DECL. */
1722 void
1723 set_mem_attrs_from_reg (rtx mem, rtx reg)
1725 MEM_ATTRS (mem)
1726 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1727 GEN_INT (REG_OFFSET (reg)),
1728 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1731 /* Set the alias set of MEM to SET. */
1733 void
1734 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1736 #ifdef ENABLE_CHECKING
1737 /* If the new and old alias sets don't conflict, something is wrong. */
1738 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1739 #endif
1741 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1742 MEM_SIZE (mem), MEM_ALIGN (mem),
1743 GET_MODE (mem));
1746 /* Set the alignment of MEM to ALIGN bits. */
1748 void
1749 set_mem_align (rtx mem, unsigned int align)
1751 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1752 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1753 GET_MODE (mem));
1756 /* Set the expr for MEM to EXPR. */
1758 void
1759 set_mem_expr (rtx mem, tree expr)
1761 MEM_ATTRS (mem)
1762 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1763 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1766 /* Set the offset of MEM to OFFSET. */
1768 void
1769 set_mem_offset (rtx mem, rtx offset)
1771 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1772 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1773 GET_MODE (mem));
1776 /* Set the size of MEM to SIZE. */
1778 void
1779 set_mem_size (rtx mem, rtx size)
1781 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1782 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1783 GET_MODE (mem));
1786 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1787 and its address changed to ADDR. (VOIDmode means don't change the mode.
1788 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1789 returned memory location is required to be valid. The memory
1790 attributes are not changed. */
1792 static rtx
1793 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1795 rtx new;
1797 gcc_assert (MEM_P (memref));
1798 if (mode == VOIDmode)
1799 mode = GET_MODE (memref);
1800 if (addr == 0)
1801 addr = XEXP (memref, 0);
1802 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1803 && (!validate || memory_address_p (mode, addr)))
1804 return memref;
1806 if (validate)
1808 if (reload_in_progress || reload_completed)
1809 gcc_assert (memory_address_p (mode, addr));
1810 else
1811 addr = memory_address (mode, addr);
1814 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1815 return memref;
1817 new = gen_rtx_MEM (mode, addr);
1818 MEM_COPY_ATTRIBUTES (new, memref);
1819 return new;
1822 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1823 way we are changing MEMREF, so we only preserve the alias set. */
1826 change_address (rtx memref, enum machine_mode mode, rtx addr)
1828 rtx new = change_address_1 (memref, mode, addr, 1), size;
1829 enum machine_mode mmode = GET_MODE (new);
1830 unsigned int align;
1832 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1833 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1835 /* If there are no changes, just return the original memory reference. */
1836 if (new == memref)
1838 if (MEM_ATTRS (memref) == 0
1839 || (MEM_EXPR (memref) == NULL
1840 && MEM_OFFSET (memref) == NULL
1841 && MEM_SIZE (memref) == size
1842 && MEM_ALIGN (memref) == align))
1843 return new;
1845 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1846 MEM_COPY_ATTRIBUTES (new, memref);
1849 MEM_ATTRS (new)
1850 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1852 return new;
1855 /* Return a memory reference like MEMREF, but with its mode changed
1856 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1857 nonzero, the memory address is forced to be valid.
1858 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1859 and caller is responsible for adjusting MEMREF base register. */
1862 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1863 int validate, int adjust)
1865 rtx addr = XEXP (memref, 0);
1866 rtx new;
1867 rtx memoffset = MEM_OFFSET (memref);
1868 rtx size = 0;
1869 unsigned int memalign = MEM_ALIGN (memref);
1871 /* If there are no changes, just return the original memory reference. */
1872 if (mode == GET_MODE (memref) && !offset
1873 && (!validate || memory_address_p (mode, addr)))
1874 return memref;
1876 /* ??? Prefer to create garbage instead of creating shared rtl.
1877 This may happen even if offset is nonzero -- consider
1878 (plus (plus reg reg) const_int) -- so do this always. */
1879 addr = copy_rtx (addr);
1881 if (adjust)
1883 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1884 object, we can merge it into the LO_SUM. */
1885 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1886 && offset >= 0
1887 && (unsigned HOST_WIDE_INT) offset
1888 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1889 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1890 plus_constant (XEXP (addr, 1), offset));
1891 else
1892 addr = plus_constant (addr, offset);
1895 new = change_address_1 (memref, mode, addr, validate);
1897 /* Compute the new values of the memory attributes due to this adjustment.
1898 We add the offsets and update the alignment. */
1899 if (memoffset)
1900 memoffset = GEN_INT (offset + INTVAL (memoffset));
1902 /* Compute the new alignment by taking the MIN of the alignment and the
1903 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1904 if zero. */
1905 if (offset != 0)
1906 memalign
1907 = MIN (memalign,
1908 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1910 /* We can compute the size in a number of ways. */
1911 if (GET_MODE (new) != BLKmode)
1912 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1913 else if (MEM_SIZE (memref))
1914 size = plus_constant (MEM_SIZE (memref), -offset);
1916 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1917 memoffset, size, memalign, GET_MODE (new));
1919 /* At some point, we should validate that this offset is within the object,
1920 if all the appropriate values are known. */
1921 return new;
1924 /* Return a memory reference like MEMREF, but with its mode changed
1925 to MODE and its address changed to ADDR, which is assumed to be
1926 MEMREF offseted by OFFSET bytes. If VALIDATE is
1927 nonzero, the memory address is forced to be valid. */
1930 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1931 HOST_WIDE_INT offset, int validate)
1933 memref = change_address_1 (memref, VOIDmode, addr, validate);
1934 return adjust_address_1 (memref, mode, offset, validate, 0);
1937 /* Return a memory reference like MEMREF, but whose address is changed by
1938 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1939 known to be in OFFSET (possibly 1). */
1942 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1944 rtx new, addr = XEXP (memref, 0);
1946 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1948 /* At this point we don't know _why_ the address is invalid. It
1949 could have secondary memory references, multiplies or anything.
1951 However, if we did go and rearrange things, we can wind up not
1952 being able to recognize the magic around pic_offset_table_rtx.
1953 This stuff is fragile, and is yet another example of why it is
1954 bad to expose PIC machinery too early. */
1955 if (! memory_address_p (GET_MODE (memref), new)
1956 && GET_CODE (addr) == PLUS
1957 && XEXP (addr, 0) == pic_offset_table_rtx)
1959 addr = force_reg (GET_MODE (addr), addr);
1960 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1963 update_temp_slot_address (XEXP (memref, 0), new);
1964 new = change_address_1 (memref, VOIDmode, new, 1);
1966 /* If there are no changes, just return the original memory reference. */
1967 if (new == memref)
1968 return new;
1970 /* Update the alignment to reflect the offset. Reset the offset, which
1971 we don't know. */
1972 MEM_ATTRS (new)
1973 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1974 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1975 GET_MODE (new));
1976 return new;
1979 /* Return a memory reference like MEMREF, but with its address changed to
1980 ADDR. The caller is asserting that the actual piece of memory pointed
1981 to is the same, just the form of the address is being changed, such as
1982 by putting something into a register. */
1985 replace_equiv_address (rtx memref, rtx addr)
1987 /* change_address_1 copies the memory attribute structure without change
1988 and that's exactly what we want here. */
1989 update_temp_slot_address (XEXP (memref, 0), addr);
1990 return change_address_1 (memref, VOIDmode, addr, 1);
1993 /* Likewise, but the reference is not required to be valid. */
1996 replace_equiv_address_nv (rtx memref, rtx addr)
1998 return change_address_1 (memref, VOIDmode, addr, 0);
2001 /* Return a memory reference like MEMREF, but with its mode widened to
2002 MODE and offset by OFFSET. This would be used by targets that e.g.
2003 cannot issue QImode memory operations and have to use SImode memory
2004 operations plus masking logic. */
2007 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2009 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2010 tree expr = MEM_EXPR (new);
2011 rtx memoffset = MEM_OFFSET (new);
2012 unsigned int size = GET_MODE_SIZE (mode);
2014 /* If there are no changes, just return the original memory reference. */
2015 if (new == memref)
2016 return new;
2018 /* If we don't know what offset we were at within the expression, then
2019 we can't know if we've overstepped the bounds. */
2020 if (! memoffset)
2021 expr = NULL_TREE;
2023 while (expr)
2025 if (TREE_CODE (expr) == COMPONENT_REF)
2027 tree field = TREE_OPERAND (expr, 1);
2028 tree offset = component_ref_field_offset (expr);
2030 if (! DECL_SIZE_UNIT (field))
2032 expr = NULL_TREE;
2033 break;
2036 /* Is the field at least as large as the access? If so, ok,
2037 otherwise strip back to the containing structure. */
2038 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2039 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2040 && INTVAL (memoffset) >= 0)
2041 break;
2043 if (! host_integerp (offset, 1))
2045 expr = NULL_TREE;
2046 break;
2049 expr = TREE_OPERAND (expr, 0);
2050 memoffset
2051 = (GEN_INT (INTVAL (memoffset)
2052 + tree_low_cst (offset, 1)
2053 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2054 / BITS_PER_UNIT)));
2056 /* Similarly for the decl. */
2057 else if (DECL_P (expr)
2058 && DECL_SIZE_UNIT (expr)
2059 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2060 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2061 && (! memoffset || INTVAL (memoffset) >= 0))
2062 break;
2063 else
2065 /* The widened memory access overflows the expression, which means
2066 that it could alias another expression. Zap it. */
2067 expr = NULL_TREE;
2068 break;
2072 if (! expr)
2073 memoffset = NULL_RTX;
2075 /* The widened memory may alias other stuff, so zap the alias set. */
2076 /* ??? Maybe use get_alias_set on any remaining expression. */
2078 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2079 MEM_ALIGN (new), mode);
2081 return new;
2084 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2087 gen_label_rtx (void)
2089 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2090 NULL, label_num++, NULL);
2093 /* For procedure integration. */
2095 /* Install new pointers to the first and last insns in the chain.
2096 Also, set cur_insn_uid to one higher than the last in use.
2097 Used for an inline-procedure after copying the insn chain. */
2099 void
2100 set_new_first_and_last_insn (rtx first, rtx last)
2102 rtx insn;
2104 first_insn = first;
2105 last_insn = last;
2106 cur_insn_uid = 0;
2108 for (insn = first; insn; insn = NEXT_INSN (insn))
2109 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2111 cur_insn_uid++;
2114 /* Go through all the RTL insn bodies and copy any invalid shared
2115 structure. This routine should only be called once. */
2117 static void
2118 unshare_all_rtl_1 (tree fndecl, rtx insn)
2120 tree decl;
2122 /* Make sure that virtual parameters are not shared. */
2123 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2124 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2126 /* Make sure that virtual stack slots are not shared. */
2127 unshare_all_decls (DECL_INITIAL (fndecl));
2129 /* Unshare just about everything else. */
2130 unshare_all_rtl_in_chain (insn);
2132 /* Make sure the addresses of stack slots found outside the insn chain
2133 (such as, in DECL_RTL of a variable) are not shared
2134 with the insn chain.
2136 This special care is necessary when the stack slot MEM does not
2137 actually appear in the insn chain. If it does appear, its address
2138 is unshared from all else at that point. */
2139 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2142 /* Go through all the RTL insn bodies and copy any invalid shared
2143 structure, again. This is a fairly expensive thing to do so it
2144 should be done sparingly. */
2146 void
2147 unshare_all_rtl_again (rtx insn)
2149 rtx p;
2150 tree decl;
2152 for (p = insn; p; p = NEXT_INSN (p))
2153 if (INSN_P (p))
2155 reset_used_flags (PATTERN (p));
2156 reset_used_flags (REG_NOTES (p));
2157 reset_used_flags (LOG_LINKS (p));
2160 /* Make sure that virtual stack slots are not shared. */
2161 reset_used_decls (DECL_INITIAL (cfun->decl));
2163 /* Make sure that virtual parameters are not shared. */
2164 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2165 reset_used_flags (DECL_RTL (decl));
2167 reset_used_flags (stack_slot_list);
2169 unshare_all_rtl_1 (cfun->decl, insn);
2172 unsigned int
2173 unshare_all_rtl (void)
2175 unshare_all_rtl_1 (current_function_decl, get_insns ());
2176 return 0;
2179 struct tree_opt_pass pass_unshare_all_rtl =
2181 "unshare", /* name */
2182 NULL, /* gate */
2183 unshare_all_rtl, /* execute */
2184 NULL, /* sub */
2185 NULL, /* next */
2186 0, /* static_pass_number */
2187 0, /* tv_id */
2188 0, /* properties_required */
2189 0, /* properties_provided */
2190 0, /* properties_destroyed */
2191 0, /* todo_flags_start */
2192 TODO_dump_func, /* todo_flags_finish */
2193 0 /* letter */
2197 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2198 Recursively does the same for subexpressions. */
2200 static void
2201 verify_rtx_sharing (rtx orig, rtx insn)
2203 rtx x = orig;
2204 int i;
2205 enum rtx_code code;
2206 const char *format_ptr;
2208 if (x == 0)
2209 return;
2211 code = GET_CODE (x);
2213 /* These types may be freely shared. */
2215 switch (code)
2217 case REG:
2218 case CONST_INT:
2219 case CONST_DOUBLE:
2220 case CONST_VECTOR:
2221 case SYMBOL_REF:
2222 case LABEL_REF:
2223 case CODE_LABEL:
2224 case PC:
2225 case CC0:
2226 case SCRATCH:
2227 return;
2228 /* SCRATCH must be shared because they represent distinct values. */
2229 case CLOBBER:
2230 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2231 return;
2232 break;
2234 case CONST:
2235 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2236 a LABEL_REF, it isn't sharable. */
2237 if (GET_CODE (XEXP (x, 0)) == PLUS
2238 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2239 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2240 return;
2241 break;
2243 case MEM:
2244 /* A MEM is allowed to be shared if its address is constant. */
2245 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2246 || reload_completed || reload_in_progress)
2247 return;
2249 break;
2251 default:
2252 break;
2255 /* This rtx may not be shared. If it has already been seen,
2256 replace it with a copy of itself. */
2257 #ifdef ENABLE_CHECKING
2258 if (RTX_FLAG (x, used))
2260 error ("invalid rtl sharing found in the insn");
2261 debug_rtx (insn);
2262 error ("shared rtx");
2263 debug_rtx (x);
2264 internal_error ("internal consistency failure");
2266 #endif
2267 gcc_assert (!RTX_FLAG (x, used));
2269 RTX_FLAG (x, used) = 1;
2271 /* Now scan the subexpressions recursively. */
2273 format_ptr = GET_RTX_FORMAT (code);
2275 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2277 switch (*format_ptr++)
2279 case 'e':
2280 verify_rtx_sharing (XEXP (x, i), insn);
2281 break;
2283 case 'E':
2284 if (XVEC (x, i) != NULL)
2286 int j;
2287 int len = XVECLEN (x, i);
2289 for (j = 0; j < len; j++)
2291 /* We allow sharing of ASM_OPERANDS inside single
2292 instruction. */
2293 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2294 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2295 == ASM_OPERANDS))
2296 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2297 else
2298 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2301 break;
2304 return;
2307 /* Go through all the RTL insn bodies and check that there is no unexpected
2308 sharing in between the subexpressions. */
2310 void
2311 verify_rtl_sharing (void)
2313 rtx p;
2315 for (p = get_insns (); p; p = NEXT_INSN (p))
2316 if (INSN_P (p))
2318 reset_used_flags (PATTERN (p));
2319 reset_used_flags (REG_NOTES (p));
2320 reset_used_flags (LOG_LINKS (p));
2321 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2323 int i;
2324 rtx q, sequence = PATTERN (p);
2326 for (i = 0; i < XVECLEN (sequence, 0); i++)
2328 q = XVECEXP (sequence, 0, i);
2329 gcc_assert (INSN_P (q));
2330 reset_used_flags (PATTERN (q));
2331 reset_used_flags (REG_NOTES (q));
2332 reset_used_flags (LOG_LINKS (q));
2337 for (p = get_insns (); p; p = NEXT_INSN (p))
2338 if (INSN_P (p))
2340 verify_rtx_sharing (PATTERN (p), p);
2341 verify_rtx_sharing (REG_NOTES (p), p);
2342 verify_rtx_sharing (LOG_LINKS (p), p);
2346 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2347 Assumes the mark bits are cleared at entry. */
2349 void
2350 unshare_all_rtl_in_chain (rtx insn)
2352 for (; insn; insn = NEXT_INSN (insn))
2353 if (INSN_P (insn))
2355 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2356 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2357 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2361 /* Go through all virtual stack slots of a function and copy any
2362 shared structure. */
2363 static void
2364 unshare_all_decls (tree blk)
2366 tree t;
2368 /* Copy shared decls. */
2369 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2370 if (DECL_RTL_SET_P (t))
2371 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2373 /* Now process sub-blocks. */
2374 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2375 unshare_all_decls (t);
2378 /* Go through all virtual stack slots of a function and mark them as
2379 not shared. */
2380 static void
2381 reset_used_decls (tree blk)
2383 tree t;
2385 /* Mark decls. */
2386 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2387 if (DECL_RTL_SET_P (t))
2388 reset_used_flags (DECL_RTL (t));
2390 /* Now process sub-blocks. */
2391 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2392 reset_used_decls (t);
2395 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2396 Recursively does the same for subexpressions. Uses
2397 copy_rtx_if_shared_1 to reduce stack space. */
2400 copy_rtx_if_shared (rtx orig)
2402 copy_rtx_if_shared_1 (&orig);
2403 return orig;
2406 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2407 use. Recursively does the same for subexpressions. */
2409 static void
2410 copy_rtx_if_shared_1 (rtx *orig1)
2412 rtx x;
2413 int i;
2414 enum rtx_code code;
2415 rtx *last_ptr;
2416 const char *format_ptr;
2417 int copied = 0;
2418 int length;
2420 /* Repeat is used to turn tail-recursion into iteration. */
2421 repeat:
2422 x = *orig1;
2424 if (x == 0)
2425 return;
2427 code = GET_CODE (x);
2429 /* These types may be freely shared. */
2431 switch (code)
2433 case REG:
2434 case CONST_INT:
2435 case CONST_DOUBLE:
2436 case CONST_VECTOR:
2437 case SYMBOL_REF:
2438 case LABEL_REF:
2439 case CODE_LABEL:
2440 case PC:
2441 case CC0:
2442 case SCRATCH:
2443 /* SCRATCH must be shared because they represent distinct values. */
2444 return;
2445 case CLOBBER:
2446 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2447 return;
2448 break;
2450 case CONST:
2451 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2452 a LABEL_REF, it isn't sharable. */
2453 if (GET_CODE (XEXP (x, 0)) == PLUS
2454 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2455 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2456 return;
2457 break;
2459 case INSN:
2460 case JUMP_INSN:
2461 case CALL_INSN:
2462 case NOTE:
2463 case BARRIER:
2464 /* The chain of insns is not being copied. */
2465 return;
2467 default:
2468 break;
2471 /* This rtx may not be shared. If it has already been seen,
2472 replace it with a copy of itself. */
2474 if (RTX_FLAG (x, used))
2476 x = shallow_copy_rtx (x);
2477 copied = 1;
2479 RTX_FLAG (x, used) = 1;
2481 /* Now scan the subexpressions recursively.
2482 We can store any replaced subexpressions directly into X
2483 since we know X is not shared! Any vectors in X
2484 must be copied if X was copied. */
2486 format_ptr = GET_RTX_FORMAT (code);
2487 length = GET_RTX_LENGTH (code);
2488 last_ptr = NULL;
2490 for (i = 0; i < length; i++)
2492 switch (*format_ptr++)
2494 case 'e':
2495 if (last_ptr)
2496 copy_rtx_if_shared_1 (last_ptr);
2497 last_ptr = &XEXP (x, i);
2498 break;
2500 case 'E':
2501 if (XVEC (x, i) != NULL)
2503 int j;
2504 int len = XVECLEN (x, i);
2506 /* Copy the vector iff I copied the rtx and the length
2507 is nonzero. */
2508 if (copied && len > 0)
2509 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2511 /* Call recursively on all inside the vector. */
2512 for (j = 0; j < len; j++)
2514 if (last_ptr)
2515 copy_rtx_if_shared_1 (last_ptr);
2516 last_ptr = &XVECEXP (x, i, j);
2519 break;
2522 *orig1 = x;
2523 if (last_ptr)
2525 orig1 = last_ptr;
2526 goto repeat;
2528 return;
2531 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2532 to look for shared sub-parts. */
2534 void
2535 reset_used_flags (rtx x)
2537 int i, j;
2538 enum rtx_code code;
2539 const char *format_ptr;
2540 int length;
2542 /* Repeat is used to turn tail-recursion into iteration. */
2543 repeat:
2544 if (x == 0)
2545 return;
2547 code = GET_CODE (x);
2549 /* These types may be freely shared so we needn't do any resetting
2550 for them. */
2552 switch (code)
2554 case REG:
2555 case CONST_INT:
2556 case CONST_DOUBLE:
2557 case CONST_VECTOR:
2558 case SYMBOL_REF:
2559 case CODE_LABEL:
2560 case PC:
2561 case CC0:
2562 return;
2564 case INSN:
2565 case JUMP_INSN:
2566 case CALL_INSN:
2567 case NOTE:
2568 case LABEL_REF:
2569 case BARRIER:
2570 /* The chain of insns is not being copied. */
2571 return;
2573 default:
2574 break;
2577 RTX_FLAG (x, used) = 0;
2579 format_ptr = GET_RTX_FORMAT (code);
2580 length = GET_RTX_LENGTH (code);
2582 for (i = 0; i < length; i++)
2584 switch (*format_ptr++)
2586 case 'e':
2587 if (i == length-1)
2589 x = XEXP (x, i);
2590 goto repeat;
2592 reset_used_flags (XEXP (x, i));
2593 break;
2595 case 'E':
2596 for (j = 0; j < XVECLEN (x, i); j++)
2597 reset_used_flags (XVECEXP (x, i, j));
2598 break;
2603 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2604 to look for shared sub-parts. */
2606 void
2607 set_used_flags (rtx x)
2609 int i, j;
2610 enum rtx_code code;
2611 const char *format_ptr;
2613 if (x == 0)
2614 return;
2616 code = GET_CODE (x);
2618 /* These types may be freely shared so we needn't do any resetting
2619 for them. */
2621 switch (code)
2623 case REG:
2624 case CONST_INT:
2625 case CONST_DOUBLE:
2626 case CONST_VECTOR:
2627 case SYMBOL_REF:
2628 case CODE_LABEL:
2629 case PC:
2630 case CC0:
2631 return;
2633 case INSN:
2634 case JUMP_INSN:
2635 case CALL_INSN:
2636 case NOTE:
2637 case LABEL_REF:
2638 case BARRIER:
2639 /* The chain of insns is not being copied. */
2640 return;
2642 default:
2643 break;
2646 RTX_FLAG (x, used) = 1;
2648 format_ptr = GET_RTX_FORMAT (code);
2649 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2651 switch (*format_ptr++)
2653 case 'e':
2654 set_used_flags (XEXP (x, i));
2655 break;
2657 case 'E':
2658 for (j = 0; j < XVECLEN (x, i); j++)
2659 set_used_flags (XVECEXP (x, i, j));
2660 break;
2665 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2666 Return X or the rtx for the pseudo reg the value of X was copied into.
2667 OTHER must be valid as a SET_DEST. */
2670 make_safe_from (rtx x, rtx other)
2672 while (1)
2673 switch (GET_CODE (other))
2675 case SUBREG:
2676 other = SUBREG_REG (other);
2677 break;
2678 case STRICT_LOW_PART:
2679 case SIGN_EXTEND:
2680 case ZERO_EXTEND:
2681 other = XEXP (other, 0);
2682 break;
2683 default:
2684 goto done;
2686 done:
2687 if ((MEM_P (other)
2688 && ! CONSTANT_P (x)
2689 && !REG_P (x)
2690 && GET_CODE (x) != SUBREG)
2691 || (REG_P (other)
2692 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2693 || reg_mentioned_p (other, x))))
2695 rtx temp = gen_reg_rtx (GET_MODE (x));
2696 emit_move_insn (temp, x);
2697 return temp;
2699 return x;
2702 /* Emission of insns (adding them to the doubly-linked list). */
2704 /* Return the first insn of the current sequence or current function. */
2707 get_insns (void)
2709 return first_insn;
2712 /* Specify a new insn as the first in the chain. */
2714 void
2715 set_first_insn (rtx insn)
2717 gcc_assert (!PREV_INSN (insn));
2718 first_insn = insn;
2721 /* Return the last insn emitted in current sequence or current function. */
2724 get_last_insn (void)
2726 return last_insn;
2729 /* Specify a new insn as the last in the chain. */
2731 void
2732 set_last_insn (rtx insn)
2734 gcc_assert (!NEXT_INSN (insn));
2735 last_insn = insn;
2738 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2741 get_last_insn_anywhere (void)
2743 struct sequence_stack *stack;
2744 if (last_insn)
2745 return last_insn;
2746 for (stack = seq_stack; stack; stack = stack->next)
2747 if (stack->last != 0)
2748 return stack->last;
2749 return 0;
2752 /* Return the first nonnote insn emitted in current sequence or current
2753 function. This routine looks inside SEQUENCEs. */
2756 get_first_nonnote_insn (void)
2758 rtx insn = first_insn;
2760 if (insn)
2762 if (NOTE_P (insn))
2763 for (insn = next_insn (insn);
2764 insn && NOTE_P (insn);
2765 insn = next_insn (insn))
2766 continue;
2767 else
2769 if (NONJUMP_INSN_P (insn)
2770 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2771 insn = XVECEXP (PATTERN (insn), 0, 0);
2775 return insn;
2778 /* Return the last nonnote insn emitted in current sequence or current
2779 function. This routine looks inside SEQUENCEs. */
2782 get_last_nonnote_insn (void)
2784 rtx insn = last_insn;
2786 if (insn)
2788 if (NOTE_P (insn))
2789 for (insn = previous_insn (insn);
2790 insn && NOTE_P (insn);
2791 insn = previous_insn (insn))
2792 continue;
2793 else
2795 if (NONJUMP_INSN_P (insn)
2796 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2797 insn = XVECEXP (PATTERN (insn), 0,
2798 XVECLEN (PATTERN (insn), 0) - 1);
2802 return insn;
2805 /* Return a number larger than any instruction's uid in this function. */
2808 get_max_uid (void)
2810 return cur_insn_uid;
2813 /* Return the next insn. If it is a SEQUENCE, return the first insn
2814 of the sequence. */
2817 next_insn (rtx insn)
2819 if (insn)
2821 insn = NEXT_INSN (insn);
2822 if (insn && NONJUMP_INSN_P (insn)
2823 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2824 insn = XVECEXP (PATTERN (insn), 0, 0);
2827 return insn;
2830 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2831 of the sequence. */
2834 previous_insn (rtx insn)
2836 if (insn)
2838 insn = PREV_INSN (insn);
2839 if (insn && NONJUMP_INSN_P (insn)
2840 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2841 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2844 return insn;
2847 /* Return the next insn after INSN that is not a NOTE. This routine does not
2848 look inside SEQUENCEs. */
2851 next_nonnote_insn (rtx insn)
2853 while (insn)
2855 insn = NEXT_INSN (insn);
2856 if (insn == 0 || !NOTE_P (insn))
2857 break;
2860 return insn;
2863 /* Return the previous insn before INSN that is not a NOTE. This routine does
2864 not look inside SEQUENCEs. */
2867 prev_nonnote_insn (rtx insn)
2869 while (insn)
2871 insn = PREV_INSN (insn);
2872 if (insn == 0 || !NOTE_P (insn))
2873 break;
2876 return insn;
2879 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2880 or 0, if there is none. This routine does not look inside
2881 SEQUENCEs. */
2884 next_real_insn (rtx insn)
2886 while (insn)
2888 insn = NEXT_INSN (insn);
2889 if (insn == 0 || INSN_P (insn))
2890 break;
2893 return insn;
2896 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2897 or 0, if there is none. This routine does not look inside
2898 SEQUENCEs. */
2901 prev_real_insn (rtx insn)
2903 while (insn)
2905 insn = PREV_INSN (insn);
2906 if (insn == 0 || INSN_P (insn))
2907 break;
2910 return insn;
2913 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2914 This routine does not look inside SEQUENCEs. */
2917 last_call_insn (void)
2919 rtx insn;
2921 for (insn = get_last_insn ();
2922 insn && !CALL_P (insn);
2923 insn = PREV_INSN (insn))
2926 return insn;
2929 /* Find the next insn after INSN that really does something. This routine
2930 does not look inside SEQUENCEs. Until reload has completed, this is the
2931 same as next_real_insn. */
2934 active_insn_p (rtx insn)
2936 return (CALL_P (insn) || JUMP_P (insn)
2937 || (NONJUMP_INSN_P (insn)
2938 && (! reload_completed
2939 || (GET_CODE (PATTERN (insn)) != USE
2940 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2944 next_active_insn (rtx insn)
2946 while (insn)
2948 insn = NEXT_INSN (insn);
2949 if (insn == 0 || active_insn_p (insn))
2950 break;
2953 return insn;
2956 /* Find the last insn before INSN that really does something. This routine
2957 does not look inside SEQUENCEs. Until reload has completed, this is the
2958 same as prev_real_insn. */
2961 prev_active_insn (rtx insn)
2963 while (insn)
2965 insn = PREV_INSN (insn);
2966 if (insn == 0 || active_insn_p (insn))
2967 break;
2970 return insn;
2973 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2976 next_label (rtx insn)
2978 while (insn)
2980 insn = NEXT_INSN (insn);
2981 if (insn == 0 || LABEL_P (insn))
2982 break;
2985 return insn;
2988 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2991 prev_label (rtx insn)
2993 while (insn)
2995 insn = PREV_INSN (insn);
2996 if (insn == 0 || LABEL_P (insn))
2997 break;
3000 return insn;
3003 /* Return the last label to mark the same position as LABEL. Return null
3004 if LABEL itself is null. */
3007 skip_consecutive_labels (rtx label)
3009 rtx insn;
3011 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3012 if (LABEL_P (insn))
3013 label = insn;
3015 return label;
3018 #ifdef HAVE_cc0
3019 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3020 and REG_CC_USER notes so we can find it. */
3022 void
3023 link_cc0_insns (rtx insn)
3025 rtx user = next_nonnote_insn (insn);
3027 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3028 user = XVECEXP (PATTERN (user), 0, 0);
3030 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3031 REG_NOTES (user));
3032 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3035 /* Return the next insn that uses CC0 after INSN, which is assumed to
3036 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3037 applied to the result of this function should yield INSN).
3039 Normally, this is simply the next insn. However, if a REG_CC_USER note
3040 is present, it contains the insn that uses CC0.
3042 Return 0 if we can't find the insn. */
3045 next_cc0_user (rtx insn)
3047 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3049 if (note)
3050 return XEXP (note, 0);
3052 insn = next_nonnote_insn (insn);
3053 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3054 insn = XVECEXP (PATTERN (insn), 0, 0);
3056 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3057 return insn;
3059 return 0;
3062 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3063 note, it is the previous insn. */
3066 prev_cc0_setter (rtx insn)
3068 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3070 if (note)
3071 return XEXP (note, 0);
3073 insn = prev_nonnote_insn (insn);
3074 gcc_assert (sets_cc0_p (PATTERN (insn)));
3076 return insn;
3078 #endif
3080 /* Increment the label uses for all labels present in rtx. */
3082 static void
3083 mark_label_nuses (rtx x)
3085 enum rtx_code code;
3086 int i, j;
3087 const char *fmt;
3089 code = GET_CODE (x);
3090 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3091 LABEL_NUSES (XEXP (x, 0))++;
3093 fmt = GET_RTX_FORMAT (code);
3094 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3096 if (fmt[i] == 'e')
3097 mark_label_nuses (XEXP (x, i));
3098 else if (fmt[i] == 'E')
3099 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3100 mark_label_nuses (XVECEXP (x, i, j));
3105 /* Try splitting insns that can be split for better scheduling.
3106 PAT is the pattern which might split.
3107 TRIAL is the insn providing PAT.
3108 LAST is nonzero if we should return the last insn of the sequence produced.
3110 If this routine succeeds in splitting, it returns the first or last
3111 replacement insn depending on the value of LAST. Otherwise, it
3112 returns TRIAL. If the insn to be returned can be split, it will be. */
3115 try_split (rtx pat, rtx trial, int last)
3117 rtx before = PREV_INSN (trial);
3118 rtx after = NEXT_INSN (trial);
3119 int has_barrier = 0;
3120 rtx tem;
3121 rtx note, seq;
3122 int probability;
3123 rtx insn_last, insn;
3124 int njumps = 0;
3126 if (any_condjump_p (trial)
3127 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3128 split_branch_probability = INTVAL (XEXP (note, 0));
3129 probability = split_branch_probability;
3131 seq = split_insns (pat, trial);
3133 split_branch_probability = -1;
3135 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3136 We may need to handle this specially. */
3137 if (after && BARRIER_P (after))
3139 has_barrier = 1;
3140 after = NEXT_INSN (after);
3143 if (!seq)
3144 return trial;
3146 /* Avoid infinite loop if any insn of the result matches
3147 the original pattern. */
3148 insn_last = seq;
3149 while (1)
3151 if (INSN_P (insn_last)
3152 && rtx_equal_p (PATTERN (insn_last), pat))
3153 return trial;
3154 if (!NEXT_INSN (insn_last))
3155 break;
3156 insn_last = NEXT_INSN (insn_last);
3159 /* Mark labels. */
3160 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3162 if (JUMP_P (insn))
3164 mark_jump_label (PATTERN (insn), insn, 0);
3165 njumps++;
3166 if (probability != -1
3167 && any_condjump_p (insn)
3168 && !find_reg_note (insn, REG_BR_PROB, 0))
3170 /* We can preserve the REG_BR_PROB notes only if exactly
3171 one jump is created, otherwise the machine description
3172 is responsible for this step using
3173 split_branch_probability variable. */
3174 gcc_assert (njumps == 1);
3175 REG_NOTES (insn)
3176 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3177 GEN_INT (probability),
3178 REG_NOTES (insn));
3183 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3184 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3185 if (CALL_P (trial))
3187 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3188 if (CALL_P (insn))
3190 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3191 while (*p)
3192 p = &XEXP (*p, 1);
3193 *p = CALL_INSN_FUNCTION_USAGE (trial);
3194 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3198 /* Copy notes, particularly those related to the CFG. */
3199 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3201 switch (REG_NOTE_KIND (note))
3203 case REG_EH_REGION:
3204 insn = insn_last;
3205 while (insn != NULL_RTX)
3207 if (CALL_P (insn)
3208 || (flag_non_call_exceptions && INSN_P (insn)
3209 && may_trap_p (PATTERN (insn))))
3210 REG_NOTES (insn)
3211 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3212 XEXP (note, 0),
3213 REG_NOTES (insn));
3214 insn = PREV_INSN (insn);
3216 break;
3218 case REG_NORETURN:
3219 case REG_SETJMP:
3220 insn = insn_last;
3221 while (insn != NULL_RTX)
3223 if (CALL_P (insn))
3224 REG_NOTES (insn)
3225 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3226 XEXP (note, 0),
3227 REG_NOTES (insn));
3228 insn = PREV_INSN (insn);
3230 break;
3232 case REG_NON_LOCAL_GOTO:
3233 insn = insn_last;
3234 while (insn != NULL_RTX)
3236 if (JUMP_P (insn))
3237 REG_NOTES (insn)
3238 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3239 XEXP (note, 0),
3240 REG_NOTES (insn));
3241 insn = PREV_INSN (insn);
3243 break;
3245 default:
3246 break;
3250 /* If there are LABELS inside the split insns increment the
3251 usage count so we don't delete the label. */
3252 if (NONJUMP_INSN_P (trial))
3254 insn = insn_last;
3255 while (insn != NULL_RTX)
3257 if (NONJUMP_INSN_P (insn))
3258 mark_label_nuses (PATTERN (insn));
3260 insn = PREV_INSN (insn);
3264 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3266 delete_insn (trial);
3267 if (has_barrier)
3268 emit_barrier_after (tem);
3270 /* Recursively call try_split for each new insn created; by the
3271 time control returns here that insn will be fully split, so
3272 set LAST and continue from the insn after the one returned.
3273 We can't use next_active_insn here since AFTER may be a note.
3274 Ignore deleted insns, which can be occur if not optimizing. */
3275 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3276 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3277 tem = try_split (PATTERN (tem), tem, 1);
3279 /* Return either the first or the last insn, depending on which was
3280 requested. */
3281 return last
3282 ? (after ? PREV_INSN (after) : last_insn)
3283 : NEXT_INSN (before);
3286 /* Make and return an INSN rtx, initializing all its slots.
3287 Store PATTERN in the pattern slots. */
3290 make_insn_raw (rtx pattern)
3292 rtx insn;
3294 insn = rtx_alloc (INSN);
3296 INSN_UID (insn) = cur_insn_uid++;
3297 PATTERN (insn) = pattern;
3298 INSN_CODE (insn) = -1;
3299 LOG_LINKS (insn) = NULL;
3300 REG_NOTES (insn) = NULL;
3301 INSN_LOCATOR (insn) = 0;
3302 BLOCK_FOR_INSN (insn) = NULL;
3304 #ifdef ENABLE_RTL_CHECKING
3305 if (insn
3306 && INSN_P (insn)
3307 && (returnjump_p (insn)
3308 || (GET_CODE (insn) == SET
3309 && SET_DEST (insn) == pc_rtx)))
3311 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3312 debug_rtx (insn);
3314 #endif
3316 return insn;
3319 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3322 make_jump_insn_raw (rtx pattern)
3324 rtx insn;
3326 insn = rtx_alloc (JUMP_INSN);
3327 INSN_UID (insn) = cur_insn_uid++;
3329 PATTERN (insn) = pattern;
3330 INSN_CODE (insn) = -1;
3331 LOG_LINKS (insn) = NULL;
3332 REG_NOTES (insn) = NULL;
3333 JUMP_LABEL (insn) = NULL;
3334 INSN_LOCATOR (insn) = 0;
3335 BLOCK_FOR_INSN (insn) = NULL;
3337 return insn;
3340 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3342 static rtx
3343 make_call_insn_raw (rtx pattern)
3345 rtx insn;
3347 insn = rtx_alloc (CALL_INSN);
3348 INSN_UID (insn) = cur_insn_uid++;
3350 PATTERN (insn) = pattern;
3351 INSN_CODE (insn) = -1;
3352 LOG_LINKS (insn) = NULL;
3353 REG_NOTES (insn) = NULL;
3354 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3355 INSN_LOCATOR (insn) = 0;
3356 BLOCK_FOR_INSN (insn) = NULL;
3358 return insn;
3361 /* Add INSN to the end of the doubly-linked list.
3362 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3364 void
3365 add_insn (rtx insn)
3367 PREV_INSN (insn) = last_insn;
3368 NEXT_INSN (insn) = 0;
3370 if (NULL != last_insn)
3371 NEXT_INSN (last_insn) = insn;
3373 if (NULL == first_insn)
3374 first_insn = insn;
3376 last_insn = insn;
3379 /* Add INSN into the doubly-linked list after insn AFTER. This and
3380 the next should be the only functions called to insert an insn once
3381 delay slots have been filled since only they know how to update a
3382 SEQUENCE. */
3384 void
3385 add_insn_after (rtx insn, rtx after)
3387 rtx next = NEXT_INSN (after);
3388 basic_block bb;
3390 gcc_assert (!optimize || !INSN_DELETED_P (after));
3392 NEXT_INSN (insn) = next;
3393 PREV_INSN (insn) = after;
3395 if (next)
3397 PREV_INSN (next) = insn;
3398 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3399 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3401 else if (last_insn == after)
3402 last_insn = insn;
3403 else
3405 struct sequence_stack *stack = seq_stack;
3406 /* Scan all pending sequences too. */
3407 for (; stack; stack = stack->next)
3408 if (after == stack->last)
3410 stack->last = insn;
3411 break;
3414 gcc_assert (stack);
3417 if (!BARRIER_P (after)
3418 && !BARRIER_P (insn)
3419 && (bb = BLOCK_FOR_INSN (after)))
3421 set_block_for_insn (insn, bb);
3422 if (INSN_P (insn))
3423 bb->flags |= BB_DIRTY;
3424 /* Should not happen as first in the BB is always
3425 either NOTE or LABEL. */
3426 if (BB_END (bb) == after
3427 /* Avoid clobbering of structure when creating new BB. */
3428 && !BARRIER_P (insn)
3429 && (!NOTE_P (insn)
3430 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3431 BB_END (bb) = insn;
3434 NEXT_INSN (after) = insn;
3435 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3437 rtx sequence = PATTERN (after);
3438 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3442 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3443 the previous should be the only functions called to insert an insn once
3444 delay slots have been filled since only they know how to update a
3445 SEQUENCE. */
3447 void
3448 add_insn_before (rtx insn, rtx before)
3450 rtx prev = PREV_INSN (before);
3451 basic_block bb;
3453 gcc_assert (!optimize || !INSN_DELETED_P (before));
3455 PREV_INSN (insn) = prev;
3456 NEXT_INSN (insn) = before;
3458 if (prev)
3460 NEXT_INSN (prev) = insn;
3461 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3463 rtx sequence = PATTERN (prev);
3464 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3467 else if (first_insn == before)
3468 first_insn = insn;
3469 else
3471 struct sequence_stack *stack = seq_stack;
3472 /* Scan all pending sequences too. */
3473 for (; stack; stack = stack->next)
3474 if (before == stack->first)
3476 stack->first = insn;
3477 break;
3480 gcc_assert (stack);
3483 if (!BARRIER_P (before)
3484 && !BARRIER_P (insn)
3485 && (bb = BLOCK_FOR_INSN (before)))
3487 set_block_for_insn (insn, bb);
3488 if (INSN_P (insn))
3489 bb->flags |= BB_DIRTY;
3490 /* Should not happen as first in the BB is always either NOTE or
3491 LABEL. */
3492 gcc_assert (BB_HEAD (bb) != insn
3493 /* Avoid clobbering of structure when creating new BB. */
3494 || BARRIER_P (insn)
3495 || (NOTE_P (insn)
3496 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3499 PREV_INSN (before) = insn;
3500 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3501 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3504 /* Remove an insn from its doubly-linked list. This function knows how
3505 to handle sequences. */
3506 void
3507 remove_insn (rtx insn)
3509 rtx next = NEXT_INSN (insn);
3510 rtx prev = PREV_INSN (insn);
3511 basic_block bb;
3513 if (prev)
3515 NEXT_INSN (prev) = next;
3516 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3518 rtx sequence = PATTERN (prev);
3519 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3522 else if (first_insn == insn)
3523 first_insn = next;
3524 else
3526 struct sequence_stack *stack = seq_stack;
3527 /* Scan all pending sequences too. */
3528 for (; stack; stack = stack->next)
3529 if (insn == stack->first)
3531 stack->first = next;
3532 break;
3535 gcc_assert (stack);
3538 if (next)
3540 PREV_INSN (next) = prev;
3541 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3542 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3544 else if (last_insn == insn)
3545 last_insn = prev;
3546 else
3548 struct sequence_stack *stack = seq_stack;
3549 /* Scan all pending sequences too. */
3550 for (; stack; stack = stack->next)
3551 if (insn == stack->last)
3553 stack->last = prev;
3554 break;
3557 gcc_assert (stack);
3559 if (!BARRIER_P (insn)
3560 && (bb = BLOCK_FOR_INSN (insn)))
3562 if (INSN_P (insn))
3563 bb->flags |= BB_DIRTY;
3564 if (BB_HEAD (bb) == insn)
3566 /* Never ever delete the basic block note without deleting whole
3567 basic block. */
3568 gcc_assert (!NOTE_P (insn));
3569 BB_HEAD (bb) = next;
3571 if (BB_END (bb) == insn)
3572 BB_END (bb) = prev;
3576 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3578 void
3579 add_function_usage_to (rtx call_insn, rtx call_fusage)
3581 gcc_assert (call_insn && CALL_P (call_insn));
3583 /* Put the register usage information on the CALL. If there is already
3584 some usage information, put ours at the end. */
3585 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3587 rtx link;
3589 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3590 link = XEXP (link, 1))
3593 XEXP (link, 1) = call_fusage;
3595 else
3596 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3599 /* Delete all insns made since FROM.
3600 FROM becomes the new last instruction. */
3602 void
3603 delete_insns_since (rtx from)
3605 if (from == 0)
3606 first_insn = 0;
3607 else
3608 NEXT_INSN (from) = 0;
3609 last_insn = from;
3612 /* This function is deprecated, please use sequences instead.
3614 Move a consecutive bunch of insns to a different place in the chain.
3615 The insns to be moved are those between FROM and TO.
3616 They are moved to a new position after the insn AFTER.
3617 AFTER must not be FROM or TO or any insn in between.
3619 This function does not know about SEQUENCEs and hence should not be
3620 called after delay-slot filling has been done. */
3622 void
3623 reorder_insns_nobb (rtx from, rtx to, rtx after)
3625 /* Splice this bunch out of where it is now. */
3626 if (PREV_INSN (from))
3627 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3628 if (NEXT_INSN (to))
3629 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3630 if (last_insn == to)
3631 last_insn = PREV_INSN (from);
3632 if (first_insn == from)
3633 first_insn = NEXT_INSN (to);
3635 /* Make the new neighbors point to it and it to them. */
3636 if (NEXT_INSN (after))
3637 PREV_INSN (NEXT_INSN (after)) = to;
3639 NEXT_INSN (to) = NEXT_INSN (after);
3640 PREV_INSN (from) = after;
3641 NEXT_INSN (after) = from;
3642 if (after == last_insn)
3643 last_insn = to;
3646 /* Same as function above, but take care to update BB boundaries. */
3647 void
3648 reorder_insns (rtx from, rtx to, rtx after)
3650 rtx prev = PREV_INSN (from);
3651 basic_block bb, bb2;
3653 reorder_insns_nobb (from, to, after);
3655 if (!BARRIER_P (after)
3656 && (bb = BLOCK_FOR_INSN (after)))
3658 rtx x;
3659 bb->flags |= BB_DIRTY;
3661 if (!BARRIER_P (from)
3662 && (bb2 = BLOCK_FOR_INSN (from)))
3664 if (BB_END (bb2) == to)
3665 BB_END (bb2) = prev;
3666 bb2->flags |= BB_DIRTY;
3669 if (BB_END (bb) == after)
3670 BB_END (bb) = to;
3672 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3673 if (!BARRIER_P (x))
3674 set_block_for_insn (x, bb);
3679 /* Emit insn(s) of given code and pattern
3680 at a specified place within the doubly-linked list.
3682 All of the emit_foo global entry points accept an object
3683 X which is either an insn list or a PATTERN of a single
3684 instruction.
3686 There are thus a few canonical ways to generate code and
3687 emit it at a specific place in the instruction stream. For
3688 example, consider the instruction named SPOT and the fact that
3689 we would like to emit some instructions before SPOT. We might
3690 do it like this:
3692 start_sequence ();
3693 ... emit the new instructions ...
3694 insns_head = get_insns ();
3695 end_sequence ();
3697 emit_insn_before (insns_head, SPOT);
3699 It used to be common to generate SEQUENCE rtl instead, but that
3700 is a relic of the past which no longer occurs. The reason is that
3701 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3702 generated would almost certainly die right after it was created. */
3704 /* Make X be output before the instruction BEFORE. */
3707 emit_insn_before_noloc (rtx x, rtx before)
3709 rtx last = before;
3710 rtx insn;
3712 gcc_assert (before);
3714 if (x == NULL_RTX)
3715 return last;
3717 switch (GET_CODE (x))
3719 case INSN:
3720 case JUMP_INSN:
3721 case CALL_INSN:
3722 case CODE_LABEL:
3723 case BARRIER:
3724 case NOTE:
3725 insn = x;
3726 while (insn)
3728 rtx next = NEXT_INSN (insn);
3729 add_insn_before (insn, before);
3730 last = insn;
3731 insn = next;
3733 break;
3735 #ifdef ENABLE_RTL_CHECKING
3736 case SEQUENCE:
3737 gcc_unreachable ();
3738 break;
3739 #endif
3741 default:
3742 last = make_insn_raw (x);
3743 add_insn_before (last, before);
3744 break;
3747 return last;
3750 /* Make an instruction with body X and code JUMP_INSN
3751 and output it before the instruction BEFORE. */
3754 emit_jump_insn_before_noloc (rtx x, rtx before)
3756 rtx insn, last = NULL_RTX;
3758 gcc_assert (before);
3760 switch (GET_CODE (x))
3762 case INSN:
3763 case JUMP_INSN:
3764 case CALL_INSN:
3765 case CODE_LABEL:
3766 case BARRIER:
3767 case NOTE:
3768 insn = x;
3769 while (insn)
3771 rtx next = NEXT_INSN (insn);
3772 add_insn_before (insn, before);
3773 last = insn;
3774 insn = next;
3776 break;
3778 #ifdef ENABLE_RTL_CHECKING
3779 case SEQUENCE:
3780 gcc_unreachable ();
3781 break;
3782 #endif
3784 default:
3785 last = make_jump_insn_raw (x);
3786 add_insn_before (last, before);
3787 break;
3790 return last;
3793 /* Make an instruction with body X and code CALL_INSN
3794 and output it before the instruction BEFORE. */
3797 emit_call_insn_before_noloc (rtx x, rtx before)
3799 rtx last = NULL_RTX, insn;
3801 gcc_assert (before);
3803 switch (GET_CODE (x))
3805 case INSN:
3806 case JUMP_INSN:
3807 case CALL_INSN:
3808 case CODE_LABEL:
3809 case BARRIER:
3810 case NOTE:
3811 insn = x;
3812 while (insn)
3814 rtx next = NEXT_INSN (insn);
3815 add_insn_before (insn, before);
3816 last = insn;
3817 insn = next;
3819 break;
3821 #ifdef ENABLE_RTL_CHECKING
3822 case SEQUENCE:
3823 gcc_unreachable ();
3824 break;
3825 #endif
3827 default:
3828 last = make_call_insn_raw (x);
3829 add_insn_before (last, before);
3830 break;
3833 return last;
3836 /* Make an insn of code BARRIER
3837 and output it before the insn BEFORE. */
3840 emit_barrier_before (rtx before)
3842 rtx insn = rtx_alloc (BARRIER);
3844 INSN_UID (insn) = cur_insn_uid++;
3846 add_insn_before (insn, before);
3847 return insn;
3850 /* Emit the label LABEL before the insn BEFORE. */
3853 emit_label_before (rtx label, rtx before)
3855 /* This can be called twice for the same label as a result of the
3856 confusion that follows a syntax error! So make it harmless. */
3857 if (INSN_UID (label) == 0)
3859 INSN_UID (label) = cur_insn_uid++;
3860 add_insn_before (label, before);
3863 return label;
3866 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3869 emit_note_before (int subtype, rtx before)
3871 rtx note = rtx_alloc (NOTE);
3872 INSN_UID (note) = cur_insn_uid++;
3873 #ifndef USE_MAPPED_LOCATION
3874 NOTE_SOURCE_FILE (note) = 0;
3875 #endif
3876 NOTE_LINE_NUMBER (note) = subtype;
3877 BLOCK_FOR_INSN (note) = NULL;
3879 add_insn_before (note, before);
3880 return note;
3883 /* Helper for emit_insn_after, handles lists of instructions
3884 efficiently. */
3886 static rtx emit_insn_after_1 (rtx, rtx);
3888 static rtx
3889 emit_insn_after_1 (rtx first, rtx after)
3891 rtx last;
3892 rtx after_after;
3893 basic_block bb;
3895 if (!BARRIER_P (after)
3896 && (bb = BLOCK_FOR_INSN (after)))
3898 bb->flags |= BB_DIRTY;
3899 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3900 if (!BARRIER_P (last))
3901 set_block_for_insn (last, bb);
3902 if (!BARRIER_P (last))
3903 set_block_for_insn (last, bb);
3904 if (BB_END (bb) == after)
3905 BB_END (bb) = last;
3907 else
3908 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3909 continue;
3911 after_after = NEXT_INSN (after);
3913 NEXT_INSN (after) = first;
3914 PREV_INSN (first) = after;
3915 NEXT_INSN (last) = after_after;
3916 if (after_after)
3917 PREV_INSN (after_after) = last;
3919 if (after == last_insn)
3920 last_insn = last;
3921 return last;
3924 /* Make X be output after the insn AFTER. */
3927 emit_insn_after_noloc (rtx x, rtx after)
3929 rtx last = after;
3931 gcc_assert (after);
3933 if (x == NULL_RTX)
3934 return last;
3936 switch (GET_CODE (x))
3938 case INSN:
3939 case JUMP_INSN:
3940 case CALL_INSN:
3941 case CODE_LABEL:
3942 case BARRIER:
3943 case NOTE:
3944 last = emit_insn_after_1 (x, after);
3945 break;
3947 #ifdef ENABLE_RTL_CHECKING
3948 case SEQUENCE:
3949 gcc_unreachable ();
3950 break;
3951 #endif
3953 default:
3954 last = make_insn_raw (x);
3955 add_insn_after (last, after);
3956 break;
3959 return last;
3963 /* Make an insn of code JUMP_INSN with body X
3964 and output it after the insn AFTER. */
3967 emit_jump_insn_after_noloc (rtx x, rtx after)
3969 rtx last;
3971 gcc_assert (after);
3973 switch (GET_CODE (x))
3975 case INSN:
3976 case JUMP_INSN:
3977 case CALL_INSN:
3978 case CODE_LABEL:
3979 case BARRIER:
3980 case NOTE:
3981 last = emit_insn_after_1 (x, after);
3982 break;
3984 #ifdef ENABLE_RTL_CHECKING
3985 case SEQUENCE:
3986 gcc_unreachable ();
3987 break;
3988 #endif
3990 default:
3991 last = make_jump_insn_raw (x);
3992 add_insn_after (last, after);
3993 break;
3996 return last;
3999 /* Make an instruction with body X and code CALL_INSN
4000 and output it after the instruction AFTER. */
4003 emit_call_insn_after_noloc (rtx x, rtx after)
4005 rtx last;
4007 gcc_assert (after);
4009 switch (GET_CODE (x))
4011 case INSN:
4012 case JUMP_INSN:
4013 case CALL_INSN:
4014 case CODE_LABEL:
4015 case BARRIER:
4016 case NOTE:
4017 last = emit_insn_after_1 (x, after);
4018 break;
4020 #ifdef ENABLE_RTL_CHECKING
4021 case SEQUENCE:
4022 gcc_unreachable ();
4023 break;
4024 #endif
4026 default:
4027 last = make_call_insn_raw (x);
4028 add_insn_after (last, after);
4029 break;
4032 return last;
4035 /* Make an insn of code BARRIER
4036 and output it after the insn AFTER. */
4039 emit_barrier_after (rtx after)
4041 rtx insn = rtx_alloc (BARRIER);
4043 INSN_UID (insn) = cur_insn_uid++;
4045 add_insn_after (insn, after);
4046 return insn;
4049 /* Emit the label LABEL after the insn AFTER. */
4052 emit_label_after (rtx label, rtx after)
4054 /* This can be called twice for the same label
4055 as a result of the confusion that follows a syntax error!
4056 So make it harmless. */
4057 if (INSN_UID (label) == 0)
4059 INSN_UID (label) = cur_insn_uid++;
4060 add_insn_after (label, after);
4063 return label;
4066 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4069 emit_note_after (int subtype, rtx after)
4071 rtx note = rtx_alloc (NOTE);
4072 INSN_UID (note) = cur_insn_uid++;
4073 #ifndef USE_MAPPED_LOCATION
4074 NOTE_SOURCE_FILE (note) = 0;
4075 #endif
4076 NOTE_LINE_NUMBER (note) = subtype;
4077 BLOCK_FOR_INSN (note) = NULL;
4078 add_insn_after (note, after);
4079 return note;
4082 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4084 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4086 rtx last = emit_insn_after_noloc (pattern, after);
4088 if (pattern == NULL_RTX || !loc)
4089 return last;
4091 after = NEXT_INSN (after);
4092 while (1)
4094 if (active_insn_p (after) && !INSN_LOCATOR (after))
4095 INSN_LOCATOR (after) = loc;
4096 if (after == last)
4097 break;
4098 after = NEXT_INSN (after);
4100 return last;
4103 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4105 emit_insn_after (rtx pattern, rtx after)
4107 if (INSN_P (after))
4108 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4109 else
4110 return emit_insn_after_noloc (pattern, after);
4113 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4115 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4117 rtx last = emit_jump_insn_after_noloc (pattern, after);
4119 if (pattern == NULL_RTX || !loc)
4120 return last;
4122 after = NEXT_INSN (after);
4123 while (1)
4125 if (active_insn_p (after) && !INSN_LOCATOR (after))
4126 INSN_LOCATOR (after) = loc;
4127 if (after == last)
4128 break;
4129 after = NEXT_INSN (after);
4131 return last;
4134 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4136 emit_jump_insn_after (rtx pattern, rtx after)
4138 if (INSN_P (after))
4139 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4140 else
4141 return emit_jump_insn_after_noloc (pattern, after);
4144 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4146 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4148 rtx last = emit_call_insn_after_noloc (pattern, after);
4150 if (pattern == NULL_RTX || !loc)
4151 return last;
4153 after = NEXT_INSN (after);
4154 while (1)
4156 if (active_insn_p (after) && !INSN_LOCATOR (after))
4157 INSN_LOCATOR (after) = loc;
4158 if (after == last)
4159 break;
4160 after = NEXT_INSN (after);
4162 return last;
4165 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4167 emit_call_insn_after (rtx pattern, rtx after)
4169 if (INSN_P (after))
4170 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4171 else
4172 return emit_call_insn_after_noloc (pattern, after);
4175 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4177 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4179 rtx first = PREV_INSN (before);
4180 rtx last = emit_insn_before_noloc (pattern, before);
4182 if (pattern == NULL_RTX || !loc)
4183 return last;
4185 first = NEXT_INSN (first);
4186 while (1)
4188 if (active_insn_p (first) && !INSN_LOCATOR (first))
4189 INSN_LOCATOR (first) = loc;
4190 if (first == last)
4191 break;
4192 first = NEXT_INSN (first);
4194 return last;
4197 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4199 emit_insn_before (rtx pattern, rtx before)
4201 if (INSN_P (before))
4202 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4203 else
4204 return emit_insn_before_noloc (pattern, before);
4207 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4209 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4211 rtx first = PREV_INSN (before);
4212 rtx last = emit_jump_insn_before_noloc (pattern, before);
4214 if (pattern == NULL_RTX)
4215 return last;
4217 first = NEXT_INSN (first);
4218 while (1)
4220 if (active_insn_p (first) && !INSN_LOCATOR (first))
4221 INSN_LOCATOR (first) = loc;
4222 if (first == last)
4223 break;
4224 first = NEXT_INSN (first);
4226 return last;
4229 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4231 emit_jump_insn_before (rtx pattern, rtx before)
4233 if (INSN_P (before))
4234 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4235 else
4236 return emit_jump_insn_before_noloc (pattern, before);
4239 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4241 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4243 rtx first = PREV_INSN (before);
4244 rtx last = emit_call_insn_before_noloc (pattern, before);
4246 if (pattern == NULL_RTX)
4247 return last;
4249 first = NEXT_INSN (first);
4250 while (1)
4252 if (active_insn_p (first) && !INSN_LOCATOR (first))
4253 INSN_LOCATOR (first) = loc;
4254 if (first == last)
4255 break;
4256 first = NEXT_INSN (first);
4258 return last;
4261 /* like emit_call_insn_before_noloc,
4262 but set insn_locator according to before. */
4264 emit_call_insn_before (rtx pattern, rtx before)
4266 if (INSN_P (before))
4267 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4268 else
4269 return emit_call_insn_before_noloc (pattern, before);
4272 /* Take X and emit it at the end of the doubly-linked
4273 INSN list.
4275 Returns the last insn emitted. */
4278 emit_insn (rtx x)
4280 rtx last = last_insn;
4281 rtx insn;
4283 if (x == NULL_RTX)
4284 return last;
4286 switch (GET_CODE (x))
4288 case INSN:
4289 case JUMP_INSN:
4290 case CALL_INSN:
4291 case CODE_LABEL:
4292 case BARRIER:
4293 case NOTE:
4294 insn = x;
4295 while (insn)
4297 rtx next = NEXT_INSN (insn);
4298 add_insn (insn);
4299 last = insn;
4300 insn = next;
4302 break;
4304 #ifdef ENABLE_RTL_CHECKING
4305 case SEQUENCE:
4306 gcc_unreachable ();
4307 break;
4308 #endif
4310 default:
4311 last = make_insn_raw (x);
4312 add_insn (last);
4313 break;
4316 return last;
4319 /* Make an insn of code JUMP_INSN with pattern X
4320 and add it to the end of the doubly-linked list. */
4323 emit_jump_insn (rtx x)
4325 rtx last = NULL_RTX, insn;
4327 switch (GET_CODE (x))
4329 case INSN:
4330 case JUMP_INSN:
4331 case CALL_INSN:
4332 case CODE_LABEL:
4333 case BARRIER:
4334 case NOTE:
4335 insn = x;
4336 while (insn)
4338 rtx next = NEXT_INSN (insn);
4339 add_insn (insn);
4340 last = insn;
4341 insn = next;
4343 break;
4345 #ifdef ENABLE_RTL_CHECKING
4346 case SEQUENCE:
4347 gcc_unreachable ();
4348 break;
4349 #endif
4351 default:
4352 last = make_jump_insn_raw (x);
4353 add_insn (last);
4354 break;
4357 return last;
4360 /* Make an insn of code CALL_INSN with pattern X
4361 and add it to the end of the doubly-linked list. */
4364 emit_call_insn (rtx x)
4366 rtx insn;
4368 switch (GET_CODE (x))
4370 case INSN:
4371 case JUMP_INSN:
4372 case CALL_INSN:
4373 case CODE_LABEL:
4374 case BARRIER:
4375 case NOTE:
4376 insn = emit_insn (x);
4377 break;
4379 #ifdef ENABLE_RTL_CHECKING
4380 case SEQUENCE:
4381 gcc_unreachable ();
4382 break;
4383 #endif
4385 default:
4386 insn = make_call_insn_raw (x);
4387 add_insn (insn);
4388 break;
4391 return insn;
4394 /* Add the label LABEL to the end of the doubly-linked list. */
4397 emit_label (rtx label)
4399 /* This can be called twice for the same label
4400 as a result of the confusion that follows a syntax error!
4401 So make it harmless. */
4402 if (INSN_UID (label) == 0)
4404 INSN_UID (label) = cur_insn_uid++;
4405 add_insn (label);
4407 return label;
4410 /* Make an insn of code BARRIER
4411 and add it to the end of the doubly-linked list. */
4414 emit_barrier (void)
4416 rtx barrier = rtx_alloc (BARRIER);
4417 INSN_UID (barrier) = cur_insn_uid++;
4418 add_insn (barrier);
4419 return barrier;
4422 /* Make line numbering NOTE insn for LOCATION add it to the end
4423 of the doubly-linked list, but only if line-numbers are desired for
4424 debugging info and it doesn't match the previous one. */
4427 emit_line_note (location_t location)
4429 rtx note;
4431 #ifdef USE_MAPPED_LOCATION
4432 if (location == last_location)
4433 return NULL_RTX;
4434 #else
4435 if (location.file && last_location.file
4436 && !strcmp (location.file, last_location.file)
4437 && location.line == last_location.line)
4438 return NULL_RTX;
4439 #endif
4440 last_location = location;
4442 if (no_line_numbers)
4444 cur_insn_uid++;
4445 return NULL_RTX;
4448 #ifdef USE_MAPPED_LOCATION
4449 note = emit_note ((int) location);
4450 #else
4451 note = emit_note (location.line);
4452 NOTE_SOURCE_FILE (note) = location.file;
4453 #endif
4455 return note;
4458 /* Emit a copy of note ORIG. */
4461 emit_note_copy (rtx orig)
4463 rtx note;
4465 note = rtx_alloc (NOTE);
4467 INSN_UID (note) = cur_insn_uid++;
4468 NOTE_DATA (note) = NOTE_DATA (orig);
4469 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4470 BLOCK_FOR_INSN (note) = NULL;
4471 add_insn (note);
4473 return note;
4476 /* Make an insn of code NOTE or type NOTE_NO
4477 and add it to the end of the doubly-linked list. */
4480 emit_note (int note_no)
4482 rtx note;
4484 note = rtx_alloc (NOTE);
4485 INSN_UID (note) = cur_insn_uid++;
4486 NOTE_LINE_NUMBER (note) = note_no;
4487 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4488 BLOCK_FOR_INSN (note) = NULL;
4489 add_insn (note);
4490 return note;
4493 /* Cause next statement to emit a line note even if the line number
4494 has not changed. */
4496 void
4497 force_next_line_note (void)
4499 #ifdef USE_MAPPED_LOCATION
4500 last_location = -1;
4501 #else
4502 last_location.line = -1;
4503 #endif
4506 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4507 note of this type already exists, remove it first. */
4510 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4512 rtx note = find_reg_note (insn, kind, NULL_RTX);
4514 switch (kind)
4516 case REG_EQUAL:
4517 case REG_EQUIV:
4518 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4519 has multiple sets (some callers assume single_set
4520 means the insn only has one set, when in fact it
4521 means the insn only has one * useful * set). */
4522 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4524 gcc_assert (!note);
4525 return NULL_RTX;
4528 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4529 It serves no useful purpose and breaks eliminate_regs. */
4530 if (GET_CODE (datum) == ASM_OPERANDS)
4531 return NULL_RTX;
4532 break;
4534 default:
4535 break;
4538 if (note)
4540 XEXP (note, 0) = datum;
4541 return note;
4544 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4545 return REG_NOTES (insn);
4548 /* Return an indication of which type of insn should have X as a body.
4549 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4551 static enum rtx_code
4552 classify_insn (rtx x)
4554 if (LABEL_P (x))
4555 return CODE_LABEL;
4556 if (GET_CODE (x) == CALL)
4557 return CALL_INSN;
4558 if (GET_CODE (x) == RETURN)
4559 return JUMP_INSN;
4560 if (GET_CODE (x) == SET)
4562 if (SET_DEST (x) == pc_rtx)
4563 return JUMP_INSN;
4564 else if (GET_CODE (SET_SRC (x)) == CALL)
4565 return CALL_INSN;
4566 else
4567 return INSN;
4569 if (GET_CODE (x) == PARALLEL)
4571 int j;
4572 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4573 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4574 return CALL_INSN;
4575 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4576 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4577 return JUMP_INSN;
4578 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4579 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4580 return CALL_INSN;
4582 return INSN;
4585 /* Emit the rtl pattern X as an appropriate kind of insn.
4586 If X is a label, it is simply added into the insn chain. */
4589 emit (rtx x)
4591 enum rtx_code code = classify_insn (x);
4593 switch (code)
4595 case CODE_LABEL:
4596 return emit_label (x);
4597 case INSN:
4598 return emit_insn (x);
4599 case JUMP_INSN:
4601 rtx insn = emit_jump_insn (x);
4602 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4603 return emit_barrier ();
4604 return insn;
4606 case CALL_INSN:
4607 return emit_call_insn (x);
4608 default:
4609 gcc_unreachable ();
4613 /* Space for free sequence stack entries. */
4614 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4616 /* Begin emitting insns to a sequence. If this sequence will contain
4617 something that might cause the compiler to pop arguments to function
4618 calls (because those pops have previously been deferred; see
4619 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4620 before calling this function. That will ensure that the deferred
4621 pops are not accidentally emitted in the middle of this sequence. */
4623 void
4624 start_sequence (void)
4626 struct sequence_stack *tem;
4628 if (free_sequence_stack != NULL)
4630 tem = free_sequence_stack;
4631 free_sequence_stack = tem->next;
4633 else
4634 tem = ggc_alloc (sizeof (struct sequence_stack));
4636 tem->next = seq_stack;
4637 tem->first = first_insn;
4638 tem->last = last_insn;
4640 seq_stack = tem;
4642 first_insn = 0;
4643 last_insn = 0;
4646 /* Set up the insn chain starting with FIRST as the current sequence,
4647 saving the previously current one. See the documentation for
4648 start_sequence for more information about how to use this function. */
4650 void
4651 push_to_sequence (rtx first)
4653 rtx last;
4655 start_sequence ();
4657 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4659 first_insn = first;
4660 last_insn = last;
4663 /* Set up the outer-level insn chain
4664 as the current sequence, saving the previously current one. */
4666 void
4667 push_topmost_sequence (void)
4669 struct sequence_stack *stack, *top = NULL;
4671 start_sequence ();
4673 for (stack = seq_stack; stack; stack = stack->next)
4674 top = stack;
4676 first_insn = top->first;
4677 last_insn = top->last;
4680 /* After emitting to the outer-level insn chain, update the outer-level
4681 insn chain, and restore the previous saved state. */
4683 void
4684 pop_topmost_sequence (void)
4686 struct sequence_stack *stack, *top = NULL;
4688 for (stack = seq_stack; stack; stack = stack->next)
4689 top = stack;
4691 top->first = first_insn;
4692 top->last = last_insn;
4694 end_sequence ();
4697 /* After emitting to a sequence, restore previous saved state.
4699 To get the contents of the sequence just made, you must call
4700 `get_insns' *before* calling here.
4702 If the compiler might have deferred popping arguments while
4703 generating this sequence, and this sequence will not be immediately
4704 inserted into the instruction stream, use do_pending_stack_adjust
4705 before calling get_insns. That will ensure that the deferred
4706 pops are inserted into this sequence, and not into some random
4707 location in the instruction stream. See INHIBIT_DEFER_POP for more
4708 information about deferred popping of arguments. */
4710 void
4711 end_sequence (void)
4713 struct sequence_stack *tem = seq_stack;
4715 first_insn = tem->first;
4716 last_insn = tem->last;
4717 seq_stack = tem->next;
4719 memset (tem, 0, sizeof (*tem));
4720 tem->next = free_sequence_stack;
4721 free_sequence_stack = tem;
4724 /* Return 1 if currently emitting into a sequence. */
4727 in_sequence_p (void)
4729 return seq_stack != 0;
4732 /* Put the various virtual registers into REGNO_REG_RTX. */
4734 static void
4735 init_virtual_regs (struct emit_status *es)
4737 rtx *ptr = es->x_regno_reg_rtx;
4738 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4739 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4740 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4741 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4742 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4746 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4747 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4748 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4749 static int copy_insn_n_scratches;
4751 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4752 copied an ASM_OPERANDS.
4753 In that case, it is the original input-operand vector. */
4754 static rtvec orig_asm_operands_vector;
4756 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4757 copied an ASM_OPERANDS.
4758 In that case, it is the copied input-operand vector. */
4759 static rtvec copy_asm_operands_vector;
4761 /* Likewise for the constraints vector. */
4762 static rtvec orig_asm_constraints_vector;
4763 static rtvec copy_asm_constraints_vector;
4765 /* Recursively create a new copy of an rtx for copy_insn.
4766 This function differs from copy_rtx in that it handles SCRATCHes and
4767 ASM_OPERANDs properly.
4768 Normally, this function is not used directly; use copy_insn as front end.
4769 However, you could first copy an insn pattern with copy_insn and then use
4770 this function afterwards to properly copy any REG_NOTEs containing
4771 SCRATCHes. */
4774 copy_insn_1 (rtx orig)
4776 rtx copy;
4777 int i, j;
4778 RTX_CODE code;
4779 const char *format_ptr;
4781 code = GET_CODE (orig);
4783 switch (code)
4785 case REG:
4786 case CONST_INT:
4787 case CONST_DOUBLE:
4788 case CONST_VECTOR:
4789 case SYMBOL_REF:
4790 case CODE_LABEL:
4791 case PC:
4792 case CC0:
4793 return orig;
4794 case CLOBBER:
4795 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4796 return orig;
4797 break;
4799 case SCRATCH:
4800 for (i = 0; i < copy_insn_n_scratches; i++)
4801 if (copy_insn_scratch_in[i] == orig)
4802 return copy_insn_scratch_out[i];
4803 break;
4805 case CONST:
4806 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4807 a LABEL_REF, it isn't sharable. */
4808 if (GET_CODE (XEXP (orig, 0)) == PLUS
4809 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4810 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4811 return orig;
4812 break;
4814 /* A MEM with a constant address is not sharable. The problem is that
4815 the constant address may need to be reloaded. If the mem is shared,
4816 then reloading one copy of this mem will cause all copies to appear
4817 to have been reloaded. */
4819 default:
4820 break;
4823 /* Copy the various flags, fields, and other information. We assume
4824 that all fields need copying, and then clear the fields that should
4825 not be copied. That is the sensible default behavior, and forces
4826 us to explicitly document why we are *not* copying a flag. */
4827 copy = shallow_copy_rtx (orig);
4829 /* We do not copy the USED flag, which is used as a mark bit during
4830 walks over the RTL. */
4831 RTX_FLAG (copy, used) = 0;
4833 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4834 if (INSN_P (orig))
4836 RTX_FLAG (copy, jump) = 0;
4837 RTX_FLAG (copy, call) = 0;
4838 RTX_FLAG (copy, frame_related) = 0;
4841 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4843 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4844 switch (*format_ptr++)
4846 case 'e':
4847 if (XEXP (orig, i) != NULL)
4848 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4849 break;
4851 case 'E':
4852 case 'V':
4853 if (XVEC (orig, i) == orig_asm_constraints_vector)
4854 XVEC (copy, i) = copy_asm_constraints_vector;
4855 else if (XVEC (orig, i) == orig_asm_operands_vector)
4856 XVEC (copy, i) = copy_asm_operands_vector;
4857 else if (XVEC (orig, i) != NULL)
4859 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4860 for (j = 0; j < XVECLEN (copy, i); j++)
4861 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4863 break;
4865 case 't':
4866 case 'w':
4867 case 'i':
4868 case 's':
4869 case 'S':
4870 case 'u':
4871 case '0':
4872 /* These are left unchanged. */
4873 break;
4875 default:
4876 gcc_unreachable ();
4879 if (code == SCRATCH)
4881 i = copy_insn_n_scratches++;
4882 gcc_assert (i < MAX_RECOG_OPERANDS);
4883 copy_insn_scratch_in[i] = orig;
4884 copy_insn_scratch_out[i] = copy;
4886 else if (code == ASM_OPERANDS)
4888 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4889 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4890 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4891 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4894 return copy;
4897 /* Create a new copy of an rtx.
4898 This function differs from copy_rtx in that it handles SCRATCHes and
4899 ASM_OPERANDs properly.
4900 INSN doesn't really have to be a full INSN; it could be just the
4901 pattern. */
4903 copy_insn (rtx insn)
4905 copy_insn_n_scratches = 0;
4906 orig_asm_operands_vector = 0;
4907 orig_asm_constraints_vector = 0;
4908 copy_asm_operands_vector = 0;
4909 copy_asm_constraints_vector = 0;
4910 return copy_insn_1 (insn);
4913 /* Initialize data structures and variables in this file
4914 before generating rtl for each function. */
4916 void
4917 init_emit (void)
4919 struct function *f = cfun;
4921 f->emit = ggc_alloc (sizeof (struct emit_status));
4922 first_insn = NULL;
4923 last_insn = NULL;
4924 cur_insn_uid = 1;
4925 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4926 last_location = UNKNOWN_LOCATION;
4927 first_label_num = label_num;
4928 seq_stack = NULL;
4930 /* Init the tables that describe all the pseudo regs. */
4932 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4934 f->emit->regno_pointer_align
4935 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
4936 * sizeof (unsigned char));
4938 regno_reg_rtx
4939 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
4941 /* Put copies of all the hard registers into regno_reg_rtx. */
4942 memcpy (regno_reg_rtx,
4943 static_regno_reg_rtx,
4944 FIRST_PSEUDO_REGISTER * sizeof (rtx));
4946 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4947 init_virtual_regs (f->emit);
4949 /* Indicate that the virtual registers and stack locations are
4950 all pointers. */
4951 REG_POINTER (stack_pointer_rtx) = 1;
4952 REG_POINTER (frame_pointer_rtx) = 1;
4953 REG_POINTER (hard_frame_pointer_rtx) = 1;
4954 REG_POINTER (arg_pointer_rtx) = 1;
4956 REG_POINTER (virtual_incoming_args_rtx) = 1;
4957 REG_POINTER (virtual_stack_vars_rtx) = 1;
4958 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4959 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4960 REG_POINTER (virtual_cfa_rtx) = 1;
4962 #ifdef STACK_BOUNDARY
4963 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4964 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4965 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4966 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4968 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4969 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4970 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4971 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4972 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4973 #endif
4975 #ifdef INIT_EXPANDERS
4976 INIT_EXPANDERS;
4977 #endif
4980 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
4982 static rtx
4983 gen_const_vector (enum machine_mode mode, int constant)
4985 rtx tem;
4986 rtvec v;
4987 int units, i;
4988 enum machine_mode inner;
4990 units = GET_MODE_NUNITS (mode);
4991 inner = GET_MODE_INNER (mode);
4993 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
4995 v = rtvec_alloc (units);
4997 /* We need to call this function after we set the scalar const_tiny_rtx
4998 entries. */
4999 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5001 for (i = 0; i < units; ++i)
5002 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5004 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5005 return tem;
5008 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5009 all elements are zero, and the one vector when all elements are one. */
5011 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5013 enum machine_mode inner = GET_MODE_INNER (mode);
5014 int nunits = GET_MODE_NUNITS (mode);
5015 rtx x;
5016 int i;
5018 /* Check to see if all of the elements have the same value. */
5019 x = RTVEC_ELT (v, nunits - 1);
5020 for (i = nunits - 2; i >= 0; i--)
5021 if (RTVEC_ELT (v, i) != x)
5022 break;
5024 /* If the values are all the same, check to see if we can use one of the
5025 standard constant vectors. */
5026 if (i == -1)
5028 if (x == CONST0_RTX (inner))
5029 return CONST0_RTX (mode);
5030 else if (x == CONST1_RTX (inner))
5031 return CONST1_RTX (mode);
5034 return gen_rtx_raw_CONST_VECTOR (mode, v);
5037 /* Create some permanent unique rtl objects shared between all functions.
5038 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5040 void
5041 init_emit_once (int line_numbers)
5043 int i;
5044 enum machine_mode mode;
5045 enum machine_mode double_mode;
5047 /* We need reg_raw_mode, so initialize the modes now. */
5048 init_reg_modes_once ();
5050 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5051 tables. */
5052 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5053 const_int_htab_eq, NULL);
5055 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5056 const_double_htab_eq, NULL);
5058 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5059 mem_attrs_htab_eq, NULL);
5060 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5061 reg_attrs_htab_eq, NULL);
5063 no_line_numbers = ! line_numbers;
5065 /* Compute the word and byte modes. */
5067 byte_mode = VOIDmode;
5068 word_mode = VOIDmode;
5069 double_mode = VOIDmode;
5071 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5072 mode != VOIDmode;
5073 mode = GET_MODE_WIDER_MODE (mode))
5075 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5076 && byte_mode == VOIDmode)
5077 byte_mode = mode;
5079 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5080 && word_mode == VOIDmode)
5081 word_mode = mode;
5084 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5085 mode != VOIDmode;
5086 mode = GET_MODE_WIDER_MODE (mode))
5088 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5089 && double_mode == VOIDmode)
5090 double_mode = mode;
5093 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5095 /* Assign register numbers to the globally defined register rtx.
5096 This must be done at runtime because the register number field
5097 is in a union and some compilers can't initialize unions. */
5099 pc_rtx = gen_rtx_PC (VOIDmode);
5100 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5101 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5102 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5103 if (hard_frame_pointer_rtx == 0)
5104 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5105 HARD_FRAME_POINTER_REGNUM);
5106 if (arg_pointer_rtx == 0)
5107 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5108 virtual_incoming_args_rtx =
5109 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5110 virtual_stack_vars_rtx =
5111 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5112 virtual_stack_dynamic_rtx =
5113 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5114 virtual_outgoing_args_rtx =
5115 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5116 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5118 /* Initialize RTL for commonly used hard registers. These are
5119 copied into regno_reg_rtx as we begin to compile each function. */
5120 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5121 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5123 #ifdef INIT_EXPANDERS
5124 /* This is to initialize {init|mark|free}_machine_status before the first
5125 call to push_function_context_to. This is needed by the Chill front
5126 end which calls push_function_context_to before the first call to
5127 init_function_start. */
5128 INIT_EXPANDERS;
5129 #endif
5131 /* Create the unique rtx's for certain rtx codes and operand values. */
5133 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5134 tries to use these variables. */
5135 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5136 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5137 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5139 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5140 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5141 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5142 else
5143 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5145 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5146 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5147 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5148 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5149 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5150 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5151 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5153 dconsthalf = dconst1;
5154 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5156 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5158 /* Initialize mathematical constants for constant folding builtins.
5159 These constants need to be given to at least 160 bits precision. */
5160 real_from_string (&dconstsqrt2,
5161 "1.4142135623730950488016887242096980785696718753769480731766797379907");
5162 real_from_string (&dconste,
5163 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5165 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5167 REAL_VALUE_TYPE *r =
5168 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5170 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5171 mode != VOIDmode;
5172 mode = GET_MODE_WIDER_MODE (mode))
5173 const_tiny_rtx[i][(int) mode] =
5174 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5176 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5177 mode != VOIDmode;
5178 mode = GET_MODE_WIDER_MODE (mode))
5179 const_tiny_rtx[i][(int) mode] =
5180 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5182 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5184 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5185 mode != VOIDmode;
5186 mode = GET_MODE_WIDER_MODE (mode))
5187 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5189 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5190 mode != VOIDmode;
5191 mode = GET_MODE_WIDER_MODE (mode))
5192 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5195 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5196 mode != VOIDmode;
5197 mode = GET_MODE_WIDER_MODE (mode))
5199 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5200 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5203 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5204 mode != VOIDmode;
5205 mode = GET_MODE_WIDER_MODE (mode))
5207 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5208 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5211 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5212 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5213 const_tiny_rtx[0][i] = const0_rtx;
5215 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5216 if (STORE_FLAG_VALUE == 1)
5217 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5219 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5220 return_address_pointer_rtx
5221 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5222 #endif
5224 #ifdef STATIC_CHAIN_REGNUM
5225 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5227 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5228 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5229 static_chain_incoming_rtx
5230 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5231 else
5232 #endif
5233 static_chain_incoming_rtx = static_chain_rtx;
5234 #endif
5236 #ifdef STATIC_CHAIN
5237 static_chain_rtx = STATIC_CHAIN;
5239 #ifdef STATIC_CHAIN_INCOMING
5240 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5241 #else
5242 static_chain_incoming_rtx = static_chain_rtx;
5243 #endif
5244 #endif
5246 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5247 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5250 /* Produce exact duplicate of insn INSN after AFTER.
5251 Care updating of libcall regions if present. */
5254 emit_copy_of_insn_after (rtx insn, rtx after)
5256 rtx new;
5257 rtx note1, note2, link;
5259 switch (GET_CODE (insn))
5261 case INSN:
5262 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5263 break;
5265 case JUMP_INSN:
5266 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5267 break;
5269 case CALL_INSN:
5270 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5271 if (CALL_INSN_FUNCTION_USAGE (insn))
5272 CALL_INSN_FUNCTION_USAGE (new)
5273 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5274 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5275 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5276 break;
5278 default:
5279 gcc_unreachable ();
5282 /* Update LABEL_NUSES. */
5283 mark_jump_label (PATTERN (new), new, 0);
5285 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5287 /* If the old insn is frame related, then so is the new one. This is
5288 primarily needed for IA-64 unwind info which marks epilogue insns,
5289 which may be duplicated by the basic block reordering code. */
5290 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5292 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5293 make them. */
5294 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5295 if (REG_NOTE_KIND (link) != REG_LABEL)
5297 if (GET_CODE (link) == EXPR_LIST)
5298 REG_NOTES (new)
5299 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5300 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
5301 else
5302 REG_NOTES (new)
5303 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5304 XEXP (link, 0), REG_NOTES (new));
5307 /* Fix the libcall sequences. */
5308 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5310 rtx p = new;
5311 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5312 p = PREV_INSN (p);
5313 XEXP (note1, 0) = p;
5314 XEXP (note2, 0) = new;
5316 INSN_CODE (new) = INSN_CODE (insn);
5317 return new;
5320 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5322 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5324 if (hard_reg_clobbers[mode][regno])
5325 return hard_reg_clobbers[mode][regno];
5326 else
5327 return (hard_reg_clobbers[mode][regno] =
5328 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5331 #include "gt-emit-rtl.h"