gcc/ChangeLog ---------------------------------------------------------
[official-gcc.git] / gcc / dwarf2out.c
blob3f2dbba930cdecfa0170e61ba3726bfa1b08dc21
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
113 dwarf2out_do_frame (void)
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_pubtypes_section;
160 static GTY(()) section *debug_str_section;
161 static GTY(()) section *debug_ranges_section;
162 static GTY(()) section *debug_frame_section;
164 /* How to start an assembler comment. */
165 #ifndef ASM_COMMENT_START
166 #define ASM_COMMENT_START ";#"
167 #endif
169 typedef struct dw_cfi_struct *dw_cfi_ref;
170 typedef struct dw_fde_struct *dw_fde_ref;
171 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173 /* Call frames are described using a sequence of Call Frame
174 Information instructions. The register number, offset
175 and address fields are provided as possible operands;
176 their use is selected by the opcode field. */
178 enum dw_cfi_oprnd_type {
179 dw_cfi_oprnd_unused,
180 dw_cfi_oprnd_reg_num,
181 dw_cfi_oprnd_offset,
182 dw_cfi_oprnd_addr,
183 dw_cfi_oprnd_loc
186 typedef union dw_cfi_oprnd_struct GTY(())
188 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
189 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
190 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
191 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 dw_cfi_oprnd;
195 typedef struct dw_cfi_struct GTY(())
197 dw_cfi_ref dw_cfi_next;
198 enum dwarf_call_frame_info dw_cfi_opc;
199 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
200 dw_cfi_oprnd1;
201 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
202 dw_cfi_oprnd2;
204 dw_cfi_node;
206 /* This is how we define the location of the CFA. We use to handle it
207 as REG + OFFSET all the time, but now it can be more complex.
208 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
209 Instead of passing around REG and OFFSET, we pass a copy
210 of this structure. */
211 typedef struct cfa_loc GTY(())
213 HOST_WIDE_INT offset;
214 HOST_WIDE_INT base_offset;
215 unsigned int reg;
216 int indirect; /* 1 if CFA is accessed via a dereference. */
217 } dw_cfa_location;
219 /* All call frame descriptions (FDE's) in the GCC generated DWARF
220 refer to a single Common Information Entry (CIE), defined at
221 the beginning of the .debug_frame section. This use of a single
222 CIE obviates the need to keep track of multiple CIE's
223 in the DWARF generation routines below. */
225 typedef struct dw_fde_struct GTY(())
227 tree decl;
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 const char *dw_fde_hot_section_label;
232 const char *dw_fde_hot_section_end_label;
233 const char *dw_fde_unlikely_section_label;
234 const char *dw_fde_unlikely_section_end_label;
235 bool dw_fde_switched_sections;
236 dw_cfi_ref dw_fde_cfi;
237 unsigned funcdef_number;
238 unsigned all_throwers_are_sibcalls : 1;
239 unsigned nothrow : 1;
240 unsigned uses_eh_lsda : 1;
242 dw_fde_node;
244 /* Maximum size (in bytes) of an artificially generated label. */
245 #define MAX_ARTIFICIAL_LABEL_BYTES 30
247 /* The size of addresses as they appear in the Dwarf 2 data.
248 Some architectures use word addresses to refer to code locations,
249 but Dwarf 2 info always uses byte addresses. On such machines,
250 Dwarf 2 addresses need to be larger than the architecture's
251 pointers. */
252 #ifndef DWARF2_ADDR_SIZE
253 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
254 #endif
256 /* The size in bytes of a DWARF field indicating an offset or length
257 relative to a debug info section, specified to be 4 bytes in the
258 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
259 as PTR_SIZE. */
261 #ifndef DWARF_OFFSET_SIZE
262 #define DWARF_OFFSET_SIZE 4
263 #endif
265 /* According to the (draft) DWARF 3 specification, the initial length
266 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
267 bytes are 0xffffffff, followed by the length stored in the next 8
268 bytes.
270 However, the SGI/MIPS ABI uses an initial length which is equal to
271 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
273 #ifndef DWARF_INITIAL_LENGTH_SIZE
274 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
275 #endif
277 #define DWARF_VERSION 2
279 /* Round SIZE up to the nearest BOUNDARY. */
280 #define DWARF_ROUND(SIZE,BOUNDARY) \
281 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
283 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
284 #ifndef DWARF_CIE_DATA_ALIGNMENT
285 #ifdef STACK_GROWS_DOWNWARD
286 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
287 #else
288 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
289 #endif
290 #endif
292 /* CIE identifier. */
293 #if HOST_BITS_PER_WIDE_INT >= 64
294 #define DWARF_CIE_ID \
295 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
296 #else
297 #define DWARF_CIE_ID DW_CIE_ID
298 #endif
300 /* A pointer to the base of a table that contains frame description
301 information for each routine. */
302 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
304 /* Number of elements currently allocated for fde_table. */
305 static GTY(()) unsigned fde_table_allocated;
307 /* Number of elements in fde_table currently in use. */
308 static GTY(()) unsigned fde_table_in_use;
310 /* Size (in elements) of increments by which we may expand the
311 fde_table. */
312 #define FDE_TABLE_INCREMENT 256
314 /* A list of call frame insns for the CIE. */
315 static GTY(()) dw_cfi_ref cie_cfi_head;
317 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
318 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
319 attribute that accelerates the lookup of the FDE associated
320 with the subprogram. This variable holds the table index of the FDE
321 associated with the current function (body) definition. */
322 static unsigned current_funcdef_fde;
323 #endif
325 struct indirect_string_node GTY(())
327 const char *str;
328 unsigned int refcount;
329 unsigned int form;
330 char *label;
333 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
335 static GTY(()) int dw2_string_counter;
336 static GTY(()) unsigned long dwarf2out_cfi_label_num;
338 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
340 /* Forward declarations for functions defined in this file. */
342 static char *stripattributes (const char *);
343 static const char *dwarf_cfi_name (unsigned);
344 static dw_cfi_ref new_cfi (void);
345 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
346 static void add_fde_cfi (const char *, dw_cfi_ref);
347 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
348 static void lookup_cfa (dw_cfa_location *);
349 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
350 static void initial_return_save (rtx);
351 static HOST_WIDE_INT stack_adjust_offset (rtx);
352 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
353 static void output_call_frame_info (int);
354 static void dwarf2out_stack_adjust (rtx, bool);
355 static void flush_queued_reg_saves (void);
356 static bool clobbers_queued_reg_save (rtx);
357 static void dwarf2out_frame_debug_expr (rtx, const char *);
359 /* Support for complex CFA locations. */
360 static void output_cfa_loc (dw_cfi_ref);
361 static void get_cfa_from_loc_descr (dw_cfa_location *,
362 struct dw_loc_descr_struct *);
363 static struct dw_loc_descr_struct *build_cfa_loc
364 (dw_cfa_location *, HOST_WIDE_INT);
365 static void def_cfa_1 (const char *, dw_cfa_location *);
367 /* How to start an assembler comment. */
368 #ifndef ASM_COMMENT_START
369 #define ASM_COMMENT_START ";#"
370 #endif
372 /* Data and reference forms for relocatable data. */
373 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
374 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
376 #ifndef DEBUG_FRAME_SECTION
377 #define DEBUG_FRAME_SECTION ".debug_frame"
378 #endif
380 #ifndef FUNC_BEGIN_LABEL
381 #define FUNC_BEGIN_LABEL "LFB"
382 #endif
384 #ifndef FUNC_END_LABEL
385 #define FUNC_END_LABEL "LFE"
386 #endif
388 #ifndef FRAME_BEGIN_LABEL
389 #define FRAME_BEGIN_LABEL "Lframe"
390 #endif
391 #define CIE_AFTER_SIZE_LABEL "LSCIE"
392 #define CIE_END_LABEL "LECIE"
393 #define FDE_LABEL "LSFDE"
394 #define FDE_AFTER_SIZE_LABEL "LASFDE"
395 #define FDE_END_LABEL "LEFDE"
396 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
397 #define LINE_NUMBER_END_LABEL "LELT"
398 #define LN_PROLOG_AS_LABEL "LASLTP"
399 #define LN_PROLOG_END_LABEL "LELTP"
400 #define DIE_LABEL_PREFIX "DW"
402 /* The DWARF 2 CFA column which tracks the return address. Normally this
403 is the column for PC, or the first column after all of the hard
404 registers. */
405 #ifndef DWARF_FRAME_RETURN_COLUMN
406 #ifdef PC_REGNUM
407 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
408 #else
409 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
410 #endif
411 #endif
413 /* The mapping from gcc register number to DWARF 2 CFA column number. By
414 default, we just provide columns for all registers. */
415 #ifndef DWARF_FRAME_REGNUM
416 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
417 #endif
419 /* Hook used by __throw. */
422 expand_builtin_dwarf_sp_column (void)
424 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
425 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
428 /* Return a pointer to a copy of the section string name S with all
429 attributes stripped off, and an asterisk prepended (for assemble_name). */
431 static inline char *
432 stripattributes (const char *s)
434 char *stripped = XNEWVEC (char, strlen (s) + 2);
435 char *p = stripped;
437 *p++ = '*';
439 while (*s && *s != ',')
440 *p++ = *s++;
442 *p = '\0';
443 return stripped;
446 /* MEM is a memory reference for the register size table, each element of
447 which has mode MODE. Initialize column C as a return address column. */
449 static void
450 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
452 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
453 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
454 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
457 /* Generate code to initialize the register size table. */
459 void
460 expand_builtin_init_dwarf_reg_sizes (tree address)
462 unsigned int i;
463 enum machine_mode mode = TYPE_MODE (char_type_node);
464 rtx addr = expand_normal (address);
465 rtx mem = gen_rtx_MEM (BLKmode, addr);
466 bool wrote_return_column = false;
468 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
472 if (rnum < DWARF_FRAME_REGISTERS)
474 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
475 enum machine_mode save_mode = reg_raw_mode[i];
476 HOST_WIDE_INT size;
478 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
479 save_mode = choose_hard_reg_mode (i, 1, true);
480 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
482 if (save_mode == VOIDmode)
483 continue;
484 wrote_return_column = true;
486 size = GET_MODE_SIZE (save_mode);
487 if (offset < 0)
488 continue;
490 emit_move_insn (adjust_address (mem, mode, offset),
491 gen_int_mode (size, mode));
495 if (!wrote_return_column)
496 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
498 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
499 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
500 #endif
503 /* Convert a DWARF call frame info. operation to its string name */
505 static const char *
506 dwarf_cfi_name (unsigned int cfi_opc)
508 switch (cfi_opc)
510 case DW_CFA_advance_loc:
511 return "DW_CFA_advance_loc";
512 case DW_CFA_offset:
513 return "DW_CFA_offset";
514 case DW_CFA_restore:
515 return "DW_CFA_restore";
516 case DW_CFA_nop:
517 return "DW_CFA_nop";
518 case DW_CFA_set_loc:
519 return "DW_CFA_set_loc";
520 case DW_CFA_advance_loc1:
521 return "DW_CFA_advance_loc1";
522 case DW_CFA_advance_loc2:
523 return "DW_CFA_advance_loc2";
524 case DW_CFA_advance_loc4:
525 return "DW_CFA_advance_loc4";
526 case DW_CFA_offset_extended:
527 return "DW_CFA_offset_extended";
528 case DW_CFA_restore_extended:
529 return "DW_CFA_restore_extended";
530 case DW_CFA_undefined:
531 return "DW_CFA_undefined";
532 case DW_CFA_same_value:
533 return "DW_CFA_same_value";
534 case DW_CFA_register:
535 return "DW_CFA_register";
536 case DW_CFA_remember_state:
537 return "DW_CFA_remember_state";
538 case DW_CFA_restore_state:
539 return "DW_CFA_restore_state";
540 case DW_CFA_def_cfa:
541 return "DW_CFA_def_cfa";
542 case DW_CFA_def_cfa_register:
543 return "DW_CFA_def_cfa_register";
544 case DW_CFA_def_cfa_offset:
545 return "DW_CFA_def_cfa_offset";
547 /* DWARF 3 */
548 case DW_CFA_def_cfa_expression:
549 return "DW_CFA_def_cfa_expression";
550 case DW_CFA_expression:
551 return "DW_CFA_expression";
552 case DW_CFA_offset_extended_sf:
553 return "DW_CFA_offset_extended_sf";
554 case DW_CFA_def_cfa_sf:
555 return "DW_CFA_def_cfa_sf";
556 case DW_CFA_def_cfa_offset_sf:
557 return "DW_CFA_def_cfa_offset_sf";
559 /* SGI/MIPS specific */
560 case DW_CFA_MIPS_advance_loc8:
561 return "DW_CFA_MIPS_advance_loc8";
563 /* GNU extensions */
564 case DW_CFA_GNU_window_save:
565 return "DW_CFA_GNU_window_save";
566 case DW_CFA_GNU_args_size:
567 return "DW_CFA_GNU_args_size";
568 case DW_CFA_GNU_negative_offset_extended:
569 return "DW_CFA_GNU_negative_offset_extended";
571 default:
572 return "DW_CFA_<unknown>";
576 /* Return a pointer to a newly allocated Call Frame Instruction. */
578 static inline dw_cfi_ref
579 new_cfi (void)
581 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
583 cfi->dw_cfi_next = NULL;
584 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
585 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
587 return cfi;
590 /* Add a Call Frame Instruction to list of instructions. */
592 static inline void
593 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
595 dw_cfi_ref *p;
597 /* Find the end of the chain. */
598 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
601 *p = cfi;
604 /* Generate a new label for the CFI info to refer to. */
606 char *
607 dwarf2out_cfi_label (void)
609 static char label[20];
611 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
612 ASM_OUTPUT_LABEL (asm_out_file, label);
613 return label;
616 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
617 or to the CIE if LABEL is NULL. */
619 static void
620 add_fde_cfi (const char *label, dw_cfi_ref cfi)
622 if (label)
624 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
626 if (*label == 0)
627 label = dwarf2out_cfi_label ();
629 if (fde->dw_fde_current_label == NULL
630 || strcmp (label, fde->dw_fde_current_label) != 0)
632 dw_cfi_ref xcfi;
634 label = xstrdup (label);
636 /* Set the location counter to the new label. */
637 xcfi = new_cfi ();
638 /* If we have a current label, advance from there, otherwise
639 set the location directly using set_loc. */
640 xcfi->dw_cfi_opc = fde->dw_fde_current_label
641 ? DW_CFA_advance_loc4
642 : DW_CFA_set_loc;
643 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
644 add_cfi (&fde->dw_fde_cfi, xcfi);
646 fde->dw_fde_current_label = label;
649 add_cfi (&fde->dw_fde_cfi, cfi);
652 else
653 add_cfi (&cie_cfi_head, cfi);
656 /* Subroutine of lookup_cfa. */
658 static void
659 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
661 switch (cfi->dw_cfi_opc)
663 case DW_CFA_def_cfa_offset:
664 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
665 break;
666 case DW_CFA_def_cfa_offset_sf:
667 loc->offset
668 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
669 break;
670 case DW_CFA_def_cfa_register:
671 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
672 break;
673 case DW_CFA_def_cfa:
674 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
675 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
676 break;
677 case DW_CFA_def_cfa_sf:
678 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
679 loc->offset
680 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
681 break;
682 case DW_CFA_def_cfa_expression:
683 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
684 break;
685 default:
686 break;
690 /* Find the previous value for the CFA. */
692 static void
693 lookup_cfa (dw_cfa_location *loc)
695 dw_cfi_ref cfi;
697 loc->reg = INVALID_REGNUM;
698 loc->offset = 0;
699 loc->indirect = 0;
700 loc->base_offset = 0;
702 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
703 lookup_cfa_1 (cfi, loc);
705 if (fde_table_in_use)
707 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
708 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
709 lookup_cfa_1 (cfi, loc);
713 /* The current rule for calculating the DWARF2 canonical frame address. */
714 static dw_cfa_location cfa;
716 /* The register used for saving registers to the stack, and its offset
717 from the CFA. */
718 static dw_cfa_location cfa_store;
720 /* The running total of the size of arguments pushed onto the stack. */
721 static HOST_WIDE_INT args_size;
723 /* The last args_size we actually output. */
724 static HOST_WIDE_INT old_args_size;
726 /* Entry point to update the canonical frame address (CFA).
727 LABEL is passed to add_fde_cfi. The value of CFA is now to be
728 calculated from REG+OFFSET. */
730 void
731 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
733 dw_cfa_location loc;
734 loc.indirect = 0;
735 loc.base_offset = 0;
736 loc.reg = reg;
737 loc.offset = offset;
738 def_cfa_1 (label, &loc);
741 /* Determine if two dw_cfa_location structures define the same data. */
743 static bool
744 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
746 return (loc1->reg == loc2->reg
747 && loc1->offset == loc2->offset
748 && loc1->indirect == loc2->indirect
749 && (loc1->indirect == 0
750 || loc1->base_offset == loc2->base_offset));
753 /* This routine does the actual work. The CFA is now calculated from
754 the dw_cfa_location structure. */
756 static void
757 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
759 dw_cfi_ref cfi;
760 dw_cfa_location old_cfa, loc;
762 cfa = *loc_p;
763 loc = *loc_p;
765 if (cfa_store.reg == loc.reg && loc.indirect == 0)
766 cfa_store.offset = loc.offset;
768 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
769 lookup_cfa (&old_cfa);
771 /* If nothing changed, no need to issue any call frame instructions. */
772 if (cfa_equal_p (&loc, &old_cfa))
773 return;
775 cfi = new_cfi ();
777 if (loc.reg == old_cfa.reg && !loc.indirect)
779 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
780 the CFA register did not change but the offset did. */
781 if (loc.offset < 0)
783 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
784 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
786 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
787 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
789 else
791 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
792 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
796 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
797 else if (loc.offset == old_cfa.offset
798 && old_cfa.reg != INVALID_REGNUM
799 && !loc.indirect)
801 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
802 indicating the CFA register has changed to <register> but the
803 offset has not changed. */
804 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
805 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
807 #endif
809 else if (loc.indirect == 0)
811 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
812 indicating the CFA register has changed to <register> with
813 the specified offset. */
814 if (loc.offset < 0)
816 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
817 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
819 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
820 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
821 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
823 else
825 cfi->dw_cfi_opc = DW_CFA_def_cfa;
826 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
827 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
830 else
832 /* Construct a DW_CFA_def_cfa_expression instruction to
833 calculate the CFA using a full location expression since no
834 register-offset pair is available. */
835 struct dw_loc_descr_struct *loc_list;
837 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
838 loc_list = build_cfa_loc (&loc, 0);
839 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
842 add_fde_cfi (label, cfi);
845 /* Add the CFI for saving a register. REG is the CFA column number.
846 LABEL is passed to add_fde_cfi.
847 If SREG is -1, the register is saved at OFFSET from the CFA;
848 otherwise it is saved in SREG. */
850 static void
851 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
853 dw_cfi_ref cfi = new_cfi ();
855 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
857 if (sreg == INVALID_REGNUM)
859 if (reg & ~0x3f)
860 /* The register number won't fit in 6 bits, so we have to use
861 the long form. */
862 cfi->dw_cfi_opc = DW_CFA_offset_extended;
863 else
864 cfi->dw_cfi_opc = DW_CFA_offset;
866 #ifdef ENABLE_CHECKING
868 /* If we get an offset that is not a multiple of
869 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
870 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
871 description. */
872 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
874 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
876 #endif
877 offset /= DWARF_CIE_DATA_ALIGNMENT;
878 if (offset < 0)
879 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
881 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
883 else if (sreg == reg)
884 cfi->dw_cfi_opc = DW_CFA_same_value;
885 else
887 cfi->dw_cfi_opc = DW_CFA_register;
888 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
891 add_fde_cfi (label, cfi);
894 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
895 This CFI tells the unwinder that it needs to restore the window registers
896 from the previous frame's window save area.
898 ??? Perhaps we should note in the CIE where windows are saved (instead of
899 assuming 0(cfa)) and what registers are in the window. */
901 void
902 dwarf2out_window_save (const char *label)
904 dw_cfi_ref cfi = new_cfi ();
906 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
907 add_fde_cfi (label, cfi);
910 /* Add a CFI to update the running total of the size of arguments
911 pushed onto the stack. */
913 void
914 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
916 dw_cfi_ref cfi;
918 if (size == old_args_size)
919 return;
921 old_args_size = size;
923 cfi = new_cfi ();
924 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
925 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
926 add_fde_cfi (label, cfi);
929 /* Entry point for saving a register to the stack. REG is the GCC register
930 number. LABEL and OFFSET are passed to reg_save. */
932 void
933 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
935 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
938 /* Entry point for saving the return address in the stack.
939 LABEL and OFFSET are passed to reg_save. */
941 void
942 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
944 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
947 /* Entry point for saving the return address in a register.
948 LABEL and SREG are passed to reg_save. */
950 void
951 dwarf2out_return_reg (const char *label, unsigned int sreg)
953 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
956 /* Record the initial position of the return address. RTL is
957 INCOMING_RETURN_ADDR_RTX. */
959 static void
960 initial_return_save (rtx rtl)
962 unsigned int reg = INVALID_REGNUM;
963 HOST_WIDE_INT offset = 0;
965 switch (GET_CODE (rtl))
967 case REG:
968 /* RA is in a register. */
969 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
970 break;
972 case MEM:
973 /* RA is on the stack. */
974 rtl = XEXP (rtl, 0);
975 switch (GET_CODE (rtl))
977 case REG:
978 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
979 offset = 0;
980 break;
982 case PLUS:
983 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
984 offset = INTVAL (XEXP (rtl, 1));
985 break;
987 case MINUS:
988 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
989 offset = -INTVAL (XEXP (rtl, 1));
990 break;
992 default:
993 gcc_unreachable ();
996 break;
998 case PLUS:
999 /* The return address is at some offset from any value we can
1000 actually load. For instance, on the SPARC it is in %i7+8. Just
1001 ignore the offset for now; it doesn't matter for unwinding frames. */
1002 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1003 initial_return_save (XEXP (rtl, 0));
1004 return;
1006 default:
1007 gcc_unreachable ();
1010 if (reg != DWARF_FRAME_RETURN_COLUMN)
1011 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1014 /* Given a SET, calculate the amount of stack adjustment it
1015 contains. */
1017 static HOST_WIDE_INT
1018 stack_adjust_offset (rtx pattern)
1020 rtx src = SET_SRC (pattern);
1021 rtx dest = SET_DEST (pattern);
1022 HOST_WIDE_INT offset = 0;
1023 enum rtx_code code;
1025 if (dest == stack_pointer_rtx)
1027 /* (set (reg sp) (plus (reg sp) (const_int))) */
1028 code = GET_CODE (src);
1029 if (! (code == PLUS || code == MINUS)
1030 || XEXP (src, 0) != stack_pointer_rtx
1031 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1032 return 0;
1034 offset = INTVAL (XEXP (src, 1));
1035 if (code == PLUS)
1036 offset = -offset;
1038 else if (MEM_P (dest))
1040 /* (set (mem (pre_dec (reg sp))) (foo)) */
1041 src = XEXP (dest, 0);
1042 code = GET_CODE (src);
1044 switch (code)
1046 case PRE_MODIFY:
1047 case POST_MODIFY:
1048 if (XEXP (src, 0) == stack_pointer_rtx)
1050 rtx val = XEXP (XEXP (src, 1), 1);
1051 /* We handle only adjustments by constant amount. */
1052 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1053 && GET_CODE (val) == CONST_INT);
1054 offset = -INTVAL (val);
1055 break;
1057 return 0;
1059 case PRE_DEC:
1060 case POST_DEC:
1061 if (XEXP (src, 0) == stack_pointer_rtx)
1063 offset = GET_MODE_SIZE (GET_MODE (dest));
1064 break;
1066 return 0;
1068 case PRE_INC:
1069 case POST_INC:
1070 if (XEXP (src, 0) == stack_pointer_rtx)
1072 offset = -GET_MODE_SIZE (GET_MODE (dest));
1073 break;
1075 return 0;
1077 default:
1078 return 0;
1081 else
1082 return 0;
1084 return offset;
1087 /* Check INSN to see if it looks like a push or a stack adjustment, and
1088 make a note of it if it does. EH uses this information to find out how
1089 much extra space it needs to pop off the stack. */
1091 static void
1092 dwarf2out_stack_adjust (rtx insn, bool after_p)
1094 HOST_WIDE_INT offset;
1095 const char *label;
1096 int i;
1098 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1099 with this function. Proper support would require all frame-related
1100 insns to be marked, and to be able to handle saving state around
1101 epilogues textually in the middle of the function. */
1102 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1103 return;
1105 /* If only calls can throw, and we have a frame pointer,
1106 save up adjustments until we see the CALL_INSN. */
1107 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1109 if (CALL_P (insn) && !after_p)
1111 /* Extract the size of the args from the CALL rtx itself. */
1112 insn = PATTERN (insn);
1113 if (GET_CODE (insn) == PARALLEL)
1114 insn = XVECEXP (insn, 0, 0);
1115 if (GET_CODE (insn) == SET)
1116 insn = SET_SRC (insn);
1117 gcc_assert (GET_CODE (insn) == CALL);
1118 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1120 return;
1123 if (CALL_P (insn) && !after_p)
1125 if (!flag_asynchronous_unwind_tables)
1126 dwarf2out_args_size ("", args_size);
1127 return;
1129 else if (BARRIER_P (insn))
1131 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1132 the compiler will have already emitted a stack adjustment, but
1133 doesn't bother for calls to noreturn functions. */
1134 #ifdef STACK_GROWS_DOWNWARD
1135 offset = -args_size;
1136 #else
1137 offset = args_size;
1138 #endif
1140 else if (GET_CODE (PATTERN (insn)) == SET)
1141 offset = stack_adjust_offset (PATTERN (insn));
1142 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1143 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1145 /* There may be stack adjustments inside compound insns. Search
1146 for them. */
1147 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1148 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1149 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1151 else
1152 return;
1154 if (offset == 0)
1155 return;
1157 if (cfa.reg == STACK_POINTER_REGNUM)
1158 cfa.offset += offset;
1160 #ifndef STACK_GROWS_DOWNWARD
1161 offset = -offset;
1162 #endif
1164 args_size += offset;
1165 if (args_size < 0)
1166 args_size = 0;
1168 label = dwarf2out_cfi_label ();
1169 def_cfa_1 (label, &cfa);
1170 if (flag_asynchronous_unwind_tables)
1171 dwarf2out_args_size (label, args_size);
1174 #endif
1176 /* We delay emitting a register save until either (a) we reach the end
1177 of the prologue or (b) the register is clobbered. This clusters
1178 register saves so that there are fewer pc advances. */
1180 struct queued_reg_save GTY(())
1182 struct queued_reg_save *next;
1183 rtx reg;
1184 HOST_WIDE_INT cfa_offset;
1185 rtx saved_reg;
1188 static GTY(()) struct queued_reg_save *queued_reg_saves;
1190 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1191 struct reg_saved_in_data GTY(()) {
1192 rtx orig_reg;
1193 rtx saved_in_reg;
1196 /* A list of registers saved in other registers.
1197 The list intentionally has a small maximum capacity of 4; if your
1198 port needs more than that, you might consider implementing a
1199 more efficient data structure. */
1200 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1201 static GTY(()) size_t num_regs_saved_in_regs;
1203 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1204 static const char *last_reg_save_label;
1206 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1207 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1209 static void
1210 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1212 struct queued_reg_save *q;
1214 /* Duplicates waste space, but it's also necessary to remove them
1215 for correctness, since the queue gets output in reverse
1216 order. */
1217 for (q = queued_reg_saves; q != NULL; q = q->next)
1218 if (REGNO (q->reg) == REGNO (reg))
1219 break;
1221 if (q == NULL)
1223 q = ggc_alloc (sizeof (*q));
1224 q->next = queued_reg_saves;
1225 queued_reg_saves = q;
1228 q->reg = reg;
1229 q->cfa_offset = offset;
1230 q->saved_reg = sreg;
1232 last_reg_save_label = label;
1235 /* Output all the entries in QUEUED_REG_SAVES. */
1237 static void
1238 flush_queued_reg_saves (void)
1240 struct queued_reg_save *q;
1242 for (q = queued_reg_saves; q; q = q->next)
1244 size_t i;
1245 unsigned int reg, sreg;
1247 for (i = 0; i < num_regs_saved_in_regs; i++)
1248 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1249 break;
1250 if (q->saved_reg && i == num_regs_saved_in_regs)
1252 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1253 num_regs_saved_in_regs++;
1255 if (i != num_regs_saved_in_regs)
1257 regs_saved_in_regs[i].orig_reg = q->reg;
1258 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1261 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1262 if (q->saved_reg)
1263 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1264 else
1265 sreg = INVALID_REGNUM;
1266 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1269 queued_reg_saves = NULL;
1270 last_reg_save_label = NULL;
1273 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1274 location for? Or, does it clobber a register which we've previously
1275 said that some other register is saved in, and for which we now
1276 have a new location for? */
1278 static bool
1279 clobbers_queued_reg_save (rtx insn)
1281 struct queued_reg_save *q;
1283 for (q = queued_reg_saves; q; q = q->next)
1285 size_t i;
1286 if (modified_in_p (q->reg, insn))
1287 return true;
1288 for (i = 0; i < num_regs_saved_in_regs; i++)
1289 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1290 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1291 return true;
1294 return false;
1297 /* Entry point for saving the first register into the second. */
1299 void
1300 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1302 size_t i;
1303 unsigned int regno, sregno;
1305 for (i = 0; i < num_regs_saved_in_regs; i++)
1306 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1307 break;
1308 if (i == num_regs_saved_in_regs)
1310 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1311 num_regs_saved_in_regs++;
1313 regs_saved_in_regs[i].orig_reg = reg;
1314 regs_saved_in_regs[i].saved_in_reg = sreg;
1316 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1317 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1318 reg_save (label, regno, sregno, 0);
1321 /* What register, if any, is currently saved in REG? */
1323 static rtx
1324 reg_saved_in (rtx reg)
1326 unsigned int regn = REGNO (reg);
1327 size_t i;
1328 struct queued_reg_save *q;
1330 for (q = queued_reg_saves; q; q = q->next)
1331 if (q->saved_reg && regn == REGNO (q->saved_reg))
1332 return q->reg;
1334 for (i = 0; i < num_regs_saved_in_regs; i++)
1335 if (regs_saved_in_regs[i].saved_in_reg
1336 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1337 return regs_saved_in_regs[i].orig_reg;
1339 return NULL_RTX;
1343 /* A temporary register holding an integral value used in adjusting SP
1344 or setting up the store_reg. The "offset" field holds the integer
1345 value, not an offset. */
1346 static dw_cfa_location cfa_temp;
1348 /* Record call frame debugging information for an expression EXPR,
1349 which either sets SP or FP (adjusting how we calculate the frame
1350 address) or saves a register to the stack or another register.
1351 LABEL indicates the address of EXPR.
1353 This function encodes a state machine mapping rtxes to actions on
1354 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1355 users need not read the source code.
1357 The High-Level Picture
1359 Changes in the register we use to calculate the CFA: Currently we
1360 assume that if you copy the CFA register into another register, we
1361 should take the other one as the new CFA register; this seems to
1362 work pretty well. If it's wrong for some target, it's simple
1363 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1365 Changes in the register we use for saving registers to the stack:
1366 This is usually SP, but not always. Again, we deduce that if you
1367 copy SP into another register (and SP is not the CFA register),
1368 then the new register is the one we will be using for register
1369 saves. This also seems to work.
1371 Register saves: There's not much guesswork about this one; if
1372 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1373 register save, and the register used to calculate the destination
1374 had better be the one we think we're using for this purpose.
1375 It's also assumed that a copy from a call-saved register to another
1376 register is saving that register if RTX_FRAME_RELATED_P is set on
1377 that instruction. If the copy is from a call-saved register to
1378 the *same* register, that means that the register is now the same
1379 value as in the caller.
1381 Except: If the register being saved is the CFA register, and the
1382 offset is nonzero, we are saving the CFA, so we assume we have to
1383 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1384 the intent is to save the value of SP from the previous frame.
1386 In addition, if a register has previously been saved to a different
1387 register,
1389 Invariants / Summaries of Rules
1391 cfa current rule for calculating the CFA. It usually
1392 consists of a register and an offset.
1393 cfa_store register used by prologue code to save things to the stack
1394 cfa_store.offset is the offset from the value of
1395 cfa_store.reg to the actual CFA
1396 cfa_temp register holding an integral value. cfa_temp.offset
1397 stores the value, which will be used to adjust the
1398 stack pointer. cfa_temp is also used like cfa_store,
1399 to track stores to the stack via fp or a temp reg.
1401 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1402 with cfa.reg as the first operand changes the cfa.reg and its
1403 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1404 cfa_temp.offset.
1406 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1407 expression yielding a constant. This sets cfa_temp.reg
1408 and cfa_temp.offset.
1410 Rule 5: Create a new register cfa_store used to save items to the
1411 stack.
1413 Rules 10-14: Save a register to the stack. Define offset as the
1414 difference of the original location and cfa_store's
1415 location (or cfa_temp's location if cfa_temp is used).
1417 The Rules
1419 "{a,b}" indicates a choice of a xor b.
1420 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1422 Rule 1:
1423 (set <reg1> <reg2>:cfa.reg)
1424 effects: cfa.reg = <reg1>
1425 cfa.offset unchanged
1426 cfa_temp.reg = <reg1>
1427 cfa_temp.offset = cfa.offset
1429 Rule 2:
1430 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1431 {<const_int>,<reg>:cfa_temp.reg}))
1432 effects: cfa.reg = sp if fp used
1433 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1434 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1435 if cfa_store.reg==sp
1437 Rule 3:
1438 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1439 effects: cfa.reg = fp
1440 cfa_offset += +/- <const_int>
1442 Rule 4:
1443 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1444 constraints: <reg1> != fp
1445 <reg1> != sp
1446 effects: cfa.reg = <reg1>
1447 cfa_temp.reg = <reg1>
1448 cfa_temp.offset = cfa.offset
1450 Rule 5:
1451 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1452 constraints: <reg1> != fp
1453 <reg1> != sp
1454 effects: cfa_store.reg = <reg1>
1455 cfa_store.offset = cfa.offset - cfa_temp.offset
1457 Rule 6:
1458 (set <reg> <const_int>)
1459 effects: cfa_temp.reg = <reg>
1460 cfa_temp.offset = <const_int>
1462 Rule 7:
1463 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1464 effects: cfa_temp.reg = <reg1>
1465 cfa_temp.offset |= <const_int>
1467 Rule 8:
1468 (set <reg> (high <exp>))
1469 effects: none
1471 Rule 9:
1472 (set <reg> (lo_sum <exp> <const_int>))
1473 effects: cfa_temp.reg = <reg>
1474 cfa_temp.offset = <const_int>
1476 Rule 10:
1477 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1478 effects: cfa_store.offset -= <const_int>
1479 cfa.offset = cfa_store.offset if cfa.reg == sp
1480 cfa.reg = sp
1481 cfa.base_offset = -cfa_store.offset
1483 Rule 11:
1484 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1485 effects: cfa_store.offset += -/+ mode_size(mem)
1486 cfa.offset = cfa_store.offset if cfa.reg == sp
1487 cfa.reg = sp
1488 cfa.base_offset = -cfa_store.offset
1490 Rule 12:
1491 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1493 <reg2>)
1494 effects: cfa.reg = <reg1>
1495 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1497 Rule 13:
1498 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1499 effects: cfa.reg = <reg1>
1500 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1502 Rule 14:
1503 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1504 effects: cfa.reg = <reg1>
1505 cfa.base_offset = -cfa_temp.offset
1506 cfa_temp.offset -= mode_size(mem)
1508 Rule 15:
1509 (set <reg> {unspec, unspec_volatile})
1510 effects: target-dependent */
1512 static void
1513 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1515 rtx src, dest;
1516 HOST_WIDE_INT offset;
1518 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1519 the PARALLEL independently. The first element is always processed if
1520 it is a SET. This is for backward compatibility. Other elements
1521 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1522 flag is set in them. */
1523 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1525 int par_index;
1526 int limit = XVECLEN (expr, 0);
1527 rtx elem;
1529 /* PARALLELs have strict read-modify-write semantics, so we
1530 ought to evaluate every rvalue before changing any lvalue.
1531 It's cumbersome to do that in general, but there's an
1532 easy approximation that is enough for all current users:
1533 handle register saves before register assignments. */
1534 if (GET_CODE (expr) == PARALLEL)
1535 for (par_index = 0; par_index < limit; par_index++)
1537 elem = XVECEXP (expr, 0, par_index);
1538 if (GET_CODE (elem) == SET
1539 && MEM_P (SET_DEST (elem))
1540 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1541 dwarf2out_frame_debug_expr (elem, label);
1544 for (par_index = 0; par_index < limit; par_index++)
1546 elem = XVECEXP (expr, 0, par_index);
1547 if (GET_CODE (elem) == SET
1548 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1549 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1550 dwarf2out_frame_debug_expr (elem, label);
1552 return;
1555 gcc_assert (GET_CODE (expr) == SET);
1557 src = SET_SRC (expr);
1558 dest = SET_DEST (expr);
1560 if (REG_P (src))
1562 rtx rsi = reg_saved_in (src);
1563 if (rsi)
1564 src = rsi;
1567 switch (GET_CODE (dest))
1569 case REG:
1570 switch (GET_CODE (src))
1572 /* Setting FP from SP. */
1573 case REG:
1574 if (cfa.reg == (unsigned) REGNO (src))
1576 /* Rule 1 */
1577 /* Update the CFA rule wrt SP or FP. Make sure src is
1578 relative to the current CFA register.
1580 We used to require that dest be either SP or FP, but the
1581 ARM copies SP to a temporary register, and from there to
1582 FP. So we just rely on the backends to only set
1583 RTX_FRAME_RELATED_P on appropriate insns. */
1584 cfa.reg = REGNO (dest);
1585 cfa_temp.reg = cfa.reg;
1586 cfa_temp.offset = cfa.offset;
1588 else
1590 /* Saving a register in a register. */
1591 gcc_assert (!fixed_regs [REGNO (dest)]
1592 /* For the SPARC and its register window. */
1593 || (DWARF_FRAME_REGNUM (REGNO (src))
1594 == DWARF_FRAME_RETURN_COLUMN));
1595 queue_reg_save (label, src, dest, 0);
1597 break;
1599 case PLUS:
1600 case MINUS:
1601 case LO_SUM:
1602 if (dest == stack_pointer_rtx)
1604 /* Rule 2 */
1605 /* Adjusting SP. */
1606 switch (GET_CODE (XEXP (src, 1)))
1608 case CONST_INT:
1609 offset = INTVAL (XEXP (src, 1));
1610 break;
1611 case REG:
1612 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1613 == cfa_temp.reg);
1614 offset = cfa_temp.offset;
1615 break;
1616 default:
1617 gcc_unreachable ();
1620 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1622 /* Restoring SP from FP in the epilogue. */
1623 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1624 cfa.reg = STACK_POINTER_REGNUM;
1626 else if (GET_CODE (src) == LO_SUM)
1627 /* Assume we've set the source reg of the LO_SUM from sp. */
1629 else
1630 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1632 if (GET_CODE (src) != MINUS)
1633 offset = -offset;
1634 if (cfa.reg == STACK_POINTER_REGNUM)
1635 cfa.offset += offset;
1636 if (cfa_store.reg == STACK_POINTER_REGNUM)
1637 cfa_store.offset += offset;
1639 else if (dest == hard_frame_pointer_rtx)
1641 /* Rule 3 */
1642 /* Either setting the FP from an offset of the SP,
1643 or adjusting the FP */
1644 gcc_assert (frame_pointer_needed);
1646 gcc_assert (REG_P (XEXP (src, 0))
1647 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1648 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1649 offset = INTVAL (XEXP (src, 1));
1650 if (GET_CODE (src) != MINUS)
1651 offset = -offset;
1652 cfa.offset += offset;
1653 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1655 else
1657 gcc_assert (GET_CODE (src) != MINUS);
1659 /* Rule 4 */
1660 if (REG_P (XEXP (src, 0))
1661 && REGNO (XEXP (src, 0)) == cfa.reg
1662 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1664 /* Setting a temporary CFA register that will be copied
1665 into the FP later on. */
1666 offset = - INTVAL (XEXP (src, 1));
1667 cfa.offset += offset;
1668 cfa.reg = REGNO (dest);
1669 /* Or used to save regs to the stack. */
1670 cfa_temp.reg = cfa.reg;
1671 cfa_temp.offset = cfa.offset;
1674 /* Rule 5 */
1675 else if (REG_P (XEXP (src, 0))
1676 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1677 && XEXP (src, 1) == stack_pointer_rtx)
1679 /* Setting a scratch register that we will use instead
1680 of SP for saving registers to the stack. */
1681 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1682 cfa_store.reg = REGNO (dest);
1683 cfa_store.offset = cfa.offset - cfa_temp.offset;
1686 /* Rule 9 */
1687 else if (GET_CODE (src) == LO_SUM
1688 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1690 cfa_temp.reg = REGNO (dest);
1691 cfa_temp.offset = INTVAL (XEXP (src, 1));
1693 else
1694 gcc_unreachable ();
1696 break;
1698 /* Rule 6 */
1699 case CONST_INT:
1700 cfa_temp.reg = REGNO (dest);
1701 cfa_temp.offset = INTVAL (src);
1702 break;
1704 /* Rule 7 */
1705 case IOR:
1706 gcc_assert (REG_P (XEXP (src, 0))
1707 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1708 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1710 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1711 cfa_temp.reg = REGNO (dest);
1712 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1713 break;
1715 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1716 which will fill in all of the bits. */
1717 /* Rule 8 */
1718 case HIGH:
1719 break;
1721 /* Rule 15 */
1722 case UNSPEC:
1723 case UNSPEC_VOLATILE:
1724 gcc_assert (targetm.dwarf_handle_frame_unspec);
1725 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1726 return;
1728 default:
1729 gcc_unreachable ();
1732 def_cfa_1 (label, &cfa);
1733 break;
1735 case MEM:
1736 gcc_assert (REG_P (src));
1738 /* Saving a register to the stack. Make sure dest is relative to the
1739 CFA register. */
1740 switch (GET_CODE (XEXP (dest, 0)))
1742 /* Rule 10 */
1743 /* With a push. */
1744 case PRE_MODIFY:
1745 /* We can't handle variable size modifications. */
1746 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1747 == CONST_INT);
1748 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1750 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1751 && cfa_store.reg == STACK_POINTER_REGNUM);
1753 cfa_store.offset += offset;
1754 if (cfa.reg == STACK_POINTER_REGNUM)
1755 cfa.offset = cfa_store.offset;
1757 offset = -cfa_store.offset;
1758 break;
1760 /* Rule 11 */
1761 case PRE_INC:
1762 case PRE_DEC:
1763 offset = GET_MODE_SIZE (GET_MODE (dest));
1764 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1765 offset = -offset;
1767 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1768 && cfa_store.reg == STACK_POINTER_REGNUM);
1770 cfa_store.offset += offset;
1771 if (cfa.reg == STACK_POINTER_REGNUM)
1772 cfa.offset = cfa_store.offset;
1774 offset = -cfa_store.offset;
1775 break;
1777 /* Rule 12 */
1778 /* With an offset. */
1779 case PLUS:
1780 case MINUS:
1781 case LO_SUM:
1783 int regno;
1785 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1786 && REG_P (XEXP (XEXP (dest, 0), 0)));
1787 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1788 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1789 offset = -offset;
1791 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1793 if (cfa_store.reg == (unsigned) regno)
1794 offset -= cfa_store.offset;
1795 else
1797 gcc_assert (cfa_temp.reg == (unsigned) regno);
1798 offset -= cfa_temp.offset;
1801 break;
1803 /* Rule 13 */
1804 /* Without an offset. */
1805 case REG:
1807 int regno = REGNO (XEXP (dest, 0));
1809 if (cfa_store.reg == (unsigned) regno)
1810 offset = -cfa_store.offset;
1811 else
1813 gcc_assert (cfa_temp.reg == (unsigned) regno);
1814 offset = -cfa_temp.offset;
1817 break;
1819 /* Rule 14 */
1820 case POST_INC:
1821 gcc_assert (cfa_temp.reg
1822 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1823 offset = -cfa_temp.offset;
1824 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1825 break;
1827 default:
1828 gcc_unreachable ();
1831 if (REGNO (src) != STACK_POINTER_REGNUM
1832 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1833 && (unsigned) REGNO (src) == cfa.reg)
1835 /* We're storing the current CFA reg into the stack. */
1837 if (cfa.offset == 0)
1839 /* If the source register is exactly the CFA, assume
1840 we're saving SP like any other register; this happens
1841 on the ARM. */
1842 def_cfa_1 (label, &cfa);
1843 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1844 break;
1846 else
1848 /* Otherwise, we'll need to look in the stack to
1849 calculate the CFA. */
1850 rtx x = XEXP (dest, 0);
1852 if (!REG_P (x))
1853 x = XEXP (x, 0);
1854 gcc_assert (REG_P (x));
1856 cfa.reg = REGNO (x);
1857 cfa.base_offset = offset;
1858 cfa.indirect = 1;
1859 def_cfa_1 (label, &cfa);
1860 break;
1864 def_cfa_1 (label, &cfa);
1865 queue_reg_save (label, src, NULL_RTX, offset);
1866 break;
1868 default:
1869 gcc_unreachable ();
1873 /* Record call frame debugging information for INSN, which either
1874 sets SP or FP (adjusting how we calculate the frame address) or saves a
1875 register to the stack. If INSN is NULL_RTX, initialize our state.
1877 If AFTER_P is false, we're being called before the insn is emitted,
1878 otherwise after. Call instructions get invoked twice. */
1880 void
1881 dwarf2out_frame_debug (rtx insn, bool after_p)
1883 const char *label;
1884 rtx src;
1886 if (insn == NULL_RTX)
1888 size_t i;
1890 /* Flush any queued register saves. */
1891 flush_queued_reg_saves ();
1893 /* Set up state for generating call frame debug info. */
1894 lookup_cfa (&cfa);
1895 gcc_assert (cfa.reg
1896 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1898 cfa.reg = STACK_POINTER_REGNUM;
1899 cfa_store = cfa;
1900 cfa_temp.reg = -1;
1901 cfa_temp.offset = 0;
1903 for (i = 0; i < num_regs_saved_in_regs; i++)
1905 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1906 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1908 num_regs_saved_in_regs = 0;
1909 return;
1912 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1913 flush_queued_reg_saves ();
1915 if (! RTX_FRAME_RELATED_P (insn))
1917 if (!ACCUMULATE_OUTGOING_ARGS)
1918 dwarf2out_stack_adjust (insn, after_p);
1919 return;
1922 label = dwarf2out_cfi_label ();
1923 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1924 if (src)
1925 insn = XEXP (src, 0);
1926 else
1927 insn = PATTERN (insn);
1929 dwarf2out_frame_debug_expr (insn, label);
1932 #endif
1934 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1935 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1936 (enum dwarf_call_frame_info cfi);
1938 static enum dw_cfi_oprnd_type
1939 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1941 switch (cfi)
1943 case DW_CFA_nop:
1944 case DW_CFA_GNU_window_save:
1945 return dw_cfi_oprnd_unused;
1947 case DW_CFA_set_loc:
1948 case DW_CFA_advance_loc1:
1949 case DW_CFA_advance_loc2:
1950 case DW_CFA_advance_loc4:
1951 case DW_CFA_MIPS_advance_loc8:
1952 return dw_cfi_oprnd_addr;
1954 case DW_CFA_offset:
1955 case DW_CFA_offset_extended:
1956 case DW_CFA_def_cfa:
1957 case DW_CFA_offset_extended_sf:
1958 case DW_CFA_def_cfa_sf:
1959 case DW_CFA_restore_extended:
1960 case DW_CFA_undefined:
1961 case DW_CFA_same_value:
1962 case DW_CFA_def_cfa_register:
1963 case DW_CFA_register:
1964 return dw_cfi_oprnd_reg_num;
1966 case DW_CFA_def_cfa_offset:
1967 case DW_CFA_GNU_args_size:
1968 case DW_CFA_def_cfa_offset_sf:
1969 return dw_cfi_oprnd_offset;
1971 case DW_CFA_def_cfa_expression:
1972 case DW_CFA_expression:
1973 return dw_cfi_oprnd_loc;
1975 default:
1976 gcc_unreachable ();
1980 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1981 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1982 (enum dwarf_call_frame_info cfi);
1984 static enum dw_cfi_oprnd_type
1985 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1987 switch (cfi)
1989 case DW_CFA_def_cfa:
1990 case DW_CFA_def_cfa_sf:
1991 case DW_CFA_offset:
1992 case DW_CFA_offset_extended_sf:
1993 case DW_CFA_offset_extended:
1994 return dw_cfi_oprnd_offset;
1996 case DW_CFA_register:
1997 return dw_cfi_oprnd_reg_num;
1999 default:
2000 return dw_cfi_oprnd_unused;
2004 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2006 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
2007 switch to the data section instead, and write out a synthetic label
2008 for collect2. */
2010 static void
2011 switch_to_eh_frame_section (void)
2013 tree label;
2015 #ifdef EH_FRAME_SECTION_NAME
2016 if (eh_frame_section == 0)
2018 int flags;
2020 if (EH_TABLES_CAN_BE_READ_ONLY)
2022 int fde_encoding;
2023 int per_encoding;
2024 int lsda_encoding;
2026 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2027 /*global=*/0);
2028 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2029 /*global=*/1);
2030 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2031 /*global=*/0);
2032 flags = ((! flag_pic
2033 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2034 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2035 && (per_encoding & 0x70) != DW_EH_PE_absptr
2036 && (per_encoding & 0x70) != DW_EH_PE_aligned
2037 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2038 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2039 ? 0 : SECTION_WRITE);
2041 else
2042 flags = SECTION_WRITE;
2043 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2045 #endif
2047 if (eh_frame_section)
2048 switch_to_section (eh_frame_section);
2049 else
2051 /* We have no special eh_frame section. Put the information in
2052 the data section and emit special labels to guide collect2. */
2053 switch_to_section (data_section);
2054 label = get_file_function_name ("F");
2055 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2056 targetm.asm_out.globalize_label (asm_out_file,
2057 IDENTIFIER_POINTER (label));
2058 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2062 /* Output a Call Frame Information opcode and its operand(s). */
2064 static void
2065 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2067 unsigned long r;
2068 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2069 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2070 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2071 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2072 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2073 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2075 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2076 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2077 "DW_CFA_offset, column 0x%lx", r);
2078 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2080 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2082 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2083 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2084 "DW_CFA_restore, column 0x%lx", r);
2086 else
2088 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2089 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2091 switch (cfi->dw_cfi_opc)
2093 case DW_CFA_set_loc:
2094 if (for_eh)
2095 dw2_asm_output_encoded_addr_rtx (
2096 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2097 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2098 false, NULL);
2099 else
2100 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2101 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2102 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2103 break;
2105 case DW_CFA_advance_loc1:
2106 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2107 fde->dw_fde_current_label, NULL);
2108 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2109 break;
2111 case DW_CFA_advance_loc2:
2112 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2113 fde->dw_fde_current_label, NULL);
2114 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2115 break;
2117 case DW_CFA_advance_loc4:
2118 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2119 fde->dw_fde_current_label, NULL);
2120 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2121 break;
2123 case DW_CFA_MIPS_advance_loc8:
2124 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2125 fde->dw_fde_current_label, NULL);
2126 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2127 break;
2129 case DW_CFA_offset_extended:
2130 case DW_CFA_def_cfa:
2131 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2132 dw2_asm_output_data_uleb128 (r, NULL);
2133 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2134 break;
2136 case DW_CFA_offset_extended_sf:
2137 case DW_CFA_def_cfa_sf:
2138 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2139 dw2_asm_output_data_uleb128 (r, NULL);
2140 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2141 break;
2143 case DW_CFA_restore_extended:
2144 case DW_CFA_undefined:
2145 case DW_CFA_same_value:
2146 case DW_CFA_def_cfa_register:
2147 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2148 dw2_asm_output_data_uleb128 (r, NULL);
2149 break;
2151 case DW_CFA_register:
2152 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2153 dw2_asm_output_data_uleb128 (r, NULL);
2154 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2155 dw2_asm_output_data_uleb128 (r, NULL);
2156 break;
2158 case DW_CFA_def_cfa_offset:
2159 case DW_CFA_GNU_args_size:
2160 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2161 break;
2163 case DW_CFA_def_cfa_offset_sf:
2164 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2165 break;
2167 case DW_CFA_GNU_window_save:
2168 break;
2170 case DW_CFA_def_cfa_expression:
2171 case DW_CFA_expression:
2172 output_cfa_loc (cfi);
2173 break;
2175 case DW_CFA_GNU_negative_offset_extended:
2176 /* Obsoleted by DW_CFA_offset_extended_sf. */
2177 gcc_unreachable ();
2179 default:
2180 break;
2185 /* Output the call frame information used to record information
2186 that relates to calculating the frame pointer, and records the
2187 location of saved registers. */
2189 static void
2190 output_call_frame_info (int for_eh)
2192 unsigned int i;
2193 dw_fde_ref fde;
2194 dw_cfi_ref cfi;
2195 char l1[20], l2[20], section_start_label[20];
2196 bool any_lsda_needed = false;
2197 char augmentation[6];
2198 int augmentation_size;
2199 int fde_encoding = DW_EH_PE_absptr;
2200 int per_encoding = DW_EH_PE_absptr;
2201 int lsda_encoding = DW_EH_PE_absptr;
2202 int return_reg;
2204 /* Don't emit a CIE if there won't be any FDEs. */
2205 if (fde_table_in_use == 0)
2206 return;
2208 /* If we make FDEs linkonce, we may have to emit an empty label for
2209 an FDE that wouldn't otherwise be emitted. We want to avoid
2210 having an FDE kept around when the function it refers to is
2211 discarded. Example where this matters: a primary function
2212 template in C++ requires EH information, but an explicit
2213 specialization doesn't. */
2214 if (TARGET_USES_WEAK_UNWIND_INFO
2215 && ! flag_asynchronous_unwind_tables
2216 && for_eh)
2217 for (i = 0; i < fde_table_in_use; i++)
2218 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2219 && !fde_table[i].uses_eh_lsda
2220 && ! DECL_WEAK (fde_table[i].decl))
2221 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2222 for_eh, /* empty */ 1);
2224 /* If we don't have any functions we'll want to unwind out of, don't
2225 emit any EH unwind information. Note that if exceptions aren't
2226 enabled, we won't have collected nothrow information, and if we
2227 asked for asynchronous tables, we always want this info. */
2228 if (for_eh)
2230 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2232 for (i = 0; i < fde_table_in_use; i++)
2233 if (fde_table[i].uses_eh_lsda)
2234 any_eh_needed = any_lsda_needed = true;
2235 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2236 any_eh_needed = true;
2237 else if (! fde_table[i].nothrow
2238 && ! fde_table[i].all_throwers_are_sibcalls)
2239 any_eh_needed = true;
2241 if (! any_eh_needed)
2242 return;
2245 /* We're going to be generating comments, so turn on app. */
2246 if (flag_debug_asm)
2247 app_enable ();
2249 if (for_eh)
2250 switch_to_eh_frame_section ();
2251 else
2253 if (!debug_frame_section)
2254 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2255 SECTION_DEBUG, NULL);
2256 switch_to_section (debug_frame_section);
2259 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2260 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2262 /* Output the CIE. */
2263 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2264 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2265 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2266 dw2_asm_output_data (4, 0xffffffff,
2267 "Initial length escape value indicating 64-bit DWARF extension");
2268 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2269 "Length of Common Information Entry");
2270 ASM_OUTPUT_LABEL (asm_out_file, l1);
2272 /* Now that the CIE pointer is PC-relative for EH,
2273 use 0 to identify the CIE. */
2274 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2275 (for_eh ? 0 : DWARF_CIE_ID),
2276 "CIE Identifier Tag");
2278 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2280 augmentation[0] = 0;
2281 augmentation_size = 0;
2282 if (for_eh)
2284 char *p;
2286 /* Augmentation:
2287 z Indicates that a uleb128 is present to size the
2288 augmentation section.
2289 L Indicates the encoding (and thus presence) of
2290 an LSDA pointer in the FDE augmentation.
2291 R Indicates a non-default pointer encoding for
2292 FDE code pointers.
2293 P Indicates the presence of an encoding + language
2294 personality routine in the CIE augmentation. */
2296 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2297 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2298 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2300 p = augmentation + 1;
2301 if (eh_personality_libfunc)
2303 *p++ = 'P';
2304 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2306 if (any_lsda_needed)
2308 *p++ = 'L';
2309 augmentation_size += 1;
2311 if (fde_encoding != DW_EH_PE_absptr)
2313 *p++ = 'R';
2314 augmentation_size += 1;
2316 if (p > augmentation + 1)
2318 augmentation[0] = 'z';
2319 *p = '\0';
2322 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2323 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2325 int offset = ( 4 /* Length */
2326 + 4 /* CIE Id */
2327 + 1 /* CIE version */
2328 + strlen (augmentation) + 1 /* Augmentation */
2329 + size_of_uleb128 (1) /* Code alignment */
2330 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2331 + 1 /* RA column */
2332 + 1 /* Augmentation size */
2333 + 1 /* Personality encoding */ );
2334 int pad = -offset & (PTR_SIZE - 1);
2336 augmentation_size += pad;
2338 /* Augmentations should be small, so there's scarce need to
2339 iterate for a solution. Die if we exceed one uleb128 byte. */
2340 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2344 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2345 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2346 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2347 "CIE Data Alignment Factor");
2349 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2350 if (DW_CIE_VERSION == 1)
2351 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2352 else
2353 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2355 if (augmentation[0])
2357 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2358 if (eh_personality_libfunc)
2360 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2361 eh_data_format_name (per_encoding));
2362 dw2_asm_output_encoded_addr_rtx (per_encoding,
2363 eh_personality_libfunc,
2364 true, NULL);
2367 if (any_lsda_needed)
2368 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2369 eh_data_format_name (lsda_encoding));
2371 if (fde_encoding != DW_EH_PE_absptr)
2372 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2373 eh_data_format_name (fde_encoding));
2376 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2377 output_cfi (cfi, NULL, for_eh);
2379 /* Pad the CIE out to an address sized boundary. */
2380 ASM_OUTPUT_ALIGN (asm_out_file,
2381 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2382 ASM_OUTPUT_LABEL (asm_out_file, l2);
2384 /* Loop through all of the FDE's. */
2385 for (i = 0; i < fde_table_in_use; i++)
2387 fde = &fde_table[i];
2389 /* Don't emit EH unwind info for leaf functions that don't need it. */
2390 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2391 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2392 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2393 && !fde->uses_eh_lsda)
2394 continue;
2396 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2397 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2398 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2399 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2400 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2401 dw2_asm_output_data (4, 0xffffffff,
2402 "Initial length escape value indicating 64-bit DWARF extension");
2403 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2404 "FDE Length");
2405 ASM_OUTPUT_LABEL (asm_out_file, l1);
2407 if (for_eh)
2408 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2409 else
2410 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2411 debug_frame_section, "FDE CIE offset");
2413 if (for_eh)
2415 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2416 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2417 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2418 sym_ref,
2419 false,
2420 "FDE initial location");
2421 if (fde->dw_fde_switched_sections)
2423 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2424 fde->dw_fde_unlikely_section_label);
2425 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2426 fde->dw_fde_hot_section_label);
2427 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2428 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2429 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2430 "FDE initial location");
2431 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2432 fde->dw_fde_hot_section_end_label,
2433 fde->dw_fde_hot_section_label,
2434 "FDE address range");
2435 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2436 "FDE initial location");
2437 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2438 fde->dw_fde_unlikely_section_end_label,
2439 fde->dw_fde_unlikely_section_label,
2440 "FDE address range");
2442 else
2443 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2444 fde->dw_fde_end, fde->dw_fde_begin,
2445 "FDE address range");
2447 else
2449 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2450 "FDE initial location");
2451 if (fde->dw_fde_switched_sections)
2453 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2454 fde->dw_fde_hot_section_label,
2455 "FDE initial location");
2456 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2457 fde->dw_fde_hot_section_end_label,
2458 fde->dw_fde_hot_section_label,
2459 "FDE address range");
2460 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2461 fde->dw_fde_unlikely_section_label,
2462 "FDE initial location");
2463 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2464 fde->dw_fde_unlikely_section_end_label,
2465 fde->dw_fde_unlikely_section_label,
2466 "FDE address range");
2468 else
2469 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2470 fde->dw_fde_end, fde->dw_fde_begin,
2471 "FDE address range");
2474 if (augmentation[0])
2476 if (any_lsda_needed)
2478 int size = size_of_encoded_value (lsda_encoding);
2480 if (lsda_encoding == DW_EH_PE_aligned)
2482 int offset = ( 4 /* Length */
2483 + 4 /* CIE offset */
2484 + 2 * size_of_encoded_value (fde_encoding)
2485 + 1 /* Augmentation size */ );
2486 int pad = -offset & (PTR_SIZE - 1);
2488 size += pad;
2489 gcc_assert (size_of_uleb128 (size) == 1);
2492 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2494 if (fde->uses_eh_lsda)
2496 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2497 fde->funcdef_number);
2498 dw2_asm_output_encoded_addr_rtx (
2499 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2500 false, "Language Specific Data Area");
2502 else
2504 if (lsda_encoding == DW_EH_PE_aligned)
2505 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2506 dw2_asm_output_data
2507 (size_of_encoded_value (lsda_encoding), 0,
2508 "Language Specific Data Area (none)");
2511 else
2512 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2515 /* Loop through the Call Frame Instructions associated with
2516 this FDE. */
2517 fde->dw_fde_current_label = fde->dw_fde_begin;
2518 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2519 output_cfi (cfi, fde, for_eh);
2521 /* Pad the FDE out to an address sized boundary. */
2522 ASM_OUTPUT_ALIGN (asm_out_file,
2523 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2524 ASM_OUTPUT_LABEL (asm_out_file, l2);
2527 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2528 dw2_asm_output_data (4, 0, "End of Table");
2529 #ifdef MIPS_DEBUGGING_INFO
2530 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2531 get a value of 0. Putting .align 0 after the label fixes it. */
2532 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2533 #endif
2535 /* Turn off app to make assembly quicker. */
2536 if (flag_debug_asm)
2537 app_disable ();
2540 /* Output a marker (i.e. a label) for the beginning of a function, before
2541 the prologue. */
2543 void
2544 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2545 const char *file ATTRIBUTE_UNUSED)
2547 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2548 char * dup_label;
2549 dw_fde_ref fde;
2551 current_function_func_begin_label = NULL;
2553 #ifdef TARGET_UNWIND_INFO
2554 /* ??? current_function_func_begin_label is also used by except.c
2555 for call-site information. We must emit this label if it might
2556 be used. */
2557 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2558 && ! dwarf2out_do_frame ())
2559 return;
2560 #else
2561 if (! dwarf2out_do_frame ())
2562 return;
2563 #endif
2565 switch_to_section (function_section (current_function_decl));
2566 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2567 current_function_funcdef_no);
2568 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2569 current_function_funcdef_no);
2570 dup_label = xstrdup (label);
2571 current_function_func_begin_label = dup_label;
2573 #ifdef TARGET_UNWIND_INFO
2574 /* We can elide the fde allocation if we're not emitting debug info. */
2575 if (! dwarf2out_do_frame ())
2576 return;
2577 #endif
2579 /* Expand the fde table if necessary. */
2580 if (fde_table_in_use == fde_table_allocated)
2582 fde_table_allocated += FDE_TABLE_INCREMENT;
2583 fde_table = ggc_realloc (fde_table,
2584 fde_table_allocated * sizeof (dw_fde_node));
2585 memset (fde_table + fde_table_in_use, 0,
2586 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2589 /* Record the FDE associated with this function. */
2590 current_funcdef_fde = fde_table_in_use;
2592 /* Add the new FDE at the end of the fde_table. */
2593 fde = &fde_table[fde_table_in_use++];
2594 fde->decl = current_function_decl;
2595 fde->dw_fde_begin = dup_label;
2596 fde->dw_fde_current_label = dup_label;
2597 fde->dw_fde_hot_section_label = NULL;
2598 fde->dw_fde_hot_section_end_label = NULL;
2599 fde->dw_fde_unlikely_section_label = NULL;
2600 fde->dw_fde_unlikely_section_end_label = NULL;
2601 fde->dw_fde_switched_sections = false;
2602 fde->dw_fde_end = NULL;
2603 fde->dw_fde_cfi = NULL;
2604 fde->funcdef_number = current_function_funcdef_no;
2605 fde->nothrow = TREE_NOTHROW (current_function_decl);
2606 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2607 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2609 args_size = old_args_size = 0;
2611 /* We only want to output line number information for the genuine dwarf2
2612 prologue case, not the eh frame case. */
2613 #ifdef DWARF2_DEBUGGING_INFO
2614 if (file)
2615 dwarf2out_source_line (line, file);
2616 #endif
2619 /* Output a marker (i.e. a label) for the absolute end of the generated code
2620 for a function definition. This gets called *after* the epilogue code has
2621 been generated. */
2623 void
2624 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2625 const char *file ATTRIBUTE_UNUSED)
2627 dw_fde_ref fde;
2628 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2630 /* Output a label to mark the endpoint of the code generated for this
2631 function. */
2632 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2633 current_function_funcdef_no);
2634 ASM_OUTPUT_LABEL (asm_out_file, label);
2635 fde = &fde_table[fde_table_in_use - 1];
2636 fde->dw_fde_end = xstrdup (label);
2639 void
2640 dwarf2out_frame_init (void)
2642 /* Allocate the initial hunk of the fde_table. */
2643 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2644 fde_table_allocated = FDE_TABLE_INCREMENT;
2645 fde_table_in_use = 0;
2647 /* Generate the CFA instructions common to all FDE's. Do it now for the
2648 sake of lookup_cfa. */
2650 /* On entry, the Canonical Frame Address is at SP. */
2651 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2653 #ifdef DWARF2_UNWIND_INFO
2654 if (DWARF2_UNWIND_INFO)
2655 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2656 #endif
2659 void
2660 dwarf2out_frame_finish (void)
2662 /* Output call frame information. */
2663 if (DWARF2_FRAME_INFO)
2664 output_call_frame_info (0);
2666 #ifndef TARGET_UNWIND_INFO
2667 /* Output another copy for the unwinder. */
2668 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2669 output_call_frame_info (1);
2670 #endif
2672 #endif
2674 /* And now, the subset of the debugging information support code necessary
2675 for emitting location expressions. */
2677 /* Data about a single source file. */
2678 struct dwarf_file_data GTY(())
2680 const char * filename;
2681 int emitted_number;
2684 /* We need some way to distinguish DW_OP_addr with a direct symbol
2685 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2686 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2689 typedef struct dw_val_struct *dw_val_ref;
2690 typedef struct die_struct *dw_die_ref;
2691 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2692 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2694 /* Each DIE may have a series of attribute/value pairs. Values
2695 can take on several forms. The forms that are used in this
2696 implementation are listed below. */
2698 enum dw_val_class
2700 dw_val_class_addr,
2701 dw_val_class_offset,
2702 dw_val_class_loc,
2703 dw_val_class_loc_list,
2704 dw_val_class_range_list,
2705 dw_val_class_const,
2706 dw_val_class_unsigned_const,
2707 dw_val_class_long_long,
2708 dw_val_class_vec,
2709 dw_val_class_flag,
2710 dw_val_class_die_ref,
2711 dw_val_class_fde_ref,
2712 dw_val_class_lbl_id,
2713 dw_val_class_lineptr,
2714 dw_val_class_str,
2715 dw_val_class_macptr,
2716 dw_val_class_file
2719 /* Describe a double word constant value. */
2720 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2722 typedef struct dw_long_long_struct GTY(())
2724 unsigned long hi;
2725 unsigned long low;
2727 dw_long_long_const;
2729 /* Describe a floating point constant value, or a vector constant value. */
2731 typedef struct dw_vec_struct GTY(())
2733 unsigned char * GTY((length ("%h.length"))) array;
2734 unsigned length;
2735 unsigned elt_size;
2737 dw_vec_const;
2739 /* The dw_val_node describes an attribute's value, as it is
2740 represented internally. */
2742 typedef struct dw_val_struct GTY(())
2744 enum dw_val_class val_class;
2745 union dw_val_struct_union
2747 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2748 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2749 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2750 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2751 HOST_WIDE_INT GTY ((default)) val_int;
2752 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2753 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2754 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2755 struct dw_val_die_union
2757 dw_die_ref die;
2758 int external;
2759 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2760 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2761 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2762 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2763 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2764 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2766 GTY ((desc ("%1.val_class"))) v;
2768 dw_val_node;
2770 /* Locations in memory are described using a sequence of stack machine
2771 operations. */
2773 typedef struct dw_loc_descr_struct GTY(())
2775 dw_loc_descr_ref dw_loc_next;
2776 enum dwarf_location_atom dw_loc_opc;
2777 dw_val_node dw_loc_oprnd1;
2778 dw_val_node dw_loc_oprnd2;
2779 int dw_loc_addr;
2781 dw_loc_descr_node;
2783 /* Location lists are ranges + location descriptions for that range,
2784 so you can track variables that are in different places over
2785 their entire life. */
2786 typedef struct dw_loc_list_struct GTY(())
2788 dw_loc_list_ref dw_loc_next;
2789 const char *begin; /* Label for begin address of range */
2790 const char *end; /* Label for end address of range */
2791 char *ll_symbol; /* Label for beginning of location list.
2792 Only on head of list */
2793 const char *section; /* Section this loclist is relative to */
2794 dw_loc_descr_ref expr;
2795 } dw_loc_list_node;
2797 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2799 static const char *dwarf_stack_op_name (unsigned);
2800 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2801 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2802 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2803 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2804 static unsigned long size_of_locs (dw_loc_descr_ref);
2805 static void output_loc_operands (dw_loc_descr_ref);
2806 static void output_loc_sequence (dw_loc_descr_ref);
2808 /* Convert a DWARF stack opcode into its string name. */
2810 static const char *
2811 dwarf_stack_op_name (unsigned int op)
2813 switch (op)
2815 case DW_OP_addr:
2816 case INTERNAL_DW_OP_tls_addr:
2817 return "DW_OP_addr";
2818 case DW_OP_deref:
2819 return "DW_OP_deref";
2820 case DW_OP_const1u:
2821 return "DW_OP_const1u";
2822 case DW_OP_const1s:
2823 return "DW_OP_const1s";
2824 case DW_OP_const2u:
2825 return "DW_OP_const2u";
2826 case DW_OP_const2s:
2827 return "DW_OP_const2s";
2828 case DW_OP_const4u:
2829 return "DW_OP_const4u";
2830 case DW_OP_const4s:
2831 return "DW_OP_const4s";
2832 case DW_OP_const8u:
2833 return "DW_OP_const8u";
2834 case DW_OP_const8s:
2835 return "DW_OP_const8s";
2836 case DW_OP_constu:
2837 return "DW_OP_constu";
2838 case DW_OP_consts:
2839 return "DW_OP_consts";
2840 case DW_OP_dup:
2841 return "DW_OP_dup";
2842 case DW_OP_drop:
2843 return "DW_OP_drop";
2844 case DW_OP_over:
2845 return "DW_OP_over";
2846 case DW_OP_pick:
2847 return "DW_OP_pick";
2848 case DW_OP_swap:
2849 return "DW_OP_swap";
2850 case DW_OP_rot:
2851 return "DW_OP_rot";
2852 case DW_OP_xderef:
2853 return "DW_OP_xderef";
2854 case DW_OP_abs:
2855 return "DW_OP_abs";
2856 case DW_OP_and:
2857 return "DW_OP_and";
2858 case DW_OP_div:
2859 return "DW_OP_div";
2860 case DW_OP_minus:
2861 return "DW_OP_minus";
2862 case DW_OP_mod:
2863 return "DW_OP_mod";
2864 case DW_OP_mul:
2865 return "DW_OP_mul";
2866 case DW_OP_neg:
2867 return "DW_OP_neg";
2868 case DW_OP_not:
2869 return "DW_OP_not";
2870 case DW_OP_or:
2871 return "DW_OP_or";
2872 case DW_OP_plus:
2873 return "DW_OP_plus";
2874 case DW_OP_plus_uconst:
2875 return "DW_OP_plus_uconst";
2876 case DW_OP_shl:
2877 return "DW_OP_shl";
2878 case DW_OP_shr:
2879 return "DW_OP_shr";
2880 case DW_OP_shra:
2881 return "DW_OP_shra";
2882 case DW_OP_xor:
2883 return "DW_OP_xor";
2884 case DW_OP_bra:
2885 return "DW_OP_bra";
2886 case DW_OP_eq:
2887 return "DW_OP_eq";
2888 case DW_OP_ge:
2889 return "DW_OP_ge";
2890 case DW_OP_gt:
2891 return "DW_OP_gt";
2892 case DW_OP_le:
2893 return "DW_OP_le";
2894 case DW_OP_lt:
2895 return "DW_OP_lt";
2896 case DW_OP_ne:
2897 return "DW_OP_ne";
2898 case DW_OP_skip:
2899 return "DW_OP_skip";
2900 case DW_OP_lit0:
2901 return "DW_OP_lit0";
2902 case DW_OP_lit1:
2903 return "DW_OP_lit1";
2904 case DW_OP_lit2:
2905 return "DW_OP_lit2";
2906 case DW_OP_lit3:
2907 return "DW_OP_lit3";
2908 case DW_OP_lit4:
2909 return "DW_OP_lit4";
2910 case DW_OP_lit5:
2911 return "DW_OP_lit5";
2912 case DW_OP_lit6:
2913 return "DW_OP_lit6";
2914 case DW_OP_lit7:
2915 return "DW_OP_lit7";
2916 case DW_OP_lit8:
2917 return "DW_OP_lit8";
2918 case DW_OP_lit9:
2919 return "DW_OP_lit9";
2920 case DW_OP_lit10:
2921 return "DW_OP_lit10";
2922 case DW_OP_lit11:
2923 return "DW_OP_lit11";
2924 case DW_OP_lit12:
2925 return "DW_OP_lit12";
2926 case DW_OP_lit13:
2927 return "DW_OP_lit13";
2928 case DW_OP_lit14:
2929 return "DW_OP_lit14";
2930 case DW_OP_lit15:
2931 return "DW_OP_lit15";
2932 case DW_OP_lit16:
2933 return "DW_OP_lit16";
2934 case DW_OP_lit17:
2935 return "DW_OP_lit17";
2936 case DW_OP_lit18:
2937 return "DW_OP_lit18";
2938 case DW_OP_lit19:
2939 return "DW_OP_lit19";
2940 case DW_OP_lit20:
2941 return "DW_OP_lit20";
2942 case DW_OP_lit21:
2943 return "DW_OP_lit21";
2944 case DW_OP_lit22:
2945 return "DW_OP_lit22";
2946 case DW_OP_lit23:
2947 return "DW_OP_lit23";
2948 case DW_OP_lit24:
2949 return "DW_OP_lit24";
2950 case DW_OP_lit25:
2951 return "DW_OP_lit25";
2952 case DW_OP_lit26:
2953 return "DW_OP_lit26";
2954 case DW_OP_lit27:
2955 return "DW_OP_lit27";
2956 case DW_OP_lit28:
2957 return "DW_OP_lit28";
2958 case DW_OP_lit29:
2959 return "DW_OP_lit29";
2960 case DW_OP_lit30:
2961 return "DW_OP_lit30";
2962 case DW_OP_lit31:
2963 return "DW_OP_lit31";
2964 case DW_OP_reg0:
2965 return "DW_OP_reg0";
2966 case DW_OP_reg1:
2967 return "DW_OP_reg1";
2968 case DW_OP_reg2:
2969 return "DW_OP_reg2";
2970 case DW_OP_reg3:
2971 return "DW_OP_reg3";
2972 case DW_OP_reg4:
2973 return "DW_OP_reg4";
2974 case DW_OP_reg5:
2975 return "DW_OP_reg5";
2976 case DW_OP_reg6:
2977 return "DW_OP_reg6";
2978 case DW_OP_reg7:
2979 return "DW_OP_reg7";
2980 case DW_OP_reg8:
2981 return "DW_OP_reg8";
2982 case DW_OP_reg9:
2983 return "DW_OP_reg9";
2984 case DW_OP_reg10:
2985 return "DW_OP_reg10";
2986 case DW_OP_reg11:
2987 return "DW_OP_reg11";
2988 case DW_OP_reg12:
2989 return "DW_OP_reg12";
2990 case DW_OP_reg13:
2991 return "DW_OP_reg13";
2992 case DW_OP_reg14:
2993 return "DW_OP_reg14";
2994 case DW_OP_reg15:
2995 return "DW_OP_reg15";
2996 case DW_OP_reg16:
2997 return "DW_OP_reg16";
2998 case DW_OP_reg17:
2999 return "DW_OP_reg17";
3000 case DW_OP_reg18:
3001 return "DW_OP_reg18";
3002 case DW_OP_reg19:
3003 return "DW_OP_reg19";
3004 case DW_OP_reg20:
3005 return "DW_OP_reg20";
3006 case DW_OP_reg21:
3007 return "DW_OP_reg21";
3008 case DW_OP_reg22:
3009 return "DW_OP_reg22";
3010 case DW_OP_reg23:
3011 return "DW_OP_reg23";
3012 case DW_OP_reg24:
3013 return "DW_OP_reg24";
3014 case DW_OP_reg25:
3015 return "DW_OP_reg25";
3016 case DW_OP_reg26:
3017 return "DW_OP_reg26";
3018 case DW_OP_reg27:
3019 return "DW_OP_reg27";
3020 case DW_OP_reg28:
3021 return "DW_OP_reg28";
3022 case DW_OP_reg29:
3023 return "DW_OP_reg29";
3024 case DW_OP_reg30:
3025 return "DW_OP_reg30";
3026 case DW_OP_reg31:
3027 return "DW_OP_reg31";
3028 case DW_OP_breg0:
3029 return "DW_OP_breg0";
3030 case DW_OP_breg1:
3031 return "DW_OP_breg1";
3032 case DW_OP_breg2:
3033 return "DW_OP_breg2";
3034 case DW_OP_breg3:
3035 return "DW_OP_breg3";
3036 case DW_OP_breg4:
3037 return "DW_OP_breg4";
3038 case DW_OP_breg5:
3039 return "DW_OP_breg5";
3040 case DW_OP_breg6:
3041 return "DW_OP_breg6";
3042 case DW_OP_breg7:
3043 return "DW_OP_breg7";
3044 case DW_OP_breg8:
3045 return "DW_OP_breg8";
3046 case DW_OP_breg9:
3047 return "DW_OP_breg9";
3048 case DW_OP_breg10:
3049 return "DW_OP_breg10";
3050 case DW_OP_breg11:
3051 return "DW_OP_breg11";
3052 case DW_OP_breg12:
3053 return "DW_OP_breg12";
3054 case DW_OP_breg13:
3055 return "DW_OP_breg13";
3056 case DW_OP_breg14:
3057 return "DW_OP_breg14";
3058 case DW_OP_breg15:
3059 return "DW_OP_breg15";
3060 case DW_OP_breg16:
3061 return "DW_OP_breg16";
3062 case DW_OP_breg17:
3063 return "DW_OP_breg17";
3064 case DW_OP_breg18:
3065 return "DW_OP_breg18";
3066 case DW_OP_breg19:
3067 return "DW_OP_breg19";
3068 case DW_OP_breg20:
3069 return "DW_OP_breg20";
3070 case DW_OP_breg21:
3071 return "DW_OP_breg21";
3072 case DW_OP_breg22:
3073 return "DW_OP_breg22";
3074 case DW_OP_breg23:
3075 return "DW_OP_breg23";
3076 case DW_OP_breg24:
3077 return "DW_OP_breg24";
3078 case DW_OP_breg25:
3079 return "DW_OP_breg25";
3080 case DW_OP_breg26:
3081 return "DW_OP_breg26";
3082 case DW_OP_breg27:
3083 return "DW_OP_breg27";
3084 case DW_OP_breg28:
3085 return "DW_OP_breg28";
3086 case DW_OP_breg29:
3087 return "DW_OP_breg29";
3088 case DW_OP_breg30:
3089 return "DW_OP_breg30";
3090 case DW_OP_breg31:
3091 return "DW_OP_breg31";
3092 case DW_OP_regx:
3093 return "DW_OP_regx";
3094 case DW_OP_fbreg:
3095 return "DW_OP_fbreg";
3096 case DW_OP_bregx:
3097 return "DW_OP_bregx";
3098 case DW_OP_piece:
3099 return "DW_OP_piece";
3100 case DW_OP_deref_size:
3101 return "DW_OP_deref_size";
3102 case DW_OP_xderef_size:
3103 return "DW_OP_xderef_size";
3104 case DW_OP_nop:
3105 return "DW_OP_nop";
3106 case DW_OP_push_object_address:
3107 return "DW_OP_push_object_address";
3108 case DW_OP_call2:
3109 return "DW_OP_call2";
3110 case DW_OP_call4:
3111 return "DW_OP_call4";
3112 case DW_OP_call_ref:
3113 return "DW_OP_call_ref";
3114 case DW_OP_GNU_push_tls_address:
3115 return "DW_OP_GNU_push_tls_address";
3116 default:
3117 return "OP_<unknown>";
3121 /* Return a pointer to a newly allocated location description. Location
3122 descriptions are simple expression terms that can be strung
3123 together to form more complicated location (address) descriptions. */
3125 static inline dw_loc_descr_ref
3126 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3127 unsigned HOST_WIDE_INT oprnd2)
3129 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3131 descr->dw_loc_opc = op;
3132 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3133 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3134 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3135 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3137 return descr;
3140 /* Add a location description term to a location description expression. */
3142 static inline void
3143 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3145 dw_loc_descr_ref *d;
3147 /* Find the end of the chain. */
3148 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3151 *d = descr;
3154 /* Return the size of a location descriptor. */
3156 static unsigned long
3157 size_of_loc_descr (dw_loc_descr_ref loc)
3159 unsigned long size = 1;
3161 switch (loc->dw_loc_opc)
3163 case DW_OP_addr:
3164 case INTERNAL_DW_OP_tls_addr:
3165 size += DWARF2_ADDR_SIZE;
3166 break;
3167 case DW_OP_const1u:
3168 case DW_OP_const1s:
3169 size += 1;
3170 break;
3171 case DW_OP_const2u:
3172 case DW_OP_const2s:
3173 size += 2;
3174 break;
3175 case DW_OP_const4u:
3176 case DW_OP_const4s:
3177 size += 4;
3178 break;
3179 case DW_OP_const8u:
3180 case DW_OP_const8s:
3181 size += 8;
3182 break;
3183 case DW_OP_constu:
3184 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3185 break;
3186 case DW_OP_consts:
3187 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3188 break;
3189 case DW_OP_pick:
3190 size += 1;
3191 break;
3192 case DW_OP_plus_uconst:
3193 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3194 break;
3195 case DW_OP_skip:
3196 case DW_OP_bra:
3197 size += 2;
3198 break;
3199 case DW_OP_breg0:
3200 case DW_OP_breg1:
3201 case DW_OP_breg2:
3202 case DW_OP_breg3:
3203 case DW_OP_breg4:
3204 case DW_OP_breg5:
3205 case DW_OP_breg6:
3206 case DW_OP_breg7:
3207 case DW_OP_breg8:
3208 case DW_OP_breg9:
3209 case DW_OP_breg10:
3210 case DW_OP_breg11:
3211 case DW_OP_breg12:
3212 case DW_OP_breg13:
3213 case DW_OP_breg14:
3214 case DW_OP_breg15:
3215 case DW_OP_breg16:
3216 case DW_OP_breg17:
3217 case DW_OP_breg18:
3218 case DW_OP_breg19:
3219 case DW_OP_breg20:
3220 case DW_OP_breg21:
3221 case DW_OP_breg22:
3222 case DW_OP_breg23:
3223 case DW_OP_breg24:
3224 case DW_OP_breg25:
3225 case DW_OP_breg26:
3226 case DW_OP_breg27:
3227 case DW_OP_breg28:
3228 case DW_OP_breg29:
3229 case DW_OP_breg30:
3230 case DW_OP_breg31:
3231 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3232 break;
3233 case DW_OP_regx:
3234 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3235 break;
3236 case DW_OP_fbreg:
3237 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3238 break;
3239 case DW_OP_bregx:
3240 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3241 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3242 break;
3243 case DW_OP_piece:
3244 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3245 break;
3246 case DW_OP_deref_size:
3247 case DW_OP_xderef_size:
3248 size += 1;
3249 break;
3250 case DW_OP_call2:
3251 size += 2;
3252 break;
3253 case DW_OP_call4:
3254 size += 4;
3255 break;
3256 case DW_OP_call_ref:
3257 size += DWARF2_ADDR_SIZE;
3258 break;
3259 default:
3260 break;
3263 return size;
3266 /* Return the size of a series of location descriptors. */
3268 static unsigned long
3269 size_of_locs (dw_loc_descr_ref loc)
3271 dw_loc_descr_ref l;
3272 unsigned long size;
3274 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3275 field, to avoid writing to a PCH file. */
3276 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3278 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3279 break;
3280 size += size_of_loc_descr (l);
3282 if (! l)
3283 return size;
3285 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3287 l->dw_loc_addr = size;
3288 size += size_of_loc_descr (l);
3291 return size;
3294 /* Output location description stack opcode's operands (if any). */
3296 static void
3297 output_loc_operands (dw_loc_descr_ref loc)
3299 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3300 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3302 switch (loc->dw_loc_opc)
3304 #ifdef DWARF2_DEBUGGING_INFO
3305 case DW_OP_addr:
3306 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3307 break;
3308 case DW_OP_const2u:
3309 case DW_OP_const2s:
3310 dw2_asm_output_data (2, val1->v.val_int, NULL);
3311 break;
3312 case DW_OP_const4u:
3313 case DW_OP_const4s:
3314 dw2_asm_output_data (4, val1->v.val_int, NULL);
3315 break;
3316 case DW_OP_const8u:
3317 case DW_OP_const8s:
3318 gcc_assert (HOST_BITS_PER_LONG >= 64);
3319 dw2_asm_output_data (8, val1->v.val_int, NULL);
3320 break;
3321 case DW_OP_skip:
3322 case DW_OP_bra:
3324 int offset;
3326 gcc_assert (val1->val_class == dw_val_class_loc);
3327 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3329 dw2_asm_output_data (2, offset, NULL);
3331 break;
3332 #else
3333 case DW_OP_addr:
3334 case DW_OP_const2u:
3335 case DW_OP_const2s:
3336 case DW_OP_const4u:
3337 case DW_OP_const4s:
3338 case DW_OP_const8u:
3339 case DW_OP_const8s:
3340 case DW_OP_skip:
3341 case DW_OP_bra:
3342 /* We currently don't make any attempt to make sure these are
3343 aligned properly like we do for the main unwind info, so
3344 don't support emitting things larger than a byte if we're
3345 only doing unwinding. */
3346 gcc_unreachable ();
3347 #endif
3348 case DW_OP_const1u:
3349 case DW_OP_const1s:
3350 dw2_asm_output_data (1, val1->v.val_int, NULL);
3351 break;
3352 case DW_OP_constu:
3353 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3354 break;
3355 case DW_OP_consts:
3356 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3357 break;
3358 case DW_OP_pick:
3359 dw2_asm_output_data (1, val1->v.val_int, NULL);
3360 break;
3361 case DW_OP_plus_uconst:
3362 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3363 break;
3364 case DW_OP_breg0:
3365 case DW_OP_breg1:
3366 case DW_OP_breg2:
3367 case DW_OP_breg3:
3368 case DW_OP_breg4:
3369 case DW_OP_breg5:
3370 case DW_OP_breg6:
3371 case DW_OP_breg7:
3372 case DW_OP_breg8:
3373 case DW_OP_breg9:
3374 case DW_OP_breg10:
3375 case DW_OP_breg11:
3376 case DW_OP_breg12:
3377 case DW_OP_breg13:
3378 case DW_OP_breg14:
3379 case DW_OP_breg15:
3380 case DW_OP_breg16:
3381 case DW_OP_breg17:
3382 case DW_OP_breg18:
3383 case DW_OP_breg19:
3384 case DW_OP_breg20:
3385 case DW_OP_breg21:
3386 case DW_OP_breg22:
3387 case DW_OP_breg23:
3388 case DW_OP_breg24:
3389 case DW_OP_breg25:
3390 case DW_OP_breg26:
3391 case DW_OP_breg27:
3392 case DW_OP_breg28:
3393 case DW_OP_breg29:
3394 case DW_OP_breg30:
3395 case DW_OP_breg31:
3396 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3397 break;
3398 case DW_OP_regx:
3399 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3400 break;
3401 case DW_OP_fbreg:
3402 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3403 break;
3404 case DW_OP_bregx:
3405 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3406 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3407 break;
3408 case DW_OP_piece:
3409 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3410 break;
3411 case DW_OP_deref_size:
3412 case DW_OP_xderef_size:
3413 dw2_asm_output_data (1, val1->v.val_int, NULL);
3414 break;
3416 case INTERNAL_DW_OP_tls_addr:
3417 if (targetm.asm_out.output_dwarf_dtprel)
3419 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3420 DWARF2_ADDR_SIZE,
3421 val1->v.val_addr);
3422 fputc ('\n', asm_out_file);
3424 else
3425 gcc_unreachable ();
3426 break;
3428 default:
3429 /* Other codes have no operands. */
3430 break;
3434 /* Output a sequence of location operations. */
3436 static void
3437 output_loc_sequence (dw_loc_descr_ref loc)
3439 for (; loc != NULL; loc = loc->dw_loc_next)
3441 /* Output the opcode. */
3442 dw2_asm_output_data (1, loc->dw_loc_opc,
3443 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3445 /* Output the operand(s) (if any). */
3446 output_loc_operands (loc);
3450 /* This routine will generate the correct assembly data for a location
3451 description based on a cfi entry with a complex address. */
3453 static void
3454 output_cfa_loc (dw_cfi_ref cfi)
3456 dw_loc_descr_ref loc;
3457 unsigned long size;
3459 /* Output the size of the block. */
3460 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3461 size = size_of_locs (loc);
3462 dw2_asm_output_data_uleb128 (size, NULL);
3464 /* Now output the operations themselves. */
3465 output_loc_sequence (loc);
3468 /* This function builds a dwarf location descriptor sequence from a
3469 dw_cfa_location, adding the given OFFSET to the result of the
3470 expression. */
3472 static struct dw_loc_descr_struct *
3473 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3475 struct dw_loc_descr_struct *head, *tmp;
3477 offset += cfa->offset;
3479 if (cfa->indirect)
3481 if (cfa->base_offset)
3483 if (cfa->reg <= 31)
3484 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3485 else
3486 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3488 else if (cfa->reg <= 31)
3489 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3490 else
3491 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3493 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3494 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3495 add_loc_descr (&head, tmp);
3496 if (offset != 0)
3498 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3499 add_loc_descr (&head, tmp);
3502 else
3504 if (offset == 0)
3505 if (cfa->reg <= 31)
3506 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3507 else
3508 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3509 else if (cfa->reg <= 31)
3510 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3511 else
3512 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3515 return head;
3518 /* This function fills in aa dw_cfa_location structure from a dwarf location
3519 descriptor sequence. */
3521 static void
3522 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3524 struct dw_loc_descr_struct *ptr;
3525 cfa->offset = 0;
3526 cfa->base_offset = 0;
3527 cfa->indirect = 0;
3528 cfa->reg = -1;
3530 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3532 enum dwarf_location_atom op = ptr->dw_loc_opc;
3534 switch (op)
3536 case DW_OP_reg0:
3537 case DW_OP_reg1:
3538 case DW_OP_reg2:
3539 case DW_OP_reg3:
3540 case DW_OP_reg4:
3541 case DW_OP_reg5:
3542 case DW_OP_reg6:
3543 case DW_OP_reg7:
3544 case DW_OP_reg8:
3545 case DW_OP_reg9:
3546 case DW_OP_reg10:
3547 case DW_OP_reg11:
3548 case DW_OP_reg12:
3549 case DW_OP_reg13:
3550 case DW_OP_reg14:
3551 case DW_OP_reg15:
3552 case DW_OP_reg16:
3553 case DW_OP_reg17:
3554 case DW_OP_reg18:
3555 case DW_OP_reg19:
3556 case DW_OP_reg20:
3557 case DW_OP_reg21:
3558 case DW_OP_reg22:
3559 case DW_OP_reg23:
3560 case DW_OP_reg24:
3561 case DW_OP_reg25:
3562 case DW_OP_reg26:
3563 case DW_OP_reg27:
3564 case DW_OP_reg28:
3565 case DW_OP_reg29:
3566 case DW_OP_reg30:
3567 case DW_OP_reg31:
3568 cfa->reg = op - DW_OP_reg0;
3569 break;
3570 case DW_OP_regx:
3571 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3572 break;
3573 case DW_OP_breg0:
3574 case DW_OP_breg1:
3575 case DW_OP_breg2:
3576 case DW_OP_breg3:
3577 case DW_OP_breg4:
3578 case DW_OP_breg5:
3579 case DW_OP_breg6:
3580 case DW_OP_breg7:
3581 case DW_OP_breg8:
3582 case DW_OP_breg9:
3583 case DW_OP_breg10:
3584 case DW_OP_breg11:
3585 case DW_OP_breg12:
3586 case DW_OP_breg13:
3587 case DW_OP_breg14:
3588 case DW_OP_breg15:
3589 case DW_OP_breg16:
3590 case DW_OP_breg17:
3591 case DW_OP_breg18:
3592 case DW_OP_breg19:
3593 case DW_OP_breg20:
3594 case DW_OP_breg21:
3595 case DW_OP_breg22:
3596 case DW_OP_breg23:
3597 case DW_OP_breg24:
3598 case DW_OP_breg25:
3599 case DW_OP_breg26:
3600 case DW_OP_breg27:
3601 case DW_OP_breg28:
3602 case DW_OP_breg29:
3603 case DW_OP_breg30:
3604 case DW_OP_breg31:
3605 cfa->reg = op - DW_OP_breg0;
3606 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3607 break;
3608 case DW_OP_bregx:
3609 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3610 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3611 break;
3612 case DW_OP_deref:
3613 cfa->indirect = 1;
3614 break;
3615 case DW_OP_plus_uconst:
3616 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3617 break;
3618 default:
3619 internal_error ("DW_LOC_OP %s not implemented",
3620 dwarf_stack_op_name (ptr->dw_loc_opc));
3624 #endif /* .debug_frame support */
3626 /* And now, the support for symbolic debugging information. */
3627 #ifdef DWARF2_DEBUGGING_INFO
3629 /* .debug_str support. */
3630 static int output_indirect_string (void **, void *);
3632 static void dwarf2out_init (const char *);
3633 static void dwarf2out_finish (const char *);
3634 static void dwarf2out_define (unsigned int, const char *);
3635 static void dwarf2out_undef (unsigned int, const char *);
3636 static void dwarf2out_start_source_file (unsigned, const char *);
3637 static void dwarf2out_end_source_file (unsigned);
3638 static void dwarf2out_begin_block (unsigned, unsigned);
3639 static void dwarf2out_end_block (unsigned, unsigned);
3640 static bool dwarf2out_ignore_block (tree);
3641 static void dwarf2out_global_decl (tree);
3642 static void dwarf2out_type_decl (tree, int);
3643 static void dwarf2out_imported_module_or_decl (tree, tree);
3644 static void dwarf2out_abstract_function (tree);
3645 static void dwarf2out_var_location (rtx);
3646 static void dwarf2out_begin_function (tree);
3647 static void dwarf2out_switch_text_section (void);
3649 /* The debug hooks structure. */
3651 const struct gcc_debug_hooks dwarf2_debug_hooks =
3653 dwarf2out_init,
3654 dwarf2out_finish,
3655 dwarf2out_define,
3656 dwarf2out_undef,
3657 dwarf2out_start_source_file,
3658 dwarf2out_end_source_file,
3659 dwarf2out_begin_block,
3660 dwarf2out_end_block,
3661 dwarf2out_ignore_block,
3662 dwarf2out_source_line,
3663 dwarf2out_begin_prologue,
3664 debug_nothing_int_charstar, /* end_prologue */
3665 dwarf2out_end_epilogue,
3666 dwarf2out_begin_function,
3667 debug_nothing_int, /* end_function */
3668 dwarf2out_decl, /* function_decl */
3669 dwarf2out_global_decl,
3670 dwarf2out_type_decl, /* type_decl */
3671 dwarf2out_imported_module_or_decl,
3672 debug_nothing_tree, /* deferred_inline_function */
3673 /* The DWARF 2 backend tries to reduce debugging bloat by not
3674 emitting the abstract description of inline functions until
3675 something tries to reference them. */
3676 dwarf2out_abstract_function, /* outlining_inline_function */
3677 debug_nothing_rtx, /* label */
3678 debug_nothing_int, /* handle_pch */
3679 dwarf2out_var_location,
3680 dwarf2out_switch_text_section,
3681 1 /* start_end_main_source_file */
3683 #endif
3685 /* NOTE: In the comments in this file, many references are made to
3686 "Debugging Information Entries". This term is abbreviated as `DIE'
3687 throughout the remainder of this file. */
3689 /* An internal representation of the DWARF output is built, and then
3690 walked to generate the DWARF debugging info. The walk of the internal
3691 representation is done after the entire program has been compiled.
3692 The types below are used to describe the internal representation. */
3694 /* Various DIE's use offsets relative to the beginning of the
3695 .debug_info section to refer to each other. */
3697 typedef long int dw_offset;
3699 /* Define typedefs here to avoid circular dependencies. */
3701 typedef struct dw_attr_struct *dw_attr_ref;
3702 typedef struct dw_line_info_struct *dw_line_info_ref;
3703 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3704 typedef struct pubname_struct *pubname_ref;
3705 typedef struct dw_ranges_struct *dw_ranges_ref;
3707 /* Each entry in the line_info_table maintains the file and
3708 line number associated with the label generated for that
3709 entry. The label gives the PC value associated with
3710 the line number entry. */
3712 typedef struct dw_line_info_struct GTY(())
3714 unsigned long dw_file_num;
3715 unsigned long dw_line_num;
3717 dw_line_info_entry;
3719 /* Line information for functions in separate sections; each one gets its
3720 own sequence. */
3721 typedef struct dw_separate_line_info_struct GTY(())
3723 unsigned long dw_file_num;
3724 unsigned long dw_line_num;
3725 unsigned long function;
3727 dw_separate_line_info_entry;
3729 /* Each DIE attribute has a field specifying the attribute kind,
3730 a link to the next attribute in the chain, and an attribute value.
3731 Attributes are typically linked below the DIE they modify. */
3733 typedef struct dw_attr_struct GTY(())
3735 enum dwarf_attribute dw_attr;
3736 dw_val_node dw_attr_val;
3738 dw_attr_node;
3740 DEF_VEC_O(dw_attr_node);
3741 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3743 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3744 The children of each node form a circular list linked by
3745 die_sib. die_child points to the node *before* the "first" child node. */
3747 typedef struct die_struct GTY(())
3749 enum dwarf_tag die_tag;
3750 char *die_symbol;
3751 VEC(dw_attr_node,gc) * die_attr;
3752 dw_die_ref die_parent;
3753 dw_die_ref die_child;
3754 dw_die_ref die_sib;
3755 dw_die_ref die_definition; /* ref from a specification to its definition */
3756 dw_offset die_offset;
3757 unsigned long die_abbrev;
3758 int die_mark;
3759 /* Die is used and must not be pruned as unused. */
3760 int die_perennial_p;
3761 unsigned int decl_id;
3763 die_node;
3765 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3766 #define FOR_EACH_CHILD(die, c, expr) do { \
3767 c = die->die_child; \
3768 if (c) do { \
3769 c = c->die_sib; \
3770 expr; \
3771 } while (c != die->die_child); \
3772 } while (0)
3774 /* The pubname structure */
3776 typedef struct pubname_struct GTY(())
3778 dw_die_ref die;
3779 const char *name;
3781 pubname_entry;
3783 DEF_VEC_O(pubname_entry);
3784 DEF_VEC_ALLOC_O(pubname_entry, gc);
3786 struct dw_ranges_struct GTY(())
3788 int block_num;
3791 /* The limbo die list structure. */
3792 typedef struct limbo_die_struct GTY(())
3794 dw_die_ref die;
3795 tree created_for;
3796 struct limbo_die_struct *next;
3798 limbo_die_node;
3800 /* How to start an assembler comment. */
3801 #ifndef ASM_COMMENT_START
3802 #define ASM_COMMENT_START ";#"
3803 #endif
3805 /* Define a macro which returns nonzero for a TYPE_DECL which was
3806 implicitly generated for a tagged type.
3808 Note that unlike the gcc front end (which generates a NULL named
3809 TYPE_DECL node for each complete tagged type, each array type, and
3810 each function type node created) the g++ front end generates a
3811 _named_ TYPE_DECL node for each tagged type node created.
3812 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3813 generate a DW_TAG_typedef DIE for them. */
3815 #define TYPE_DECL_IS_STUB(decl) \
3816 (DECL_NAME (decl) == NULL_TREE \
3817 || (DECL_ARTIFICIAL (decl) \
3818 && is_tagged_type (TREE_TYPE (decl)) \
3819 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3820 /* This is necessary for stub decls that \
3821 appear in nested inline functions. */ \
3822 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3823 && (decl_ultimate_origin (decl) \
3824 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3826 /* Information concerning the compilation unit's programming
3827 language, and compiler version. */
3829 /* Fixed size portion of the DWARF compilation unit header. */
3830 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3831 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3833 /* Fixed size portion of public names info. */
3834 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3836 /* Fixed size portion of the address range info. */
3837 #define DWARF_ARANGES_HEADER_SIZE \
3838 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3839 DWARF2_ADDR_SIZE * 2) \
3840 - DWARF_INITIAL_LENGTH_SIZE)
3842 /* Size of padding portion in the address range info. It must be
3843 aligned to twice the pointer size. */
3844 #define DWARF_ARANGES_PAD_SIZE \
3845 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3846 DWARF2_ADDR_SIZE * 2) \
3847 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3849 /* Use assembler line directives if available. */
3850 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3851 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3852 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3853 #else
3854 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3855 #endif
3856 #endif
3858 /* Minimum line offset in a special line info. opcode.
3859 This value was chosen to give a reasonable range of values. */
3860 #define DWARF_LINE_BASE -10
3862 /* First special line opcode - leave room for the standard opcodes. */
3863 #define DWARF_LINE_OPCODE_BASE 10
3865 /* Range of line offsets in a special line info. opcode. */
3866 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3868 /* Flag that indicates the initial value of the is_stmt_start flag.
3869 In the present implementation, we do not mark any lines as
3870 the beginning of a source statement, because that information
3871 is not made available by the GCC front-end. */
3872 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3874 #ifdef DWARF2_DEBUGGING_INFO
3875 /* This location is used by calc_die_sizes() to keep track
3876 the offset of each DIE within the .debug_info section. */
3877 static unsigned long next_die_offset;
3878 #endif
3880 /* Record the root of the DIE's built for the current compilation unit. */
3881 static GTY(()) dw_die_ref comp_unit_die;
3883 /* A list of DIEs with a NULL parent waiting to be relocated. */
3884 static GTY(()) limbo_die_node *limbo_die_list;
3886 /* Filenames referenced by this compilation unit. */
3887 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3889 /* A hash table of references to DIE's that describe declarations.
3890 The key is a DECL_UID() which is a unique number identifying each decl. */
3891 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3893 /* Node of the variable location list. */
3894 struct var_loc_node GTY ((chain_next ("%h.next")))
3896 rtx GTY (()) var_loc_note;
3897 const char * GTY (()) label;
3898 const char * GTY (()) section_label;
3899 struct var_loc_node * GTY (()) next;
3902 /* Variable location list. */
3903 struct var_loc_list_def GTY (())
3905 struct var_loc_node * GTY (()) first;
3907 /* Do not mark the last element of the chained list because
3908 it is marked through the chain. */
3909 struct var_loc_node * GTY ((skip ("%h"))) last;
3911 /* DECL_UID of the variable decl. */
3912 unsigned int decl_id;
3914 typedef struct var_loc_list_def var_loc_list;
3917 /* Table of decl location linked lists. */
3918 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3920 /* A pointer to the base of a list of references to DIE's that
3921 are uniquely identified by their tag, presence/absence of
3922 children DIE's, and list of attribute/value pairs. */
3923 static GTY((length ("abbrev_die_table_allocated")))
3924 dw_die_ref *abbrev_die_table;
3926 /* Number of elements currently allocated for abbrev_die_table. */
3927 static GTY(()) unsigned abbrev_die_table_allocated;
3929 /* Number of elements in type_die_table currently in use. */
3930 static GTY(()) unsigned abbrev_die_table_in_use;
3932 /* Size (in elements) of increments by which we may expand the
3933 abbrev_die_table. */
3934 #define ABBREV_DIE_TABLE_INCREMENT 256
3936 /* A pointer to the base of a table that contains line information
3937 for each source code line in .text in the compilation unit. */
3938 static GTY((length ("line_info_table_allocated")))
3939 dw_line_info_ref line_info_table;
3941 /* Number of elements currently allocated for line_info_table. */
3942 static GTY(()) unsigned line_info_table_allocated;
3944 /* Number of elements in line_info_table currently in use. */
3945 static GTY(()) unsigned line_info_table_in_use;
3947 /* True if the compilation unit places functions in more than one section. */
3948 static GTY(()) bool have_multiple_function_sections = false;
3950 /* A pointer to the base of a table that contains line information
3951 for each source code line outside of .text in the compilation unit. */
3952 static GTY ((length ("separate_line_info_table_allocated")))
3953 dw_separate_line_info_ref separate_line_info_table;
3955 /* Number of elements currently allocated for separate_line_info_table. */
3956 static GTY(()) unsigned separate_line_info_table_allocated;
3958 /* Number of elements in separate_line_info_table currently in use. */
3959 static GTY(()) unsigned separate_line_info_table_in_use;
3961 /* Size (in elements) of increments by which we may expand the
3962 line_info_table. */
3963 #define LINE_INFO_TABLE_INCREMENT 1024
3965 /* A pointer to the base of a table that contains a list of publicly
3966 accessible names. */
3967 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
3969 /* A pointer to the base of a table that contains a list of publicly
3970 accessible types. */
3971 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
3973 /* Array of dies for which we should generate .debug_arange info. */
3974 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3976 /* Number of elements currently allocated for arange_table. */
3977 static GTY(()) unsigned arange_table_allocated;
3979 /* Number of elements in arange_table currently in use. */
3980 static GTY(()) unsigned arange_table_in_use;
3982 /* Size (in elements) of increments by which we may expand the
3983 arange_table. */
3984 #define ARANGE_TABLE_INCREMENT 64
3986 /* Array of dies for which we should generate .debug_ranges info. */
3987 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3989 /* Number of elements currently allocated for ranges_table. */
3990 static GTY(()) unsigned ranges_table_allocated;
3992 /* Number of elements in ranges_table currently in use. */
3993 static GTY(()) unsigned ranges_table_in_use;
3995 /* Size (in elements) of increments by which we may expand the
3996 ranges_table. */
3997 #define RANGES_TABLE_INCREMENT 64
3999 /* Whether we have location lists that need outputting */
4000 static GTY(()) bool have_location_lists;
4002 /* Unique label counter. */
4003 static GTY(()) unsigned int loclabel_num;
4005 #ifdef DWARF2_DEBUGGING_INFO
4006 /* Record whether the function being analyzed contains inlined functions. */
4007 static int current_function_has_inlines;
4008 #endif
4009 #if 0 && defined (MIPS_DEBUGGING_INFO)
4010 static int comp_unit_has_inlines;
4011 #endif
4013 /* The last file entry emitted by maybe_emit_file(). */
4014 static GTY(()) struct dwarf_file_data * last_emitted_file;
4016 /* Number of internal labels generated by gen_internal_sym(). */
4017 static GTY(()) int label_num;
4019 /* Cached result of previous call to lookup_filename. */
4020 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4022 #ifdef DWARF2_DEBUGGING_INFO
4024 /* Offset from the "steady-state frame pointer" to the frame base,
4025 within the current function. */
4026 static HOST_WIDE_INT frame_pointer_fb_offset;
4028 /* Forward declarations for functions defined in this file. */
4030 static int is_pseudo_reg (rtx);
4031 static tree type_main_variant (tree);
4032 static int is_tagged_type (tree);
4033 static const char *dwarf_tag_name (unsigned);
4034 static const char *dwarf_attr_name (unsigned);
4035 static const char *dwarf_form_name (unsigned);
4036 static tree decl_ultimate_origin (tree);
4037 static tree block_ultimate_origin (tree);
4038 static tree decl_class_context (tree);
4039 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4040 static inline enum dw_val_class AT_class (dw_attr_ref);
4041 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4042 static inline unsigned AT_flag (dw_attr_ref);
4043 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4044 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4045 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4046 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4047 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4048 unsigned long);
4049 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4050 unsigned int, unsigned char *);
4051 static hashval_t debug_str_do_hash (const void *);
4052 static int debug_str_eq (const void *, const void *);
4053 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4054 static inline const char *AT_string (dw_attr_ref);
4055 static int AT_string_form (dw_attr_ref);
4056 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4057 static void add_AT_specification (dw_die_ref, dw_die_ref);
4058 static inline dw_die_ref AT_ref (dw_attr_ref);
4059 static inline int AT_ref_external (dw_attr_ref);
4060 static inline void set_AT_ref_external (dw_attr_ref, int);
4061 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4062 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4063 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4064 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4065 dw_loc_list_ref);
4066 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4067 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4068 static inline rtx AT_addr (dw_attr_ref);
4069 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4070 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4071 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4072 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4073 unsigned HOST_WIDE_INT);
4074 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4075 unsigned long);
4076 static inline const char *AT_lbl (dw_attr_ref);
4077 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4078 static const char *get_AT_low_pc (dw_die_ref);
4079 static const char *get_AT_hi_pc (dw_die_ref);
4080 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4081 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4082 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4083 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4084 static bool is_c_family (void);
4085 static bool is_cxx (void);
4086 static bool is_java (void);
4087 static bool is_fortran (void);
4088 static bool is_ada (void);
4089 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4090 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4091 static void add_child_die (dw_die_ref, dw_die_ref);
4092 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4093 static dw_die_ref lookup_type_die (tree);
4094 static void equate_type_number_to_die (tree, dw_die_ref);
4095 static hashval_t decl_die_table_hash (const void *);
4096 static int decl_die_table_eq (const void *, const void *);
4097 static dw_die_ref lookup_decl_die (tree);
4098 static hashval_t decl_loc_table_hash (const void *);
4099 static int decl_loc_table_eq (const void *, const void *);
4100 static var_loc_list *lookup_decl_loc (tree);
4101 static void equate_decl_number_to_die (tree, dw_die_ref);
4102 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4103 static void print_spaces (FILE *);
4104 static void print_die (dw_die_ref, FILE *);
4105 static void print_dwarf_line_table (FILE *);
4106 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4107 static dw_die_ref pop_compile_unit (dw_die_ref);
4108 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4109 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4110 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4111 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4112 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4113 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4114 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4115 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4116 static void compute_section_prefix (dw_die_ref);
4117 static int is_type_die (dw_die_ref);
4118 static int is_comdat_die (dw_die_ref);
4119 static int is_symbol_die (dw_die_ref);
4120 static void assign_symbol_names (dw_die_ref);
4121 static void break_out_includes (dw_die_ref);
4122 static hashval_t htab_cu_hash (const void *);
4123 static int htab_cu_eq (const void *, const void *);
4124 static void htab_cu_del (void *);
4125 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4126 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4127 static void add_sibling_attributes (dw_die_ref);
4128 static void build_abbrev_table (dw_die_ref);
4129 static void output_location_lists (dw_die_ref);
4130 static int constant_size (long unsigned);
4131 static unsigned long size_of_die (dw_die_ref);
4132 static void calc_die_sizes (dw_die_ref);
4133 static void mark_dies (dw_die_ref);
4134 static void unmark_dies (dw_die_ref);
4135 static void unmark_all_dies (dw_die_ref);
4136 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
4137 static unsigned long size_of_aranges (void);
4138 static enum dwarf_form value_format (dw_attr_ref);
4139 static void output_value_format (dw_attr_ref);
4140 static void output_abbrev_section (void);
4141 static void output_die_symbol (dw_die_ref);
4142 static void output_die (dw_die_ref);
4143 static void output_compilation_unit_header (void);
4144 static void output_comp_unit (dw_die_ref, int);
4145 static const char *dwarf2_name (tree, int);
4146 static void add_pubname (tree, dw_die_ref);
4147 static void add_pubtype (tree, dw_die_ref);
4148 static void output_pubnames (VEC (pubname_entry,gc) *);
4149 static void add_arange (tree, dw_die_ref);
4150 static void output_aranges (void);
4151 static unsigned int add_ranges (tree);
4152 static void output_ranges (void);
4153 static void output_line_info (void);
4154 static void output_file_names (void);
4155 static dw_die_ref base_type_die (tree);
4156 static int is_base_type (tree);
4157 static bool is_subrange_type (tree);
4158 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4159 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4160 static int type_is_enum (tree);
4161 static unsigned int dbx_reg_number (rtx);
4162 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4163 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4164 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4165 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4166 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4167 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4168 static int is_based_loc (rtx);
4169 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4170 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4171 static dw_loc_descr_ref loc_descriptor (rtx);
4172 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4173 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4174 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4175 static tree field_type (tree);
4176 static unsigned int simple_type_align_in_bits (tree);
4177 static unsigned int simple_decl_align_in_bits (tree);
4178 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4179 static HOST_WIDE_INT field_byte_offset (tree);
4180 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4181 dw_loc_descr_ref);
4182 static void add_data_member_location_attribute (dw_die_ref, tree);
4183 static void add_const_value_attribute (dw_die_ref, rtx);
4184 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4185 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4186 static void insert_float (rtx, unsigned char *);
4187 static rtx rtl_for_decl_location (tree);
4188 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4189 enum dwarf_attribute);
4190 static void tree_add_const_value_attribute (dw_die_ref, tree);
4191 static void add_name_attribute (dw_die_ref, const char *);
4192 static void add_comp_dir_attribute (dw_die_ref);
4193 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4194 static void add_subscript_info (dw_die_ref, tree);
4195 static void add_byte_size_attribute (dw_die_ref, tree);
4196 static void add_bit_offset_attribute (dw_die_ref, tree);
4197 static void add_bit_size_attribute (dw_die_ref, tree);
4198 static void add_prototyped_attribute (dw_die_ref, tree);
4199 static void add_abstract_origin_attribute (dw_die_ref, tree);
4200 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4201 static void add_src_coords_attributes (dw_die_ref, tree);
4202 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4203 static void push_decl_scope (tree);
4204 static void pop_decl_scope (void);
4205 static dw_die_ref scope_die_for (tree, dw_die_ref);
4206 static inline int local_scope_p (dw_die_ref);
4207 static inline int class_or_namespace_scope_p (dw_die_ref);
4208 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4209 static void add_calling_convention_attribute (dw_die_ref, tree);
4210 static const char *type_tag (tree);
4211 static tree member_declared_type (tree);
4212 #if 0
4213 static const char *decl_start_label (tree);
4214 #endif
4215 static void gen_array_type_die (tree, dw_die_ref);
4216 #if 0
4217 static void gen_entry_point_die (tree, dw_die_ref);
4218 #endif
4219 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4220 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4221 static void gen_inlined_union_type_die (tree, dw_die_ref);
4222 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4223 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4224 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4225 static void gen_formal_types_die (tree, dw_die_ref);
4226 static void gen_subprogram_die (tree, dw_die_ref);
4227 static void gen_variable_die (tree, dw_die_ref);
4228 static void gen_label_die (tree, dw_die_ref);
4229 static void gen_lexical_block_die (tree, dw_die_ref, int);
4230 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4231 static void gen_field_die (tree, dw_die_ref);
4232 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4233 static dw_die_ref gen_compile_unit_die (const char *);
4234 static void gen_inheritance_die (tree, tree, dw_die_ref);
4235 static void gen_member_die (tree, dw_die_ref);
4236 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4237 static void gen_subroutine_type_die (tree, dw_die_ref);
4238 static void gen_typedef_die (tree, dw_die_ref);
4239 static void gen_type_die (tree, dw_die_ref);
4240 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4241 static void gen_block_die (tree, dw_die_ref, int);
4242 static void decls_for_scope (tree, dw_die_ref, int);
4243 static int is_redundant_typedef (tree);
4244 static void gen_namespace_die (tree);
4245 static void gen_decl_die (tree, dw_die_ref);
4246 static dw_die_ref force_decl_die (tree);
4247 static dw_die_ref force_type_die (tree);
4248 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4249 static void declare_in_namespace (tree, dw_die_ref);
4250 static struct dwarf_file_data * lookup_filename (const char *);
4251 static void retry_incomplete_types (void);
4252 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4253 static void splice_child_die (dw_die_ref, dw_die_ref);
4254 static int file_info_cmp (const void *, const void *);
4255 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4256 const char *, const char *, unsigned);
4257 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4258 const char *, const char *,
4259 const char *);
4260 static void output_loc_list (dw_loc_list_ref);
4261 static char *gen_internal_sym (const char *);
4263 static void prune_unmark_dies (dw_die_ref);
4264 static void prune_unused_types_mark (dw_die_ref, int);
4265 static void prune_unused_types_walk (dw_die_ref);
4266 static void prune_unused_types_walk_attribs (dw_die_ref);
4267 static void prune_unused_types_prune (dw_die_ref);
4268 static void prune_unused_types (void);
4269 static int maybe_emit_file (struct dwarf_file_data *fd);
4271 /* Section names used to hold DWARF debugging information. */
4272 #ifndef DEBUG_INFO_SECTION
4273 #define DEBUG_INFO_SECTION ".debug_info"
4274 #endif
4275 #ifndef DEBUG_ABBREV_SECTION
4276 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4277 #endif
4278 #ifndef DEBUG_ARANGES_SECTION
4279 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4280 #endif
4281 #ifndef DEBUG_MACINFO_SECTION
4282 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4283 #endif
4284 #ifndef DEBUG_LINE_SECTION
4285 #define DEBUG_LINE_SECTION ".debug_line"
4286 #endif
4287 #ifndef DEBUG_LOC_SECTION
4288 #define DEBUG_LOC_SECTION ".debug_loc"
4289 #endif
4290 #ifndef DEBUG_PUBNAMES_SECTION
4291 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4292 #endif
4293 #ifndef DEBUG_STR_SECTION
4294 #define DEBUG_STR_SECTION ".debug_str"
4295 #endif
4296 #ifndef DEBUG_RANGES_SECTION
4297 #define DEBUG_RANGES_SECTION ".debug_ranges"
4298 #endif
4300 /* Standard ELF section names for compiled code and data. */
4301 #ifndef TEXT_SECTION_NAME
4302 #define TEXT_SECTION_NAME ".text"
4303 #endif
4305 /* Section flags for .debug_str section. */
4306 #define DEBUG_STR_SECTION_FLAGS \
4307 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4308 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4309 : SECTION_DEBUG)
4311 /* Labels we insert at beginning sections we can reference instead of
4312 the section names themselves. */
4314 #ifndef TEXT_SECTION_LABEL
4315 #define TEXT_SECTION_LABEL "Ltext"
4316 #endif
4317 #ifndef COLD_TEXT_SECTION_LABEL
4318 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4319 #endif
4320 #ifndef DEBUG_LINE_SECTION_LABEL
4321 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4322 #endif
4323 #ifndef DEBUG_INFO_SECTION_LABEL
4324 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4325 #endif
4326 #ifndef DEBUG_ABBREV_SECTION_LABEL
4327 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4328 #endif
4329 #ifndef DEBUG_LOC_SECTION_LABEL
4330 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4331 #endif
4332 #ifndef DEBUG_RANGES_SECTION_LABEL
4333 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4334 #endif
4335 #ifndef DEBUG_MACINFO_SECTION_LABEL
4336 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4337 #endif
4339 /* Definitions of defaults for formats and names of various special
4340 (artificial) labels which may be generated within this file (when the -g
4341 options is used and DWARF2_DEBUGGING_INFO is in effect.
4342 If necessary, these may be overridden from within the tm.h file, but
4343 typically, overriding these defaults is unnecessary. */
4345 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4346 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4347 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4348 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4349 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4350 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4351 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4352 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4353 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4354 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4356 #ifndef TEXT_END_LABEL
4357 #define TEXT_END_LABEL "Letext"
4358 #endif
4359 #ifndef COLD_END_LABEL
4360 #define COLD_END_LABEL "Letext_cold"
4361 #endif
4362 #ifndef BLOCK_BEGIN_LABEL
4363 #define BLOCK_BEGIN_LABEL "LBB"
4364 #endif
4365 #ifndef BLOCK_END_LABEL
4366 #define BLOCK_END_LABEL "LBE"
4367 #endif
4368 #ifndef LINE_CODE_LABEL
4369 #define LINE_CODE_LABEL "LM"
4370 #endif
4371 #ifndef SEPARATE_LINE_CODE_LABEL
4372 #define SEPARATE_LINE_CODE_LABEL "LSM"
4373 #endif
4375 /* We allow a language front-end to designate a function that is to be
4376 called to "demangle" any name before it is put into a DIE. */
4378 static const char *(*demangle_name_func) (const char *);
4380 void
4381 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4383 demangle_name_func = func;
4386 /* Test if rtl node points to a pseudo register. */
4388 static inline int
4389 is_pseudo_reg (rtx rtl)
4391 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4392 || (GET_CODE (rtl) == SUBREG
4393 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4396 /* Return a reference to a type, with its const and volatile qualifiers
4397 removed. */
4399 static inline tree
4400 type_main_variant (tree type)
4402 type = TYPE_MAIN_VARIANT (type);
4404 /* ??? There really should be only one main variant among any group of
4405 variants of a given type (and all of the MAIN_VARIANT values for all
4406 members of the group should point to that one type) but sometimes the C
4407 front-end messes this up for array types, so we work around that bug
4408 here. */
4409 if (TREE_CODE (type) == ARRAY_TYPE)
4410 while (type != TYPE_MAIN_VARIANT (type))
4411 type = TYPE_MAIN_VARIANT (type);
4413 return type;
4416 /* Return nonzero if the given type node represents a tagged type. */
4418 static inline int
4419 is_tagged_type (tree type)
4421 enum tree_code code = TREE_CODE (type);
4423 return (code == RECORD_TYPE || code == UNION_TYPE
4424 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4427 /* Convert a DIE tag into its string name. */
4429 static const char *
4430 dwarf_tag_name (unsigned int tag)
4432 switch (tag)
4434 case DW_TAG_padding:
4435 return "DW_TAG_padding";
4436 case DW_TAG_array_type:
4437 return "DW_TAG_array_type";
4438 case DW_TAG_class_type:
4439 return "DW_TAG_class_type";
4440 case DW_TAG_entry_point:
4441 return "DW_TAG_entry_point";
4442 case DW_TAG_enumeration_type:
4443 return "DW_TAG_enumeration_type";
4444 case DW_TAG_formal_parameter:
4445 return "DW_TAG_formal_parameter";
4446 case DW_TAG_imported_declaration:
4447 return "DW_TAG_imported_declaration";
4448 case DW_TAG_label:
4449 return "DW_TAG_label";
4450 case DW_TAG_lexical_block:
4451 return "DW_TAG_lexical_block";
4452 case DW_TAG_member:
4453 return "DW_TAG_member";
4454 case DW_TAG_pointer_type:
4455 return "DW_TAG_pointer_type";
4456 case DW_TAG_reference_type:
4457 return "DW_TAG_reference_type";
4458 case DW_TAG_compile_unit:
4459 return "DW_TAG_compile_unit";
4460 case DW_TAG_string_type:
4461 return "DW_TAG_string_type";
4462 case DW_TAG_structure_type:
4463 return "DW_TAG_structure_type";
4464 case DW_TAG_subroutine_type:
4465 return "DW_TAG_subroutine_type";
4466 case DW_TAG_typedef:
4467 return "DW_TAG_typedef";
4468 case DW_TAG_union_type:
4469 return "DW_TAG_union_type";
4470 case DW_TAG_unspecified_parameters:
4471 return "DW_TAG_unspecified_parameters";
4472 case DW_TAG_variant:
4473 return "DW_TAG_variant";
4474 case DW_TAG_common_block:
4475 return "DW_TAG_common_block";
4476 case DW_TAG_common_inclusion:
4477 return "DW_TAG_common_inclusion";
4478 case DW_TAG_inheritance:
4479 return "DW_TAG_inheritance";
4480 case DW_TAG_inlined_subroutine:
4481 return "DW_TAG_inlined_subroutine";
4482 case DW_TAG_module:
4483 return "DW_TAG_module";
4484 case DW_TAG_ptr_to_member_type:
4485 return "DW_TAG_ptr_to_member_type";
4486 case DW_TAG_set_type:
4487 return "DW_TAG_set_type";
4488 case DW_TAG_subrange_type:
4489 return "DW_TAG_subrange_type";
4490 case DW_TAG_with_stmt:
4491 return "DW_TAG_with_stmt";
4492 case DW_TAG_access_declaration:
4493 return "DW_TAG_access_declaration";
4494 case DW_TAG_base_type:
4495 return "DW_TAG_base_type";
4496 case DW_TAG_catch_block:
4497 return "DW_TAG_catch_block";
4498 case DW_TAG_const_type:
4499 return "DW_TAG_const_type";
4500 case DW_TAG_constant:
4501 return "DW_TAG_constant";
4502 case DW_TAG_enumerator:
4503 return "DW_TAG_enumerator";
4504 case DW_TAG_file_type:
4505 return "DW_TAG_file_type";
4506 case DW_TAG_friend:
4507 return "DW_TAG_friend";
4508 case DW_TAG_namelist:
4509 return "DW_TAG_namelist";
4510 case DW_TAG_namelist_item:
4511 return "DW_TAG_namelist_item";
4512 case DW_TAG_namespace:
4513 return "DW_TAG_namespace";
4514 case DW_TAG_packed_type:
4515 return "DW_TAG_packed_type";
4516 case DW_TAG_subprogram:
4517 return "DW_TAG_subprogram";
4518 case DW_TAG_template_type_param:
4519 return "DW_TAG_template_type_param";
4520 case DW_TAG_template_value_param:
4521 return "DW_TAG_template_value_param";
4522 case DW_TAG_thrown_type:
4523 return "DW_TAG_thrown_type";
4524 case DW_TAG_try_block:
4525 return "DW_TAG_try_block";
4526 case DW_TAG_variant_part:
4527 return "DW_TAG_variant_part";
4528 case DW_TAG_variable:
4529 return "DW_TAG_variable";
4530 case DW_TAG_volatile_type:
4531 return "DW_TAG_volatile_type";
4532 case DW_TAG_imported_module:
4533 return "DW_TAG_imported_module";
4534 case DW_TAG_MIPS_loop:
4535 return "DW_TAG_MIPS_loop";
4536 case DW_TAG_format_label:
4537 return "DW_TAG_format_label";
4538 case DW_TAG_function_template:
4539 return "DW_TAG_function_template";
4540 case DW_TAG_class_template:
4541 return "DW_TAG_class_template";
4542 case DW_TAG_GNU_BINCL:
4543 return "DW_TAG_GNU_BINCL";
4544 case DW_TAG_GNU_EINCL:
4545 return "DW_TAG_GNU_EINCL";
4546 default:
4547 return "DW_TAG_<unknown>";
4551 /* Convert a DWARF attribute code into its string name. */
4553 static const char *
4554 dwarf_attr_name (unsigned int attr)
4556 switch (attr)
4558 case DW_AT_sibling:
4559 return "DW_AT_sibling";
4560 case DW_AT_location:
4561 return "DW_AT_location";
4562 case DW_AT_name:
4563 return "DW_AT_name";
4564 case DW_AT_ordering:
4565 return "DW_AT_ordering";
4566 case DW_AT_subscr_data:
4567 return "DW_AT_subscr_data";
4568 case DW_AT_byte_size:
4569 return "DW_AT_byte_size";
4570 case DW_AT_bit_offset:
4571 return "DW_AT_bit_offset";
4572 case DW_AT_bit_size:
4573 return "DW_AT_bit_size";
4574 case DW_AT_element_list:
4575 return "DW_AT_element_list";
4576 case DW_AT_stmt_list:
4577 return "DW_AT_stmt_list";
4578 case DW_AT_low_pc:
4579 return "DW_AT_low_pc";
4580 case DW_AT_high_pc:
4581 return "DW_AT_high_pc";
4582 case DW_AT_language:
4583 return "DW_AT_language";
4584 case DW_AT_member:
4585 return "DW_AT_member";
4586 case DW_AT_discr:
4587 return "DW_AT_discr";
4588 case DW_AT_discr_value:
4589 return "DW_AT_discr_value";
4590 case DW_AT_visibility:
4591 return "DW_AT_visibility";
4592 case DW_AT_import:
4593 return "DW_AT_import";
4594 case DW_AT_string_length:
4595 return "DW_AT_string_length";
4596 case DW_AT_common_reference:
4597 return "DW_AT_common_reference";
4598 case DW_AT_comp_dir:
4599 return "DW_AT_comp_dir";
4600 case DW_AT_const_value:
4601 return "DW_AT_const_value";
4602 case DW_AT_containing_type:
4603 return "DW_AT_containing_type";
4604 case DW_AT_default_value:
4605 return "DW_AT_default_value";
4606 case DW_AT_inline:
4607 return "DW_AT_inline";
4608 case DW_AT_is_optional:
4609 return "DW_AT_is_optional";
4610 case DW_AT_lower_bound:
4611 return "DW_AT_lower_bound";
4612 case DW_AT_producer:
4613 return "DW_AT_producer";
4614 case DW_AT_prototyped:
4615 return "DW_AT_prototyped";
4616 case DW_AT_return_addr:
4617 return "DW_AT_return_addr";
4618 case DW_AT_start_scope:
4619 return "DW_AT_start_scope";
4620 case DW_AT_stride_size:
4621 return "DW_AT_stride_size";
4622 case DW_AT_upper_bound:
4623 return "DW_AT_upper_bound";
4624 case DW_AT_abstract_origin:
4625 return "DW_AT_abstract_origin";
4626 case DW_AT_accessibility:
4627 return "DW_AT_accessibility";
4628 case DW_AT_address_class:
4629 return "DW_AT_address_class";
4630 case DW_AT_artificial:
4631 return "DW_AT_artificial";
4632 case DW_AT_base_types:
4633 return "DW_AT_base_types";
4634 case DW_AT_calling_convention:
4635 return "DW_AT_calling_convention";
4636 case DW_AT_count:
4637 return "DW_AT_count";
4638 case DW_AT_data_member_location:
4639 return "DW_AT_data_member_location";
4640 case DW_AT_decl_column:
4641 return "DW_AT_decl_column";
4642 case DW_AT_decl_file:
4643 return "DW_AT_decl_file";
4644 case DW_AT_decl_line:
4645 return "DW_AT_decl_line";
4646 case DW_AT_declaration:
4647 return "DW_AT_declaration";
4648 case DW_AT_discr_list:
4649 return "DW_AT_discr_list";
4650 case DW_AT_encoding:
4651 return "DW_AT_encoding";
4652 case DW_AT_external:
4653 return "DW_AT_external";
4654 case DW_AT_frame_base:
4655 return "DW_AT_frame_base";
4656 case DW_AT_friend:
4657 return "DW_AT_friend";
4658 case DW_AT_identifier_case:
4659 return "DW_AT_identifier_case";
4660 case DW_AT_macro_info:
4661 return "DW_AT_macro_info";
4662 case DW_AT_namelist_items:
4663 return "DW_AT_namelist_items";
4664 case DW_AT_priority:
4665 return "DW_AT_priority";
4666 case DW_AT_segment:
4667 return "DW_AT_segment";
4668 case DW_AT_specification:
4669 return "DW_AT_specification";
4670 case DW_AT_static_link:
4671 return "DW_AT_static_link";
4672 case DW_AT_type:
4673 return "DW_AT_type";
4674 case DW_AT_use_location:
4675 return "DW_AT_use_location";
4676 case DW_AT_variable_parameter:
4677 return "DW_AT_variable_parameter";
4678 case DW_AT_virtuality:
4679 return "DW_AT_virtuality";
4680 case DW_AT_vtable_elem_location:
4681 return "DW_AT_vtable_elem_location";
4683 case DW_AT_allocated:
4684 return "DW_AT_allocated";
4685 case DW_AT_associated:
4686 return "DW_AT_associated";
4687 case DW_AT_data_location:
4688 return "DW_AT_data_location";
4689 case DW_AT_stride:
4690 return "DW_AT_stride";
4691 case DW_AT_entry_pc:
4692 return "DW_AT_entry_pc";
4693 case DW_AT_use_UTF8:
4694 return "DW_AT_use_UTF8";
4695 case DW_AT_extension:
4696 return "DW_AT_extension";
4697 case DW_AT_ranges:
4698 return "DW_AT_ranges";
4699 case DW_AT_trampoline:
4700 return "DW_AT_trampoline";
4701 case DW_AT_call_column:
4702 return "DW_AT_call_column";
4703 case DW_AT_call_file:
4704 return "DW_AT_call_file";
4705 case DW_AT_call_line:
4706 return "DW_AT_call_line";
4708 case DW_AT_MIPS_fde:
4709 return "DW_AT_MIPS_fde";
4710 case DW_AT_MIPS_loop_begin:
4711 return "DW_AT_MIPS_loop_begin";
4712 case DW_AT_MIPS_tail_loop_begin:
4713 return "DW_AT_MIPS_tail_loop_begin";
4714 case DW_AT_MIPS_epilog_begin:
4715 return "DW_AT_MIPS_epilog_begin";
4716 case DW_AT_MIPS_loop_unroll_factor:
4717 return "DW_AT_MIPS_loop_unroll_factor";
4718 case DW_AT_MIPS_software_pipeline_depth:
4719 return "DW_AT_MIPS_software_pipeline_depth";
4720 case DW_AT_MIPS_linkage_name:
4721 return "DW_AT_MIPS_linkage_name";
4722 case DW_AT_MIPS_stride:
4723 return "DW_AT_MIPS_stride";
4724 case DW_AT_MIPS_abstract_name:
4725 return "DW_AT_MIPS_abstract_name";
4726 case DW_AT_MIPS_clone_origin:
4727 return "DW_AT_MIPS_clone_origin";
4728 case DW_AT_MIPS_has_inlines:
4729 return "DW_AT_MIPS_has_inlines";
4731 case DW_AT_sf_names:
4732 return "DW_AT_sf_names";
4733 case DW_AT_src_info:
4734 return "DW_AT_src_info";
4735 case DW_AT_mac_info:
4736 return "DW_AT_mac_info";
4737 case DW_AT_src_coords:
4738 return "DW_AT_src_coords";
4739 case DW_AT_body_begin:
4740 return "DW_AT_body_begin";
4741 case DW_AT_body_end:
4742 return "DW_AT_body_end";
4743 case DW_AT_GNU_vector:
4744 return "DW_AT_GNU_vector";
4746 case DW_AT_VMS_rtnbeg_pd_address:
4747 return "DW_AT_VMS_rtnbeg_pd_address";
4749 default:
4750 return "DW_AT_<unknown>";
4754 /* Convert a DWARF value form code into its string name. */
4756 static const char *
4757 dwarf_form_name (unsigned int form)
4759 switch (form)
4761 case DW_FORM_addr:
4762 return "DW_FORM_addr";
4763 case DW_FORM_block2:
4764 return "DW_FORM_block2";
4765 case DW_FORM_block4:
4766 return "DW_FORM_block4";
4767 case DW_FORM_data2:
4768 return "DW_FORM_data2";
4769 case DW_FORM_data4:
4770 return "DW_FORM_data4";
4771 case DW_FORM_data8:
4772 return "DW_FORM_data8";
4773 case DW_FORM_string:
4774 return "DW_FORM_string";
4775 case DW_FORM_block:
4776 return "DW_FORM_block";
4777 case DW_FORM_block1:
4778 return "DW_FORM_block1";
4779 case DW_FORM_data1:
4780 return "DW_FORM_data1";
4781 case DW_FORM_flag:
4782 return "DW_FORM_flag";
4783 case DW_FORM_sdata:
4784 return "DW_FORM_sdata";
4785 case DW_FORM_strp:
4786 return "DW_FORM_strp";
4787 case DW_FORM_udata:
4788 return "DW_FORM_udata";
4789 case DW_FORM_ref_addr:
4790 return "DW_FORM_ref_addr";
4791 case DW_FORM_ref1:
4792 return "DW_FORM_ref1";
4793 case DW_FORM_ref2:
4794 return "DW_FORM_ref2";
4795 case DW_FORM_ref4:
4796 return "DW_FORM_ref4";
4797 case DW_FORM_ref8:
4798 return "DW_FORM_ref8";
4799 case DW_FORM_ref_udata:
4800 return "DW_FORM_ref_udata";
4801 case DW_FORM_indirect:
4802 return "DW_FORM_indirect";
4803 default:
4804 return "DW_FORM_<unknown>";
4808 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4809 instance of an inlined instance of a decl which is local to an inline
4810 function, so we have to trace all of the way back through the origin chain
4811 to find out what sort of node actually served as the original seed for the
4812 given block. */
4814 static tree
4815 decl_ultimate_origin (tree decl)
4817 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4818 return NULL_TREE;
4820 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4821 nodes in the function to point to themselves; ignore that if
4822 we're trying to output the abstract instance of this function. */
4823 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4824 return NULL_TREE;
4826 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4827 most distant ancestor, this should never happen. */
4828 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4830 return DECL_ABSTRACT_ORIGIN (decl);
4833 /* Determine the "ultimate origin" of a block. The block may be an inlined
4834 instance of an inlined instance of a block which is local to an inline
4835 function, so we have to trace all of the way back through the origin chain
4836 to find out what sort of node actually served as the original seed for the
4837 given block. */
4839 static tree
4840 block_ultimate_origin (tree block)
4842 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4844 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4845 nodes in the function to point to themselves; ignore that if
4846 we're trying to output the abstract instance of this function. */
4847 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4848 return NULL_TREE;
4850 if (immediate_origin == NULL_TREE)
4851 return NULL_TREE;
4852 else
4854 tree ret_val;
4855 tree lookahead = immediate_origin;
4859 ret_val = lookahead;
4860 lookahead = (TREE_CODE (ret_val) == BLOCK
4861 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4863 while (lookahead != NULL && lookahead != ret_val);
4865 /* The block's abstract origin chain may not be the *ultimate* origin of
4866 the block. It could lead to a DECL that has an abstract origin set.
4867 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4868 will give us if it has one). Note that DECL's abstract origins are
4869 supposed to be the most distant ancestor (or so decl_ultimate_origin
4870 claims), so we don't need to loop following the DECL origins. */
4871 if (DECL_P (ret_val))
4872 return DECL_ORIGIN (ret_val);
4874 return ret_val;
4878 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4879 of a virtual function may refer to a base class, so we check the 'this'
4880 parameter. */
4882 static tree
4883 decl_class_context (tree decl)
4885 tree context = NULL_TREE;
4887 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4888 context = DECL_CONTEXT (decl);
4889 else
4890 context = TYPE_MAIN_VARIANT
4891 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4893 if (context && !TYPE_P (context))
4894 context = NULL_TREE;
4896 return context;
4899 /* Add an attribute/value pair to a DIE. */
4901 static inline void
4902 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4904 /* Maybe this should be an assert? */
4905 if (die == NULL)
4906 return;
4908 if (die->die_attr == NULL)
4909 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4910 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4913 static inline enum dw_val_class
4914 AT_class (dw_attr_ref a)
4916 return a->dw_attr_val.val_class;
4919 /* Add a flag value attribute to a DIE. */
4921 static inline void
4922 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4924 dw_attr_node attr;
4926 attr.dw_attr = attr_kind;
4927 attr.dw_attr_val.val_class = dw_val_class_flag;
4928 attr.dw_attr_val.v.val_flag = flag;
4929 add_dwarf_attr (die, &attr);
4932 static inline unsigned
4933 AT_flag (dw_attr_ref a)
4935 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4936 return a->dw_attr_val.v.val_flag;
4939 /* Add a signed integer attribute value to a DIE. */
4941 static inline void
4942 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4944 dw_attr_node attr;
4946 attr.dw_attr = attr_kind;
4947 attr.dw_attr_val.val_class = dw_val_class_const;
4948 attr.dw_attr_val.v.val_int = int_val;
4949 add_dwarf_attr (die, &attr);
4952 static inline HOST_WIDE_INT
4953 AT_int (dw_attr_ref a)
4955 gcc_assert (a && AT_class (a) == dw_val_class_const);
4956 return a->dw_attr_val.v.val_int;
4959 /* Add an unsigned integer attribute value to a DIE. */
4961 static inline void
4962 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4963 unsigned HOST_WIDE_INT unsigned_val)
4965 dw_attr_node attr;
4967 attr.dw_attr = attr_kind;
4968 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4969 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4970 add_dwarf_attr (die, &attr);
4973 static inline unsigned HOST_WIDE_INT
4974 AT_unsigned (dw_attr_ref a)
4976 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4977 return a->dw_attr_val.v.val_unsigned;
4980 /* Add an unsigned double integer attribute value to a DIE. */
4982 static inline void
4983 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4984 long unsigned int val_hi, long unsigned int val_low)
4986 dw_attr_node attr;
4988 attr.dw_attr = attr_kind;
4989 attr.dw_attr_val.val_class = dw_val_class_long_long;
4990 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4991 attr.dw_attr_val.v.val_long_long.low = val_low;
4992 add_dwarf_attr (die, &attr);
4995 /* Add a floating point attribute value to a DIE and return it. */
4997 static inline void
4998 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4999 unsigned int length, unsigned int elt_size, unsigned char *array)
5001 dw_attr_node attr;
5003 attr.dw_attr = attr_kind;
5004 attr.dw_attr_val.val_class = dw_val_class_vec;
5005 attr.dw_attr_val.v.val_vec.length = length;
5006 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
5007 attr.dw_attr_val.v.val_vec.array = array;
5008 add_dwarf_attr (die, &attr);
5011 /* Hash and equality functions for debug_str_hash. */
5013 static hashval_t
5014 debug_str_do_hash (const void *x)
5016 return htab_hash_string (((const struct indirect_string_node *)x)->str);
5019 static int
5020 debug_str_eq (const void *x1, const void *x2)
5022 return strcmp ((((const struct indirect_string_node *)x1)->str),
5023 (const char *)x2) == 0;
5026 /* Add a string attribute value to a DIE. */
5028 static inline void
5029 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5031 dw_attr_node attr;
5032 struct indirect_string_node *node;
5033 void **slot;
5035 if (! debug_str_hash)
5036 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5037 debug_str_eq, NULL);
5039 slot = htab_find_slot_with_hash (debug_str_hash, str,
5040 htab_hash_string (str), INSERT);
5041 if (*slot == NULL)
5043 node = (struct indirect_string_node *)
5044 ggc_alloc_cleared (sizeof (struct indirect_string_node));
5045 node->str = ggc_strdup (str);
5046 *slot = node;
5048 else
5049 node = (struct indirect_string_node *) *slot;
5051 node->refcount++;
5053 attr.dw_attr = attr_kind;
5054 attr.dw_attr_val.val_class = dw_val_class_str;
5055 attr.dw_attr_val.v.val_str = node;
5056 add_dwarf_attr (die, &attr);
5059 static inline const char *
5060 AT_string (dw_attr_ref a)
5062 gcc_assert (a && AT_class (a) == dw_val_class_str);
5063 return a->dw_attr_val.v.val_str->str;
5066 /* Find out whether a string should be output inline in DIE
5067 or out-of-line in .debug_str section. */
5069 static int
5070 AT_string_form (dw_attr_ref a)
5072 struct indirect_string_node *node;
5073 unsigned int len;
5074 char label[32];
5076 gcc_assert (a && AT_class (a) == dw_val_class_str);
5078 node = a->dw_attr_val.v.val_str;
5079 if (node->form)
5080 return node->form;
5082 len = strlen (node->str) + 1;
5084 /* If the string is shorter or equal to the size of the reference, it is
5085 always better to put it inline. */
5086 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5087 return node->form = DW_FORM_string;
5089 /* If we cannot expect the linker to merge strings in .debug_str
5090 section, only put it into .debug_str if it is worth even in this
5091 single module. */
5092 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5093 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5094 return node->form = DW_FORM_string;
5096 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5097 ++dw2_string_counter;
5098 node->label = xstrdup (label);
5100 return node->form = DW_FORM_strp;
5103 /* Add a DIE reference attribute value to a DIE. */
5105 static inline void
5106 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5108 dw_attr_node attr;
5110 attr.dw_attr = attr_kind;
5111 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5112 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5113 attr.dw_attr_val.v.val_die_ref.external = 0;
5114 add_dwarf_attr (die, &attr);
5117 /* Add an AT_specification attribute to a DIE, and also make the back
5118 pointer from the specification to the definition. */
5120 static inline void
5121 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5123 add_AT_die_ref (die, DW_AT_specification, targ_die);
5124 gcc_assert (!targ_die->die_definition);
5125 targ_die->die_definition = die;
5128 static inline dw_die_ref
5129 AT_ref (dw_attr_ref a)
5131 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5132 return a->dw_attr_val.v.val_die_ref.die;
5135 static inline int
5136 AT_ref_external (dw_attr_ref a)
5138 if (a && AT_class (a) == dw_val_class_die_ref)
5139 return a->dw_attr_val.v.val_die_ref.external;
5141 return 0;
5144 static inline void
5145 set_AT_ref_external (dw_attr_ref a, int i)
5147 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5148 a->dw_attr_val.v.val_die_ref.external = i;
5151 /* Add an FDE reference attribute value to a DIE. */
5153 static inline void
5154 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5156 dw_attr_node attr;
5158 attr.dw_attr = attr_kind;
5159 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5160 attr.dw_attr_val.v.val_fde_index = targ_fde;
5161 add_dwarf_attr (die, &attr);
5164 /* Add a location description attribute value to a DIE. */
5166 static inline void
5167 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5169 dw_attr_node attr;
5171 attr.dw_attr = attr_kind;
5172 attr.dw_attr_val.val_class = dw_val_class_loc;
5173 attr.dw_attr_val.v.val_loc = loc;
5174 add_dwarf_attr (die, &attr);
5177 static inline dw_loc_descr_ref
5178 AT_loc (dw_attr_ref a)
5180 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5181 return a->dw_attr_val.v.val_loc;
5184 static inline void
5185 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5187 dw_attr_node attr;
5189 attr.dw_attr = attr_kind;
5190 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5191 attr.dw_attr_val.v.val_loc_list = loc_list;
5192 add_dwarf_attr (die, &attr);
5193 have_location_lists = true;
5196 static inline dw_loc_list_ref
5197 AT_loc_list (dw_attr_ref a)
5199 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5200 return a->dw_attr_val.v.val_loc_list;
5203 /* Add an address constant attribute value to a DIE. */
5205 static inline void
5206 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5208 dw_attr_node attr;
5210 attr.dw_attr = attr_kind;
5211 attr.dw_attr_val.val_class = dw_val_class_addr;
5212 attr.dw_attr_val.v.val_addr = addr;
5213 add_dwarf_attr (die, &attr);
5216 /* Get the RTX from to an address DIE attribute. */
5218 static inline rtx
5219 AT_addr (dw_attr_ref a)
5221 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5222 return a->dw_attr_val.v.val_addr;
5225 /* Add a file attribute value to a DIE. */
5227 static inline void
5228 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5229 struct dwarf_file_data *fd)
5231 dw_attr_node attr;
5233 attr.dw_attr = attr_kind;
5234 attr.dw_attr_val.val_class = dw_val_class_file;
5235 attr.dw_attr_val.v.val_file = fd;
5236 add_dwarf_attr (die, &attr);
5239 /* Get the dwarf_file_data from a file DIE attribute. */
5241 static inline struct dwarf_file_data *
5242 AT_file (dw_attr_ref a)
5244 gcc_assert (a && AT_class (a) == dw_val_class_file);
5245 return a->dw_attr_val.v.val_file;
5248 /* Add a label identifier attribute value to a DIE. */
5250 static inline void
5251 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5253 dw_attr_node attr;
5255 attr.dw_attr = attr_kind;
5256 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5257 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5258 add_dwarf_attr (die, &attr);
5261 /* Add a section offset attribute value to a DIE, an offset into the
5262 debug_line section. */
5264 static inline void
5265 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5266 const char *label)
5268 dw_attr_node attr;
5270 attr.dw_attr = attr_kind;
5271 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5272 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5273 add_dwarf_attr (die, &attr);
5276 /* Add a section offset attribute value to a DIE, an offset into the
5277 debug_macinfo section. */
5279 static inline void
5280 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5281 const char *label)
5283 dw_attr_node attr;
5285 attr.dw_attr = attr_kind;
5286 attr.dw_attr_val.val_class = dw_val_class_macptr;
5287 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5288 add_dwarf_attr (die, &attr);
5291 /* Add an offset attribute value to a DIE. */
5293 static inline void
5294 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5295 unsigned HOST_WIDE_INT offset)
5297 dw_attr_node attr;
5299 attr.dw_attr = attr_kind;
5300 attr.dw_attr_val.val_class = dw_val_class_offset;
5301 attr.dw_attr_val.v.val_offset = offset;
5302 add_dwarf_attr (die, &attr);
5305 /* Add an range_list attribute value to a DIE. */
5307 static void
5308 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5309 long unsigned int offset)
5311 dw_attr_node attr;
5313 attr.dw_attr = attr_kind;
5314 attr.dw_attr_val.val_class = dw_val_class_range_list;
5315 attr.dw_attr_val.v.val_offset = offset;
5316 add_dwarf_attr (die, &attr);
5319 static inline const char *
5320 AT_lbl (dw_attr_ref a)
5322 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5323 || AT_class (a) == dw_val_class_lineptr
5324 || AT_class (a) == dw_val_class_macptr));
5325 return a->dw_attr_val.v.val_lbl_id;
5328 /* Get the attribute of type attr_kind. */
5330 static dw_attr_ref
5331 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5333 dw_attr_ref a;
5334 unsigned ix;
5335 dw_die_ref spec = NULL;
5337 if (! die)
5338 return NULL;
5340 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5341 if (a->dw_attr == attr_kind)
5342 return a;
5343 else if (a->dw_attr == DW_AT_specification
5344 || a->dw_attr == DW_AT_abstract_origin)
5345 spec = AT_ref (a);
5347 if (spec)
5348 return get_AT (spec, attr_kind);
5350 return NULL;
5353 /* Return the "low pc" attribute value, typically associated with a subprogram
5354 DIE. Return null if the "low pc" attribute is either not present, or if it
5355 cannot be represented as an assembler label identifier. */
5357 static inline const char *
5358 get_AT_low_pc (dw_die_ref die)
5360 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5362 return a ? AT_lbl (a) : NULL;
5365 /* Return the "high pc" attribute value, typically associated with a subprogram
5366 DIE. Return null if the "high pc" attribute is either not present, or if it
5367 cannot be represented as an assembler label identifier. */
5369 static inline const char *
5370 get_AT_hi_pc (dw_die_ref die)
5372 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5374 return a ? AT_lbl (a) : NULL;
5377 /* Return the value of the string attribute designated by ATTR_KIND, or
5378 NULL if it is not present. */
5380 static inline const char *
5381 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5383 dw_attr_ref a = get_AT (die, attr_kind);
5385 return a ? AT_string (a) : NULL;
5388 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5389 if it is not present. */
5391 static inline int
5392 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5394 dw_attr_ref a = get_AT (die, attr_kind);
5396 return a ? AT_flag (a) : 0;
5399 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5400 if it is not present. */
5402 static inline unsigned
5403 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5405 dw_attr_ref a = get_AT (die, attr_kind);
5407 return a ? AT_unsigned (a) : 0;
5410 static inline dw_die_ref
5411 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5413 dw_attr_ref a = get_AT (die, attr_kind);
5415 return a ? AT_ref (a) : NULL;
5418 static inline struct dwarf_file_data *
5419 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5421 dw_attr_ref a = get_AT (die, attr_kind);
5423 return a ? AT_file (a) : NULL;
5426 /* Return TRUE if the language is C or C++. */
5428 static inline bool
5429 is_c_family (void)
5431 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5433 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5434 || lang == DW_LANG_C99
5435 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5438 /* Return TRUE if the language is C++. */
5440 static inline bool
5441 is_cxx (void)
5443 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5445 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5448 /* Return TRUE if the language is Fortran. */
5450 static inline bool
5451 is_fortran (void)
5453 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5455 return (lang == DW_LANG_Fortran77
5456 || lang == DW_LANG_Fortran90
5457 || lang == DW_LANG_Fortran95);
5460 /* Return TRUE if the language is Java. */
5462 static inline bool
5463 is_java (void)
5465 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5467 return lang == DW_LANG_Java;
5470 /* Return TRUE if the language is Ada. */
5472 static inline bool
5473 is_ada (void)
5475 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5477 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5480 /* Remove the specified attribute if present. */
5482 static void
5483 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5485 dw_attr_ref a;
5486 unsigned ix;
5488 if (! die)
5489 return;
5491 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5492 if (a->dw_attr == attr_kind)
5494 if (AT_class (a) == dw_val_class_str)
5495 if (a->dw_attr_val.v.val_str->refcount)
5496 a->dw_attr_val.v.val_str->refcount--;
5498 /* VEC_ordered_remove should help reduce the number of abbrevs
5499 that are needed. */
5500 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5501 return;
5505 /* Remove CHILD from its parent. PREV must have the property that
5506 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5508 static void
5509 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5511 gcc_assert (child->die_parent == prev->die_parent);
5512 gcc_assert (prev->die_sib == child);
5513 if (prev == child)
5515 gcc_assert (child->die_parent->die_child == child);
5516 prev = NULL;
5518 else
5519 prev->die_sib = child->die_sib;
5520 if (child->die_parent->die_child == child)
5521 child->die_parent->die_child = prev;
5524 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5525 matches TAG. */
5527 static void
5528 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5530 dw_die_ref c;
5532 c = die->die_child;
5533 if (c) do {
5534 dw_die_ref prev = c;
5535 c = c->die_sib;
5536 while (c->die_tag == tag)
5538 remove_child_with_prev (c, prev);
5539 /* Might have removed every child. */
5540 if (c == c->die_sib)
5541 return;
5542 c = c->die_sib;
5544 } while (c != die->die_child);
5547 /* Add a CHILD_DIE as the last child of DIE. */
5549 static void
5550 add_child_die (dw_die_ref die, dw_die_ref child_die)
5552 /* FIXME this should probably be an assert. */
5553 if (! die || ! child_die)
5554 return;
5555 gcc_assert (die != child_die);
5557 child_die->die_parent = die;
5558 if (die->die_child)
5560 child_die->die_sib = die->die_child->die_sib;
5561 die->die_child->die_sib = child_die;
5563 else
5564 child_die->die_sib = child_die;
5565 die->die_child = child_die;
5568 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5569 is the specification, to the end of PARENT's list of children.
5570 This is done by removing and re-adding it. */
5572 static void
5573 splice_child_die (dw_die_ref parent, dw_die_ref child)
5575 dw_die_ref p;
5577 /* We want the declaration DIE from inside the class, not the
5578 specification DIE at toplevel. */
5579 if (child->die_parent != parent)
5581 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5583 if (tmp)
5584 child = tmp;
5587 gcc_assert (child->die_parent == parent
5588 || (child->die_parent
5589 == get_AT_ref (parent, DW_AT_specification)));
5591 for (p = child->die_parent->die_child; ; p = p->die_sib)
5592 if (p->die_sib == child)
5594 remove_child_with_prev (child, p);
5595 break;
5598 add_child_die (parent, child);
5601 /* Return a pointer to a newly created DIE node. */
5603 static inline dw_die_ref
5604 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5606 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5608 die->die_tag = tag_value;
5610 if (parent_die != NULL)
5611 add_child_die (parent_die, die);
5612 else
5614 limbo_die_node *limbo_node;
5616 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5617 limbo_node->die = die;
5618 limbo_node->created_for = t;
5619 limbo_node->next = limbo_die_list;
5620 limbo_die_list = limbo_node;
5623 return die;
5626 /* Return the DIE associated with the given type specifier. */
5628 static inline dw_die_ref
5629 lookup_type_die (tree type)
5631 return TYPE_SYMTAB_DIE (type);
5634 /* Equate a DIE to a given type specifier. */
5636 static inline void
5637 equate_type_number_to_die (tree type, dw_die_ref type_die)
5639 TYPE_SYMTAB_DIE (type) = type_die;
5642 /* Returns a hash value for X (which really is a die_struct). */
5644 static hashval_t
5645 decl_die_table_hash (const void *x)
5647 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5650 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5652 static int
5653 decl_die_table_eq (const void *x, const void *y)
5655 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5658 /* Return the DIE associated with a given declaration. */
5660 static inline dw_die_ref
5661 lookup_decl_die (tree decl)
5663 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5666 /* Returns a hash value for X (which really is a var_loc_list). */
5668 static hashval_t
5669 decl_loc_table_hash (const void *x)
5671 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5674 /* Return nonzero if decl_id of var_loc_list X is the same as
5675 UID of decl *Y. */
5677 static int
5678 decl_loc_table_eq (const void *x, const void *y)
5680 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5683 /* Return the var_loc list associated with a given declaration. */
5685 static inline var_loc_list *
5686 lookup_decl_loc (tree decl)
5688 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5691 /* Equate a DIE to a particular declaration. */
5693 static void
5694 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5696 unsigned int decl_id = DECL_UID (decl);
5697 void **slot;
5699 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5700 *slot = decl_die;
5701 decl_die->decl_id = decl_id;
5704 /* Add a variable location node to the linked list for DECL. */
5706 static void
5707 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5709 unsigned int decl_id = DECL_UID (decl);
5710 var_loc_list *temp;
5711 void **slot;
5713 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5714 if (*slot == NULL)
5716 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5717 temp->decl_id = decl_id;
5718 *slot = temp;
5720 else
5721 temp = *slot;
5723 if (temp->last)
5725 /* If the current location is the same as the end of the list,
5726 we have nothing to do. */
5727 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5728 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5730 /* Add LOC to the end of list and update LAST. */
5731 temp->last->next = loc;
5732 temp->last = loc;
5735 /* Do not add empty location to the beginning of the list. */
5736 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5738 temp->first = loc;
5739 temp->last = loc;
5743 /* Keep track of the number of spaces used to indent the
5744 output of the debugging routines that print the structure of
5745 the DIE internal representation. */
5746 static int print_indent;
5748 /* Indent the line the number of spaces given by print_indent. */
5750 static inline void
5751 print_spaces (FILE *outfile)
5753 fprintf (outfile, "%*s", print_indent, "");
5756 /* Print the information associated with a given DIE, and its children.
5757 This routine is a debugging aid only. */
5759 static void
5760 print_die (dw_die_ref die, FILE *outfile)
5762 dw_attr_ref a;
5763 dw_die_ref c;
5764 unsigned ix;
5766 print_spaces (outfile);
5767 fprintf (outfile, "DIE %4lu: %s\n",
5768 die->die_offset, dwarf_tag_name (die->die_tag));
5769 print_spaces (outfile);
5770 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5771 fprintf (outfile, " offset: %lu\n", die->die_offset);
5773 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5775 print_spaces (outfile);
5776 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5778 switch (AT_class (a))
5780 case dw_val_class_addr:
5781 fprintf (outfile, "address");
5782 break;
5783 case dw_val_class_offset:
5784 fprintf (outfile, "offset");
5785 break;
5786 case dw_val_class_loc:
5787 fprintf (outfile, "location descriptor");
5788 break;
5789 case dw_val_class_loc_list:
5790 fprintf (outfile, "location list -> label:%s",
5791 AT_loc_list (a)->ll_symbol);
5792 break;
5793 case dw_val_class_range_list:
5794 fprintf (outfile, "range list");
5795 break;
5796 case dw_val_class_const:
5797 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5798 break;
5799 case dw_val_class_unsigned_const:
5800 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5801 break;
5802 case dw_val_class_long_long:
5803 fprintf (outfile, "constant (%lu,%lu)",
5804 a->dw_attr_val.v.val_long_long.hi,
5805 a->dw_attr_val.v.val_long_long.low);
5806 break;
5807 case dw_val_class_vec:
5808 fprintf (outfile, "floating-point or vector constant");
5809 break;
5810 case dw_val_class_flag:
5811 fprintf (outfile, "%u", AT_flag (a));
5812 break;
5813 case dw_val_class_die_ref:
5814 if (AT_ref (a) != NULL)
5816 if (AT_ref (a)->die_symbol)
5817 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5818 else
5819 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5821 else
5822 fprintf (outfile, "die -> <null>");
5823 break;
5824 case dw_val_class_lbl_id:
5825 case dw_val_class_lineptr:
5826 case dw_val_class_macptr:
5827 fprintf (outfile, "label: %s", AT_lbl (a));
5828 break;
5829 case dw_val_class_str:
5830 if (AT_string (a) != NULL)
5831 fprintf (outfile, "\"%s\"", AT_string (a));
5832 else
5833 fprintf (outfile, "<null>");
5834 break;
5835 case dw_val_class_file:
5836 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5837 AT_file (a)->emitted_number);
5838 break;
5839 default:
5840 break;
5843 fprintf (outfile, "\n");
5846 if (die->die_child != NULL)
5848 print_indent += 4;
5849 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5850 print_indent -= 4;
5852 if (print_indent == 0)
5853 fprintf (outfile, "\n");
5856 /* Print the contents of the source code line number correspondence table.
5857 This routine is a debugging aid only. */
5859 static void
5860 print_dwarf_line_table (FILE *outfile)
5862 unsigned i;
5863 dw_line_info_ref line_info;
5865 fprintf (outfile, "\n\nDWARF source line information\n");
5866 for (i = 1; i < line_info_table_in_use; i++)
5868 line_info = &line_info_table[i];
5869 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5870 line_info->dw_file_num,
5871 line_info->dw_line_num);
5874 fprintf (outfile, "\n\n");
5877 /* Print the information collected for a given DIE. */
5879 void
5880 debug_dwarf_die (dw_die_ref die)
5882 print_die (die, stderr);
5885 /* Print all DWARF information collected for the compilation unit.
5886 This routine is a debugging aid only. */
5888 void
5889 debug_dwarf (void)
5891 print_indent = 0;
5892 print_die (comp_unit_die, stderr);
5893 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5894 print_dwarf_line_table (stderr);
5897 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5898 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5899 DIE that marks the start of the DIEs for this include file. */
5901 static dw_die_ref
5902 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5904 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5905 dw_die_ref new_unit = gen_compile_unit_die (filename);
5907 new_unit->die_sib = old_unit;
5908 return new_unit;
5911 /* Close an include-file CU and reopen the enclosing one. */
5913 static dw_die_ref
5914 pop_compile_unit (dw_die_ref old_unit)
5916 dw_die_ref new_unit = old_unit->die_sib;
5918 old_unit->die_sib = NULL;
5919 return new_unit;
5922 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5923 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5925 /* Calculate the checksum of a location expression. */
5927 static inline void
5928 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5930 CHECKSUM (loc->dw_loc_opc);
5931 CHECKSUM (loc->dw_loc_oprnd1);
5932 CHECKSUM (loc->dw_loc_oprnd2);
5935 /* Calculate the checksum of an attribute. */
5937 static void
5938 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5940 dw_loc_descr_ref loc;
5941 rtx r;
5943 CHECKSUM (at->dw_attr);
5945 /* We don't care that this was compiled with a different compiler
5946 snapshot; if the output is the same, that's what matters. */
5947 if (at->dw_attr == DW_AT_producer)
5948 return;
5950 switch (AT_class (at))
5952 case dw_val_class_const:
5953 CHECKSUM (at->dw_attr_val.v.val_int);
5954 break;
5955 case dw_val_class_unsigned_const:
5956 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5957 break;
5958 case dw_val_class_long_long:
5959 CHECKSUM (at->dw_attr_val.v.val_long_long);
5960 break;
5961 case dw_val_class_vec:
5962 CHECKSUM (at->dw_attr_val.v.val_vec);
5963 break;
5964 case dw_val_class_flag:
5965 CHECKSUM (at->dw_attr_val.v.val_flag);
5966 break;
5967 case dw_val_class_str:
5968 CHECKSUM_STRING (AT_string (at));
5969 break;
5971 case dw_val_class_addr:
5972 r = AT_addr (at);
5973 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5974 CHECKSUM_STRING (XSTR (r, 0));
5975 break;
5977 case dw_val_class_offset:
5978 CHECKSUM (at->dw_attr_val.v.val_offset);
5979 break;
5981 case dw_val_class_loc:
5982 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5983 loc_checksum (loc, ctx);
5984 break;
5986 case dw_val_class_die_ref:
5987 die_checksum (AT_ref (at), ctx, mark);
5988 break;
5990 case dw_val_class_fde_ref:
5991 case dw_val_class_lbl_id:
5992 case dw_val_class_lineptr:
5993 case dw_val_class_macptr:
5994 break;
5996 case dw_val_class_file:
5997 CHECKSUM_STRING (AT_file (at)->filename);
5998 break;
6000 default:
6001 break;
6005 /* Calculate the checksum of a DIE. */
6007 static void
6008 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6010 dw_die_ref c;
6011 dw_attr_ref a;
6012 unsigned ix;
6014 /* To avoid infinite recursion. */
6015 if (die->die_mark)
6017 CHECKSUM (die->die_mark);
6018 return;
6020 die->die_mark = ++(*mark);
6022 CHECKSUM (die->die_tag);
6024 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6025 attr_checksum (a, ctx, mark);
6027 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6030 #undef CHECKSUM
6031 #undef CHECKSUM_STRING
6033 /* Do the location expressions look same? */
6034 static inline int
6035 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6037 return loc1->dw_loc_opc == loc2->dw_loc_opc
6038 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6039 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6042 /* Do the values look the same? */
6043 static int
6044 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6046 dw_loc_descr_ref loc1, loc2;
6047 rtx r1, r2;
6049 if (v1->val_class != v2->val_class)
6050 return 0;
6052 switch (v1->val_class)
6054 case dw_val_class_const:
6055 return v1->v.val_int == v2->v.val_int;
6056 case dw_val_class_unsigned_const:
6057 return v1->v.val_unsigned == v2->v.val_unsigned;
6058 case dw_val_class_long_long:
6059 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6060 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6061 case dw_val_class_vec:
6062 if (v1->v.val_vec.length != v2->v.val_vec.length
6063 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6064 return 0;
6065 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6066 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6067 return 0;
6068 return 1;
6069 case dw_val_class_flag:
6070 return v1->v.val_flag == v2->v.val_flag;
6071 case dw_val_class_str:
6072 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6074 case dw_val_class_addr:
6075 r1 = v1->v.val_addr;
6076 r2 = v2->v.val_addr;
6077 if (GET_CODE (r1) != GET_CODE (r2))
6078 return 0;
6079 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6080 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6082 case dw_val_class_offset:
6083 return v1->v.val_offset == v2->v.val_offset;
6085 case dw_val_class_loc:
6086 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6087 loc1 && loc2;
6088 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6089 if (!same_loc_p (loc1, loc2, mark))
6090 return 0;
6091 return !loc1 && !loc2;
6093 case dw_val_class_die_ref:
6094 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6096 case dw_val_class_fde_ref:
6097 case dw_val_class_lbl_id:
6098 case dw_val_class_lineptr:
6099 case dw_val_class_macptr:
6100 return 1;
6102 case dw_val_class_file:
6103 return v1->v.val_file == v2->v.val_file;
6105 default:
6106 return 1;
6110 /* Do the attributes look the same? */
6112 static int
6113 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6115 if (at1->dw_attr != at2->dw_attr)
6116 return 0;
6118 /* We don't care that this was compiled with a different compiler
6119 snapshot; if the output is the same, that's what matters. */
6120 if (at1->dw_attr == DW_AT_producer)
6121 return 1;
6123 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6126 /* Do the dies look the same? */
6128 static int
6129 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6131 dw_die_ref c1, c2;
6132 dw_attr_ref a1;
6133 unsigned ix;
6135 /* To avoid infinite recursion. */
6136 if (die1->die_mark)
6137 return die1->die_mark == die2->die_mark;
6138 die1->die_mark = die2->die_mark = ++(*mark);
6140 if (die1->die_tag != die2->die_tag)
6141 return 0;
6143 if (VEC_length (dw_attr_node, die1->die_attr)
6144 != VEC_length (dw_attr_node, die2->die_attr))
6145 return 0;
6147 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6148 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6149 return 0;
6151 c1 = die1->die_child;
6152 c2 = die2->die_child;
6153 if (! c1)
6155 if (c2)
6156 return 0;
6158 else
6159 for (;;)
6161 if (!same_die_p (c1, c2, mark))
6162 return 0;
6163 c1 = c1->die_sib;
6164 c2 = c2->die_sib;
6165 if (c1 == die1->die_child)
6167 if (c2 == die2->die_child)
6168 break;
6169 else
6170 return 0;
6174 return 1;
6177 /* Do the dies look the same? Wrapper around same_die_p. */
6179 static int
6180 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6182 int mark = 0;
6183 int ret = same_die_p (die1, die2, &mark);
6185 unmark_all_dies (die1);
6186 unmark_all_dies (die2);
6188 return ret;
6191 /* The prefix to attach to symbols on DIEs in the current comdat debug
6192 info section. */
6193 static char *comdat_symbol_id;
6195 /* The index of the current symbol within the current comdat CU. */
6196 static unsigned int comdat_symbol_number;
6198 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6199 children, and set comdat_symbol_id accordingly. */
6201 static void
6202 compute_section_prefix (dw_die_ref unit_die)
6204 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6205 const char *base = die_name ? lbasename (die_name) : "anonymous";
6206 char *name = alloca (strlen (base) + 64);
6207 char *p;
6208 int i, mark;
6209 unsigned char checksum[16];
6210 struct md5_ctx ctx;
6212 /* Compute the checksum of the DIE, then append part of it as hex digits to
6213 the name filename of the unit. */
6215 md5_init_ctx (&ctx);
6216 mark = 0;
6217 die_checksum (unit_die, &ctx, &mark);
6218 unmark_all_dies (unit_die);
6219 md5_finish_ctx (&ctx, checksum);
6221 sprintf (name, "%s.", base);
6222 clean_symbol_name (name);
6224 p = name + strlen (name);
6225 for (i = 0; i < 4; i++)
6227 sprintf (p, "%.2x", checksum[i]);
6228 p += 2;
6231 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6232 comdat_symbol_number = 0;
6235 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6237 static int
6238 is_type_die (dw_die_ref die)
6240 switch (die->die_tag)
6242 case DW_TAG_array_type:
6243 case DW_TAG_class_type:
6244 case DW_TAG_enumeration_type:
6245 case DW_TAG_pointer_type:
6246 case DW_TAG_reference_type:
6247 case DW_TAG_string_type:
6248 case DW_TAG_structure_type:
6249 case DW_TAG_subroutine_type:
6250 case DW_TAG_union_type:
6251 case DW_TAG_ptr_to_member_type:
6252 case DW_TAG_set_type:
6253 case DW_TAG_subrange_type:
6254 case DW_TAG_base_type:
6255 case DW_TAG_const_type:
6256 case DW_TAG_file_type:
6257 case DW_TAG_packed_type:
6258 case DW_TAG_volatile_type:
6259 case DW_TAG_typedef:
6260 return 1;
6261 default:
6262 return 0;
6266 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6267 Basically, we want to choose the bits that are likely to be shared between
6268 compilations (types) and leave out the bits that are specific to individual
6269 compilations (functions). */
6271 static int
6272 is_comdat_die (dw_die_ref c)
6274 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6275 we do for stabs. The advantage is a greater likelihood of sharing between
6276 objects that don't include headers in the same order (and therefore would
6277 put the base types in a different comdat). jason 8/28/00 */
6279 if (c->die_tag == DW_TAG_base_type)
6280 return 0;
6282 if (c->die_tag == DW_TAG_pointer_type
6283 || c->die_tag == DW_TAG_reference_type
6284 || c->die_tag == DW_TAG_const_type
6285 || c->die_tag == DW_TAG_volatile_type)
6287 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6289 return t ? is_comdat_die (t) : 0;
6292 return is_type_die (c);
6295 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6296 compilation unit. */
6298 static int
6299 is_symbol_die (dw_die_ref c)
6301 return (is_type_die (c)
6302 || (get_AT (c, DW_AT_declaration)
6303 && !get_AT (c, DW_AT_specification))
6304 || c->die_tag == DW_TAG_namespace);
6307 static char *
6308 gen_internal_sym (const char *prefix)
6310 char buf[256];
6312 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6313 return xstrdup (buf);
6316 /* Assign symbols to all worthy DIEs under DIE. */
6318 static void
6319 assign_symbol_names (dw_die_ref die)
6321 dw_die_ref c;
6323 if (is_symbol_die (die))
6325 if (comdat_symbol_id)
6327 char *p = alloca (strlen (comdat_symbol_id) + 64);
6329 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6330 comdat_symbol_id, comdat_symbol_number++);
6331 die->die_symbol = xstrdup (p);
6333 else
6334 die->die_symbol = gen_internal_sym ("LDIE");
6337 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6340 struct cu_hash_table_entry
6342 dw_die_ref cu;
6343 unsigned min_comdat_num, max_comdat_num;
6344 struct cu_hash_table_entry *next;
6347 /* Routines to manipulate hash table of CUs. */
6348 static hashval_t
6349 htab_cu_hash (const void *of)
6351 const struct cu_hash_table_entry *entry = of;
6353 return htab_hash_string (entry->cu->die_symbol);
6356 static int
6357 htab_cu_eq (const void *of1, const void *of2)
6359 const struct cu_hash_table_entry *entry1 = of1;
6360 const struct die_struct *entry2 = of2;
6362 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6365 static void
6366 htab_cu_del (void *what)
6368 struct cu_hash_table_entry *next, *entry = what;
6370 while (entry)
6372 next = entry->next;
6373 free (entry);
6374 entry = next;
6378 /* Check whether we have already seen this CU and set up SYM_NUM
6379 accordingly. */
6380 static int
6381 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6383 struct cu_hash_table_entry dummy;
6384 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6386 dummy.max_comdat_num = 0;
6388 slot = (struct cu_hash_table_entry **)
6389 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6390 INSERT);
6391 entry = *slot;
6393 for (; entry; last = entry, entry = entry->next)
6395 if (same_die_p_wrap (cu, entry->cu))
6396 break;
6399 if (entry)
6401 *sym_num = entry->min_comdat_num;
6402 return 1;
6405 entry = XCNEW (struct cu_hash_table_entry);
6406 entry->cu = cu;
6407 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6408 entry->next = *slot;
6409 *slot = entry;
6411 return 0;
6414 /* Record SYM_NUM to record of CU in HTABLE. */
6415 static void
6416 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6418 struct cu_hash_table_entry **slot, *entry;
6420 slot = (struct cu_hash_table_entry **)
6421 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6422 NO_INSERT);
6423 entry = *slot;
6425 entry->max_comdat_num = sym_num;
6428 /* Traverse the DIE (which is always comp_unit_die), and set up
6429 additional compilation units for each of the include files we see
6430 bracketed by BINCL/EINCL. */
6432 static void
6433 break_out_includes (dw_die_ref die)
6435 dw_die_ref c;
6436 dw_die_ref unit = NULL;
6437 limbo_die_node *node, **pnode;
6438 htab_t cu_hash_table;
6440 c = die->die_child;
6441 if (c) do {
6442 dw_die_ref prev = c;
6443 c = c->die_sib;
6444 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6445 || (unit && is_comdat_die (c)))
6447 dw_die_ref next = c->die_sib;
6449 /* This DIE is for a secondary CU; remove it from the main one. */
6450 remove_child_with_prev (c, prev);
6452 if (c->die_tag == DW_TAG_GNU_BINCL)
6453 unit = push_new_compile_unit (unit, c);
6454 else if (c->die_tag == DW_TAG_GNU_EINCL)
6455 unit = pop_compile_unit (unit);
6456 else
6457 add_child_die (unit, c);
6458 c = next;
6459 if (c == die->die_child)
6460 break;
6462 } while (c != die->die_child);
6464 #if 0
6465 /* We can only use this in debugging, since the frontend doesn't check
6466 to make sure that we leave every include file we enter. */
6467 gcc_assert (!unit);
6468 #endif
6470 assign_symbol_names (die);
6471 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6472 for (node = limbo_die_list, pnode = &limbo_die_list;
6473 node;
6474 node = node->next)
6476 int is_dupl;
6478 compute_section_prefix (node->die);
6479 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6480 &comdat_symbol_number);
6481 assign_symbol_names (node->die);
6482 if (is_dupl)
6483 *pnode = node->next;
6484 else
6486 pnode = &node->next;
6487 record_comdat_symbol_number (node->die, cu_hash_table,
6488 comdat_symbol_number);
6491 htab_delete (cu_hash_table);
6494 /* Traverse the DIE and add a sibling attribute if it may have the
6495 effect of speeding up access to siblings. To save some space,
6496 avoid generating sibling attributes for DIE's without children. */
6498 static void
6499 add_sibling_attributes (dw_die_ref die)
6501 dw_die_ref c;
6503 if (! die->die_child)
6504 return;
6506 if (die->die_parent && die != die->die_parent->die_child)
6507 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6509 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6512 /* Output all location lists for the DIE and its children. */
6514 static void
6515 output_location_lists (dw_die_ref die)
6517 dw_die_ref c;
6518 dw_attr_ref a;
6519 unsigned ix;
6521 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6522 if (AT_class (a) == dw_val_class_loc_list)
6523 output_loc_list (AT_loc_list (a));
6525 FOR_EACH_CHILD (die, c, output_location_lists (c));
6528 /* The format of each DIE (and its attribute value pairs) is encoded in an
6529 abbreviation table. This routine builds the abbreviation table and assigns
6530 a unique abbreviation id for each abbreviation entry. The children of each
6531 die are visited recursively. */
6533 static void
6534 build_abbrev_table (dw_die_ref die)
6536 unsigned long abbrev_id;
6537 unsigned int n_alloc;
6538 dw_die_ref c;
6539 dw_attr_ref a;
6540 unsigned ix;
6542 /* Scan the DIE references, and mark as external any that refer to
6543 DIEs from other CUs (i.e. those which are not marked). */
6544 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6545 if (AT_class (a) == dw_val_class_die_ref
6546 && AT_ref (a)->die_mark == 0)
6548 gcc_assert (AT_ref (a)->die_symbol);
6550 set_AT_ref_external (a, 1);
6553 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6555 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6556 dw_attr_ref die_a, abbrev_a;
6557 unsigned ix;
6558 bool ok = true;
6560 if (abbrev->die_tag != die->die_tag)
6561 continue;
6562 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6563 continue;
6565 if (VEC_length (dw_attr_node, abbrev->die_attr)
6566 != VEC_length (dw_attr_node, die->die_attr))
6567 continue;
6569 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6571 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6572 if ((abbrev_a->dw_attr != die_a->dw_attr)
6573 || (value_format (abbrev_a) != value_format (die_a)))
6575 ok = false;
6576 break;
6579 if (ok)
6580 break;
6583 if (abbrev_id >= abbrev_die_table_in_use)
6585 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6587 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6588 abbrev_die_table = ggc_realloc (abbrev_die_table,
6589 sizeof (dw_die_ref) * n_alloc);
6591 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6592 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6593 abbrev_die_table_allocated = n_alloc;
6596 ++abbrev_die_table_in_use;
6597 abbrev_die_table[abbrev_id] = die;
6600 die->die_abbrev = abbrev_id;
6601 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6604 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6606 static int
6607 constant_size (long unsigned int value)
6609 int log;
6611 if (value == 0)
6612 log = 0;
6613 else
6614 log = floor_log2 (value);
6616 log = log / 8;
6617 log = 1 << (floor_log2 (log) + 1);
6619 return log;
6622 /* Return the size of a DIE as it is represented in the
6623 .debug_info section. */
6625 static unsigned long
6626 size_of_die (dw_die_ref die)
6628 unsigned long size = 0;
6629 dw_attr_ref a;
6630 unsigned ix;
6632 size += size_of_uleb128 (die->die_abbrev);
6633 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6635 switch (AT_class (a))
6637 case dw_val_class_addr:
6638 size += DWARF2_ADDR_SIZE;
6639 break;
6640 case dw_val_class_offset:
6641 size += DWARF_OFFSET_SIZE;
6642 break;
6643 case dw_val_class_loc:
6645 unsigned long lsize = size_of_locs (AT_loc (a));
6647 /* Block length. */
6648 size += constant_size (lsize);
6649 size += lsize;
6651 break;
6652 case dw_val_class_loc_list:
6653 size += DWARF_OFFSET_SIZE;
6654 break;
6655 case dw_val_class_range_list:
6656 size += DWARF_OFFSET_SIZE;
6657 break;
6658 case dw_val_class_const:
6659 size += size_of_sleb128 (AT_int (a));
6660 break;
6661 case dw_val_class_unsigned_const:
6662 size += constant_size (AT_unsigned (a));
6663 break;
6664 case dw_val_class_long_long:
6665 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6666 break;
6667 case dw_val_class_vec:
6668 size += 1 + (a->dw_attr_val.v.val_vec.length
6669 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6670 break;
6671 case dw_val_class_flag:
6672 size += 1;
6673 break;
6674 case dw_val_class_die_ref:
6675 if (AT_ref_external (a))
6676 size += DWARF2_ADDR_SIZE;
6677 else
6678 size += DWARF_OFFSET_SIZE;
6679 break;
6680 case dw_val_class_fde_ref:
6681 size += DWARF_OFFSET_SIZE;
6682 break;
6683 case dw_val_class_lbl_id:
6684 size += DWARF2_ADDR_SIZE;
6685 break;
6686 case dw_val_class_lineptr:
6687 case dw_val_class_macptr:
6688 size += DWARF_OFFSET_SIZE;
6689 break;
6690 case dw_val_class_str:
6691 if (AT_string_form (a) == DW_FORM_strp)
6692 size += DWARF_OFFSET_SIZE;
6693 else
6694 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6695 break;
6696 case dw_val_class_file:
6697 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6698 break;
6699 default:
6700 gcc_unreachable ();
6704 return size;
6707 /* Size the debugging information associated with a given DIE. Visits the
6708 DIE's children recursively. Updates the global variable next_die_offset, on
6709 each time through. Uses the current value of next_die_offset to update the
6710 die_offset field in each DIE. */
6712 static void
6713 calc_die_sizes (dw_die_ref die)
6715 dw_die_ref c;
6717 die->die_offset = next_die_offset;
6718 next_die_offset += size_of_die (die);
6720 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6722 if (die->die_child != NULL)
6723 /* Count the null byte used to terminate sibling lists. */
6724 next_die_offset += 1;
6727 /* Set the marks for a die and its children. We do this so
6728 that we know whether or not a reference needs to use FORM_ref_addr; only
6729 DIEs in the same CU will be marked. We used to clear out the offset
6730 and use that as the flag, but ran into ordering problems. */
6732 static void
6733 mark_dies (dw_die_ref die)
6735 dw_die_ref c;
6737 gcc_assert (!die->die_mark);
6739 die->die_mark = 1;
6740 FOR_EACH_CHILD (die, c, mark_dies (c));
6743 /* Clear the marks for a die and its children. */
6745 static void
6746 unmark_dies (dw_die_ref die)
6748 dw_die_ref c;
6750 gcc_assert (die->die_mark);
6752 die->die_mark = 0;
6753 FOR_EACH_CHILD (die, c, unmark_dies (c));
6756 /* Clear the marks for a die, its children and referred dies. */
6758 static void
6759 unmark_all_dies (dw_die_ref die)
6761 dw_die_ref c;
6762 dw_attr_ref a;
6763 unsigned ix;
6765 if (!die->die_mark)
6766 return;
6767 die->die_mark = 0;
6769 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6771 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6772 if (AT_class (a) == dw_val_class_die_ref)
6773 unmark_all_dies (AT_ref (a));
6776 /* Return the size of the .debug_pubnames or .debug_pubtypes table
6777 generated for the compilation unit. */
6779 static unsigned long
6780 size_of_pubnames (VEC (pubname_entry, gc) * names)
6782 unsigned long size;
6783 unsigned i;
6784 pubname_ref p;
6786 size = DWARF_PUBNAMES_HEADER_SIZE;
6787 for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
6788 if (names != pubtype_table
6789 || p->die->die_offset != 0
6790 || !flag_eliminate_unused_debug_types)
6791 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
6793 size += DWARF_OFFSET_SIZE;
6794 return size;
6797 /* Return the size of the information in the .debug_aranges section. */
6799 static unsigned long
6800 size_of_aranges (void)
6802 unsigned long size;
6804 size = DWARF_ARANGES_HEADER_SIZE;
6806 /* Count the address/length pair for this compilation unit. */
6807 size += 2 * DWARF2_ADDR_SIZE;
6808 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6810 /* Count the two zero words used to terminated the address range table. */
6811 size += 2 * DWARF2_ADDR_SIZE;
6812 return size;
6815 /* Select the encoding of an attribute value. */
6817 static enum dwarf_form
6818 value_format (dw_attr_ref a)
6820 switch (a->dw_attr_val.val_class)
6822 case dw_val_class_addr:
6823 return DW_FORM_addr;
6824 case dw_val_class_range_list:
6825 case dw_val_class_offset:
6826 case dw_val_class_loc_list:
6827 switch (DWARF_OFFSET_SIZE)
6829 case 4:
6830 return DW_FORM_data4;
6831 case 8:
6832 return DW_FORM_data8;
6833 default:
6834 gcc_unreachable ();
6836 case dw_val_class_loc:
6837 switch (constant_size (size_of_locs (AT_loc (a))))
6839 case 1:
6840 return DW_FORM_block1;
6841 case 2:
6842 return DW_FORM_block2;
6843 default:
6844 gcc_unreachable ();
6846 case dw_val_class_const:
6847 return DW_FORM_sdata;
6848 case dw_val_class_unsigned_const:
6849 switch (constant_size (AT_unsigned (a)))
6851 case 1:
6852 return DW_FORM_data1;
6853 case 2:
6854 return DW_FORM_data2;
6855 case 4:
6856 return DW_FORM_data4;
6857 case 8:
6858 return DW_FORM_data8;
6859 default:
6860 gcc_unreachable ();
6862 case dw_val_class_long_long:
6863 return DW_FORM_block1;
6864 case dw_val_class_vec:
6865 return DW_FORM_block1;
6866 case dw_val_class_flag:
6867 return DW_FORM_flag;
6868 case dw_val_class_die_ref:
6869 if (AT_ref_external (a))
6870 return DW_FORM_ref_addr;
6871 else
6872 return DW_FORM_ref;
6873 case dw_val_class_fde_ref:
6874 return DW_FORM_data;
6875 case dw_val_class_lbl_id:
6876 return DW_FORM_addr;
6877 case dw_val_class_lineptr:
6878 case dw_val_class_macptr:
6879 return DW_FORM_data;
6880 case dw_val_class_str:
6881 return AT_string_form (a);
6882 case dw_val_class_file:
6883 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6885 case 1:
6886 return DW_FORM_data1;
6887 case 2:
6888 return DW_FORM_data2;
6889 case 4:
6890 return DW_FORM_data4;
6891 default:
6892 gcc_unreachable ();
6895 default:
6896 gcc_unreachable ();
6900 /* Output the encoding of an attribute value. */
6902 static void
6903 output_value_format (dw_attr_ref a)
6905 enum dwarf_form form = value_format (a);
6907 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6910 /* Output the .debug_abbrev section which defines the DIE abbreviation
6911 table. */
6913 static void
6914 output_abbrev_section (void)
6916 unsigned long abbrev_id;
6918 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6920 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6921 unsigned ix;
6922 dw_attr_ref a_attr;
6924 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6925 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6926 dwarf_tag_name (abbrev->die_tag));
6928 if (abbrev->die_child != NULL)
6929 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6930 else
6931 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6933 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6934 ix++)
6936 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6937 dwarf_attr_name (a_attr->dw_attr));
6938 output_value_format (a_attr);
6941 dw2_asm_output_data (1, 0, NULL);
6942 dw2_asm_output_data (1, 0, NULL);
6945 /* Terminate the table. */
6946 dw2_asm_output_data (1, 0, NULL);
6949 /* Output a symbol we can use to refer to this DIE from another CU. */
6951 static inline void
6952 output_die_symbol (dw_die_ref die)
6954 char *sym = die->die_symbol;
6956 if (sym == 0)
6957 return;
6959 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6960 /* We make these global, not weak; if the target doesn't support
6961 .linkonce, it doesn't support combining the sections, so debugging
6962 will break. */
6963 targetm.asm_out.globalize_label (asm_out_file, sym);
6965 ASM_OUTPUT_LABEL (asm_out_file, sym);
6968 /* Return a new location list, given the begin and end range, and the
6969 expression. gensym tells us whether to generate a new internal symbol for
6970 this location list node, which is done for the head of the list only. */
6972 static inline dw_loc_list_ref
6973 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6974 const char *section, unsigned int gensym)
6976 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6978 retlist->begin = begin;
6979 retlist->end = end;
6980 retlist->expr = expr;
6981 retlist->section = section;
6982 if (gensym)
6983 retlist->ll_symbol = gen_internal_sym ("LLST");
6985 return retlist;
6988 /* Add a location description expression to a location list. */
6990 static inline void
6991 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6992 const char *begin, const char *end,
6993 const char *section)
6995 dw_loc_list_ref *d;
6997 /* Find the end of the chain. */
6998 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
7001 /* Add a new location list node to the list. */
7002 *d = new_loc_list (descr, begin, end, section, 0);
7005 static void
7006 dwarf2out_switch_text_section (void)
7008 dw_fde_ref fde;
7010 gcc_assert (cfun);
7012 fde = &fde_table[fde_table_in_use - 1];
7013 fde->dw_fde_switched_sections = true;
7014 fde->dw_fde_hot_section_label = cfun->hot_section_label;
7015 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
7016 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
7017 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
7018 have_multiple_function_sections = true;
7020 /* Reset the current label on switching text sections, so that we
7021 don't attempt to advance_loc4 between labels in different sections. */
7022 fde->dw_fde_current_label = NULL;
7025 /* Output the location list given to us. */
7027 static void
7028 output_loc_list (dw_loc_list_ref list_head)
7030 dw_loc_list_ref curr = list_head;
7032 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7034 /* Walk the location list, and output each range + expression. */
7035 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7037 unsigned long size;
7038 if (!have_multiple_function_sections)
7040 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7041 "Location list begin address (%s)",
7042 list_head->ll_symbol);
7043 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7044 "Location list end address (%s)",
7045 list_head->ll_symbol);
7047 else
7049 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7050 "Location list begin address (%s)",
7051 list_head->ll_symbol);
7052 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7053 "Location list end address (%s)",
7054 list_head->ll_symbol);
7056 size = size_of_locs (curr->expr);
7058 /* Output the block length for this list of location operations. */
7059 gcc_assert (size <= 0xffff);
7060 dw2_asm_output_data (2, size, "%s", "Location expression size");
7062 output_loc_sequence (curr->expr);
7065 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7066 "Location list terminator begin (%s)",
7067 list_head->ll_symbol);
7068 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7069 "Location list terminator end (%s)",
7070 list_head->ll_symbol);
7073 /* Output the DIE and its attributes. Called recursively to generate
7074 the definitions of each child DIE. */
7076 static void
7077 output_die (dw_die_ref die)
7079 dw_attr_ref a;
7080 dw_die_ref c;
7081 unsigned long size;
7082 unsigned ix;
7084 /* If someone in another CU might refer to us, set up a symbol for
7085 them to point to. */
7086 if (die->die_symbol)
7087 output_die_symbol (die);
7089 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7090 die->die_offset, dwarf_tag_name (die->die_tag));
7092 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7094 const char *name = dwarf_attr_name (a->dw_attr);
7096 switch (AT_class (a))
7098 case dw_val_class_addr:
7099 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7100 break;
7102 case dw_val_class_offset:
7103 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7104 "%s", name);
7105 break;
7107 case dw_val_class_range_list:
7109 char *p = strchr (ranges_section_label, '\0');
7111 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7112 a->dw_attr_val.v.val_offset);
7113 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7114 debug_ranges_section, "%s", name);
7115 *p = '\0';
7117 break;
7119 case dw_val_class_loc:
7120 size = size_of_locs (AT_loc (a));
7122 /* Output the block length for this list of location operations. */
7123 dw2_asm_output_data (constant_size (size), size, "%s", name);
7125 output_loc_sequence (AT_loc (a));
7126 break;
7128 case dw_val_class_const:
7129 /* ??? It would be slightly more efficient to use a scheme like is
7130 used for unsigned constants below, but gdb 4.x does not sign
7131 extend. Gdb 5.x does sign extend. */
7132 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7133 break;
7135 case dw_val_class_unsigned_const:
7136 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7137 AT_unsigned (a), "%s", name);
7138 break;
7140 case dw_val_class_long_long:
7142 unsigned HOST_WIDE_INT first, second;
7144 dw2_asm_output_data (1,
7145 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7146 "%s", name);
7148 if (WORDS_BIG_ENDIAN)
7150 first = a->dw_attr_val.v.val_long_long.hi;
7151 second = a->dw_attr_val.v.val_long_long.low;
7153 else
7155 first = a->dw_attr_val.v.val_long_long.low;
7156 second = a->dw_attr_val.v.val_long_long.hi;
7159 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7160 first, "long long constant");
7161 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7162 second, NULL);
7164 break;
7166 case dw_val_class_vec:
7168 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7169 unsigned int len = a->dw_attr_val.v.val_vec.length;
7170 unsigned int i;
7171 unsigned char *p;
7173 dw2_asm_output_data (1, len * elt_size, "%s", name);
7174 if (elt_size > sizeof (HOST_WIDE_INT))
7176 elt_size /= 2;
7177 len *= 2;
7179 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7180 i < len;
7181 i++, p += elt_size)
7182 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7183 "fp or vector constant word %u", i);
7184 break;
7187 case dw_val_class_flag:
7188 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7189 break;
7191 case dw_val_class_loc_list:
7193 char *sym = AT_loc_list (a)->ll_symbol;
7195 gcc_assert (sym);
7196 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7197 "%s", name);
7199 break;
7201 case dw_val_class_die_ref:
7202 if (AT_ref_external (a))
7204 char *sym = AT_ref (a)->die_symbol;
7206 gcc_assert (sym);
7207 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7208 "%s", name);
7210 else
7212 gcc_assert (AT_ref (a)->die_offset);
7213 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7214 "%s", name);
7216 break;
7218 case dw_val_class_fde_ref:
7220 char l1[20];
7222 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7223 a->dw_attr_val.v.val_fde_index * 2);
7224 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7225 "%s", name);
7227 break;
7229 case dw_val_class_lbl_id:
7230 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7231 break;
7233 case dw_val_class_lineptr:
7234 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7235 debug_line_section, "%s", name);
7236 break;
7238 case dw_val_class_macptr:
7239 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7240 debug_macinfo_section, "%s", name);
7241 break;
7243 case dw_val_class_str:
7244 if (AT_string_form (a) == DW_FORM_strp)
7245 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7246 a->dw_attr_val.v.val_str->label,
7247 debug_str_section,
7248 "%s: \"%s\"", name, AT_string (a));
7249 else
7250 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7251 break;
7253 case dw_val_class_file:
7255 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7257 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7258 a->dw_attr_val.v.val_file->filename);
7259 break;
7262 default:
7263 gcc_unreachable ();
7267 FOR_EACH_CHILD (die, c, output_die (c));
7269 /* Add null byte to terminate sibling list. */
7270 if (die->die_child != NULL)
7271 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7272 die->die_offset);
7275 /* Output the compilation unit that appears at the beginning of the
7276 .debug_info section, and precedes the DIE descriptions. */
7278 static void
7279 output_compilation_unit_header (void)
7281 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7282 dw2_asm_output_data (4, 0xffffffff,
7283 "Initial length escape value indicating 64-bit DWARF extension");
7284 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7285 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7286 "Length of Compilation Unit Info");
7287 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7288 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7289 debug_abbrev_section,
7290 "Offset Into Abbrev. Section");
7291 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7294 /* Output the compilation unit DIE and its children. */
7296 static void
7297 output_comp_unit (dw_die_ref die, int output_if_empty)
7299 const char *secname;
7300 char *oldsym, *tmp;
7302 /* Unless we are outputting main CU, we may throw away empty ones. */
7303 if (!output_if_empty && die->die_child == NULL)
7304 return;
7306 /* Even if there are no children of this DIE, we must output the information
7307 about the compilation unit. Otherwise, on an empty translation unit, we
7308 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7309 will then complain when examining the file. First mark all the DIEs in
7310 this CU so we know which get local refs. */
7311 mark_dies (die);
7313 build_abbrev_table (die);
7315 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7316 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7317 calc_die_sizes (die);
7319 oldsym = die->die_symbol;
7320 if (oldsym)
7322 tmp = alloca (strlen (oldsym) + 24);
7324 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7325 secname = tmp;
7326 die->die_symbol = NULL;
7327 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7329 else
7330 switch_to_section (debug_info_section);
7332 /* Output debugging information. */
7333 output_compilation_unit_header ();
7334 output_die (die);
7336 /* Leave the marks on the main CU, so we can check them in
7337 output_pubnames. */
7338 if (oldsym)
7340 unmark_dies (die);
7341 die->die_symbol = oldsym;
7345 /* Return the DWARF2/3 pubname associated with a decl. */
7347 static const char *
7348 dwarf2_name (tree decl, int scope)
7350 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7353 /* Add a new entry to .debug_pubnames if appropriate. */
7355 static void
7356 add_pubname (tree decl, dw_die_ref die)
7358 pubname_entry e;
7360 if (! TREE_PUBLIC (decl))
7361 return;
7363 e.die = die;
7364 e.name = xstrdup (dwarf2_name (decl, 1));
7365 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
7368 /* Add a new entry to .debug_pubtypes if appropriate. */
7370 static void
7371 add_pubtype (tree decl, dw_die_ref die)
7373 pubname_entry e;
7375 e.name = NULL;
7376 if ((TREE_PUBLIC (decl)
7377 || die->die_parent == comp_unit_die)
7378 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
7380 e.die = die;
7381 if (TYPE_P (decl))
7383 if (TYPE_NAME (decl))
7385 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
7386 e.name = IDENTIFIER_POINTER (TYPE_NAME (decl));
7387 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
7388 && DECL_NAME (TYPE_NAME (decl)))
7389 e.name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl)));
7390 else
7391 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
7394 else
7395 e.name = xstrdup (dwarf2_name (decl, 1));
7397 /* If we don't have a name for the type, there's no point in adding
7398 it to the table. */
7399 if (e.name && e.name[0] != '\0')
7400 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
7404 /* Output the public names table used to speed up access to externally
7405 visible names; or the public types table used to find type definitions. */
7407 static void
7408 output_pubnames (VEC (pubname_entry, gc) * names)
7410 unsigned i;
7411 unsigned long pubnames_length = size_of_pubnames (names);
7412 pubname_ref pub;
7414 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7415 dw2_asm_output_data (4, 0xffffffff,
7416 "Initial length escape value indicating 64-bit DWARF extension");
7417 if (names == pubname_table)
7418 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7419 "Length of Public Names Info");
7420 else
7421 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7422 "Length of Public Type Names Info");
7423 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7424 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7425 debug_info_section,
7426 "Offset of Compilation Unit Info");
7427 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7428 "Compilation Unit Length");
7430 for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
7432 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7433 if (names == pubname_table)
7434 gcc_assert (pub->die->die_mark);
7436 if (names != pubtype_table
7437 || pub->die->die_offset != 0
7438 || !flag_eliminate_unused_debug_types)
7440 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7441 "DIE offset");
7443 dw2_asm_output_nstring (pub->name, -1, "external name");
7447 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7450 /* Add a new entry to .debug_aranges if appropriate. */
7452 static void
7453 add_arange (tree decl, dw_die_ref die)
7455 if (! DECL_SECTION_NAME (decl))
7456 return;
7458 if (arange_table_in_use == arange_table_allocated)
7460 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7461 arange_table = ggc_realloc (arange_table,
7462 (arange_table_allocated
7463 * sizeof (dw_die_ref)));
7464 memset (arange_table + arange_table_in_use, 0,
7465 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7468 arange_table[arange_table_in_use++] = die;
7471 /* Output the information that goes into the .debug_aranges table.
7472 Namely, define the beginning and ending address range of the
7473 text section generated for this compilation unit. */
7475 static void
7476 output_aranges (void)
7478 unsigned i;
7479 unsigned long aranges_length = size_of_aranges ();
7481 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7482 dw2_asm_output_data (4, 0xffffffff,
7483 "Initial length escape value indicating 64-bit DWARF extension");
7484 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7485 "Length of Address Ranges Info");
7486 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7487 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7488 debug_info_section,
7489 "Offset of Compilation Unit Info");
7490 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7491 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7493 /* We need to align to twice the pointer size here. */
7494 if (DWARF_ARANGES_PAD_SIZE)
7496 /* Pad using a 2 byte words so that padding is correct for any
7497 pointer size. */
7498 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7499 2 * DWARF2_ADDR_SIZE);
7500 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7501 dw2_asm_output_data (2, 0, NULL);
7504 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7505 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7506 text_section_label, "Length");
7507 if (flag_reorder_blocks_and_partition)
7509 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7510 "Address");
7511 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7512 cold_text_section_label, "Length");
7515 for (i = 0; i < arange_table_in_use; i++)
7517 dw_die_ref die = arange_table[i];
7519 /* We shouldn't see aranges for DIEs outside of the main CU. */
7520 gcc_assert (die->die_mark);
7522 if (die->die_tag == DW_TAG_subprogram)
7524 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7525 "Address");
7526 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7527 get_AT_low_pc (die), "Length");
7529 else
7531 /* A static variable; extract the symbol from DW_AT_location.
7532 Note that this code isn't currently hit, as we only emit
7533 aranges for functions (jason 9/23/99). */
7534 dw_attr_ref a = get_AT (die, DW_AT_location);
7535 dw_loc_descr_ref loc;
7537 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7539 loc = AT_loc (a);
7540 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7542 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7543 loc->dw_loc_oprnd1.v.val_addr, "Address");
7544 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7545 get_AT_unsigned (die, DW_AT_byte_size),
7546 "Length");
7550 /* Output the terminator words. */
7551 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7552 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7555 /* Add a new entry to .debug_ranges. Return the offset at which it
7556 was placed. */
7558 static unsigned int
7559 add_ranges (tree block)
7561 unsigned int in_use = ranges_table_in_use;
7563 if (in_use == ranges_table_allocated)
7565 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7566 ranges_table
7567 = ggc_realloc (ranges_table, (ranges_table_allocated
7568 * sizeof (struct dw_ranges_struct)));
7569 memset (ranges_table + ranges_table_in_use, 0,
7570 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7573 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7574 ranges_table_in_use = in_use + 1;
7576 return in_use * 2 * DWARF2_ADDR_SIZE;
7579 static void
7580 output_ranges (void)
7582 unsigned i;
7583 static const char *const start_fmt = "Offset 0x%x";
7584 const char *fmt = start_fmt;
7586 for (i = 0; i < ranges_table_in_use; i++)
7588 int block_num = ranges_table[i].block_num;
7590 if (block_num)
7592 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7593 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7595 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7596 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7598 /* If all code is in the text section, then the compilation
7599 unit base address defaults to DW_AT_low_pc, which is the
7600 base of the text section. */
7601 if (!have_multiple_function_sections)
7603 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7604 text_section_label,
7605 fmt, i * 2 * DWARF2_ADDR_SIZE);
7606 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7607 text_section_label, NULL);
7610 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7611 compilation unit base address to zero, which allows us to
7612 use absolute addresses, and not worry about whether the
7613 target supports cross-section arithmetic. */
7614 else
7616 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7617 fmt, i * 2 * DWARF2_ADDR_SIZE);
7618 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7621 fmt = NULL;
7623 else
7625 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7626 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7627 fmt = start_fmt;
7632 /* Data structure containing information about input files. */
7633 struct file_info
7635 const char *path; /* Complete file name. */
7636 const char *fname; /* File name part. */
7637 int length; /* Length of entire string. */
7638 struct dwarf_file_data * file_idx; /* Index in input file table. */
7639 int dir_idx; /* Index in directory table. */
7642 /* Data structure containing information about directories with source
7643 files. */
7644 struct dir_info
7646 const char *path; /* Path including directory name. */
7647 int length; /* Path length. */
7648 int prefix; /* Index of directory entry which is a prefix. */
7649 int count; /* Number of files in this directory. */
7650 int dir_idx; /* Index of directory used as base. */
7653 /* Callback function for file_info comparison. We sort by looking at
7654 the directories in the path. */
7656 static int
7657 file_info_cmp (const void *p1, const void *p2)
7659 const struct file_info *s1 = p1;
7660 const struct file_info *s2 = p2;
7661 unsigned char *cp1;
7662 unsigned char *cp2;
7664 /* Take care of file names without directories. We need to make sure that
7665 we return consistent values to qsort since some will get confused if
7666 we return the same value when identical operands are passed in opposite
7667 orders. So if neither has a directory, return 0 and otherwise return
7668 1 or -1 depending on which one has the directory. */
7669 if ((s1->path == s1->fname || s2->path == s2->fname))
7670 return (s2->path == s2->fname) - (s1->path == s1->fname);
7672 cp1 = (unsigned char *) s1->path;
7673 cp2 = (unsigned char *) s2->path;
7675 while (1)
7677 ++cp1;
7678 ++cp2;
7679 /* Reached the end of the first path? If so, handle like above. */
7680 if ((cp1 == (unsigned char *) s1->fname)
7681 || (cp2 == (unsigned char *) s2->fname))
7682 return ((cp2 == (unsigned char *) s2->fname)
7683 - (cp1 == (unsigned char *) s1->fname));
7685 /* Character of current path component the same? */
7686 else if (*cp1 != *cp2)
7687 return *cp1 - *cp2;
7691 struct file_name_acquire_data
7693 struct file_info *files;
7694 int used_files;
7695 int max_files;
7698 /* Traversal function for the hash table. */
7700 static int
7701 file_name_acquire (void ** slot, void *data)
7703 struct file_name_acquire_data *fnad = data;
7704 struct dwarf_file_data *d = *slot;
7705 struct file_info *fi;
7706 const char *f;
7708 gcc_assert (fnad->max_files >= d->emitted_number);
7710 if (! d->emitted_number)
7711 return 1;
7713 gcc_assert (fnad->max_files != fnad->used_files);
7715 fi = fnad->files + fnad->used_files++;
7717 /* Skip all leading "./". */
7718 f = d->filename;
7719 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
7720 f += 2;
7722 /* Create a new array entry. */
7723 fi->path = f;
7724 fi->length = strlen (f);
7725 fi->file_idx = d;
7727 /* Search for the file name part. */
7728 f = strrchr (f, DIR_SEPARATOR);
7729 #if defined (DIR_SEPARATOR_2)
7731 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
7733 if (g != NULL)
7735 if (f == NULL || f < g)
7736 f = g;
7739 #endif
7741 fi->fname = f == NULL ? fi->path : f + 1;
7742 return 1;
7745 /* Output the directory table and the file name table. We try to minimize
7746 the total amount of memory needed. A heuristic is used to avoid large
7747 slowdowns with many input files. */
7749 static void
7750 output_file_names (void)
7752 struct file_name_acquire_data fnad;
7753 int numfiles;
7754 struct file_info *files;
7755 struct dir_info *dirs;
7756 int *saved;
7757 int *savehere;
7758 int *backmap;
7759 int ndirs;
7760 int idx_offset;
7761 int i;
7762 int idx;
7764 if (!last_emitted_file)
7766 dw2_asm_output_data (1, 0, "End directory table");
7767 dw2_asm_output_data (1, 0, "End file name table");
7768 return;
7771 numfiles = last_emitted_file->emitted_number;
7773 /* Allocate the various arrays we need. */
7774 files = alloca (numfiles * sizeof (struct file_info));
7775 dirs = alloca (numfiles * sizeof (struct dir_info));
7777 fnad.files = files;
7778 fnad.used_files = 0;
7779 fnad.max_files = numfiles;
7780 htab_traverse (file_table, file_name_acquire, &fnad);
7781 gcc_assert (fnad.used_files == fnad.max_files);
7783 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7785 /* Find all the different directories used. */
7786 dirs[0].path = files[0].path;
7787 dirs[0].length = files[0].fname - files[0].path;
7788 dirs[0].prefix = -1;
7789 dirs[0].count = 1;
7790 dirs[0].dir_idx = 0;
7791 files[0].dir_idx = 0;
7792 ndirs = 1;
7794 for (i = 1; i < numfiles; i++)
7795 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7796 && memcmp (dirs[ndirs - 1].path, files[i].path,
7797 dirs[ndirs - 1].length) == 0)
7799 /* Same directory as last entry. */
7800 files[i].dir_idx = ndirs - 1;
7801 ++dirs[ndirs - 1].count;
7803 else
7805 int j;
7807 /* This is a new directory. */
7808 dirs[ndirs].path = files[i].path;
7809 dirs[ndirs].length = files[i].fname - files[i].path;
7810 dirs[ndirs].count = 1;
7811 dirs[ndirs].dir_idx = ndirs;
7812 files[i].dir_idx = ndirs;
7814 /* Search for a prefix. */
7815 dirs[ndirs].prefix = -1;
7816 for (j = 0; j < ndirs; j++)
7817 if (dirs[j].length < dirs[ndirs].length
7818 && dirs[j].length > 1
7819 && (dirs[ndirs].prefix == -1
7820 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7821 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7822 dirs[ndirs].prefix = j;
7824 ++ndirs;
7827 /* Now to the actual work. We have to find a subset of the directories which
7828 allow expressing the file name using references to the directory table
7829 with the least amount of characters. We do not do an exhaustive search
7830 where we would have to check out every combination of every single
7831 possible prefix. Instead we use a heuristic which provides nearly optimal
7832 results in most cases and never is much off. */
7833 saved = alloca (ndirs * sizeof (int));
7834 savehere = alloca (ndirs * sizeof (int));
7836 memset (saved, '\0', ndirs * sizeof (saved[0]));
7837 for (i = 0; i < ndirs; i++)
7839 int j;
7840 int total;
7842 /* We can always save some space for the current directory. But this
7843 does not mean it will be enough to justify adding the directory. */
7844 savehere[i] = dirs[i].length;
7845 total = (savehere[i] - saved[i]) * dirs[i].count;
7847 for (j = i + 1; j < ndirs; j++)
7849 savehere[j] = 0;
7850 if (saved[j] < dirs[i].length)
7852 /* Determine whether the dirs[i] path is a prefix of the
7853 dirs[j] path. */
7854 int k;
7856 k = dirs[j].prefix;
7857 while (k != -1 && k != (int) i)
7858 k = dirs[k].prefix;
7860 if (k == (int) i)
7862 /* Yes it is. We can possibly save some memory by
7863 writing the filenames in dirs[j] relative to
7864 dirs[i]. */
7865 savehere[j] = dirs[i].length;
7866 total += (savehere[j] - saved[j]) * dirs[j].count;
7871 /* Check whether we can save enough to justify adding the dirs[i]
7872 directory. */
7873 if (total > dirs[i].length + 1)
7875 /* It's worthwhile adding. */
7876 for (j = i; j < ndirs; j++)
7877 if (savehere[j] > 0)
7879 /* Remember how much we saved for this directory so far. */
7880 saved[j] = savehere[j];
7882 /* Remember the prefix directory. */
7883 dirs[j].dir_idx = i;
7888 /* Emit the directory name table. */
7889 idx = 1;
7890 idx_offset = dirs[0].length > 0 ? 1 : 0;
7891 for (i = 1 - idx_offset; i < ndirs; i++)
7892 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7893 "Directory Entry: 0x%x", i + idx_offset);
7895 dw2_asm_output_data (1, 0, "End directory table");
7897 /* We have to emit them in the order of emitted_number since that's
7898 used in the debug info generation. To do this efficiently we
7899 generate a back-mapping of the indices first. */
7900 backmap = alloca (numfiles * sizeof (int));
7901 for (i = 0; i < numfiles; i++)
7902 backmap[files[i].file_idx->emitted_number - 1] = i;
7904 /* Now write all the file names. */
7905 for (i = 0; i < numfiles; i++)
7907 int file_idx = backmap[i];
7908 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7910 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7911 "File Entry: 0x%x", (unsigned) i + 1);
7913 /* Include directory index. */
7914 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7916 /* Modification time. */
7917 dw2_asm_output_data_uleb128 (0, NULL);
7919 /* File length in bytes. */
7920 dw2_asm_output_data_uleb128 (0, NULL);
7923 dw2_asm_output_data (1, 0, "End file name table");
7927 /* Output the source line number correspondence information. This
7928 information goes into the .debug_line section. */
7930 static void
7931 output_line_info (void)
7933 char l1[20], l2[20], p1[20], p2[20];
7934 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7935 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7936 unsigned opc;
7937 unsigned n_op_args;
7938 unsigned long lt_index;
7939 unsigned long current_line;
7940 long line_offset;
7941 long line_delta;
7942 unsigned long current_file;
7943 unsigned long function;
7945 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7946 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7947 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7948 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7950 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7951 dw2_asm_output_data (4, 0xffffffff,
7952 "Initial length escape value indicating 64-bit DWARF extension");
7953 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7954 "Length of Source Line Info");
7955 ASM_OUTPUT_LABEL (asm_out_file, l1);
7957 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7958 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7959 ASM_OUTPUT_LABEL (asm_out_file, p1);
7961 /* Define the architecture-dependent minimum instruction length (in
7962 bytes). In this implementation of DWARF, this field is used for
7963 information purposes only. Since GCC generates assembly language,
7964 we have no a priori knowledge of how many instruction bytes are
7965 generated for each source line, and therefore can use only the
7966 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7967 commands. Accordingly, we fix this as `1', which is "correct
7968 enough" for all architectures, and don't let the target override. */
7969 dw2_asm_output_data (1, 1,
7970 "Minimum Instruction Length");
7972 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7973 "Default is_stmt_start flag");
7974 dw2_asm_output_data (1, DWARF_LINE_BASE,
7975 "Line Base Value (Special Opcodes)");
7976 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7977 "Line Range Value (Special Opcodes)");
7978 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7979 "Special Opcode Base");
7981 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7983 switch (opc)
7985 case DW_LNS_advance_pc:
7986 case DW_LNS_advance_line:
7987 case DW_LNS_set_file:
7988 case DW_LNS_set_column:
7989 case DW_LNS_fixed_advance_pc:
7990 n_op_args = 1;
7991 break;
7992 default:
7993 n_op_args = 0;
7994 break;
7997 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7998 opc, n_op_args);
8001 /* Write out the information about the files we use. */
8002 output_file_names ();
8003 ASM_OUTPUT_LABEL (asm_out_file, p2);
8005 /* We used to set the address register to the first location in the text
8006 section here, but that didn't accomplish anything since we already
8007 have a line note for the opening brace of the first function. */
8009 /* Generate the line number to PC correspondence table, encoded as
8010 a series of state machine operations. */
8011 current_file = 1;
8012 current_line = 1;
8014 if (cfun && in_cold_section_p)
8015 strcpy (prev_line_label, cfun->cold_section_label);
8016 else
8017 strcpy (prev_line_label, text_section_label);
8018 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
8020 dw_line_info_ref line_info = &line_info_table[lt_index];
8022 #if 0
8023 /* Disable this optimization for now; GDB wants to see two line notes
8024 at the beginning of a function so it can find the end of the
8025 prologue. */
8027 /* Don't emit anything for redundant notes. Just updating the
8028 address doesn't accomplish anything, because we already assume
8029 that anything after the last address is this line. */
8030 if (line_info->dw_line_num == current_line
8031 && line_info->dw_file_num == current_file)
8032 continue;
8033 #endif
8035 /* Emit debug info for the address of the current line.
8037 Unfortunately, we have little choice here currently, and must always
8038 use the most general form. GCC does not know the address delta
8039 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
8040 attributes which will give an upper bound on the address range. We
8041 could perhaps use length attributes to determine when it is safe to
8042 use DW_LNS_fixed_advance_pc. */
8044 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
8045 if (0)
8047 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
8048 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8049 "DW_LNS_fixed_advance_pc");
8050 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8052 else
8054 /* This can handle any delta. This takes
8055 4+DWARF2_ADDR_SIZE bytes. */
8056 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8057 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8058 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8059 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8062 strcpy (prev_line_label, line_label);
8064 /* Emit debug info for the source file of the current line, if
8065 different from the previous line. */
8066 if (line_info->dw_file_num != current_file)
8068 current_file = line_info->dw_file_num;
8069 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8070 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8073 /* Emit debug info for the current line number, choosing the encoding
8074 that uses the least amount of space. */
8075 if (line_info->dw_line_num != current_line)
8077 line_offset = line_info->dw_line_num - current_line;
8078 line_delta = line_offset - DWARF_LINE_BASE;
8079 current_line = line_info->dw_line_num;
8080 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8081 /* This can handle deltas from -10 to 234, using the current
8082 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8083 takes 1 byte. */
8084 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8085 "line %lu", current_line);
8086 else
8088 /* This can handle any delta. This takes at least 4 bytes,
8089 depending on the value being encoded. */
8090 dw2_asm_output_data (1, DW_LNS_advance_line,
8091 "advance to line %lu", current_line);
8092 dw2_asm_output_data_sleb128 (line_offset, NULL);
8093 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8096 else
8097 /* We still need to start a new row, so output a copy insn. */
8098 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8101 /* Emit debug info for the address of the end of the function. */
8102 if (0)
8104 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8105 "DW_LNS_fixed_advance_pc");
8106 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8108 else
8110 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8111 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8112 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8113 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8116 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8117 dw2_asm_output_data_uleb128 (1, NULL);
8118 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8120 function = 0;
8121 current_file = 1;
8122 current_line = 1;
8123 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8125 dw_separate_line_info_ref line_info
8126 = &separate_line_info_table[lt_index];
8128 #if 0
8129 /* Don't emit anything for redundant notes. */
8130 if (line_info->dw_line_num == current_line
8131 && line_info->dw_file_num == current_file
8132 && line_info->function == function)
8133 goto cont;
8134 #endif
8136 /* Emit debug info for the address of the current line. If this is
8137 a new function, or the first line of a function, then we need
8138 to handle it differently. */
8139 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8140 lt_index);
8141 if (function != line_info->function)
8143 function = line_info->function;
8145 /* Set the address register to the first line in the function. */
8146 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8147 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8148 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8149 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8151 else
8153 /* ??? See the DW_LNS_advance_pc comment above. */
8154 if (0)
8156 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8157 "DW_LNS_fixed_advance_pc");
8158 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8160 else
8162 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8163 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8164 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8165 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8169 strcpy (prev_line_label, line_label);
8171 /* Emit debug info for the source file of the current line, if
8172 different from the previous line. */
8173 if (line_info->dw_file_num != current_file)
8175 current_file = line_info->dw_file_num;
8176 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8177 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8180 /* Emit debug info for the current line number, choosing the encoding
8181 that uses the least amount of space. */
8182 if (line_info->dw_line_num != current_line)
8184 line_offset = line_info->dw_line_num - current_line;
8185 line_delta = line_offset - DWARF_LINE_BASE;
8186 current_line = line_info->dw_line_num;
8187 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8188 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8189 "line %lu", current_line);
8190 else
8192 dw2_asm_output_data (1, DW_LNS_advance_line,
8193 "advance to line %lu", current_line);
8194 dw2_asm_output_data_sleb128 (line_offset, NULL);
8195 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8198 else
8199 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8201 #if 0
8202 cont:
8203 #endif
8205 lt_index++;
8207 /* If we're done with a function, end its sequence. */
8208 if (lt_index == separate_line_info_table_in_use
8209 || separate_line_info_table[lt_index].function != function)
8211 current_file = 1;
8212 current_line = 1;
8214 /* Emit debug info for the address of the end of the function. */
8215 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8216 if (0)
8218 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8219 "DW_LNS_fixed_advance_pc");
8220 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8222 else
8224 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8225 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8226 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8227 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8230 /* Output the marker for the end of this sequence. */
8231 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8232 dw2_asm_output_data_uleb128 (1, NULL);
8233 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8237 /* Output the marker for the end of the line number info. */
8238 ASM_OUTPUT_LABEL (asm_out_file, l2);
8241 /* Given a pointer to a tree node for some base type, return a pointer to
8242 a DIE that describes the given type.
8244 This routine must only be called for GCC type nodes that correspond to
8245 Dwarf base (fundamental) types. */
8247 static dw_die_ref
8248 base_type_die (tree type)
8250 dw_die_ref base_type_result;
8251 enum dwarf_type encoding;
8253 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8254 return 0;
8256 switch (TREE_CODE (type))
8258 case INTEGER_TYPE:
8259 if (TYPE_STRING_FLAG (type))
8261 if (TYPE_UNSIGNED (type))
8262 encoding = DW_ATE_unsigned_char;
8263 else
8264 encoding = DW_ATE_signed_char;
8266 else if (TYPE_UNSIGNED (type))
8267 encoding = DW_ATE_unsigned;
8268 else
8269 encoding = DW_ATE_signed;
8270 break;
8272 case REAL_TYPE:
8273 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8274 encoding = DW_ATE_decimal_float;
8275 else
8276 encoding = DW_ATE_float;
8277 break;
8279 /* Dwarf2 doesn't know anything about complex ints, so use
8280 a user defined type for it. */
8281 case COMPLEX_TYPE:
8282 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8283 encoding = DW_ATE_complex_float;
8284 else
8285 encoding = DW_ATE_lo_user;
8286 break;
8288 case BOOLEAN_TYPE:
8289 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8290 encoding = DW_ATE_boolean;
8291 break;
8293 default:
8294 /* No other TREE_CODEs are Dwarf fundamental types. */
8295 gcc_unreachable ();
8298 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8300 /* This probably indicates a bug. */
8301 if (! TYPE_NAME (type))
8302 add_name_attribute (base_type_result, "__unknown__");
8304 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8305 int_size_in_bytes (type));
8306 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8308 return base_type_result;
8311 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8312 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8314 static inline int
8315 is_base_type (tree type)
8317 switch (TREE_CODE (type))
8319 case ERROR_MARK:
8320 case VOID_TYPE:
8321 case INTEGER_TYPE:
8322 case REAL_TYPE:
8323 case COMPLEX_TYPE:
8324 case BOOLEAN_TYPE:
8325 return 1;
8327 case ARRAY_TYPE:
8328 case RECORD_TYPE:
8329 case UNION_TYPE:
8330 case QUAL_UNION_TYPE:
8331 case ENUMERAL_TYPE:
8332 case FUNCTION_TYPE:
8333 case METHOD_TYPE:
8334 case POINTER_TYPE:
8335 case REFERENCE_TYPE:
8336 case OFFSET_TYPE:
8337 case LANG_TYPE:
8338 case VECTOR_TYPE:
8339 return 0;
8341 default:
8342 gcc_unreachable ();
8345 return 0;
8348 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8349 node, return the size in bits for the type if it is a constant, or else
8350 return the alignment for the type if the type's size is not constant, or
8351 else return BITS_PER_WORD if the type actually turns out to be an
8352 ERROR_MARK node. */
8354 static inline unsigned HOST_WIDE_INT
8355 simple_type_size_in_bits (tree type)
8357 if (TREE_CODE (type) == ERROR_MARK)
8358 return BITS_PER_WORD;
8359 else if (TYPE_SIZE (type) == NULL_TREE)
8360 return 0;
8361 else if (host_integerp (TYPE_SIZE (type), 1))
8362 return tree_low_cst (TYPE_SIZE (type), 1);
8363 else
8364 return TYPE_ALIGN (type);
8367 /* Return true if the debug information for the given type should be
8368 emitted as a subrange type. */
8370 static inline bool
8371 is_subrange_type (tree type)
8373 tree subtype = TREE_TYPE (type);
8375 /* Subrange types are identified by the fact that they are integer
8376 types, and that they have a subtype which is either an integer type
8377 or an enumeral type. */
8379 if (TREE_CODE (type) != INTEGER_TYPE
8380 || subtype == NULL_TREE)
8381 return false;
8383 if (TREE_CODE (subtype) != INTEGER_TYPE
8384 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8385 return false;
8387 if (TREE_CODE (type) == TREE_CODE (subtype)
8388 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8389 && TYPE_MIN_VALUE (type) != NULL
8390 && TYPE_MIN_VALUE (subtype) != NULL
8391 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8392 && TYPE_MAX_VALUE (type) != NULL
8393 && TYPE_MAX_VALUE (subtype) != NULL
8394 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8396 /* The type and its subtype have the same representation. If in
8397 addition the two types also have the same name, then the given
8398 type is not a subrange type, but rather a plain base type. */
8399 /* FIXME: brobecker/2004-03-22:
8400 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8401 therefore be sufficient to check the TYPE_SIZE node pointers
8402 rather than checking the actual size. Unfortunately, we have
8403 found some cases, such as in the Ada "integer" type, where
8404 this is not the case. Until this problem is solved, we need to
8405 keep checking the actual size. */
8406 tree type_name = TYPE_NAME (type);
8407 tree subtype_name = TYPE_NAME (subtype);
8409 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8410 type_name = DECL_NAME (type_name);
8412 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8413 subtype_name = DECL_NAME (subtype_name);
8415 if (type_name == subtype_name)
8416 return false;
8419 return true;
8422 /* Given a pointer to a tree node for a subrange type, return a pointer
8423 to a DIE that describes the given type. */
8425 static dw_die_ref
8426 subrange_type_die (tree type, dw_die_ref context_die)
8428 dw_die_ref subrange_die;
8429 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8431 if (context_die == NULL)
8432 context_die = comp_unit_die;
8434 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8436 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8438 /* The size of the subrange type and its base type do not match,
8439 so we need to generate a size attribute for the subrange type. */
8440 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8443 if (TYPE_MIN_VALUE (type) != NULL)
8444 add_bound_info (subrange_die, DW_AT_lower_bound,
8445 TYPE_MIN_VALUE (type));
8446 if (TYPE_MAX_VALUE (type) != NULL)
8447 add_bound_info (subrange_die, DW_AT_upper_bound,
8448 TYPE_MAX_VALUE (type));
8450 return subrange_die;
8453 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8454 entry that chains various modifiers in front of the given type. */
8456 static dw_die_ref
8457 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8458 dw_die_ref context_die)
8460 enum tree_code code = TREE_CODE (type);
8461 dw_die_ref mod_type_die;
8462 dw_die_ref sub_die = NULL;
8463 tree item_type = NULL;
8464 tree qualified_type;
8465 tree name;
8467 if (code == ERROR_MARK)
8468 return NULL;
8470 /* See if we already have the appropriately qualified variant of
8471 this type. */
8472 qualified_type
8473 = get_qualified_type (type,
8474 ((is_const_type ? TYPE_QUAL_CONST : 0)
8475 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8477 /* If we do, then we can just use its DIE, if it exists. */
8478 if (qualified_type)
8480 mod_type_die = lookup_type_die (qualified_type);
8481 if (mod_type_die)
8482 return mod_type_die;
8485 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8487 /* Handle C typedef types. */
8488 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8490 tree dtype = TREE_TYPE (name);
8492 if (qualified_type == dtype)
8494 /* For a named type, use the typedef. */
8495 gen_type_die (qualified_type, context_die);
8496 return lookup_type_die (qualified_type);
8498 else if (is_const_type < TYPE_READONLY (dtype)
8499 || is_volatile_type < TYPE_VOLATILE (dtype)
8500 || (is_const_type <= TYPE_READONLY (dtype)
8501 && is_volatile_type <= TYPE_VOLATILE (dtype)
8502 && DECL_ORIGINAL_TYPE (name) != type))
8503 /* cv-unqualified version of named type. Just use the unnamed
8504 type to which it refers. */
8505 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8506 is_const_type, is_volatile_type,
8507 context_die);
8508 /* Else cv-qualified version of named type; fall through. */
8511 if (is_const_type)
8513 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8514 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8516 else if (is_volatile_type)
8518 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8519 sub_die = modified_type_die (type, 0, 0, context_die);
8521 else if (code == POINTER_TYPE)
8523 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8524 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8525 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8526 item_type = TREE_TYPE (type);
8528 else if (code == REFERENCE_TYPE)
8530 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8531 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8532 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8533 item_type = TREE_TYPE (type);
8535 else if (is_subrange_type (type))
8537 mod_type_die = subrange_type_die (type, context_die);
8538 item_type = TREE_TYPE (type);
8540 else if (is_base_type (type))
8541 mod_type_die = base_type_die (type);
8542 else
8544 gen_type_die (type, context_die);
8546 /* We have to get the type_main_variant here (and pass that to the
8547 `lookup_type_die' routine) because the ..._TYPE node we have
8548 might simply be a *copy* of some original type node (where the
8549 copy was created to help us keep track of typedef names) and
8550 that copy might have a different TYPE_UID from the original
8551 ..._TYPE node. */
8552 if (TREE_CODE (type) != VECTOR_TYPE)
8553 return lookup_type_die (type_main_variant (type));
8554 else
8555 /* Vectors have the debugging information in the type,
8556 not the main variant. */
8557 return lookup_type_die (type);
8560 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8561 don't output a DW_TAG_typedef, since there isn't one in the
8562 user's program; just attach a DW_AT_name to the type. */
8563 if (name
8564 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8566 if (TREE_CODE (name) == TYPE_DECL)
8567 /* Could just call add_name_and_src_coords_attributes here,
8568 but since this is a builtin type it doesn't have any
8569 useful source coordinates anyway. */
8570 name = DECL_NAME (name);
8571 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8574 if (qualified_type)
8575 equate_type_number_to_die (qualified_type, mod_type_die);
8577 if (item_type)
8578 /* We must do this after the equate_type_number_to_die call, in case
8579 this is a recursive type. This ensures that the modified_type_die
8580 recursion will terminate even if the type is recursive. Recursive
8581 types are possible in Ada. */
8582 sub_die = modified_type_die (item_type,
8583 TYPE_READONLY (item_type),
8584 TYPE_VOLATILE (item_type),
8585 context_die);
8587 if (sub_die != NULL)
8588 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8590 return mod_type_die;
8593 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8594 an enumerated type. */
8596 static inline int
8597 type_is_enum (tree type)
8599 return TREE_CODE (type) == ENUMERAL_TYPE;
8602 /* Return the DBX register number described by a given RTL node. */
8604 static unsigned int
8605 dbx_reg_number (rtx rtl)
8607 unsigned regno = REGNO (rtl);
8609 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8611 #ifdef LEAF_REG_REMAP
8612 if (current_function_uses_only_leaf_regs)
8614 int leaf_reg = LEAF_REG_REMAP (regno);
8615 if (leaf_reg != -1)
8616 regno = (unsigned) leaf_reg;
8618 #endif
8620 return DBX_REGISTER_NUMBER (regno);
8623 /* Optionally add a DW_OP_piece term to a location description expression.
8624 DW_OP_piece is only added if the location description expression already
8625 doesn't end with DW_OP_piece. */
8627 static void
8628 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8630 dw_loc_descr_ref loc;
8632 if (*list_head != NULL)
8634 /* Find the end of the chain. */
8635 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8638 if (loc->dw_loc_opc != DW_OP_piece)
8639 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8643 /* Return a location descriptor that designates a machine register or
8644 zero if there is none. */
8646 static dw_loc_descr_ref
8647 reg_loc_descriptor (rtx rtl)
8649 rtx regs;
8651 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8652 return 0;
8654 regs = targetm.dwarf_register_span (rtl);
8656 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8657 return multiple_reg_loc_descriptor (rtl, regs);
8658 else
8659 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8662 /* Return a location descriptor that designates a machine register for
8663 a given hard register number. */
8665 static dw_loc_descr_ref
8666 one_reg_loc_descriptor (unsigned int regno)
8668 if (regno <= 31)
8669 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8670 else
8671 return new_loc_descr (DW_OP_regx, regno, 0);
8674 /* Given an RTL of a register, return a location descriptor that
8675 designates a value that spans more than one register. */
8677 static dw_loc_descr_ref
8678 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8680 int nregs, size, i;
8681 unsigned reg;
8682 dw_loc_descr_ref loc_result = NULL;
8684 reg = REGNO (rtl);
8685 #ifdef LEAF_REG_REMAP
8686 if (current_function_uses_only_leaf_regs)
8688 int leaf_reg = LEAF_REG_REMAP (reg);
8689 if (leaf_reg != -1)
8690 reg = (unsigned) leaf_reg;
8692 #endif
8693 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8694 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8696 /* Simple, contiguous registers. */
8697 if (regs == NULL_RTX)
8699 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8701 loc_result = NULL;
8702 while (nregs--)
8704 dw_loc_descr_ref t;
8706 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8707 add_loc_descr (&loc_result, t);
8708 add_loc_descr_op_piece (&loc_result, size);
8709 ++reg;
8711 return loc_result;
8714 /* Now onto stupid register sets in non contiguous locations. */
8716 gcc_assert (GET_CODE (regs) == PARALLEL);
8718 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8719 loc_result = NULL;
8721 for (i = 0; i < XVECLEN (regs, 0); ++i)
8723 dw_loc_descr_ref t;
8725 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8726 add_loc_descr (&loc_result, t);
8727 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8728 add_loc_descr_op_piece (&loc_result, size);
8730 return loc_result;
8733 /* Return a location descriptor that designates a constant. */
8735 static dw_loc_descr_ref
8736 int_loc_descriptor (HOST_WIDE_INT i)
8738 enum dwarf_location_atom op;
8740 /* Pick the smallest representation of a constant, rather than just
8741 defaulting to the LEB encoding. */
8742 if (i >= 0)
8744 if (i <= 31)
8745 op = DW_OP_lit0 + i;
8746 else if (i <= 0xff)
8747 op = DW_OP_const1u;
8748 else if (i <= 0xffff)
8749 op = DW_OP_const2u;
8750 else if (HOST_BITS_PER_WIDE_INT == 32
8751 || i <= 0xffffffff)
8752 op = DW_OP_const4u;
8753 else
8754 op = DW_OP_constu;
8756 else
8758 if (i >= -0x80)
8759 op = DW_OP_const1s;
8760 else if (i >= -0x8000)
8761 op = DW_OP_const2s;
8762 else if (HOST_BITS_PER_WIDE_INT == 32
8763 || i >= -0x80000000)
8764 op = DW_OP_const4s;
8765 else
8766 op = DW_OP_consts;
8769 return new_loc_descr (op, i, 0);
8772 /* Return a location descriptor that designates a base+offset location. */
8774 static dw_loc_descr_ref
8775 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8777 unsigned int regno;
8779 /* We only use "frame base" when we're sure we're talking about the
8780 post-prologue local stack frame. We do this by *not* running
8781 register elimination until this point, and recognizing the special
8782 argument pointer and soft frame pointer rtx's. */
8783 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8785 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8787 if (elim != reg)
8789 if (GET_CODE (elim) == PLUS)
8791 offset += INTVAL (XEXP (elim, 1));
8792 elim = XEXP (elim, 0);
8794 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8795 : stack_pointer_rtx));
8796 offset += frame_pointer_fb_offset;
8798 return new_loc_descr (DW_OP_fbreg, offset, 0);
8802 regno = dbx_reg_number (reg);
8803 if (regno <= 31)
8804 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8805 else
8806 return new_loc_descr (DW_OP_bregx, regno, offset);
8809 /* Return true if this RTL expression describes a base+offset calculation. */
8811 static inline int
8812 is_based_loc (rtx rtl)
8814 return (GET_CODE (rtl) == PLUS
8815 && ((REG_P (XEXP (rtl, 0))
8816 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8817 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8820 /* Return a descriptor that describes the concatenation of N locations
8821 used to form the address of a memory location. */
8823 static dw_loc_descr_ref
8824 concatn_mem_loc_descriptor (rtx concatn, enum machine_mode mode)
8826 unsigned int i;
8827 dw_loc_descr_ref cc_loc_result = NULL;
8828 unsigned int n = XVECLEN (concatn, 0);
8830 for (i = 0; i < n; ++i)
8832 dw_loc_descr_ref ref;
8833 rtx x = XVECEXP (concatn, 0, i);
8835 ref = mem_loc_descriptor (x, mode);
8836 if (ref == NULL)
8837 return NULL;
8839 add_loc_descr (&cc_loc_result, ref);
8840 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
8843 return cc_loc_result;
8846 /* The following routine converts the RTL for a variable or parameter
8847 (resident in memory) into an equivalent Dwarf representation of a
8848 mechanism for getting the address of that same variable onto the top of a
8849 hypothetical "address evaluation" stack.
8851 When creating memory location descriptors, we are effectively transforming
8852 the RTL for a memory-resident object into its Dwarf postfix expression
8853 equivalent. This routine recursively descends an RTL tree, turning
8854 it into Dwarf postfix code as it goes.
8856 MODE is the mode of the memory reference, needed to handle some
8857 autoincrement addressing modes.
8859 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8860 location list for RTL.
8862 Return 0 if we can't represent the location. */
8864 static dw_loc_descr_ref
8865 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8867 dw_loc_descr_ref mem_loc_result = NULL;
8868 enum dwarf_location_atom op;
8870 /* Note that for a dynamically sized array, the location we will generate a
8871 description of here will be the lowest numbered location which is
8872 actually within the array. That's *not* necessarily the same as the
8873 zeroth element of the array. */
8875 rtl = targetm.delegitimize_address (rtl);
8877 switch (GET_CODE (rtl))
8879 case POST_INC:
8880 case POST_DEC:
8881 case POST_MODIFY:
8882 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8883 just fall into the SUBREG code. */
8885 /* ... fall through ... */
8887 case SUBREG:
8888 /* The case of a subreg may arise when we have a local (register)
8889 variable or a formal (register) parameter which doesn't quite fill
8890 up an entire register. For now, just assume that it is
8891 legitimate to make the Dwarf info refer to the whole register which
8892 contains the given subreg. */
8893 rtl = XEXP (rtl, 0);
8895 /* ... fall through ... */
8897 case REG:
8898 /* Whenever a register number forms a part of the description of the
8899 method for calculating the (dynamic) address of a memory resident
8900 object, DWARF rules require the register number be referred to as
8901 a "base register". This distinction is not based in any way upon
8902 what category of register the hardware believes the given register
8903 belongs to. This is strictly DWARF terminology we're dealing with
8904 here. Note that in cases where the location of a memory-resident
8905 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8906 OP_CONST (0)) the actual DWARF location descriptor that we generate
8907 may just be OP_BASEREG (basereg). This may look deceptively like
8908 the object in question was allocated to a register (rather than in
8909 memory) so DWARF consumers need to be aware of the subtle
8910 distinction between OP_REG and OP_BASEREG. */
8911 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8912 mem_loc_result = based_loc_descr (rtl, 0);
8913 break;
8915 case MEM:
8916 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8917 if (mem_loc_result != 0)
8918 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8919 break;
8921 case LO_SUM:
8922 rtl = XEXP (rtl, 1);
8924 /* ... fall through ... */
8926 case LABEL_REF:
8927 /* Some ports can transform a symbol ref into a label ref, because
8928 the symbol ref is too far away and has to be dumped into a constant
8929 pool. */
8930 case CONST:
8931 case SYMBOL_REF:
8932 /* Alternatively, the symbol in the constant pool might be referenced
8933 by a different symbol. */
8934 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8936 bool marked;
8937 rtx tmp = get_pool_constant_mark (rtl, &marked);
8939 if (GET_CODE (tmp) == SYMBOL_REF)
8941 rtl = tmp;
8942 if (CONSTANT_POOL_ADDRESS_P (tmp))
8943 get_pool_constant_mark (tmp, &marked);
8944 else
8945 marked = true;
8948 /* If all references to this pool constant were optimized away,
8949 it was not output and thus we can't represent it.
8950 FIXME: might try to use DW_OP_const_value here, though
8951 DW_OP_piece complicates it. */
8952 if (!marked)
8953 return 0;
8956 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8957 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8958 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8959 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8960 break;
8962 case PRE_MODIFY:
8963 /* Extract the PLUS expression nested inside and fall into
8964 PLUS code below. */
8965 rtl = XEXP (rtl, 1);
8966 goto plus;
8968 case PRE_INC:
8969 case PRE_DEC:
8970 /* Turn these into a PLUS expression and fall into the PLUS code
8971 below. */
8972 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8973 GEN_INT (GET_CODE (rtl) == PRE_INC
8974 ? GET_MODE_UNIT_SIZE (mode)
8975 : -GET_MODE_UNIT_SIZE (mode)));
8977 /* ... fall through ... */
8979 case PLUS:
8980 plus:
8981 if (is_based_loc (rtl))
8982 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8983 INTVAL (XEXP (rtl, 1)));
8984 else
8986 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8987 if (mem_loc_result == 0)
8988 break;
8990 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8991 && INTVAL (XEXP (rtl, 1)) >= 0)
8992 add_loc_descr (&mem_loc_result,
8993 new_loc_descr (DW_OP_plus_uconst,
8994 INTVAL (XEXP (rtl, 1)), 0));
8995 else
8997 add_loc_descr (&mem_loc_result,
8998 mem_loc_descriptor (XEXP (rtl, 1), mode));
8999 add_loc_descr (&mem_loc_result,
9000 new_loc_descr (DW_OP_plus, 0, 0));
9003 break;
9005 /* If a pseudo-reg is optimized away, it is possible for it to
9006 be replaced with a MEM containing a multiply or shift. */
9007 case MULT:
9008 op = DW_OP_mul;
9009 goto do_binop;
9011 case ASHIFT:
9012 op = DW_OP_shl;
9013 goto do_binop;
9015 case ASHIFTRT:
9016 op = DW_OP_shra;
9017 goto do_binop;
9019 case LSHIFTRT:
9020 op = DW_OP_shr;
9021 goto do_binop;
9023 do_binop:
9025 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
9026 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
9028 if (op0 == 0 || op1 == 0)
9029 break;
9031 mem_loc_result = op0;
9032 add_loc_descr (&mem_loc_result, op1);
9033 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
9034 break;
9037 case CONST_INT:
9038 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
9039 break;
9041 case CONCATN:
9042 mem_loc_result = concatn_mem_loc_descriptor (rtl, mode);
9043 break;
9045 default:
9046 gcc_unreachable ();
9049 return mem_loc_result;
9052 /* Return a descriptor that describes the concatenation of two locations.
9053 This is typically a complex variable. */
9055 static dw_loc_descr_ref
9056 concat_loc_descriptor (rtx x0, rtx x1)
9058 dw_loc_descr_ref cc_loc_result = NULL;
9059 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
9060 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
9062 if (x0_ref == 0 || x1_ref == 0)
9063 return 0;
9065 cc_loc_result = x0_ref;
9066 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9068 add_loc_descr (&cc_loc_result, x1_ref);
9069 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9071 return cc_loc_result;
9074 /* Return a descriptor that describes the concatenation of N
9075 locations. */
9077 static dw_loc_descr_ref
9078 concatn_loc_descriptor (rtx concatn)
9080 unsigned int i;
9081 dw_loc_descr_ref cc_loc_result = NULL;
9082 unsigned int n = XVECLEN (concatn, 0);
9084 for (i = 0; i < n; ++i)
9086 dw_loc_descr_ref ref;
9087 rtx x = XVECEXP (concatn, 0, i);
9089 ref = loc_descriptor (x);
9090 if (ref == NULL)
9091 return NULL;
9093 add_loc_descr (&cc_loc_result, ref);
9094 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
9097 return cc_loc_result;
9100 /* Output a proper Dwarf location descriptor for a variable or parameter
9101 which is either allocated in a register or in a memory location. For a
9102 register, we just generate an OP_REG and the register number. For a
9103 memory location we provide a Dwarf postfix expression describing how to
9104 generate the (dynamic) address of the object onto the address stack.
9106 If we don't know how to describe it, return 0. */
9108 static dw_loc_descr_ref
9109 loc_descriptor (rtx rtl)
9111 dw_loc_descr_ref loc_result = NULL;
9113 switch (GET_CODE (rtl))
9115 case SUBREG:
9116 /* The case of a subreg may arise when we have a local (register)
9117 variable or a formal (register) parameter which doesn't quite fill
9118 up an entire register. For now, just assume that it is
9119 legitimate to make the Dwarf info refer to the whole register which
9120 contains the given subreg. */
9121 rtl = SUBREG_REG (rtl);
9123 /* ... fall through ... */
9125 case REG:
9126 loc_result = reg_loc_descriptor (rtl);
9127 break;
9129 case MEM:
9130 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9131 break;
9133 case CONCAT:
9134 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9135 break;
9137 case CONCATN:
9138 loc_result = concatn_loc_descriptor (rtl);
9139 break;
9141 case VAR_LOCATION:
9142 /* Single part. */
9143 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9145 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9146 break;
9149 rtl = XEXP (rtl, 1);
9150 /* FALLTHRU */
9152 case PARALLEL:
9154 rtvec par_elems = XVEC (rtl, 0);
9155 int num_elem = GET_NUM_ELEM (par_elems);
9156 enum machine_mode mode;
9157 int i;
9159 /* Create the first one, so we have something to add to. */
9160 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9161 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9162 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9163 for (i = 1; i < num_elem; i++)
9165 dw_loc_descr_ref temp;
9167 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9168 add_loc_descr (&loc_result, temp);
9169 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9170 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9173 break;
9175 default:
9176 gcc_unreachable ();
9179 return loc_result;
9182 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9183 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9184 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9185 top-level invocation, and we require the address of LOC; is 0 if we require
9186 the value of LOC. */
9188 static dw_loc_descr_ref
9189 loc_descriptor_from_tree_1 (tree loc, int want_address)
9191 dw_loc_descr_ref ret, ret1;
9192 int have_address = 0;
9193 enum dwarf_location_atom op;
9195 /* ??? Most of the time we do not take proper care for sign/zero
9196 extending the values properly. Hopefully this won't be a real
9197 problem... */
9199 switch (TREE_CODE (loc))
9201 case ERROR_MARK:
9202 return 0;
9204 case PLACEHOLDER_EXPR:
9205 /* This case involves extracting fields from an object to determine the
9206 position of other fields. We don't try to encode this here. The
9207 only user of this is Ada, which encodes the needed information using
9208 the names of types. */
9209 return 0;
9211 case CALL_EXPR:
9212 return 0;
9214 case PREINCREMENT_EXPR:
9215 case PREDECREMENT_EXPR:
9216 case POSTINCREMENT_EXPR:
9217 case POSTDECREMENT_EXPR:
9218 /* There are no opcodes for these operations. */
9219 return 0;
9221 case ADDR_EXPR:
9222 /* If we already want an address, there's nothing we can do. */
9223 if (want_address)
9224 return 0;
9226 /* Otherwise, process the argument and look for the address. */
9227 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9229 case VAR_DECL:
9230 if (DECL_THREAD_LOCAL_P (loc))
9232 rtx rtl;
9234 /* If this is not defined, we have no way to emit the data. */
9235 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
9236 return 0;
9238 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9239 look up addresses of objects in the current module. */
9240 if (DECL_EXTERNAL (loc))
9241 return 0;
9243 rtl = rtl_for_decl_location (loc);
9244 if (rtl == NULL_RTX)
9245 return 0;
9247 if (!MEM_P (rtl))
9248 return 0;
9249 rtl = XEXP (rtl, 0);
9250 if (! CONSTANT_P (rtl))
9251 return 0;
9253 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9254 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9255 ret->dw_loc_oprnd1.v.val_addr = rtl;
9257 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9258 add_loc_descr (&ret, ret1);
9260 have_address = 1;
9261 break;
9263 /* FALLTHRU */
9265 case PARM_DECL:
9266 if (DECL_HAS_VALUE_EXPR_P (loc))
9267 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9268 want_address);
9269 /* FALLTHRU */
9271 case RESULT_DECL:
9272 case FUNCTION_DECL:
9274 rtx rtl = rtl_for_decl_location (loc);
9276 if (rtl == NULL_RTX)
9277 return 0;
9278 else if (GET_CODE (rtl) == CONST_INT)
9280 HOST_WIDE_INT val = INTVAL (rtl);
9281 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9282 val &= GET_MODE_MASK (DECL_MODE (loc));
9283 ret = int_loc_descriptor (val);
9285 else if (GET_CODE (rtl) == CONST_STRING)
9286 return 0;
9287 else if (CONSTANT_P (rtl))
9289 ret = new_loc_descr (DW_OP_addr, 0, 0);
9290 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9291 ret->dw_loc_oprnd1.v.val_addr = rtl;
9293 else
9295 enum machine_mode mode;
9297 /* Certain constructs can only be represented at top-level. */
9298 if (want_address == 2)
9299 return loc_descriptor (rtl);
9301 mode = GET_MODE (rtl);
9302 if (MEM_P (rtl))
9304 rtl = XEXP (rtl, 0);
9305 have_address = 1;
9307 ret = mem_loc_descriptor (rtl, mode);
9310 break;
9312 case INDIRECT_REF:
9313 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9314 have_address = 1;
9315 break;
9317 case COMPOUND_EXPR:
9318 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9320 case NOP_EXPR:
9321 case CONVERT_EXPR:
9322 case NON_LVALUE_EXPR:
9323 case VIEW_CONVERT_EXPR:
9324 case SAVE_EXPR:
9325 case GIMPLE_MODIFY_STMT:
9326 return loc_descriptor_from_tree_1 (GENERIC_TREE_OPERAND (loc, 0),
9327 want_address);
9329 case COMPONENT_REF:
9330 case BIT_FIELD_REF:
9331 case ARRAY_REF:
9332 case ARRAY_RANGE_REF:
9334 tree obj, offset;
9335 HOST_WIDE_INT bitsize, bitpos, bytepos;
9336 enum machine_mode mode;
9337 int volatilep;
9338 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9340 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9341 &unsignedp, &volatilep, false);
9343 if (obj == loc)
9344 return 0;
9346 ret = loc_descriptor_from_tree_1 (obj, 1);
9347 if (ret == 0
9348 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9349 return 0;
9351 if (offset != NULL_TREE)
9353 /* Variable offset. */
9354 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9355 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9358 bytepos = bitpos / BITS_PER_UNIT;
9359 if (bytepos > 0)
9360 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9361 else if (bytepos < 0)
9363 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9364 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9367 have_address = 1;
9368 break;
9371 case INTEGER_CST:
9372 if (host_integerp (loc, 0))
9373 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9374 else
9375 return 0;
9376 break;
9378 case CONSTRUCTOR:
9380 /* Get an RTL for this, if something has been emitted. */
9381 rtx rtl = lookup_constant_def (loc);
9382 enum machine_mode mode;
9384 if (!rtl || !MEM_P (rtl))
9385 return 0;
9386 mode = GET_MODE (rtl);
9387 rtl = XEXP (rtl, 0);
9388 ret = mem_loc_descriptor (rtl, mode);
9389 have_address = 1;
9390 break;
9393 case TRUTH_AND_EXPR:
9394 case TRUTH_ANDIF_EXPR:
9395 case BIT_AND_EXPR:
9396 op = DW_OP_and;
9397 goto do_binop;
9399 case TRUTH_XOR_EXPR:
9400 case BIT_XOR_EXPR:
9401 op = DW_OP_xor;
9402 goto do_binop;
9404 case TRUTH_OR_EXPR:
9405 case TRUTH_ORIF_EXPR:
9406 case BIT_IOR_EXPR:
9407 op = DW_OP_or;
9408 goto do_binop;
9410 case FLOOR_DIV_EXPR:
9411 case CEIL_DIV_EXPR:
9412 case ROUND_DIV_EXPR:
9413 case TRUNC_DIV_EXPR:
9414 op = DW_OP_div;
9415 goto do_binop;
9417 case MINUS_EXPR:
9418 op = DW_OP_minus;
9419 goto do_binop;
9421 case FLOOR_MOD_EXPR:
9422 case CEIL_MOD_EXPR:
9423 case ROUND_MOD_EXPR:
9424 case TRUNC_MOD_EXPR:
9425 op = DW_OP_mod;
9426 goto do_binop;
9428 case MULT_EXPR:
9429 op = DW_OP_mul;
9430 goto do_binop;
9432 case LSHIFT_EXPR:
9433 op = DW_OP_shl;
9434 goto do_binop;
9436 case RSHIFT_EXPR:
9437 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9438 goto do_binop;
9440 case PLUS_EXPR:
9441 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9442 && host_integerp (TREE_OPERAND (loc, 1), 0))
9444 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9445 if (ret == 0)
9446 return 0;
9448 add_loc_descr (&ret,
9449 new_loc_descr (DW_OP_plus_uconst,
9450 tree_low_cst (TREE_OPERAND (loc, 1),
9452 0));
9453 break;
9456 op = DW_OP_plus;
9457 goto do_binop;
9459 case LE_EXPR:
9460 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9461 return 0;
9463 op = DW_OP_le;
9464 goto do_binop;
9466 case GE_EXPR:
9467 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9468 return 0;
9470 op = DW_OP_ge;
9471 goto do_binop;
9473 case LT_EXPR:
9474 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9475 return 0;
9477 op = DW_OP_lt;
9478 goto do_binop;
9480 case GT_EXPR:
9481 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9482 return 0;
9484 op = DW_OP_gt;
9485 goto do_binop;
9487 case EQ_EXPR:
9488 op = DW_OP_eq;
9489 goto do_binop;
9491 case NE_EXPR:
9492 op = DW_OP_ne;
9493 goto do_binop;
9495 do_binop:
9496 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9497 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9498 if (ret == 0 || ret1 == 0)
9499 return 0;
9501 add_loc_descr (&ret, ret1);
9502 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9503 break;
9505 case TRUTH_NOT_EXPR:
9506 case BIT_NOT_EXPR:
9507 op = DW_OP_not;
9508 goto do_unop;
9510 case ABS_EXPR:
9511 op = DW_OP_abs;
9512 goto do_unop;
9514 case NEGATE_EXPR:
9515 op = DW_OP_neg;
9516 goto do_unop;
9518 do_unop:
9519 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9520 if (ret == 0)
9521 return 0;
9523 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9524 break;
9526 case MIN_EXPR:
9527 case MAX_EXPR:
9529 const enum tree_code code =
9530 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9532 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9533 build2 (code, integer_type_node,
9534 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9535 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9538 /* ... fall through ... */
9540 case COND_EXPR:
9542 dw_loc_descr_ref lhs
9543 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9544 dw_loc_descr_ref rhs
9545 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9546 dw_loc_descr_ref bra_node, jump_node, tmp;
9548 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9549 if (ret == 0 || lhs == 0 || rhs == 0)
9550 return 0;
9552 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9553 add_loc_descr (&ret, bra_node);
9555 add_loc_descr (&ret, rhs);
9556 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9557 add_loc_descr (&ret, jump_node);
9559 add_loc_descr (&ret, lhs);
9560 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9561 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9563 /* ??? Need a node to point the skip at. Use a nop. */
9564 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9565 add_loc_descr (&ret, tmp);
9566 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9567 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9569 break;
9571 case FIX_TRUNC_EXPR:
9572 return 0;
9574 default:
9575 /* Leave front-end specific codes as simply unknown. This comes
9576 up, for instance, with the C STMT_EXPR. */
9577 if ((unsigned int) TREE_CODE (loc)
9578 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9579 return 0;
9581 #ifdef ENABLE_CHECKING
9582 /* Otherwise this is a generic code; we should just lists all of
9583 these explicitly. We forgot one. */
9584 gcc_unreachable ();
9585 #else
9586 /* In a release build, we want to degrade gracefully: better to
9587 generate incomplete debugging information than to crash. */
9588 return NULL;
9589 #endif
9592 /* Show if we can't fill the request for an address. */
9593 if (want_address && !have_address)
9594 return 0;
9596 /* If we've got an address and don't want one, dereference. */
9597 if (!want_address && have_address && ret)
9599 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9601 if (size > DWARF2_ADDR_SIZE || size == -1)
9602 return 0;
9603 else if (size == DWARF2_ADDR_SIZE)
9604 op = DW_OP_deref;
9605 else
9606 op = DW_OP_deref_size;
9608 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9611 return ret;
9614 static inline dw_loc_descr_ref
9615 loc_descriptor_from_tree (tree loc)
9617 return loc_descriptor_from_tree_1 (loc, 2);
9620 /* Given a value, round it up to the lowest multiple of `boundary'
9621 which is not less than the value itself. */
9623 static inline HOST_WIDE_INT
9624 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9626 return (((value + boundary - 1) / boundary) * boundary);
9629 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9630 pointer to the declared type for the relevant field variable, or return
9631 `integer_type_node' if the given node turns out to be an
9632 ERROR_MARK node. */
9634 static inline tree
9635 field_type (tree decl)
9637 tree type;
9639 if (TREE_CODE (decl) == ERROR_MARK)
9640 return integer_type_node;
9642 type = DECL_BIT_FIELD_TYPE (decl);
9643 if (type == NULL_TREE)
9644 type = TREE_TYPE (decl);
9646 return type;
9649 /* Given a pointer to a tree node, return the alignment in bits for
9650 it, or else return BITS_PER_WORD if the node actually turns out to
9651 be an ERROR_MARK node. */
9653 static inline unsigned
9654 simple_type_align_in_bits (tree type)
9656 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9659 static inline unsigned
9660 simple_decl_align_in_bits (tree decl)
9662 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9665 /* Return the result of rounding T up to ALIGN. */
9667 static inline HOST_WIDE_INT
9668 round_up_to_align (HOST_WIDE_INT t, unsigned int align)
9670 /* We must be careful if T is negative because HOST_WIDE_INT can be
9671 either "above" or "below" unsigned int as per the C promotion
9672 rules, depending on the host, thus making the signedness of the
9673 direct multiplication and division unpredictable. */
9674 unsigned HOST_WIDE_INT u = (unsigned HOST_WIDE_INT) t;
9676 u += align - 1;
9677 u /= align;
9678 u *= align;
9680 return (HOST_WIDE_INT) u;
9683 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9684 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9685 or return 0 if we are unable to determine what that offset is, either
9686 because the argument turns out to be a pointer to an ERROR_MARK node, or
9687 because the offset is actually variable. (We can't handle the latter case
9688 just yet). */
9690 static HOST_WIDE_INT
9691 field_byte_offset (tree decl)
9693 unsigned int type_align_in_bits;
9694 unsigned int decl_align_in_bits;
9695 unsigned HOST_WIDE_INT type_size_in_bits;
9696 HOST_WIDE_INT object_offset_in_bits;
9697 tree type;
9698 tree field_size_tree;
9699 HOST_WIDE_INT bitpos_int;
9700 HOST_WIDE_INT deepest_bitpos;
9701 unsigned HOST_WIDE_INT field_size_in_bits;
9703 if (TREE_CODE (decl) == ERROR_MARK)
9704 return 0;
9706 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9708 type = field_type (decl);
9709 field_size_tree = DECL_SIZE (decl);
9711 /* The size could be unspecified if there was an error, or for
9712 a flexible array member. */
9713 if (! field_size_tree)
9714 field_size_tree = bitsize_zero_node;
9716 /* We cannot yet cope with fields whose positions are variable, so
9717 for now, when we see such things, we simply return 0. Someday, we may
9718 be able to handle such cases, but it will be damn difficult. */
9719 if (! host_integerp (bit_position (decl), 0))
9720 return 0;
9722 bitpos_int = int_bit_position (decl);
9724 /* If we don't know the size of the field, pretend it's a full word. */
9725 if (host_integerp (field_size_tree, 1))
9726 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9727 else
9728 field_size_in_bits = BITS_PER_WORD;
9730 type_size_in_bits = simple_type_size_in_bits (type);
9731 type_align_in_bits = simple_type_align_in_bits (type);
9732 decl_align_in_bits = simple_decl_align_in_bits (decl);
9734 /* The GCC front-end doesn't make any attempt to keep track of the starting
9735 bit offset (relative to the start of the containing structure type) of the
9736 hypothetical "containing object" for a bit-field. Thus, when computing
9737 the byte offset value for the start of the "containing object" of a
9738 bit-field, we must deduce this information on our own. This can be rather
9739 tricky to do in some cases. For example, handling the following structure
9740 type definition when compiling for an i386/i486 target (which only aligns
9741 long long's to 32-bit boundaries) can be very tricky:
9743 struct S { int field1; long long field2:31; };
9745 Fortunately, there is a simple rule-of-thumb which can be used in such
9746 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9747 structure shown above. It decides to do this based upon one simple rule
9748 for bit-field allocation. GCC allocates each "containing object" for each
9749 bit-field at the first (i.e. lowest addressed) legitimate alignment
9750 boundary (based upon the required minimum alignment for the declared type
9751 of the field) which it can possibly use, subject to the condition that
9752 there is still enough available space remaining in the containing object
9753 (when allocated at the selected point) to fully accommodate all of the
9754 bits of the bit-field itself.
9756 This simple rule makes it obvious why GCC allocates 8 bytes for each
9757 object of the structure type shown above. When looking for a place to
9758 allocate the "containing object" for `field2', the compiler simply tries
9759 to allocate a 64-bit "containing object" at each successive 32-bit
9760 boundary (starting at zero) until it finds a place to allocate that 64-
9761 bit field such that at least 31 contiguous (and previously unallocated)
9762 bits remain within that selected 64 bit field. (As it turns out, for the
9763 example above, the compiler finds it is OK to allocate the "containing
9764 object" 64-bit field at bit-offset zero within the structure type.)
9766 Here we attempt to work backwards from the limited set of facts we're
9767 given, and we try to deduce from those facts, where GCC must have believed
9768 that the containing object started (within the structure type). The value
9769 we deduce is then used (by the callers of this routine) to generate
9770 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9771 and, in the case of DW_AT_location, regular fields as well). */
9773 /* Figure out the bit-distance from the start of the structure to the
9774 "deepest" bit of the bit-field. */
9775 deepest_bitpos = bitpos_int + field_size_in_bits;
9777 /* This is the tricky part. Use some fancy footwork to deduce where the
9778 lowest addressed bit of the containing object must be. */
9779 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9781 /* Round up to type_align by default. This works best for bitfields. */
9782 object_offset_in_bits
9783 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
9785 if (object_offset_in_bits > bitpos_int)
9787 /* Sigh, the decl must be packed. */
9788 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9790 /* Round up to decl_align instead. */
9791 object_offset_in_bits
9792 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
9795 return object_offset_in_bits / BITS_PER_UNIT;
9798 /* The following routines define various Dwarf attributes and any data
9799 associated with them. */
9801 /* Add a location description attribute value to a DIE.
9803 This emits location attributes suitable for whole variables and
9804 whole parameters. Note that the location attributes for struct fields are
9805 generated by the routine `data_member_location_attribute' below. */
9807 static inline void
9808 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9809 dw_loc_descr_ref descr)
9811 if (descr != 0)
9812 add_AT_loc (die, attr_kind, descr);
9815 /* Attach the specialized form of location attribute used for data members of
9816 struct and union types. In the special case of a FIELD_DECL node which
9817 represents a bit-field, the "offset" part of this special location
9818 descriptor must indicate the distance in bytes from the lowest-addressed
9819 byte of the containing struct or union type to the lowest-addressed byte of
9820 the "containing object" for the bit-field. (See the `field_byte_offset'
9821 function above).
9823 For any given bit-field, the "containing object" is a hypothetical object
9824 (of some integral or enum type) within which the given bit-field lives. The
9825 type of this hypothetical "containing object" is always the same as the
9826 declared type of the individual bit-field itself (for GCC anyway... the
9827 DWARF spec doesn't actually mandate this). Note that it is the size (in
9828 bytes) of the hypothetical "containing object" which will be given in the
9829 DW_AT_byte_size attribute for this bit-field. (See the
9830 `byte_size_attribute' function below.) It is also used when calculating the
9831 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9832 function below.) */
9834 static void
9835 add_data_member_location_attribute (dw_die_ref die, tree decl)
9837 HOST_WIDE_INT offset;
9838 dw_loc_descr_ref loc_descr = 0;
9840 if (TREE_CODE (decl) == TREE_BINFO)
9842 /* We're working on the TAG_inheritance for a base class. */
9843 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9845 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9846 aren't at a fixed offset from all (sub)objects of the same
9847 type. We need to extract the appropriate offset from our
9848 vtable. The following dwarf expression means
9850 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9852 This is specific to the V3 ABI, of course. */
9854 dw_loc_descr_ref tmp;
9856 /* Make a copy of the object address. */
9857 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9858 add_loc_descr (&loc_descr, tmp);
9860 /* Extract the vtable address. */
9861 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9862 add_loc_descr (&loc_descr, tmp);
9864 /* Calculate the address of the offset. */
9865 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9866 gcc_assert (offset < 0);
9868 tmp = int_loc_descriptor (-offset);
9869 add_loc_descr (&loc_descr, tmp);
9870 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9871 add_loc_descr (&loc_descr, tmp);
9873 /* Extract the offset. */
9874 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9875 add_loc_descr (&loc_descr, tmp);
9877 /* Add it to the object address. */
9878 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9879 add_loc_descr (&loc_descr, tmp);
9881 else
9882 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9884 else
9885 offset = field_byte_offset (decl);
9887 if (! loc_descr)
9889 enum dwarf_location_atom op;
9891 /* The DWARF2 standard says that we should assume that the structure
9892 address is already on the stack, so we can specify a structure field
9893 address by using DW_OP_plus_uconst. */
9895 #ifdef MIPS_DEBUGGING_INFO
9896 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9897 operator correctly. It works only if we leave the offset on the
9898 stack. */
9899 op = DW_OP_constu;
9900 #else
9901 op = DW_OP_plus_uconst;
9902 #endif
9904 loc_descr = new_loc_descr (op, offset, 0);
9907 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9910 /* Writes integer values to dw_vec_const array. */
9912 static void
9913 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9915 while (size != 0)
9917 *dest++ = val & 0xff;
9918 val >>= 8;
9919 --size;
9923 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9925 static HOST_WIDE_INT
9926 extract_int (const unsigned char *src, unsigned int size)
9928 HOST_WIDE_INT val = 0;
9930 src += size;
9931 while (size != 0)
9933 val <<= 8;
9934 val |= *--src & 0xff;
9935 --size;
9937 return val;
9940 /* Writes floating point values to dw_vec_const array. */
9942 static void
9943 insert_float (rtx rtl, unsigned char *array)
9945 REAL_VALUE_TYPE rv;
9946 long val[4];
9947 int i;
9949 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9950 real_to_target (val, &rv, GET_MODE (rtl));
9952 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9953 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9955 insert_int (val[i], 4, array);
9956 array += 4;
9960 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9961 does not have a "location" either in memory or in a register. These
9962 things can arise in GNU C when a constant is passed as an actual parameter
9963 to an inlined function. They can also arise in C++ where declared
9964 constants do not necessarily get memory "homes". */
9966 static void
9967 add_const_value_attribute (dw_die_ref die, rtx rtl)
9969 switch (GET_CODE (rtl))
9971 case CONST_INT:
9973 HOST_WIDE_INT val = INTVAL (rtl);
9975 if (val < 0)
9976 add_AT_int (die, DW_AT_const_value, val);
9977 else
9978 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9980 break;
9982 case CONST_DOUBLE:
9983 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9984 floating-point constant. A CONST_DOUBLE is used whenever the
9985 constant requires more than one word in order to be adequately
9986 represented. We output CONST_DOUBLEs as blocks. */
9988 enum machine_mode mode = GET_MODE (rtl);
9990 if (SCALAR_FLOAT_MODE_P (mode))
9992 unsigned int length = GET_MODE_SIZE (mode);
9993 unsigned char *array = ggc_alloc (length);
9995 insert_float (rtl, array);
9996 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9998 else
10000 /* ??? We really should be using HOST_WIDE_INT throughout. */
10001 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
10003 add_AT_long_long (die, DW_AT_const_value,
10004 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
10007 break;
10009 case CONST_VECTOR:
10011 enum machine_mode mode = GET_MODE (rtl);
10012 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
10013 unsigned int length = CONST_VECTOR_NUNITS (rtl);
10014 unsigned char *array = ggc_alloc (length * elt_size);
10015 unsigned int i;
10016 unsigned char *p;
10018 switch (GET_MODE_CLASS (mode))
10020 case MODE_VECTOR_INT:
10021 for (i = 0, p = array; i < length; i++, p += elt_size)
10023 rtx elt = CONST_VECTOR_ELT (rtl, i);
10024 HOST_WIDE_INT lo, hi;
10026 switch (GET_CODE (elt))
10028 case CONST_INT:
10029 lo = INTVAL (elt);
10030 hi = -(lo < 0);
10031 break;
10033 case CONST_DOUBLE:
10034 lo = CONST_DOUBLE_LOW (elt);
10035 hi = CONST_DOUBLE_HIGH (elt);
10036 break;
10038 default:
10039 gcc_unreachable ();
10042 if (elt_size <= sizeof (HOST_WIDE_INT))
10043 insert_int (lo, elt_size, p);
10044 else
10046 unsigned char *p0 = p;
10047 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
10049 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
10050 if (WORDS_BIG_ENDIAN)
10052 p0 = p1;
10053 p1 = p;
10055 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
10056 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
10059 break;
10061 case MODE_VECTOR_FLOAT:
10062 for (i = 0, p = array; i < length; i++, p += elt_size)
10064 rtx elt = CONST_VECTOR_ELT (rtl, i);
10065 insert_float (elt, p);
10067 break;
10069 default:
10070 gcc_unreachable ();
10073 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
10075 break;
10077 case CONST_STRING:
10078 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
10079 break;
10081 case SYMBOL_REF:
10082 case LABEL_REF:
10083 case CONST:
10084 add_AT_addr (die, DW_AT_const_value, rtl);
10085 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
10086 break;
10088 case PLUS:
10089 /* In cases where an inlined instance of an inline function is passed
10090 the address of an `auto' variable (which is local to the caller) we
10091 can get a situation where the DECL_RTL of the artificial local
10092 variable (for the inlining) which acts as a stand-in for the
10093 corresponding formal parameter (of the inline function) will look
10094 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
10095 exactly a compile-time constant expression, but it isn't the address
10096 of the (artificial) local variable either. Rather, it represents the
10097 *value* which the artificial local variable always has during its
10098 lifetime. We currently have no way to represent such quasi-constant
10099 values in Dwarf, so for now we just punt and generate nothing. */
10100 break;
10102 default:
10103 /* No other kinds of rtx should be possible here. */
10104 gcc_unreachable ();
10109 /* Determine whether the evaluation of EXPR references any variables
10110 or functions which aren't otherwise used (and therefore may not be
10111 output). */
10112 static tree
10113 reference_to_unused (tree * tp, int * walk_subtrees,
10114 void * data ATTRIBUTE_UNUSED)
10116 if (! EXPR_P (*tp) && ! GIMPLE_STMT_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10117 *walk_subtrees = 0;
10119 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10120 && ! TREE_ASM_WRITTEN (*tp))
10121 return *tp;
10122 else if (DECL_P (*tp) && TREE_CODE (*tp) != FUNCTION_DECL)
10124 struct varpool_node *node = varpool_node (*tp);
10125 if (!node->needed)
10126 return *tp;
10129 return NULL_TREE;
10132 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10133 for use in a later add_const_value_attribute call. */
10135 static rtx
10136 rtl_for_decl_init (tree init, tree type)
10138 rtx rtl = NULL_RTX;
10140 /* If a variable is initialized with a string constant without embedded
10141 zeros, build CONST_STRING. */
10142 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10144 tree enttype = TREE_TYPE (type);
10145 tree domain = TYPE_DOMAIN (type);
10146 enum machine_mode mode = TYPE_MODE (enttype);
10148 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10149 && domain
10150 && integer_zerop (TYPE_MIN_VALUE (domain))
10151 && compare_tree_int (TYPE_MAX_VALUE (domain),
10152 TREE_STRING_LENGTH (init) - 1) == 0
10153 && ((size_t) TREE_STRING_LENGTH (init)
10154 == strlen (TREE_STRING_POINTER (init)) + 1))
10155 rtl = gen_rtx_CONST_STRING (VOIDmode,
10156 ggc_strdup (TREE_STRING_POINTER (init)));
10158 /* Other aggregates, and complex values, could be represented using
10159 CONCAT: FIXME! */
10160 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10162 /* Vectors only work if their mode is supported by the target.
10163 FIXME: generic vectors ought to work too. */
10164 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10166 /* If the initializer is something that we know will expand into an
10167 immediate RTL constant, expand it now. We must be careful not to
10168 reference variables which won't be output. */
10169 else if (initializer_constant_valid_p (init, type)
10170 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10172 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10174 /* If expand_expr returns a MEM, it wasn't immediate. */
10175 gcc_assert (!rtl || !MEM_P (rtl));
10178 return rtl;
10181 /* Generate RTL for the variable DECL to represent its location. */
10183 static rtx
10184 rtl_for_decl_location (tree decl)
10186 rtx rtl;
10188 /* Here we have to decide where we are going to say the parameter "lives"
10189 (as far as the debugger is concerned). We only have a couple of
10190 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10192 DECL_RTL normally indicates where the parameter lives during most of the
10193 activation of the function. If optimization is enabled however, this
10194 could be either NULL or else a pseudo-reg. Both of those cases indicate
10195 that the parameter doesn't really live anywhere (as far as the code
10196 generation parts of GCC are concerned) during most of the function's
10197 activation. That will happen (for example) if the parameter is never
10198 referenced within the function.
10200 We could just generate a location descriptor here for all non-NULL
10201 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10202 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10203 where DECL_RTL is NULL or is a pseudo-reg.
10205 Note however that we can only get away with using DECL_INCOMING_RTL as
10206 a backup substitute for DECL_RTL in certain limited cases. In cases
10207 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10208 we can be sure that the parameter was passed using the same type as it is
10209 declared to have within the function, and that its DECL_INCOMING_RTL
10210 points us to a place where a value of that type is passed.
10212 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10213 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10214 because in these cases DECL_INCOMING_RTL points us to a value of some
10215 type which is *different* from the type of the parameter itself. Thus,
10216 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10217 such cases, the debugger would end up (for example) trying to fetch a
10218 `float' from a place which actually contains the first part of a
10219 `double'. That would lead to really incorrect and confusing
10220 output at debug-time.
10222 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10223 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10224 are a couple of exceptions however. On little-endian machines we can
10225 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10226 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10227 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10228 when (on a little-endian machine) a non-prototyped function has a
10229 parameter declared to be of type `short' or `char'. In such cases,
10230 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10231 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10232 passed `int' value. If the debugger then uses that address to fetch
10233 a `short' or a `char' (on a little-endian machine) the result will be
10234 the correct data, so we allow for such exceptional cases below.
10236 Note that our goal here is to describe the place where the given formal
10237 parameter lives during most of the function's activation (i.e. between the
10238 end of the prologue and the start of the epilogue). We'll do that as best
10239 as we can. Note however that if the given formal parameter is modified
10240 sometime during the execution of the function, then a stack backtrace (at
10241 debug-time) will show the function as having been called with the *new*
10242 value rather than the value which was originally passed in. This happens
10243 rarely enough that it is not a major problem, but it *is* a problem, and
10244 I'd like to fix it.
10246 A future version of dwarf2out.c may generate two additional attributes for
10247 any given DW_TAG_formal_parameter DIE which will describe the "passed
10248 type" and the "passed location" for the given formal parameter in addition
10249 to the attributes we now generate to indicate the "declared type" and the
10250 "active location" for each parameter. This additional set of attributes
10251 could be used by debuggers for stack backtraces. Separately, note that
10252 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10253 This happens (for example) for inlined-instances of inline function formal
10254 parameters which are never referenced. This really shouldn't be
10255 happening. All PARM_DECL nodes should get valid non-NULL
10256 DECL_INCOMING_RTL values. FIXME. */
10258 /* Use DECL_RTL as the "location" unless we find something better. */
10259 rtl = DECL_RTL_IF_SET (decl);
10261 /* When generating abstract instances, ignore everything except
10262 constants, symbols living in memory, and symbols living in
10263 fixed registers. */
10264 if (! reload_completed)
10266 if (rtl
10267 && (CONSTANT_P (rtl)
10268 || (MEM_P (rtl)
10269 && CONSTANT_P (XEXP (rtl, 0)))
10270 || (REG_P (rtl)
10271 && TREE_CODE (decl) == VAR_DECL
10272 && TREE_STATIC (decl))))
10274 rtl = targetm.delegitimize_address (rtl);
10275 return rtl;
10277 rtl = NULL_RTX;
10279 else if (TREE_CODE (decl) == PARM_DECL)
10281 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10283 tree declared_type = TREE_TYPE (decl);
10284 tree passed_type = DECL_ARG_TYPE (decl);
10285 enum machine_mode dmode = TYPE_MODE (declared_type);
10286 enum machine_mode pmode = TYPE_MODE (passed_type);
10288 /* This decl represents a formal parameter which was optimized out.
10289 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10290 all cases where (rtl == NULL_RTX) just below. */
10291 if (dmode == pmode)
10292 rtl = DECL_INCOMING_RTL (decl);
10293 else if (SCALAR_INT_MODE_P (dmode)
10294 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10295 && DECL_INCOMING_RTL (decl))
10297 rtx inc = DECL_INCOMING_RTL (decl);
10298 if (REG_P (inc))
10299 rtl = inc;
10300 else if (MEM_P (inc))
10302 if (BYTES_BIG_ENDIAN)
10303 rtl = adjust_address_nv (inc, dmode,
10304 GET_MODE_SIZE (pmode)
10305 - GET_MODE_SIZE (dmode));
10306 else
10307 rtl = inc;
10312 /* If the parm was passed in registers, but lives on the stack, then
10313 make a big endian correction if the mode of the type of the
10314 parameter is not the same as the mode of the rtl. */
10315 /* ??? This is the same series of checks that are made in dbxout.c before
10316 we reach the big endian correction code there. It isn't clear if all
10317 of these checks are necessary here, but keeping them all is the safe
10318 thing to do. */
10319 else if (MEM_P (rtl)
10320 && XEXP (rtl, 0) != const0_rtx
10321 && ! CONSTANT_P (XEXP (rtl, 0))
10322 /* Not passed in memory. */
10323 && !MEM_P (DECL_INCOMING_RTL (decl))
10324 /* Not passed by invisible reference. */
10325 && (!REG_P (XEXP (rtl, 0))
10326 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10327 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10328 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10329 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10330 #endif
10332 /* Big endian correction check. */
10333 && BYTES_BIG_ENDIAN
10334 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10335 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10336 < UNITS_PER_WORD))
10338 int offset = (UNITS_PER_WORD
10339 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10341 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10342 plus_constant (XEXP (rtl, 0), offset));
10345 else if (TREE_CODE (decl) == VAR_DECL
10346 && rtl
10347 && MEM_P (rtl)
10348 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10349 && BYTES_BIG_ENDIAN)
10351 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10352 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10354 /* If a variable is declared "register" yet is smaller than
10355 a register, then if we store the variable to memory, it
10356 looks like we're storing a register-sized value, when in
10357 fact we are not. We need to adjust the offset of the
10358 storage location to reflect the actual value's bytes,
10359 else gdb will not be able to display it. */
10360 if (rsize > dsize)
10361 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10362 plus_constant (XEXP (rtl, 0), rsize-dsize));
10365 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10366 and will have been substituted directly into all expressions that use it.
10367 C does not have such a concept, but C++ and other languages do. */
10368 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10369 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10371 if (rtl)
10372 rtl = targetm.delegitimize_address (rtl);
10374 /* If we don't look past the constant pool, we risk emitting a
10375 reference to a constant pool entry that isn't referenced from
10376 code, and thus is not emitted. */
10377 if (rtl)
10378 rtl = avoid_constant_pool_reference (rtl);
10380 return rtl;
10383 /* We need to figure out what section we should use as the base for the
10384 address ranges where a given location is valid.
10385 1. If this particular DECL has a section associated with it, use that.
10386 2. If this function has a section associated with it, use that.
10387 3. Otherwise, use the text section.
10388 XXX: If you split a variable across multiple sections, we won't notice. */
10390 static const char *
10391 secname_for_decl (tree decl)
10393 const char *secname;
10395 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10397 tree sectree = DECL_SECTION_NAME (decl);
10398 secname = TREE_STRING_POINTER (sectree);
10400 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10402 tree sectree = DECL_SECTION_NAME (current_function_decl);
10403 secname = TREE_STRING_POINTER (sectree);
10405 else if (cfun && in_cold_section_p)
10406 secname = cfun->cold_section_label;
10407 else
10408 secname = text_section_label;
10410 return secname;
10413 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10414 data attribute for a variable or a parameter. We generate the
10415 DW_AT_const_value attribute only in those cases where the given variable
10416 or parameter does not have a true "location" either in memory or in a
10417 register. This can happen (for example) when a constant is passed as an
10418 actual argument in a call to an inline function. (It's possible that
10419 these things can crop up in other ways also.) Note that one type of
10420 constant value which can be passed into an inlined function is a constant
10421 pointer. This can happen for example if an actual argument in an inlined
10422 function call evaluates to a compile-time constant address. */
10424 static void
10425 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10426 enum dwarf_attribute attr)
10428 rtx rtl;
10429 dw_loc_descr_ref descr;
10430 var_loc_list *loc_list;
10431 struct var_loc_node *node;
10432 if (TREE_CODE (decl) == ERROR_MARK)
10433 return;
10435 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10436 || TREE_CODE (decl) == RESULT_DECL);
10438 /* See if we possibly have multiple locations for this variable. */
10439 loc_list = lookup_decl_loc (decl);
10441 /* If it truly has multiple locations, the first and last node will
10442 differ. */
10443 if (loc_list && loc_list->first != loc_list->last)
10445 const char *endname, *secname;
10446 dw_loc_list_ref list;
10447 rtx varloc;
10449 /* Now that we know what section we are using for a base,
10450 actually construct the list of locations.
10451 The first location information is what is passed to the
10452 function that creates the location list, and the remaining
10453 locations just get added on to that list.
10454 Note that we only know the start address for a location
10455 (IE location changes), so to build the range, we use
10456 the range [current location start, next location start].
10457 This means we have to special case the last node, and generate
10458 a range of [last location start, end of function label]. */
10460 node = loc_list->first;
10461 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10462 secname = secname_for_decl (decl);
10464 list = new_loc_list (loc_descriptor (varloc),
10465 node->label, node->next->label, secname, 1);
10466 node = node->next;
10468 for (; node->next; node = node->next)
10469 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10471 /* The variable has a location between NODE->LABEL and
10472 NODE->NEXT->LABEL. */
10473 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10474 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10475 node->label, node->next->label, secname);
10478 /* If the variable has a location at the last label
10479 it keeps its location until the end of function. */
10480 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10482 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10484 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10485 if (!current_function_decl)
10486 endname = text_end_label;
10487 else
10489 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10490 current_function_funcdef_no);
10491 endname = ggc_strdup (label_id);
10493 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10494 node->label, endname, secname);
10497 /* Finally, add the location list to the DIE, and we are done. */
10498 add_AT_loc_list (die, attr, list);
10499 return;
10502 /* Try to get some constant RTL for this decl, and use that as the value of
10503 the location. */
10505 rtl = rtl_for_decl_location (decl);
10506 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10508 add_const_value_attribute (die, rtl);
10509 return;
10512 /* If we have tried to generate the location otherwise, and it
10513 didn't work out (we wouldn't be here if we did), and we have a one entry
10514 location list, try generating a location from that. */
10515 if (loc_list && loc_list->first)
10517 node = loc_list->first;
10518 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10519 if (descr)
10521 add_AT_location_description (die, attr, descr);
10522 return;
10526 /* We couldn't get any rtl, so try directly generating the location
10527 description from the tree. */
10528 descr = loc_descriptor_from_tree (decl);
10529 if (descr)
10531 add_AT_location_description (die, attr, descr);
10532 return;
10534 /* None of that worked, so it must not really have a location;
10535 try adding a constant value attribute from the DECL_INITIAL. */
10536 tree_add_const_value_attribute (die, decl);
10539 /* If we don't have a copy of this variable in memory for some reason (such
10540 as a C++ member constant that doesn't have an out-of-line definition),
10541 we should tell the debugger about the constant value. */
10543 static void
10544 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10546 tree init = DECL_INITIAL (decl);
10547 tree type = TREE_TYPE (decl);
10548 rtx rtl;
10550 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10551 /* OK */;
10552 else
10553 return;
10555 rtl = rtl_for_decl_init (init, type);
10556 if (rtl)
10557 add_const_value_attribute (var_die, rtl);
10560 /* Convert the CFI instructions for the current function into a
10561 location list. This is used for DW_AT_frame_base when we targeting
10562 a dwarf2 consumer that does not support the dwarf3
10563 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10564 expressions. */
10566 static dw_loc_list_ref
10567 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10569 dw_fde_ref fde;
10570 dw_loc_list_ref list, *list_tail;
10571 dw_cfi_ref cfi;
10572 dw_cfa_location last_cfa, next_cfa;
10573 const char *start_label, *last_label, *section;
10575 fde = &fde_table[fde_table_in_use - 1];
10577 section = secname_for_decl (current_function_decl);
10578 list_tail = &list;
10579 list = NULL;
10581 next_cfa.reg = INVALID_REGNUM;
10582 next_cfa.offset = 0;
10583 next_cfa.indirect = 0;
10584 next_cfa.base_offset = 0;
10586 start_label = fde->dw_fde_begin;
10588 /* ??? Bald assumption that the CIE opcode list does not contain
10589 advance opcodes. */
10590 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10591 lookup_cfa_1 (cfi, &next_cfa);
10593 last_cfa = next_cfa;
10594 last_label = start_label;
10596 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10597 switch (cfi->dw_cfi_opc)
10599 case DW_CFA_set_loc:
10600 case DW_CFA_advance_loc1:
10601 case DW_CFA_advance_loc2:
10602 case DW_CFA_advance_loc4:
10603 if (!cfa_equal_p (&last_cfa, &next_cfa))
10605 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10606 start_label, last_label, section,
10607 list == NULL);
10609 list_tail = &(*list_tail)->dw_loc_next;
10610 last_cfa = next_cfa;
10611 start_label = last_label;
10613 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10614 break;
10616 case DW_CFA_advance_loc:
10617 /* The encoding is complex enough that we should never emit this. */
10618 case DW_CFA_remember_state:
10619 case DW_CFA_restore_state:
10620 /* We don't handle these two in this function. It would be possible
10621 if it were to be required. */
10622 gcc_unreachable ();
10624 default:
10625 lookup_cfa_1 (cfi, &next_cfa);
10626 break;
10629 if (!cfa_equal_p (&last_cfa, &next_cfa))
10631 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10632 start_label, last_label, section,
10633 list == NULL);
10634 list_tail = &(*list_tail)->dw_loc_next;
10635 start_label = last_label;
10637 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10638 start_label, fde->dw_fde_end, section,
10639 list == NULL);
10641 return list;
10644 /* Compute a displacement from the "steady-state frame pointer" to the
10645 frame base (often the same as the CFA), and store it in
10646 frame_pointer_fb_offset. OFFSET is added to the displacement
10647 before the latter is negated. */
10649 static void
10650 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10652 rtx reg, elim;
10654 #ifdef FRAME_POINTER_CFA_OFFSET
10655 reg = frame_pointer_rtx;
10656 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10657 #else
10658 reg = arg_pointer_rtx;
10659 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10660 #endif
10662 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10663 if (GET_CODE (elim) == PLUS)
10665 offset += INTVAL (XEXP (elim, 1));
10666 elim = XEXP (elim, 0);
10668 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10669 : stack_pointer_rtx));
10671 frame_pointer_fb_offset = -offset;
10674 /* Generate a DW_AT_name attribute given some string value to be included as
10675 the value of the attribute. */
10677 static void
10678 add_name_attribute (dw_die_ref die, const char *name_string)
10680 if (name_string != NULL && *name_string != 0)
10682 if (demangle_name_func)
10683 name_string = (*demangle_name_func) (name_string);
10685 add_AT_string (die, DW_AT_name, name_string);
10689 /* Generate a DW_AT_comp_dir attribute for DIE. */
10691 static void
10692 add_comp_dir_attribute (dw_die_ref die)
10694 const char *wd = get_src_pwd ();
10695 if (wd != NULL)
10696 add_AT_string (die, DW_AT_comp_dir, wd);
10699 /* Given a tree node describing an array bound (either lower or upper) output
10700 a representation for that bound. */
10702 static void
10703 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10705 switch (TREE_CODE (bound))
10707 case ERROR_MARK:
10708 return;
10710 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10711 case INTEGER_CST:
10712 if (! host_integerp (bound, 0)
10713 || (bound_attr == DW_AT_lower_bound
10714 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10715 || (is_fortran () && integer_onep (bound)))))
10716 /* Use the default. */
10718 else
10719 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10720 break;
10722 case CONVERT_EXPR:
10723 case NOP_EXPR:
10724 case NON_LVALUE_EXPR:
10725 case VIEW_CONVERT_EXPR:
10726 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10727 break;
10729 case SAVE_EXPR:
10730 break;
10732 case VAR_DECL:
10733 case PARM_DECL:
10734 case RESULT_DECL:
10736 dw_die_ref decl_die = lookup_decl_die (bound);
10738 /* ??? Can this happen, or should the variable have been bound
10739 first? Probably it can, since I imagine that we try to create
10740 the types of parameters in the order in which they exist in
10741 the list, and won't have created a forward reference to a
10742 later parameter. */
10743 if (decl_die != NULL)
10744 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10745 break;
10748 default:
10750 /* Otherwise try to create a stack operation procedure to
10751 evaluate the value of the array bound. */
10753 dw_die_ref ctx, decl_die;
10754 dw_loc_descr_ref loc;
10756 loc = loc_descriptor_from_tree (bound);
10757 if (loc == NULL)
10758 break;
10760 if (current_function_decl == 0)
10761 ctx = comp_unit_die;
10762 else
10763 ctx = lookup_decl_die (current_function_decl);
10765 decl_die = new_die (DW_TAG_variable, ctx, bound);
10766 add_AT_flag (decl_die, DW_AT_artificial, 1);
10767 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10768 add_AT_loc (decl_die, DW_AT_location, loc);
10770 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10771 break;
10776 /* Note that the block of subscript information for an array type also
10777 includes information about the element type of type given array type. */
10779 static void
10780 add_subscript_info (dw_die_ref type_die, tree type)
10782 #ifndef MIPS_DEBUGGING_INFO
10783 unsigned dimension_number;
10784 #endif
10785 tree lower, upper;
10786 dw_die_ref subrange_die;
10788 /* The GNU compilers represent multidimensional array types as sequences of
10789 one dimensional array types whose element types are themselves array
10790 types. Here we squish that down, so that each multidimensional array
10791 type gets only one array_type DIE in the Dwarf debugging info. The draft
10792 Dwarf specification say that we are allowed to do this kind of
10793 compression in C (because there is no difference between an array or
10794 arrays and a multidimensional array in C) but for other source languages
10795 (e.g. Ada) we probably shouldn't do this. */
10797 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10798 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10799 We work around this by disabling this feature. See also
10800 gen_array_type_die. */
10801 #ifndef MIPS_DEBUGGING_INFO
10802 for (dimension_number = 0;
10803 TREE_CODE (type) == ARRAY_TYPE;
10804 type = TREE_TYPE (type), dimension_number++)
10805 #endif
10807 tree domain = TYPE_DOMAIN (type);
10809 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10810 and (in GNU C only) variable bounds. Handle all three forms
10811 here. */
10812 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10813 if (domain)
10815 /* We have an array type with specified bounds. */
10816 lower = TYPE_MIN_VALUE (domain);
10817 upper = TYPE_MAX_VALUE (domain);
10819 /* Define the index type. */
10820 if (TREE_TYPE (domain))
10822 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10823 TREE_TYPE field. We can't emit debug info for this
10824 because it is an unnamed integral type. */
10825 if (TREE_CODE (domain) == INTEGER_TYPE
10826 && TYPE_NAME (domain) == NULL_TREE
10827 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10828 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10830 else
10831 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10832 type_die);
10835 /* ??? If upper is NULL, the array has unspecified length,
10836 but it does have a lower bound. This happens with Fortran
10837 dimension arr(N:*)
10838 Since the debugger is definitely going to need to know N
10839 to produce useful results, go ahead and output the lower
10840 bound solo, and hope the debugger can cope. */
10842 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10843 if (upper)
10844 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10847 /* Otherwise we have an array type with an unspecified length. The
10848 DWARF-2 spec does not say how to handle this; let's just leave out the
10849 bounds. */
10853 static void
10854 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10856 unsigned size;
10858 switch (TREE_CODE (tree_node))
10860 case ERROR_MARK:
10861 size = 0;
10862 break;
10863 case ENUMERAL_TYPE:
10864 case RECORD_TYPE:
10865 case UNION_TYPE:
10866 case QUAL_UNION_TYPE:
10867 size = int_size_in_bytes (tree_node);
10868 break;
10869 case FIELD_DECL:
10870 /* For a data member of a struct or union, the DW_AT_byte_size is
10871 generally given as the number of bytes normally allocated for an
10872 object of the *declared* type of the member itself. This is true
10873 even for bit-fields. */
10874 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10875 break;
10876 default:
10877 gcc_unreachable ();
10880 /* Note that `size' might be -1 when we get to this point. If it is, that
10881 indicates that the byte size of the entity in question is variable. We
10882 have no good way of expressing this fact in Dwarf at the present time,
10883 so just let the -1 pass on through. */
10884 add_AT_unsigned (die, DW_AT_byte_size, size);
10887 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10888 which specifies the distance in bits from the highest order bit of the
10889 "containing object" for the bit-field to the highest order bit of the
10890 bit-field itself.
10892 For any given bit-field, the "containing object" is a hypothetical object
10893 (of some integral or enum type) within which the given bit-field lives. The
10894 type of this hypothetical "containing object" is always the same as the
10895 declared type of the individual bit-field itself. The determination of the
10896 exact location of the "containing object" for a bit-field is rather
10897 complicated. It's handled by the `field_byte_offset' function (above).
10899 Note that it is the size (in bytes) of the hypothetical "containing object"
10900 which will be given in the DW_AT_byte_size attribute for this bit-field.
10901 (See `byte_size_attribute' above). */
10903 static inline void
10904 add_bit_offset_attribute (dw_die_ref die, tree decl)
10906 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10907 tree type = DECL_BIT_FIELD_TYPE (decl);
10908 HOST_WIDE_INT bitpos_int;
10909 HOST_WIDE_INT highest_order_object_bit_offset;
10910 HOST_WIDE_INT highest_order_field_bit_offset;
10911 HOST_WIDE_INT unsigned bit_offset;
10913 /* Must be a field and a bit field. */
10914 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10916 /* We can't yet handle bit-fields whose offsets are variable, so if we
10917 encounter such things, just return without generating any attribute
10918 whatsoever. Likewise for variable or too large size. */
10919 if (! host_integerp (bit_position (decl), 0)
10920 || ! host_integerp (DECL_SIZE (decl), 1))
10921 return;
10923 bitpos_int = int_bit_position (decl);
10925 /* Note that the bit offset is always the distance (in bits) from the
10926 highest-order bit of the "containing object" to the highest-order bit of
10927 the bit-field itself. Since the "high-order end" of any object or field
10928 is different on big-endian and little-endian machines, the computation
10929 below must take account of these differences. */
10930 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10931 highest_order_field_bit_offset = bitpos_int;
10933 if (! BYTES_BIG_ENDIAN)
10935 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10936 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10939 bit_offset
10940 = (! BYTES_BIG_ENDIAN
10941 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10942 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10944 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10947 /* For a FIELD_DECL node which represents a bit field, output an attribute
10948 which specifies the length in bits of the given field. */
10950 static inline void
10951 add_bit_size_attribute (dw_die_ref die, tree decl)
10953 /* Must be a field and a bit field. */
10954 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10955 && DECL_BIT_FIELD_TYPE (decl));
10957 if (host_integerp (DECL_SIZE (decl), 1))
10958 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10961 /* If the compiled language is ANSI C, then add a 'prototyped'
10962 attribute, if arg types are given for the parameters of a function. */
10964 static inline void
10965 add_prototyped_attribute (dw_die_ref die, tree func_type)
10967 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10968 && TYPE_ARG_TYPES (func_type) != NULL)
10969 add_AT_flag (die, DW_AT_prototyped, 1);
10972 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10973 by looking in either the type declaration or object declaration
10974 equate table. */
10976 static inline void
10977 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10979 dw_die_ref origin_die = NULL;
10981 if (TREE_CODE (origin) != FUNCTION_DECL)
10983 /* We may have gotten separated from the block for the inlined
10984 function, if we're in an exception handler or some such; make
10985 sure that the abstract function has been written out.
10987 Doing this for nested functions is wrong, however; functions are
10988 distinct units, and our context might not even be inline. */
10989 tree fn = origin;
10991 if (TYPE_P (fn))
10992 fn = TYPE_STUB_DECL (fn);
10994 fn = decl_function_context (fn);
10995 if (fn)
10996 dwarf2out_abstract_function (fn);
10999 if (DECL_P (origin))
11000 origin_die = lookup_decl_die (origin);
11001 else if (TYPE_P (origin))
11002 origin_die = lookup_type_die (origin);
11004 /* XXX: Functions that are never lowered don't always have correct block
11005 trees (in the case of java, they simply have no block tree, in some other
11006 languages). For these functions, there is nothing we can really do to
11007 output correct debug info for inlined functions in all cases. Rather
11008 than die, we'll just produce deficient debug info now, in that we will
11009 have variables without a proper abstract origin. In the future, when all
11010 functions are lowered, we should re-add a gcc_assert (origin_die)
11011 here. */
11013 if (origin_die)
11014 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
11017 /* We do not currently support the pure_virtual attribute. */
11019 static inline void
11020 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
11022 if (DECL_VINDEX (func_decl))
11024 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11026 if (host_integerp (DECL_VINDEX (func_decl), 0))
11027 add_AT_loc (die, DW_AT_vtable_elem_location,
11028 new_loc_descr (DW_OP_constu,
11029 tree_low_cst (DECL_VINDEX (func_decl), 0),
11030 0));
11032 /* GNU extension: Record what type this method came from originally. */
11033 if (debug_info_level > DINFO_LEVEL_TERSE)
11034 add_AT_die_ref (die, DW_AT_containing_type,
11035 lookup_type_die (DECL_CONTEXT (func_decl)));
11039 /* Add source coordinate attributes for the given decl. */
11041 static void
11042 add_src_coords_attributes (dw_die_ref die, tree decl)
11044 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11046 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
11047 add_AT_unsigned (die, DW_AT_decl_line, s.line);
11050 /* Add a DW_AT_name attribute and source coordinate attribute for the
11051 given decl, but only if it actually has a name. */
11053 static void
11054 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
11056 tree decl_name;
11058 decl_name = DECL_NAME (decl);
11059 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
11061 add_name_attribute (die, dwarf2_name (decl, 0));
11062 if (! DECL_ARTIFICIAL (decl))
11063 add_src_coords_attributes (die, decl);
11065 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
11066 && TREE_PUBLIC (decl)
11067 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
11068 && !DECL_ABSTRACT (decl)
11069 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
11070 add_AT_string (die, DW_AT_MIPS_linkage_name,
11071 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
11074 #ifdef VMS_DEBUGGING_INFO
11075 /* Get the function's name, as described by its RTL. This may be different
11076 from the DECL_NAME name used in the source file. */
11077 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
11079 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
11080 XEXP (DECL_RTL (decl), 0));
11081 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
11083 #endif
11086 /* Push a new declaration scope. */
11088 static void
11089 push_decl_scope (tree scope)
11091 VEC_safe_push (tree, gc, decl_scope_table, scope);
11094 /* Pop a declaration scope. */
11096 static inline void
11097 pop_decl_scope (void)
11099 VEC_pop (tree, decl_scope_table);
11102 /* Return the DIE for the scope that immediately contains this type.
11103 Non-named types get global scope. Named types nested in other
11104 types get their containing scope if it's open, or global scope
11105 otherwise. All other types (i.e. function-local named types) get
11106 the current active scope. */
11108 static dw_die_ref
11109 scope_die_for (tree t, dw_die_ref context_die)
11111 dw_die_ref scope_die = NULL;
11112 tree containing_scope;
11113 int i;
11115 /* Non-types always go in the current scope. */
11116 gcc_assert (TYPE_P (t));
11118 containing_scope = TYPE_CONTEXT (t);
11120 /* Use the containing namespace if it was passed in (for a declaration). */
11121 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11123 if (context_die == lookup_decl_die (containing_scope))
11124 /* OK */;
11125 else
11126 containing_scope = NULL_TREE;
11129 /* Ignore function type "scopes" from the C frontend. They mean that
11130 a tagged type is local to a parmlist of a function declarator, but
11131 that isn't useful to DWARF. */
11132 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11133 containing_scope = NULL_TREE;
11135 if (containing_scope == NULL_TREE)
11136 scope_die = comp_unit_die;
11137 else if (TYPE_P (containing_scope))
11139 /* For types, we can just look up the appropriate DIE. But
11140 first we check to see if we're in the middle of emitting it
11141 so we know where the new DIE should go. */
11142 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11143 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11144 break;
11146 if (i < 0)
11148 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11149 || TREE_ASM_WRITTEN (containing_scope));
11151 /* If none of the current dies are suitable, we get file scope. */
11152 scope_die = comp_unit_die;
11154 else
11155 scope_die = lookup_type_die (containing_scope);
11157 else
11158 scope_die = context_die;
11160 return scope_die;
11163 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11165 static inline int
11166 local_scope_p (dw_die_ref context_die)
11168 for (; context_die; context_die = context_die->die_parent)
11169 if (context_die->die_tag == DW_TAG_inlined_subroutine
11170 || context_die->die_tag == DW_TAG_subprogram)
11171 return 1;
11173 return 0;
11176 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11177 whether or not to treat a DIE in this context as a declaration. */
11179 static inline int
11180 class_or_namespace_scope_p (dw_die_ref context_die)
11182 return (context_die
11183 && (context_die->die_tag == DW_TAG_structure_type
11184 || context_die->die_tag == DW_TAG_union_type
11185 || context_die->die_tag == DW_TAG_namespace));
11188 /* Many forms of DIEs require a "type description" attribute. This
11189 routine locates the proper "type descriptor" die for the type given
11190 by 'type', and adds a DW_AT_type attribute below the given die. */
11192 static void
11193 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11194 int decl_volatile, dw_die_ref context_die)
11196 enum tree_code code = TREE_CODE (type);
11197 dw_die_ref type_die = NULL;
11199 /* ??? If this type is an unnamed subrange type of an integral or
11200 floating-point type, use the inner type. This is because we have no
11201 support for unnamed types in base_type_die. This can happen if this is
11202 an Ada subrange type. Correct solution is emit a subrange type die. */
11203 if ((code == INTEGER_TYPE || code == REAL_TYPE)
11204 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11205 type = TREE_TYPE (type), code = TREE_CODE (type);
11207 if (code == ERROR_MARK
11208 /* Handle a special case. For functions whose return type is void, we
11209 generate *no* type attribute. (Note that no object may have type
11210 `void', so this only applies to function return types). */
11211 || code == VOID_TYPE)
11212 return;
11214 type_die = modified_type_die (type,
11215 decl_const || TYPE_READONLY (type),
11216 decl_volatile || TYPE_VOLATILE (type),
11217 context_die);
11219 if (type_die != NULL)
11220 add_AT_die_ref (object_die, DW_AT_type, type_die);
11223 /* Given an object die, add the calling convention attribute for the
11224 function call type. */
11225 static void
11226 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11228 enum dwarf_calling_convention value = DW_CC_normal;
11230 value = targetm.dwarf_calling_convention (type);
11232 /* Only add the attribute if the backend requests it, and
11233 is not DW_CC_normal. */
11234 if (value && (value != DW_CC_normal))
11235 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11238 /* Given a tree pointer to a struct, class, union, or enum type node, return
11239 a pointer to the (string) tag name for the given type, or zero if the type
11240 was declared without a tag. */
11242 static const char *
11243 type_tag (tree type)
11245 const char *name = 0;
11247 if (TYPE_NAME (type) != 0)
11249 tree t = 0;
11251 /* Find the IDENTIFIER_NODE for the type name. */
11252 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11253 t = TYPE_NAME (type);
11255 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11256 a TYPE_DECL node, regardless of whether or not a `typedef' was
11257 involved. */
11258 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11259 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11261 /* We want to be extra verbose. Don't call dwarf_name if
11262 DECL_NAME isn't set. The default hook for decl_printable_name
11263 doesn't like that, and in this context it's correct to return
11264 0, instead of "<anonymous>" or the like. */
11265 if (DECL_NAME (TYPE_NAME (type)))
11266 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
11269 /* Now get the name as a string, or invent one. */
11270 if (!name && t != 0)
11271 name = IDENTIFIER_POINTER (t);
11274 return (name == 0 || *name == '\0') ? 0 : name;
11277 /* Return the type associated with a data member, make a special check
11278 for bit field types. */
11280 static inline tree
11281 member_declared_type (tree member)
11283 return (DECL_BIT_FIELD_TYPE (member)
11284 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11287 /* Get the decl's label, as described by its RTL. This may be different
11288 from the DECL_NAME name used in the source file. */
11290 #if 0
11291 static const char *
11292 decl_start_label (tree decl)
11294 rtx x;
11295 const char *fnname;
11297 x = DECL_RTL (decl);
11298 gcc_assert (MEM_P (x));
11300 x = XEXP (x, 0);
11301 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11303 fnname = XSTR (x, 0);
11304 return fnname;
11306 #endif
11308 /* These routines generate the internal representation of the DIE's for
11309 the compilation unit. Debugging information is collected by walking
11310 the declaration trees passed in from dwarf2out_decl(). */
11312 static void
11313 gen_array_type_die (tree type, dw_die_ref context_die)
11315 dw_die_ref scope_die = scope_die_for (type, context_die);
11316 dw_die_ref array_die;
11317 tree element_type;
11319 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11320 the inner array type comes before the outer array type. Thus we must
11321 call gen_type_die before we call new_die. See below also. */
11322 #ifdef MIPS_DEBUGGING_INFO
11323 gen_type_die (TREE_TYPE (type), context_die);
11324 #endif
11326 array_die = new_die (DW_TAG_array_type, scope_die, type);
11327 add_name_attribute (array_die, type_tag (type));
11328 equate_type_number_to_die (type, array_die);
11330 if (TREE_CODE (type) == VECTOR_TYPE)
11332 /* The frontend feeds us a representation for the vector as a struct
11333 containing an array. Pull out the array type. */
11334 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11335 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11338 #if 0
11339 /* We default the array ordering. SDB will probably do
11340 the right things even if DW_AT_ordering is not present. It's not even
11341 an issue until we start to get into multidimensional arrays anyway. If
11342 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11343 then we'll have to put the DW_AT_ordering attribute back in. (But if
11344 and when we find out that we need to put these in, we will only do so
11345 for multidimensional arrays. */
11346 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11347 #endif
11349 #ifdef MIPS_DEBUGGING_INFO
11350 /* The SGI compilers handle arrays of unknown bound by setting
11351 AT_declaration and not emitting any subrange DIEs. */
11352 if (! TYPE_DOMAIN (type))
11353 add_AT_flag (array_die, DW_AT_declaration, 1);
11354 else
11355 #endif
11356 add_subscript_info (array_die, type);
11358 /* Add representation of the type of the elements of this array type. */
11359 element_type = TREE_TYPE (type);
11361 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11362 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11363 We work around this by disabling this feature. See also
11364 add_subscript_info. */
11365 #ifndef MIPS_DEBUGGING_INFO
11366 while (TREE_CODE (element_type) == ARRAY_TYPE)
11367 element_type = TREE_TYPE (element_type);
11369 gen_type_die (element_type, context_die);
11370 #endif
11372 add_type_attribute (array_die, element_type, 0, 0, context_die);
11374 if (get_AT (array_die, DW_AT_name))
11375 add_pubtype (type, array_die);
11378 #if 0
11379 static void
11380 gen_entry_point_die (tree decl, dw_die_ref context_die)
11382 tree origin = decl_ultimate_origin (decl);
11383 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11385 if (origin != NULL)
11386 add_abstract_origin_attribute (decl_die, origin);
11387 else
11389 add_name_and_src_coords_attributes (decl_die, decl);
11390 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11391 0, 0, context_die);
11394 if (DECL_ABSTRACT (decl))
11395 equate_decl_number_to_die (decl, decl_die);
11396 else
11397 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11399 #endif
11401 /* Walk through the list of incomplete types again, trying once more to
11402 emit full debugging info for them. */
11404 static void
11405 retry_incomplete_types (void)
11407 int i;
11409 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11410 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11413 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11415 static void
11416 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11418 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11420 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11421 be incomplete and such types are not marked. */
11422 add_abstract_origin_attribute (type_die, type);
11425 /* Generate a DIE to represent an inlined instance of a structure type. */
11427 static void
11428 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11430 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11432 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11433 be incomplete and such types are not marked. */
11434 add_abstract_origin_attribute (type_die, type);
11437 /* Generate a DIE to represent an inlined instance of a union type. */
11439 static void
11440 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11442 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11444 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11445 be incomplete and such types are not marked. */
11446 add_abstract_origin_attribute (type_die, type);
11449 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11450 include all of the information about the enumeration values also. Each
11451 enumerated type name/value is listed as a child of the enumerated type
11452 DIE. */
11454 static dw_die_ref
11455 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11457 dw_die_ref type_die = lookup_type_die (type);
11459 if (type_die == NULL)
11461 type_die = new_die (DW_TAG_enumeration_type,
11462 scope_die_for (type, context_die), type);
11463 equate_type_number_to_die (type, type_die);
11464 add_name_attribute (type_die, type_tag (type));
11466 else if (! TYPE_SIZE (type))
11467 return type_die;
11468 else
11469 remove_AT (type_die, DW_AT_declaration);
11471 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11472 given enum type is incomplete, do not generate the DW_AT_byte_size
11473 attribute or the DW_AT_element_list attribute. */
11474 if (TYPE_SIZE (type))
11476 tree link;
11478 TREE_ASM_WRITTEN (type) = 1;
11479 add_byte_size_attribute (type_die, type);
11480 if (TYPE_STUB_DECL (type) != NULL_TREE)
11481 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11483 /* If the first reference to this type was as the return type of an
11484 inline function, then it may not have a parent. Fix this now. */
11485 if (type_die->die_parent == NULL)
11486 add_child_die (scope_die_for (type, context_die), type_die);
11488 for (link = TYPE_VALUES (type);
11489 link != NULL; link = TREE_CHAIN (link))
11491 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11492 tree value = TREE_VALUE (link);
11494 add_name_attribute (enum_die,
11495 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11497 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11498 /* DWARF2 does not provide a way of indicating whether or
11499 not enumeration constants are signed or unsigned. GDB
11500 always assumes the values are signed, so we output all
11501 values as if they were signed. That means that
11502 enumeration constants with very large unsigned values
11503 will appear to have negative values in the debugger. */
11504 add_AT_int (enum_die, DW_AT_const_value,
11505 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11508 else
11509 add_AT_flag (type_die, DW_AT_declaration, 1);
11511 if (get_AT (type_die, DW_AT_name))
11512 add_pubtype (type, type_die);
11514 return type_die;
11517 /* Generate a DIE to represent either a real live formal parameter decl or to
11518 represent just the type of some formal parameter position in some function
11519 type.
11521 Note that this routine is a bit unusual because its argument may be a
11522 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11523 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11524 node. If it's the former then this function is being called to output a
11525 DIE to represent a formal parameter object (or some inlining thereof). If
11526 it's the latter, then this function is only being called to output a
11527 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11528 argument type of some subprogram type. */
11530 static dw_die_ref
11531 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11533 dw_die_ref parm_die
11534 = new_die (DW_TAG_formal_parameter, context_die, node);
11535 tree origin;
11537 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11539 case tcc_declaration:
11540 origin = decl_ultimate_origin (node);
11541 if (origin != NULL)
11542 add_abstract_origin_attribute (parm_die, origin);
11543 else
11545 add_name_and_src_coords_attributes (parm_die, node);
11546 add_type_attribute (parm_die, TREE_TYPE (node),
11547 TREE_READONLY (node),
11548 TREE_THIS_VOLATILE (node),
11549 context_die);
11550 if (DECL_ARTIFICIAL (node))
11551 add_AT_flag (parm_die, DW_AT_artificial, 1);
11554 equate_decl_number_to_die (node, parm_die);
11555 if (! DECL_ABSTRACT (node))
11556 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11558 break;
11560 case tcc_type:
11561 /* We were called with some kind of a ..._TYPE node. */
11562 add_type_attribute (parm_die, node, 0, 0, context_die);
11563 break;
11565 default:
11566 gcc_unreachable ();
11569 return parm_die;
11572 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11573 at the end of an (ANSI prototyped) formal parameters list. */
11575 static void
11576 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11578 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11581 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11582 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11583 parameters as specified in some function type specification (except for
11584 those which appear as part of a function *definition*). */
11586 static void
11587 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11589 tree link;
11590 tree formal_type = NULL;
11591 tree first_parm_type;
11592 tree arg;
11594 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11596 arg = DECL_ARGUMENTS (function_or_method_type);
11597 function_or_method_type = TREE_TYPE (function_or_method_type);
11599 else
11600 arg = NULL_TREE;
11602 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11604 /* Make our first pass over the list of formal parameter types and output a
11605 DW_TAG_formal_parameter DIE for each one. */
11606 for (link = first_parm_type; link; )
11608 dw_die_ref parm_die;
11610 formal_type = TREE_VALUE (link);
11611 if (formal_type == void_type_node)
11612 break;
11614 /* Output a (nameless) DIE to represent the formal parameter itself. */
11615 parm_die = gen_formal_parameter_die (formal_type, context_die);
11616 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11617 && link == first_parm_type)
11618 || (arg && DECL_ARTIFICIAL (arg)))
11619 add_AT_flag (parm_die, DW_AT_artificial, 1);
11621 link = TREE_CHAIN (link);
11622 if (arg)
11623 arg = TREE_CHAIN (arg);
11626 /* If this function type has an ellipsis, add a
11627 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11628 if (formal_type != void_type_node)
11629 gen_unspecified_parameters_die (function_or_method_type, context_die);
11631 /* Make our second (and final) pass over the list of formal parameter types
11632 and output DIEs to represent those types (as necessary). */
11633 for (link = TYPE_ARG_TYPES (function_or_method_type);
11634 link && TREE_VALUE (link);
11635 link = TREE_CHAIN (link))
11636 gen_type_die (TREE_VALUE (link), context_die);
11639 /* We want to generate the DIE for TYPE so that we can generate the
11640 die for MEMBER, which has been defined; we will need to refer back
11641 to the member declaration nested within TYPE. If we're trying to
11642 generate minimal debug info for TYPE, processing TYPE won't do the
11643 trick; we need to attach the member declaration by hand. */
11645 static void
11646 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11648 gen_type_die (type, context_die);
11650 /* If we're trying to avoid duplicate debug info, we may not have
11651 emitted the member decl for this function. Emit it now. */
11652 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11653 && ! lookup_decl_die (member))
11655 dw_die_ref type_die;
11656 gcc_assert (!decl_ultimate_origin (member));
11658 push_decl_scope (type);
11659 type_die = lookup_type_die (type);
11660 if (TREE_CODE (member) == FUNCTION_DECL)
11661 gen_subprogram_die (member, type_die);
11662 else if (TREE_CODE (member) == FIELD_DECL)
11664 /* Ignore the nameless fields that are used to skip bits but handle
11665 C++ anonymous unions and structs. */
11666 if (DECL_NAME (member) != NULL_TREE
11667 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11668 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11670 gen_type_die (member_declared_type (member), type_die);
11671 gen_field_die (member, type_die);
11674 else
11675 gen_variable_die (member, type_die);
11677 pop_decl_scope ();
11681 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11682 may later generate inlined and/or out-of-line instances of. */
11684 static void
11685 dwarf2out_abstract_function (tree decl)
11687 dw_die_ref old_die;
11688 tree save_fn;
11689 struct function *save_cfun;
11690 tree context;
11691 int was_abstract = DECL_ABSTRACT (decl);
11693 /* Make sure we have the actual abstract inline, not a clone. */
11694 decl = DECL_ORIGIN (decl);
11696 old_die = lookup_decl_die (decl);
11697 if (old_die && get_AT (old_die, DW_AT_inline))
11698 /* We've already generated the abstract instance. */
11699 return;
11701 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11702 we don't get confused by DECL_ABSTRACT. */
11703 if (debug_info_level > DINFO_LEVEL_TERSE)
11705 context = decl_class_context (decl);
11706 if (context)
11707 gen_type_die_for_member
11708 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11711 /* Pretend we've just finished compiling this function. */
11712 save_fn = current_function_decl;
11713 save_cfun = cfun;
11714 current_function_decl = decl;
11715 cfun = DECL_STRUCT_FUNCTION (decl);
11717 set_decl_abstract_flags (decl, 1);
11718 dwarf2out_decl (decl);
11719 if (! was_abstract)
11720 set_decl_abstract_flags (decl, 0);
11722 current_function_decl = save_fn;
11723 cfun = save_cfun;
11726 /* Helper function of premark_used_types() which gets called through
11727 htab_traverse_resize().
11729 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11730 marked as unused by prune_unused_types. */
11731 static int
11732 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11734 tree type;
11735 dw_die_ref die;
11737 type = *slot;
11738 die = lookup_type_die (type);
11739 if (die != NULL)
11740 die->die_perennial_p = 1;
11741 return 1;
11744 /* Mark all members of used_types_hash as perennial. */
11745 static void
11746 premark_used_types (void)
11748 if (cfun && cfun->used_types_hash)
11749 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11752 /* Generate a DIE to represent a declared function (either file-scope or
11753 block-local). */
11755 static void
11756 gen_subprogram_die (tree decl, dw_die_ref context_die)
11758 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11759 tree origin = decl_ultimate_origin (decl);
11760 dw_die_ref subr_die;
11761 tree fn_arg_types;
11762 tree outer_scope;
11763 dw_die_ref old_die = lookup_decl_die (decl);
11764 int declaration = (current_function_decl != decl
11765 || class_or_namespace_scope_p (context_die));
11767 premark_used_types ();
11769 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11770 started to generate the abstract instance of an inline, decided to output
11771 its containing class, and proceeded to emit the declaration of the inline
11772 from the member list for the class. If so, DECLARATION takes priority;
11773 we'll get back to the abstract instance when done with the class. */
11775 /* The class-scope declaration DIE must be the primary DIE. */
11776 if (origin && declaration && class_or_namespace_scope_p (context_die))
11778 origin = NULL;
11779 gcc_assert (!old_die);
11782 /* Now that the C++ front end lazily declares artificial member fns, we
11783 might need to retrofit the declaration into its class. */
11784 if (!declaration && !origin && !old_die
11785 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11786 && !class_or_namespace_scope_p (context_die)
11787 && debug_info_level > DINFO_LEVEL_TERSE)
11788 old_die = force_decl_die (decl);
11790 if (origin != NULL)
11792 gcc_assert (!declaration || local_scope_p (context_die));
11794 /* Fixup die_parent for the abstract instance of a nested
11795 inline function. */
11796 if (old_die && old_die->die_parent == NULL)
11797 add_child_die (context_die, old_die);
11799 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11800 add_abstract_origin_attribute (subr_die, origin);
11802 else if (old_die)
11804 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11805 struct dwarf_file_data * file_index = lookup_filename (s.file);
11807 if (!get_AT_flag (old_die, DW_AT_declaration)
11808 /* We can have a normal definition following an inline one in the
11809 case of redefinition of GNU C extern inlines.
11810 It seems reasonable to use AT_specification in this case. */
11811 && !get_AT (old_die, DW_AT_inline))
11813 /* Detect and ignore this case, where we are trying to output
11814 something we have already output. */
11815 return;
11818 /* If the definition comes from the same place as the declaration,
11819 maybe use the old DIE. We always want the DIE for this function
11820 that has the *_pc attributes to be under comp_unit_die so the
11821 debugger can find it. We also need to do this for abstract
11822 instances of inlines, since the spec requires the out-of-line copy
11823 to have the same parent. For local class methods, this doesn't
11824 apply; we just use the old DIE. */
11825 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11826 && (DECL_ARTIFICIAL (decl)
11827 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11828 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11829 == (unsigned) s.line))))
11831 subr_die = old_die;
11833 /* Clear out the declaration attribute and the formal parameters.
11834 Do not remove all children, because it is possible that this
11835 declaration die was forced using force_decl_die(). In such
11836 cases die that forced declaration die (e.g. TAG_imported_module)
11837 is one of the children that we do not want to remove. */
11838 remove_AT (subr_die, DW_AT_declaration);
11839 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11841 else
11843 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11844 add_AT_specification (subr_die, old_die);
11845 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11846 add_AT_file (subr_die, DW_AT_decl_file, file_index);
11847 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11848 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11851 else
11853 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11855 if (TREE_PUBLIC (decl))
11856 add_AT_flag (subr_die, DW_AT_external, 1);
11858 add_name_and_src_coords_attributes (subr_die, decl);
11859 if (debug_info_level > DINFO_LEVEL_TERSE)
11861 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11862 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11863 0, 0, context_die);
11866 add_pure_or_virtual_attribute (subr_die, decl);
11867 if (DECL_ARTIFICIAL (decl))
11868 add_AT_flag (subr_die, DW_AT_artificial, 1);
11870 if (TREE_PROTECTED (decl))
11871 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11872 else if (TREE_PRIVATE (decl))
11873 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11876 if (declaration)
11878 if (!old_die || !get_AT (old_die, DW_AT_inline))
11880 add_AT_flag (subr_die, DW_AT_declaration, 1);
11882 /* The first time we see a member function, it is in the context of
11883 the class to which it belongs. We make sure of this by emitting
11884 the class first. The next time is the definition, which is
11885 handled above. The two may come from the same source text.
11887 Note that force_decl_die() forces function declaration die. It is
11888 later reused to represent definition. */
11889 equate_decl_number_to_die (decl, subr_die);
11892 else if (DECL_ABSTRACT (decl))
11894 if (DECL_DECLARED_INLINE_P (decl))
11896 if (cgraph_function_possibly_inlined_p (decl))
11897 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11898 else
11899 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11901 else
11903 if (cgraph_function_possibly_inlined_p (decl))
11904 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11905 else
11906 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11909 equate_decl_number_to_die (decl, subr_die);
11911 else if (!DECL_EXTERNAL (decl))
11913 HOST_WIDE_INT cfa_fb_offset;
11915 if (!old_die || !get_AT (old_die, DW_AT_inline))
11916 equate_decl_number_to_die (decl, subr_die);
11918 if (!flag_reorder_blocks_and_partition)
11920 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11921 current_function_funcdef_no);
11922 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11923 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11924 current_function_funcdef_no);
11925 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11927 add_pubname (decl, subr_die);
11928 add_arange (decl, subr_die);
11930 else
11931 { /* Do nothing for now; maybe need to duplicate die, one for
11932 hot section and ond for cold section, then use the hot/cold
11933 section begin/end labels to generate the aranges... */
11935 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11936 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11937 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11938 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11940 add_pubname (decl, subr_die);
11941 add_arange (decl, subr_die);
11942 add_arange (decl, subr_die);
11946 #ifdef MIPS_DEBUGGING_INFO
11947 /* Add a reference to the FDE for this routine. */
11948 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11949 #endif
11951 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11953 /* We define the "frame base" as the function's CFA. This is more
11954 convenient for several reasons: (1) It's stable across the prologue
11955 and epilogue, which makes it better than just a frame pointer,
11956 (2) With dwarf3, there exists a one-byte encoding that allows us
11957 to reference the .debug_frame data by proxy, but failing that,
11958 (3) We can at least reuse the code inspection and interpretation
11959 code that determines the CFA position at various points in the
11960 function. */
11961 /* ??? Use some command-line or configury switch to enable the use
11962 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11963 consumers that understand it; fall back to "pure" dwarf2 and
11964 convert the CFA data into a location list. */
11966 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11967 if (list->dw_loc_next)
11968 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11969 else
11970 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11973 /* Compute a displacement from the "steady-state frame pointer" to
11974 the CFA. The former is what all stack slots and argument slots
11975 will reference in the rtl; the later is what we've told the
11976 debugger about. We'll need to adjust all frame_base references
11977 by this displacement. */
11978 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11980 if (cfun->static_chain_decl)
11981 add_AT_location_description (subr_die, DW_AT_static_link,
11982 loc_descriptor_from_tree (cfun->static_chain_decl));
11985 /* Now output descriptions of the arguments for this function. This gets
11986 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11987 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11988 `...' at the end of the formal parameter list. In order to find out if
11989 there was a trailing ellipsis or not, we must instead look at the type
11990 associated with the FUNCTION_DECL. This will be a node of type
11991 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11992 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11993 an ellipsis at the end. */
11995 /* In the case where we are describing a mere function declaration, all we
11996 need to do here (and all we *can* do here) is to describe the *types* of
11997 its formal parameters. */
11998 if (debug_info_level <= DINFO_LEVEL_TERSE)
12000 else if (declaration)
12001 gen_formal_types_die (decl, subr_die);
12002 else
12004 /* Generate DIEs to represent all known formal parameters. */
12005 tree arg_decls = DECL_ARGUMENTS (decl);
12006 tree parm;
12008 /* When generating DIEs, generate the unspecified_parameters DIE
12009 instead if we come across the arg "__builtin_va_alist" */
12010 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
12011 if (TREE_CODE (parm) == PARM_DECL)
12013 if (DECL_NAME (parm)
12014 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
12015 "__builtin_va_alist"))
12016 gen_unspecified_parameters_die (parm, subr_die);
12017 else
12018 gen_decl_die (parm, subr_die);
12021 /* Decide whether we need an unspecified_parameters DIE at the end.
12022 There are 2 more cases to do this for: 1) the ansi ... declaration -
12023 this is detectable when the end of the arg list is not a
12024 void_type_node 2) an unprototyped function declaration (not a
12025 definition). This just means that we have no info about the
12026 parameters at all. */
12027 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
12028 if (fn_arg_types != NULL)
12030 /* This is the prototyped case, check for.... */
12031 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
12032 gen_unspecified_parameters_die (decl, subr_die);
12034 else if (DECL_INITIAL (decl) == NULL_TREE)
12035 gen_unspecified_parameters_die (decl, subr_die);
12038 /* Output Dwarf info for all of the stuff within the body of the function
12039 (if it has one - it may be just a declaration). */
12040 outer_scope = DECL_INITIAL (decl);
12042 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
12043 a function. This BLOCK actually represents the outermost binding contour
12044 for the function, i.e. the contour in which the function's formal
12045 parameters and labels get declared. Curiously, it appears that the front
12046 end doesn't actually put the PARM_DECL nodes for the current function onto
12047 the BLOCK_VARS list for this outer scope, but are strung off of the
12048 DECL_ARGUMENTS list for the function instead.
12050 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
12051 the LABEL_DECL nodes for the function however, and we output DWARF info
12052 for those in decls_for_scope. Just within the `outer_scope' there will be
12053 a BLOCK node representing the function's outermost pair of curly braces,
12054 and any blocks used for the base and member initializers of a C++
12055 constructor function. */
12056 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
12058 /* Emit a DW_TAG_variable DIE for a named return value. */
12059 if (DECL_NAME (DECL_RESULT (decl)))
12060 gen_decl_die (DECL_RESULT (decl), subr_die);
12062 current_function_has_inlines = 0;
12063 decls_for_scope (outer_scope, subr_die, 0);
12065 #if 0 && defined (MIPS_DEBUGGING_INFO)
12066 if (current_function_has_inlines)
12068 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
12069 if (! comp_unit_has_inlines)
12071 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
12072 comp_unit_has_inlines = 1;
12075 #endif
12077 /* Add the calling convention attribute if requested. */
12078 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
12082 /* Generate a DIE to represent a declared data object. */
12084 static void
12085 gen_variable_die (tree decl, dw_die_ref context_die)
12087 tree origin = decl_ultimate_origin (decl);
12088 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
12090 dw_die_ref old_die = lookup_decl_die (decl);
12091 int declaration = (DECL_EXTERNAL (decl)
12092 /* If DECL is COMDAT and has not actually been
12093 emitted, we cannot take its address; there
12094 might end up being no definition anywhere in
12095 the program. For example, consider the C++
12096 test case:
12098 template <class T>
12099 struct S { static const int i = 7; };
12101 template <class T>
12102 const int S<T>::i;
12104 int f() { return S<int>::i; }
12106 Here, S<int>::i is not DECL_EXTERNAL, but no
12107 definition is required, so the compiler will
12108 not emit a definition. */
12109 || (TREE_CODE (decl) == VAR_DECL
12110 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
12111 || class_or_namespace_scope_p (context_die));
12113 if (origin != NULL)
12114 add_abstract_origin_attribute (var_die, origin);
12116 /* Loop unrolling can create multiple blocks that refer to the same
12117 static variable, so we must test for the DW_AT_declaration flag.
12119 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12120 copy decls and set the DECL_ABSTRACT flag on them instead of
12121 sharing them.
12123 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12125 ??? The declare_in_namespace support causes us to get two DIEs for one
12126 variable, both of which are declarations. We want to avoid considering
12127 one to be a specification, so we must test that this DIE is not a
12128 declaration. */
12129 else if (old_die && TREE_STATIC (decl) && ! declaration
12130 && get_AT_flag (old_die, DW_AT_declaration) == 1)
12132 /* This is a definition of a C++ class level static. */
12133 add_AT_specification (var_die, old_die);
12134 if (DECL_NAME (decl))
12136 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12137 struct dwarf_file_data * file_index = lookup_filename (s.file);
12139 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12140 add_AT_file (var_die, DW_AT_decl_file, file_index);
12142 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12143 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12146 else
12148 add_name_and_src_coords_attributes (var_die, decl);
12149 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12150 TREE_THIS_VOLATILE (decl), context_die);
12152 if (TREE_PUBLIC (decl))
12153 add_AT_flag (var_die, DW_AT_external, 1);
12155 if (DECL_ARTIFICIAL (decl))
12156 add_AT_flag (var_die, DW_AT_artificial, 1);
12158 if (TREE_PROTECTED (decl))
12159 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12160 else if (TREE_PRIVATE (decl))
12161 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12164 if (declaration)
12165 add_AT_flag (var_die, DW_AT_declaration, 1);
12167 if (DECL_ABSTRACT (decl) || declaration)
12168 equate_decl_number_to_die (decl, var_die);
12170 if (! declaration && ! DECL_ABSTRACT (decl))
12172 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12173 add_pubname (decl, var_die);
12175 else
12176 tree_add_const_value_attribute (var_die, decl);
12179 /* Generate a DIE to represent a label identifier. */
12181 static void
12182 gen_label_die (tree decl, dw_die_ref context_die)
12184 tree origin = decl_ultimate_origin (decl);
12185 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12186 rtx insn;
12187 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12189 if (origin != NULL)
12190 add_abstract_origin_attribute (lbl_die, origin);
12191 else
12192 add_name_and_src_coords_attributes (lbl_die, decl);
12194 if (DECL_ABSTRACT (decl))
12195 equate_decl_number_to_die (decl, lbl_die);
12196 else
12198 insn = DECL_RTL_IF_SET (decl);
12200 /* Deleted labels are programmer specified labels which have been
12201 eliminated because of various optimizations. We still emit them
12202 here so that it is possible to put breakpoints on them. */
12203 if (insn
12204 && (LABEL_P (insn)
12205 || ((NOTE_P (insn)
12206 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12208 /* When optimization is enabled (via -O) some parts of the compiler
12209 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12210 represent source-level labels which were explicitly declared by
12211 the user. This really shouldn't be happening though, so catch
12212 it if it ever does happen. */
12213 gcc_assert (!INSN_DELETED_P (insn));
12215 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12216 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12221 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12222 attributes to the DIE for a block STMT, to describe where the inlined
12223 function was called from. This is similar to add_src_coords_attributes. */
12225 static inline void
12226 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12228 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12230 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12231 add_AT_unsigned (die, DW_AT_call_line, s.line);
12234 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12235 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12237 static inline void
12238 add_high_low_attributes (tree stmt, dw_die_ref die)
12240 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12242 if (BLOCK_FRAGMENT_CHAIN (stmt))
12244 tree chain;
12246 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12248 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12251 add_ranges (chain);
12252 chain = BLOCK_FRAGMENT_CHAIN (chain);
12254 while (chain);
12255 add_ranges (NULL);
12257 else
12259 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12260 BLOCK_NUMBER (stmt));
12261 add_AT_lbl_id (die, DW_AT_low_pc, label);
12262 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12263 BLOCK_NUMBER (stmt));
12264 add_AT_lbl_id (die, DW_AT_high_pc, label);
12268 /* Generate a DIE for a lexical block. */
12270 static void
12271 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12273 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12275 if (! BLOCK_ABSTRACT (stmt))
12276 add_high_low_attributes (stmt, stmt_die);
12278 decls_for_scope (stmt, stmt_die, depth);
12281 /* Generate a DIE for an inlined subprogram. */
12283 static void
12284 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12286 tree decl = block_ultimate_origin (stmt);
12288 /* Emit info for the abstract instance first, if we haven't yet. We
12289 must emit this even if the block is abstract, otherwise when we
12290 emit the block below (or elsewhere), we may end up trying to emit
12291 a die whose origin die hasn't been emitted, and crashing. */
12292 dwarf2out_abstract_function (decl);
12294 if (! BLOCK_ABSTRACT (stmt))
12296 dw_die_ref subr_die
12297 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12299 add_abstract_origin_attribute (subr_die, decl);
12300 add_high_low_attributes (stmt, subr_die);
12301 add_call_src_coords_attributes (stmt, subr_die);
12303 decls_for_scope (stmt, subr_die, depth);
12304 current_function_has_inlines = 1;
12306 else
12307 /* We may get here if we're the outer block of function A that was
12308 inlined into function B that was inlined into function C. When
12309 generating debugging info for C, dwarf2out_abstract_function(B)
12310 would mark all inlined blocks as abstract, including this one.
12311 So, we wouldn't (and shouldn't) expect labels to be generated
12312 for this one. Instead, just emit debugging info for
12313 declarations within the block. This is particularly important
12314 in the case of initializers of arguments passed from B to us:
12315 if they're statement expressions containing declarations, we
12316 wouldn't generate dies for their abstract variables, and then,
12317 when generating dies for the real variables, we'd die (pun
12318 intended :-) */
12319 gen_lexical_block_die (stmt, context_die, depth);
12322 /* Generate a DIE for a field in a record, or structure. */
12324 static void
12325 gen_field_die (tree decl, dw_die_ref context_die)
12327 dw_die_ref decl_die;
12329 if (TREE_TYPE (decl) == error_mark_node)
12330 return;
12332 decl_die = new_die (DW_TAG_member, context_die, decl);
12333 add_name_and_src_coords_attributes (decl_die, decl);
12334 add_type_attribute (decl_die, member_declared_type (decl),
12335 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12336 context_die);
12338 if (DECL_BIT_FIELD_TYPE (decl))
12340 add_byte_size_attribute (decl_die, decl);
12341 add_bit_size_attribute (decl_die, decl);
12342 add_bit_offset_attribute (decl_die, decl);
12345 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12346 add_data_member_location_attribute (decl_die, decl);
12348 if (DECL_ARTIFICIAL (decl))
12349 add_AT_flag (decl_die, DW_AT_artificial, 1);
12351 if (TREE_PROTECTED (decl))
12352 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12353 else if (TREE_PRIVATE (decl))
12354 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12356 /* Equate decl number to die, so that we can look up this decl later on. */
12357 equate_decl_number_to_die (decl, decl_die);
12360 #if 0
12361 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12362 Use modified_type_die instead.
12363 We keep this code here just in case these types of DIEs may be needed to
12364 represent certain things in other languages (e.g. Pascal) someday. */
12366 static void
12367 gen_pointer_type_die (tree type, dw_die_ref context_die)
12369 dw_die_ref ptr_die
12370 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12372 equate_type_number_to_die (type, ptr_die);
12373 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12374 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12377 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12378 Use modified_type_die instead.
12379 We keep this code here just in case these types of DIEs may be needed to
12380 represent certain things in other languages (e.g. Pascal) someday. */
12382 static void
12383 gen_reference_type_die (tree type, dw_die_ref context_die)
12385 dw_die_ref ref_die
12386 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12388 equate_type_number_to_die (type, ref_die);
12389 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12390 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12392 #endif
12394 /* Generate a DIE for a pointer to a member type. */
12396 static void
12397 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12399 dw_die_ref ptr_die
12400 = new_die (DW_TAG_ptr_to_member_type,
12401 scope_die_for (type, context_die), type);
12403 equate_type_number_to_die (type, ptr_die);
12404 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12405 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12406 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12409 /* Generate the DIE for the compilation unit. */
12411 static dw_die_ref
12412 gen_compile_unit_die (const char *filename)
12414 dw_die_ref die;
12415 char producer[250];
12416 const char *language_string = lang_hooks.name;
12417 int language;
12419 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12421 if (filename)
12423 add_name_attribute (die, filename);
12424 /* Don't add cwd for <built-in>. */
12425 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
12426 add_comp_dir_attribute (die);
12429 sprintf (producer, "%s %s", language_string, version_string);
12431 #ifdef MIPS_DEBUGGING_INFO
12432 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12433 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12434 not appear in the producer string, the debugger reaches the conclusion
12435 that the object file is stripped and has no debugging information.
12436 To get the MIPS/SGI debugger to believe that there is debugging
12437 information in the object file, we add a -g to the producer string. */
12438 if (debug_info_level > DINFO_LEVEL_TERSE)
12439 strcat (producer, " -g");
12440 #endif
12442 add_AT_string (die, DW_AT_producer, producer);
12444 if (strcmp (language_string, "GNU C++") == 0)
12445 language = DW_LANG_C_plus_plus;
12446 else if (strcmp (language_string, "GNU Ada") == 0)
12447 language = DW_LANG_Ada95;
12448 else if (strcmp (language_string, "GNU F77") == 0)
12449 language = DW_LANG_Fortran77;
12450 else if (strcmp (language_string, "GNU F95") == 0)
12451 language = DW_LANG_Fortran95;
12452 else if (strcmp (language_string, "GNU Pascal") == 0)
12453 language = DW_LANG_Pascal83;
12454 else if (strcmp (language_string, "GNU Java") == 0)
12455 language = DW_LANG_Java;
12456 else if (strcmp (language_string, "GNU Objective-C") == 0)
12457 language = DW_LANG_ObjC;
12458 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12459 language = DW_LANG_ObjC_plus_plus;
12460 else
12461 language = DW_LANG_C89;
12463 add_AT_unsigned (die, DW_AT_language, language);
12464 return die;
12467 /* Generate the DIE for a base class. */
12469 static void
12470 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12472 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12474 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12475 add_data_member_location_attribute (die, binfo);
12477 if (BINFO_VIRTUAL_P (binfo))
12478 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12480 if (access == access_public_node)
12481 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12482 else if (access == access_protected_node)
12483 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12486 /* Generate a DIE for a class member. */
12488 static void
12489 gen_member_die (tree type, dw_die_ref context_die)
12491 tree member;
12492 tree binfo = TYPE_BINFO (type);
12493 dw_die_ref child;
12495 /* If this is not an incomplete type, output descriptions of each of its
12496 members. Note that as we output the DIEs necessary to represent the
12497 members of this record or union type, we will also be trying to output
12498 DIEs to represent the *types* of those members. However the `type'
12499 function (above) will specifically avoid generating type DIEs for member
12500 types *within* the list of member DIEs for this (containing) type except
12501 for those types (of members) which are explicitly marked as also being
12502 members of this (containing) type themselves. The g++ front- end can
12503 force any given type to be treated as a member of some other (containing)
12504 type by setting the TYPE_CONTEXT of the given (member) type to point to
12505 the TREE node representing the appropriate (containing) type. */
12507 /* First output info about the base classes. */
12508 if (binfo)
12510 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12511 int i;
12512 tree base;
12514 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12515 gen_inheritance_die (base,
12516 (accesses ? VEC_index (tree, accesses, i)
12517 : access_public_node), context_die);
12520 /* Now output info about the data members and type members. */
12521 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12523 /* If we thought we were generating minimal debug info for TYPE
12524 and then changed our minds, some of the member declarations
12525 may have already been defined. Don't define them again, but
12526 do put them in the right order. */
12528 child = lookup_decl_die (member);
12529 if (child)
12530 splice_child_die (context_die, child);
12531 else
12532 gen_decl_die (member, context_die);
12535 /* Now output info about the function members (if any). */
12536 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12538 /* Don't include clones in the member list. */
12539 if (DECL_ABSTRACT_ORIGIN (member))
12540 continue;
12542 child = lookup_decl_die (member);
12543 if (child)
12544 splice_child_die (context_die, child);
12545 else
12546 gen_decl_die (member, context_die);
12550 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12551 is set, we pretend that the type was never defined, so we only get the
12552 member DIEs needed by later specification DIEs. */
12554 static void
12555 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12557 dw_die_ref type_die = lookup_type_die (type);
12558 dw_die_ref scope_die = 0;
12559 int nested = 0;
12560 int complete = (TYPE_SIZE (type)
12561 && (! TYPE_STUB_DECL (type)
12562 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12563 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12565 if (type_die && ! complete)
12566 return;
12568 if (TYPE_CONTEXT (type) != NULL_TREE
12569 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12570 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12571 nested = 1;
12573 scope_die = scope_die_for (type, context_die);
12575 if (! type_die || (nested && scope_die == comp_unit_die))
12576 /* First occurrence of type or toplevel definition of nested class. */
12578 dw_die_ref old_die = type_die;
12580 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12581 ? DW_TAG_structure_type : DW_TAG_union_type,
12582 scope_die, type);
12583 equate_type_number_to_die (type, type_die);
12584 if (old_die)
12585 add_AT_specification (type_die, old_die);
12586 else
12587 add_name_attribute (type_die, type_tag (type));
12589 else
12590 remove_AT (type_die, DW_AT_declaration);
12592 /* If this type has been completed, then give it a byte_size attribute and
12593 then give a list of members. */
12594 if (complete && !ns_decl)
12596 /* Prevent infinite recursion in cases where the type of some member of
12597 this type is expressed in terms of this type itself. */
12598 TREE_ASM_WRITTEN (type) = 1;
12599 add_byte_size_attribute (type_die, type);
12600 if (TYPE_STUB_DECL (type) != NULL_TREE)
12601 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12603 /* If the first reference to this type was as the return type of an
12604 inline function, then it may not have a parent. Fix this now. */
12605 if (type_die->die_parent == NULL)
12606 add_child_die (scope_die, type_die);
12608 push_decl_scope (type);
12609 gen_member_die (type, type_die);
12610 pop_decl_scope ();
12612 /* GNU extension: Record what type our vtable lives in. */
12613 if (TYPE_VFIELD (type))
12615 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12617 gen_type_die (vtype, context_die);
12618 add_AT_die_ref (type_die, DW_AT_containing_type,
12619 lookup_type_die (vtype));
12622 else
12624 add_AT_flag (type_die, DW_AT_declaration, 1);
12626 /* We don't need to do this for function-local types. */
12627 if (TYPE_STUB_DECL (type)
12628 && ! decl_function_context (TYPE_STUB_DECL (type)))
12629 VEC_safe_push (tree, gc, incomplete_types, type);
12632 if (get_AT (type_die, DW_AT_name))
12633 add_pubtype (type, type_die);
12636 /* Generate a DIE for a subroutine _type_. */
12638 static void
12639 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12641 tree return_type = TREE_TYPE (type);
12642 dw_die_ref subr_die
12643 = new_die (DW_TAG_subroutine_type,
12644 scope_die_for (type, context_die), type);
12646 equate_type_number_to_die (type, subr_die);
12647 add_prototyped_attribute (subr_die, type);
12648 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12649 gen_formal_types_die (type, subr_die);
12651 if (get_AT (subr_die, DW_AT_name))
12652 add_pubtype (type, subr_die);
12655 /* Generate a DIE for a type definition. */
12657 static void
12658 gen_typedef_die (tree decl, dw_die_ref context_die)
12660 dw_die_ref type_die;
12661 tree origin;
12663 if (TREE_ASM_WRITTEN (decl))
12664 return;
12666 TREE_ASM_WRITTEN (decl) = 1;
12667 type_die = new_die (DW_TAG_typedef, context_die, decl);
12668 origin = decl_ultimate_origin (decl);
12669 if (origin != NULL)
12670 add_abstract_origin_attribute (type_die, origin);
12671 else
12673 tree type;
12675 add_name_and_src_coords_attributes (type_die, decl);
12676 if (DECL_ORIGINAL_TYPE (decl))
12678 type = DECL_ORIGINAL_TYPE (decl);
12680 gcc_assert (type != TREE_TYPE (decl));
12681 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12683 else
12684 type = TREE_TYPE (decl);
12686 add_type_attribute (type_die, type, TREE_READONLY (decl),
12687 TREE_THIS_VOLATILE (decl), context_die);
12690 if (DECL_ABSTRACT (decl))
12691 equate_decl_number_to_die (decl, type_die);
12693 if (get_AT (type_die, DW_AT_name))
12694 add_pubtype (decl, type_die);
12697 /* Generate a type description DIE. */
12699 static void
12700 gen_type_die (tree type, dw_die_ref context_die)
12702 int need_pop;
12704 if (type == NULL_TREE || type == error_mark_node)
12705 return;
12707 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12708 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12710 if (TREE_ASM_WRITTEN (type))
12711 return;
12713 /* Prevent broken recursion; we can't hand off to the same type. */
12714 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12716 TREE_ASM_WRITTEN (type) = 1;
12717 gen_decl_die (TYPE_NAME (type), context_die);
12718 return;
12721 /* We are going to output a DIE to represent the unqualified version
12722 of this type (i.e. without any const or volatile qualifiers) so
12723 get the main variant (i.e. the unqualified version) of this type
12724 now. (Vectors are special because the debugging info is in the
12725 cloned type itself). */
12726 if (TREE_CODE (type) != VECTOR_TYPE)
12727 type = type_main_variant (type);
12729 if (TREE_ASM_WRITTEN (type))
12730 return;
12732 switch (TREE_CODE (type))
12734 case ERROR_MARK:
12735 break;
12737 case POINTER_TYPE:
12738 case REFERENCE_TYPE:
12739 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12740 ensures that the gen_type_die recursion will terminate even if the
12741 type is recursive. Recursive types are possible in Ada. */
12742 /* ??? We could perhaps do this for all types before the switch
12743 statement. */
12744 TREE_ASM_WRITTEN (type) = 1;
12746 /* For these types, all that is required is that we output a DIE (or a
12747 set of DIEs) to represent the "basis" type. */
12748 gen_type_die (TREE_TYPE (type), context_die);
12749 break;
12751 case OFFSET_TYPE:
12752 /* This code is used for C++ pointer-to-data-member types.
12753 Output a description of the relevant class type. */
12754 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12756 /* Output a description of the type of the object pointed to. */
12757 gen_type_die (TREE_TYPE (type), context_die);
12759 /* Now output a DIE to represent this pointer-to-data-member type
12760 itself. */
12761 gen_ptr_to_mbr_type_die (type, context_die);
12762 break;
12764 case FUNCTION_TYPE:
12765 /* Force out return type (in case it wasn't forced out already). */
12766 gen_type_die (TREE_TYPE (type), context_die);
12767 gen_subroutine_type_die (type, context_die);
12768 break;
12770 case METHOD_TYPE:
12771 /* Force out return type (in case it wasn't forced out already). */
12772 gen_type_die (TREE_TYPE (type), context_die);
12773 gen_subroutine_type_die (type, context_die);
12774 break;
12776 case ARRAY_TYPE:
12777 gen_array_type_die (type, context_die);
12778 break;
12780 case VECTOR_TYPE:
12781 gen_array_type_die (type, context_die);
12782 break;
12784 case ENUMERAL_TYPE:
12785 case RECORD_TYPE:
12786 case UNION_TYPE:
12787 case QUAL_UNION_TYPE:
12788 /* If this is a nested type whose containing class hasn't been written
12789 out yet, writing it out will cover this one, too. This does not apply
12790 to instantiations of member class templates; they need to be added to
12791 the containing class as they are generated. FIXME: This hurts the
12792 idea of combining type decls from multiple TUs, since we can't predict
12793 what set of template instantiations we'll get. */
12794 if (TYPE_CONTEXT (type)
12795 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12796 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12798 gen_type_die (TYPE_CONTEXT (type), context_die);
12800 if (TREE_ASM_WRITTEN (type))
12801 return;
12803 /* If that failed, attach ourselves to the stub. */
12804 push_decl_scope (TYPE_CONTEXT (type));
12805 context_die = lookup_type_die (TYPE_CONTEXT (type));
12806 need_pop = 1;
12808 else
12810 declare_in_namespace (type, context_die);
12811 need_pop = 0;
12814 if (TREE_CODE (type) == ENUMERAL_TYPE)
12816 /* This might have been written out by the call to
12817 declare_in_namespace. */
12818 if (!TREE_ASM_WRITTEN (type))
12819 gen_enumeration_type_die (type, context_die);
12821 else
12822 gen_struct_or_union_type_die (type, context_die);
12824 if (need_pop)
12825 pop_decl_scope ();
12827 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12828 it up if it is ever completed. gen_*_type_die will set it for us
12829 when appropriate. */
12830 return;
12832 case VOID_TYPE:
12833 case INTEGER_TYPE:
12834 case REAL_TYPE:
12835 case COMPLEX_TYPE:
12836 case BOOLEAN_TYPE:
12837 /* No DIEs needed for fundamental types. */
12838 break;
12840 case LANG_TYPE:
12841 /* No Dwarf representation currently defined. */
12842 break;
12844 default:
12845 gcc_unreachable ();
12848 TREE_ASM_WRITTEN (type) = 1;
12851 /* Generate a DIE for a tagged type instantiation. */
12853 static void
12854 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12856 if (type == NULL_TREE || type == error_mark_node)
12857 return;
12859 /* We are going to output a DIE to represent the unqualified version of
12860 this type (i.e. without any const or volatile qualifiers) so make sure
12861 that we have the main variant (i.e. the unqualified version) of this
12862 type now. */
12863 gcc_assert (type == type_main_variant (type));
12865 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12866 an instance of an unresolved type. */
12868 switch (TREE_CODE (type))
12870 case ERROR_MARK:
12871 break;
12873 case ENUMERAL_TYPE:
12874 gen_inlined_enumeration_type_die (type, context_die);
12875 break;
12877 case RECORD_TYPE:
12878 gen_inlined_structure_type_die (type, context_die);
12879 break;
12881 case UNION_TYPE:
12882 case QUAL_UNION_TYPE:
12883 gen_inlined_union_type_die (type, context_die);
12884 break;
12886 default:
12887 gcc_unreachable ();
12891 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12892 things which are local to the given block. */
12894 static void
12895 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12897 int must_output_die = 0;
12898 tree origin;
12899 tree decl;
12900 enum tree_code origin_code;
12902 /* Ignore blocks that are NULL. */
12903 if (stmt == NULL_TREE)
12904 return;
12906 /* If the block is one fragment of a non-contiguous block, do not
12907 process the variables, since they will have been done by the
12908 origin block. Do process subblocks. */
12909 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12911 tree sub;
12913 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12914 gen_block_die (sub, context_die, depth + 1);
12916 return;
12919 /* Determine the "ultimate origin" of this block. This block may be an
12920 inlined instance of an inlined instance of inline function, so we have
12921 to trace all of the way back through the origin chain to find out what
12922 sort of node actually served as the original seed for the creation of
12923 the current block. */
12924 origin = block_ultimate_origin (stmt);
12925 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12927 /* Determine if we need to output any Dwarf DIEs at all to represent this
12928 block. */
12929 if (origin_code == FUNCTION_DECL)
12930 /* The outer scopes for inlinings *must* always be represented. We
12931 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12932 must_output_die = 1;
12933 else
12935 /* In the case where the current block represents an inlining of the
12936 "body block" of an inline function, we must *NOT* output any DIE for
12937 this block because we have already output a DIE to represent the whole
12938 inlined function scope and the "body block" of any function doesn't
12939 really represent a different scope according to ANSI C rules. So we
12940 check here to make sure that this block does not represent a "body
12941 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12942 if (! is_body_block (origin ? origin : stmt))
12944 /* Determine if this block directly contains any "significant"
12945 local declarations which we will need to output DIEs for. */
12946 if (debug_info_level > DINFO_LEVEL_TERSE)
12947 /* We are not in terse mode so *any* local declaration counts
12948 as being a "significant" one. */
12949 must_output_die = (BLOCK_VARS (stmt) != NULL
12950 && (TREE_USED (stmt)
12951 || TREE_ASM_WRITTEN (stmt)
12952 || BLOCK_ABSTRACT (stmt)));
12953 else
12954 /* We are in terse mode, so only local (nested) function
12955 definitions count as "significant" local declarations. */
12956 for (decl = BLOCK_VARS (stmt);
12957 decl != NULL; decl = TREE_CHAIN (decl))
12958 if (TREE_CODE (decl) == FUNCTION_DECL
12959 && DECL_INITIAL (decl))
12961 must_output_die = 1;
12962 break;
12967 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12968 DIE for any block which contains no significant local declarations at
12969 all. Rather, in such cases we just call `decls_for_scope' so that any
12970 needed Dwarf info for any sub-blocks will get properly generated. Note
12971 that in terse mode, our definition of what constitutes a "significant"
12972 local declaration gets restricted to include only inlined function
12973 instances and local (nested) function definitions. */
12974 if (must_output_die)
12976 if (origin_code == FUNCTION_DECL)
12977 gen_inlined_subroutine_die (stmt, context_die, depth);
12978 else
12979 gen_lexical_block_die (stmt, context_die, depth);
12981 else
12982 decls_for_scope (stmt, context_die, depth);
12985 /* Generate all of the decls declared within a given scope and (recursively)
12986 all of its sub-blocks. */
12988 static void
12989 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12991 tree decl;
12992 tree subblocks;
12994 /* Ignore NULL blocks. */
12995 if (stmt == NULL_TREE)
12996 return;
12998 if (TREE_USED (stmt))
13000 /* Output the DIEs to represent all of the data objects and typedefs
13001 declared directly within this block but not within any nested
13002 sub-blocks. Also, nested function and tag DIEs have been
13003 generated with a parent of NULL; fix that up now. */
13004 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
13006 dw_die_ref die;
13008 if (TREE_CODE (decl) == FUNCTION_DECL)
13009 die = lookup_decl_die (decl);
13010 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
13011 die = lookup_type_die (TREE_TYPE (decl));
13012 else
13013 die = NULL;
13015 if (die != NULL && die->die_parent == NULL)
13016 add_child_die (context_die, die);
13017 /* Do not produce debug information for static variables since
13018 these might be optimized out. We are called for these later
13019 in varpool_analyze_pending_decls. */
13020 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
13022 else
13023 gen_decl_die (decl, context_die);
13027 /* If we're at -g1, we're not interested in subblocks. */
13028 if (debug_info_level <= DINFO_LEVEL_TERSE)
13029 return;
13031 /* Output the DIEs to represent all sub-blocks (and the items declared
13032 therein) of this block. */
13033 for (subblocks = BLOCK_SUBBLOCKS (stmt);
13034 subblocks != NULL;
13035 subblocks = BLOCK_CHAIN (subblocks))
13036 gen_block_die (subblocks, context_die, depth + 1);
13039 /* Is this a typedef we can avoid emitting? */
13041 static inline int
13042 is_redundant_typedef (tree decl)
13044 if (TYPE_DECL_IS_STUB (decl))
13045 return 1;
13047 if (DECL_ARTIFICIAL (decl)
13048 && DECL_CONTEXT (decl)
13049 && is_tagged_type (DECL_CONTEXT (decl))
13050 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
13051 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
13052 /* Also ignore the artificial member typedef for the class name. */
13053 return 1;
13055 return 0;
13058 /* Returns the DIE for decl. A DIE will always be returned. */
13060 static dw_die_ref
13061 force_decl_die (tree decl)
13063 dw_die_ref decl_die;
13064 unsigned saved_external_flag;
13065 tree save_fn = NULL_TREE;
13066 decl_die = lookup_decl_die (decl);
13067 if (!decl_die)
13069 dw_die_ref context_die;
13070 tree decl_context = DECL_CONTEXT (decl);
13071 if (decl_context)
13073 /* Find die that represents this context. */
13074 if (TYPE_P (decl_context))
13075 context_die = force_type_die (decl_context);
13076 else
13077 context_die = force_decl_die (decl_context);
13079 else
13080 context_die = comp_unit_die;
13082 decl_die = lookup_decl_die (decl);
13083 if (decl_die)
13084 return decl_die;
13086 switch (TREE_CODE (decl))
13088 case FUNCTION_DECL:
13089 /* Clear current_function_decl, so that gen_subprogram_die thinks
13090 that this is a declaration. At this point, we just want to force
13091 declaration die. */
13092 save_fn = current_function_decl;
13093 current_function_decl = NULL_TREE;
13094 gen_subprogram_die (decl, context_die);
13095 current_function_decl = save_fn;
13096 break;
13098 case VAR_DECL:
13099 /* Set external flag to force declaration die. Restore it after
13100 gen_decl_die() call. */
13101 saved_external_flag = DECL_EXTERNAL (decl);
13102 DECL_EXTERNAL (decl) = 1;
13103 gen_decl_die (decl, context_die);
13104 DECL_EXTERNAL (decl) = saved_external_flag;
13105 break;
13107 case NAMESPACE_DECL:
13108 dwarf2out_decl (decl);
13109 break;
13111 default:
13112 gcc_unreachable ();
13115 /* We should be able to find the DIE now. */
13116 if (!decl_die)
13117 decl_die = lookup_decl_die (decl);
13118 gcc_assert (decl_die);
13121 return decl_die;
13124 /* Returns the DIE for TYPE. A DIE is always returned. */
13126 static dw_die_ref
13127 force_type_die (tree type)
13129 dw_die_ref type_die;
13131 type_die = lookup_type_die (type);
13132 if (!type_die)
13134 dw_die_ref context_die;
13135 if (TYPE_CONTEXT (type))
13137 if (TYPE_P (TYPE_CONTEXT (type)))
13138 context_die = force_type_die (TYPE_CONTEXT (type));
13139 else
13140 context_die = force_decl_die (TYPE_CONTEXT (type));
13142 else
13143 context_die = comp_unit_die;
13145 type_die = lookup_type_die (type);
13146 if (type_die)
13147 return type_die;
13148 gen_type_die (type, context_die);
13149 type_die = lookup_type_die (type);
13150 gcc_assert (type_die);
13152 return type_die;
13155 /* Force out any required namespaces to be able to output DECL,
13156 and return the new context_die for it, if it's changed. */
13158 static dw_die_ref
13159 setup_namespace_context (tree thing, dw_die_ref context_die)
13161 tree context = (DECL_P (thing)
13162 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13163 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13164 /* Force out the namespace. */
13165 context_die = force_decl_die (context);
13167 return context_die;
13170 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13171 type) within its namespace, if appropriate.
13173 For compatibility with older debuggers, namespace DIEs only contain
13174 declarations; all definitions are emitted at CU scope. */
13176 static void
13177 declare_in_namespace (tree thing, dw_die_ref context_die)
13179 dw_die_ref ns_context;
13181 if (debug_info_level <= DINFO_LEVEL_TERSE)
13182 return;
13184 /* If this decl is from an inlined function, then don't try to emit it in its
13185 namespace, as we will get confused. It would have already been emitted
13186 when the abstract instance of the inline function was emitted anyways. */
13187 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13188 return;
13190 ns_context = setup_namespace_context (thing, context_die);
13192 if (ns_context != context_die)
13194 if (DECL_P (thing))
13195 gen_decl_die (thing, ns_context);
13196 else
13197 gen_type_die (thing, ns_context);
13201 /* Generate a DIE for a namespace or namespace alias. */
13203 static void
13204 gen_namespace_die (tree decl)
13206 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13208 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13209 they are an alias of. */
13210 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13212 /* Output a real namespace. */
13213 dw_die_ref namespace_die
13214 = new_die (DW_TAG_namespace, context_die, decl);
13215 add_name_and_src_coords_attributes (namespace_die, decl);
13216 equate_decl_number_to_die (decl, namespace_die);
13218 else
13220 /* Output a namespace alias. */
13222 /* Force out the namespace we are an alias of, if necessary. */
13223 dw_die_ref origin_die
13224 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13226 /* Now create the namespace alias DIE. */
13227 dw_die_ref namespace_die
13228 = new_die (DW_TAG_imported_declaration, context_die, decl);
13229 add_name_and_src_coords_attributes (namespace_die, decl);
13230 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13231 equate_decl_number_to_die (decl, namespace_die);
13235 /* Generate Dwarf debug information for a decl described by DECL. */
13237 static void
13238 gen_decl_die (tree decl, dw_die_ref context_die)
13240 tree origin;
13242 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13243 return;
13245 switch (TREE_CODE (decl))
13247 case ERROR_MARK:
13248 break;
13250 case CONST_DECL:
13251 /* The individual enumerators of an enum type get output when we output
13252 the Dwarf representation of the relevant enum type itself. */
13253 break;
13255 case FUNCTION_DECL:
13256 /* Don't output any DIEs to represent mere function declarations,
13257 unless they are class members or explicit block externs. */
13258 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13259 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13260 break;
13262 #if 0
13263 /* FIXME */
13264 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13265 on local redeclarations of global functions. That seems broken. */
13266 if (current_function_decl != decl)
13267 /* This is only a declaration. */;
13268 #endif
13270 /* If we're emitting a clone, emit info for the abstract instance. */
13271 if (DECL_ORIGIN (decl) != decl)
13272 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13274 /* If we're emitting an out-of-line copy of an inline function,
13275 emit info for the abstract instance and set up to refer to it. */
13276 else if (cgraph_function_possibly_inlined_p (decl)
13277 && ! DECL_ABSTRACT (decl)
13278 && ! class_or_namespace_scope_p (context_die)
13279 /* dwarf2out_abstract_function won't emit a die if this is just
13280 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13281 that case, because that works only if we have a die. */
13282 && DECL_INITIAL (decl) != NULL_TREE)
13284 dwarf2out_abstract_function (decl);
13285 set_decl_origin_self (decl);
13288 /* Otherwise we're emitting the primary DIE for this decl. */
13289 else if (debug_info_level > DINFO_LEVEL_TERSE)
13291 /* Before we describe the FUNCTION_DECL itself, make sure that we
13292 have described its return type. */
13293 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13295 /* And its virtual context. */
13296 if (DECL_VINDEX (decl) != NULL_TREE)
13297 gen_type_die (DECL_CONTEXT (decl), context_die);
13299 /* And its containing type. */
13300 origin = decl_class_context (decl);
13301 if (origin != NULL_TREE)
13302 gen_type_die_for_member (origin, decl, context_die);
13304 /* And its containing namespace. */
13305 declare_in_namespace (decl, context_die);
13308 /* Now output a DIE to represent the function itself. */
13309 gen_subprogram_die (decl, context_die);
13310 break;
13312 case TYPE_DECL:
13313 /* If we are in terse mode, don't generate any DIEs to represent any
13314 actual typedefs. */
13315 if (debug_info_level <= DINFO_LEVEL_TERSE)
13316 break;
13318 /* In the special case of a TYPE_DECL node representing the declaration
13319 of some type tag, if the given TYPE_DECL is marked as having been
13320 instantiated from some other (original) TYPE_DECL node (e.g. one which
13321 was generated within the original definition of an inline function) we
13322 have to generate a special (abbreviated) DW_TAG_structure_type,
13323 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13324 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13326 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13327 break;
13330 if (is_redundant_typedef (decl))
13331 gen_type_die (TREE_TYPE (decl), context_die);
13332 else
13333 /* Output a DIE to represent the typedef itself. */
13334 gen_typedef_die (decl, context_die);
13335 break;
13337 case LABEL_DECL:
13338 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13339 gen_label_die (decl, context_die);
13340 break;
13342 case VAR_DECL:
13343 case RESULT_DECL:
13344 /* If we are in terse mode, don't generate any DIEs to represent any
13345 variable declarations or definitions. */
13346 if (debug_info_level <= DINFO_LEVEL_TERSE)
13347 break;
13349 /* Output any DIEs that are needed to specify the type of this data
13350 object. */
13351 gen_type_die (TREE_TYPE (decl), context_die);
13353 /* And its containing type. */
13354 origin = decl_class_context (decl);
13355 if (origin != NULL_TREE)
13356 gen_type_die_for_member (origin, decl, context_die);
13358 /* And its containing namespace. */
13359 declare_in_namespace (decl, context_die);
13361 /* Now output the DIE to represent the data object itself. This gets
13362 complicated because of the possibility that the VAR_DECL really
13363 represents an inlined instance of a formal parameter for an inline
13364 function. */
13365 origin = decl_ultimate_origin (decl);
13366 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13367 gen_formal_parameter_die (decl, context_die);
13368 else
13369 gen_variable_die (decl, context_die);
13370 break;
13372 case FIELD_DECL:
13373 /* Ignore the nameless fields that are used to skip bits but handle C++
13374 anonymous unions and structs. */
13375 if (DECL_NAME (decl) != NULL_TREE
13376 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13377 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13379 gen_type_die (member_declared_type (decl), context_die);
13380 gen_field_die (decl, context_die);
13382 break;
13384 case PARM_DECL:
13385 gen_type_die (TREE_TYPE (decl), context_die);
13386 gen_formal_parameter_die (decl, context_die);
13387 break;
13389 case NAMESPACE_DECL:
13390 gen_namespace_die (decl);
13391 break;
13393 default:
13394 /* Probably some frontend-internal decl. Assume we don't care. */
13395 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13396 break;
13400 /* Output debug information for global decl DECL. Called from toplev.c after
13401 compilation proper has finished. */
13403 static void
13404 dwarf2out_global_decl (tree decl)
13406 /* Output DWARF2 information for file-scope tentative data object
13407 declarations, file-scope (extern) function declarations (which had no
13408 corresponding body) and file-scope tagged type declarations and
13409 definitions which have not yet been forced out. */
13410 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13411 dwarf2out_decl (decl);
13414 /* Output debug information for type decl DECL. Called from toplev.c
13415 and from language front ends (to record built-in types). */
13416 static void
13417 dwarf2out_type_decl (tree decl, int local)
13419 if (!local)
13420 dwarf2out_decl (decl);
13423 /* Output debug information for imported module or decl. */
13425 static void
13426 dwarf2out_imported_module_or_decl (tree decl, tree context)
13428 dw_die_ref imported_die, at_import_die;
13429 dw_die_ref scope_die;
13430 expanded_location xloc;
13432 if (debug_info_level <= DINFO_LEVEL_TERSE)
13433 return;
13435 gcc_assert (decl);
13437 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13438 We need decl DIE for reference and scope die. First, get DIE for the decl
13439 itself. */
13441 /* Get the scope die for decl context. Use comp_unit_die for global module
13442 or decl. If die is not found for non globals, force new die. */
13443 if (!context)
13444 scope_die = comp_unit_die;
13445 else if (TYPE_P (context))
13446 scope_die = force_type_die (context);
13447 else
13448 scope_die = force_decl_die (context);
13450 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13451 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13452 at_import_die = force_type_die (TREE_TYPE (decl));
13453 else
13455 at_import_die = lookup_decl_die (decl);
13456 if (!at_import_die)
13458 /* If we're trying to avoid duplicate debug info, we may not have
13459 emitted the member decl for this field. Emit it now. */
13460 if (TREE_CODE (decl) == FIELD_DECL)
13462 tree type = DECL_CONTEXT (decl);
13463 dw_die_ref type_context_die;
13465 if (TYPE_CONTEXT (type))
13466 if (TYPE_P (TYPE_CONTEXT (type)))
13467 type_context_die = force_type_die (TYPE_CONTEXT (type));
13468 else
13469 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13470 else
13471 type_context_die = comp_unit_die;
13472 gen_type_die_for_member (type, decl, type_context_die);
13474 at_import_die = force_decl_die (decl);
13478 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13479 if (TREE_CODE (decl) == NAMESPACE_DECL)
13480 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13481 else
13482 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13484 xloc = expand_location (input_location);
13485 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13486 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13487 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13490 /* Write the debugging output for DECL. */
13492 void
13493 dwarf2out_decl (tree decl)
13495 dw_die_ref context_die = comp_unit_die;
13497 switch (TREE_CODE (decl))
13499 case ERROR_MARK:
13500 return;
13502 case FUNCTION_DECL:
13503 /* What we would really like to do here is to filter out all mere
13504 file-scope declarations of file-scope functions which are never
13505 referenced later within this translation unit (and keep all of ones
13506 that *are* referenced later on) but we aren't clairvoyant, so we have
13507 no idea which functions will be referenced in the future (i.e. later
13508 on within the current translation unit). So here we just ignore all
13509 file-scope function declarations which are not also definitions. If
13510 and when the debugger needs to know something about these functions,
13511 it will have to hunt around and find the DWARF information associated
13512 with the definition of the function.
13514 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13515 nodes represent definitions and which ones represent mere
13516 declarations. We have to check DECL_INITIAL instead. That's because
13517 the C front-end supports some weird semantics for "extern inline"
13518 function definitions. These can get inlined within the current
13519 translation unit (and thus, we need to generate Dwarf info for their
13520 abstract instances so that the Dwarf info for the concrete inlined
13521 instances can have something to refer to) but the compiler never
13522 generates any out-of-lines instances of such things (despite the fact
13523 that they *are* definitions).
13525 The important point is that the C front-end marks these "extern
13526 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13527 them anyway. Note that the C++ front-end also plays some similar games
13528 for inline function definitions appearing within include files which
13529 also contain `#pragma interface' pragmas. */
13530 if (DECL_INITIAL (decl) == NULL_TREE)
13531 return;
13533 /* If we're a nested function, initially use a parent of NULL; if we're
13534 a plain function, this will be fixed up in decls_for_scope. If
13535 we're a method, it will be ignored, since we already have a DIE. */
13536 if (decl_function_context (decl)
13537 /* But if we're in terse mode, we don't care about scope. */
13538 && debug_info_level > DINFO_LEVEL_TERSE)
13539 context_die = NULL;
13540 break;
13542 case VAR_DECL:
13543 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13544 declaration and if the declaration was never even referenced from
13545 within this entire compilation unit. We suppress these DIEs in
13546 order to save space in the .debug section (by eliminating entries
13547 which are probably useless). Note that we must not suppress
13548 block-local extern declarations (whether used or not) because that
13549 would screw-up the debugger's name lookup mechanism and cause it to
13550 miss things which really ought to be in scope at a given point. */
13551 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13552 return;
13554 /* For local statics lookup proper context die. */
13555 if (TREE_STATIC (decl) && decl_function_context (decl))
13556 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13558 /* If we are in terse mode, don't generate any DIEs to represent any
13559 variable declarations or definitions. */
13560 if (debug_info_level <= DINFO_LEVEL_TERSE)
13561 return;
13562 break;
13564 case NAMESPACE_DECL:
13565 if (debug_info_level <= DINFO_LEVEL_TERSE)
13566 return;
13567 if (lookup_decl_die (decl) != NULL)
13568 return;
13569 break;
13571 case TYPE_DECL:
13572 /* Don't emit stubs for types unless they are needed by other DIEs. */
13573 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13574 return;
13576 /* Don't bother trying to generate any DIEs to represent any of the
13577 normal built-in types for the language we are compiling. */
13578 if (DECL_IS_BUILTIN (decl))
13580 /* OK, we need to generate one for `bool' so GDB knows what type
13581 comparisons have. */
13582 if (is_cxx ()
13583 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13584 && ! DECL_IGNORED_P (decl))
13585 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13587 return;
13590 /* If we are in terse mode, don't generate any DIEs for types. */
13591 if (debug_info_level <= DINFO_LEVEL_TERSE)
13592 return;
13594 /* If we're a function-scope tag, initially use a parent of NULL;
13595 this will be fixed up in decls_for_scope. */
13596 if (decl_function_context (decl))
13597 context_die = NULL;
13599 break;
13601 default:
13602 return;
13605 gen_decl_die (decl, context_die);
13608 /* Output a marker (i.e. a label) for the beginning of the generated code for
13609 a lexical block. */
13611 static void
13612 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13613 unsigned int blocknum)
13615 switch_to_section (current_function_section ());
13616 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13619 /* Output a marker (i.e. a label) for the end of the generated code for a
13620 lexical block. */
13622 static void
13623 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13625 switch_to_section (current_function_section ());
13626 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13629 /* Returns nonzero if it is appropriate not to emit any debugging
13630 information for BLOCK, because it doesn't contain any instructions.
13632 Don't allow this for blocks with nested functions or local classes
13633 as we would end up with orphans, and in the presence of scheduling
13634 we may end up calling them anyway. */
13636 static bool
13637 dwarf2out_ignore_block (tree block)
13639 tree decl;
13641 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13642 if (TREE_CODE (decl) == FUNCTION_DECL
13643 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13644 return 0;
13646 return 1;
13649 /* Hash table routines for file_hash. */
13651 static int
13652 file_table_eq (const void *p1_p, const void *p2_p)
13654 const struct dwarf_file_data * p1 = p1_p;
13655 const char * p2 = p2_p;
13656 return strcmp (p1->filename, p2) == 0;
13659 static hashval_t
13660 file_table_hash (const void *p_p)
13662 const struct dwarf_file_data * p = p_p;
13663 return htab_hash_string (p->filename);
13666 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13667 dwarf2out.c) and return its "index". The index of each (known) filename is
13668 just a unique number which is associated with only that one filename. We
13669 need such numbers for the sake of generating labels (in the .debug_sfnames
13670 section) and references to those files numbers (in the .debug_srcinfo
13671 and.debug_macinfo sections). If the filename given as an argument is not
13672 found in our current list, add it to the list and assign it the next
13673 available unique index number. In order to speed up searches, we remember
13674 the index of the filename was looked up last. This handles the majority of
13675 all searches. */
13677 static struct dwarf_file_data *
13678 lookup_filename (const char *file_name)
13680 void ** slot;
13681 struct dwarf_file_data * created;
13683 /* Check to see if the file name that was searched on the previous
13684 call matches this file name. If so, return the index. */
13685 if (file_table_last_lookup
13686 && (file_name == file_table_last_lookup->filename
13687 || strcmp (file_table_last_lookup->filename, file_name) == 0))
13688 return file_table_last_lookup;
13690 /* Didn't match the previous lookup, search the table. */
13691 slot = htab_find_slot_with_hash (file_table, file_name,
13692 htab_hash_string (file_name), INSERT);
13693 if (*slot)
13694 return *slot;
13696 created = ggc_alloc (sizeof (struct dwarf_file_data));
13697 created->filename = file_name;
13698 created->emitted_number = 0;
13699 *slot = created;
13700 return created;
13703 /* If the assembler will construct the file table, then translate the compiler
13704 internal file table number into the assembler file table number, and emit
13705 a .file directive if we haven't already emitted one yet. The file table
13706 numbers are different because we prune debug info for unused variables and
13707 types, which may include filenames. */
13709 static int
13710 maybe_emit_file (struct dwarf_file_data * fd)
13712 if (! fd->emitted_number)
13714 if (last_emitted_file)
13715 fd->emitted_number = last_emitted_file->emitted_number + 1;
13716 else
13717 fd->emitted_number = 1;
13718 last_emitted_file = fd;
13720 if (DWARF2_ASM_LINE_DEBUG_INFO)
13722 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13723 output_quoted_string (asm_out_file, fd->filename);
13724 fputc ('\n', asm_out_file);
13728 return fd->emitted_number;
13731 /* Called by the final INSN scan whenever we see a var location. We
13732 use it to drop labels in the right places, and throw the location in
13733 our lookup table. */
13735 static void
13736 dwarf2out_var_location (rtx loc_note)
13738 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13739 struct var_loc_node *newloc;
13740 rtx prev_insn;
13741 static rtx last_insn;
13742 static const char *last_label;
13743 tree decl;
13745 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13746 return;
13747 prev_insn = PREV_INSN (loc_note);
13749 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13750 /* If the insn we processed last time is the previous insn
13751 and it is also a var location note, use the label we emitted
13752 last time. */
13753 if (last_insn != NULL_RTX
13754 && last_insn == prev_insn
13755 && NOTE_P (prev_insn)
13756 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13758 newloc->label = last_label;
13760 else
13762 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13763 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13764 loclabel_num++;
13765 newloc->label = ggc_strdup (loclabel);
13767 newloc->var_loc_note = loc_note;
13768 newloc->next = NULL;
13770 if (cfun && in_cold_section_p)
13771 newloc->section_label = cfun->cold_section_label;
13772 else
13773 newloc->section_label = text_section_label;
13775 last_insn = loc_note;
13776 last_label = newloc->label;
13777 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13778 add_var_loc_to_decl (decl, newloc);
13781 /* We need to reset the locations at the beginning of each
13782 function. We can't do this in the end_function hook, because the
13783 declarations that use the locations won't have been output when
13784 that hook is called. Also compute have_multiple_function_sections here. */
13786 static void
13787 dwarf2out_begin_function (tree fun)
13789 htab_empty (decl_loc_table);
13791 if (function_section (fun) != text_section)
13792 have_multiple_function_sections = true;
13795 /* Output a label to mark the beginning of a source code line entry
13796 and record information relating to this source line, in
13797 'line_info_table' for later output of the .debug_line section. */
13799 static void
13800 dwarf2out_source_line (unsigned int line, const char *filename)
13802 if (debug_info_level >= DINFO_LEVEL_NORMAL
13803 && line != 0)
13805 int file_num = maybe_emit_file (lookup_filename (filename));
13807 switch_to_section (current_function_section ());
13809 /* If requested, emit something human-readable. */
13810 if (flag_debug_asm)
13811 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13812 filename, line);
13814 if (DWARF2_ASM_LINE_DEBUG_INFO)
13816 /* Emit the .loc directive understood by GNU as. */
13817 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13819 /* Indicate that line number info exists. */
13820 line_info_table_in_use++;
13822 else if (function_section (current_function_decl) != text_section)
13824 dw_separate_line_info_ref line_info;
13825 targetm.asm_out.internal_label (asm_out_file,
13826 SEPARATE_LINE_CODE_LABEL,
13827 separate_line_info_table_in_use);
13829 /* Expand the line info table if necessary. */
13830 if (separate_line_info_table_in_use
13831 == separate_line_info_table_allocated)
13833 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13834 separate_line_info_table
13835 = ggc_realloc (separate_line_info_table,
13836 separate_line_info_table_allocated
13837 * sizeof (dw_separate_line_info_entry));
13838 memset (separate_line_info_table
13839 + separate_line_info_table_in_use,
13841 (LINE_INFO_TABLE_INCREMENT
13842 * sizeof (dw_separate_line_info_entry)));
13845 /* Add the new entry at the end of the line_info_table. */
13846 line_info
13847 = &separate_line_info_table[separate_line_info_table_in_use++];
13848 line_info->dw_file_num = file_num;
13849 line_info->dw_line_num = line;
13850 line_info->function = current_function_funcdef_no;
13852 else
13854 dw_line_info_ref line_info;
13856 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13857 line_info_table_in_use);
13859 /* Expand the line info table if necessary. */
13860 if (line_info_table_in_use == line_info_table_allocated)
13862 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13863 line_info_table
13864 = ggc_realloc (line_info_table,
13865 (line_info_table_allocated
13866 * sizeof (dw_line_info_entry)));
13867 memset (line_info_table + line_info_table_in_use, 0,
13868 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13871 /* Add the new entry at the end of the line_info_table. */
13872 line_info = &line_info_table[line_info_table_in_use++];
13873 line_info->dw_file_num = file_num;
13874 line_info->dw_line_num = line;
13879 /* Record the beginning of a new source file. */
13881 static void
13882 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13884 if (flag_eliminate_dwarf2_dups)
13886 /* Record the beginning of the file for break_out_includes. */
13887 dw_die_ref bincl_die;
13889 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13890 add_AT_string (bincl_die, DW_AT_name, filename);
13893 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13895 int file_num = maybe_emit_file (lookup_filename (filename));
13897 switch_to_section (debug_macinfo_section);
13898 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13899 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13900 lineno);
13902 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13906 /* Record the end of a source file. */
13908 static void
13909 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13911 if (flag_eliminate_dwarf2_dups)
13912 /* Record the end of the file for break_out_includes. */
13913 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13915 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13917 switch_to_section (debug_macinfo_section);
13918 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13922 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13923 the tail part of the directive line, i.e. the part which is past the
13924 initial whitespace, #, whitespace, directive-name, whitespace part. */
13926 static void
13927 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13928 const char *buffer ATTRIBUTE_UNUSED)
13930 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13932 switch_to_section (debug_macinfo_section);
13933 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13934 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13935 dw2_asm_output_nstring (buffer, -1, "The macro");
13939 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13940 the tail part of the directive line, i.e. the part which is past the
13941 initial whitespace, #, whitespace, directive-name, whitespace part. */
13943 static void
13944 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13945 const char *buffer ATTRIBUTE_UNUSED)
13947 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13949 switch_to_section (debug_macinfo_section);
13950 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13951 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13952 dw2_asm_output_nstring (buffer, -1, "The macro");
13956 /* Set up for Dwarf output at the start of compilation. */
13958 static void
13959 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13961 /* Allocate the file_table. */
13962 file_table = htab_create_ggc (50, file_table_hash,
13963 file_table_eq, NULL);
13965 /* Allocate the decl_die_table. */
13966 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13967 decl_die_table_eq, NULL);
13969 /* Allocate the decl_loc_table. */
13970 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13971 decl_loc_table_eq, NULL);
13973 /* Allocate the initial hunk of the decl_scope_table. */
13974 decl_scope_table = VEC_alloc (tree, gc, 256);
13976 /* Allocate the initial hunk of the abbrev_die_table. */
13977 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13978 * sizeof (dw_die_ref));
13979 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13980 /* Zero-th entry is allocated, but unused. */
13981 abbrev_die_table_in_use = 1;
13983 /* Allocate the initial hunk of the line_info_table. */
13984 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13985 * sizeof (dw_line_info_entry));
13986 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13988 /* Zero-th entry is allocated, but unused. */
13989 line_info_table_in_use = 1;
13991 /* Allocate the pubtypes and pubnames vectors. */
13992 pubname_table = VEC_alloc (pubname_entry, gc, 32);
13993 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
13995 /* Generate the initial DIE for the .debug section. Note that the (string)
13996 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13997 will (typically) be a relative pathname and that this pathname should be
13998 taken as being relative to the directory from which the compiler was
13999 invoked when the given (base) source file was compiled. We will fill
14000 in this value in dwarf2out_finish. */
14001 comp_unit_die = gen_compile_unit_die (NULL);
14003 incomplete_types = VEC_alloc (tree, gc, 64);
14005 used_rtx_array = VEC_alloc (rtx, gc, 32);
14007 debug_info_section = get_section (DEBUG_INFO_SECTION,
14008 SECTION_DEBUG, NULL);
14009 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
14010 SECTION_DEBUG, NULL);
14011 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
14012 SECTION_DEBUG, NULL);
14013 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
14014 SECTION_DEBUG, NULL);
14015 debug_line_section = get_section (DEBUG_LINE_SECTION,
14016 SECTION_DEBUG, NULL);
14017 debug_loc_section = get_section (DEBUG_LOC_SECTION,
14018 SECTION_DEBUG, NULL);
14019 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
14020 SECTION_DEBUG, NULL);
14021 #ifdef DEBUG_PUBTYPES_SECTION
14022 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
14023 SECTION_DEBUG, NULL);
14024 #endif
14025 debug_str_section = get_section (DEBUG_STR_SECTION,
14026 DEBUG_STR_SECTION_FLAGS, NULL);
14027 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
14028 SECTION_DEBUG, NULL);
14029 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
14030 SECTION_DEBUG, NULL);
14032 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
14033 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
14034 DEBUG_ABBREV_SECTION_LABEL, 0);
14035 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
14036 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
14037 COLD_TEXT_SECTION_LABEL, 0);
14038 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
14040 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
14041 DEBUG_INFO_SECTION_LABEL, 0);
14042 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
14043 DEBUG_LINE_SECTION_LABEL, 0);
14044 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
14045 DEBUG_RANGES_SECTION_LABEL, 0);
14046 switch_to_section (debug_abbrev_section);
14047 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
14048 switch_to_section (debug_info_section);
14049 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
14050 switch_to_section (debug_line_section);
14051 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
14053 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14055 switch_to_section (debug_macinfo_section);
14056 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
14057 DEBUG_MACINFO_SECTION_LABEL, 0);
14058 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
14061 switch_to_section (text_section);
14062 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
14063 if (flag_reorder_blocks_and_partition)
14065 switch_to_section (unlikely_text_section ());
14066 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
14070 /* A helper function for dwarf2out_finish called through
14071 ht_forall. Emit one queued .debug_str string. */
14073 static int
14074 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
14076 struct indirect_string_node *node = (struct indirect_string_node *) *h;
14078 if (node->form == DW_FORM_strp)
14080 switch_to_section (debug_str_section);
14081 ASM_OUTPUT_LABEL (asm_out_file, node->label);
14082 assemble_string (node->str, strlen (node->str) + 1);
14085 return 1;
14088 #if ENABLE_ASSERT_CHECKING
14089 /* Verify that all marks are clear. */
14091 static void
14092 verify_marks_clear (dw_die_ref die)
14094 dw_die_ref c;
14096 gcc_assert (! die->die_mark);
14097 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
14099 #endif /* ENABLE_ASSERT_CHECKING */
14101 /* Clear the marks for a die and its children.
14102 Be cool if the mark isn't set. */
14104 static void
14105 prune_unmark_dies (dw_die_ref die)
14107 dw_die_ref c;
14109 if (die->die_mark)
14110 die->die_mark = 0;
14111 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
14114 /* Given DIE that we're marking as used, find any other dies
14115 it references as attributes and mark them as used. */
14117 static void
14118 prune_unused_types_walk_attribs (dw_die_ref die)
14120 dw_attr_ref a;
14121 unsigned ix;
14123 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14125 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
14127 /* A reference to another DIE.
14128 Make sure that it will get emitted. */
14129 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
14131 /* Set the string's refcount to 0 so that prune_unused_types_mark
14132 accounts properly for it. */
14133 if (AT_class (a) == dw_val_class_str)
14134 a->dw_attr_val.v.val_str->refcount = 0;
14139 /* Mark DIE as being used. If DOKIDS is true, then walk down
14140 to DIE's children. */
14142 static void
14143 prune_unused_types_mark (dw_die_ref die, int dokids)
14145 dw_die_ref c;
14147 if (die->die_mark == 0)
14149 /* We haven't done this node yet. Mark it as used. */
14150 die->die_mark = 1;
14152 /* We also have to mark its parents as used.
14153 (But we don't want to mark our parents' kids due to this.) */
14154 if (die->die_parent)
14155 prune_unused_types_mark (die->die_parent, 0);
14157 /* Mark any referenced nodes. */
14158 prune_unused_types_walk_attribs (die);
14160 /* If this node is a specification,
14161 also mark the definition, if it exists. */
14162 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14163 prune_unused_types_mark (die->die_definition, 1);
14166 if (dokids && die->die_mark != 2)
14168 /* We need to walk the children, but haven't done so yet.
14169 Remember that we've walked the kids. */
14170 die->die_mark = 2;
14172 /* If this is an array type, we need to make sure our
14173 kids get marked, even if they're types. */
14174 if (die->die_tag == DW_TAG_array_type)
14175 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14176 else
14177 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14182 /* Walk the tree DIE and mark types that we actually use. */
14184 static void
14185 prune_unused_types_walk (dw_die_ref die)
14187 dw_die_ref c;
14189 /* Don't do anything if this node is already marked. */
14190 if (die->die_mark)
14191 return;
14193 switch (die->die_tag)
14195 case DW_TAG_const_type:
14196 case DW_TAG_packed_type:
14197 case DW_TAG_pointer_type:
14198 case DW_TAG_reference_type:
14199 case DW_TAG_volatile_type:
14200 case DW_TAG_typedef:
14201 case DW_TAG_array_type:
14202 case DW_TAG_structure_type:
14203 case DW_TAG_union_type:
14204 case DW_TAG_class_type:
14205 case DW_TAG_friend:
14206 case DW_TAG_variant_part:
14207 case DW_TAG_enumeration_type:
14208 case DW_TAG_subroutine_type:
14209 case DW_TAG_string_type:
14210 case DW_TAG_set_type:
14211 case DW_TAG_subrange_type:
14212 case DW_TAG_ptr_to_member_type:
14213 case DW_TAG_file_type:
14214 if (die->die_perennial_p)
14215 break;
14217 /* It's a type node --- don't mark it. */
14218 return;
14220 default:
14221 /* Mark everything else. */
14222 break;
14225 die->die_mark = 1;
14227 /* Now, mark any dies referenced from here. */
14228 prune_unused_types_walk_attribs (die);
14230 /* Mark children. */
14231 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14234 /* Increment the string counts on strings referred to from DIE's
14235 attributes. */
14237 static void
14238 prune_unused_types_update_strings (dw_die_ref die)
14240 dw_attr_ref a;
14241 unsigned ix;
14243 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14244 if (AT_class (a) == dw_val_class_str)
14246 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14247 s->refcount++;
14248 /* Avoid unnecessarily putting strings that are used less than
14249 twice in the hash table. */
14250 if (s->refcount
14251 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14253 void ** slot;
14254 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14255 htab_hash_string (s->str),
14256 INSERT);
14257 gcc_assert (*slot == NULL);
14258 *slot = s;
14263 /* Remove from the tree DIE any dies that aren't marked. */
14265 static void
14266 prune_unused_types_prune (dw_die_ref die)
14268 dw_die_ref c;
14270 gcc_assert (die->die_mark);
14271 prune_unused_types_update_strings (die);
14273 if (! die->die_child)
14274 return;
14276 c = die->die_child;
14277 do {
14278 dw_die_ref prev = c;
14279 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14280 if (c == die->die_child)
14282 /* No marked children between 'prev' and the end of the list. */
14283 if (prev == c)
14284 /* No marked children at all. */
14285 die->die_child = NULL;
14286 else
14288 prev->die_sib = c->die_sib;
14289 die->die_child = prev;
14291 return;
14294 if (c != prev->die_sib)
14295 prev->die_sib = c;
14296 prune_unused_types_prune (c);
14297 } while (c != die->die_child);
14301 /* Remove dies representing declarations that we never use. */
14303 static void
14304 prune_unused_types (void)
14306 unsigned int i;
14307 limbo_die_node *node;
14308 pubname_ref pub;
14310 #if ENABLE_ASSERT_CHECKING
14311 /* All the marks should already be clear. */
14312 verify_marks_clear (comp_unit_die);
14313 for (node = limbo_die_list; node; node = node->next)
14314 verify_marks_clear (node->die);
14315 #endif /* ENABLE_ASSERT_CHECKING */
14317 /* Set the mark on nodes that are actually used. */
14318 prune_unused_types_walk (comp_unit_die);
14319 for (node = limbo_die_list; node; node = node->next)
14320 prune_unused_types_walk (node->die);
14322 /* Also set the mark on nodes referenced from the
14323 pubname_table or arange_table. */
14324 for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
14325 prune_unused_types_mark (pub->die, 1);
14326 for (i = 0; i < arange_table_in_use; i++)
14327 prune_unused_types_mark (arange_table[i], 1);
14329 /* Get rid of nodes that aren't marked; and update the string counts. */
14330 if (debug_str_hash)
14331 htab_empty (debug_str_hash);
14332 prune_unused_types_prune (comp_unit_die);
14333 for (node = limbo_die_list; node; node = node->next)
14334 prune_unused_types_prune (node->die);
14336 /* Leave the marks clear. */
14337 prune_unmark_dies (comp_unit_die);
14338 for (node = limbo_die_list; node; node = node->next)
14339 prune_unmark_dies (node->die);
14342 /* Set the parameter to true if there are any relative pathnames in
14343 the file table. */
14344 static int
14345 file_table_relative_p (void ** slot, void *param)
14347 bool *p = param;
14348 struct dwarf_file_data *d = *slot;
14349 if (d->emitted_number && !IS_ABSOLUTE_PATH (d->filename))
14351 *p = true;
14352 return 0;
14354 return 1;
14357 /* Output stuff that dwarf requires at the end of every file,
14358 and generate the DWARF-2 debugging info. */
14360 static void
14361 dwarf2out_finish (const char *filename)
14363 limbo_die_node *node, *next_node;
14364 dw_die_ref die = 0;
14366 /* Add the name for the main input file now. We delayed this from
14367 dwarf2out_init to avoid complications with PCH. */
14368 add_name_attribute (comp_unit_die, filename);
14369 if (!IS_ABSOLUTE_PATH (filename))
14370 add_comp_dir_attribute (comp_unit_die);
14371 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14373 bool p = false;
14374 htab_traverse (file_table, file_table_relative_p, &p);
14375 if (p)
14376 add_comp_dir_attribute (comp_unit_die);
14379 /* Traverse the limbo die list, and add parent/child links. The only
14380 dies without parents that should be here are concrete instances of
14381 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14382 For concrete instances, we can get the parent die from the abstract
14383 instance. */
14384 for (node = limbo_die_list; node; node = next_node)
14386 next_node = node->next;
14387 die = node->die;
14389 if (die->die_parent == NULL)
14391 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14393 if (origin)
14394 add_child_die (origin->die_parent, die);
14395 else if (die == comp_unit_die)
14397 else if (errorcount > 0 || sorrycount > 0)
14398 /* It's OK to be confused by errors in the input. */
14399 add_child_die (comp_unit_die, die);
14400 else
14402 /* In certain situations, the lexical block containing a
14403 nested function can be optimized away, which results
14404 in the nested function die being orphaned. Likewise
14405 with the return type of that nested function. Force
14406 this to be a child of the containing function.
14408 It may happen that even the containing function got fully
14409 inlined and optimized out. In that case we are lost and
14410 assign the empty child. This should not be big issue as
14411 the function is likely unreachable too. */
14412 tree context = NULL_TREE;
14414 gcc_assert (node->created_for);
14416 if (DECL_P (node->created_for))
14417 context = DECL_CONTEXT (node->created_for);
14418 else if (TYPE_P (node->created_for))
14419 context = TYPE_CONTEXT (node->created_for);
14421 gcc_assert (context
14422 && (TREE_CODE (context) == FUNCTION_DECL
14423 || TREE_CODE (context) == NAMESPACE_DECL));
14425 origin = lookup_decl_die (context);
14426 if (origin)
14427 add_child_die (origin, die);
14428 else
14429 add_child_die (comp_unit_die, die);
14434 limbo_die_list = NULL;
14436 /* Walk through the list of incomplete types again, trying once more to
14437 emit full debugging info for them. */
14438 retry_incomplete_types ();
14440 if (flag_eliminate_unused_debug_types)
14441 prune_unused_types ();
14443 /* Generate separate CUs for each of the include files we've seen.
14444 They will go into limbo_die_list. */
14445 if (flag_eliminate_dwarf2_dups)
14446 break_out_includes (comp_unit_die);
14448 /* Traverse the DIE's and add add sibling attributes to those DIE's
14449 that have children. */
14450 add_sibling_attributes (comp_unit_die);
14451 for (node = limbo_die_list; node; node = node->next)
14452 add_sibling_attributes (node->die);
14454 /* Output a terminator label for the .text section. */
14455 switch_to_section (text_section);
14456 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14457 if (flag_reorder_blocks_and_partition)
14459 switch_to_section (unlikely_text_section ());
14460 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14463 /* We can only use the low/high_pc attributes if all of the code was
14464 in .text. */
14465 if (!have_multiple_function_sections)
14467 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14468 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14471 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14472 "base address". Use zero so that these addresses become absolute. */
14473 else if (have_location_lists || ranges_table_in_use)
14474 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14476 /* Output location list section if necessary. */
14477 if (have_location_lists)
14479 /* Output the location lists info. */
14480 switch_to_section (debug_loc_section);
14481 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14482 DEBUG_LOC_SECTION_LABEL, 0);
14483 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14484 output_location_lists (die);
14487 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14488 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14489 debug_line_section_label);
14491 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14492 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14494 /* Output all of the compilation units. We put the main one last so that
14495 the offsets are available to output_pubnames. */
14496 for (node = limbo_die_list; node; node = node->next)
14497 output_comp_unit (node->die, 0);
14499 output_comp_unit (comp_unit_die, 0);
14501 /* Output the abbreviation table. */
14502 switch_to_section (debug_abbrev_section);
14503 output_abbrev_section ();
14505 /* Output public names table if necessary. */
14506 if (!VEC_empty (pubname_entry, pubname_table))
14508 switch_to_section (debug_pubnames_section);
14509 output_pubnames (pubname_table);
14512 #ifdef DEBUG_PUBTYPES_SECTION
14513 /* Output public types table if necessary. */
14514 if (!VEC_empty (pubname_entry, pubtype_table))
14516 switch_to_section (debug_pubtypes_section);
14517 output_pubnames (pubtype_table);
14519 #endif
14521 /* Output the address range information. We only put functions in the arange
14522 table, so don't write it out if we don't have any. */
14523 if (fde_table_in_use)
14525 switch_to_section (debug_aranges_section);
14526 output_aranges ();
14529 /* Output ranges section if necessary. */
14530 if (ranges_table_in_use)
14532 switch_to_section (debug_ranges_section);
14533 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14534 output_ranges ();
14537 /* Output the source line correspondence table. We must do this
14538 even if there is no line information. Otherwise, on an empty
14539 translation unit, we will generate a present, but empty,
14540 .debug_info section. IRIX 6.5 `nm' will then complain when
14541 examining the file. This is done late so that any filenames
14542 used by the debug_info section are marked as 'used'. */
14543 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14545 switch_to_section (debug_line_section);
14546 output_line_info ();
14549 /* Have to end the macro section. */
14550 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14552 switch_to_section (debug_macinfo_section);
14553 dw2_asm_output_data (1, 0, "End compilation unit");
14556 /* If we emitted any DW_FORM_strp form attribute, output the string
14557 table too. */
14558 if (debug_str_hash)
14559 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14561 #else
14563 /* This should never be used, but its address is needed for comparisons. */
14564 const struct gcc_debug_hooks dwarf2_debug_hooks;
14566 #endif /* DWARF2_DEBUGGING_INFO */
14568 #include "gt-dwarf2out.h"