2014-10-20 Andrew MacLeod <amacleod@redhat.com>
[official-gcc.git] / gcc / predict.c
blob5f5d4a55c9c83008e73b93a6173b7c3966f7ac3e
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "calls.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "hashtab.h"
44 #include "hash-set.h"
45 #include "vec.h"
46 #include "machmode.h"
47 #include "input.h"
48 #include "function.h"
49 #include "profile.h"
50 #include "except.h"
51 #include "diagnostic-core.h"
52 #include "recog.h"
53 #include "expr.h"
54 #include "predict.h"
55 #include "coverage.h"
56 #include "sreal.h"
57 #include "params.h"
58 #include "target.h"
59 #include "cfgloop.h"
60 #include "hash-map.h"
61 #include "tree-ssa-alias.h"
62 #include "internal-fn.h"
63 #include "gimple-expr.h"
64 #include "is-a.h"
65 #include "gimple.h"
66 #include "gimple-iterator.h"
67 #include "gimple-ssa.h"
68 #include "cgraph.h"
69 #include "tree-cfg.h"
70 #include "tree-phinodes.h"
71 #include "ssa-iterators.h"
72 #include "tree-ssa-loop-niter.h"
73 #include "tree-ssa-loop.h"
74 #include "tree-pass.h"
75 #include "tree-scalar-evolution.h"
76 #include "cfgloop.h"
78 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
79 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
80 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
81 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
83 static void combine_predictions_for_insn (rtx_insn *, basic_block);
84 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
85 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
86 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
87 static bool can_predict_insn_p (const rtx_insn *);
89 /* Information we hold about each branch predictor.
90 Filled using information from predict.def. */
92 struct predictor_info
94 const char *const name; /* Name used in the debugging dumps. */
95 const int hitrate; /* Expected hitrate used by
96 predict_insn_def call. */
97 const int flags;
100 /* Use given predictor without Dempster-Shaffer theory if it matches
101 using first_match heuristics. */
102 #define PRED_FLAG_FIRST_MATCH 1
104 /* Recompute hitrate in percent to our representation. */
106 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
108 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
109 static const struct predictor_info predictor_info[]= {
110 #include "predict.def"
112 /* Upper bound on predictors. */
113 {NULL, 0, 0}
115 #undef DEF_PREDICTOR
117 /* Return TRUE if frequency FREQ is considered to be hot. */
119 static inline bool
120 maybe_hot_frequency_p (struct function *fun, int freq)
122 struct cgraph_node *node = cgraph_node::get (fun->decl);
123 if (!profile_info || !flag_branch_probabilities)
125 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
126 return false;
127 if (node->frequency == NODE_FREQUENCY_HOT)
128 return true;
130 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
131 return true;
132 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
133 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
134 return false;
135 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
136 return false;
137 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
138 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
139 return false;
140 return true;
143 static gcov_type min_count = -1;
145 /* Determine the threshold for hot BB counts. */
147 gcov_type
148 get_hot_bb_threshold ()
150 gcov_working_set_t *ws;
151 if (min_count == -1)
153 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
154 gcc_assert (ws);
155 min_count = ws->min_counter;
157 return min_count;
160 /* Set the threshold for hot BB counts. */
162 void
163 set_hot_bb_threshold (gcov_type min)
165 min_count = min;
168 /* Return TRUE if frequency FREQ is considered to be hot. */
170 static inline bool
171 maybe_hot_count_p (struct function *fun, gcov_type count)
173 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
174 return true;
175 /* Code executed at most once is not hot. */
176 if (profile_info->runs >= count)
177 return false;
178 return (count >= get_hot_bb_threshold ());
181 /* Return true in case BB can be CPU intensive and should be optimized
182 for maximal performance. */
184 bool
185 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
187 gcc_checking_assert (fun);
188 if (profile_status_for_fn (fun) == PROFILE_READ)
189 return maybe_hot_count_p (fun, bb->count);
190 return maybe_hot_frequency_p (fun, bb->frequency);
193 /* Return true if the call can be hot. */
195 bool
196 cgraph_edge::maybe_hot_p (void)
198 if (profile_info && flag_branch_probabilities
199 && !maybe_hot_count_p (NULL, count))
200 return false;
201 if (caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
202 || (callee
203 && callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
204 return false;
205 if (caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
206 && (callee
207 && callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
208 return false;
209 if (optimize_size)
210 return false;
211 if (caller->frequency == NODE_FREQUENCY_HOT)
212 return true;
213 if (caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
214 && frequency < CGRAPH_FREQ_BASE * 3 / 2)
215 return false;
216 if (flag_guess_branch_prob)
218 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0
219 || frequency <= (CGRAPH_FREQ_BASE
220 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
221 return false;
223 return true;
226 /* Return true in case BB can be CPU intensive and should be optimized
227 for maximal performance. */
229 bool
230 maybe_hot_edge_p (edge e)
232 if (profile_status_for_fn (cfun) == PROFILE_READ)
233 return maybe_hot_count_p (cfun, e->count);
234 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
239 /* Return true if profile COUNT and FREQUENCY, or function FUN static
240 node frequency reflects never being executed. */
242 static bool
243 probably_never_executed (struct function *fun,
244 gcov_type count, int frequency)
246 gcc_checking_assert (fun);
247 if (profile_status_for_fn (cfun) == PROFILE_READ)
249 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
250 if (count * unlikely_count_fraction >= profile_info->runs)
251 return false;
252 if (!frequency)
253 return true;
254 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
255 return false;
256 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
258 gcov_type computed_count;
259 /* Check for possibility of overflow, in which case entry bb count
260 is large enough to do the division first without losing much
261 precision. */
262 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count < REG_BR_PROB_BASE *
263 REG_BR_PROB_BASE)
265 gcov_type scaled_count
266 = frequency * ENTRY_BLOCK_PTR_FOR_FN (cfun)->count *
267 unlikely_count_fraction;
268 computed_count = RDIV (scaled_count,
269 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
271 else
273 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count,
274 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
275 computed_count *= frequency * unlikely_count_fraction;
277 if (computed_count >= profile_info->runs)
278 return false;
280 return true;
282 if ((!profile_info || !flag_branch_probabilities)
283 && (cgraph_node::get (fun->decl)->frequency
284 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
285 return true;
286 return false;
290 /* Return true in case BB is probably never executed. */
292 bool
293 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
295 return probably_never_executed (fun, bb->count, bb->frequency);
299 /* Return true in case edge E is probably never executed. */
301 bool
302 probably_never_executed_edge_p (struct function *fun, edge e)
304 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
307 /* Return true if function should be optimized for size. */
309 bool
310 cgraph_node::optimize_for_size_p (void)
312 if (optimize_size)
313 return true;
314 if (frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
315 return true;
316 else
317 return false;
320 /* Return true when current function should always be optimized for size. */
322 bool
323 optimize_function_for_size_p (struct function *fun)
325 if (optimize_size)
326 return true;
327 if (!fun || !fun->decl)
328 return false;
330 cgraph_node *n = cgraph_node::get (fun->decl);
331 return n && n->optimize_for_size_p ();
334 /* Return true when current function should always be optimized for speed. */
336 bool
337 optimize_function_for_speed_p (struct function *fun)
339 return !optimize_function_for_size_p (fun);
342 /* Return TRUE when BB should be optimized for size. */
344 bool
345 optimize_bb_for_size_p (const_basic_block bb)
347 return (optimize_function_for_size_p (cfun)
348 || (bb && !maybe_hot_bb_p (cfun, bb)));
351 /* Return TRUE when BB should be optimized for speed. */
353 bool
354 optimize_bb_for_speed_p (const_basic_block bb)
356 return !optimize_bb_for_size_p (bb);
359 /* Return TRUE when BB should be optimized for size. */
361 bool
362 optimize_edge_for_size_p (edge e)
364 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
367 /* Return TRUE when BB should be optimized for speed. */
369 bool
370 optimize_edge_for_speed_p (edge e)
372 return !optimize_edge_for_size_p (e);
375 /* Return TRUE when BB should be optimized for size. */
377 bool
378 optimize_insn_for_size_p (void)
380 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
383 /* Return TRUE when BB should be optimized for speed. */
385 bool
386 optimize_insn_for_speed_p (void)
388 return !optimize_insn_for_size_p ();
391 /* Return TRUE when LOOP should be optimized for size. */
393 bool
394 optimize_loop_for_size_p (struct loop *loop)
396 return optimize_bb_for_size_p (loop->header);
399 /* Return TRUE when LOOP should be optimized for speed. */
401 bool
402 optimize_loop_for_speed_p (struct loop *loop)
404 return optimize_bb_for_speed_p (loop->header);
407 /* Return TRUE when LOOP nest should be optimized for speed. */
409 bool
410 optimize_loop_nest_for_speed_p (struct loop *loop)
412 struct loop *l = loop;
413 if (optimize_loop_for_speed_p (loop))
414 return true;
415 l = loop->inner;
416 while (l && l != loop)
418 if (optimize_loop_for_speed_p (l))
419 return true;
420 if (l->inner)
421 l = l->inner;
422 else if (l->next)
423 l = l->next;
424 else
426 while (l != loop && !l->next)
427 l = loop_outer (l);
428 if (l != loop)
429 l = l->next;
432 return false;
435 /* Return TRUE when LOOP nest should be optimized for size. */
437 bool
438 optimize_loop_nest_for_size_p (struct loop *loop)
440 return !optimize_loop_nest_for_speed_p (loop);
443 /* Return true when edge E is likely to be well predictable by branch
444 predictor. */
446 bool
447 predictable_edge_p (edge e)
449 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
450 return false;
451 if ((e->probability
452 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
453 || (REG_BR_PROB_BASE - e->probability
454 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
455 return true;
456 return false;
460 /* Set RTL expansion for BB profile. */
462 void
463 rtl_profile_for_bb (basic_block bb)
465 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
468 /* Set RTL expansion for edge profile. */
470 void
471 rtl_profile_for_edge (edge e)
473 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
476 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
477 void
478 default_rtl_profile (void)
480 crtl->maybe_hot_insn_p = true;
483 /* Return true if the one of outgoing edges is already predicted by
484 PREDICTOR. */
486 bool
487 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
489 rtx note;
490 if (!INSN_P (BB_END (bb)))
491 return false;
492 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
493 if (REG_NOTE_KIND (note) == REG_BR_PRED
494 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
495 return true;
496 return false;
499 /* Structure representing predictions in tree level. */
501 struct edge_prediction {
502 struct edge_prediction *ep_next;
503 edge ep_edge;
504 enum br_predictor ep_predictor;
505 int ep_probability;
508 /* This map contains for a basic block the list of predictions for the
509 outgoing edges. */
511 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
513 /* Return true if the one of outgoing edges is already predicted by
514 PREDICTOR. */
516 bool
517 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
519 struct edge_prediction *i;
520 edge_prediction **preds = bb_predictions->get (bb);
522 if (!preds)
523 return false;
525 for (i = *preds; i; i = i->ep_next)
526 if (i->ep_predictor == predictor)
527 return true;
528 return false;
531 /* Return true when the probability of edge is reliable.
533 The profile guessing code is good at predicting branch outcome (ie.
534 taken/not taken), that is predicted right slightly over 75% of time.
535 It is however notoriously poor on predicting the probability itself.
536 In general the profile appear a lot flatter (with probabilities closer
537 to 50%) than the reality so it is bad idea to use it to drive optimization
538 such as those disabling dynamic branch prediction for well predictable
539 branches.
541 There are two exceptions - edges leading to noreturn edges and edges
542 predicted by number of iterations heuristics are predicted well. This macro
543 should be able to distinguish those, but at the moment it simply check for
544 noreturn heuristic that is only one giving probability over 99% or bellow
545 1%. In future we might want to propagate reliability information across the
546 CFG if we find this information useful on multiple places. */
547 static bool
548 probability_reliable_p (int prob)
550 return (profile_status_for_fn (cfun) == PROFILE_READ
551 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
552 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
555 /* Same predicate as above, working on edges. */
556 bool
557 edge_probability_reliable_p (const_edge e)
559 return probability_reliable_p (e->probability);
562 /* Same predicate as edge_probability_reliable_p, working on notes. */
563 bool
564 br_prob_note_reliable_p (const_rtx note)
566 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
567 return probability_reliable_p (XINT (note, 0));
570 static void
571 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
573 gcc_assert (any_condjump_p (insn));
574 if (!flag_guess_branch_prob)
575 return;
577 add_reg_note (insn, REG_BR_PRED,
578 gen_rtx_CONCAT (VOIDmode,
579 GEN_INT ((int) predictor),
580 GEN_INT ((int) probability)));
583 /* Predict insn by given predictor. */
585 void
586 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
587 enum prediction taken)
589 int probability = predictor_info[(int) predictor].hitrate;
591 if (taken != TAKEN)
592 probability = REG_BR_PROB_BASE - probability;
594 predict_insn (insn, predictor, probability);
597 /* Predict edge E with given probability if possible. */
599 void
600 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
602 rtx_insn *last_insn;
603 last_insn = BB_END (e->src);
605 /* We can store the branch prediction information only about
606 conditional jumps. */
607 if (!any_condjump_p (last_insn))
608 return;
610 /* We always store probability of branching. */
611 if (e->flags & EDGE_FALLTHRU)
612 probability = REG_BR_PROB_BASE - probability;
614 predict_insn (last_insn, predictor, probability);
617 /* Predict edge E with the given PROBABILITY. */
618 void
619 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
621 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
622 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
624 && flag_guess_branch_prob && optimize)
626 struct edge_prediction *i = XNEW (struct edge_prediction);
627 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
629 i->ep_next = preds;
630 preds = i;
631 i->ep_probability = probability;
632 i->ep_predictor = predictor;
633 i->ep_edge = e;
637 /* Remove all predictions on given basic block that are attached
638 to edge E. */
639 void
640 remove_predictions_associated_with_edge (edge e)
642 if (!bb_predictions)
643 return;
645 edge_prediction **preds = bb_predictions->get (e->src);
647 if (preds)
649 struct edge_prediction **prediction = preds;
650 struct edge_prediction *next;
652 while (*prediction)
654 if ((*prediction)->ep_edge == e)
656 next = (*prediction)->ep_next;
657 free (*prediction);
658 *prediction = next;
660 else
661 prediction = &((*prediction)->ep_next);
666 /* Clears the list of predictions stored for BB. */
668 static void
669 clear_bb_predictions (basic_block bb)
671 edge_prediction **preds = bb_predictions->get (bb);
672 struct edge_prediction *pred, *next;
674 if (!preds)
675 return;
677 for (pred = *preds; pred; pred = next)
679 next = pred->ep_next;
680 free (pred);
682 *preds = NULL;
685 /* Return true when we can store prediction on insn INSN.
686 At the moment we represent predictions only on conditional
687 jumps, not at computed jump or other complicated cases. */
688 static bool
689 can_predict_insn_p (const rtx_insn *insn)
691 return (JUMP_P (insn)
692 && any_condjump_p (insn)
693 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
696 /* Predict edge E by given predictor if possible. */
698 void
699 predict_edge_def (edge e, enum br_predictor predictor,
700 enum prediction taken)
702 int probability = predictor_info[(int) predictor].hitrate;
704 if (taken != TAKEN)
705 probability = REG_BR_PROB_BASE - probability;
707 predict_edge (e, predictor, probability);
710 /* Invert all branch predictions or probability notes in the INSN. This needs
711 to be done each time we invert the condition used by the jump. */
713 void
714 invert_br_probabilities (rtx insn)
716 rtx note;
718 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
719 if (REG_NOTE_KIND (note) == REG_BR_PROB)
720 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
721 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
722 XEXP (XEXP (note, 0), 1)
723 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
726 /* Dump information about the branch prediction to the output file. */
728 static void
729 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
730 basic_block bb, int used)
732 edge e;
733 edge_iterator ei;
735 if (!file)
736 return;
738 FOR_EACH_EDGE (e, ei, bb->succs)
739 if (! (e->flags & EDGE_FALLTHRU))
740 break;
742 fprintf (file, " %s heuristics%s: %.1f%%",
743 predictor_info[predictor].name,
744 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
746 if (bb->count)
748 fprintf (file, " exec %"PRId64, bb->count);
749 if (e)
751 fprintf (file, " hit %"PRId64, e->count);
752 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
756 fprintf (file, "\n");
759 /* We can not predict the probabilities of outgoing edges of bb. Set them
760 evenly and hope for the best. */
761 static void
762 set_even_probabilities (basic_block bb)
764 int nedges = 0;
765 edge e;
766 edge_iterator ei;
768 FOR_EACH_EDGE (e, ei, bb->succs)
769 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
770 nedges ++;
771 FOR_EACH_EDGE (e, ei, bb->succs)
772 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
773 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
774 else
775 e->probability = 0;
778 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
779 note if not already present. Remove now useless REG_BR_PRED notes. */
781 static void
782 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
784 rtx prob_note;
785 rtx *pnote;
786 rtx note;
787 int best_probability = PROB_EVEN;
788 enum br_predictor best_predictor = END_PREDICTORS;
789 int combined_probability = REG_BR_PROB_BASE / 2;
790 int d;
791 bool first_match = false;
792 bool found = false;
794 if (!can_predict_insn_p (insn))
796 set_even_probabilities (bb);
797 return;
800 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
801 pnote = &REG_NOTES (insn);
802 if (dump_file)
803 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
804 bb->index);
806 /* We implement "first match" heuristics and use probability guessed
807 by predictor with smallest index. */
808 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
809 if (REG_NOTE_KIND (note) == REG_BR_PRED)
811 enum br_predictor predictor = ((enum br_predictor)
812 INTVAL (XEXP (XEXP (note, 0), 0)));
813 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
815 found = true;
816 if (best_predictor > predictor)
817 best_probability = probability, best_predictor = predictor;
819 d = (combined_probability * probability
820 + (REG_BR_PROB_BASE - combined_probability)
821 * (REG_BR_PROB_BASE - probability));
823 /* Use FP math to avoid overflows of 32bit integers. */
824 if (d == 0)
825 /* If one probability is 0% and one 100%, avoid division by zero. */
826 combined_probability = REG_BR_PROB_BASE / 2;
827 else
828 combined_probability = (((double) combined_probability) * probability
829 * REG_BR_PROB_BASE / d + 0.5);
832 /* Decide which heuristic to use. In case we didn't match anything,
833 use no_prediction heuristic, in case we did match, use either
834 first match or Dempster-Shaffer theory depending on the flags. */
836 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
837 first_match = true;
839 if (!found)
840 dump_prediction (dump_file, PRED_NO_PREDICTION,
841 combined_probability, bb, true);
842 else
844 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
845 bb, !first_match);
846 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
847 bb, first_match);
850 if (first_match)
851 combined_probability = best_probability;
852 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
854 while (*pnote)
856 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
858 enum br_predictor predictor = ((enum br_predictor)
859 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
860 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
862 dump_prediction (dump_file, predictor, probability, bb,
863 !first_match || best_predictor == predictor);
864 *pnote = XEXP (*pnote, 1);
866 else
867 pnote = &XEXP (*pnote, 1);
870 if (!prob_note)
872 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
874 /* Save the prediction into CFG in case we are seeing non-degenerated
875 conditional jump. */
876 if (!single_succ_p (bb))
878 BRANCH_EDGE (bb)->probability = combined_probability;
879 FALLTHRU_EDGE (bb)->probability
880 = REG_BR_PROB_BASE - combined_probability;
883 else if (!single_succ_p (bb))
885 int prob = XINT (prob_note, 0);
887 BRANCH_EDGE (bb)->probability = prob;
888 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
890 else
891 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
894 /* Combine predictions into single probability and store them into CFG.
895 Remove now useless prediction entries. */
897 static void
898 combine_predictions_for_bb (basic_block bb)
900 int best_probability = PROB_EVEN;
901 enum br_predictor best_predictor = END_PREDICTORS;
902 int combined_probability = REG_BR_PROB_BASE / 2;
903 int d;
904 bool first_match = false;
905 bool found = false;
906 struct edge_prediction *pred;
907 int nedges = 0;
908 edge e, first = NULL, second = NULL;
909 edge_iterator ei;
911 FOR_EACH_EDGE (e, ei, bb->succs)
912 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
914 nedges ++;
915 if (first && !second)
916 second = e;
917 if (!first)
918 first = e;
921 /* When there is no successor or only one choice, prediction is easy.
923 We are lazy for now and predict only basic blocks with two outgoing
924 edges. It is possible to predict generic case too, but we have to
925 ignore first match heuristics and do more involved combining. Implement
926 this later. */
927 if (nedges != 2)
929 if (!bb->count)
930 set_even_probabilities (bb);
931 clear_bb_predictions (bb);
932 if (dump_file)
933 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
934 nedges, bb->index);
935 return;
938 if (dump_file)
939 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
941 edge_prediction **preds = bb_predictions->get (bb);
942 if (preds)
944 /* We implement "first match" heuristics and use probability guessed
945 by predictor with smallest index. */
946 for (pred = *preds; pred; pred = pred->ep_next)
948 enum br_predictor predictor = pred->ep_predictor;
949 int probability = pred->ep_probability;
951 if (pred->ep_edge != first)
952 probability = REG_BR_PROB_BASE - probability;
954 found = true;
955 /* First match heuristics would be widly confused if we predicted
956 both directions. */
957 if (best_predictor > predictor)
959 struct edge_prediction *pred2;
960 int prob = probability;
962 for (pred2 = (struct edge_prediction *) *preds;
963 pred2; pred2 = pred2->ep_next)
964 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
966 int probability2 = pred->ep_probability;
968 if (pred2->ep_edge != first)
969 probability2 = REG_BR_PROB_BASE - probability2;
971 if ((probability < REG_BR_PROB_BASE / 2) !=
972 (probability2 < REG_BR_PROB_BASE / 2))
973 break;
975 /* If the same predictor later gave better result, go for it! */
976 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
977 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
978 prob = probability2;
980 if (!pred2)
981 best_probability = prob, best_predictor = predictor;
984 d = (combined_probability * probability
985 + (REG_BR_PROB_BASE - combined_probability)
986 * (REG_BR_PROB_BASE - probability));
988 /* Use FP math to avoid overflows of 32bit integers. */
989 if (d == 0)
990 /* If one probability is 0% and one 100%, avoid division by zero. */
991 combined_probability = REG_BR_PROB_BASE / 2;
992 else
993 combined_probability = (((double) combined_probability)
994 * probability
995 * REG_BR_PROB_BASE / d + 0.5);
999 /* Decide which heuristic to use. In case we didn't match anything,
1000 use no_prediction heuristic, in case we did match, use either
1001 first match or Dempster-Shaffer theory depending on the flags. */
1003 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
1004 first_match = true;
1006 if (!found)
1007 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
1008 else
1010 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1011 !first_match);
1012 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1013 first_match);
1016 if (first_match)
1017 combined_probability = best_probability;
1018 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
1020 if (preds)
1022 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1024 enum br_predictor predictor = pred->ep_predictor;
1025 int probability = pred->ep_probability;
1027 if (pred->ep_edge != EDGE_SUCC (bb, 0))
1028 probability = REG_BR_PROB_BASE - probability;
1029 dump_prediction (dump_file, predictor, probability, bb,
1030 !first_match || best_predictor == predictor);
1033 clear_bb_predictions (bb);
1035 if (!bb->count)
1037 first->probability = combined_probability;
1038 second->probability = REG_BR_PROB_BASE - combined_probability;
1042 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1043 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1045 T1 and T2 should be one of the following cases:
1046 1. T1 is SSA_NAME, T2 is NULL
1047 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1048 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1050 static tree
1051 strips_small_constant (tree t1, tree t2)
1053 tree ret = NULL;
1054 int value = 0;
1056 if (!t1)
1057 return NULL;
1058 else if (TREE_CODE (t1) == SSA_NAME)
1059 ret = t1;
1060 else if (tree_fits_shwi_p (t1))
1061 value = tree_to_shwi (t1);
1062 else
1063 return NULL;
1065 if (!t2)
1066 return ret;
1067 else if (tree_fits_shwi_p (t2))
1068 value = tree_to_shwi (t2);
1069 else if (TREE_CODE (t2) == SSA_NAME)
1071 if (ret)
1072 return NULL;
1073 else
1074 ret = t2;
1077 if (value <= 4 && value >= -4)
1078 return ret;
1079 else
1080 return NULL;
1083 /* Return the SSA_NAME in T or T's operands.
1084 Return NULL if SSA_NAME cannot be found. */
1086 static tree
1087 get_base_value (tree t)
1089 if (TREE_CODE (t) == SSA_NAME)
1090 return t;
1092 if (!BINARY_CLASS_P (t))
1093 return NULL;
1095 switch (TREE_OPERAND_LENGTH (t))
1097 case 1:
1098 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1099 case 2:
1100 return strips_small_constant (TREE_OPERAND (t, 0),
1101 TREE_OPERAND (t, 1));
1102 default:
1103 return NULL;
1107 /* Check the compare STMT in LOOP. If it compares an induction
1108 variable to a loop invariant, return true, and save
1109 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1110 Otherwise return false and set LOOP_INVAIANT to NULL. */
1112 static bool
1113 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1114 tree *loop_invariant,
1115 enum tree_code *compare_code,
1116 tree *loop_step,
1117 tree *loop_iv_base)
1119 tree op0, op1, bound, base;
1120 affine_iv iv0, iv1;
1121 enum tree_code code;
1122 tree step;
1124 code = gimple_cond_code (stmt);
1125 *loop_invariant = NULL;
1127 switch (code)
1129 case GT_EXPR:
1130 case GE_EXPR:
1131 case NE_EXPR:
1132 case LT_EXPR:
1133 case LE_EXPR:
1134 case EQ_EXPR:
1135 break;
1137 default:
1138 return false;
1141 op0 = gimple_cond_lhs (stmt);
1142 op1 = gimple_cond_rhs (stmt);
1144 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1145 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1146 return false;
1147 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1148 return false;
1149 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1150 return false;
1151 if (TREE_CODE (iv0.step) != INTEGER_CST
1152 || TREE_CODE (iv1.step) != INTEGER_CST)
1153 return false;
1154 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1155 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1156 return false;
1158 if (integer_zerop (iv0.step))
1160 if (code != NE_EXPR && code != EQ_EXPR)
1161 code = invert_tree_comparison (code, false);
1162 bound = iv0.base;
1163 base = iv1.base;
1164 if (tree_fits_shwi_p (iv1.step))
1165 step = iv1.step;
1166 else
1167 return false;
1169 else
1171 bound = iv1.base;
1172 base = iv0.base;
1173 if (tree_fits_shwi_p (iv0.step))
1174 step = iv0.step;
1175 else
1176 return false;
1179 if (TREE_CODE (bound) != INTEGER_CST)
1180 bound = get_base_value (bound);
1181 if (!bound)
1182 return false;
1183 if (TREE_CODE (base) != INTEGER_CST)
1184 base = get_base_value (base);
1185 if (!base)
1186 return false;
1188 *loop_invariant = bound;
1189 *compare_code = code;
1190 *loop_step = step;
1191 *loop_iv_base = base;
1192 return true;
1195 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1197 static bool
1198 expr_coherent_p (tree t1, tree t2)
1200 gimple stmt;
1201 tree ssa_name_1 = NULL;
1202 tree ssa_name_2 = NULL;
1204 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1205 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1207 if (t1 == t2)
1208 return true;
1210 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1211 return true;
1212 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1213 return false;
1215 /* Check to see if t1 is expressed/defined with t2. */
1216 stmt = SSA_NAME_DEF_STMT (t1);
1217 gcc_assert (stmt != NULL);
1218 if (is_gimple_assign (stmt))
1220 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1221 if (ssa_name_1 && ssa_name_1 == t2)
1222 return true;
1225 /* Check to see if t2 is expressed/defined with t1. */
1226 stmt = SSA_NAME_DEF_STMT (t2);
1227 gcc_assert (stmt != NULL);
1228 if (is_gimple_assign (stmt))
1230 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1231 if (ssa_name_2 && ssa_name_2 == t1)
1232 return true;
1235 /* Compare if t1 and t2's def_stmts are identical. */
1236 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1237 return true;
1238 else
1239 return false;
1242 /* Predict branch probability of BB when BB contains a branch that compares
1243 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1244 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1246 E.g.
1247 for (int i = 0; i < bound; i++) {
1248 if (i < bound - 2)
1249 computation_1();
1250 else
1251 computation_2();
1254 In this loop, we will predict the branch inside the loop to be taken. */
1256 static void
1257 predict_iv_comparison (struct loop *loop, basic_block bb,
1258 tree loop_bound_var,
1259 tree loop_iv_base_var,
1260 enum tree_code loop_bound_code,
1261 int loop_bound_step)
1263 gimple stmt;
1264 tree compare_var, compare_base;
1265 enum tree_code compare_code;
1266 tree compare_step_var;
1267 edge then_edge;
1268 edge_iterator ei;
1270 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1271 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1272 || predicted_by_p (bb, PRED_LOOP_EXIT))
1273 return;
1275 stmt = last_stmt (bb);
1276 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1277 return;
1278 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1279 &compare_code,
1280 &compare_step_var,
1281 &compare_base))
1282 return;
1284 /* Find the taken edge. */
1285 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1286 if (then_edge->flags & EDGE_TRUE_VALUE)
1287 break;
1289 /* When comparing an IV to a loop invariant, NE is more likely to be
1290 taken while EQ is more likely to be not-taken. */
1291 if (compare_code == NE_EXPR)
1293 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1294 return;
1296 else if (compare_code == EQ_EXPR)
1298 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1299 return;
1302 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1303 return;
1305 /* If loop bound, base and compare bound are all constants, we can
1306 calculate the probability directly. */
1307 if (tree_fits_shwi_p (loop_bound_var)
1308 && tree_fits_shwi_p (compare_var)
1309 && tree_fits_shwi_p (compare_base))
1311 int probability;
1312 bool overflow, overall_overflow = false;
1313 widest_int compare_count, tem;
1315 /* (loop_bound - base) / compare_step */
1316 tem = wi::sub (wi::to_widest (loop_bound_var),
1317 wi::to_widest (compare_base), SIGNED, &overflow);
1318 overall_overflow |= overflow;
1319 widest_int loop_count = wi::div_trunc (tem,
1320 wi::to_widest (compare_step_var),
1321 SIGNED, &overflow);
1322 overall_overflow |= overflow;
1324 if (!wi::neg_p (wi::to_widest (compare_step_var))
1325 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1327 /* (loop_bound - compare_bound) / compare_step */
1328 tem = wi::sub (wi::to_widest (loop_bound_var),
1329 wi::to_widest (compare_var), SIGNED, &overflow);
1330 overall_overflow |= overflow;
1331 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1332 SIGNED, &overflow);
1333 overall_overflow |= overflow;
1335 else
1337 /* (compare_bound - base) / compare_step */
1338 tem = wi::sub (wi::to_widest (compare_var),
1339 wi::to_widest (compare_base), SIGNED, &overflow);
1340 overall_overflow |= overflow;
1341 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1342 SIGNED, &overflow);
1343 overall_overflow |= overflow;
1345 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1346 ++compare_count;
1347 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1348 ++loop_count;
1349 if (wi::neg_p (compare_count))
1350 compare_count = 0;
1351 if (wi::neg_p (loop_count))
1352 loop_count = 0;
1353 if (loop_count == 0)
1354 probability = 0;
1355 else if (wi::cmps (compare_count, loop_count) == 1)
1356 probability = REG_BR_PROB_BASE;
1357 else
1359 tem = compare_count * REG_BR_PROB_BASE;
1360 tem = wi::udiv_trunc (tem, loop_count);
1361 probability = tem.to_uhwi ();
1364 if (!overall_overflow)
1365 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1367 return;
1370 if (expr_coherent_p (loop_bound_var, compare_var))
1372 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1373 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1374 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1375 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1376 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1377 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1378 else if (loop_bound_code == NE_EXPR)
1380 /* If the loop backedge condition is "(i != bound)", we do
1381 the comparison based on the step of IV:
1382 * step < 0 : backedge condition is like (i > bound)
1383 * step > 0 : backedge condition is like (i < bound) */
1384 gcc_assert (loop_bound_step != 0);
1385 if (loop_bound_step > 0
1386 && (compare_code == LT_EXPR
1387 || compare_code == LE_EXPR))
1388 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1389 else if (loop_bound_step < 0
1390 && (compare_code == GT_EXPR
1391 || compare_code == GE_EXPR))
1392 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1393 else
1394 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1396 else
1397 /* The branch is predicted not-taken if loop_bound_code is
1398 opposite with compare_code. */
1399 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1401 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1403 /* For cases like:
1404 for (i = s; i < h; i++)
1405 if (i > s + 2) ....
1406 The branch should be predicted taken. */
1407 if (loop_bound_step > 0
1408 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1409 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1410 else if (loop_bound_step < 0
1411 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1412 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1413 else
1414 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1418 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1419 exits are resulted from short-circuit conditions that will generate an
1420 if_tmp. E.g.:
1422 if (foo() || global > 10)
1423 break;
1425 This will be translated into:
1427 BB3:
1428 loop header...
1429 BB4:
1430 if foo() goto BB6 else goto BB5
1431 BB5:
1432 if global > 10 goto BB6 else goto BB7
1433 BB6:
1434 goto BB7
1435 BB7:
1436 iftmp = (PHI 0(BB5), 1(BB6))
1437 if iftmp == 1 goto BB8 else goto BB3
1438 BB8:
1439 outside of the loop...
1441 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1442 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1443 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1444 exits to predict them using PRED_LOOP_EXIT. */
1446 static void
1447 predict_extra_loop_exits (edge exit_edge)
1449 unsigned i;
1450 bool check_value_one;
1451 gimple phi_stmt;
1452 tree cmp_rhs, cmp_lhs;
1453 gimple cmp_stmt = last_stmt (exit_edge->src);
1455 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1456 return;
1457 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1458 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1459 if (!TREE_CONSTANT (cmp_rhs)
1460 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1461 return;
1462 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1463 return;
1465 /* If check_value_one is true, only the phi_args with value '1' will lead
1466 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1467 loop exit. */
1468 check_value_one = (((integer_onep (cmp_rhs))
1469 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1470 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1472 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1473 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1474 return;
1476 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1478 edge e1;
1479 edge_iterator ei;
1480 tree val = gimple_phi_arg_def (phi_stmt, i);
1481 edge e = gimple_phi_arg_edge (phi_stmt, i);
1483 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1484 continue;
1485 if ((check_value_one ^ integer_onep (val)) == 1)
1486 continue;
1487 if (EDGE_COUNT (e->src->succs) != 1)
1489 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1490 continue;
1493 FOR_EACH_EDGE (e1, ei, e->src->preds)
1494 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1498 /* Predict edge probabilities by exploiting loop structure. */
1500 static void
1501 predict_loops (void)
1503 struct loop *loop;
1505 /* Try to predict out blocks in a loop that are not part of a
1506 natural loop. */
1507 FOR_EACH_LOOP (loop, 0)
1509 basic_block bb, *bbs;
1510 unsigned j, n_exits;
1511 vec<edge> exits;
1512 struct tree_niter_desc niter_desc;
1513 edge ex;
1514 struct nb_iter_bound *nb_iter;
1515 enum tree_code loop_bound_code = ERROR_MARK;
1516 tree loop_bound_step = NULL;
1517 tree loop_bound_var = NULL;
1518 tree loop_iv_base = NULL;
1519 gimple stmt = NULL;
1521 exits = get_loop_exit_edges (loop);
1522 n_exits = exits.length ();
1523 if (!n_exits)
1525 exits.release ();
1526 continue;
1529 FOR_EACH_VEC_ELT (exits, j, ex)
1531 tree niter = NULL;
1532 HOST_WIDE_INT nitercst;
1533 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1534 int probability;
1535 enum br_predictor predictor;
1537 predict_extra_loop_exits (ex);
1539 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1540 niter = niter_desc.niter;
1541 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1542 niter = loop_niter_by_eval (loop, ex);
1544 if (TREE_CODE (niter) == INTEGER_CST)
1546 if (tree_fits_uhwi_p (niter)
1547 && max
1548 && compare_tree_int (niter, max - 1) == -1)
1549 nitercst = tree_to_uhwi (niter) + 1;
1550 else
1551 nitercst = max;
1552 predictor = PRED_LOOP_ITERATIONS;
1554 /* If we have just one exit and we can derive some information about
1555 the number of iterations of the loop from the statements inside
1556 the loop, use it to predict this exit. */
1557 else if (n_exits == 1)
1559 nitercst = estimated_stmt_executions_int (loop);
1560 if (nitercst < 0)
1561 continue;
1562 if (nitercst > max)
1563 nitercst = max;
1565 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1567 else
1568 continue;
1570 /* If the prediction for number of iterations is zero, do not
1571 predict the exit edges. */
1572 if (nitercst == 0)
1573 continue;
1575 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1576 predict_edge (ex, predictor, probability);
1578 exits.release ();
1580 /* Find information about loop bound variables. */
1581 for (nb_iter = loop->bounds; nb_iter;
1582 nb_iter = nb_iter->next)
1583 if (nb_iter->stmt
1584 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1586 stmt = nb_iter->stmt;
1587 break;
1589 if (!stmt && last_stmt (loop->header)
1590 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1591 stmt = last_stmt (loop->header);
1592 if (stmt)
1593 is_comparison_with_loop_invariant_p (stmt, loop,
1594 &loop_bound_var,
1595 &loop_bound_code,
1596 &loop_bound_step,
1597 &loop_iv_base);
1599 bbs = get_loop_body (loop);
1601 for (j = 0; j < loop->num_nodes; j++)
1603 int header_found = 0;
1604 edge e;
1605 edge_iterator ei;
1607 bb = bbs[j];
1609 /* Bypass loop heuristics on continue statement. These
1610 statements construct loops via "non-loop" constructs
1611 in the source language and are better to be handled
1612 separately. */
1613 if (predicted_by_p (bb, PRED_CONTINUE))
1614 continue;
1616 /* Loop branch heuristics - predict an edge back to a
1617 loop's head as taken. */
1618 if (bb == loop->latch)
1620 e = find_edge (loop->latch, loop->header);
1621 if (e)
1623 header_found = 1;
1624 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1628 /* Loop exit heuristics - predict an edge exiting the loop if the
1629 conditional has no loop header successors as not taken. */
1630 if (!header_found
1631 /* If we already used more reliable loop exit predictors, do not
1632 bother with PRED_LOOP_EXIT. */
1633 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1634 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1636 /* For loop with many exits we don't want to predict all exits
1637 with the pretty large probability, because if all exits are
1638 considered in row, the loop would be predicted to iterate
1639 almost never. The code to divide probability by number of
1640 exits is very rough. It should compute the number of exits
1641 taken in each patch through function (not the overall number
1642 of exits that might be a lot higher for loops with wide switch
1643 statements in them) and compute n-th square root.
1645 We limit the minimal probability by 2% to avoid
1646 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1647 as this was causing regression in perl benchmark containing such
1648 a wide loop. */
1650 int probability = ((REG_BR_PROB_BASE
1651 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1652 / n_exits);
1653 if (probability < HITRATE (2))
1654 probability = HITRATE (2);
1655 FOR_EACH_EDGE (e, ei, bb->succs)
1656 if (e->dest->index < NUM_FIXED_BLOCKS
1657 || !flow_bb_inside_loop_p (loop, e->dest))
1658 predict_edge (e, PRED_LOOP_EXIT, probability);
1660 if (loop_bound_var)
1661 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1662 loop_bound_code,
1663 tree_to_shwi (loop_bound_step));
1666 /* Free basic blocks from get_loop_body. */
1667 free (bbs);
1671 /* Attempt to predict probabilities of BB outgoing edges using local
1672 properties. */
1673 static void
1674 bb_estimate_probability_locally (basic_block bb)
1676 rtx_insn *last_insn = BB_END (bb);
1677 rtx cond;
1679 if (! can_predict_insn_p (last_insn))
1680 return;
1681 cond = get_condition (last_insn, NULL, false, false);
1682 if (! cond)
1683 return;
1685 /* Try "pointer heuristic."
1686 A comparison ptr == 0 is predicted as false.
1687 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1688 if (COMPARISON_P (cond)
1689 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1690 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1692 if (GET_CODE (cond) == EQ)
1693 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1694 else if (GET_CODE (cond) == NE)
1695 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1697 else
1699 /* Try "opcode heuristic."
1700 EQ tests are usually false and NE tests are usually true. Also,
1701 most quantities are positive, so we can make the appropriate guesses
1702 about signed comparisons against zero. */
1703 switch (GET_CODE (cond))
1705 case CONST_INT:
1706 /* Unconditional branch. */
1707 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1708 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1709 break;
1711 case EQ:
1712 case UNEQ:
1713 /* Floating point comparisons appears to behave in a very
1714 unpredictable way because of special role of = tests in
1715 FP code. */
1716 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1718 /* Comparisons with 0 are often used for booleans and there is
1719 nothing useful to predict about them. */
1720 else if (XEXP (cond, 1) == const0_rtx
1721 || XEXP (cond, 0) == const0_rtx)
1723 else
1724 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1725 break;
1727 case NE:
1728 case LTGT:
1729 /* Floating point comparisons appears to behave in a very
1730 unpredictable way because of special role of = tests in
1731 FP code. */
1732 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1734 /* Comparisons with 0 are often used for booleans and there is
1735 nothing useful to predict about them. */
1736 else if (XEXP (cond, 1) == const0_rtx
1737 || XEXP (cond, 0) == const0_rtx)
1739 else
1740 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1741 break;
1743 case ORDERED:
1744 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1745 break;
1747 case UNORDERED:
1748 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1749 break;
1751 case LE:
1752 case LT:
1753 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1754 || XEXP (cond, 1) == constm1_rtx)
1755 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1756 break;
1758 case GE:
1759 case GT:
1760 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1761 || XEXP (cond, 1) == constm1_rtx)
1762 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1763 break;
1765 default:
1766 break;
1770 /* Set edge->probability for each successor edge of BB. */
1771 void
1772 guess_outgoing_edge_probabilities (basic_block bb)
1774 bb_estimate_probability_locally (bb);
1775 combine_predictions_for_insn (BB_END (bb), bb);
1778 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1780 /* Helper function for expr_expected_value. */
1782 static tree
1783 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1784 tree op1, bitmap visited, enum br_predictor *predictor)
1786 gimple def;
1788 if (predictor)
1789 *predictor = PRED_UNCONDITIONAL;
1791 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1793 if (TREE_CONSTANT (op0))
1794 return op0;
1796 if (code != SSA_NAME)
1797 return NULL_TREE;
1799 def = SSA_NAME_DEF_STMT (op0);
1801 /* If we were already here, break the infinite cycle. */
1802 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1803 return NULL;
1805 if (gimple_code (def) == GIMPLE_PHI)
1807 /* All the arguments of the PHI node must have the same constant
1808 length. */
1809 int i, n = gimple_phi_num_args (def);
1810 tree val = NULL, new_val;
1812 for (i = 0; i < n; i++)
1814 tree arg = PHI_ARG_DEF (def, i);
1815 enum br_predictor predictor2;
1817 /* If this PHI has itself as an argument, we cannot
1818 determine the string length of this argument. However,
1819 if we can find an expected constant value for the other
1820 PHI args then we can still be sure that this is
1821 likely a constant. So be optimistic and just
1822 continue with the next argument. */
1823 if (arg == PHI_RESULT (def))
1824 continue;
1826 new_val = expr_expected_value (arg, visited, &predictor2);
1828 /* It is difficult to combine value predictors. Simply assume
1829 that later predictor is weaker and take its prediction. */
1830 if (predictor && *predictor < predictor2)
1831 *predictor = predictor2;
1832 if (!new_val)
1833 return NULL;
1834 if (!val)
1835 val = new_val;
1836 else if (!operand_equal_p (val, new_val, false))
1837 return NULL;
1839 return val;
1841 if (is_gimple_assign (def))
1843 if (gimple_assign_lhs (def) != op0)
1844 return NULL;
1846 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1847 gimple_assign_rhs1 (def),
1848 gimple_assign_rhs_code (def),
1849 gimple_assign_rhs2 (def),
1850 visited, predictor);
1853 if (is_gimple_call (def))
1855 tree decl = gimple_call_fndecl (def);
1856 if (!decl)
1858 if (gimple_call_internal_p (def)
1859 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1861 gcc_assert (gimple_call_num_args (def) == 3);
1862 tree val = gimple_call_arg (def, 0);
1863 if (TREE_CONSTANT (val))
1864 return val;
1865 if (predictor)
1867 tree val2 = gimple_call_arg (def, 2);
1868 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1869 && tree_fits_uhwi_p (val2)
1870 && tree_to_uhwi (val2) < END_PREDICTORS);
1871 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1873 return gimple_call_arg (def, 1);
1875 return NULL;
1877 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1878 switch (DECL_FUNCTION_CODE (decl))
1880 case BUILT_IN_EXPECT:
1882 tree val;
1883 if (gimple_call_num_args (def) != 2)
1884 return NULL;
1885 val = gimple_call_arg (def, 0);
1886 if (TREE_CONSTANT (val))
1887 return val;
1888 if (predictor)
1889 *predictor = PRED_BUILTIN_EXPECT;
1890 return gimple_call_arg (def, 1);
1893 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1894 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1895 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1896 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1897 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1898 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1899 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1900 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1901 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1902 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1903 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1904 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1905 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1906 /* Assume that any given atomic operation has low contention,
1907 and thus the compare-and-swap operation succeeds. */
1908 if (predictor)
1909 *predictor = PRED_COMPARE_AND_SWAP;
1910 return boolean_true_node;
1911 default:
1912 break;
1916 return NULL;
1919 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1921 tree res;
1922 enum br_predictor predictor2;
1923 op0 = expr_expected_value (op0, visited, predictor);
1924 if (!op0)
1925 return NULL;
1926 op1 = expr_expected_value (op1, visited, &predictor2);
1927 if (predictor && *predictor < predictor2)
1928 *predictor = predictor2;
1929 if (!op1)
1930 return NULL;
1931 res = fold_build2 (code, type, op0, op1);
1932 if (TREE_CONSTANT (res))
1933 return res;
1934 return NULL;
1936 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1938 tree res;
1939 op0 = expr_expected_value (op0, visited, predictor);
1940 if (!op0)
1941 return NULL;
1942 res = fold_build1 (code, type, op0);
1943 if (TREE_CONSTANT (res))
1944 return res;
1945 return NULL;
1947 return NULL;
1950 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1951 The function is used by builtin_expect branch predictor so the evidence
1952 must come from this construct and additional possible constant folding.
1954 We may want to implement more involved value guess (such as value range
1955 propagation based prediction), but such tricks shall go to new
1956 implementation. */
1958 static tree
1959 expr_expected_value (tree expr, bitmap visited,
1960 enum br_predictor *predictor)
1962 enum tree_code code;
1963 tree op0, op1;
1965 if (TREE_CONSTANT (expr))
1967 if (predictor)
1968 *predictor = PRED_UNCONDITIONAL;
1969 return expr;
1972 extract_ops_from_tree (expr, &code, &op0, &op1);
1973 return expr_expected_value_1 (TREE_TYPE (expr),
1974 op0, code, op1, visited, predictor);
1977 /* Predict using opcode of the last statement in basic block. */
1978 static void
1979 tree_predict_by_opcode (basic_block bb)
1981 gimple stmt = last_stmt (bb);
1982 edge then_edge;
1983 tree op0, op1;
1984 tree type;
1985 tree val;
1986 enum tree_code cmp;
1987 bitmap visited;
1988 edge_iterator ei;
1989 enum br_predictor predictor;
1991 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1992 return;
1993 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1994 if (then_edge->flags & EDGE_TRUE_VALUE)
1995 break;
1996 op0 = gimple_cond_lhs (stmt);
1997 op1 = gimple_cond_rhs (stmt);
1998 cmp = gimple_cond_code (stmt);
1999 type = TREE_TYPE (op0);
2000 visited = BITMAP_ALLOC (NULL);
2001 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
2002 &predictor);
2003 BITMAP_FREE (visited);
2004 if (val && TREE_CODE (val) == INTEGER_CST)
2006 if (predictor == PRED_BUILTIN_EXPECT)
2008 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2010 gcc_assert (percent >= 0 && percent <= 100);
2011 if (integer_zerop (val))
2012 percent = 100 - percent;
2013 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2015 else
2016 predict_edge (then_edge, predictor,
2017 integer_zerop (val) ? NOT_TAKEN : TAKEN);
2019 /* Try "pointer heuristic."
2020 A comparison ptr == 0 is predicted as false.
2021 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2022 if (POINTER_TYPE_P (type))
2024 if (cmp == EQ_EXPR)
2025 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2026 else if (cmp == NE_EXPR)
2027 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2029 else
2031 /* Try "opcode heuristic."
2032 EQ tests are usually false and NE tests are usually true. Also,
2033 most quantities are positive, so we can make the appropriate guesses
2034 about signed comparisons against zero. */
2035 switch (cmp)
2037 case EQ_EXPR:
2038 case UNEQ_EXPR:
2039 /* Floating point comparisons appears to behave in a very
2040 unpredictable way because of special role of = tests in
2041 FP code. */
2042 if (FLOAT_TYPE_P (type))
2044 /* Comparisons with 0 are often used for booleans and there is
2045 nothing useful to predict about them. */
2046 else if (integer_zerop (op0) || integer_zerop (op1))
2048 else
2049 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2050 break;
2052 case NE_EXPR:
2053 case LTGT_EXPR:
2054 /* Floating point comparisons appears to behave in a very
2055 unpredictable way because of special role of = tests in
2056 FP code. */
2057 if (FLOAT_TYPE_P (type))
2059 /* Comparisons with 0 are often used for booleans and there is
2060 nothing useful to predict about them. */
2061 else if (integer_zerop (op0)
2062 || integer_zerop (op1))
2064 else
2065 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2066 break;
2068 case ORDERED_EXPR:
2069 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2070 break;
2072 case UNORDERED_EXPR:
2073 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2074 break;
2076 case LE_EXPR:
2077 case LT_EXPR:
2078 if (integer_zerop (op1)
2079 || integer_onep (op1)
2080 || integer_all_onesp (op1)
2081 || real_zerop (op1)
2082 || real_onep (op1)
2083 || real_minus_onep (op1))
2084 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2085 break;
2087 case GE_EXPR:
2088 case GT_EXPR:
2089 if (integer_zerop (op1)
2090 || integer_onep (op1)
2091 || integer_all_onesp (op1)
2092 || real_zerop (op1)
2093 || real_onep (op1)
2094 || real_minus_onep (op1))
2095 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2096 break;
2098 default:
2099 break;
2103 /* Try to guess whether the value of return means error code. */
2105 static enum br_predictor
2106 return_prediction (tree val, enum prediction *prediction)
2108 /* VOID. */
2109 if (!val)
2110 return PRED_NO_PREDICTION;
2111 /* Different heuristics for pointers and scalars. */
2112 if (POINTER_TYPE_P (TREE_TYPE (val)))
2114 /* NULL is usually not returned. */
2115 if (integer_zerop (val))
2117 *prediction = NOT_TAKEN;
2118 return PRED_NULL_RETURN;
2121 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2123 /* Negative return values are often used to indicate
2124 errors. */
2125 if (TREE_CODE (val) == INTEGER_CST
2126 && tree_int_cst_sgn (val) < 0)
2128 *prediction = NOT_TAKEN;
2129 return PRED_NEGATIVE_RETURN;
2131 /* Constant return values seems to be commonly taken.
2132 Zero/one often represent booleans so exclude them from the
2133 heuristics. */
2134 if (TREE_CONSTANT (val)
2135 && (!integer_zerop (val) && !integer_onep (val)))
2137 *prediction = TAKEN;
2138 return PRED_CONST_RETURN;
2141 return PRED_NO_PREDICTION;
2144 /* Find the basic block with return expression and look up for possible
2145 return value trying to apply RETURN_PREDICTION heuristics. */
2146 static void
2147 apply_return_prediction (void)
2149 gimple return_stmt = NULL;
2150 tree return_val;
2151 edge e;
2152 gimple phi;
2153 int phi_num_args, i;
2154 enum br_predictor pred;
2155 enum prediction direction;
2156 edge_iterator ei;
2158 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2160 return_stmt = last_stmt (e->src);
2161 if (return_stmt
2162 && gimple_code (return_stmt) == GIMPLE_RETURN)
2163 break;
2165 if (!e)
2166 return;
2167 return_val = gimple_return_retval (return_stmt);
2168 if (!return_val)
2169 return;
2170 if (TREE_CODE (return_val) != SSA_NAME
2171 || !SSA_NAME_DEF_STMT (return_val)
2172 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2173 return;
2174 phi = SSA_NAME_DEF_STMT (return_val);
2175 phi_num_args = gimple_phi_num_args (phi);
2176 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2178 /* Avoid the degenerate case where all return values form the function
2179 belongs to same category (ie they are all positive constants)
2180 so we can hardly say something about them. */
2181 for (i = 1; i < phi_num_args; i++)
2182 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2183 break;
2184 if (i != phi_num_args)
2185 for (i = 0; i < phi_num_args; i++)
2187 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2188 if (pred != PRED_NO_PREDICTION)
2189 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2190 direction);
2194 /* Look for basic block that contains unlikely to happen events
2195 (such as noreturn calls) and mark all paths leading to execution
2196 of this basic blocks as unlikely. */
2198 static void
2199 tree_bb_level_predictions (void)
2201 basic_block bb;
2202 bool has_return_edges = false;
2203 edge e;
2204 edge_iterator ei;
2206 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2207 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2209 has_return_edges = true;
2210 break;
2213 apply_return_prediction ();
2215 FOR_EACH_BB_FN (bb, cfun)
2217 gimple_stmt_iterator gsi;
2219 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2221 gimple stmt = gsi_stmt (gsi);
2222 tree decl;
2224 if (is_gimple_call (stmt))
2226 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2227 && has_return_edges)
2228 predict_paths_leading_to (bb, PRED_NORETURN,
2229 NOT_TAKEN);
2230 decl = gimple_call_fndecl (stmt);
2231 if (decl
2232 && lookup_attribute ("cold",
2233 DECL_ATTRIBUTES (decl)))
2234 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2235 NOT_TAKEN);
2237 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2239 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2240 gimple_predict_outcome (stmt));
2241 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2242 hints to callers. */
2248 #ifdef ENABLE_CHECKING
2250 /* Callback for hash_map::traverse, asserts that the pointer map is
2251 empty. */
2253 bool
2254 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2255 void *)
2257 gcc_assert (!value);
2258 return false;
2260 #endif
2262 /* Predict branch probabilities and estimate profile for basic block BB. */
2264 static void
2265 tree_estimate_probability_bb (basic_block bb)
2267 edge e;
2268 edge_iterator ei;
2269 gimple last;
2271 FOR_EACH_EDGE (e, ei, bb->succs)
2273 /* Predict edges to user labels with attributes. */
2274 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2276 gimple_stmt_iterator gi;
2277 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2279 gimple stmt = gsi_stmt (gi);
2280 tree decl;
2282 if (gimple_code (stmt) != GIMPLE_LABEL)
2283 break;
2284 decl = gimple_label_label (stmt);
2285 if (DECL_ARTIFICIAL (decl))
2286 continue;
2288 /* Finally, we have a user-defined label. */
2289 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2290 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2291 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2292 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2296 /* Predict early returns to be probable, as we've already taken
2297 care for error returns and other cases are often used for
2298 fast paths through function.
2300 Since we've already removed the return statements, we are
2301 looking for CFG like:
2303 if (conditional)
2306 goto return_block
2308 some other blocks
2309 return_block:
2310 return_stmt. */
2311 if (e->dest != bb->next_bb
2312 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2313 && single_succ_p (e->dest)
2314 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2315 && (last = last_stmt (e->dest)) != NULL
2316 && gimple_code (last) == GIMPLE_RETURN)
2318 edge e1;
2319 edge_iterator ei1;
2321 if (single_succ_p (bb))
2323 FOR_EACH_EDGE (e1, ei1, bb->preds)
2324 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2325 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2326 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2327 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2329 else
2330 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2331 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2332 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2333 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2336 /* Look for block we are guarding (ie we dominate it,
2337 but it doesn't postdominate us). */
2338 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2339 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2340 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2342 gimple_stmt_iterator bi;
2344 /* The call heuristic claims that a guarded function call
2345 is improbable. This is because such calls are often used
2346 to signal exceptional situations such as printing error
2347 messages. */
2348 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2349 gsi_next (&bi))
2351 gimple stmt = gsi_stmt (bi);
2352 if (is_gimple_call (stmt)
2353 /* Constant and pure calls are hardly used to signalize
2354 something exceptional. */
2355 && gimple_has_side_effects (stmt))
2357 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2358 break;
2363 tree_predict_by_opcode (bb);
2366 /* Predict branch probabilities and estimate profile of the tree CFG.
2367 This function can be called from the loop optimizers to recompute
2368 the profile information. */
2370 void
2371 tree_estimate_probability (void)
2373 basic_block bb;
2375 add_noreturn_fake_exit_edges ();
2376 connect_infinite_loops_to_exit ();
2377 /* We use loop_niter_by_eval, which requires that the loops have
2378 preheaders. */
2379 create_preheaders (CP_SIMPLE_PREHEADERS);
2380 calculate_dominance_info (CDI_POST_DOMINATORS);
2382 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2383 tree_bb_level_predictions ();
2384 record_loop_exits ();
2386 if (number_of_loops (cfun) > 1)
2387 predict_loops ();
2389 FOR_EACH_BB_FN (bb, cfun)
2390 tree_estimate_probability_bb (bb);
2392 FOR_EACH_BB_FN (bb, cfun)
2393 combine_predictions_for_bb (bb);
2395 #ifdef ENABLE_CHECKING
2396 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2397 #endif
2398 delete bb_predictions;
2399 bb_predictions = NULL;
2401 estimate_bb_frequencies (false);
2402 free_dominance_info (CDI_POST_DOMINATORS);
2403 remove_fake_exit_edges ();
2406 /* Predict edges to successors of CUR whose sources are not postdominated by
2407 BB by PRED and recurse to all postdominators. */
2409 static void
2410 predict_paths_for_bb (basic_block cur, basic_block bb,
2411 enum br_predictor pred,
2412 enum prediction taken,
2413 bitmap visited)
2415 edge e;
2416 edge_iterator ei;
2417 basic_block son;
2419 /* We are looking for all edges forming edge cut induced by
2420 set of all blocks postdominated by BB. */
2421 FOR_EACH_EDGE (e, ei, cur->preds)
2422 if (e->src->index >= NUM_FIXED_BLOCKS
2423 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2425 edge e2;
2426 edge_iterator ei2;
2427 bool found = false;
2429 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2430 if (e->flags & (EDGE_EH | EDGE_FAKE))
2431 continue;
2432 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2434 /* See if there is an edge from e->src that is not abnormal
2435 and does not lead to BB. */
2436 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2437 if (e2 != e
2438 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2439 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2441 found = true;
2442 break;
2445 /* If there is non-abnormal path leaving e->src, predict edge
2446 using predictor. Otherwise we need to look for paths
2447 leading to e->src.
2449 The second may lead to infinite loop in the case we are predicitng
2450 regions that are only reachable by abnormal edges. We simply
2451 prevent visiting given BB twice. */
2452 if (found)
2453 predict_edge_def (e, pred, taken);
2454 else if (bitmap_set_bit (visited, e->src->index))
2455 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2457 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2458 son;
2459 son = next_dom_son (CDI_POST_DOMINATORS, son))
2460 predict_paths_for_bb (son, bb, pred, taken, visited);
2463 /* Sets branch probabilities according to PREDiction and
2464 FLAGS. */
2466 static void
2467 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2468 enum prediction taken)
2470 bitmap visited = BITMAP_ALLOC (NULL);
2471 predict_paths_for_bb (bb, bb, pred, taken, visited);
2472 BITMAP_FREE (visited);
2475 /* Like predict_paths_leading_to but take edge instead of basic block. */
2477 static void
2478 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2479 enum prediction taken)
2481 bool has_nonloop_edge = false;
2482 edge_iterator ei;
2483 edge e2;
2485 basic_block bb = e->src;
2486 FOR_EACH_EDGE (e2, ei, bb->succs)
2487 if (e2->dest != e->src && e2->dest != e->dest
2488 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2489 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2491 has_nonloop_edge = true;
2492 break;
2494 if (!has_nonloop_edge)
2496 bitmap visited = BITMAP_ALLOC (NULL);
2497 predict_paths_for_bb (bb, bb, pred, taken, visited);
2498 BITMAP_FREE (visited);
2500 else
2501 predict_edge_def (e, pred, taken);
2504 /* This is used to carry information about basic blocks. It is
2505 attached to the AUX field of the standard CFG block. */
2507 struct block_info
2509 /* Estimated frequency of execution of basic_block. */
2510 sreal frequency;
2512 /* To keep queue of basic blocks to process. */
2513 basic_block next;
2515 /* Number of predecessors we need to visit first. */
2516 int npredecessors;
2519 /* Similar information for edges. */
2520 struct edge_prob_info
2522 /* In case edge is a loopback edge, the probability edge will be reached
2523 in case header is. Estimated number of iterations of the loop can be
2524 then computed as 1 / (1 - back_edge_prob). */
2525 sreal back_edge_prob;
2526 /* True if the edge is a loopback edge in the natural loop. */
2527 unsigned int back_edge:1;
2530 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2531 #undef EDGE_INFO
2532 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2534 /* Helper function for estimate_bb_frequencies.
2535 Propagate the frequencies in blocks marked in
2536 TOVISIT, starting in HEAD. */
2538 static void
2539 propagate_freq (basic_block head, bitmap tovisit)
2541 basic_block bb;
2542 basic_block last;
2543 unsigned i;
2544 edge e;
2545 basic_block nextbb;
2546 bitmap_iterator bi;
2548 /* For each basic block we need to visit count number of his predecessors
2549 we need to visit first. */
2550 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2552 edge_iterator ei;
2553 int count = 0;
2555 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2557 FOR_EACH_EDGE (e, ei, bb->preds)
2559 bool visit = bitmap_bit_p (tovisit, e->src->index);
2561 if (visit && !(e->flags & EDGE_DFS_BACK))
2562 count++;
2563 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2564 fprintf (dump_file,
2565 "Irreducible region hit, ignoring edge to %i->%i\n",
2566 e->src->index, bb->index);
2568 BLOCK_INFO (bb)->npredecessors = count;
2569 /* When function never returns, we will never process exit block. */
2570 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2571 bb->count = bb->frequency = 0;
2574 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2575 last = head;
2576 for (bb = head; bb; bb = nextbb)
2578 edge_iterator ei;
2579 sreal cyclic_probability, frequency;
2581 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2582 memcpy (&frequency, &real_zero, sizeof (real_zero));
2584 nextbb = BLOCK_INFO (bb)->next;
2585 BLOCK_INFO (bb)->next = NULL;
2587 /* Compute frequency of basic block. */
2588 if (bb != head)
2590 #ifdef ENABLE_CHECKING
2591 FOR_EACH_EDGE (e, ei, bb->preds)
2592 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2593 || (e->flags & EDGE_DFS_BACK));
2594 #endif
2596 FOR_EACH_EDGE (e, ei, bb->preds)
2597 if (EDGE_INFO (e)->back_edge)
2599 sreal_add (&cyclic_probability, &cyclic_probability,
2600 &EDGE_INFO (e)->back_edge_prob);
2602 else if (!(e->flags & EDGE_DFS_BACK))
2604 sreal tmp;
2606 /* frequency += (e->probability
2607 * BLOCK_INFO (e->src)->frequency /
2608 REG_BR_PROB_BASE); */
2610 sreal_init (&tmp, e->probability, 0);
2611 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2612 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2613 sreal_add (&frequency, &frequency, &tmp);
2616 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2618 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2619 sizeof (frequency));
2621 else
2623 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2625 memcpy (&cyclic_probability, &real_almost_one,
2626 sizeof (real_almost_one));
2629 /* BLOCK_INFO (bb)->frequency = frequency
2630 / (1 - cyclic_probability) */
2632 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2633 sreal_div (&BLOCK_INFO (bb)->frequency,
2634 &frequency, &cyclic_probability);
2638 bitmap_clear_bit (tovisit, bb->index);
2640 e = find_edge (bb, head);
2641 if (e)
2643 sreal tmp;
2645 /* EDGE_INFO (e)->back_edge_prob
2646 = ((e->probability * BLOCK_INFO (bb)->frequency)
2647 / REG_BR_PROB_BASE); */
2649 sreal_init (&tmp, e->probability, 0);
2650 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2651 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2652 &tmp, &real_inv_br_prob_base);
2655 /* Propagate to successor blocks. */
2656 FOR_EACH_EDGE (e, ei, bb->succs)
2657 if (!(e->flags & EDGE_DFS_BACK)
2658 && BLOCK_INFO (e->dest)->npredecessors)
2660 BLOCK_INFO (e->dest)->npredecessors--;
2661 if (!BLOCK_INFO (e->dest)->npredecessors)
2663 if (!nextbb)
2664 nextbb = e->dest;
2665 else
2666 BLOCK_INFO (last)->next = e->dest;
2668 last = e->dest;
2674 /* Estimate frequencies in loops at same nest level. */
2676 static void
2677 estimate_loops_at_level (struct loop *first_loop)
2679 struct loop *loop;
2681 for (loop = first_loop; loop; loop = loop->next)
2683 edge e;
2684 basic_block *bbs;
2685 unsigned i;
2686 bitmap tovisit = BITMAP_ALLOC (NULL);
2688 estimate_loops_at_level (loop->inner);
2690 /* Find current loop back edge and mark it. */
2691 e = loop_latch_edge (loop);
2692 EDGE_INFO (e)->back_edge = 1;
2694 bbs = get_loop_body (loop);
2695 for (i = 0; i < loop->num_nodes; i++)
2696 bitmap_set_bit (tovisit, bbs[i]->index);
2697 free (bbs);
2698 propagate_freq (loop->header, tovisit);
2699 BITMAP_FREE (tovisit);
2703 /* Propagates frequencies through structure of loops. */
2705 static void
2706 estimate_loops (void)
2708 bitmap tovisit = BITMAP_ALLOC (NULL);
2709 basic_block bb;
2711 /* Start by estimating the frequencies in the loops. */
2712 if (number_of_loops (cfun) > 1)
2713 estimate_loops_at_level (current_loops->tree_root->inner);
2715 /* Now propagate the frequencies through all the blocks. */
2716 FOR_ALL_BB_FN (bb, cfun)
2718 bitmap_set_bit (tovisit, bb->index);
2720 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2721 BITMAP_FREE (tovisit);
2724 /* Drop the profile for NODE to guessed, and update its frequency based on
2725 whether it is expected to be hot given the CALL_COUNT. */
2727 static void
2728 drop_profile (struct cgraph_node *node, gcov_type call_count)
2730 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2731 /* In the case where this was called by another function with a
2732 dropped profile, call_count will be 0. Since there are no
2733 non-zero call counts to this function, we don't know for sure
2734 whether it is hot, and therefore it will be marked normal below. */
2735 bool hot = maybe_hot_count_p (NULL, call_count);
2737 if (dump_file)
2738 fprintf (dump_file,
2739 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2740 node->name (), node->order,
2741 hot ? "Function is hot" : "Function is normal");
2742 /* We only expect to miss profiles for functions that are reached
2743 via non-zero call edges in cases where the function may have
2744 been linked from another module or library (COMDATs and extern
2745 templates). See the comments below for handle_missing_profiles.
2746 Also, only warn in cases where the missing counts exceed the
2747 number of training runs. In certain cases with an execv followed
2748 by a no-return call the profile for the no-return call is not
2749 dumped and there can be a mismatch. */
2750 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2751 && call_count > profile_info->runs)
2753 if (flag_profile_correction)
2755 if (dump_file)
2756 fprintf (dump_file,
2757 "Missing counts for called function %s/%i\n",
2758 node->name (), node->order);
2760 else
2761 warning (0, "Missing counts for called function %s/%i",
2762 node->name (), node->order);
2765 profile_status_for_fn (fn)
2766 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2767 node->frequency
2768 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2771 /* In the case of COMDAT routines, multiple object files will contain the same
2772 function and the linker will select one for the binary. In that case
2773 all the other copies from the profile instrument binary will be missing
2774 profile counts. Look for cases where this happened, due to non-zero
2775 call counts going to 0-count functions, and drop the profile to guessed
2776 so that we can use the estimated probabilities and avoid optimizing only
2777 for size.
2779 The other case where the profile may be missing is when the routine
2780 is not going to be emitted to the object file, e.g. for "extern template"
2781 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2782 all other cases of non-zero calls to 0-count functions. */
2784 void
2785 handle_missing_profiles (void)
2787 struct cgraph_node *node;
2788 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2789 vec<struct cgraph_node *> worklist;
2790 worklist.create (64);
2792 /* See if 0 count function has non-0 count callers. In this case we
2793 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2794 FOR_EACH_DEFINED_FUNCTION (node)
2796 struct cgraph_edge *e;
2797 gcov_type call_count = 0;
2798 gcov_type max_tp_first_run = 0;
2799 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2801 if (node->count)
2802 continue;
2803 for (e = node->callers; e; e = e->next_caller)
2805 call_count += e->count;
2807 if (e->caller->tp_first_run > max_tp_first_run)
2808 max_tp_first_run = e->caller->tp_first_run;
2811 /* If time profile is missing, let assign the maximum that comes from
2812 caller functions. */
2813 if (!node->tp_first_run && max_tp_first_run)
2814 node->tp_first_run = max_tp_first_run + 1;
2816 if (call_count
2817 && fn && fn->cfg
2818 && (call_count * unlikely_count_fraction >= profile_info->runs))
2820 drop_profile (node, call_count);
2821 worklist.safe_push (node);
2825 /* Propagate the profile dropping to other 0-count COMDATs that are
2826 potentially called by COMDATs we already dropped the profile on. */
2827 while (worklist.length () > 0)
2829 struct cgraph_edge *e;
2831 node = worklist.pop ();
2832 for (e = node->callees; e; e = e->next_caller)
2834 struct cgraph_node *callee = e->callee;
2835 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2837 if (callee->count > 0)
2838 continue;
2839 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2840 && profile_status_for_fn (fn) == PROFILE_READ)
2842 drop_profile (node, 0);
2843 worklist.safe_push (callee);
2847 worklist.release ();
2850 /* Convert counts measured by profile driven feedback to frequencies.
2851 Return nonzero iff there was any nonzero execution count. */
2854 counts_to_freqs (void)
2856 gcov_type count_max, true_count_max = 0;
2857 basic_block bb;
2859 /* Don't overwrite the estimated frequencies when the profile for
2860 the function is missing. We may drop this function PROFILE_GUESSED
2861 later in drop_profile (). */
2862 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2863 return 0;
2865 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2866 true_count_max = MAX (bb->count, true_count_max);
2868 count_max = MAX (true_count_max, 1);
2869 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2870 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2872 return true_count_max;
2875 /* Return true if function is likely to be expensive, so there is no point to
2876 optimize performance of prologue, epilogue or do inlining at the expense
2877 of code size growth. THRESHOLD is the limit of number of instructions
2878 function can execute at average to be still considered not expensive. */
2880 bool
2881 expensive_function_p (int threshold)
2883 unsigned int sum = 0;
2884 basic_block bb;
2885 unsigned int limit;
2887 /* We can not compute accurately for large thresholds due to scaled
2888 frequencies. */
2889 gcc_assert (threshold <= BB_FREQ_MAX);
2891 /* Frequencies are out of range. This either means that function contains
2892 internal loop executing more than BB_FREQ_MAX times or profile feedback
2893 is available and function has not been executed at all. */
2894 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2895 return true;
2897 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2898 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2899 FOR_EACH_BB_FN (bb, cfun)
2901 rtx_insn *insn;
2903 FOR_BB_INSNS (bb, insn)
2904 if (active_insn_p (insn))
2906 sum += bb->frequency;
2907 if (sum > limit)
2908 return true;
2912 return false;
2915 /* Estimate and propagate basic block frequencies using the given branch
2916 probabilities. If FORCE is true, the frequencies are used to estimate
2917 the counts even when there are already non-zero profile counts. */
2919 void
2920 estimate_bb_frequencies (bool force)
2922 basic_block bb;
2923 sreal freq_max;
2925 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2927 static int real_values_initialized = 0;
2929 if (!real_values_initialized)
2931 real_values_initialized = 1;
2932 sreal_init (&real_zero, 0, 0);
2933 sreal_init (&real_one, 1, 0);
2934 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2935 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2936 sreal_init (&real_one_half, 1, -1);
2937 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2938 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2941 mark_dfs_back_edges ();
2943 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2944 REG_BR_PROB_BASE;
2946 /* Set up block info for each basic block. */
2947 alloc_aux_for_blocks (sizeof (block_info));
2948 alloc_aux_for_edges (sizeof (edge_prob_info));
2949 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2951 edge e;
2952 edge_iterator ei;
2954 FOR_EACH_EDGE (e, ei, bb->succs)
2956 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2957 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2958 &EDGE_INFO (e)->back_edge_prob,
2959 &real_inv_br_prob_base);
2963 /* First compute frequencies locally for each loop from innermost
2964 to outermost to examine frequencies for back edges. */
2965 estimate_loops ();
2967 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2968 FOR_EACH_BB_FN (bb, cfun)
2969 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2970 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2972 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2973 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2975 sreal tmp;
2977 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2978 sreal_add (&tmp, &tmp, &real_one_half);
2979 bb->frequency = sreal_to_int (&tmp);
2982 free_aux_for_blocks ();
2983 free_aux_for_edges ();
2985 compute_function_frequency ();
2988 /* Decide whether function is hot, cold or unlikely executed. */
2989 void
2990 compute_function_frequency (void)
2992 basic_block bb;
2993 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2995 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2996 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2997 node->only_called_at_startup = true;
2998 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2999 node->only_called_at_exit = true;
3001 if (profile_status_for_fn (cfun) != PROFILE_READ)
3003 int flags = flags_from_decl_or_type (current_function_decl);
3004 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3005 != NULL)
3006 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3007 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3008 != NULL)
3009 node->frequency = NODE_FREQUENCY_HOT;
3010 else if (flags & ECF_NORETURN)
3011 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3012 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3013 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3014 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3015 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3016 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3017 return;
3020 /* Only first time try to drop function into unlikely executed.
3021 After inlining the roundoff errors may confuse us.
3022 Ipa-profile pass will drop functions only called from unlikely
3023 functions to unlikely and that is most of what we care about. */
3024 if (!cfun->after_inlining)
3025 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3026 FOR_EACH_BB_FN (bb, cfun)
3028 if (maybe_hot_bb_p (cfun, bb))
3030 node->frequency = NODE_FREQUENCY_HOT;
3031 return;
3033 if (!probably_never_executed_bb_p (cfun, bb))
3034 node->frequency = NODE_FREQUENCY_NORMAL;
3038 /* Build PREDICT_EXPR. */
3039 tree
3040 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3042 tree t = build1 (PREDICT_EXPR, void_type_node,
3043 build_int_cst (integer_type_node, predictor));
3044 SET_PREDICT_EXPR_OUTCOME (t, taken);
3045 return t;
3048 const char *
3049 predictor_name (enum br_predictor predictor)
3051 return predictor_info[predictor].name;
3054 /* Predict branch probabilities and estimate profile of the tree CFG. */
3056 namespace {
3058 const pass_data pass_data_profile =
3060 GIMPLE_PASS, /* type */
3061 "profile_estimate", /* name */
3062 OPTGROUP_NONE, /* optinfo_flags */
3063 TV_BRANCH_PROB, /* tv_id */
3064 PROP_cfg, /* properties_required */
3065 0, /* properties_provided */
3066 0, /* properties_destroyed */
3067 0, /* todo_flags_start */
3068 0, /* todo_flags_finish */
3071 class pass_profile : public gimple_opt_pass
3073 public:
3074 pass_profile (gcc::context *ctxt)
3075 : gimple_opt_pass (pass_data_profile, ctxt)
3078 /* opt_pass methods: */
3079 virtual bool gate (function *) { return flag_guess_branch_prob; }
3080 virtual unsigned int execute (function *);
3082 }; // class pass_profile
3084 unsigned int
3085 pass_profile::execute (function *fun)
3087 unsigned nb_loops;
3089 loop_optimizer_init (LOOPS_NORMAL);
3090 if (dump_file && (dump_flags & TDF_DETAILS))
3091 flow_loops_dump (dump_file, NULL, 0);
3093 mark_irreducible_loops ();
3095 nb_loops = number_of_loops (fun);
3096 if (nb_loops > 1)
3097 scev_initialize ();
3099 tree_estimate_probability ();
3101 if (nb_loops > 1)
3102 scev_finalize ();
3104 loop_optimizer_finalize ();
3105 if (dump_file && (dump_flags & TDF_DETAILS))
3106 gimple_dump_cfg (dump_file, dump_flags);
3107 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3108 profile_status_for_fn (fun) = PROFILE_GUESSED;
3109 return 0;
3112 } // anon namespace
3114 gimple_opt_pass *
3115 make_pass_profile (gcc::context *ctxt)
3117 return new pass_profile (ctxt);
3120 namespace {
3122 const pass_data pass_data_strip_predict_hints =
3124 GIMPLE_PASS, /* type */
3125 "*strip_predict_hints", /* name */
3126 OPTGROUP_NONE, /* optinfo_flags */
3127 TV_BRANCH_PROB, /* tv_id */
3128 PROP_cfg, /* properties_required */
3129 0, /* properties_provided */
3130 0, /* properties_destroyed */
3131 0, /* todo_flags_start */
3132 0, /* todo_flags_finish */
3135 class pass_strip_predict_hints : public gimple_opt_pass
3137 public:
3138 pass_strip_predict_hints (gcc::context *ctxt)
3139 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3142 /* opt_pass methods: */
3143 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3144 virtual unsigned int execute (function *);
3146 }; // class pass_strip_predict_hints
3148 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3149 we no longer need. */
3150 unsigned int
3151 pass_strip_predict_hints::execute (function *fun)
3153 basic_block bb;
3154 gimple ass_stmt;
3155 tree var;
3157 FOR_EACH_BB_FN (bb, fun)
3159 gimple_stmt_iterator bi;
3160 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3162 gimple stmt = gsi_stmt (bi);
3164 if (gimple_code (stmt) == GIMPLE_PREDICT)
3166 gsi_remove (&bi, true);
3167 continue;
3169 else if (is_gimple_call (stmt))
3171 tree fndecl = gimple_call_fndecl (stmt);
3173 if ((fndecl
3174 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3175 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3176 && gimple_call_num_args (stmt) == 2)
3177 || (gimple_call_internal_p (stmt)
3178 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3180 var = gimple_call_lhs (stmt);
3181 if (var)
3183 ass_stmt
3184 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3185 gsi_replace (&bi, ass_stmt, true);
3187 else
3189 gsi_remove (&bi, true);
3190 continue;
3194 gsi_next (&bi);
3197 return 0;
3200 } // anon namespace
3202 gimple_opt_pass *
3203 make_pass_strip_predict_hints (gcc::context *ctxt)
3205 return new pass_strip_predict_hints (ctxt);
3208 /* Rebuild function frequencies. Passes are in general expected to
3209 maintain profile by hand, however in some cases this is not possible:
3210 for example when inlining several functions with loops freuqencies might run
3211 out of scale and thus needs to be recomputed. */
3213 void
3214 rebuild_frequencies (void)
3216 timevar_push (TV_REBUILD_FREQUENCIES);
3218 /* When the max bb count in the function is small, there is a higher
3219 chance that there were truncation errors in the integer scaling
3220 of counts by inlining and other optimizations. This could lead
3221 to incorrect classification of code as being cold when it isn't.
3222 In that case, force the estimation of bb counts/frequencies from the
3223 branch probabilities, rather than computing frequencies from counts,
3224 which may also lead to frequencies incorrectly reduced to 0. There
3225 is less precision in the probabilities, so we only do this for small
3226 max counts. */
3227 gcov_type count_max = 0;
3228 basic_block bb;
3229 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3230 count_max = MAX (bb->count, count_max);
3232 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3233 || (profile_status_for_fn (cfun) == PROFILE_READ && count_max < REG_BR_PROB_BASE/10))
3235 loop_optimizer_init (0);
3236 add_noreturn_fake_exit_edges ();
3237 mark_irreducible_loops ();
3238 connect_infinite_loops_to_exit ();
3239 estimate_bb_frequencies (true);
3240 remove_fake_exit_edges ();
3241 loop_optimizer_finalize ();
3243 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3244 counts_to_freqs ();
3245 else
3246 gcc_unreachable ();
3247 timevar_pop (TV_REBUILD_FREQUENCIES);