Require target lra in gcc.c-torture/compile/asmgoto-6.c
[official-gcc.git] / gcc / tree-vectorizer.cc
bloba048e9d89178a37455bd7b83ab0f2a238a4ce69e
1 /* Vectorizer
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Loop and basic block vectorizer.
23 This file contains drivers for the three vectorizers:
24 (1) loop vectorizer (inter-iteration parallelism),
25 (2) loop-aware SLP (intra-iteration parallelism) (invoked by the loop
26 vectorizer)
27 (3) BB vectorizer (out-of-loops), aka SLP
29 The rest of the vectorizer's code is organized as follows:
30 - tree-vect-loop.cc - loop specific parts such as reductions, etc. These are
31 used by drivers (1) and (2).
32 - tree-vect-loop-manip.cc - vectorizer's loop control-flow utilities, used by
33 drivers (1) and (2).
34 - tree-vect-slp.cc - BB vectorization specific analysis and transformation,
35 used by drivers (2) and (3).
36 - tree-vect-stmts.cc - statements analysis and transformation (used by all).
37 - tree-vect-data-refs.cc - vectorizer specific data-refs analysis and
38 manipulations (used by all).
39 - tree-vect-patterns.cc - vectorizable code patterns detector (used by all)
41 Here's a poor attempt at illustrating that:
43 tree-vectorizer.cc:
44 loop_vect() loop_aware_slp() slp_vect()
45 | / \ /
46 | / \ /
47 tree-vect-loop.cc tree-vect-slp.cc
48 | \ \ / / |
49 | \ \/ / |
50 | \ /\ / |
51 | \ / \ / |
52 tree-vect-stmts.cc tree-vect-data-refs.cc
53 \ /
54 tree-vect-patterns.cc
57 #include "config.h"
58 #include "system.h"
59 #include "coretypes.h"
60 #include "backend.h"
61 #include "tree.h"
62 #include "gimple.h"
63 #include "predict.h"
64 #include "tree-pass.h"
65 #include "ssa.h"
66 #include "cgraph.h"
67 #include "fold-const.h"
68 #include "stor-layout.h"
69 #include "gimple-iterator.h"
70 #include "gimple-walk.h"
71 #include "tree-ssa-loop-manip.h"
72 #include "tree-ssa-loop-niter.h"
73 #include "tree-cfg.h"
74 #include "cfgloop.h"
75 #include "tree-vectorizer.h"
76 #include "tree-ssa-propagate.h"
77 #include "dbgcnt.h"
78 #include "tree-scalar-evolution.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "gimple-pretty-print.h"
82 #include "opt-problem.h"
83 #include "internal-fn.h"
84 #include "tree-ssa-sccvn.h"
85 #include "tree-into-ssa.h"
87 /* Loop or bb location, with hotness information. */
88 dump_user_location_t vect_location;
90 /* auto_purge_vect_location's dtor: reset the vect_location
91 global, to avoid stale location_t values that could reference
92 GC-ed blocks. */
94 auto_purge_vect_location::~auto_purge_vect_location ()
96 vect_location = dump_user_location_t ();
99 /* Dump a cost entry according to args to F. */
101 void
102 dump_stmt_cost (FILE *f, int count, enum vect_cost_for_stmt kind,
103 stmt_vec_info stmt_info, slp_tree node, tree,
104 int misalign, unsigned cost,
105 enum vect_cost_model_location where)
107 if (stmt_info)
109 print_gimple_expr (f, STMT_VINFO_STMT (stmt_info), 0, TDF_SLIM);
110 fprintf (f, " ");
112 else if (node)
113 fprintf (f, "node %p ", (void *)node);
114 else
115 fprintf (f, "<unknown> ");
116 fprintf (f, "%d times ", count);
117 const char *ks = "unknown";
118 switch (kind)
120 case scalar_stmt:
121 ks = "scalar_stmt";
122 break;
123 case scalar_load:
124 ks = "scalar_load";
125 break;
126 case scalar_store:
127 ks = "scalar_store";
128 break;
129 case vector_stmt:
130 ks = "vector_stmt";
131 break;
132 case vector_load:
133 ks = "vector_load";
134 break;
135 case vector_gather_load:
136 ks = "vector_gather_load";
137 break;
138 case unaligned_load:
139 ks = "unaligned_load";
140 break;
141 case unaligned_store:
142 ks = "unaligned_store";
143 break;
144 case vector_store:
145 ks = "vector_store";
146 break;
147 case vector_scatter_store:
148 ks = "vector_scatter_store";
149 break;
150 case vec_to_scalar:
151 ks = "vec_to_scalar";
152 break;
153 case scalar_to_vec:
154 ks = "scalar_to_vec";
155 break;
156 case cond_branch_not_taken:
157 ks = "cond_branch_not_taken";
158 break;
159 case cond_branch_taken:
160 ks = "cond_branch_taken";
161 break;
162 case vec_perm:
163 ks = "vec_perm";
164 break;
165 case vec_promote_demote:
166 ks = "vec_promote_demote";
167 break;
168 case vec_construct:
169 ks = "vec_construct";
170 break;
172 fprintf (f, "%s ", ks);
173 if (kind == unaligned_load || kind == unaligned_store)
174 fprintf (f, "(misalign %d) ", misalign);
175 fprintf (f, "costs %u ", cost);
176 const char *ws = "unknown";
177 switch (where)
179 case vect_prologue:
180 ws = "prologue";
181 break;
182 case vect_body:
183 ws = "body";
184 break;
185 case vect_epilogue:
186 ws = "epilogue";
187 break;
189 fprintf (f, "in %s\n", ws);
192 /* For mapping simduid to vectorization factor. */
194 class simduid_to_vf : public free_ptr_hash<simduid_to_vf>
196 public:
197 unsigned int simduid;
198 poly_uint64 vf;
200 /* hash_table support. */
201 static inline hashval_t hash (const simduid_to_vf *);
202 static inline int equal (const simduid_to_vf *, const simduid_to_vf *);
205 inline hashval_t
206 simduid_to_vf::hash (const simduid_to_vf *p)
208 return p->simduid;
211 inline int
212 simduid_to_vf::equal (const simduid_to_vf *p1, const simduid_to_vf *p2)
214 return p1->simduid == p2->simduid;
217 /* This hash maps the OMP simd array to the corresponding simduid used
218 to index into it. Like thus,
220 _7 = GOMP_SIMD_LANE (simduid.0)
223 D.1737[_7] = stuff;
226 This hash maps from the OMP simd array (D.1737[]) to DECL_UID of
227 simduid.0. */
229 struct simd_array_to_simduid : free_ptr_hash<simd_array_to_simduid>
231 tree decl;
232 unsigned int simduid;
234 /* hash_table support. */
235 static inline hashval_t hash (const simd_array_to_simduid *);
236 static inline int equal (const simd_array_to_simduid *,
237 const simd_array_to_simduid *);
240 inline hashval_t
241 simd_array_to_simduid::hash (const simd_array_to_simduid *p)
243 return DECL_UID (p->decl);
246 inline int
247 simd_array_to_simduid::equal (const simd_array_to_simduid *p1,
248 const simd_array_to_simduid *p2)
250 return p1->decl == p2->decl;
253 /* Fold IFN_GOMP_SIMD_LANE, IFN_GOMP_SIMD_VF, IFN_GOMP_SIMD_LAST_LANE,
254 into their corresponding constants and remove
255 IFN_GOMP_SIMD_ORDERED_{START,END}. */
257 static void
258 adjust_simduid_builtins (hash_table<simduid_to_vf> *htab, function *fun)
260 basic_block bb;
262 FOR_EACH_BB_FN (bb, fun)
264 gimple_stmt_iterator i;
266 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
268 poly_uint64 vf = 1;
269 enum internal_fn ifn;
270 gimple *stmt = gsi_stmt (i);
271 tree t;
272 if (!is_gimple_call (stmt)
273 || !gimple_call_internal_p (stmt))
275 gsi_next (&i);
276 continue;
278 ifn = gimple_call_internal_fn (stmt);
279 switch (ifn)
281 case IFN_GOMP_SIMD_LANE:
282 case IFN_GOMP_SIMD_VF:
283 case IFN_GOMP_SIMD_LAST_LANE:
284 break;
285 case IFN_GOMP_SIMD_ORDERED_START:
286 case IFN_GOMP_SIMD_ORDERED_END:
287 if (integer_onep (gimple_call_arg (stmt, 0)))
289 enum built_in_function bcode
290 = (ifn == IFN_GOMP_SIMD_ORDERED_START
291 ? BUILT_IN_GOMP_ORDERED_START
292 : BUILT_IN_GOMP_ORDERED_END);
293 gimple *g
294 = gimple_build_call (builtin_decl_explicit (bcode), 0);
295 gimple_move_vops (g, stmt);
296 gsi_replace (&i, g, true);
297 continue;
299 gsi_remove (&i, true);
300 unlink_stmt_vdef (stmt);
301 continue;
302 default:
303 gsi_next (&i);
304 continue;
306 tree arg = gimple_call_arg (stmt, 0);
307 gcc_assert (arg != NULL_TREE);
308 gcc_assert (TREE_CODE (arg) == SSA_NAME);
309 simduid_to_vf *p = NULL, data;
310 data.simduid = DECL_UID (SSA_NAME_VAR (arg));
311 /* Need to nullify loop safelen field since it's value is not
312 valid after transformation. */
313 if (bb->loop_father && bb->loop_father->safelen > 0)
314 bb->loop_father->safelen = 0;
315 if (htab)
317 p = htab->find (&data);
318 if (p)
319 vf = p->vf;
321 switch (ifn)
323 case IFN_GOMP_SIMD_VF:
324 t = build_int_cst (unsigned_type_node, vf);
325 break;
326 case IFN_GOMP_SIMD_LANE:
327 t = build_int_cst (unsigned_type_node, 0);
328 break;
329 case IFN_GOMP_SIMD_LAST_LANE:
330 t = gimple_call_arg (stmt, 1);
331 break;
332 default:
333 gcc_unreachable ();
335 tree lhs = gimple_call_lhs (stmt);
336 if (lhs)
337 replace_uses_by (lhs, t);
338 release_defs (stmt);
339 gsi_remove (&i, true);
344 /* Helper structure for note_simd_array_uses. */
346 struct note_simd_array_uses_struct
348 hash_table<simd_array_to_simduid> **htab;
349 unsigned int simduid;
352 /* Callback for note_simd_array_uses, called through walk_gimple_op. */
354 static tree
355 note_simd_array_uses_cb (tree *tp, int *walk_subtrees, void *data)
357 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
358 struct note_simd_array_uses_struct *ns
359 = (struct note_simd_array_uses_struct *) wi->info;
361 if (TYPE_P (*tp))
362 *walk_subtrees = 0;
363 else if (VAR_P (*tp)
364 && lookup_attribute ("omp simd array", DECL_ATTRIBUTES (*tp))
365 && DECL_CONTEXT (*tp) == current_function_decl)
367 simd_array_to_simduid data;
368 if (!*ns->htab)
369 *ns->htab = new hash_table<simd_array_to_simduid> (15);
370 data.decl = *tp;
371 data.simduid = ns->simduid;
372 simd_array_to_simduid **slot = (*ns->htab)->find_slot (&data, INSERT);
373 if (*slot == NULL)
375 simd_array_to_simduid *p = XNEW (simd_array_to_simduid);
376 *p = data;
377 *slot = p;
379 else if ((*slot)->simduid != ns->simduid)
380 (*slot)->simduid = -1U;
381 *walk_subtrees = 0;
383 return NULL_TREE;
386 /* Find "omp simd array" temporaries and map them to corresponding
387 simduid. */
389 static void
390 note_simd_array_uses (hash_table<simd_array_to_simduid> **htab, function *fun)
392 basic_block bb;
393 gimple_stmt_iterator gsi;
394 struct walk_stmt_info wi;
395 struct note_simd_array_uses_struct ns;
397 memset (&wi, 0, sizeof (wi));
398 wi.info = &ns;
399 ns.htab = htab;
401 FOR_EACH_BB_FN (bb, fun)
402 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
404 gimple *stmt = gsi_stmt (gsi);
405 if (!is_gimple_call (stmt) || !gimple_call_internal_p (stmt))
406 continue;
407 switch (gimple_call_internal_fn (stmt))
409 case IFN_GOMP_SIMD_LANE:
410 case IFN_GOMP_SIMD_VF:
411 case IFN_GOMP_SIMD_LAST_LANE:
412 break;
413 default:
414 continue;
416 tree lhs = gimple_call_lhs (stmt);
417 if (lhs == NULL_TREE)
418 continue;
419 imm_use_iterator use_iter;
420 gimple *use_stmt;
421 ns.simduid = DECL_UID (SSA_NAME_VAR (gimple_call_arg (stmt, 0)));
422 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, lhs)
423 if (!is_gimple_debug (use_stmt))
424 walk_gimple_op (use_stmt, note_simd_array_uses_cb, &wi);
428 /* Shrink arrays with "omp simd array" attribute to the corresponding
429 vectorization factor. */
431 static void
432 shrink_simd_arrays
433 (hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab,
434 hash_table<simduid_to_vf> *simduid_to_vf_htab)
436 for (hash_table<simd_array_to_simduid>::iterator iter
437 = simd_array_to_simduid_htab->begin ();
438 iter != simd_array_to_simduid_htab->end (); ++iter)
439 if ((*iter)->simduid != -1U)
441 tree decl = (*iter)->decl;
442 poly_uint64 vf = 1;
443 if (simduid_to_vf_htab)
445 simduid_to_vf *p = NULL, data;
446 data.simduid = (*iter)->simduid;
447 p = simduid_to_vf_htab->find (&data);
448 if (p)
449 vf = p->vf;
451 tree atype
452 = build_array_type_nelts (TREE_TYPE (TREE_TYPE (decl)), vf);
453 TREE_TYPE (decl) = atype;
454 relayout_decl (decl);
457 delete simd_array_to_simduid_htab;
460 /* Initialize the vec_info with kind KIND_IN and target cost data
461 TARGET_COST_DATA_IN. */
463 vec_info::vec_info (vec_info::vec_kind kind_in, vec_info_shared *shared_)
464 : kind (kind_in),
465 shared (shared_),
466 stmt_vec_info_ro (false)
468 stmt_vec_infos.create (50);
471 vec_info::~vec_info ()
473 for (slp_instance &instance : slp_instances)
474 vect_free_slp_instance (instance);
476 free_stmt_vec_infos ();
479 vec_info_shared::vec_info_shared ()
480 : n_stmts (0),
481 datarefs (vNULL),
482 datarefs_copy (vNULL),
483 ddrs (vNULL)
487 vec_info_shared::~vec_info_shared ()
489 free_data_refs (datarefs);
490 free_dependence_relations (ddrs);
491 datarefs_copy.release ();
494 void
495 vec_info_shared::save_datarefs ()
497 if (!flag_checking)
498 return;
499 datarefs_copy.reserve_exact (datarefs.length ());
500 for (unsigned i = 0; i < datarefs.length (); ++i)
501 datarefs_copy.quick_push (*datarefs[i]);
504 void
505 vec_info_shared::check_datarefs ()
507 if (!flag_checking)
508 return;
509 gcc_assert (datarefs.length () == datarefs_copy.length ());
510 for (unsigned i = 0; i < datarefs.length (); ++i)
511 if (memcmp (&datarefs_copy[i], datarefs[i],
512 offsetof (data_reference, alt_indices)) != 0)
513 gcc_unreachable ();
516 /* Record that STMT belongs to the vectorizable region. Create and return
517 an associated stmt_vec_info. */
519 stmt_vec_info
520 vec_info::add_stmt (gimple *stmt)
522 stmt_vec_info res = new_stmt_vec_info (stmt);
523 set_vinfo_for_stmt (stmt, res);
524 return res;
527 /* Record that STMT belongs to the vectorizable region. Create a new
528 stmt_vec_info and mark VECINFO as being related and return the new
529 stmt_vec_info. */
531 stmt_vec_info
532 vec_info::add_pattern_stmt (gimple *stmt, stmt_vec_info stmt_info)
534 stmt_vec_info res = new_stmt_vec_info (stmt);
535 set_vinfo_for_stmt (stmt, res, false);
536 STMT_VINFO_RELATED_STMT (res) = stmt_info;
537 return res;
540 /* If STMT has an associated stmt_vec_info, return that vec_info, otherwise
541 return null. It is safe to call this function on any statement, even if
542 it might not be part of the vectorizable region. */
544 stmt_vec_info
545 vec_info::lookup_stmt (gimple *stmt)
547 unsigned int uid = gimple_uid (stmt);
548 if (uid > 0 && uid - 1 < stmt_vec_infos.length ())
550 stmt_vec_info res = stmt_vec_infos[uid - 1];
551 if (res && res->stmt == stmt)
552 return res;
554 return NULL;
557 /* If NAME is an SSA_NAME and its definition has an associated stmt_vec_info,
558 return that stmt_vec_info, otherwise return null. It is safe to call
559 this on arbitrary operands. */
561 stmt_vec_info
562 vec_info::lookup_def (tree name)
564 if (TREE_CODE (name) == SSA_NAME
565 && !SSA_NAME_IS_DEFAULT_DEF (name))
566 return lookup_stmt (SSA_NAME_DEF_STMT (name));
567 return NULL;
570 /* See whether there is a single non-debug statement that uses LHS and
571 whether that statement has an associated stmt_vec_info. Return the
572 stmt_vec_info if so, otherwise return null. */
574 stmt_vec_info
575 vec_info::lookup_single_use (tree lhs)
577 use_operand_p dummy;
578 gimple *use_stmt;
579 if (single_imm_use (lhs, &dummy, &use_stmt))
580 return lookup_stmt (use_stmt);
581 return NULL;
584 /* Return vectorization information about DR. */
586 dr_vec_info *
587 vec_info::lookup_dr (data_reference *dr)
589 stmt_vec_info stmt_info = lookup_stmt (DR_STMT (dr));
590 /* DR_STMT should never refer to a stmt in a pattern replacement. */
591 gcc_checking_assert (!is_pattern_stmt_p (stmt_info));
592 return STMT_VINFO_DR_INFO (stmt_info->dr_aux.stmt);
595 /* Record that NEW_STMT_INFO now implements the same data reference
596 as OLD_STMT_INFO. */
598 void
599 vec_info::move_dr (stmt_vec_info new_stmt_info, stmt_vec_info old_stmt_info)
601 gcc_assert (!is_pattern_stmt_p (old_stmt_info));
602 STMT_VINFO_DR_INFO (old_stmt_info)->stmt = new_stmt_info;
603 new_stmt_info->dr_aux = old_stmt_info->dr_aux;
604 STMT_VINFO_DR_WRT_VEC_LOOP (new_stmt_info)
605 = STMT_VINFO_DR_WRT_VEC_LOOP (old_stmt_info);
606 STMT_VINFO_GATHER_SCATTER_P (new_stmt_info)
607 = STMT_VINFO_GATHER_SCATTER_P (old_stmt_info);
610 /* Permanently remove the statement described by STMT_INFO from the
611 function. */
613 void
614 vec_info::remove_stmt (stmt_vec_info stmt_info)
616 gcc_assert (!stmt_info->pattern_stmt_p);
617 set_vinfo_for_stmt (stmt_info->stmt, NULL);
618 unlink_stmt_vdef (stmt_info->stmt);
619 gimple_stmt_iterator si = gsi_for_stmt (stmt_info->stmt);
620 gsi_remove (&si, true);
621 release_defs (stmt_info->stmt);
622 free_stmt_vec_info (stmt_info);
625 /* Replace the statement at GSI by NEW_STMT, both the vectorization
626 information and the function itself. STMT_INFO describes the statement
627 at GSI. */
629 void
630 vec_info::replace_stmt (gimple_stmt_iterator *gsi, stmt_vec_info stmt_info,
631 gimple *new_stmt)
633 gimple *old_stmt = stmt_info->stmt;
634 gcc_assert (!stmt_info->pattern_stmt_p && old_stmt == gsi_stmt (*gsi));
635 gimple_set_uid (new_stmt, gimple_uid (old_stmt));
636 stmt_info->stmt = new_stmt;
637 gsi_replace (gsi, new_stmt, true);
640 /* Insert stmts in SEQ on the VEC_INFO region entry. If CONTEXT is
641 not NULL it specifies whether to use the sub-region entry
642 determined by it, currently used for loop vectorization to insert
643 on the inner loop entry vs. the outer loop entry. */
645 void
646 vec_info::insert_seq_on_entry (stmt_vec_info context, gimple_seq seq)
648 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (this))
650 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
651 basic_block new_bb;
652 edge pe;
654 if (context && nested_in_vect_loop_p (loop, context))
655 loop = loop->inner;
657 pe = loop_preheader_edge (loop);
658 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
659 gcc_assert (!new_bb);
661 else
663 bb_vec_info bb_vinfo = as_a <bb_vec_info> (this);
664 gimple_stmt_iterator gsi_region_begin
665 = gsi_after_labels (bb_vinfo->bbs[0]);
666 gsi_insert_seq_before (&gsi_region_begin, seq, GSI_SAME_STMT);
670 /* Like insert_seq_on_entry but just inserts the single stmt NEW_STMT. */
672 void
673 vec_info::insert_on_entry (stmt_vec_info context, gimple *new_stmt)
675 gimple_seq seq = NULL;
676 gimple_stmt_iterator gsi = gsi_start (seq);
677 gsi_insert_before_without_update (&gsi, new_stmt, GSI_SAME_STMT);
678 insert_seq_on_entry (context, seq);
681 /* Create and initialize a new stmt_vec_info struct for STMT. */
683 stmt_vec_info
684 vec_info::new_stmt_vec_info (gimple *stmt)
686 stmt_vec_info res = XCNEW (class _stmt_vec_info);
687 res->stmt = stmt;
689 STMT_VINFO_TYPE (res) = undef_vec_info_type;
690 STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
691 STMT_VINFO_VECTORIZABLE (res) = true;
692 STMT_VINFO_REDUC_TYPE (res) = TREE_CODE_REDUCTION;
693 STMT_VINFO_REDUC_CODE (res) = ERROR_MARK;
694 STMT_VINFO_REDUC_FN (res) = IFN_LAST;
695 STMT_VINFO_REDUC_IDX (res) = -1;
696 STMT_VINFO_SLP_VECT_ONLY (res) = false;
697 STMT_VINFO_SLP_VECT_ONLY_PATTERN (res) = false;
698 STMT_VINFO_VEC_STMTS (res) = vNULL;
699 res->reduc_initial_values = vNULL;
700 res->reduc_scalar_results = vNULL;
702 if (is_a <loop_vec_info> (this)
703 && gimple_code (stmt) == GIMPLE_PHI
704 && is_loop_header_bb_p (gimple_bb (stmt)))
705 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
706 else
707 STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
709 STMT_SLP_TYPE (res) = loop_vect;
711 /* This is really "uninitialized" until vect_compute_data_ref_alignment. */
712 res->dr_aux.misalignment = DR_MISALIGNMENT_UNINITIALIZED;
714 return res;
717 /* Associate STMT with INFO. */
719 void
720 vec_info::set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info, bool check_ro)
722 unsigned int uid = gimple_uid (stmt);
723 if (uid == 0)
725 gcc_assert (!check_ro || !stmt_vec_info_ro);
726 gcc_checking_assert (info);
727 uid = stmt_vec_infos.length () + 1;
728 gimple_set_uid (stmt, uid);
729 stmt_vec_infos.safe_push (info);
731 else
733 gcc_checking_assert (info == NULL);
734 stmt_vec_infos[uid - 1] = info;
738 /* Free the contents of stmt_vec_infos. */
740 void
741 vec_info::free_stmt_vec_infos (void)
743 for (stmt_vec_info &info : stmt_vec_infos)
744 if (info != NULL)
745 free_stmt_vec_info (info);
746 stmt_vec_infos.release ();
749 /* Free STMT_INFO. */
751 void
752 vec_info::free_stmt_vec_info (stmt_vec_info stmt_info)
754 if (stmt_info->pattern_stmt_p)
756 gimple_set_bb (stmt_info->stmt, NULL);
757 tree lhs = gimple_get_lhs (stmt_info->stmt);
758 if (lhs && TREE_CODE (lhs) == SSA_NAME)
759 release_ssa_name (lhs);
762 stmt_info->reduc_initial_values.release ();
763 stmt_info->reduc_scalar_results.release ();
764 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).release ();
765 STMT_VINFO_VEC_STMTS (stmt_info).release ();
766 free (stmt_info);
769 /* Returns true if S1 dominates S2. */
771 bool
772 vect_stmt_dominates_stmt_p (gimple *s1, gimple *s2)
774 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
776 /* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D)
777 SSA_NAME. Assume it lives at the beginning of function and
778 thus dominates everything. */
779 if (!bb1 || s1 == s2)
780 return true;
782 /* If bb2 is NULL, it doesn't dominate any stmt with a bb. */
783 if (!bb2)
784 return false;
786 if (bb1 != bb2)
787 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
789 /* PHIs in the same basic block are assumed to be
790 executed all in parallel, if only one stmt is a PHI,
791 it dominates the other stmt in the same basic block. */
792 if (gimple_code (s1) == GIMPLE_PHI)
793 return true;
795 if (gimple_code (s2) == GIMPLE_PHI)
796 return false;
798 /* Inserted vectorized stmts all have UID 0 while the original stmts
799 in the IL have UID increasing within a BB. Walk from both sides
800 until we find the other stmt or a stmt with UID != 0. */
801 gimple_stmt_iterator gsi1 = gsi_for_stmt (s1);
802 while (gimple_uid (gsi_stmt (gsi1)) == 0)
804 gsi_next (&gsi1);
805 if (gsi_end_p (gsi1))
806 return false;
807 if (gsi_stmt (gsi1) == s2)
808 return true;
810 if (gimple_uid (gsi_stmt (gsi1)) == -1u)
811 return false;
813 gimple_stmt_iterator gsi2 = gsi_for_stmt (s2);
814 while (gimple_uid (gsi_stmt (gsi2)) == 0)
816 gsi_prev (&gsi2);
817 if (gsi_end_p (gsi2))
818 return false;
819 if (gsi_stmt (gsi2) == s1)
820 return true;
822 if (gimple_uid (gsi_stmt (gsi2)) == -1u)
823 return false;
825 if (gimple_uid (gsi_stmt (gsi1)) <= gimple_uid (gsi_stmt (gsi2)))
826 return true;
827 return false;
830 /* A helper function to free scev and LOOP niter information, as well as
831 clear loop constraint LOOP_C_FINITE. */
833 void
834 vect_free_loop_info_assumptions (class loop *loop)
836 scev_reset_htab ();
837 /* We need to explicitly reset upper bound information since they are
838 used even after free_numbers_of_iterations_estimates. */
839 loop->any_upper_bound = false;
840 loop->any_likely_upper_bound = false;
841 free_numbers_of_iterations_estimates (loop);
842 loop_constraint_clear (loop, LOOP_C_FINITE);
845 /* If LOOP has been versioned during ifcvt, return the internal call
846 guarding it. */
848 gimple *
849 vect_loop_vectorized_call (class loop *loop, gcond **cond)
851 basic_block bb = loop_preheader_edge (loop)->src;
852 gimple *g;
855 g = *gsi_last_bb (bb);
856 if ((g && gimple_code (g) == GIMPLE_COND)
857 || !single_succ_p (bb))
858 break;
859 if (!single_pred_p (bb))
860 break;
861 bb = single_pred (bb);
863 while (1);
864 if (g && gimple_code (g) == GIMPLE_COND)
866 if (cond)
867 *cond = as_a <gcond *> (g);
868 gimple_stmt_iterator gsi = gsi_for_stmt (g);
869 gsi_prev (&gsi);
870 if (!gsi_end_p (gsi))
872 g = gsi_stmt (gsi);
873 if (gimple_call_internal_p (g, IFN_LOOP_VECTORIZED)
874 && (tree_to_shwi (gimple_call_arg (g, 0)) == loop->num
875 || tree_to_shwi (gimple_call_arg (g, 1)) == loop->num))
876 return g;
879 return NULL;
882 /* If LOOP has been versioned during loop distribution, return the gurading
883 internal call. */
885 static gimple *
886 vect_loop_dist_alias_call (class loop *loop, function *fun)
888 basic_block bb;
889 basic_block entry;
890 class loop *outer, *orig;
892 if (loop->orig_loop_num == 0)
893 return NULL;
895 orig = get_loop (fun, loop->orig_loop_num);
896 if (orig == NULL)
898 /* The original loop is somehow destroyed. Clear the information. */
899 loop->orig_loop_num = 0;
900 return NULL;
903 if (loop != orig)
904 bb = nearest_common_dominator (CDI_DOMINATORS, loop->header, orig->header);
905 else
906 bb = loop_preheader_edge (loop)->src;
908 outer = bb->loop_father;
909 entry = ENTRY_BLOCK_PTR_FOR_FN (fun);
911 /* Look upward in dominance tree. */
912 for (; bb != entry && flow_bb_inside_loop_p (outer, bb);
913 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
915 gimple_stmt_iterator gsi = gsi_last_bb (bb);
916 if (!safe_is_a <gcond *> (*gsi))
917 continue;
919 gsi_prev (&gsi);
920 if (gsi_end_p (gsi))
921 continue;
923 gimple *g = gsi_stmt (gsi);
924 /* The guarding internal function call must have the same distribution
925 alias id. */
926 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS)
927 && (tree_to_shwi (gimple_call_arg (g, 0)) == loop->orig_loop_num))
928 return g;
930 return NULL;
933 /* Set the uids of all the statements in basic blocks inside loop
934 represented by LOOP_VINFO. LOOP_VECTORIZED_CALL is the internal
935 call guarding the loop which has been if converted. */
936 static void
937 set_uid_loop_bbs (loop_vec_info loop_vinfo, gimple *loop_vectorized_call,
938 function *fun)
940 tree arg = gimple_call_arg (loop_vectorized_call, 1);
941 basic_block *bbs;
942 unsigned int i;
943 class loop *scalar_loop = get_loop (fun, tree_to_shwi (arg));
945 LOOP_VINFO_SCALAR_LOOP (loop_vinfo) = scalar_loop;
946 gcc_checking_assert (vect_loop_vectorized_call (scalar_loop)
947 == loop_vectorized_call);
948 /* If we are going to vectorize outer loop, prevent vectorization
949 of the inner loop in the scalar loop - either the scalar loop is
950 thrown away, so it is a wasted work, or is used only for
951 a few iterations. */
952 if (scalar_loop->inner)
954 gimple *g = vect_loop_vectorized_call (scalar_loop->inner);
955 if (g)
957 arg = gimple_call_arg (g, 0);
958 get_loop (fun, tree_to_shwi (arg))->dont_vectorize = true;
959 fold_loop_internal_call (g, boolean_false_node);
962 bbs = get_loop_body (scalar_loop);
963 for (i = 0; i < scalar_loop->num_nodes; i++)
965 basic_block bb = bbs[i];
966 gimple_stmt_iterator gsi;
967 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
969 gimple *phi = gsi_stmt (gsi);
970 gimple_set_uid (phi, 0);
972 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
974 gimple *stmt = gsi_stmt (gsi);
975 gimple_set_uid (stmt, 0);
978 free (bbs);
981 /* Generate vectorized code for LOOP and its epilogues. */
983 static unsigned
984 vect_transform_loops (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
985 loop_p loop, gimple *loop_vectorized_call,
986 function *fun)
988 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
990 if (loop_vectorized_call)
991 set_uid_loop_bbs (loop_vinfo, loop_vectorized_call, fun);
993 unsigned HOST_WIDE_INT bytes;
994 if (dump_enabled_p ())
996 if (GET_MODE_SIZE (loop_vinfo->vector_mode).is_constant (&bytes))
997 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
998 "loop vectorized using %wu byte vectors\n", bytes);
999 else
1000 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
1001 "loop vectorized using variable length vectors\n");
1004 loop_p new_loop = vect_transform_loop (loop_vinfo,
1005 loop_vectorized_call);
1006 /* Now that the loop has been vectorized, allow it to be unrolled
1007 etc. */
1008 loop->force_vectorize = false;
1010 if (loop->simduid)
1012 simduid_to_vf *simduid_to_vf_data = XNEW (simduid_to_vf);
1013 if (!simduid_to_vf_htab)
1014 simduid_to_vf_htab = new hash_table<simduid_to_vf> (15);
1015 simduid_to_vf_data->simduid = DECL_UID (loop->simduid);
1016 simduid_to_vf_data->vf = loop_vinfo->vectorization_factor;
1017 *simduid_to_vf_htab->find_slot (simduid_to_vf_data, INSERT)
1018 = simduid_to_vf_data;
1021 /* We should not have to update virtual SSA form here but some
1022 transforms involve creating new virtual definitions which makes
1023 updating difficult.
1024 We delay the actual update to the end of the pass but avoid
1025 confusing ourselves by forcing need_ssa_update_p () to false. */
1026 unsigned todo = 0;
1027 if (need_ssa_update_p (cfun))
1029 gcc_assert (loop_vinfo->any_known_not_updated_vssa);
1030 fun->gimple_df->ssa_renaming_needed = false;
1031 todo |= TODO_update_ssa_only_virtuals;
1033 gcc_assert (!need_ssa_update_p (cfun));
1035 /* Epilogue of vectorized loop must be vectorized too. */
1036 if (new_loop)
1037 todo |= vect_transform_loops (simduid_to_vf_htab, new_loop, NULL, fun);
1039 return todo;
1042 /* Try to vectorize LOOP. */
1044 static unsigned
1045 try_vectorize_loop_1 (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
1046 unsigned *num_vectorized_loops, loop_p loop,
1047 gimple *loop_vectorized_call,
1048 gimple *loop_dist_alias_call,
1049 function *fun)
1051 unsigned ret = 0;
1052 vec_info_shared shared;
1053 auto_purge_vect_location sentinel;
1054 vect_location = find_loop_location (loop);
1056 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
1057 && dump_enabled_p ())
1058 dump_printf (MSG_NOTE | MSG_PRIORITY_INTERNALS,
1059 "\nAnalyzing loop at %s:%d\n",
1060 LOCATION_FILE (vect_location.get_location_t ()),
1061 LOCATION_LINE (vect_location.get_location_t ()));
1063 /* Try to analyze the loop, retaining an opt_problem if dump_enabled_p. */
1064 opt_loop_vec_info loop_vinfo = vect_analyze_loop (loop, &shared);
1065 loop->aux = loop_vinfo;
1067 if (!loop_vinfo)
1068 if (dump_enabled_p ())
1069 if (opt_problem *problem = loop_vinfo.get_problem ())
1071 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1072 "couldn't vectorize loop\n");
1073 problem->emit_and_clear ();
1076 if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
1078 /* Free existing information if loop is analyzed with some
1079 assumptions. */
1080 if (loop_constraint_set_p (loop, LOOP_C_FINITE))
1081 vect_free_loop_info_assumptions (loop);
1083 /* If we applied if-conversion then try to vectorize the
1084 BB of innermost loops.
1085 ??? Ideally BB vectorization would learn to vectorize
1086 control flow by applying if-conversion on-the-fly, the
1087 following retains the if-converted loop body even when
1088 only non-if-converted parts took part in BB vectorization. */
1089 if (flag_tree_slp_vectorize != 0
1090 && loop_vectorized_call
1091 && ! loop->inner)
1093 basic_block bb = loop->header;
1094 bool require_loop_vectorize = false;
1095 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
1096 !gsi_end_p (gsi); gsi_next (&gsi))
1098 gimple *stmt = gsi_stmt (gsi);
1099 gcall *call = dyn_cast <gcall *> (stmt);
1100 if (call && gimple_call_internal_p (call))
1102 internal_fn ifn = gimple_call_internal_fn (call);
1103 if (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE
1104 /* Don't keep the if-converted parts when the ifn with
1105 specifc type is not supported by the backend. */
1106 || (direct_internal_fn_p (ifn)
1107 && !direct_internal_fn_supported_p
1108 (call, OPTIMIZE_FOR_SPEED)))
1110 require_loop_vectorize = true;
1111 break;
1114 gimple_set_uid (stmt, -1);
1115 gimple_set_visited (stmt, false);
1117 if (!require_loop_vectorize)
1119 tree arg = gimple_call_arg (loop_vectorized_call, 1);
1120 class loop *scalar_loop = get_loop (fun, tree_to_shwi (arg));
1121 if (vect_slp_if_converted_bb (bb, scalar_loop))
1123 fold_loop_internal_call (loop_vectorized_call,
1124 boolean_true_node);
1125 loop_vectorized_call = NULL;
1126 ret |= TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1130 /* If outer loop vectorization fails for LOOP_VECTORIZED guarded
1131 loop, don't vectorize its inner loop; we'll attempt to
1132 vectorize LOOP_VECTORIZED guarded inner loop of the scalar
1133 loop version. */
1134 if (loop_vectorized_call && loop->inner)
1135 loop->inner->dont_vectorize = true;
1136 return ret;
1139 if (!dbg_cnt (vect_loop))
1141 /* Free existing information if loop is analyzed with some
1142 assumptions. */
1143 if (loop_constraint_set_p (loop, LOOP_C_FINITE))
1144 vect_free_loop_info_assumptions (loop);
1145 return ret;
1148 (*num_vectorized_loops)++;
1149 /* Transform LOOP and its epilogues. */
1150 ret |= vect_transform_loops (simduid_to_vf_htab, loop,
1151 loop_vectorized_call, fun);
1153 if (loop_vectorized_call)
1155 fold_loop_internal_call (loop_vectorized_call, boolean_true_node);
1156 ret |= TODO_cleanup_cfg;
1158 if (loop_dist_alias_call)
1160 tree value = gimple_call_arg (loop_dist_alias_call, 1);
1161 fold_loop_internal_call (loop_dist_alias_call, value);
1162 ret |= TODO_cleanup_cfg;
1165 return ret;
1168 /* Try to vectorize LOOP. */
1170 static unsigned
1171 try_vectorize_loop (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
1172 unsigned *num_vectorized_loops, loop_p loop,
1173 function *fun)
1175 if (!((flag_tree_loop_vectorize
1176 && optimize_loop_nest_for_speed_p (loop))
1177 || loop->force_vectorize))
1178 return 0;
1180 return try_vectorize_loop_1 (simduid_to_vf_htab, num_vectorized_loops, loop,
1181 vect_loop_vectorized_call (loop),
1182 vect_loop_dist_alias_call (loop, fun), fun);
1186 /* Loop autovectorization. */
1188 namespace {
1190 const pass_data pass_data_vectorize =
1192 GIMPLE_PASS, /* type */
1193 "vect", /* name */
1194 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1195 TV_TREE_VECTORIZATION, /* tv_id */
1196 ( PROP_cfg | PROP_ssa ), /* properties_required */
1197 0, /* properties_provided */
1198 0, /* properties_destroyed */
1199 0, /* todo_flags_start */
1200 0, /* todo_flags_finish */
1203 class pass_vectorize : public gimple_opt_pass
1205 public:
1206 pass_vectorize (gcc::context *ctxt)
1207 : gimple_opt_pass (pass_data_vectorize, ctxt)
1210 /* opt_pass methods: */
1211 bool gate (function *fun) final override
1213 return flag_tree_loop_vectorize || fun->has_force_vectorize_loops;
1216 unsigned int execute (function *) final override;
1218 }; // class pass_vectorize
1220 /* Function vectorize_loops.
1222 Entry point to loop vectorization phase. */
1224 unsigned
1225 pass_vectorize::execute (function *fun)
1227 unsigned int i;
1228 unsigned int num_vectorized_loops = 0;
1229 unsigned int vect_loops_num;
1230 hash_table<simduid_to_vf> *simduid_to_vf_htab = NULL;
1231 hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab = NULL;
1232 bool any_ifcvt_loops = false;
1233 unsigned ret = 0;
1235 vect_loops_num = number_of_loops (fun);
1237 /* Bail out if there are no loops. */
1238 if (vect_loops_num <= 1)
1239 return 0;
1241 vect_slp_init ();
1243 if (fun->has_simduid_loops)
1244 note_simd_array_uses (&simd_array_to_simduid_htab, fun);
1246 /* ----------- Analyze loops. ----------- */
1248 /* If some loop was duplicated, it gets bigger number
1249 than all previously defined loops. This fact allows us to run
1250 only over initial loops skipping newly generated ones. */
1251 for (auto loop : loops_list (fun, 0))
1252 if (loop->dont_vectorize)
1254 any_ifcvt_loops = true;
1255 /* If-conversion sometimes versions both the outer loop
1256 (for the case when outer loop vectorization might be
1257 desirable) as well as the inner loop in the scalar version
1258 of the loop. So we have:
1259 if (LOOP_VECTORIZED (1, 3))
1261 loop1
1262 loop2
1264 else
1265 loop3 (copy of loop1)
1266 if (LOOP_VECTORIZED (4, 5))
1267 loop4 (copy of loop2)
1268 else
1269 loop5 (copy of loop4)
1270 If loops' iteration gives us loop3 first (which has
1271 dont_vectorize set), make sure to process loop1 before loop4;
1272 so that we can prevent vectorization of loop4 if loop1
1273 is successfully vectorized. */
1274 if (loop->inner)
1276 gimple *loop_vectorized_call
1277 = vect_loop_vectorized_call (loop);
1278 if (loop_vectorized_call
1279 && vect_loop_vectorized_call (loop->inner))
1281 tree arg = gimple_call_arg (loop_vectorized_call, 0);
1282 class loop *vector_loop
1283 = get_loop (fun, tree_to_shwi (arg));
1284 if (vector_loop && vector_loop != loop)
1286 /* Make sure we don't vectorize it twice. */
1287 vector_loop->dont_vectorize = true;
1288 ret |= try_vectorize_loop (simduid_to_vf_htab,
1289 &num_vectorized_loops,
1290 vector_loop, fun);
1295 else
1296 ret |= try_vectorize_loop (simduid_to_vf_htab, &num_vectorized_loops,
1297 loop, fun);
1299 vect_location = dump_user_location_t ();
1301 statistics_counter_event (fun, "Vectorized loops", num_vectorized_loops);
1302 if (dump_enabled_p ()
1303 || (num_vectorized_loops > 0 && dump_enabled_p ()))
1304 dump_printf_loc (MSG_NOTE, vect_location,
1305 "vectorized %u loops in function.\n",
1306 num_vectorized_loops);
1308 /* ----------- Finalize. ----------- */
1310 if (any_ifcvt_loops)
1311 for (i = 1; i < number_of_loops (fun); i++)
1313 class loop *loop = get_loop (fun, i);
1314 if (loop && loop->dont_vectorize)
1316 gimple *g = vect_loop_vectorized_call (loop);
1317 if (g)
1319 fold_loop_internal_call (g, boolean_false_node);
1320 ret |= TODO_cleanup_cfg;
1321 g = NULL;
1323 else
1324 g = vect_loop_dist_alias_call (loop, fun);
1326 if (g)
1328 fold_loop_internal_call (g, boolean_false_node);
1329 ret |= TODO_cleanup_cfg;
1334 /* Fold IFN_GOMP_SIMD_{VF,LANE,LAST_LANE,ORDERED_{START,END}} builtins. */
1335 if (fun->has_simduid_loops)
1337 adjust_simduid_builtins (simduid_to_vf_htab, fun);
1338 /* Avoid stale SCEV cache entries for the SIMD_LANE defs. */
1339 scev_reset ();
1341 /* Shrink any "omp array simd" temporary arrays to the
1342 actual vectorization factors. */
1343 if (simd_array_to_simduid_htab)
1344 shrink_simd_arrays (simd_array_to_simduid_htab, simduid_to_vf_htab);
1345 delete simduid_to_vf_htab;
1346 fun->has_simduid_loops = false;
1348 if (num_vectorized_loops > 0)
1350 /* We are collecting some corner cases where we need to update
1351 virtual SSA form via the TODO but delete the queued update-SSA
1352 state. Force renaming if we think that might be necessary. */
1353 if (ret & TODO_update_ssa_only_virtuals)
1354 mark_virtual_operands_for_renaming (cfun);
1355 /* If we vectorized any loop only virtual SSA form needs to be updated.
1356 ??? Also while we try hard to update loop-closed SSA form we fail
1357 to properly do this in some corner-cases (see PR56286). */
1358 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa_only_virtuals);
1359 ret |= TODO_cleanup_cfg;
1362 for (i = 1; i < number_of_loops (fun); i++)
1364 loop_vec_info loop_vinfo;
1365 bool has_mask_store;
1367 class loop *loop = get_loop (fun, i);
1368 if (!loop || !loop->aux)
1369 continue;
1370 loop_vinfo = (loop_vec_info) loop->aux;
1371 has_mask_store = LOOP_VINFO_HAS_MASK_STORE (loop_vinfo);
1372 delete loop_vinfo;
1373 if (has_mask_store
1374 && targetm.vectorize.empty_mask_is_expensive (IFN_MASK_STORE))
1375 optimize_mask_stores (loop);
1377 auto_bitmap exit_bbs;
1378 /* Perform local CSE, this esp. helps because we emit code for
1379 predicates that need to be shared for optimal predicate usage.
1380 However reassoc will re-order them and prevent CSE from working
1381 as it should. CSE only the loop body, not the entry. */
1382 bitmap_set_bit (exit_bbs, single_exit (loop)->dest->index);
1384 edge entry = EDGE_PRED (loop_preheader_edge (loop)->src, 0);
1385 do_rpo_vn (fun, entry, exit_bbs);
1387 loop->aux = NULL;
1390 vect_slp_fini ();
1392 return ret;
1395 } // anon namespace
1397 gimple_opt_pass *
1398 make_pass_vectorize (gcc::context *ctxt)
1400 return new pass_vectorize (ctxt);
1403 /* Entry point to the simduid cleanup pass. */
1405 namespace {
1407 const pass_data pass_data_simduid_cleanup =
1409 GIMPLE_PASS, /* type */
1410 "simduid", /* name */
1411 OPTGROUP_NONE, /* optinfo_flags */
1412 TV_NONE, /* tv_id */
1413 ( PROP_ssa | PROP_cfg ), /* properties_required */
1414 0, /* properties_provided */
1415 0, /* properties_destroyed */
1416 0, /* todo_flags_start */
1417 0, /* todo_flags_finish */
1420 class pass_simduid_cleanup : public gimple_opt_pass
1422 public:
1423 pass_simduid_cleanup (gcc::context *ctxt)
1424 : gimple_opt_pass (pass_data_simduid_cleanup, ctxt)
1427 /* opt_pass methods: */
1428 opt_pass * clone () final override
1430 return new pass_simduid_cleanup (m_ctxt);
1432 bool gate (function *fun) final override { return fun->has_simduid_loops; }
1433 unsigned int execute (function *) final override;
1435 }; // class pass_simduid_cleanup
1437 unsigned int
1438 pass_simduid_cleanup::execute (function *fun)
1440 hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab = NULL;
1442 note_simd_array_uses (&simd_array_to_simduid_htab, fun);
1444 /* Fold IFN_GOMP_SIMD_{VF,LANE,LAST_LANE,ORDERED_{START,END}} builtins. */
1445 adjust_simduid_builtins (NULL, fun);
1447 /* Shrink any "omp array simd" temporary arrays to the
1448 actual vectorization factors. */
1449 if (simd_array_to_simduid_htab)
1450 shrink_simd_arrays (simd_array_to_simduid_htab, NULL);
1451 fun->has_simduid_loops = false;
1452 return 0;
1455 } // anon namespace
1457 gimple_opt_pass *
1458 make_pass_simduid_cleanup (gcc::context *ctxt)
1460 return new pass_simduid_cleanup (ctxt);
1464 /* Entry point to basic block SLP phase. */
1466 namespace {
1468 const pass_data pass_data_slp_vectorize =
1470 GIMPLE_PASS, /* type */
1471 "slp", /* name */
1472 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1473 TV_TREE_SLP_VECTORIZATION, /* tv_id */
1474 ( PROP_ssa | PROP_cfg ), /* properties_required */
1475 0, /* properties_provided */
1476 0, /* properties_destroyed */
1477 0, /* todo_flags_start */
1478 TODO_update_ssa, /* todo_flags_finish */
1481 class pass_slp_vectorize : public gimple_opt_pass
1483 public:
1484 pass_slp_vectorize (gcc::context *ctxt)
1485 : gimple_opt_pass (pass_data_slp_vectorize, ctxt)
1488 /* opt_pass methods: */
1489 opt_pass * clone () final override { return new pass_slp_vectorize (m_ctxt); }
1490 bool gate (function *) final override { return flag_tree_slp_vectorize != 0; }
1491 unsigned int execute (function *) final override;
1493 }; // class pass_slp_vectorize
1495 unsigned int
1496 pass_slp_vectorize::execute (function *fun)
1498 auto_purge_vect_location sentinel;
1499 basic_block bb;
1501 bool in_loop_pipeline = scev_initialized_p ();
1502 if (!in_loop_pipeline)
1504 loop_optimizer_init (LOOPS_NORMAL);
1505 scev_initialize ();
1508 /* Mark all stmts as not belonging to the current region and unvisited. */
1509 FOR_EACH_BB_FN (bb, fun)
1511 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1512 gsi_next (&gsi))
1514 gphi *stmt = gsi.phi ();
1515 gimple_set_uid (stmt, -1);
1516 gimple_set_visited (stmt, false);
1518 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1519 gsi_next (&gsi))
1521 gimple *stmt = gsi_stmt (gsi);
1522 gimple_set_uid (stmt, -1);
1523 gimple_set_visited (stmt, false);
1527 vect_slp_init ();
1529 vect_slp_function (fun);
1531 vect_slp_fini ();
1533 if (!in_loop_pipeline)
1535 scev_finalize ();
1536 loop_optimizer_finalize ();
1539 return 0;
1542 } // anon namespace
1544 gimple_opt_pass *
1545 make_pass_slp_vectorize (gcc::context *ctxt)
1547 return new pass_slp_vectorize (ctxt);
1551 /* Increase alignment of global arrays to improve vectorization potential.
1552 TODO:
1553 - Consider also structs that have an array field.
1554 - Use ipa analysis to prune arrays that can't be vectorized?
1555 This should involve global alignment analysis and in the future also
1556 array padding. */
1558 static unsigned get_vec_alignment_for_type (tree);
1559 static hash_map<tree, unsigned> *type_align_map;
1561 /* Return alignment of array's vector type corresponding to scalar type.
1562 0 if no vector type exists. */
1563 static unsigned
1564 get_vec_alignment_for_array_type (tree type)
1566 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1567 poly_uint64 array_size, vector_size;
1569 tree scalar_type = strip_array_types (type);
1570 tree vectype = get_related_vectype_for_scalar_type (VOIDmode, scalar_type);
1571 if (!vectype
1572 || !poly_int_tree_p (TYPE_SIZE (type), &array_size)
1573 || !poly_int_tree_p (TYPE_SIZE (vectype), &vector_size)
1574 || maybe_lt (array_size, vector_size))
1575 return 0;
1577 return TYPE_ALIGN (vectype);
1580 /* Return alignment of field having maximum alignment of vector type
1581 corresponding to it's scalar type. For now, we only consider fields whose
1582 offset is a multiple of it's vector alignment.
1583 0 if no suitable field is found. */
1584 static unsigned
1585 get_vec_alignment_for_record_type (tree type)
1587 gcc_assert (TREE_CODE (type) == RECORD_TYPE);
1589 unsigned max_align = 0, alignment;
1590 HOST_WIDE_INT offset;
1591 tree offset_tree;
1593 if (TYPE_PACKED (type))
1594 return 0;
1596 unsigned *slot = type_align_map->get (type);
1597 if (slot)
1598 return *slot;
1600 for (tree field = first_field (type);
1601 field != NULL_TREE;
1602 field = DECL_CHAIN (field))
1604 /* Skip if not FIELD_DECL or if alignment is set by user. */
1605 if (TREE_CODE (field) != FIELD_DECL
1606 || DECL_USER_ALIGN (field)
1607 || DECL_ARTIFICIAL (field))
1608 continue;
1610 /* We don't need to process the type further if offset is variable,
1611 since the offsets of remaining members will also be variable. */
1612 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST
1613 || TREE_CODE (DECL_FIELD_BIT_OFFSET (field)) != INTEGER_CST)
1614 break;
1616 /* Similarly stop processing the type if offset_tree
1617 does not fit in unsigned HOST_WIDE_INT. */
1618 offset_tree = bit_position (field);
1619 if (!tree_fits_uhwi_p (offset_tree))
1620 break;
1622 offset = tree_to_uhwi (offset_tree);
1623 alignment = get_vec_alignment_for_type (TREE_TYPE (field));
1625 /* Get maximum alignment of vectorized field/array among those members
1626 whose offset is multiple of the vector alignment. */
1627 if (alignment
1628 && (offset % alignment == 0)
1629 && (alignment > max_align))
1630 max_align = alignment;
1633 type_align_map->put (type, max_align);
1634 return max_align;
1637 /* Return alignment of vector type corresponding to decl's scalar type
1638 or 0 if it doesn't exist or the vector alignment is lesser than
1639 decl's alignment. */
1640 static unsigned
1641 get_vec_alignment_for_type (tree type)
1643 if (type == NULL_TREE)
1644 return 0;
1646 gcc_assert (TYPE_P (type));
1648 static unsigned alignment = 0;
1649 switch (TREE_CODE (type))
1651 case ARRAY_TYPE:
1652 alignment = get_vec_alignment_for_array_type (type);
1653 break;
1654 case RECORD_TYPE:
1655 alignment = get_vec_alignment_for_record_type (type);
1656 break;
1657 default:
1658 alignment = 0;
1659 break;
1662 return (alignment > TYPE_ALIGN (type)) ? alignment : 0;
1665 /* Entry point to increase_alignment pass. */
1666 static unsigned int
1667 increase_alignment (void)
1669 varpool_node *vnode;
1671 vect_location = dump_user_location_t ();
1672 type_align_map = new hash_map<tree, unsigned>;
1674 /* Increase the alignment of all global arrays for vectorization. */
1675 FOR_EACH_DEFINED_VARIABLE (vnode)
1677 tree decl = vnode->decl;
1678 unsigned int alignment;
1680 if ((decl_in_symtab_p (decl)
1681 && !symtab_node::get (decl)->can_increase_alignment_p ())
1682 || DECL_USER_ALIGN (decl) || DECL_ARTIFICIAL (decl))
1683 continue;
1685 alignment = get_vec_alignment_for_type (TREE_TYPE (decl));
1686 if (alignment && vect_can_force_dr_alignment_p (decl, alignment))
1688 vnode->increase_alignment (alignment);
1689 if (dump_enabled_p ())
1690 dump_printf (MSG_NOTE, "Increasing alignment of decl: %T\n", decl);
1694 delete type_align_map;
1695 return 0;
1699 namespace {
1701 const pass_data pass_data_ipa_increase_alignment =
1703 SIMPLE_IPA_PASS, /* type */
1704 "increase_alignment", /* name */
1705 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1706 TV_IPA_OPT, /* tv_id */
1707 0, /* properties_required */
1708 0, /* properties_provided */
1709 0, /* properties_destroyed */
1710 0, /* todo_flags_start */
1711 0, /* todo_flags_finish */
1714 class pass_ipa_increase_alignment : public simple_ipa_opt_pass
1716 public:
1717 pass_ipa_increase_alignment (gcc::context *ctxt)
1718 : simple_ipa_opt_pass (pass_data_ipa_increase_alignment, ctxt)
1721 /* opt_pass methods: */
1722 bool gate (function *) final override
1724 return flag_section_anchors && flag_tree_loop_vectorize;
1727 unsigned int execute (function *) final override
1729 return increase_alignment ();
1732 }; // class pass_ipa_increase_alignment
1734 } // anon namespace
1736 simple_ipa_opt_pass *
1737 make_pass_ipa_increase_alignment (gcc::context *ctxt)
1739 return new pass_ipa_increase_alignment (ctxt);
1742 /* If the condition represented by T is a comparison or the SSA name
1743 result of a comparison, extract the comparison's operands. Represent
1744 T as NE_EXPR <T, 0> otherwise. */
1746 void
1747 scalar_cond_masked_key::get_cond_ops_from_tree (tree t)
1749 if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_comparison)
1751 this->code = TREE_CODE (t);
1752 this->op0 = TREE_OPERAND (t, 0);
1753 this->op1 = TREE_OPERAND (t, 1);
1754 this->inverted_p = false;
1755 return;
1758 if (TREE_CODE (t) == SSA_NAME)
1759 if (gassign *stmt = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (t)))
1761 tree_code code = gimple_assign_rhs_code (stmt);
1762 if (TREE_CODE_CLASS (code) == tcc_comparison)
1764 this->code = code;
1765 this->op0 = gimple_assign_rhs1 (stmt);
1766 this->op1 = gimple_assign_rhs2 (stmt);
1767 this->inverted_p = false;
1768 return;
1770 else if (code == BIT_NOT_EXPR)
1772 tree n_op = gimple_assign_rhs1 (stmt);
1773 if ((stmt = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (n_op))))
1775 code = gimple_assign_rhs_code (stmt);
1776 if (TREE_CODE_CLASS (code) == tcc_comparison)
1778 this->code = code;
1779 this->op0 = gimple_assign_rhs1 (stmt);
1780 this->op1 = gimple_assign_rhs2 (stmt);
1781 this->inverted_p = true;
1782 return;
1788 this->code = NE_EXPR;
1789 this->op0 = t;
1790 this->op1 = build_zero_cst (TREE_TYPE (t));
1791 this->inverted_p = false;
1794 /* See the comment above the declaration for details. */
1796 unsigned int
1797 vector_costs::add_stmt_cost (int count, vect_cost_for_stmt kind,
1798 stmt_vec_info stmt_info, slp_tree,
1799 tree vectype, int misalign,
1800 vect_cost_model_location where)
1802 unsigned int cost
1803 = builtin_vectorization_cost (kind, vectype, misalign) * count;
1804 return record_stmt_cost (stmt_info, where, cost);
1807 /* See the comment above the declaration for details. */
1809 void
1810 vector_costs::finish_cost (const vector_costs *)
1812 gcc_assert (!m_finished);
1813 m_finished = true;
1816 /* Record a base cost of COST units against WHERE. If STMT_INFO is
1817 nonnull, use it to adjust the cost based on execution frequency
1818 (where appropriate). */
1820 unsigned int
1821 vector_costs::record_stmt_cost (stmt_vec_info stmt_info,
1822 vect_cost_model_location where,
1823 unsigned int cost)
1825 cost = adjust_cost_for_freq (stmt_info, where, cost);
1826 m_costs[where] += cost;
1827 return cost;
1830 /* COST is the base cost we have calculated for an operation in location WHERE.
1831 If STMT_INFO is nonnull, use it to adjust the cost based on execution
1832 frequency (where appropriate). Return the adjusted cost. */
1834 unsigned int
1835 vector_costs::adjust_cost_for_freq (stmt_vec_info stmt_info,
1836 vect_cost_model_location where,
1837 unsigned int cost)
1839 /* Statements in an inner loop relative to the loop being
1840 vectorized are weighted more heavily. The value here is
1841 arbitrary and could potentially be improved with analysis. */
1842 if (where == vect_body
1843 && stmt_info
1844 && stmt_in_inner_loop_p (m_vinfo, stmt_info))
1846 loop_vec_info loop_vinfo = as_a<loop_vec_info> (m_vinfo);
1847 cost *= LOOP_VINFO_INNER_LOOP_COST_FACTOR (loop_vinfo);
1849 return cost;
1852 /* See the comment above the declaration for details. */
1854 bool
1855 vector_costs::better_main_loop_than_p (const vector_costs *other) const
1857 int diff = compare_inside_loop_cost (other);
1858 if (diff != 0)
1859 return diff < 0;
1861 /* If there's nothing to choose between the loop bodies, see whether
1862 there's a difference in the prologue and epilogue costs. */
1863 diff = compare_outside_loop_cost (other);
1864 if (diff != 0)
1865 return diff < 0;
1867 return false;
1871 /* See the comment above the declaration for details. */
1873 bool
1874 vector_costs::better_epilogue_loop_than_p (const vector_costs *other,
1875 loop_vec_info main_loop) const
1877 loop_vec_info this_loop_vinfo = as_a<loop_vec_info> (this->m_vinfo);
1878 loop_vec_info other_loop_vinfo = as_a<loop_vec_info> (other->m_vinfo);
1880 poly_int64 this_vf = LOOP_VINFO_VECT_FACTOR (this_loop_vinfo);
1881 poly_int64 other_vf = LOOP_VINFO_VECT_FACTOR (other_loop_vinfo);
1883 poly_uint64 main_poly_vf = LOOP_VINFO_VECT_FACTOR (main_loop);
1884 unsigned HOST_WIDE_INT main_vf;
1885 unsigned HOST_WIDE_INT other_factor, this_factor, other_cost, this_cost;
1886 /* If we can determine how many iterations are left for the epilogue
1887 loop, that is if both the main loop's vectorization factor and number
1888 of iterations are constant, then we use them to calculate the cost of
1889 the epilogue loop together with a 'likely value' for the epilogues
1890 vectorization factor. Otherwise we use the main loop's vectorization
1891 factor and the maximum poly value for the epilogue's. If the target
1892 has not provided with a sensible upper bound poly vectorization
1893 factors are likely to be favored over constant ones. */
1894 if (main_poly_vf.is_constant (&main_vf)
1895 && LOOP_VINFO_NITERS_KNOWN_P (main_loop))
1897 unsigned HOST_WIDE_INT niters
1898 = LOOP_VINFO_INT_NITERS (main_loop) % main_vf;
1899 HOST_WIDE_INT other_likely_vf
1900 = estimated_poly_value (other_vf, POLY_VALUE_LIKELY);
1901 HOST_WIDE_INT this_likely_vf
1902 = estimated_poly_value (this_vf, POLY_VALUE_LIKELY);
1904 /* If the epilogue is using partial vectors we account for the
1905 partial iteration here too. */
1906 other_factor = niters / other_likely_vf;
1907 if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (other_loop_vinfo)
1908 && niters % other_likely_vf != 0)
1909 other_factor++;
1911 this_factor = niters / this_likely_vf;
1912 if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (this_loop_vinfo)
1913 && niters % this_likely_vf != 0)
1914 this_factor++;
1916 else
1918 unsigned HOST_WIDE_INT main_vf_max
1919 = estimated_poly_value (main_poly_vf, POLY_VALUE_MAX);
1920 unsigned HOST_WIDE_INT other_vf_max
1921 = estimated_poly_value (other_vf, POLY_VALUE_MAX);
1922 unsigned HOST_WIDE_INT this_vf_max
1923 = estimated_poly_value (this_vf, POLY_VALUE_MAX);
1925 other_factor = CEIL (main_vf_max, other_vf_max);
1926 this_factor = CEIL (main_vf_max, this_vf_max);
1928 /* If the loop is not using partial vectors then it will iterate one
1929 time less than one that does. It is safe to subtract one here,
1930 because the main loop's vf is always at least 2x bigger than that
1931 of an epilogue. */
1932 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (other_loop_vinfo))
1933 other_factor -= 1;
1934 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (this_loop_vinfo))
1935 this_factor -= 1;
1938 /* Compute the costs by multiplying the inside costs with the factor and
1939 add the outside costs for a more complete picture. The factor is the
1940 amount of times we are expecting to iterate this epilogue. */
1941 other_cost = other->body_cost () * other_factor;
1942 this_cost = this->body_cost () * this_factor;
1943 other_cost += other->outside_cost ();
1944 this_cost += this->outside_cost ();
1945 return this_cost < other_cost;
1948 /* A <=>-style subroutine of better_main_loop_than_p. Check whether we can
1949 determine the return value of better_main_loop_than_p by comparing the
1950 inside (loop body) costs of THIS and OTHER. Return:
1952 * -1 if better_main_loop_than_p should return true.
1953 * 1 if better_main_loop_than_p should return false.
1954 * 0 if we can't decide. */
1957 vector_costs::compare_inside_loop_cost (const vector_costs *other) const
1959 loop_vec_info this_loop_vinfo = as_a<loop_vec_info> (this->m_vinfo);
1960 loop_vec_info other_loop_vinfo = as_a<loop_vec_info> (other->m_vinfo);
1962 struct loop *loop = LOOP_VINFO_LOOP (this_loop_vinfo);
1963 gcc_assert (LOOP_VINFO_LOOP (other_loop_vinfo) == loop);
1965 poly_int64 this_vf = LOOP_VINFO_VECT_FACTOR (this_loop_vinfo);
1966 poly_int64 other_vf = LOOP_VINFO_VECT_FACTOR (other_loop_vinfo);
1968 /* Limit the VFs to what is likely to be the maximum number of iterations,
1969 to handle cases in which at least one loop_vinfo is fully-masked. */
1970 HOST_WIDE_INT estimated_max_niter = likely_max_stmt_executions_int (loop);
1971 if (estimated_max_niter != -1)
1973 if (estimated_poly_value (this_vf, POLY_VALUE_MIN)
1974 >= estimated_max_niter)
1975 this_vf = estimated_max_niter;
1976 if (estimated_poly_value (other_vf, POLY_VALUE_MIN)
1977 >= estimated_max_niter)
1978 other_vf = estimated_max_niter;
1981 /* Check whether the (fractional) cost per scalar iteration is lower or
1982 higher: this_inside_cost / this_vf vs. other_inside_cost / other_vf. */
1983 poly_int64 rel_this = this_loop_vinfo->vector_costs->body_cost () * other_vf;
1984 poly_int64 rel_other
1985 = other_loop_vinfo->vector_costs->body_cost () * this_vf;
1987 HOST_WIDE_INT est_rel_this_min
1988 = estimated_poly_value (rel_this, POLY_VALUE_MIN);
1989 HOST_WIDE_INT est_rel_this_max
1990 = estimated_poly_value (rel_this, POLY_VALUE_MAX);
1992 HOST_WIDE_INT est_rel_other_min
1993 = estimated_poly_value (rel_other, POLY_VALUE_MIN);
1994 HOST_WIDE_INT est_rel_other_max
1995 = estimated_poly_value (rel_other, POLY_VALUE_MAX);
1997 /* Check first if we can make out an unambigous total order from the minimum
1998 and maximum estimates. */
1999 if (est_rel_this_min < est_rel_other_min
2000 && est_rel_this_max < est_rel_other_max)
2001 return -1;
2003 if (est_rel_other_min < est_rel_this_min
2004 && est_rel_other_max < est_rel_this_max)
2005 return 1;
2007 /* When other_loop_vinfo uses a variable vectorization factor,
2008 we know that it has a lower cost for at least one runtime VF.
2009 However, we don't know how likely that VF is.
2011 One option would be to compare the costs for the estimated VFs.
2012 The problem is that that can put too much pressure on the cost
2013 model. E.g. if the estimated VF is also the lowest possible VF,
2014 and if other_loop_vinfo is 1 unit worse than this_loop_vinfo
2015 for the estimated VF, we'd then choose this_loop_vinfo even
2016 though (a) this_loop_vinfo might not actually be better than
2017 other_loop_vinfo for that VF and (b) it would be significantly
2018 worse at larger VFs.
2020 Here we go for a hacky compromise: pick this_loop_vinfo if it is
2021 no more expensive than other_loop_vinfo even after doubling the
2022 estimated other_loop_vinfo VF. For all but trivial loops, this
2023 ensures that we only pick this_loop_vinfo if it is significantly
2024 better than other_loop_vinfo at the estimated VF. */
2025 if (est_rel_other_min != est_rel_this_min
2026 || est_rel_other_max != est_rel_this_max)
2028 HOST_WIDE_INT est_rel_this_likely
2029 = estimated_poly_value (rel_this, POLY_VALUE_LIKELY);
2030 HOST_WIDE_INT est_rel_other_likely
2031 = estimated_poly_value (rel_other, POLY_VALUE_LIKELY);
2033 return est_rel_this_likely * 2 <= est_rel_other_likely ? -1 : 1;
2036 return 0;
2039 /* A <=>-style subroutine of better_main_loop_than_p, used when there is
2040 nothing to choose between the inside (loop body) costs of THIS and OTHER.
2041 Check whether we can determine the return value of better_main_loop_than_p
2042 by comparing the outside (prologue and epilogue) costs of THIS and OTHER.
2043 Return:
2045 * -1 if better_main_loop_than_p should return true.
2046 * 1 if better_main_loop_than_p should return false.
2047 * 0 if we can't decide. */
2050 vector_costs::compare_outside_loop_cost (const vector_costs *other) const
2052 auto this_outside_cost = this->outside_cost ();
2053 auto other_outside_cost = other->outside_cost ();
2054 if (this_outside_cost != other_outside_cost)
2055 return this_outside_cost < other_outside_cost ? -1 : 1;
2057 return 0;