Require target lra in gcc.c-torture/compile/asmgoto-6.c
[official-gcc.git] / gcc / gimple-range-gori.cc
blob6dc15a0ce3fd52aea8b7fbee222b9f843ae2269f
1 /* Gimple range GORI functions.
2 Copyright (C) 2017-2023 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "gimple-range.h"
32 // Return TRUE if GS is a logical && or || expression.
34 static inline bool
35 is_gimple_logical_p (const gimple *gs)
37 // Look for boolean and/or condition.
38 if (is_gimple_assign (gs))
39 switch (gimple_expr_code (gs))
41 case TRUTH_AND_EXPR:
42 case TRUTH_OR_EXPR:
43 return true;
45 case BIT_AND_EXPR:
46 case BIT_IOR_EXPR:
47 // Bitwise operations on single bits are logical too.
48 if (types_compatible_p (TREE_TYPE (gimple_assign_rhs1 (gs)),
49 boolean_type_node))
50 return true;
51 break;
53 default:
54 break;
56 return false;
59 /* RANGE_DEF_CHAIN is used to determine which SSA names in a block can
60 have range information calculated for them, and what the
61 dependencies on each other are.
63 Information for a basic block is calculated once and stored. It is
64 only calculated the first time a query is made, so if no queries
65 are made, there is little overhead.
67 The def_chain bitmap is indexed by SSA_NAME_VERSION. Bits are set
68 within this bitmap to indicate SSA names that are defined in the
69 SAME block and used to calculate this SSA name.
72 <bb 2> :
73 _1 = x_4(D) + -2;
74 _2 = _1 * 4;
75 j_7 = foo ();
76 q_5 = _2 + 3;
77 if (q_5 <= 13)
79 _1 : x_4(D)
80 _2 : 1 x_4(D)
81 q_5 : _1 _2 x_4(D)
83 This dump indicates the bits set in the def_chain vector.
84 as well as demonstrates the def_chain bits for the related ssa_names.
86 Checking the chain for _2 indicates that _1 and x_4 are used in
87 its evaluation.
89 Def chains also only include statements which are valid gimple
90 so a def chain will only span statements for which the range
91 engine implements operations for. */
94 // Construct a range_def_chain.
96 range_def_chain::range_def_chain ()
98 bitmap_obstack_initialize (&m_bitmaps);
99 m_def_chain.create (0);
100 m_def_chain.safe_grow_cleared (num_ssa_names);
101 m_logical_depth = 0;
104 // Destruct a range_def_chain.
106 range_def_chain::~range_def_chain ()
108 m_def_chain.release ();
109 bitmap_obstack_release (&m_bitmaps);
112 // Return true if NAME is in the def chain of DEF. If BB is provided,
113 // only return true if the defining statement of DEF is in BB.
115 bool
116 range_def_chain::in_chain_p (tree name, tree def)
118 gcc_checking_assert (gimple_range_ssa_p (def));
119 gcc_checking_assert (gimple_range_ssa_p (name));
121 // Get the definition chain for DEF.
122 bitmap chain = get_def_chain (def);
124 if (chain == NULL)
125 return false;
126 return bitmap_bit_p (chain, SSA_NAME_VERSION (name));
129 // Add either IMP or the import list B to the import set of DATA.
131 void
132 range_def_chain::set_import (struct rdc &data, tree imp, bitmap b)
134 // If there are no imports, just return
135 if (imp == NULL_TREE && !b)
136 return;
137 if (!data.m_import)
138 data.m_import = BITMAP_ALLOC (&m_bitmaps);
139 if (imp != NULL_TREE)
140 bitmap_set_bit (data.m_import, SSA_NAME_VERSION (imp));
141 else
142 bitmap_ior_into (data.m_import, b);
145 // Return the import list for NAME.
147 bitmap
148 range_def_chain::get_imports (tree name)
150 if (!has_def_chain (name))
151 get_def_chain (name);
152 bitmap i = m_def_chain[SSA_NAME_VERSION (name)].m_import;
153 return i;
156 // Return true if IMPORT is an import to NAMEs def chain.
158 bool
159 range_def_chain::chain_import_p (tree name, tree import)
161 bitmap b = get_imports (name);
162 if (b)
163 return bitmap_bit_p (b, SSA_NAME_VERSION (import));
164 return false;
167 // Build def_chains for NAME if it is in BB. Copy the def chain into RESULT.
169 void
170 range_def_chain::register_dependency (tree name, tree dep, basic_block bb)
172 if (!gimple_range_ssa_p (dep))
173 return;
175 unsigned v = SSA_NAME_VERSION (name);
176 if (v >= m_def_chain.length ())
177 m_def_chain.safe_grow_cleared (num_ssa_names + 1);
178 struct rdc &src = m_def_chain[v];
179 gimple *def_stmt = SSA_NAME_DEF_STMT (dep);
180 unsigned dep_v = SSA_NAME_VERSION (dep);
181 bitmap b;
183 // Set the direct dependency cache entries.
184 if (!src.ssa1)
185 src.ssa1 = SSA_NAME_VERSION (dep);
186 else if (!src.ssa2 && src.ssa1 != SSA_NAME_VERSION (dep))
187 src.ssa2 = SSA_NAME_VERSION (dep);
189 // Don't calculate imports or export/dep chains if BB is not provided.
190 // This is usually the case for when the temporal cache wants the direct
191 // dependencies of a stmt.
192 if (!bb)
193 return;
195 if (!src.bm)
196 src.bm = BITMAP_ALLOC (&m_bitmaps);
198 // Add this operand into the result.
199 bitmap_set_bit (src.bm, dep_v);
201 if (gimple_bb (def_stmt) == bb && !is_a<gphi *>(def_stmt))
203 // Get the def chain for the operand.
204 b = get_def_chain (dep);
205 // If there was one, copy it into result. Access def_chain directly
206 // as the get_def_chain request above could reallocate the vector.
207 if (b)
208 bitmap_ior_into (m_def_chain[v].bm, b);
209 // And copy the import list.
210 set_import (m_def_chain[v], NULL_TREE, get_imports (dep));
212 else
213 // Originated outside the block, so it is an import.
214 set_import (src, dep, NULL);
217 bool
218 range_def_chain::def_chain_in_bitmap_p (tree name, bitmap b)
220 bitmap a = get_def_chain (name);
221 if (a && b)
222 return bitmap_intersect_p (a, b);
223 return false;
226 void
227 range_def_chain::add_def_chain_to_bitmap (bitmap b, tree name)
229 bitmap r = get_def_chain (name);
230 if (r)
231 bitmap_ior_into (b, r);
235 // Return TRUE if NAME has been processed for a def_chain.
237 inline bool
238 range_def_chain::has_def_chain (tree name)
240 // Ensure there is an entry in the internal vector.
241 unsigned v = SSA_NAME_VERSION (name);
242 if (v >= m_def_chain.length ())
243 m_def_chain.safe_grow_cleared (num_ssa_names + 1);
244 return (m_def_chain[v].ssa1 != 0);
249 // Calculate the def chain for NAME and all of its dependent
250 // operands. Only using names in the same BB. Return the bitmap of
251 // all names in the m_def_chain. This only works for supported range
252 // statements.
254 bitmap
255 range_def_chain::get_def_chain (tree name)
257 tree ssa[3];
258 unsigned v = SSA_NAME_VERSION (name);
260 // If it has already been processed, just return the cached value.
261 if (has_def_chain (name) && m_def_chain[v].bm)
262 return m_def_chain[v].bm;
264 // No definition chain for default defs.
265 if (SSA_NAME_IS_DEFAULT_DEF (name))
267 // A Default def is always an import.
268 set_import (m_def_chain[v], name, NULL);
269 return NULL;
272 gimple *stmt = SSA_NAME_DEF_STMT (name);
273 unsigned count = gimple_range_ssa_names (ssa, 3, stmt);
274 if (count == 0)
276 // Stmts not understood or with no operands are always imports.
277 set_import (m_def_chain[v], name, NULL);
278 return NULL;
281 // Terminate the def chains if we see too many cascading stmts.
282 if (m_logical_depth == param_ranger_logical_depth)
283 return NULL;
285 // Increase the depth if we have a pair of ssa-names.
286 if (count > 1)
287 m_logical_depth++;
289 for (unsigned x = 0; x < count; x++)
290 register_dependency (name, ssa[x], gimple_bb (stmt));
292 if (count > 1)
293 m_logical_depth--;
295 return m_def_chain[v].bm;
298 // Dump what we know for basic block BB to file F.
300 void
301 range_def_chain::dump (FILE *f, basic_block bb, const char *prefix)
303 unsigned x, y;
304 bitmap_iterator bi;
306 // Dump the def chain for each SSA_NAME defined in BB.
307 for (x = 1; x < num_ssa_names; x++)
309 tree name = ssa_name (x);
310 if (!name)
311 continue;
312 gimple *stmt = SSA_NAME_DEF_STMT (name);
313 if (!stmt || (bb && gimple_bb (stmt) != bb))
314 continue;
315 bitmap chain = (has_def_chain (name) ? get_def_chain (name) : NULL);
316 if (chain && !bitmap_empty_p (chain))
318 fprintf (f, prefix);
319 print_generic_expr (f, name, TDF_SLIM);
320 fprintf (f, " : ");
322 bitmap imports = get_imports (name);
323 EXECUTE_IF_SET_IN_BITMAP (chain, 0, y, bi)
325 print_generic_expr (f, ssa_name (y), TDF_SLIM);
326 if (imports && bitmap_bit_p (imports, y))
327 fprintf (f, "(I)");
328 fprintf (f, " ");
330 fprintf (f, "\n");
336 // -------------------------------------------------------------------
338 /* GORI_MAP is used to accumulate what SSA names in a block can
339 generate range information, and provides tools for the block ranger
340 to enable it to efficiently calculate these ranges.
342 GORI stands for "Generates Outgoing Range Information."
344 It utilizes the range_def_chain class to construct def_chains.
345 Information for a basic block is calculated once and stored. It is
346 only calculated the first time a query is made. If no queries are
347 made, there is little overhead.
349 one bitmap is maintained for each basic block:
350 m_outgoing : a set bit indicates a range can be generated for a name.
352 Generally speaking, the m_outgoing vector is the union of the
353 entire def_chain of all SSA names used in the last statement of the
354 block which generate ranges. */
357 // Initialize a gori-map structure.
359 gori_map::gori_map ()
361 m_outgoing.create (0);
362 m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
363 m_incoming.create (0);
364 m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
365 m_maybe_variant = BITMAP_ALLOC (&m_bitmaps);
368 // Free any memory the GORI map allocated.
370 gori_map::~gori_map ()
372 m_incoming.release ();
373 m_outgoing.release ();
376 // Return the bitmap vector of all export from BB. Calculate if necessary.
378 bitmap
379 gori_map::exports (basic_block bb)
381 if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
382 calculate_gori (bb);
383 return m_outgoing[bb->index];
386 // Return the bitmap vector of all imports to BB. Calculate if necessary.
388 bitmap
389 gori_map::imports (basic_block bb)
391 if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
392 calculate_gori (bb);
393 return m_incoming[bb->index];
396 // Return true if NAME is can have ranges generated for it from basic
397 // block BB.
399 bool
400 gori_map::is_export_p (tree name, basic_block bb)
402 // If no BB is specified, test if it is exported anywhere in the IL.
403 if (!bb)
404 return bitmap_bit_p (m_maybe_variant, SSA_NAME_VERSION (name));
405 return bitmap_bit_p (exports (bb), SSA_NAME_VERSION (name));
408 // Set or clear the m_maybe_variant bit to determine if ranges will be tracked
409 // for NAME. A clear bit means they will NOT be tracked.
411 void
412 gori_map::set_range_invariant (tree name, bool invariant)
414 if (invariant)
415 bitmap_clear_bit (m_maybe_variant, SSA_NAME_VERSION (name));
416 else
417 bitmap_set_bit (m_maybe_variant, SSA_NAME_VERSION (name));
420 // Return true if NAME is an import to block BB.
422 bool
423 gori_map::is_import_p (tree name, basic_block bb)
425 // If no BB is specified, test if it is exported anywhere in the IL.
426 return bitmap_bit_p (imports (bb), SSA_NAME_VERSION (name));
429 // If NAME is non-NULL and defined in block BB, calculate the def
430 // chain and add it to m_outgoing.
432 void
433 gori_map::maybe_add_gori (tree name, basic_block bb)
435 if (name)
437 // Check if there is a def chain, regardless of the block.
438 add_def_chain_to_bitmap (m_outgoing[bb->index], name);
439 // Check for any imports.
440 bitmap imp = get_imports (name);
441 // If there were imports, add them so we can recompute
442 if (imp)
443 bitmap_ior_into (m_incoming[bb->index], imp);
444 // This name is always an import.
445 if (gimple_bb (SSA_NAME_DEF_STMT (name)) != bb)
446 bitmap_set_bit (m_incoming[bb->index], SSA_NAME_VERSION (name));
448 // Def chain doesn't include itself, and even if there isn't a
449 // def chain, this name should be added to exports.
450 bitmap_set_bit (m_outgoing[bb->index], SSA_NAME_VERSION (name));
454 // Calculate all the required information for BB.
456 void
457 gori_map::calculate_gori (basic_block bb)
459 tree name;
460 if (bb->index >= (signed int)m_outgoing.length ())
462 m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
463 m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
465 gcc_checking_assert (m_outgoing[bb->index] == NULL);
466 m_outgoing[bb->index] = BITMAP_ALLOC (&m_bitmaps);
467 m_incoming[bb->index] = BITMAP_ALLOC (&m_bitmaps);
469 if (single_succ_p (bb))
470 return;
472 // If this block's last statement may generate range information, go
473 // calculate it.
474 gimple *stmt = gimple_outgoing_range_stmt_p (bb);
475 if (!stmt)
476 return;
477 if (is_a<gcond *> (stmt))
479 gcond *gc = as_a<gcond *>(stmt);
480 name = gimple_range_ssa_p (gimple_cond_lhs (gc));
481 maybe_add_gori (name, gimple_bb (stmt));
483 name = gimple_range_ssa_p (gimple_cond_rhs (gc));
484 maybe_add_gori (name, gimple_bb (stmt));
486 else
488 // Do not process switches if they are too large.
489 if (EDGE_COUNT (bb->succs) > (unsigned)param_vrp_switch_limit)
490 return;
491 gswitch *gs = as_a<gswitch *>(stmt);
492 name = gimple_range_ssa_p (gimple_switch_index (gs));
493 maybe_add_gori (name, gimple_bb (stmt));
495 // Add this bitmap to the aggregate list of all outgoing names.
496 bitmap_ior_into (m_maybe_variant, m_outgoing[bb->index]);
499 // Dump the table information for BB to file F.
501 void
502 gori_map::dump (FILE *f, basic_block bb, bool verbose)
504 // BB was not processed.
505 if (!m_outgoing[bb->index] || bitmap_empty_p (m_outgoing[bb->index]))
506 return;
508 tree name;
510 bitmap imp = imports (bb);
511 if (!bitmap_empty_p (imp))
513 if (verbose)
514 fprintf (f, "bb<%u> Imports: ",bb->index);
515 else
516 fprintf (f, "Imports: ");
517 FOR_EACH_GORI_IMPORT_NAME (*this, bb, name)
519 print_generic_expr (f, name, TDF_SLIM);
520 fprintf (f, " ");
522 fputc ('\n', f);
525 if (verbose)
526 fprintf (f, "bb<%u> Exports: ",bb->index);
527 else
528 fprintf (f, "Exports: ");
529 // Dump the export vector.
530 FOR_EACH_GORI_EXPORT_NAME (*this, bb, name)
532 print_generic_expr (f, name, TDF_SLIM);
533 fprintf (f, " ");
535 fputc ('\n', f);
537 range_def_chain::dump (f, bb, " ");
540 // Dump the entire GORI map structure to file F.
542 void
543 gori_map::dump (FILE *f)
545 basic_block bb;
546 FOR_EACH_BB_FN (bb, cfun)
547 dump (f, bb);
550 DEBUG_FUNCTION void
551 debug (gori_map &g)
553 g.dump (stderr);
556 // -------------------------------------------------------------------
558 // Construct a gori_compute object.
560 gori_compute::gori_compute (int not_executable_flag)
561 : outgoing (param_vrp_switch_limit), tracer ("GORI ")
563 m_not_executable_flag = not_executable_flag;
564 // Create a boolean_type true and false range.
565 m_bool_zero = range_false ();
566 m_bool_one = range_true ();
567 if (dump_file && (param_ranger_debug & RANGER_DEBUG_GORI))
568 tracer.enable_trace ();
571 // Given the switch S, return an evaluation in R for NAME when the lhs
572 // evaluates to LHS. Returning false means the name being looked for
573 // was not resolvable.
575 bool
576 gori_compute::compute_operand_range_switch (vrange &r, gswitch *s,
577 const vrange &lhs,
578 tree name, fur_source &src)
580 tree op1 = gimple_switch_index (s);
582 // If name matches, the range is simply the range from the edge.
583 // Empty ranges are viral as they are on a path which isn't
584 // executable.
585 if (op1 == name || lhs.undefined_p ())
587 r = lhs;
588 return true;
591 // If op1 is in the definition chain, pass lhs back.
592 if (gimple_range_ssa_p (op1) && in_chain_p (name, op1))
593 return compute_operand_range (r, SSA_NAME_DEF_STMT (op1), lhs, name, src);
595 return false;
599 // Return an evaluation for NAME as it would appear in STMT when the
600 // statement's lhs evaluates to LHS. If successful, return TRUE and
601 // store the evaluation in R, otherwise return FALSE.
603 bool
604 gori_compute::compute_operand_range (vrange &r, gimple *stmt,
605 const vrange &lhs, tree name,
606 fur_source &src, value_relation *rel)
608 value_relation vrel;
609 value_relation *vrel_ptr = rel;
610 // Empty ranges are viral as they are on an unexecutable path.
611 if (lhs.undefined_p ())
613 r.set_undefined ();
614 return true;
616 if (is_a<gswitch *> (stmt))
617 return compute_operand_range_switch (r, as_a<gswitch *> (stmt), lhs, name,
618 src);
619 gimple_range_op_handler handler (stmt);
620 if (!handler)
621 return false;
623 tree op1 = gimple_range_ssa_p (handler.operand1 ());
624 tree op2 = gimple_range_ssa_p (handler.operand2 ());
626 // If there is a relation betwen op1 and op2, use it instead as it is
627 // likely to be more applicable.
628 if (op1 && op2)
630 relation_kind k = handler.op1_op2_relation (lhs);
631 if (k != VREL_VARYING)
633 vrel.set_relation (k, op1, op2);
634 vrel_ptr = &vrel;
638 // Handle end of lookup first.
639 if (op1 == name)
640 return compute_operand1_range (r, handler, lhs, src, vrel_ptr);
641 if (op2 == name)
642 return compute_operand2_range (r, handler, lhs, src, vrel_ptr);
644 // NAME is not in this stmt, but one of the names in it ought to be
645 // derived from it.
646 bool op1_in_chain = op1 && in_chain_p (name, op1);
647 bool op2_in_chain = op2 && in_chain_p (name, op2);
649 // If neither operand is derived, then this stmt tells us nothing.
650 if (!op1_in_chain && !op2_in_chain)
651 return false;
653 // If either operand is in the def chain of the other (or they are equal), it
654 // will be evaluated twice and can result in an exponential time calculation.
655 // Instead just evaluate the one operand.
656 if (op1_in_chain && op2_in_chain)
658 if (in_chain_p (op1, op2) || op1 == op2)
659 op1_in_chain = false;
660 else if (in_chain_p (op2, op1))
661 op2_in_chain = false;
664 bool res = false;
665 // If the lhs doesn't tell us anything only a relation can possibly enhance
666 // the result.
667 if (lhs.varying_p ())
669 if (!vrel_ptr)
670 return false;
671 // If there is a relation (ie: x != y) , it can only be relevant if
672 // a) both elements are in the defchain
673 // c = x > y // (x and y are in c's defchain)
674 if (op1_in_chain)
675 res = in_chain_p (vrel_ptr->op1 (), op1)
676 && in_chain_p (vrel_ptr->op2 (), op1);
677 if (!res && op2_in_chain)
678 res = in_chain_p (vrel_ptr->op1 (), op2)
679 || in_chain_p (vrel_ptr->op2 (), op2);
680 if (!res)
682 // or b) one relation element is in the defchain of the other and the
683 // other is the LHS of this stmt.
684 // x = y + 2
685 if (vrel_ptr->op1 () == handler.lhs ()
686 && (vrel_ptr->op2 () == op1 || vrel_ptr->op2 () == op2))
687 res = true;
688 else if (vrel_ptr->op2 () == handler.lhs ()
689 && (vrel_ptr->op1 () == op1 || vrel_ptr->op1 () == op2))
690 res = true;
692 if (!res)
693 return false;
696 // Process logicals as they have special handling.
697 if (is_gimple_logical_p (stmt))
699 // If the lhs doesn't tell us anything, neither will combining operands.
700 if (lhs.varying_p ())
701 return false;
703 unsigned idx;
704 if ((idx = tracer.header ("compute_operand ")))
706 print_generic_expr (dump_file, name, TDF_SLIM);
707 fprintf (dump_file, " with LHS = ");
708 lhs.dump (dump_file);
709 fprintf (dump_file, " at stmt ");
710 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
713 tree type = TREE_TYPE (name);
714 Value_Range op1_trange (type), op1_frange (type);
715 Value_Range op2_trange (type), op2_frange (type);
716 compute_logical_operands (op1_trange, op1_frange, handler,
717 as_a <irange> (lhs),
718 name, src, op1, op1_in_chain);
719 compute_logical_operands (op2_trange, op2_frange, handler,
720 as_a <irange> (lhs),
721 name, src, op2, op2_in_chain);
722 res = logical_combine (r,
723 gimple_expr_code (stmt),
724 as_a <irange> (lhs),
725 op1_trange, op1_frange, op2_trange, op2_frange);
726 if (idx)
727 tracer.trailer (idx, "compute_operand", res, name, r);
728 return res;
730 // Follow the appropriate operands now.
731 if (op1_in_chain && op2_in_chain)
732 return compute_operand1_and_operand2_range (r, handler, lhs, name, src,
733 vrel_ptr);
734 Value_Range vr;
735 gimple *src_stmt;
736 if (op1_in_chain)
738 vr.set_type (TREE_TYPE (op1));
739 if (!compute_operand1_range (vr, handler, lhs, src, vrel_ptr))
740 return false;
741 src_stmt = SSA_NAME_DEF_STMT (op1);
743 else
745 gcc_checking_assert (op2_in_chain);
746 vr.set_type (TREE_TYPE (op2));
747 if (!compute_operand2_range (vr, handler, lhs, src, vrel_ptr))
748 return false;
749 src_stmt = SSA_NAME_DEF_STMT (op2);
752 gcc_checking_assert (src_stmt);
753 // Then feed this range back as the LHS of the defining statement.
754 return compute_operand_range (r, src_stmt, vr, name, src, vrel_ptr);
755 // If neither operand is derived, this statement tells us nothing.
759 // Return TRUE if range R is either a true or false compatible range.
761 static bool
762 range_is_either_true_or_false (const irange &r)
764 if (r.undefined_p ())
765 return false;
767 // This is complicated by the fact that Ada has multi-bit booleans,
768 // so true can be ~[0, 0] (i.e. [1,MAX]).
769 tree type = r.type ();
770 gcc_checking_assert (range_compatible_p (type, boolean_type_node));
771 return (r.singleton_p ()
772 || !r.contains_p (wi::zero (TYPE_PRECISION (type))));
775 // Evaluate a binary logical expression by combining the true and
776 // false ranges for each of the operands based on the result value in
777 // the LHS.
779 bool
780 gori_compute::logical_combine (vrange &r, enum tree_code code,
781 const irange &lhs,
782 const vrange &op1_true, const vrange &op1_false,
783 const vrange &op2_true, const vrange &op2_false)
785 if (op1_true.varying_p () && op1_false.varying_p ()
786 && op2_true.varying_p () && op2_false.varying_p ())
787 return false;
789 unsigned idx;
790 if ((idx = tracer.header ("logical_combine")))
792 switch (code)
794 case TRUTH_OR_EXPR:
795 case BIT_IOR_EXPR:
796 fprintf (dump_file, " || ");
797 break;
798 case TRUTH_AND_EXPR:
799 case BIT_AND_EXPR:
800 fprintf (dump_file, " && ");
801 break;
802 default:
803 break;
805 fprintf (dump_file, " with LHS = ");
806 lhs.dump (dump_file);
807 fputc ('\n', dump_file);
809 tracer.print (idx, "op1_true = ");
810 op1_true.dump (dump_file);
811 fprintf (dump_file, " op1_false = ");
812 op1_false.dump (dump_file);
813 fputc ('\n', dump_file);
814 tracer.print (idx, "op2_true = ");
815 op2_true.dump (dump_file);
816 fprintf (dump_file, " op2_false = ");
817 op2_false.dump (dump_file);
818 fputc ('\n', dump_file);
821 // This is not a simple fold of a logical expression, rather it
822 // determines ranges which flow through the logical expression.
824 // Assuming x_8 is an unsigned char, and relational statements:
825 // b_1 = x_8 < 20
826 // b_2 = x_8 > 5
827 // consider the logical expression and branch:
828 // c_2 = b_1 && b_2
829 // if (c_2)
831 // To determine the range of x_8 on either edge of the branch, one
832 // must first determine what the range of x_8 is when the boolean
833 // values of b_1 and b_2 are both true and false.
834 // b_1 TRUE x_8 = [0, 19]
835 // b_1 FALSE x_8 = [20, 255]
836 // b_2 TRUE x_8 = [6, 255]
837 // b_2 FALSE x_8 = [0,5].
839 // These ranges are then combined based on the expected outcome of
840 // the branch. The range on the TRUE side of the branch must satisfy
841 // b_1 == true && b_2 == true
843 // In terms of x_8, that means both x_8 == [0, 19] and x_8 = [6, 255]
844 // must be true. The range of x_8 on the true side must be the
845 // intersection of both ranges since both must be true. Thus the
846 // range of x_8 on the true side is [6, 19].
848 // To determine the ranges on the FALSE side, all 3 combinations of
849 // failing ranges must be considered, and combined as any of them
850 // can cause the false result.
852 // If the LHS can be TRUE or FALSE, then evaluate both a TRUE and
853 // FALSE results and combine them. If we fell back to VARYING any
854 // range restrictions that have been discovered up to this point
855 // would be lost.
856 if (!range_is_either_true_or_false (lhs))
858 bool res;
859 Value_Range r1 (r);
860 if (logical_combine (r1, code, m_bool_zero, op1_true, op1_false,
861 op2_true, op2_false)
862 && logical_combine (r, code, m_bool_one, op1_true, op1_false,
863 op2_true, op2_false))
865 r.union_ (r1);
866 res = true;
868 else
869 res = false;
870 if (idx && res)
872 tracer.print (idx, "logical_combine produced ");
873 r.dump (dump_file);
874 fputc ('\n', dump_file);
878 switch (code)
880 // A logical AND combines ranges from 2 boolean conditions.
881 // c_2 = b_1 && b_2
882 case TRUTH_AND_EXPR:
883 case BIT_AND_EXPR:
884 if (!lhs.zero_p ())
886 // The TRUE side is the intersection of the 2 true ranges.
887 r = op1_true;
888 r.intersect (op2_true);
890 else
892 // The FALSE side is the union of the other 3 cases.
893 Value_Range ff (op1_false);
894 ff.intersect (op2_false);
895 Value_Range tf (op1_true);
896 tf.intersect (op2_false);
897 Value_Range ft (op1_false);
898 ft.intersect (op2_true);
899 r = ff;
900 r.union_ (tf);
901 r.union_ (ft);
903 break;
904 // A logical OR combines ranges from 2 boolean conditions.
905 // c_2 = b_1 || b_2
906 case TRUTH_OR_EXPR:
907 case BIT_IOR_EXPR:
908 if (lhs.zero_p ())
910 // An OR operation will only take the FALSE path if both
911 // operands are false simultaneously, which means they should
912 // be intersected. !(x || y) == !x && !y
913 r = op1_false;
914 r.intersect (op2_false);
916 else
918 // The TRUE side of an OR operation will be the union of
919 // the other three combinations.
920 Value_Range tt (op1_true);
921 tt.intersect (op2_true);
922 Value_Range tf (op1_true);
923 tf.intersect (op2_false);
924 Value_Range ft (op1_false);
925 ft.intersect (op2_true);
926 r = tt;
927 r.union_ (tf);
928 r.union_ (ft);
930 break;
931 default:
932 gcc_unreachable ();
935 if (idx)
936 tracer.trailer (idx, "logical_combine", true, NULL_TREE, r);
937 return true;
941 // Given a logical STMT, calculate true and false ranges for each
942 // potential path of NAME, assuming NAME came through the OP chain if
943 // OP_IN_CHAIN is true.
945 void
946 gori_compute::compute_logical_operands (vrange &true_range, vrange &false_range,
947 gimple_range_op_handler &handler,
948 const irange &lhs,
949 tree name, fur_source &src,
950 tree op, bool op_in_chain)
952 gimple *stmt = handler.stmt ();
953 gimple *src_stmt = gimple_range_ssa_p (op) ? SSA_NAME_DEF_STMT (op) : NULL;
954 if (!op_in_chain || !src_stmt || chain_import_p (handler.lhs (), op))
956 // If op is not in the def chain, or defined in this block,
957 // use its known value on entry to the block.
958 src.get_operand (true_range, name);
959 false_range = true_range;
960 unsigned idx;
961 if ((idx = tracer.header ("logical_operand")))
963 print_generic_expr (dump_file, op, TDF_SLIM);
964 fprintf (dump_file, " not in computation chain. Queried.\n");
965 tracer.trailer (idx, "logical_operand", true, NULL_TREE, true_range);
967 return;
970 enum tree_code code = gimple_expr_code (stmt);
971 // Optimize [0 = x | y], since neither operand can ever be non-zero.
972 if ((code == BIT_IOR_EXPR || code == TRUTH_OR_EXPR) && lhs.zero_p ())
974 if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name,
975 src))
976 src.get_operand (false_range, name);
977 true_range = false_range;
978 return;
981 // Optimize [1 = x & y], since neither operand can ever be zero.
982 if ((code == BIT_AND_EXPR || code == TRUTH_AND_EXPR) && lhs == m_bool_one)
984 if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
985 src.get_operand (true_range, name);
986 false_range = true_range;
987 return;
990 // Calculate ranges for true and false on both sides, since the false
991 // path is not always a simple inversion of the true side.
992 if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
993 src.get_operand (true_range, name);
994 if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name, src))
995 src.get_operand (false_range, name);
999 // This routine will try to refine the ranges of OP1 and OP2 given a relation
1000 // K between them. In order to perform this refinement, one of the operands
1001 // must be in the definition chain of the other. The use is refined using
1002 // op1/op2_range on the statement, and the definition is then recalculated
1003 // using the relation.
1005 bool
1006 gori_compute::refine_using_relation (tree op1, vrange &op1_range,
1007 tree op2, vrange &op2_range,
1008 fur_source &src, relation_kind k)
1010 gcc_checking_assert (TREE_CODE (op1) == SSA_NAME);
1011 gcc_checking_assert (TREE_CODE (op2) == SSA_NAME);
1013 if (k == VREL_VARYING || k == VREL_EQ || k == VREL_UNDEFINED)
1014 return false;
1016 bool change = false;
1017 bool op1_def_p = in_chain_p (op2, op1);
1018 if (!op1_def_p)
1019 if (!in_chain_p (op1, op2))
1020 return false;
1022 tree def_op = op1_def_p ? op1 : op2;
1023 tree use_op = op1_def_p ? op2 : op1;
1025 if (!op1_def_p)
1026 k = relation_swap (k);
1028 // op1_def is true if we want to look up op1, otherwise we want op2.
1029 // if neither is the case, we returned in the above check.
1031 gimple *def_stmt = SSA_NAME_DEF_STMT (def_op);
1032 gimple_range_op_handler op_handler (def_stmt);
1033 if (!op_handler)
1034 return false;
1035 tree def_op1 = op_handler.operand1 ();
1036 tree def_op2 = op_handler.operand2 ();
1037 // if the def isn't binary, the relation will not be useful.
1038 if (!def_op2)
1039 return false;
1041 // Determine if op2 is directly referenced as an operand.
1042 if (def_op1 == use_op)
1044 // def_stmt has op1 in the 1st operand position.
1045 Value_Range other_op (TREE_TYPE (def_op2));
1046 src.get_operand (other_op, def_op2);
1048 // Using op1_range as the LHS, and relation REL, evaluate op2.
1049 tree type = TREE_TYPE (def_op1);
1050 Value_Range new_result (type);
1051 if (!op_handler.op1_range (new_result, type,
1052 op1_def_p ? op1_range : op2_range,
1053 other_op, relation_trio::lhs_op1 (k)))
1054 return false;
1055 if (op1_def_p)
1057 change |= op2_range.intersect (new_result);
1058 // Recalculate op2.
1059 if (op_handler.fold_range (new_result, type, op2_range, other_op))
1061 change |= op1_range.intersect (new_result);
1064 else
1066 change |= op1_range.intersect (new_result);
1067 // Recalculate op1.
1068 if (op_handler.fold_range (new_result, type, op1_range, other_op))
1070 change |= op2_range.intersect (new_result);
1074 else if (def_op2 == use_op)
1076 // def_stmt has op1 in the 1st operand position.
1077 Value_Range other_op (TREE_TYPE (def_op1));
1078 src.get_operand (other_op, def_op1);
1080 // Using op1_range as the LHS, and relation REL, evaluate op2.
1081 tree type = TREE_TYPE (def_op2);
1082 Value_Range new_result (type);
1083 if (!op_handler.op2_range (new_result, type,
1084 op1_def_p ? op1_range : op2_range,
1085 other_op, relation_trio::lhs_op2 (k)))
1086 return false;
1087 if (op1_def_p)
1089 change |= op2_range.intersect (new_result);
1090 // Recalculate op1.
1091 if (op_handler.fold_range (new_result, type, other_op, op2_range))
1093 change |= op1_range.intersect (new_result);
1096 else
1098 change |= op1_range.intersect (new_result);
1099 // Recalculate op2.
1100 if (op_handler.fold_range (new_result, type, other_op, op1_range))
1102 change |= op2_range.intersect (new_result);
1106 return change;
1109 // Calculate a range for NAME from the operand 1 position of STMT
1110 // assuming the result of the statement is LHS. Return the range in
1111 // R, or false if no range could be calculated.
1113 bool
1114 gori_compute::compute_operand1_range (vrange &r,
1115 gimple_range_op_handler &handler,
1116 const vrange &lhs,
1117 fur_source &src, value_relation *rel)
1119 gimple *stmt = handler.stmt ();
1120 tree op1 = handler.operand1 ();
1121 tree op2 = handler.operand2 ();
1122 tree lhs_name = gimple_get_lhs (stmt);
1124 relation_trio trio;
1125 if (rel)
1126 trio = rel->create_trio (lhs_name, op1, op2);
1128 Value_Range op1_range (TREE_TYPE (op1));
1129 Value_Range op2_range (op2 ? TREE_TYPE (op2) : TREE_TYPE (op1));
1131 // Fetch the known range for op1 in this block.
1132 src.get_operand (op1_range, op1);
1134 // Now range-op calculate and put that result in r.
1135 if (op2)
1137 src.get_operand (op2_range, op2);
1139 relation_kind op_op = trio.op1_op2 ();
1140 if (op_op != VREL_VARYING)
1141 refine_using_relation (op1, op1_range, op2, op2_range, src, op_op);
1143 // If op1 == op2, create a new trio for just this call.
1144 if (op1 == op2 && gimple_range_ssa_p (op1))
1145 trio = relation_trio (trio.lhs_op1 (), trio.lhs_op2 (), VREL_EQ);
1146 if (!handler.calc_op1 (r, lhs, op2_range, trio))
1147 return false;
1149 else
1151 // We pass op1_range to the unary operation. Normally it's a
1152 // hidden range_for_type parameter, but sometimes having the
1153 // actual range can result in better information.
1154 if (!handler.calc_op1 (r, lhs, op1_range, trio))
1155 return false;
1158 unsigned idx;
1159 if ((idx = tracer.header ("compute op 1 (")))
1161 print_generic_expr (dump_file, op1, TDF_SLIM);
1162 fprintf (dump_file, ") at ");
1163 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1164 tracer.print (idx, "LHS =");
1165 lhs.dump (dump_file);
1166 if (op2 && TREE_CODE (op2) == SSA_NAME)
1168 fprintf (dump_file, ", ");
1169 print_generic_expr (dump_file, op2, TDF_SLIM);
1170 fprintf (dump_file, " = ");
1171 op2_range.dump (dump_file);
1173 fprintf (dump_file, "\n");
1174 tracer.print (idx, "Computes ");
1175 print_generic_expr (dump_file, op1, TDF_SLIM);
1176 fprintf (dump_file, " = ");
1177 r.dump (dump_file);
1178 fprintf (dump_file, " intersect Known range : ");
1179 op1_range.dump (dump_file);
1180 fputc ('\n', dump_file);
1183 r.intersect (op1_range);
1184 if (idx)
1185 tracer.trailer (idx, "produces ", true, op1, r);
1186 return true;
1190 // Calculate a range for NAME from the operand 2 position of S
1191 // assuming the result of the statement is LHS. Return the range in
1192 // R, or false if no range could be calculated.
1194 bool
1195 gori_compute::compute_operand2_range (vrange &r,
1196 gimple_range_op_handler &handler,
1197 const vrange &lhs,
1198 fur_source &src, value_relation *rel)
1200 gimple *stmt = handler.stmt ();
1201 tree op1 = handler.operand1 ();
1202 tree op2 = handler.operand2 ();
1203 tree lhs_name = gimple_get_lhs (stmt);
1205 Value_Range op1_range (TREE_TYPE (op1));
1206 Value_Range op2_range (TREE_TYPE (op2));
1208 src.get_operand (op1_range, op1);
1209 src.get_operand (op2_range, op2);
1211 relation_trio trio;
1212 if (rel)
1213 trio = rel->create_trio (lhs_name, op1, op2);
1214 relation_kind op_op = trio.op1_op2 ();
1216 if (op_op != VREL_VARYING)
1217 refine_using_relation (op1, op1_range, op2, op2_range, src, op_op);
1219 // If op1 == op2, create a new trio for this stmt.
1220 if (op1 == op2 && gimple_range_ssa_p (op1))
1221 trio = relation_trio (trio.lhs_op1 (), trio.lhs_op2 (), VREL_EQ);
1222 // Intersect with range for op2 based on lhs and op1.
1223 if (!handler.calc_op2 (r, lhs, op1_range, trio))
1224 return false;
1226 unsigned idx;
1227 if ((idx = tracer.header ("compute op 2 (")))
1229 print_generic_expr (dump_file, op2, TDF_SLIM);
1230 fprintf (dump_file, ") at ");
1231 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1232 tracer.print (idx, "LHS = ");
1233 lhs.dump (dump_file);
1234 if (TREE_CODE (op1) == SSA_NAME)
1236 fprintf (dump_file, ", ");
1237 print_generic_expr (dump_file, op1, TDF_SLIM);
1238 fprintf (dump_file, " = ");
1239 op1_range.dump (dump_file);
1241 fprintf (dump_file, "\n");
1242 tracer.print (idx, "Computes ");
1243 print_generic_expr (dump_file, op2, TDF_SLIM);
1244 fprintf (dump_file, " = ");
1245 r.dump (dump_file);
1246 fprintf (dump_file, " intersect Known range : ");
1247 op2_range.dump (dump_file);
1248 fputc ('\n', dump_file);
1250 // Intersect the calculated result with the known result and return if done.
1251 r.intersect (op2_range);
1252 if (idx)
1253 tracer.trailer (idx, " produces ", true, op2, r);
1254 return true;
1257 // Calculate a range for NAME from both operand positions of S
1258 // assuming the result of the statement is LHS. Return the range in
1259 // R, or false if no range could be calculated.
1261 bool
1262 gori_compute::compute_operand1_and_operand2_range (vrange &r,
1263 gimple_range_op_handler
1264 &handler,
1265 const vrange &lhs,
1266 tree name,
1267 fur_source &src,
1268 value_relation *rel)
1270 Value_Range op_range (TREE_TYPE (name));
1272 Value_Range vr (TREE_TYPE (handler.operand2 ()));
1273 // Calculate a good a range through op2.
1274 if (!compute_operand2_range (vr, handler, lhs, src, rel))
1275 return false;
1276 gimple *src_stmt = SSA_NAME_DEF_STMT (handler.operand2 ());
1277 gcc_checking_assert (src_stmt);
1278 // Then feed this range back as the LHS of the defining statement.
1279 if (!compute_operand_range (r, src_stmt, vr, name, src, rel))
1280 return false;
1282 // Now get the range thru op1.
1283 vr.set_type (TREE_TYPE (handler.operand1 ()));
1284 if (!compute_operand1_range (vr, handler, lhs, src, rel))
1285 return false;
1286 src_stmt = SSA_NAME_DEF_STMT (handler.operand1 ());
1287 gcc_checking_assert (src_stmt);
1288 // Then feed this range back as the LHS of the defining statement.
1289 if (!compute_operand_range (op_range, src_stmt, vr, name, src, rel))
1290 return false;
1292 // Both operands have to be simultaneously true, so perform an intersection.
1293 r.intersect (op_range);
1294 return true;
1297 // Return TRUE if NAME can be recomputed on any edge exiting BB. If any
1298 // direct dependent is exported, it may also change the computed value of NAME.
1300 bool
1301 gori_compute::may_recompute_p (tree name, basic_block bb, int depth)
1303 tree dep1 = depend1 (name);
1304 tree dep2 = depend2 (name);
1306 // If the first dependency is not set, there is no recomputation.
1307 // Dependencies reflect original IL, not current state. Check if the
1308 // SSA_NAME is still valid as well.
1309 if (!dep1)
1310 return false;
1312 // Don't recalculate PHIs or statements with side_effects.
1313 gimple *s = SSA_NAME_DEF_STMT (name);
1314 if (is_a<gphi *> (s) || gimple_has_side_effects (s))
1315 return false;
1317 if (!dep2)
1319 // -1 indicates a default param, convert it to the real default.
1320 if (depth == -1)
1322 depth = (int)param_ranger_recompute_depth;
1323 gcc_checking_assert (depth >= 1);
1326 bool res = (bb ? is_export_p (dep1, bb) : is_export_p (dep1));
1327 if (res || depth <= 1)
1328 return res;
1329 // Check another level of recomputation.
1330 return may_recompute_p (dep1, bb, --depth);
1332 // Two dependencies terminate the depth of the search.
1333 if (bb)
1334 return is_export_p (dep1, bb) || is_export_p (dep2, bb);
1335 else
1336 return is_export_p (dep1) || is_export_p (dep2);
1339 // Return TRUE if NAME can be recomputed on edge E. If any direct dependent
1340 // is exported on edge E, it may change the computed value of NAME.
1342 bool
1343 gori_compute::may_recompute_p (tree name, edge e, int depth)
1345 gcc_checking_assert (e);
1346 return may_recompute_p (name, e->src, depth);
1350 // Return TRUE if a range can be calculated or recomputed for NAME on any
1351 // edge exiting BB.
1353 bool
1354 gori_compute::has_edge_range_p (tree name, basic_block bb)
1356 // Check if NAME is an export or can be recomputed.
1357 if (bb)
1358 return is_export_p (name, bb) || may_recompute_p (name, bb);
1360 // If no block is specified, check for anywhere in the IL.
1361 return is_export_p (name) || may_recompute_p (name);
1364 // Return TRUE if a range can be calculated or recomputed for NAME on edge E.
1366 bool
1367 gori_compute::has_edge_range_p (tree name, edge e)
1369 gcc_checking_assert (e);
1370 return has_edge_range_p (name, e->src);
1373 // Calculate a range on edge E and return it in R. Try to evaluate a
1374 // range for NAME on this edge. Return FALSE if this is either not a
1375 // control edge or NAME is not defined by this edge.
1377 bool
1378 gori_compute::outgoing_edge_range_p (vrange &r, edge e, tree name,
1379 range_query &q)
1381 unsigned idx;
1383 if ((e->flags & m_not_executable_flag))
1385 r.set_undefined ();
1386 if (dump_file && (dump_flags & TDF_DETAILS))
1387 fprintf (dump_file, "Outgoing edge %d->%d unexecutable.\n",
1388 e->src->index, e->dest->index);
1389 return true;
1392 gcc_checking_assert (gimple_range_ssa_p (name));
1393 int_range_max lhs;
1394 // Determine if there is an outgoing edge.
1395 gimple *stmt = outgoing.edge_range_p (lhs, e);
1396 if (!stmt)
1397 return false;
1399 fur_stmt src (stmt, &q);
1400 // If NAME can be calculated on the edge, use that.
1401 if (is_export_p (name, e->src))
1403 bool res;
1404 if ((idx = tracer.header ("outgoing_edge")))
1406 fprintf (dump_file, " for ");
1407 print_generic_expr (dump_file, name, TDF_SLIM);
1408 fprintf (dump_file, " on edge %d->%d\n",
1409 e->src->index, e->dest->index);
1411 if ((res = compute_operand_range (r, stmt, lhs, name, src)))
1413 // Sometimes compatible types get interchanged. See PR97360.
1414 // Make sure we are returning the type of the thing we asked for.
1415 if (!r.undefined_p () && r.type () != TREE_TYPE (name))
1417 gcc_checking_assert (range_compatible_p (r.type (),
1418 TREE_TYPE (name)));
1419 range_cast (r, TREE_TYPE (name));
1422 if (idx)
1423 tracer.trailer (idx, "outgoing_edge", res, name, r);
1424 return res;
1426 // If NAME isn't exported, check if it can be recomputed.
1427 else if (may_recompute_p (name, e))
1429 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1431 if ((idx = tracer.header ("recomputation")))
1433 fprintf (dump_file, " attempt on edge %d->%d for ",
1434 e->src->index, e->dest->index);
1435 print_gimple_stmt (dump_file, def_stmt, 0, TDF_SLIM);
1437 // Simply calculate DEF_STMT on edge E using the range query Q.
1438 fold_range (r, def_stmt, e, &q);
1439 if (idx)
1440 tracer.trailer (idx, "recomputation", true, name, r);
1441 return true;
1443 return false;
1446 // Given COND ? OP1 : OP2 with ranges R1 for OP1 and R2 for OP2, Use gori
1447 // to further resolve R1 and R2 if there are any dependencies between
1448 // OP1 and COND or OP2 and COND. All values can are to be calculated using SRC
1449 // as the origination source location for operands..
1450 // Effectively, use COND an the edge condition and solve for OP1 on the true
1451 // edge and OP2 on the false edge.
1453 bool
1454 gori_compute::condexpr_adjust (vrange &r1, vrange &r2, gimple *, tree cond,
1455 tree op1, tree op2, fur_source &src)
1457 tree ssa1 = gimple_range_ssa_p (op1);
1458 tree ssa2 = gimple_range_ssa_p (op2);
1459 if (!ssa1 && !ssa2)
1460 return false;
1461 if (TREE_CODE (cond) != SSA_NAME)
1462 return false;
1463 gassign *cond_def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (cond));
1464 if (!cond_def
1465 || TREE_CODE_CLASS (gimple_assign_rhs_code (cond_def)) != tcc_comparison)
1466 return false;
1467 tree type = TREE_TYPE (gimple_assign_rhs1 (cond_def));
1468 if (!range_compatible_p (type, TREE_TYPE (gimple_assign_rhs2 (cond_def))))
1469 return false;
1470 range_op_handler hand (gimple_assign_rhs_code (cond_def));
1471 if (!hand)
1472 return false;
1474 tree c1 = gimple_range_ssa_p (gimple_assign_rhs1 (cond_def));
1475 tree c2 = gimple_range_ssa_p (gimple_assign_rhs2 (cond_def));
1477 // Only solve if there is one SSA name in the condition.
1478 if ((!c1 && !c2) || (c1 && c2))
1479 return false;
1481 // Pick up the current values of each part of the condition.
1482 tree rhs1 = gimple_assign_rhs1 (cond_def);
1483 tree rhs2 = gimple_assign_rhs2 (cond_def);
1484 Value_Range cl (TREE_TYPE (rhs1));
1485 Value_Range cr (TREE_TYPE (rhs2));
1486 src.get_operand (cl, rhs1);
1487 src.get_operand (cr, rhs2);
1489 tree cond_name = c1 ? c1 : c2;
1490 gimple *def_stmt = SSA_NAME_DEF_STMT (cond_name);
1492 // Evaluate the value of COND_NAME on the true and false edges, using either
1493 // the op1 or op2 routines based on its location.
1494 Value_Range cond_true (type), cond_false (type);
1495 if (c1)
1497 if (!hand.op1_range (cond_false, type, m_bool_zero, cr))
1498 return false;
1499 if (!hand.op1_range (cond_true, type, m_bool_one, cr))
1500 return false;
1501 cond_false.intersect (cl);
1502 cond_true.intersect (cl);
1504 else
1506 if (!hand.op2_range (cond_false, type, m_bool_zero, cl))
1507 return false;
1508 if (!hand.op2_range (cond_true, type, m_bool_one, cl))
1509 return false;
1510 cond_false.intersect (cr);
1511 cond_true.intersect (cr);
1514 unsigned idx;
1515 if ((idx = tracer.header ("cond_expr evaluation : ")))
1517 fprintf (dump_file, " range1 = ");
1518 r1.dump (dump_file);
1519 fprintf (dump_file, ", range2 = ");
1520 r1.dump (dump_file);
1521 fprintf (dump_file, "\n");
1524 // Now solve for SSA1 or SSA2 if they are in the dependency chain.
1525 if (ssa1 && in_chain_p (ssa1, cond_name))
1527 Value_Range tmp1 (TREE_TYPE (ssa1));
1528 if (compute_operand_range (tmp1, def_stmt, cond_true, ssa1, src))
1529 r1.intersect (tmp1);
1531 if (ssa2 && in_chain_p (ssa2, cond_name))
1533 Value_Range tmp2 (TREE_TYPE (ssa2));
1534 if (compute_operand_range (tmp2, def_stmt, cond_false, ssa2, src))
1535 r2.intersect (tmp2);
1537 if (idx)
1539 tracer.print (idx, "outgoing: range1 = ");
1540 r1.dump (dump_file);
1541 fprintf (dump_file, ", range2 = ");
1542 r1.dump (dump_file);
1543 fprintf (dump_file, "\n");
1544 tracer.trailer (idx, "cond_expr", true, cond_name, cond_true);
1546 return true;
1549 // Dump what is known to GORI computes to listing file F.
1551 void
1552 gori_compute::dump (FILE *f)
1554 gori_map::dump (f);
1557 // ------------------------------------------------------------------------
1558 // GORI iterator. Although we have bitmap iterators, don't expose that it
1559 // is currently a bitmap. Use an export iterator to hide future changes.
1561 // Construct a basic iterator over an export bitmap.
1563 gori_export_iterator::gori_export_iterator (bitmap b)
1565 bm = b;
1566 if (b)
1567 bmp_iter_set_init (&bi, b, 1, &y);
1571 // Move to the next export bitmap spot.
1573 void
1574 gori_export_iterator::next ()
1576 bmp_iter_next (&bi, &y);
1580 // Fetch the name of the next export in the export list. Return NULL if
1581 // iteration is done.
1583 tree
1584 gori_export_iterator::get_name ()
1586 if (!bm)
1587 return NULL_TREE;
1589 while (bmp_iter_set (&bi, &y))
1591 tree t = ssa_name (y);
1592 if (t)
1593 return t;
1594 next ();
1596 return NULL_TREE;